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PRACTICAL COMPUTATION OF AXISYMMETRICAL

MULTIFLUID FLOWS

THOMAS BARBERON, PHILIPPE HELLUY, SANDRA ROUY

Abstract. We adapt the Saurel-Abgrall front capturing finite volumes method
for an industrial simulation of compressible multifluid flows. We then apply
the method to the case of air-water flow in the cooling chamber of an axisym-
metrical gas generator. We describe successively how to deal with exact and
global Riemann solvers, pressure oscillations, unstructured meshes, axisymme-
try, boundary conditions and overly restrictive CFL conditions. The resulting
algorithm is efficient and robust.

1. Introduction

This work is devoted to the application of recent finite volumes schemes, and
particularly the one proposed by Saurel and Abgrall in [24], to the simulation of
an axisymmetrical multiphase flow in a complex geometry. Because of the com-
plexity of the application, we have to specify or adapt the original Saurel-Abgrall
idea to: global Riemann solver, unstructured meshes, axisymmetry, boundary con-
ditions, multi time steps...

We base our simulation on an effective mathematical model for compressible
multifluid flows and especially air-water flows. For our application, the pressure
law for the air is a classical perfect gas law. Because we have in mind flows with
high and low pressures, we have also to take into account the compressibility ef-
fects in water. In such applications, it is classical to observe cavitation zones in
the liquid phase. Cavitation is a phenomenon that appears in a region of the flow
where the pressure drops below the saturation pressure of water. In a first and very
short stage, the liquid stays in a metastable state. It can also happen in this stage
that the pressure becomes negative (it is then called a tension). In a second stage,
a phase transition (vaporization) occurs. Thus the original two-phase flow, made
of air and water, becomes a three-phase flow made of air, liquid and vapor. We
restrict ourself to the two-phase case, where the phase transition has not started (or
is not taken into account...). Then, as for the air, a pressure law which expresses
the pressure of the water as a function of density and internal energy has to be
supplied. We use a very simple generalization of the perfect gas law, the stiffened
gas equation of state (see (2.1)), which allows negative values for the pressure.

Compressible single fluids have been extensively studied and the main difficulty
here is the representation of the interface between the fluids. There are two main
approaches for treating interfaces:

• One can favor the Lagrangian interpretation of the fluid equations. The
interface then receives a particular treatment in the numerical method.

Key words and phrases. compressible multifluid, front capturing, nonconservative scheme,
axisymmetry.
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This approach leads to the family of the front-tracking methods. We will
not consider this kind of solution here.

• If the Eulerian point of view is preferred, the resulting scheme belongs to
the family of the front-capturing methods. No special treatment is applied
to the numerical cells that are crossed by the interface. We prefer the front-
capturing methods because they are more general and easier to implement
than the front-tracking methods.

A now classical and simple approach, proposed for example in [22], [19], is to locate
the interface by means of the level-set of a function which is convected with the
flow. In this approach only an advection equation has to be added to the classical
compressible Euler model. One switches from one law (perfect gas) to the other
(stiffened gas) according to the value of the level-set function. Because the stiffened
gas law is a generalization of the perfect gas law, the level-set model is also equiva-
lent, in our case, to a model where the two coefficients of the stiffened gas law are
convected with the flow. The interface is then located by the discontinuities of the
pressure law coefficients. Our model is finally made up of the Euler system (conser-
vation of mass, momentum and energy, equations (2.3)), two additional transport
equations (equations (2.5)) and the stiffened gas law (equation (2.1)). This mul-
tifluid model presents a supplementary transport equation when compared to the
level-set model but it is generally easier to discretize.

Despite its simplicity and its mathematical perfection, this model leads to nu-
merous numerical difficulties as shown in many works among which we can cite
[1], [18], [19], [24], [3], [10], [23]... These difficulties have to be overcome before
envisaging practical applications. Of greatest concern are the spurious pressure os-
cillations that appear near the material interface when the model is approximated
by any conservative finite volumes scheme. The same kind of oscillations occurs
in the simulation of mixtures of perfect gases [1] or across numerically diffused
shear interfaces [5]. Actually, it appears that classical conservative schemes (such
as Godunov’s, Roe’s, HLL, Rusanov’s, etc.) suffer from a very slow convergence
and a very bad precision on standard meshes when applied to the previous multi-
fluid model. Mulder, Osher and Sethian did not mention this fact in [22] although
they use in their work a classical conservative Roe scheme. Their trick to obtain
acceptable numerical results is not detailed. Karni, in [18], points out this difficulty
and proposes a simple hybrid scheme to remove the pressure oscillations. The idea
is to solve the classical conservative equations far from the interface between the
two fluids and a nonconservative pressure equation near the interface. The result-
ing nonconservative scheme, which is built in order to preserve constant pressure
and velocity states, gives good results. But it is not clear, in the paper of Karni,
whether the conservation error tends to zero with the step of the mesh. Indeed, as
it is proved in the work of Hou and LeFloch [17], nonconservative schemes generally
converge to wrong solutions. Then Abgrall in [2], Saurel and Abgrall in [24] propose
a simpler approach based on the nonconservative convection of well chosen pressure
law parameters. As in the work of Karni, the main idea in order to choose the good
transported quantities, is to construct a scheme which preserves the moving contact
discontinuities. In a one dimensional framework this is expressed by the fact that
the pressure and the velocity should not change if they are constant at the first time
step, but a numerical diffusion of the density is possible. The resulting scheme is
quasi-conservative. More precisely, the numerical fluxes for mass, momentum and
energy are conservative whereas the numerical fluxes for the gas law coefficients are
not conservative. Hence, the resulting scheme allows slight mass transfers between
the gas and the liquid. According to numerical experiments, this scheme seems to
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be converging. This is not in contradiction with the previously cited result of Hou
and LeFloch. Indeed, according to the Rankine-Hugoniot jump relations, the ve-
locity of the flow and the gas law parameters cannot present a simultaneous jump.
Thus the nonconservative products in the nonconservative transport equations are
perfectly defined. Another interesting fix to the spurious oscillations is proposed by
Fedkiw, Aslam, Merriman and Osher in [10], under the name of the Ghost Fluid
Method. With the aid of a ghost fluid, these authors propose a nonconservative
Godunov scheme where only one-fluid Riemann problems have to be solved. This
method has been simplified by Abgrall and Karni in [3], under the name of the
”Two-Flux Method”. The Ghost Fluid and the Two-Flux methods are completely
nonconservative at the interface. Numerical experiments (see [4]) seem to indicate
that they converge, but there is still no complete theoretical justification of this
”miracle”.

Once the pressure oscillations have been corrected by an adequate scheme, still
other difficulties remain. The remedies have more to do with numerical engineer-
ing than with mathematics but must be carefully assembled. In this way, we have
to deal with axisymmetry, unstructured meshes, implementation of the Riemann
solver, CFL condition...

