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Sur une équation générale du type Duffing avec double puits de potentiel

1 Introduction L'équation de Dung décrit le mouvement d'un système non linéaire représentant un oscillateur unidimensionnel. On peut l'écrire sous la forme :

u ′′ + cu ′ + u 3 -u = f (t) où c > 0 et f ∈ L ∞ (R).
A.Haraux [START_REF] Haraux | On the double well Dung equation with a small bounded forcing term[END_REF] a prouvé que sous une certaine condition de petitesse sur f et pour c assez grand on pouvait avoir pour ce système un comportement moins chaotique que celui décrit dans [START_REF] Chow | An example of bifurcation to homoclinic orbits[END_REF][START_REF] Hale | Interaction of damping and forcing in a second order evolution equation[END_REF][START_REF] Loud | Periodic solutions of x+cx' +g(x) = f(t)[END_REF][START_REF] Moon | A magnetoelastic strange attractor[END_REF]. Dans ce travail nous déterminons une condition de petitesse sur f dépendant de p ≥ 2 qui donne des résultats analogues pour l'équation un peu plus générale

u ′′ + cu ′ + |u| p u -u = f (t) (1.1) où c > 0 et f ∈ L ∞ (R).
Les méthodes de démonstration sont celles de [START_REF] Haraux | On the double well Dung equation with a small bounded forcing term[END_REF] avec des dicultés techniques spplémentaires surtout pour les résultats globaux (théorèmes 2.2 et 2.5). Nous améliorons au passage le résultat du théorème 1.2 de [START_REF] Haraux | On the double well Dung equation with a small bounded forcing term[END_REF]. (2.3)

(1.1) admet une solution unique ω + et une solution unique ω -∈ W 2,∞ (R)

telles que ω + -1 ∞ < ( 2p + 1 p + 1 ) 1 p -1, ω -+ 1 ∞ < ( 2p + 1 p + 1 ) 1 p -1 (2.4) Si c ≤ 2 √ p et sous la condition supplémentaire f ∞ ≤ ( c √ p 2 + p + 1)[( c √ p 2(p + 1) + 1) 1 p -1] -( c √ p 2(p + 1) + 1)
p+1 p := η(c) (2.5) (1.1) admet une solution unique ω + et une solution unique ω -∈ W 2,∞ (R)

telles que ω + -1 ∞ < (1 + c √ p 2(p + 1) ) 1 p -1, ω -+ 1 ∞ < (1 + c √ p Finalement si c ≤ p 2 , en supposant que f ∞ ≤ ( c √ p √ 2 + p + 1)( c √ p √ 2(p + 1) + 1) 1 p -( c √ p √ 2(p + 1) ) p+1 p -p - c √ p √ 2 := η 1 (c) (2.7) 
(1.1) admet une solution unique ω + et une solution unique ω -∈ W 2,∞ (R)

telles que ω + -1 ∞ < (1+ c √ p √ 2(p + 1) ) 1 p -1, ω -+1 ∞ < (1+ c √ p √ 2(p + 1
) ) 

c ≥ 2 √ p, f ∈ C b (R), f ∞ < inf{ 1 6p √ 2 , c √ 1 + c 2 √ 3p -4 8 √ 3p }
(2.9)

toute solution u de (1.1) sur un intervalle J = (t 0 , +∞) est asymptote à une des 3 solutions ω 0 , ω + , ω -quand t → +∞. Remarque 2.7. Si p = 2, la condition (2.9) du théorème 2.2 améliore la condition (1.9) de [START_REF] Haraux | On the double well Dung equation with a small bounded forcing term[END_REF] d'un facteur 2

f ∞ (1 + √ T c K f p ∞ + ( p 4 (p + 1) (p 2 -p -1) + 1)T ) < ( p p + 1 ) inf{(1 + c √ p 2(p + 1) ) 1 p -1, ( 2p + 1 p + 1 ) 1 p -1} (2.10) Avec K = 2 (1+ p 2 (p-3) + ) p p 2 (p -1) p 2 (p -2) p-2 2 (p + 1)T (p 2 -p + 3) p-2 2 c p + 2 (p-3) + p 2 (p 2 -1) T p-1 c p + p p (p + 1)T l'équation (1.
√ 2 √ 3
3 Existence de 3 solutions bornées pour f petite On établit d'abord l'existence de la petite solution. On introduit l'opérateur Λ deni sur