This paper is thus organized as follows.

Following this Introduction, the second part is devoted to a presentation of the
mathematical model. We describe its mathematical properties. The main feature
is that the Riemann problem is globally well posed. This fact is important for
the numerical simulation when a Godunov scheme is used. On the other hand the
model allows negative values for the pressure. As we have already said, this can be
justified in some physical configurations.

The third part begins with an exposition of the pressure oscillations that appear
at the material interface in two-fluid simulations. We illustrate the pressure oscil-
lations thanks to a simple test case. We recall the bases of the construction of the
Saurel-Abgrall scheme. In the original Saurel and Abgrall paper [24], the construc-
tion is achieved with the help of the approximate Riemann solver of Rusanov. As
detailed in [23], we use here instead an exact Riemann solver. In order to solve the
convection of the pressure law coefficients, we use a nonconservative numerical flux
based on the velocity of the contact in the Riemann solution between two cells. The
Abgrall-Saurel reasoning is only valid for a multifluid flow where each fluid satisfies
the stiffened gas law. For the sake of completeness, we also present another finite
volumes scheme which preserves constant pressure-velocity states, and this for any
gas law. This scheme is a Lagrange plus projection scheme. In the Lagrangian
step, the contacts are perfectly resolved. The projection step is thus constructed
in order to preserve this property. We propose to project the pressure back on the
Eulerian grid instead of other conservative variables. The resulting scheme is valid
for any pressure law and can be generalized to higher dimensions. This scheme is
not conservative for the mass fraction it is thus precise only for moderate shocks.
It is generally not convergent. For strong shocks a hybrid scheme should be used
as in the papers of Karni [18], [19]: the idea would be to project the conservative
variables near the shocks and the pressure near the contacts. Thus the Lagrange-
projection scheme is not used in the sequel of the paper. It is slightly more diffusive
and complex in its hybrid version than the Saurel-Abgrall scheme. Furthermore in
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our application, the validity of the stiffened gas law is sufficient. The Lagrange-
projection approach would be necessary to take into account the vaporization of
the liquid in cavitation zones (see [4]).

The fourth part is devoted to an exposition of several practical difficulties that
have to be solved before the application of the previous theory to an industrial
problem:

• The first adaptation concerns the construction of a 2D axisymmetrical
scheme based on the 1D scheme of Saurel and Abgrall that preserves mov-
ing contacts. It is not trivial to extend the idea of Saurel and Abgrall to
higher dimensions. This is due to the fact that in higher dimensions the ve-
locity is generally not continuous through a contact discontinuity - only the
normal component is. Nkonga recently proposed a 2D scheme for resolving
shear interfaces in [5]. His scheme perfectly resolves contact discontinuities
aligned with the mesh, but because it is not conservative for the momen-
tum, it is probably not convergent. In this paper we restrict ourselves to a
scheme that preserves constant pressure-velocity states. First, we write a
3D Godunov scheme using the rotationnal invariance of the Euler equations,
as usual. Some pressure law coefficients are convected in a nonconservative
way, as in the Saurel-Abgrall scheme. Then we restrict this scheme to an
axisymmetrical mesh. This leads to a 2D axisymmetrical scheme. The in-
terest of this approach is to avoid complicated source terms that arise from
the axisymmetrical Euler equations. It must be pointed out that in the
literature many authors (as [25], [20], etc.) do not follow this (in our sense)
correct approach and have to deal with singular source terms on the axis
of rotation.

• The second necessary adaptation deals with the boundary conditions. We
shall use in the application a classical treatment of the boundary conditions
by defining artificial cells on the boundary. In order to define the physical
values of the artificial cells, we follow the approach of partial Riemann
problems as in the works of Dubois and LeFloch [9], [8].

• In our application, the geometry of the mesh is quite complex. This imposes
the use of unstructured meshes. We thus have to develop a special technique
of multiple time steps because the CFL condition given by the small cells is
too restrictive. On each edge we define a local time step which is a power
of two times the minimal time step. This local time step satisfies the CFL
condition of the two neighboring cells. Then more time steps are performed
on the small cells than on the big cells, with possible ”rendez-vous” because
the ratio of two different time steps is a power of two. The resulting scheme
is stable, and the computation time is reduced by a significant factor.

In the fifth part we present numerical results obtained in the case of an axisym-
metrical gas generator. As we have said before, the gas generator geometry is quite
complex. Several kinds of boundary conditions have to be considered. Because of
the presence of very small holes, the ratio between the biggest cell and the smallest
cell in the mesh is of the order of 10. All these facts justify our previous approach.
We are then able to present a complete simulation of this industrial system. Ac-
cording to preliminary measurements, our simulation gives, at least qualitatively,
good results. More details are given in [23].

The sixth part is the conclusion of the paper.
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We then end the paper with an appendix (seventh part) where some computa-
tions are detailed:

• First we perform classical computations concerning hyperbolicity and en-
tropy. We also recall the mathematical equivalence of the conservative
equations with the nonconservative form of Saurel-Abgrall. This fact would
permit to prove a Lax-Wendroff convergence result for the Saurel-Abgrall
scheme and thus presents some interest.

• Second, we prove that the Riemann problem for a two-fluid flow governed
by a stiffened gas law is globally well posed. In the case of strong rarefac-
tion waves, it is necessary to introduce negative pressures and/or vacuum
regions. The proof uses standard arguments but we have not found it in the
literature. The notations that we have to set are also useful for a rigorous
definition of the boundary conditions that are described in part 4.

2. A two-fluids model for air-water flows

2.1. Basic equations. We are interested in the flow of a compressible continuous
medium characterized by its density ρ(t, x), its velocity u(t, x), and its internal
massic energy ε(t, x). The time variable is denoted by t, the space variable is x,
and for simplicity we present the model in one space dimension. The pressure p(t, x)
of the medium is expressed by a stiffened gas Equation Of State (EOS)

(2.1) p = (γ − 1)ρε − γπ.

Because we are studying a flow of several fluids, the two parameters γ and π of the
pressure law also depend on time and space

(2.2) γ = γ(t, x) and π = π(t, x).

Conservation of mass, momentum and energy lead to the three Euler equations

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,(2.3)

(ρE)t + ((ρE + p)u)x = 0,

where E, the total massic energy, is defined by

(2.4) E = ε +
u2

2
.

On the other hand, the pressure law parameters are convected with the flow

(2.5)
γt + uγx = 0,

πt + uπx = 0.

If the gas is supposed to be perfect and polytropic (this will always be the case in
the sequel), we set γ = γgas and π = 0. For the liquid, the stiffened gas EOS is still
valid. It reads

p = (γ liq − 1)ρε − γ liqπliq.

The constants γ liq and πliq are chosen in order to match physical measurements.
Cocchi and Saurel in [7] have proposed the following values for γ liq and πliq

(2.6)
γ liq = 5.5,

πliq = 4900 bar.

These values are based on sound speed and shock speed measurements.
In this model, the interface between air and water can be located by the disconti-

nuity of γ(t, x) or π(t, x). It must be pointed out that mathematically, the model is
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perfectly equivalent to a level-set model (as the one of [22]). In the level-set model,
equations (2.5) are replaced by the convection of a level-set function

(2.7) ϕt + uϕx = 0,

and the pressure law (2.1) by

(2.8) p = (γ(ϕ) − 1)ρε − γ(ϕ)π(ϕ).

But it appears that numerically, it is not equivalent to discretize (2.3), (2.1), (2.5)
or (2.3), (2.8), (2.7).

2.2. Properties of the model. Our system (2.3), (2.1), (2.5) can be expressed
in the classical form of a system of conservation laws (the equivalence between the
non-conservative form and the conservative form is rigorously proved in section 7:
see remark 7.3)

(2.9) Wt + F (W )x = 0,

with

W =




ρ
ρu
ρE
ργ
ρπ




, F (W ) =




ρu
ρu2 + p

(ρE + p)u
ργu
ρπu




,

and the pressure law (2.1).
If c is the sound speed associated with the pressure law (2.1), it verifies

(2.10) c2 = γ
p + π

ρ
.

The hyperbolicity of the system (2.9) then implies that

(2.11) p + π ≥ 0.

Thus, the model admits negative pressure in the water. Is this physically correct?
Indeed, negative pressures can locally and briefly appear in a liquid, they should
then be called tensions. But in the zone of negative pressures the liquid is in a
metastable state and is subject to vaporization. This phenomenon is called cavi-
tation. For a physical description of the cavitation, we refer to the book of Franc
& al [11]. We have proposed recently a simple adaptation of the stiffened gas
model to take into account cavitation (see [16]) but before the phase transition, or
if the appearance of the tensions is very short, the stiffened gas law is still a good
physical model. It must be pointed out that in our numerical simulations we will
not use any special treatment when negative pressures occur. Some authors (as
[10]) have proposed to correct the pressure by limiting it to zero when it is nega-
tive. This amounts to forgoing energy conservation and we think that it is worse
from a physical point of view than negative pressures. It also causes additional
numerical complications due to the kink in the limited gas law. For example, it
is necessary to envisage a centered scheme on the cells where the pressure is limited.

There is another (mathematical) reason to keep this model. If one considers the
Riemann problem associated to the system (2.9) and (2.1)

Wt + F (W )x = 0,(2.12)

W (0, x) =

{
Wl if x < 0,
Wr if x > 0.

(2.13)

The self-similar solution is noted

W (t, x) = R
(x

t
,Wl,Wr

)
.
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Then it can be shown that the solution is unique for any left and right states Wl

and Wr satisfying the positivity of density and the hyperbolicity condition (2.11).
The fact that the global Riemann problem can be uniquely solved is well known in
the case of a monofluid flow. For example, it is solved in the book of Godunov [14]
for the case of a one-fluid flow satisfying the stiffened gas law. In the case of strong
rarefaction waves, the solution can present a region of vacuum in which

(2.14)
p = −πliq,

ρ = 0.

The solvability result can be extended to our model. For the sake of completeness,
we prove it in the section 7. The global solvability of the Riemann problem is
fundamental when one intends to use a Godunov type scheme, because it ensures
the robustness of the resulting scheme. Another important property of the model
is that it permits many equivalent formulations. Indeed, any function f(γ, π) of
γ and π is also convected with the flow. For example, the system (2.9), (2.1) is
equivalent to

(2.15)

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

(ρE)t + ((ρE + p)u)x = 0,

(ρ/(γ − 1))t + (ρu/(γ − 1))x = 0,

(ργπ/(γ − 1))t + (ρuγπ/(γ − 1))x = 0,

with the stiffened gas law (2.1).
It is also equivalent to the following nonconservative form

(2.16)

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

(ρE)t + ((ρE + p)u)x = 0,

(1/(γ − 1))t + u(1/(γ − 1))x = 0,

(γπ/(γ − 1))t + u(γπ/(γ − 1))x = 0,

with the stiffened gas law (2.1).
The nonconservative form (2.16) plays a particular role among the other forms

on the numerical point of view as we will see in the next section.

3. Nonconservative finite volumes approximation

This section is devoted to a short and simple presentation of the pressure oscil-
lations phenomenon in the conservative Godunov schemes. It appears that for very
simple one-dimensional test cases, the classical first order conservative Godunov
scheme gives very bad results on every conservative form of the equations as (2.9)
or (2.15). We first exhibit one of these test cases which is a simple Riemann prob-
lem.
Then, we present two fixes which permit to avoid the pressure oscillations at the
interface:

• The first scheme is the Saurel-Abgrall scheme. The construction principle of
this scheme is to require that it preserves the moving contact discontinuities.
This condition leads to a nonconservative discretization of the transport
of some pressure law coefficients. Let us recall that the conservative 1D
Godunov scheme also preserves moving contact discontinuities in the case of
a one-fluid flow. The nonconservative correction is only useful for multifluid
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flows. The Saurel-Abgrall correction cannot be applied to other pressure
laws than the stiffened gas law.

• The second scheme is a Lagrange plus remap scheme. This scheme works
for any pressure laws but only for moderate shocks because it is not conser-
vative for the mass fraction. It is based on the simple remark that during
the Lagrangian step, the contact discontinuities are perfectly solved. In
the remap step we thus project mass, momentum and energy as usual. We
forget the mass fraction conservation and instead project the pressure. In
this way, the pressure equilibrium of the two components is recovered.

These two schemes remove the pressure oscillation phenomenon and can be ex-
tended without difficulty to higher dimensions. The Saurel-Abgrall scheme is less
diffusive than the Lagrange-plus-remap scheme. The Lagrange-plus-remap scheme
is not convergent in its present form. It is possible to improve its precision for strong
shocks by employing a hybrid version of the scheme: with the help of a level-set
function, a conservative scheme is used far from the interface and the Lagrange-
plus-remap approach near the contact. Hybrid schemes are described for example
in [19] and [12]. Because we concentrate on the stiffened gas law, only the Saurel-
Abgrall scheme is used in the sequel of the paper for the numerical experiments in
two dimensions.
In this section, we restrict ourself to a Riemann problem initial condition. For the
numerical experiments, we choose the following values

(3.1)
ρl = 10 kg/m3 ul = 50 m/s pl = 1.1 × 105 Pa γl = 1.4 πl = 0,

ρr = 1 kg/m3 ur = 50 m/s pr = 1 × 105 Pa γr = 1.1 πr = 0.

3.1. Failure of the Godunov scheme. In this section, we present numerical
results obtained by a classical Godunov scheme. The approximated system is (2.15),
but we would obtain very similar results for any other conservative formulation.