X := L ∞ (R) par D(Λ) = W 2,∞ = {u ∈ C 1 (R), u, u ′ , u ′′ ∈ L ∞ (R)} ∀u ∈ D(Λ), Λu = u ′′ + cu ′ -u
alors une solution bornée u de (1.1) est juste une solution de

Λu = u ′′ + cu ′ -u = f -|u| p u
Puisque -Λ est un opérateur elliptique, il est clairement inversible sur X et on a

||Λ -1 || L(X) = 1
On écrit l'équation précédente comme 

u = Λ -1 (f -|u| p u) L'application T (v) = Λ -1 (f -|v| p v) conserve la boule B r = {v ∈ X, ||v|| X r} si ||f || X + r p+1 r.
v ′′ + cv ′ + pv = f -γ(v) où γ(v) = |1 + v| p (1 + v) -(p + 1)v -1
qui peut être écrite sous la forme :

v = L -1 (f -γ(v)) où L = ∂ 2 + c∂ + pI 1 er ?=I : Si c ≥ 2 √ p alors, d'après le théorème 2.1 dans [9], ||L -1 || = 1 p et T (v) = L -1 (f -γ(v))
conserve la boule

B r = {v ∈ X, ||v|| X r} si 1 p (||f || X + γ(r)) ≤ r
Ceci est satisfait pour un certain r positif si

||f || X ≤ sup r>0 (pr -γ(r))
Il sut donc de prendre f telle que

||f || X ≤ sup r>0 (2p + 1)r -(1 + r) p+1 + 1 := M avec M = (2p + 1)r 0 -(1 + r 0 ) p+1 + 1; r 0 = ( 2p + 1 p + 1) ) 1 p -1 De plus, puisque (p + 1)(1 + r 0 ) p = 2p + 1 on a ∀v ∈ (-r 0 , r 0 ), |((1 + v) p+1 ) ′ | = |(p + 1)(1 + v) p | < 2p + 1
alors pour tout r ∈ (0, r 0 ) tel que : 

||f || X ≤ (2p + 1)r -(1 + r) p+1 + 1 on a T B r ⊂ B r et T : B r → B
M = (2p + 1)r 0 -(1 + r 0 ) p+1 + 1 = p[( 2p + 1 p + 1 ) p+1 p -2] < p( 1 p + 1 ) p+1 p
2) La solution au voisinage de 0 et la solution au voisinage de 1 sont distinctes puisque la seconde est plus grande que

1 -[( 2p+1 p+1 ) 1 p -1] > ( 1 p+1 ) p+1 p . 2 eme ?=I : Si c ≤ 2 √ p alors, d'aprés le théorème 2.1 [9], ||L -1 || ≤ 2 c √ p et T (v) = L -1 (f -γ(v)) conserve la boule B r = {v ∈ X, ||v|| X r} si 2 c √ p (||f || X + γ(r)) ≤ r
Ceci est satisfait pour un certain r positif dès que

f X ≤ sup r>0 ( c √ p 2 r -γ(r))
Il sut de prendre

f X ≤ sup r>0 (p + c √ p 2 + 1)r -(1 + r) p+1 + 1 := M avec M = (p + c √ p 2 + 1)r 1 -(1 + r 1 ) p+1 + 1; r 1 = ( c √ p 2(p + 1) + 1) 1 p -1 ≤ r 0
De plus T est toujours contractante sur B r pour r < r 1 et la solution positive reste toujours plus grande que la solution proche de 0. La condition nale sur f dans ce cas est

f X ≤ ( c √ p 2 + p + 1)[( c √ p 2(p + 1) + 1) 1 p -1] -( c √ p 2(p + 1) + 1) p+1 p := η(c)
3 eme cas : c ≤ p 2
En utilisant la formule exacte donnée dans le théorème 2.1 dans [START_REF] Haraux | On the double well Dung equation with a small bounded forcing term[END_REF] :

L -1 L(X) = 1 ω 2 × 1 + e -cπ √ 4ω 2 -c 2 1 -e -cπ √ 4ω 2 -c 2 = 1 ω 2 coth{ cπ √ 4ω 2 -c 2 } on prouve que L -1 L(X) ≤ √ 2 c √ p En eet pour ω xé, c L -1 L(X) est une fonction croissante de c, d'où pour c ≤ p 2 c L -1 L(X) ≤ 1 √ 2p × 1 + e -π √ 7 
1e

-π √ 7 < 2 p puisque π √ 7 > ln 3.
La conclusion est donc la même que dans le deuxième cas.