Consider a space step h and a time step τ . The discretization points are xi =
ih, i ∈ Z. The cells Ci are centered on xi, Ci =]xi−1/2, xi+1/2[. We look for an
approximation of W in the cell Ci at time tn = nτ

Wn
i ≃ W (tn, x), x ∈ Ci.

A general conservative finite volumes scheme reads

Wn+1
i = Wn

i −
τ

h
(Fn

i+1/2 − Fn
i−1/2).

In the case of the Godunov scheme, the numerical flux is given by the resolution of
a Riemann problem at each cell interface xi+1/2 and takes the form

Fn
i+1/2 = F (R(0+ or −,Wn

i ,Wn
i+1)).

The initial conditions are (3.1). We plot only the pressure at time t = 1 ms. The
study interval is ]0, L[ with L = 1 m. The number of cells is fixed at N = 400 and the
CFL number is 0.7. We observe pressure oscillations at the contact discontinuity
(which is also the material interface between the two fluids). The results are in
Figure 3.1.

3.2. Nonconservative transport of the pressure law coefficients. The con-
servative scheme gives very bad results and cannot be used for higher dimensional
simulations. On the other hand, numerical experiments indicate that the situation
is not better with another (approximate) Riemann solver. A second order MUSCL
extension would slightly improve the results but it is not sufficient.

In order to improve the precision of the Godunov scheme, it is possible as pro-
posed by Saurel and Abgrall in [24] to give up the last two conservation laws of the
system (2.15) and replace them by a nonconservative transport equation to obtain
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Figure 3.1. Godunov scheme, pressure (line: exact; dots: numeric)

(2.16). We show now why the special nonconservative form (2.16) plays a particular
role for a finite volumes approximation. For this, let us consider a general conserva-
tive (for the mass, momentum and energy) upwind scheme. Suppose that we want
to approximate a general moving contact discontinuity of constant velocity v and
pressure p. We suppose that v ≫ 1 and that the constant flow is supersonic. Then,
because the speed v > 0, the upwind scheme reads

ρn+1
i = ρn

i −
τ

h

(
(ρu)n

i − (ρu)n
i−1

)
,(3.2)

(ρu)n+1
i = (ρu)n

i −
τ

h

(
(ρu2 + p)n

i − (ρu2 + p)n
i−1

)
,(3.3)

(ρε + ρ
u2

2
)n+1
i = (ρε + ρ

u2

2
)n
i −(3.4)

τ

h

(
(ρεu + ρu

u2

2
+ pu)n

i − (ρεu + ρu
u2

2
+ pu)n

i−1

)
.

We now impose that the scheme preserves the moving contact discontinuities, i.e.
that un+1

i = un
i = v and pn+1

i = pn
i = p. We obtain

ρn+1
i = ρn

i −
τ

h

(
(ρv)n

i − (ρv)n
i−1

)
,(3.5)

(ρv)n+1
i = (ρv)n

i −
τ

h

(
(ρv2 + p)n

i − (ρv2 + p)n
i−1

)
,(3.6)

(ρε + ρ
v2

2
)n+1
i = (ρε + ρ

v2

2
)n
i(3.7)

−
τ

h

(
(ρεv + ρv

v2

2
+ pv)n

i − (ρεv + ρv
v2

2
+ pv)n

i−1

)
.

The two first equations reduce then to

(3.8) ρn+1
i = ρn

i −
τ

h
v

(
ρn

i − ρn
i−1

)
,

while the last equation becomes

(3.9) (ρε)n+1
i = (ρε)n

i −
τ

h
v

(
(ρε)n

i − (ρε)n
i−1

)
.
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But because ρε = (p + γπ)/(γ − 1), the only compatible approximations for γ and
π are

(3.10)

(
1

γ − 1

)n+1

i

=

(
1

γ − 1

)n

i

−
τ

h
v

((
1

γ − 1

)n

i

−

(
1

γ − 1

)n

i−1

)
,

(
γπ

γ − 1

)n+1

i

=

(
γπ

γ − 1

)n

i

−
τ

h
v

((
γπ

γ − 1

)n

i

−

(
γπ

γ − 1

)n

i−1

)
.

This is an upwind approximation of the transport equations

(3.11)
(1/(γ − 1))t + v(1/(γ − 1))x = 0,

(γπ/(γ − 1))t + v(γπ/(γ − 1))x = 0.

Any scheme that reduces to (3.10) for constant velocity and pressure will then
preserve moving contact discontinuities.

We propose now such a scheme. First, we define the interface values by the
resolution of Riemann problems at the points xi+1/2:

Wn
i+1/2 = R(0, Wn

i ,Wn
i+1).

For density, momentum and energy, the classical conservative approach is employed:

ρn+1
i = ρn

i −
τ

h
((ρu)n

i+1/2 − (ρu)n
i−1/2),

(ρu)n+1
i = (ρu)n

i −
τ

h
((ρu2 + p)n

i+1/2 − (ρu2 + p)n
i−1/2),(3.12)

(ρE)n+1
i = (ρE)n

i −
τ

h

(
((ρE + p)u)n

i+1/2 − ((ρE + p)u)n
i−1/2

)
.

On the other hand, an upwind nonconservative scheme is used for the last two equa-
tions of (2.16). This nonconservative scheme is based on the contact discontinuity
velocity of the Riemann problems solved at the points (xi+1/2). It reads

(3.13) αn+1
i = αn

i −
τ

h
(min(un

i+1/2, 0)(αn
i+1 − αn

i ) + max(un
i−1/2, 0)(αn

i − αn
i−1)),

where the quantity α is 1/(γ−1) or γπ/(γ−1). This choice is slightly different from
the one of Saurel and Abgrall in [24] which is based on the approximate Riemann
solver of Rusanov. It is easy to check that the scheme (3.13) reduces to (3.10) for
constant velocity and pressure states.

With the scheme (3.12), (3.13), the results on the same test case as above are
given in Figure 3.2. There is an evident improvement.

Unfortunately, the previous reasoning cannot be extended to a pressure law which
is not linear with respect to ρε. To be more general we thus present in the next
paragraph a general approach to deal with non-linear pressure laws.

3.3. A Lagrange plus remap scheme for two-fluids flow. In this section we
describe the results obtained with a Lagrange plus remap scheme. In order to have
a clear description of the scheme, we will recall the bases of the Lagrange scheme
construction (see [13]).

Notations. We wish to approximate the system of conservation laws.

(3.14) Wt + F (W )x = 0.

For this purpose, we consider an increasing sequence of instants (tn)n∈N and a
sequence of subdivisions of space defined by the points (xn

i )i∈Z,n∈N which satisfy

∀i ∈ Z, ∀n ∈ N, xn
i < xn

i+1.
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Figure 3.2. Saurel-Abgrall scheme, pressure (line: exact; dots: numeric)

The point xn
i will be the center of the cell Cn

i . In order to define properly these
cells, we thus introduce the boundary points

xn
i+1/2 =

xn
i + xn

i+1

2
.

The cell Cn
i is then

Cn
i =

]
xn

i−1/2, x
n
i+1/2

[
.

The time steps are
τn = tn+1 − tn.

The lengths of the cells are

hn
i = xn

i+1/2 − xn
i−1/2.

In a Lagrange scheme, the cell boundaries move between the time step tn and tn+1

with the velocity un
i+1/2. Thus,

xn+1
i+1/2 = xn

i+1/2 + τnun
i+1/2.

A CFL condition has to be provided in order that the points xn+1
i+1/2 stay ordered.

Scheme construction. We suppose that at time tn we know an approximation Wn

of the exact solution W . The approximation is supposed to be constant in each cell

W (tn, x) ≃ Wn(x) = Wn
i , x ∈ Cn

i .

We then compute exactly for a time τn, the entropic solution of

Vt + F (V )x = 0,
V (0, x) = Wn(x), x ∈ R.

This exact resolution is possible under a CFL condition.
The new approximation of W at time tn+1 is then defined as the mean value of

the exact solution in the new cells

Wn+1
i =

1

hn+1
i

∫

Cn+1

i

V (τn, x)dx.

The Riemann problem reads

Ut + F (U)x = 0,

U(0, x) =

{
Wl x < 0,
Wr x > 0.
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The solution is self-similar; as before it is noted

R(x/t,Wl,Wr) = U(t, x).

In order to have a simpler expression of the scheme, we express the conservation
law in the space-time trapezoid Q whose parallel sides are Cn

i and Cn+1
i .

0 =

∫

Q

(Wt + F (W )x)dx ∧ dt =

∫

∂Q

(F (W )dt − Wdx).

The contour integral in the right hand side is the sum of four contributions (bottom,
top, right and left)

∫
∂Q

(F (W )dt − Wdx) =
∫

Cn
i

−Wn
i dx

+
∫

Cn+1

i

Wn+1
i dx

+
∫ t=τn

t=0

(
F (R(un

i+1/2,W
n
i , Wn

i+1)) − R(un
i+1/2,W

n
i ,Wn

i+1)u
n
i+1/2

)
dt

−
∫ t=τn

t=0

(
F (R(un

i−1/2,W
n
i−1,W

n
i )) − R(un

i−1/2,W
n
i−1,W

n
i )un

i−1/2

)
dt.

This gives

(3.15)

0 = hn+1
i Wn+1

i − hn
i Wn

i

+τn

(
F (R(un

i+1/2,W
n
i , Wn

i+1)) − R(un
i+1/2,W

n
i ,Wn

i+1)u
n
i+1/2

)

−τn

(
F (R(un

i−1/2,W
n
i−1,W

n
i )) − R(un

i−1/2, W
n
i−1,W

n
i )un

i−1/2

)
.

When the velocities at the cell boundaries un
i+1/2 are zero, the scheme reduces to

the classical Godunov scheme. Another important case is when the velocity un
i+1/2

is equal to the contact discontinuity velocity of the Riemann problem between the
cells Cn

i and Ci+1. With this choice, a moving contact is perfectly resolved. The
problem is now to come back properly from the Lagrangian grid

(
Cn+1

i

)
to the

Eulerian grid (Cn
i ). This is the goal of the remap step.

Remap step. Let us first describe the remap step of the classical Lagrange and

projection scheme. Actually, the formula (3.15) defines a value W
n+1/2
i of the

conservative variables in the new cells Cn+1
i . This value has now to be averaged on

the old cells Cn
i . This is usually done with the formula

Wn+1
i =

τ

h
max(un

i−1/2, 0)W
n+1/2
i−1 −

τ

h
min(un

i+1/2, 0)W
n+1/2
i+1 +

(1 −
τ

h
max(un

i−1/2, 0) +
τ

h
min(un

i+1/2, 0))W
n+1/2
i .

Our scheme is then a very simple correction of the Lagrange-projection scheme. The
projection is the same for density, momentum and energy. But instead of projecting
the last conservative variable ρ/(γ − 1), we project the pressure according to the
formula

pn+1
i =

τ

h
max(un

i−1/2, 0)p
n+1/2
i−1 −

τ

h
min(un

i+1/2, 0)p
n+1/2
i+1 +

(1 −
τ

h
max(un

i−1/2, 0) +
τ

h
min(un

i+1/2, 0))p
n+1/2
i .

It is then possible to compute γn+1
i thanks to the pressure law (according to (3.1),

the value of π is indeed 0). In test cases where π 6= 0 another quantity has to
be projected in order to recover γn+1

i and πn+1
i . It could be for example the

temperature.
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Numerical results. With the Lagrange-projection scheme, we obtain the results in
Figure 3.3. They are comparable to the results of the Saurel-Abgrall approach but
are a little bit more diffusive. This extra diffusion is classical and is of course due
to the double projection: Godunov averaging and remap averaging. This method
can be applied though to more general pressure laws.

Figure 3.3. Lagrange and remap scheme, pressure (line: exact;
dots: numeric)

4. Axisymmetrical extension of the Godunov scheme

4.1. Scheme construction and properties. In this paragraph, we present the
extension of scheme (3.12, 3.13) to an industrial axisymmetrical case. We will first
describe a 3D scheme without source term for which stability under a CFL condition
is well established. Then, using special meshes with a rotational invariance we will
deduce the 2D axisymmetrical scheme keeping the same CFL stability condition.
This 2D scheme presents a pressure source term that is thus handled explicitly.

Consider a mesh of a 2D open set Ω ⊂ R2, that is to say a family of open sets
(Ωk)1≤k≤N satisfying

Ω =
⋃

k

Ωk,

i 6= j ⇒ Ωi ∩ Ωj = ⊘.

We suppose also that (x, z) ∈ Ω ⇒ x > 0. A 3D mesh can be generated by a
rotation of Ω around the axis x = y = 0 in a referential (x, y, z). Introducing
cylindrical coordinates (r, φ, z):

x = r cos φ,

y = r sin φ,

z = z,

we define the family (Qk,l) , 1 ≤ k ≤ N , 0 ≤ l ≤ P − 1 by

Qk,l =

{
(x, y, z) ∈ R3, (r, z) ∈ Ωk and φ ∈]

2(l − 1/2)π

P
,
2(l + 1/2)π

P
[

}
.

In order to simply define the 3D scheme, we will slightly change the notations. The
velocity −→u is now a vector −→u = (u1, u2, u3)T . W will be now the vector of conser-

vative variables (ρ, ρ−→u , ρE)T , with E = ε +
−→u ·−→u

2 . The vector of nonconservative
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variables is denoted by Y = (α, β)T with

(4.1) α =
1

γ − 1
, β =

γπ

γ − 1
.