Borne ultime de la solution générale

Dans cette section on établit une estimation non optimale de la borne ultime de la solution générale de (1.1). 

t→∞ |u| p+2 (t) ≤ ( p + 2 2 ) p+2 2 
+ (p + 2)[ c 2 + (p + 2) 2 2p 2 c 2 ] f 2 ∞ (4.1) Démonstration : On introduit l'énergie E(t) = 1 2 u ′2 + 1 p+2 |u| p+2 -1 2 u 2 .
On a

E ′ (t) = f u ′ -cu ′2 ≤ ( p + 2 2pc )f 2 - (p + 4) 2(p + 2) cu ′2 et (uu ′ ) ′ = u ′2 + uu ′′ = u ′2 + u(f -cu ′ -|u| p u + u) d'où d dt (E + c p + 2 uu ′ ) ≤ c p + 2 u ′2 - (p + 4) 2(p + 2) cu ′2 - c p + 2 uu ′ - c p + 2 |u| p+2 + c p + 2 u 2 + c p + 2 uf + f 2 c ( p + 2 2p ) = -c(E + c p + 2 uu ′ ) + c p + 2 u 2 - c 2 u 2 + c p + 2 uf + f 2 c ( p + 2 2p ) = -c(E + c p + 2 uu ′ ) - pc 2(p + 2) u 2 + f 2 c ( p + 2 2p ) + c p + 2 uf ≤ -c(E + c p + 2 uu ′ ) - pc 2(p + 2) u 2 + pc 2(p + 2) u 2 + c 2p(p + 2) f 2 + f 2 c ( p + 2 2p ) ≤ -c(E + c p + 2 uu ′ ) + 1 2p ( c p + 2 + p + 2 c )f 2 ce qui donne lim t→∞ (E(t) + c p + 2 uu ′ ) ≤ c 2 + (p + 2) 2 2pc 2 (p + 2) f 2 ∞
Pour tout ε > 0 on a pour t assez grand

(E(t) + c p + 2 uu ′ ) ≤ c 2 + (p + 2) 2 2pc 2 (p + 2) f 2 ∞ + ε Finalement considérons une suite asymptotiquement maximisante t n telle que lim n→∞ u 2 (t n ) = lim n→∞ u 2 (t)
Supposons que cette limite soit positive, il est clair que lim n→∞ u ′ (t n ) = 0 puisque u ′′ est bornée pour t ≥ 0 et par conséquent pour n assez grand on a

1 p + 2 |u| p+2 (t n ) - 1 2 u 2 (t n ) ≤ E(t n ) + ε 2 ≤ c 2 + (p + 2) 2 2pc 2 (p + 2) f 2 ∞ + 2ε ⇒ |u| p+2 (t n ) - p + 2 2 u 2 (t n ) ≤ c 2 + (p + 2) 2 2pc 2 f 2 ∞ + 2(p + 2)ε d'aprés l'inégalité de Young on a p + 2 2 |u| 2 ≤ p p + 2 ( p + 2 2 ) p+2 p + 2 p + 2 |u| p+2 d'où pour t = t n |u| p+2 ≤ p p + 2 ( p + 2 2 ) p+2 p + 2 p + 2 |u| p+2 + c 2 + (p + 2) 2 2pc 2 f 2 ∞ + 2(p + 2)ε ce qui donne p p + 2 |u| p+2 ≤ p p + 2 ( p + 2 2 ) p+2 p + c 2 + (p + 2) 2 2pc 2 f 2 ∞ + 2(p + 2)ε et par conséquent |u| p+2 (t n ) ≤ ( p + 2 2 ) p+2 p + (p + 2)[ c 2 + (p + 2) 2 2p 2 c 2 ] f 2 ∞ + 2 (p + 2) 2 p ε donc lim t→∞ |u| p+2 (t) ≤ ( p + 2 2 ) p+2 2 + (p + 2)[ c 2 + (p + 2) 2 2p 2 c 2 ] f 2 ∞ + 2 (p + 2) 2 p ε
et puisque ε est arbitraire on obtient (4.1). 

+ (p + 2)[ 4p + (p + 2) 2 8p 3 ]
or pour p ≥ 2 on a 4p+(p+2) 2

8p 3 ≤ 1 2 donc |u| p+2 ≤ ( p + 2 2 ) p+2 p + p + 2 2 ≤ 2( p + 2 2 ) p+2 p d'où |u| ≤ 2 1 p+2 ( p + 2 2 ) 1 p
Si u une solution de (1.1) on pose u = 1 + v on a

v ′′ + cv ′ + pv + [|v + 1| p (v + 1) -((p + 1)v + 1)] = f h(u) = |v + 1| p (v + 1) -((p + 1)v + 1) = |u| p u -(p + 1)u + p ≥ 0 pour u ≥ -2 1 p+2 ( p+2 2 ) 1 p ; en eet h ′ (u) = (p + 1)(|u| p -1) x -∞ -1 1 +∞ h ′ + 0 -0 + 1 + 3p h ր ց ր 0 D'aprés le tableau de variation h(u) ≥ 0 ∀ u ∈ [-1, +∞[. Sur ]-∞, -1] ; h est croissante alors h(u) ≥ h(-2 1 p+2 ( p+2 2 ) 1 p ) ∀u ≥ -2 1 p+2 ( p+2 2 ) 1 p puisque -2 1 p+2 ( p+2 2 ) 1 p ∈] -∞, -1] D'autre part 2 1 p+2 ( p+2 2 ) 1 p ≤ (p + 2) 1 p donc h(-(p + 2) 1 p ) ≤ h(-2 1 p+2 ( p + 2 2 ) 1 p ) or h(-(p + 2) 1 p ) = -(p + 2) 1 p + p ≥ 0 puisque p p ≥ p + 2 ∀ p ≥ 2 donc h(u) ≥ 0 ∀ u ≥ -2 1 p+2 ( p + 2 2 ) 1 p
En particulier on a

v ′′ + cv ′ + pv ≤ f
On veut montrer d'abord que

lim t→∞ u(t) ≤ 1 + 1 p f ∞
supposons que cette inégalité est fausse, on peut choisir δ > 0 et t n une suite tendant vers ∞ telle que

u(t n ) ≥ 1 + 1 p f ∞ + δ remplaçons v par v(t + t n ) et f par f (t + t n ).
On peut passer à la limite par une sous suite pour laquelle la suite de translatés de f converge faiblement dans L 2 . On peut aussi supposer que les translatés de v convergent dans C 1 , d'où les fonctions limites vérient l'équation limite. Finalement il sut de considérer le cas où v est bornée sur R. Dans ce cas, puisque

v ′′ + cv ′ + pv ≤ f ∞ on obtient v ≤ 1 p f ∞ en contradiction avec v(t n ) ≥ 1 p f ∞ + δ On a donc lim t→∞ u(t) ≤ 1 + 1 p f ∞
Finalement on obtient une inégalité analogue en changeant u en -u, et le résultat en découle. Remarque : Le résultat de la proposition 5.1 n'est pas vrai pour les petites valeurs de c même pour p = 2, cf. [START_REF] Haraux | On the double well Dung equation with a small bounded forcing term[END_REF].

6 Démonstration du Théorème 2.2 et de ses corollaires L'un des principaux outils de la démonstration est une formulation précise de la stabilité asymptotique des solutions bornées ω + , ω -. Il sut de considérer ω + puisque pour ω -on peut changer u et f en leurs opposées. Dans ce cas on a Lemme 6.1. Soit

f ∞ < c √ 1 + c 2 √ 3p -4 8 √ 3p (6.1) Alors pour tout δ < 1 2 √ 6p
, il existe η > 0 tel que les conditions 

|u(t 0 ) -1| ≤ δ et |u ′ (t 0 )| ≤ η impliquent que ∀t ≥ t 0 , |u(t) -1| ≤ 1 2p (6.2) et lim t→+∞ |u(t) -1| ≤ √ 1 + c 2 c 2 √ 6 √ 3p -4 f ∞ (6.3) 
v v ′′ + cv ′ + |1 + v| p (1 + v) -(v + 1) = f
On pose

P (v) = (v + 1) p+2 p + 2 - 1 2 (v + 1) 2 + 1 2 - 1 p + 2 Il existe θ ∈]0, 1[ tel que P (v) = p 2 v 2 + p(p + 1) 6 (1 + θv) p-1 v 3 On remarque que |v| ≤ 1 2p =⇒ 5p 16 v 2 ≤ P (v) ≤ 11p 16 v 2
En eet

|P (v) - p 2 v 2 | ≤ p + 1 12 (1 + θv) p-1 v 2 si |v| ≤ 1 2p
Or

(p + 1)(1 + θv) p-1 ≤ (p + 1)(1 + 1 2p ) p-1 = p(1 + 1 p )(1 + 1 2p ) p-1 ≤ √ ep(1 + 1 2p ) ≤ 9 5 p(1 + 1 4 ) d'où |P (v) - p 2 v 2 | ≤ 3p 16 v 2 Soit F (t) = 1 2 v ′2 (t) + P (v)(t) et Φ(t) = F (t) + αvv ′ (t)
où α une constante > 0 qui sera choisie plus tard. On remarque d'abord que si α < 1 4 , on a

|αvv ′ | ≤ 1 8 v ′2 + p 16 v 2 alors 1 4 (pv 2 + v ′2 ) ≤ Φ(t) ≤ 3 4 (pv 2 + v ′2 ) tant que la condition |v| ≤ 1 2p
est satisfaite. Soit