We define also a mixed vector as V = (W,Y )T .
In 3D, the Euler equations read (Id is the identity matrix of size d × d)

ρt + ∇ · (ρ−→u ) = 0,

(ρ−→u )t + ∇ · (ρ−→u ⊗−→u + pI3) = 0,

(ρE)t + ∇ · ((ρE + p)−→u ) = 0.

Introducing the three fluxes:

G1(W ) = (ρu1, ρu1u1 + p, ρu1u2, ρu1u3, (ρE + p)u1),

G2(W ) = (ρu2, ρu2u1, ρu2u2 + p, ρu2u3, (ρE + p)u2),

G3(W ) = (ρu3, ρu3u1, ρu3u2, ρu3u3 + p, (ρE + p)u3),

and the vector flux G = (G1, G2, G3)T , the conservative equations can also be
written

Wt + ∇ · G(W ) = 0.

Whereas for the nonconservative variables α and β, the equations are

Yt + −→u · ∇Y = 0,

and the pressure law is still the stiffened gas law which becomes

(4.2) p =
1

α
ρε −

β

α
.

Now, a 3D scheme reads
∫

Qk,l

V n+1
k,l − V n

k,l + τ

∫

∂Qk,l

F (V n
k,l, V

n
k′,l′ , ν) = 0,

where V n
k,l is the approximation of V in Ωk,l at time tn, ν is the outward normal

vector to Qk,l on ∂Qk,l and Qk′,l′ denotes the neighbors of Qk,l along its boundary.
The quantity F (·, ·, ν) is the numerical flux that we will now precisely define. The
definition of the numerical flux is based on the rotational invariance of the Euler
equations. This is very classical (see [13]). The only originality is the special
treatment of the nonconservative variables.

First, a unit vector ν = (ν1, ν2, ν3)T is given. ν can also be written as ν =
(cos φ sin θ, sin φ sin θ, cos θ). We define then the rotation matrix

M(ν) =




cos(φ) sin(θ) sin(φ) sin(θ) cos(θ)
− sin(φ) cos(φ) 0

− cos(φ) cos(θ) − sin(φ) cos(θ) sin(θ)


 ,

which satisfies M(ν)ν = (1, 0, 0)T , and

N(ν) =




1 0
M(ν)

0 I3


 .

Consider now two states Va and Vb. In order to compute F (Va, Vb, ν), several
steps are performed:

(1) Two rotated states are defined by Ṽa = M(ν)Va and Ṽb = M(ν)Vb.



PRACTICAL COMPUTATION OF AXISYMMETRICAL MULTIFLUID FLOWS 15

(2) The following augmented Riemann problem in the normal direction is then
solved

W̃t + G1(W̃ )x = 0,

Ỹt + ũ1Ỹx = 0,

Ṽ (0, x) =

{
Ṽa if x < 0,

Ṽb if x > 0,

and the solution of this Riemann problem at x/t = 0 is denoted by Ṽ ∗.

(3) An interface state is recovered by the inverse rotation V ∗ = M(ν)−1Ṽ ∗.
(4) The numerical flux is then set to

(4.3) F (Va, Vb, ν) = (G(W ∗) · ν, min(u∗ · ν, 0)(Y ∗
b − Y ∗

a ))T .

It must be noted that this numerical flux is nonconservative on the Y vari-
ables, as in the Saurel-Abgrall scheme that we presented in 1D cases. It can
be proved, as in the 1D case, that the resulting scheme preserves constant
pressure and velocity states.

In our case the scheme will reduce to a 2D one thanks to several simplifications.
First, thanks to the rotation matrix J (φ) = N(cos φ,− sinφ, 0) the axisymmetry

condition reads

V n
k,l′ = J(

2(l′ − l)π

P
)V n

k,l .

Thus, the velocity vector can be written −→u k,l = (uk cos( 2lπ
P ), uk sin( 2lπ

P ), vk)T and
the other variables do not depend on l. In this way, the scheme has only to be
written on the cells Qk,0:

∫

Qk,0

(V n+1
k,0 − V n

k,0) + τ

∫

∂Qk,0

F (V n
k,0, J

(
2l′π

P

)
V n

k′,0, ν) = 0.

Denoting Vk,0 by Vk, this scheme then becomes
∫

Ωk

(V n+1
k − V n

k )rdr dz + τ

∫

∂Ωk

F (V n
k , V n

k′ , ν)rdσ+

τP

2π

(∫

Ωk

F (V n
k,0, J

(
2π

P

)
V n

k,0, ν)rdr dz +

∫

Ωk

F (V n
k,0, J

(
−2π

P

)
V n

k,0, ν)rdr

)
= 0.

It is then natural to let P tend to ∞. In the Riemann problems of the two last
integrals only symmetric rarefaction waves occur. Thus those two terms reduce to
a pressure term

(4.4)

∫

Ωk

(V n+1
k −V n

k )rdr+τ

∫

∂Ωk

F (V n
k , V n

k′ , ν)rdσ−τ

∫

Ωk

(0, pn
k , 0 · · · 0)T rdr = 0.

We recover, of course, an approximation of the axisymmetrical equations, namely

(ρr)t + (ρur)x + (ρvr)z = 0,

(ρur)t + (ρu2r + pr)x + (ρuvr)z = pr,

(ρur)t + (ρvur)x + (ρv2r + pr)z = 0,

(ρEr)t + ((ρE + p)ur)x + ((ρE + p)vr)z = 0,

αt + uαx + vαz = 0,

βt + uβx + vβz = 0.

One advantage of this approach is that the pressure source term can be hand-
led explicitly without modifying the 3D CFL condition. We have also avoided
axisymmetrical source terms which are singular on the axis of rotation. Finally, the
resulting scheme preserves constant pressure and velocity states. The construction
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of a 2D scheme that preserves contact discontinuities with discontinuous tangential
velocity is proposed in Nkonga [5].

4.2. Boundary conditions. For a boundary cell Ωk, an artificial value V n
k′ has to

be defined for the part of ∂Ωk that meets the boundary. For simplicity, suppose
that the normal vector is ν = (1, 0). We index by (i) (as“inside”) the components of
V n

k and by (o) (as “outside”) the (unknown) components of V n
k′ . Several boundary

conditions can then be used:

• “Supersonic” inlet:

Vo = given state.

• “Supersonic” outlet:

Vo = Vi.

• Pressure imposed (“subsonic” outlet). The outside state with pressure po is
linked to the inside state by a one-wave (shock or rarefaction). With the
notations of §7.2, we find

ρo = 1/Hi(po),

uo = ui − Xi(po),

vo = vi,

αo = αi,

βo = βi.

• Pressure and density imposed (“subsonic” inlet). Pressure po and density ρo

of the outside state are given. The nature of the outside state (αo, βo) and
the tangential velocity (vo) are also supposed to be known. Here, the outside
state is linked to the inside state by a one-wave (shock or rarefaction) and
a contact discontinuity. This permits to compute the unknown normal
velocity

uo = ui − Xi(po).