T = sup{t ≥ t 0 , |v(t)| ≤ 1 2p } et J := [t 0 , T ).
On donne une suite d'estimations valables pour t ∈ J. On a [START_REF] Cartwright | On non-linear dierential equations of the second order[END_REF] ).

F ′ (t) = -cv ′2 + f v ′ ≤ - c 2 v ′2 + f 2 2c (vv ′ ) ′ = v ′2 + vv ′′ = v ′2 -cvv ′ -vg(v) + f v Avec g(v) = |1 + v| p (1 + v) -(1 + v) = pv + p(p+1) 2 (1 + θv) p-1 v 2 • Si v ≥ 0 alors g(v)v ≥ pv 2 . • Si v ≤ 0, on a (1 + θv) p-1 ≤ 1 alors g(v)v ≥ v 2 ( 3p 4 - 1 

D'où

(vv ′ ) ′ ≤ v ′2 -cvv ′ -v 2 ( 3p 4 - 1 2 ) + f 2 et en utilisant -cvv ′ ≤ 1 2 v 2 + c 2 2 v ′2
on en déduit que

Φ ′ ≤ (α(1 + c 2 2 ) - c 2 )v ′2 -α( 3p 4 -1)v 2 + (α + 1 2c )f 2 On prend α = c 4(1 + c 2 2 ) alors α(1 + c 2 2 ) = c 4 et Φ ′ ≤ c 4 v ′2 -α( 3p 4 -1)v 2 + (α + 1 2c )f 2 ≤ - α( 3p 4 -1) p (pv 2 + v ′2 ) + (α + 1 2c )f 2
donc on trouve

Φ ′ ≤ -4α( 3p 4 -1) 3p Φ + (α + 1 2c )f 2 d'où ∀t ∈ J, Φ(t) ≤ exp[-4α( 3p 4 -1 3p )(t -t 0 )]Φ(t 0 ) + ( 6p 3p -4 )( 1 + c 2 c 2 ) f 2 ∞
Pour avoir T = ∞, on doit avoir |v| < 1 2p sur J qui est satisfaite dès que

Φ(t 0 ) + ( 6p 3p -4 )( 1 + c 2 c 2 ) f 2 ∞ ≤ p 4 ( 1 2p ) 2 = 1 16p
Pour avoir cette condition il est susant de prendre

Φ(t 0 ) ≤ 1 32p et ( 6p 3p -4 )( 1 + c 2 c 2 ) f 2 ∞ ≤ 1 32p
La première condition est vériée dès que 3

4 pv 2 (t 0 ) < 1 32p et 3 4 v ′2 (t 0 ) ≤ 1 32p -3 4 v 2 (t) ce qui correspond à nos hypothèses. La deuxième condition est équivalente à f ∞ < c √ 1 + c 2 √ 3p -4 8 √ 3p Pour p=2 elle se réduit à f ∞ ≤ c √ 1 + c 2 √ 2 16 √ 3 Sous ces conditions on a T = ∞ et ∀t ≥ t 0 , Φ(t) ≤ exp[-4α( 3p 4 -1 3p )t]Φ(t 0 ) + ( 6p 3p -4 )( 1 + c 2 c 2 ) f 2 ∞ et l'inégalité |u(t) -1| ≤ 2 √ p Φ(t) 1 2 nous donne lim t→+∞ |u(t) -1| ≤ √ 1 + c 2 c 2 √ 6 √ 3p -4 f X
Pour prouver la deuxième partie, on remarque que la distance asymptotique entre u et 1 est plus petite que

1 2p < ( 2p + 1 p + 1 ) 1 p -1 = r 0 en eet 2p+1 p+1 = 1 + p p+1 ≥ 5 3 et (1 + 1 2p ) p < √ e < 5 3 . 
On veut alors montrer que u → ω + quand t → +∞ et puisque u ′′ est bornée dans S 2 on aura u ′ → ω ′ + . Pour prouver cela on va utiliser la méthode de translation-compacité de Amerio-Biroli [START_REF] Amerio | soluzioni quasi periodiche, o limitate, di sistemi dierenziali non lineari quasi periodici, o limitati[END_REF][START_REF] Biroli | sur les solutions bornées et presque périodiques des équations et inéquations d'évolution[END_REF]. Supposons qu il existe α n tendant vers l'inni avec

lim n→∞ |u(α n ) -ω + (α n )| = η > 0
on peut remplacer α n par une sous-suite qu'on note aussi α n telle que u(α n + t), ω + (α n + t), f (α n + t) convergent respectivement vers v, ω et g dans R uniformément sur tout compact pour les deux premières fonctions, localement faible sur L 2 pour la troisième. Alors v et ω sont deux solutions bornées de

z ′′ + cz ′ + |z| p z -z = g avec M ax{ v -1 ∞ , ω -1 ∞ } < r 0 En particulier v = ω et pour t = 0 on obtient une contradiction avec lim n→∞ |u(α n ) -ω + (α n )| = η > 0 Cette contradiction complète la démonstration du lemme 6.1. Lemme 6.2. ([9], lemma 6.2) Soit J = (a, +∞) et u ∈ C 2 (J) tel que u ≤ M surJ . Soit U := lim t→+∞ u(t)
Alors il existe une suite de réels t n ∈ J telle que t n → +∞ et

lim n→+∞ u ′′ (t n ) ≤ 0, lim n→+∞ u(t n ) = U Lemme 6.3. Pour tout ε > 0, l'inégalité u -|u| p u ≤ ε implique : u ≤ p+1 p ε ou u ≥ 1 - √ 3ε. Démonstration : Si u ≤ 0 il n'y a rien à prouver. Si u > 0 on distingue deux cas i) Si u ≤ 1 (p+1) 1 p , alors 1 -|u| p ≥ p p+1 et donc u -|u| p u = u(1 -|u| p ) ≤ ε ⇒ p p + 1 u ≤ ε ⇒ u ≤ p + 1 p ε ii) Si u ≥ 1 (p+1) 1 p , alors u(1 -u p ) = u(1 -u)[ 1-u p 1-u ] ≥ 1 (p+1) 1 p (1 -u) et donc puisque (p + 1) 1 p leq √ 3 on trouve u ≥ 1 - √ 3ε
Démonstration du théorème 2.2.

Soit u une solution de (1.1) sur R et introduisons

M = lim t→+∞ u(t), m = lim t→+∞ u(t), ε = f ∞
Comme conséquence du lemme 6.2, il existe une suite de réels t n telle que

lim n→+∞ u ′′ (t n ) ≤ 0, lim n→∞ u(t n ) = M Puisque u ′′ est bornée ⇒ lim n→∞ u ′ (t n ) = 0 On a (u -|u| p u)(t n ) = -f (t n ) + u ′′ (t n ) + cu ′ (t n ) donc lim n→∞ (u -|u| p u)(t n ) ≤ ε
Comme conséquence du lemme 6.3, pour n susament grand on a soit

u(t n ) ≤ p + 1 p ε < 2ε soit u(t n ) ≥ 1 - √ 3ε
Dans le premier cas on conclut que

M ≤ 2ε
Dans le deuxième cas, d'aprés la section 5, on a

1 - √ 3ε ≤ u(t n ) ≤ 1 + ε p
Comme conséquence du lemme On prouve cette dernière propriété en utilisant à nouveau la méthode de translation.

En eet supposant, au contraire, l'existence de α n tendant vers l'inni avec

lim n→∞ |u(α n ) -ω 0 (α n )| = η > 0
on peut remplacer α n par une sous-suite, notée α n , telle que

u(α n + t), ω 0 (α n + t), f (α n + t)
convergent respectivement vers v, ω et g sur R, uniformément sur tout compact pour les premières fonctions, localement faiblement dans L 2 pour la troisième. Alors v, ω sont deux solutions bornées de

z ′′ + cz ′ + |z| p z -z = g avec M ax{ v ∞ , ω ∞ } ≤ 2ε
En particulier v = ω et pour t = 0 on obtient une contradiction avec

lim n→∞ |u(α n ) -ω 0 (α n )| = η > 0
Cette contradiction termine la démonstration du théorème 2.2 