• Mirror state. This boundary condition is used at a solid boundary. All
the components of the state Wo are the same as those of state Wi but the
normal velocity

uo = −ui.

It is important here to point out that the terminology“subsonic”or“supersonic”has
nothing to do with the true nature of the flow at the boundary. It is only linked to
what is expected when Wo ≃ Wi. Indeed, we can imagine imposing a “supersonic”
inlet boundary condition and observing, at this boundary a supersonic outflow! The
resolution of a Riemann problem ensures that the redundant information will be
forgotten, if necessary. For more details about this technique, we refer to Dubois
and his theory of partial Riemann problems [8].

4.3. Optimisation of the CFL number. An important constraint in any finite
volumes scheme is the Courant-Friedrichs-Lewy condition. It expresses that, for
any finite volume Ωk the time step τ must verify

(4.5) τ <
surf(Ωk)

length(∂Ωk)V ∗
,

where V ∗ is the maximal wave speed in the solution of all the Riemann problems
at the cell interfaces. For a classical Godunov scheme on an unstructured mesh, it
is proved in [6], that the CFL condition (4.5) implies the positivity of the scheme
(the density remains >0) and the fact that it is entropic for any Lax entropy. We
assume that this is still true for the Saurel-Abgrall scheme. In the case where
large and small cells are mixed, the CFL condition on the small cells imposes the
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global CFL condition. The mixing of large and small cells can be imposed by the
geometry (an example is given below) and not necessarily by a required precision
of the computation. In order to reduce the computational cost it is possible to
use several time steps, a small one for the small cells and a bigger one for the big
cells. Then, several time steps are performed on the small cells and less time steps
are performed on the big cells. The time reduction of the computation can be
significant.

The time marching algorithm can be formalized as follow.
First, in a initialization procedure, an ideal time step is computed for each cell

Ωk. Let δ be the desired CFL number (for example δ = 0.7). The local time step
is defined by

(4.6) τk = δ
surf(Ωk)

length(∂Ωk)V ∗
.

The maximal time step in the mesh is noted τmax. In the same way, the minimal
time step is τmin. Let n0 be the smallest integer such that 2n0+1τmin > τmax We
will then say that the cell Ωk has a CFL level of j if

(4.7) 2j−1τmin ≤ τk < 2jτmin.

Thus a CFL level of 1 corresponds to the smallest cells and a CFL level of n0

corresponds to the biggest cells. We define also a CFL level for the edges. An edge
El has a CFL level which is the smallest CFL level of its two neighboring cells. In
order to advance by a global time step 2n0τmin, the algorithm is:

• for all integer j = 1 . . . n0 do
– for all edges of CFL level ≤ j do

∗ compute the flux
∗ distribute it to the two neighboring cells

– enddo
– update only the cells of level ≤ j

• enddo

In this way, the scheme remains conservative and stable. The gain in computation
time is of order 2n0 if the number of small cells is small.

5. An industrial application

5.1. Description. The industrial system that we wish to simulate is a gas gen-
erator whose geometry and working order are indicated in Figure 5.1. The gas
generator is made of a combustion chamber (top), a cooling chamber (middle part)
and an evacuation pipe (bottom, not represented). Only the working order in the
cooling chamber will be numerically simulated.

The cooling chamber and the evacuation pipe are separated by a metallic mem-
brane. This membrane can withstand a pressure of 40 bar. The cooling chamber
is around 1 m high, it is itself split into several chambers: a central one and a se-
condary one which communicate through an intermediate chamber and two series
of holes.

At time t = 0 ms, the cooling chamber is filled with motionless air and water
at a pressure of 5 bar. Gas at high pressure (∼ 100 bar) and high temperature
(∼ 2500 K) are then produced in the combustion chamber. They rush into the
cooling chamber and impact on the water surface causing a shock wave to propagate
in the water. When it reaches the bottom membrane, it smashes it. A part of the
water is then drained in the evacuation pipe, the rest of the water is transferred
into the secondary chamber where it is finally re-injected through very small holes
in the draining pipe and mixed with the gas still rushing from the combustion
chamber. The entire process, from the beginning of combustion to the beginning
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of the liquid re-injection has an approximate duration of 50 ms. This justifies the
fact that we neglect vaporization. Of course, for longer simulations, vaporization
should be taken into account.

As one can note in Figure 5.1, the real geometry of the cooling chamber is not
axisymmetrical due to the presence of re-injection holes near the draining pipe and
connection holes between the several chambers. For the simulation we thus replace
these holes by slits of equivalent area. The simplified axisymmetrical geometry is
represented in Figure 5.2. Here we plot the density. Red corresponds to density
values of the liquid (∼ 1000 kg/m3) whereas black corresponds to density values of
the gas (∼ 10 kg/m3).

5.2. Results. A part of the mesh is represented in Figure 5.3. It appears that very
small cells are necessary in the injection slits. The CFL stability condition is thus
very restrictive on these cells. In order to avoid a overly long computation we use
the algorithm described in §4.3. With this technique it is possible to perform a 50
ms simulation in 5 hours CPU on an 1.4 GHz computer. It should be noted that
the exact Riemann solver requires at most 5 Newton iterations for convergence to
within 10−10p0 where p0 is the atmospheric pressure. Most of the zones in the fluid
flow do not require as many iterations - 2 or 3 only. In conclusion, the classical
Godunov scheme is not as expensive as is so often proclaimed in the literature.

We then run the scheme presented in §4.1 and §4.2. Gravity is neglected. The
boundary conditions and initial conditions are depicted in Figure 5.2. The boundary
conditions are imposed according to the technique described in §4.2:

• At the top entrance of the cooling chamber, which corresponds to the exit
of the combustion chamber, we impose pressure p(t) and density ρ(t). The
time evolution of these quantities is determined by experimental measure-
ments. The pressure increases from 10 to 120 bar in several milliseconds.
We observe that the speed increases from 10 to 700 m/s. The flow thus
remains subsonic.

• At the bottom exit, the boundary condition is, at first, a solid wall con-
dition. When the pressure reaches 40 bar (this occurs around 6 ms), the
boundary condition is changed into an outflow condition. We then impose
an outside pressure of 5 bar. The pressure then drops progressively from
40 to 5 bar, and the velocity increases from 0 to 1500 m/s. The flow is thus
supersonic at the end of the computation.

Then, in Figures 5.4, 5.5 and 5.6 iso-densities for several instants are plotted. We
can point out the following:

• At 10 ms, the gas begins to push the water. The free surface is slightly
deformed. We observe a smoothing of the density profiles due to the nu-
merical diffusion of the interface. But despite the first order scheme (and
thanks to a quite fine mesh..)., the interface is easily recognized.

• The instant 15 ms is after the bursting of the membrane. We can see that
the central part of the water in the cooling chamber has been drained into
the evacuation pipe.