|u| p u -u ∞ ≤ f ∞ (1 + √ T c K f p ∞ + ( p 4 (p + 1) (p 2 -p -1) + 1)T ) avec K = 2 (1+ p 2 (p-3) + ) p p 2 (p-1) p 2 (p-2) p-2 2 (p+1)T (p 2 -p+3) p-2 2 c p + 2 (p-3) + p 2 (p 2 -1) T p-1 c p + p p (p + 1)T Démonstration : En intégrant (1.1) sur J = (0, T ) on trouve : J (|u| p u -u)dt = J f dt En particulier | 1 T J (|u| p u -u)dt| = ||f || ∞
Ensuite en multipliant (1.1) par u ′ et en intégrant sur J on trouve :

c J u ′2 dt = J f u ′ dt ⇒ c J u ′2 dt ≤ ( J f 2 dt) 1 2 ( J u ′2 dt) 1 2 18 Alors ||u ′ || 2 ≤ √ T c ||f || ∞ (7.1)
Puis en mutipliant (1.1) par u|u| p-2 et en intégrant sur J on obtient :

J (|u| 2p -|u| p )dt = J f u|u| p-2 dt + (p -1) J u ′2 |u| p-2 dt =⇒ J (|u| 2p -|u| p )dt ≤ ||f || ∞ J |u| p-1 dt + (p -1) u p-2 ∞ dt J u ′2 dt (7.2)
D'une part, d'aprés l'inégalite de Young on a :

||f || ∞ |u| p-1 ≤ p -1 p 2 |u| p + p p-2 f p ∞ donc ||f || ∞ J |u| p-1 dt ≤ p -1 p 2 J |u| p dt + p p-2 f p ∞ T (7.3) D'autre part : u p-2 ∞ ≤ 2 (p-3) + T 2-p p u p-2 p + 2 (p-3) + T p-2 2 u ′ p-2 2 (7.4) où (p -3) + = p -3 si p ≥ 3 0 si 2 ≤ p < 3 en eet u ∞ ≤ 1 T u 1 + u ′ 1 en appliquant l'inégalité de hölder à u 1 et à u ′ 1 on a u 1 ≤ T p-1 p u p et u ′ 1 ≤ T 1 2 u ′ 2 enn si 2 ≤ p < 3 u p-2 ∞ ≤ T 2-p p u p-2 p + T p-2 2 u ′ p-2 2 et si p ≥ 3 la fonction x p-2 est convexe donc u p-2 ∞ ≤ 2 p-3 T 2-p p u p-2 p + 2 p-3 T p-2 2 u ′ p-2 2 .
En appliquant l'inégalité de Young on a 

u p-2 p ≤ (p 2 -p + 3)c 2 2 (p-3) + p 2 (p -1)T 2 p f 2 ∞ J +2 ( (p-2)(p-3) + 2 +1) [ p(p -1)(p -2) p 2 -p + 3 ] p-2 2 T p-2 p pc p-2 f p-2 ∞ ( 7 

1 (

 1 (1.1) admet une solution unique ω 0 ∈ W 2,∞ (R) telle que ω 0 ∞ <

Proposition 4 . 1 .

 41 Pour toute solution u de (1.1) on a

  lim

de plus si c ≥ 2 √( 6 . 4 )

 264 p, sous les mêmes hypothèses on a lim t→+∞ (|u(t)ω + (t)| + |u ′ (t)ω ′ + (t)|) = 0 Démonstration : En posant u = 1 + v on obtient l'équation en

7 Démonstration du théorème 2. 5 .

 75 On commence par montrer que pour T xé, les solutions u T -périodiques sont telles que |||u| p u -u|| ∞ tend vers 0 avec ||f || ∞ . Proposition 7.1. Soit f bornée, T -périodique et soit u ∈ C 2 (R) une solution T -périodique de (1.1). Alors on a l'estimation suivante :

p 2 et de choisir λ > 0 déni par λ r r = (p 2 -p + 3 )c 2 2 2 p f 2 ∞ 2 J+ 2 p 2 J+ 2 (|u| 2p - 2 p 2 ∞ 2 2 -p -1 p 2 Jp 2 |u| 2p - 2 p 2 + 2 J+ 2 + p 4

 223222222222222224 (p-3) + p 2 (p -1)T Donc d'aprés (7.1),(7.4) et(7.5) on a(p -1) u p-2 ∞ J u ′2 dt ≤ p 2p + 3 p en remplaçant (7.3) et (7.6) dans (7.2) on aJ (|u| 2p -|u| p )dt ≤ p 2 |u| p dt + p p-2 T f p ∞ + 2 (1+ p 2 (p-3) + ) p (p-3) + (p -1) T p-1 c p f p ∞ ce qui implique J |u| p )dt ≤2 J |u| p dt + p p-2 T f p ∞ + 2 (p-3) + (p -1)en utilisant l'inégalité de Young on a|u| p ≤ p 2p -1 2p 2 |u| 2p + p 2 2(p 2p -1) |u| p )dt ≤ p |u| 2p dt + p 2 (p 2p -1) T + p p-2 T f p ∞ + 2 (p-3)+ (p -1) T p-1 c p f p ∞ + 2 (1+ p 2 (p-3) + ) p |u| p )dt ≤ p 2 (p 2p -1)T + 2 (p-3) + (p -1) p p-2 T f p ∞ en mutilpliant cette inégalité par (p + 1)p 2 on a (p + 1)|u| 2p dt -2(p + 1) (p-3) + p 2 (p -1)(p + 1) T p-1 c p f p ∞ + p p (p + 1)T f p ∞ (p + 1) (p 2p -1)T

  Dans certains cas le résultat local du théorème 2.1 peut être rané en donnant un résultat global sous une restriction additionnelle sur f .

	1 p -1 (2.8)
	Théorème 2.2. Sous les conditions

  1) admet au plus trois solutions T -périodiques. Corollaire 2.6. Soit f bornée et T -périodique satisfaisant les deux conditions du théorème 2.1 et 2.3, alors (1.1) admet exactement trois solutions Tpériodiques.

  → v p+1 est une contraction uniforme sur X et donc T l'est aussi. Alors il existe un unique point xe u de T dans B r qui est la solution de notre problème. De plus on a ||u|| X < ( 1

	puisque le maximum est atteint pour r = r 0 := ( 1 p+1 )	1 p et sous la condition
	(2.2) ci dessus il existe r < r 0 tel que			
	T B r ⊂ B r			
	Puisque r < ( 1 p+1 ) Vu le caractère impair de la non linéarité, quitte à changer f en -f , pour les 1 1 p . p , l'application v p+1 ) deux autres solutions il sut d'étudier l'existence d'une deuxième solution
	bornée au voisinage de 1. Posant u = 1 + v, on est alors ramené à considèrer
	l'équation			
	ceci est satisfait pour un certain r positif si			
	||f || X ≤ sup r>0 (r -r p+1 ) = p(	1 p + 1	)	p+1 p

  r est une application uniformément contractante. Le point xe de T correspond à la solution bornée positive qu'on cherche. Pour nir la démonstration dans ce cas, deux remarques sont nécessaires.

1) On a :

  Quand c ≥ 2 √ p, l'opérateur L = ∂ 2 + c∂ + pI a un inverse positif sur L ∞ . En plus l'estimation (4.1) donne dans ce cas

	En particulier si on suppose				
	alors on trouve						f ∞ ≤ 1
	lim t→∞	|u| p+2 (t) ≤ (	p + 2 2	)	p+2 p
	Proposition 5.1. Pour tout c ≥ 2 √ p, on a
			lim t→∞	|u(t)| ≤ 1 +	1 p	f ∞	(5.1)
	vrai pour f lim t→∞	|u| p+2 (t) ≤ (	p + 2 2	)	p+2 p	+ (p + 2)[	4p + (p + 2) 2 8p 3	] f 2 ∞

5 Une estimation précise pour c grand Quand c ≥ 2 √ p, l'inégalité (4.1) et la propriété de conservation de la positivité permettent une estimation plus précise de u pour t grand. ∞ ≤ 1. Démonstration

  6.1, puisque (2.9) entraîne on conclut que u est asymptote à ω + en +∞. Dans ce cas la démonstration est terminée. Revenant au premier cas, on considére une suite s n telle queu ′′ (s n ) ≥ 0, lim n→∞ u(s n ) = met par le même argument on conclut que u est soit asymptote à ω -en +∞, soit

	√	3ε ≤	1 2p √	6	et de plus lim n→∞	u ′ (t n ) = 0
	m ≥ -2ε Dans ce second et dernier cas on a
				lim t→+∞	|u(t)| ≤ 2ε
	et par les hypothèses faites sur f ceci implique que
			lim t→∞	|u(t) -ω 0 (t)| = 0

en a joutant T on obtient (p + 1)|u| p -1 2 2 ≤2 (1+ p 2 (p-3)

p-2

Pour prouver le théorème 2.5, on a besoin du lemme suivant.

Lemme 7.2. Pour tout ε > 0,l'inégalité 

Puisque u est continue et les 3 intervalles fermés centrés en 0, 1, -1 de rayon