• At instants 20 ms and 25 ms, water has already entered the secondary
chamber, forming a jet against its boundary. The jet is numerically diffused
but still visible.

• At instant 50 ms, the jet has impacted on the free surface in the secondary
chamber. We observe that the re-injection has started (small jet at the
bottom).
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Figure 5.1. Gas generator

(a) gas-generator (start) (b) gas-generator
(middle)

(c) gas-generator (end)

• In Figure 5.4, we plot pressure in order to demonstrate the appearance of
negative values of the pressure. These negative values appear in the bottom
nozzle where a strong drop of pressure is probably triggering cavitation.

Measurements on a real gas generator were performed at the “Direction des Con-
structions Navales” (DCN) in Toulon (France). Excellent agreement is observed
in the central part of the cooling chamber. For example, the bursting time of the
separating membrane is predicted with an error of a few percent. More precise com-
parisons with experiments have now to be performed in the secondary chambers.

6. Conclusion

In this paper we have first recalled basic facts on compressible multifluid flows.
We have also carefully described the spurious pressure oscillations phenomenon that
arises in any conservative Godunov scheme applied to multifluid flows.

We focused on two remedies to suppress these oscillations. The first fix has been
proposed by Saurel and Abgrall in [24]. It is based on a nonconservative transport
of the pressure law coefficients and works only for a stiffened gas pressure law. The
second fix is, to our knowledge, new and is based on a Lagrange plus projection
scheme. In the projection step we project the pressure instead of the pressure law
coefficients. The resulting scheme is more diffusive than the Saurel-Abgrall scheme
but also more general (it works for any pressure law).

Because in our application the stiffened gas law is sufficient we decided to exploit
the Saurel-Abgrall scheme in a 2D axisymmetrical and complex geometry. We
had then to deal with some practical problems: negative pressures, axisymmetry,
unstructured meshes, boundary conditions, multi time steps.
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Figure 5.2. Boundaries

(a) axisymmetrical geometry and bound-
aries

Figure 5.3. Mesh

(a) Mesh (partial view)

After having solved these problems, we were in a situation to present a useful
industrial numerical simulation.

Future studies could now follow several directions:
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Figure 5.4. Cavitation

(a) density (kg/m3) at 10 ms

(b) pressure (bar) at 10 ms
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Figure 5.5. Density plots (kg/m3)

(a) density at 15 ms

(b) density at 20 ms
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Figure 5.6. Density plots (kg/m3)

(a) density at 25 ms

(b) density at 50 ms
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• The scheme should be extended to second order. We have not done it
because in axisymmetrical cases, the classical second order extensions (as
the MUSCL method of Van Leer [26]) are surprisingly not straightforward.

• The second important aspect is to be able to deal with true cavitation, i.e.
the vaporization of the liquid in a metastable state. Some progress has been
obtained in the case of a liquid-vapor flow in [16]. The case of the three-
phase flow with air, liquid and vapor is being studied. Some preliminary
results can be found in [4].

7. Appendix

7.1. Entropy and hyperbolicity. We study here the hyperbolicity of (2.9), (2.1).
For this purpose, it is classical to introduce the specific entropy

s0 =
p + π

ργ
= s0(W ).

A simple computation shows that if W is a regular solution of (2.1), (2.9), then s0

satisfies the advection equation

s0
t + us0

x = 0.

Thus, for any function g of s0, γ and π an additional conservation law is satisfied
by ρg(s0, γ, π)

(ρg(s0, γ, π))t + (ρug(s0, γ, π))x = 0.

If W → S(W ) = ρg(s0, γ, π) is convex, we get in this way all the Lax entropies
of system (2.9), (2.1). For a proof of this result, we refer to the review paper
of [15]. According to Mock’s theorem [21] the convexity of S would then imply
hyperbolicity. Here, we prefer to carry out a more direct calculation. Always for
regular solutions, we set

Y =




ρ
u
s0

γ
π




.

We then have

Yt + B(Y )Yx = 0,

with

B(Y ) =




u ρ 0 0 0

γ p+π
ρ2 u ργ−1 (p+π) ln(ρ)

ρ − 1
ρ

0 0 u 0 0
0 0 0 u 0
0 0 0 0 u




.

The eigenvalues of B are (u − c, u, u, u, u + c) with c2 = γ p+π
ρ . Thus, if ρ > 0, the

system is hyperbolic if and only if

p + π ≥ 0.

Remark 7.1. When p tends to −π keeping the specific entropy constant, which is
the case in a rarefaction wave, we get:

ρ = C (p + π)
1/γ

→ 0.

Thus, the limiting case p = −π corresponds to a zero density ρ = 0. This means
that, in a liquid, vacuum corresponds to a negative value of the pressure.
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7.2. Global resolution of the Riemann problem. As in the case of gas dy-
namics for one fluid, the fields 1 and 3, which correspond to the eigenvalues u − c
and u+c are genuinely non-linear whereas the field 2 corresponding to the multiple
eigenvalue u is linearly degenerate (contact discontinuity).

At present, we have written several forms (conservative or not) for the convection
equations. All these forms are formally equivalent. It is important to verify that
they are correct also for discontinuous solutions.

Let us consider a discontinuity propagating with velocity σ. Indexes (a) and (b)
will be relative to the two sides of the discontinuity. Rankine-Hugoniot relations
read, in this case

σ(Wa − Wb) = F (Wa) − F (Wb).

Introducing the relative velocity to the discontinuity and the specific volume

v = u − σ, τ =
1

ρ
,

the jump relations become

M = ρava = ρbvb,

ρav2
a + pa = ρbv

2
b + pb,

(ρa(εa +
v2

a

2
+ pa)va = (ρb(εb +

v2
b

2
) + pb)vb,

Mγa = Mγb,

Mπa = Mπb.

The last two relations implie that γ and π can jump only at the contact discon-
tinuity (when M = 0). On the other hand, a simple computation shows that γ and
π are Riemann invariants for the fields 1 and 3.

Remark 7.2. These two properties imply that in genuinely non-linear fields the co-
efficients γ and π are constant. Outside the contact discontinuity, the computations
are thus identical to the case of a single fluid. These classical computations can
be found for example in the book of Godlewski and Raviart [13]. They are briefly
sketched below.

Remark 7.3. We have also given a sense to the nonconservative products in the
last two transport equations in (2.16) because u and the pressure law coefficients
cannot present a simultaneous jump.

Solving the Riemann problem means finding the weak entropy solution of

Wt + F (W )x = 0,

W (0, x) =

{
Wl if x < 0,
Wr if x > 0.

This solution is supposed to be self-similar

W (t, x) = R
(x

t
,Wl,Wr

)
.

It is made up of constant states separated by shock waves, rarefaction waves or a
contact discontinuity. It is thus of the form

R(ξ,Wl,Wr) =





Wl if ξ < λ−
1 ,

WI if λ+
1 < ξ < λ2,

WII if λ2 < ξ < λ−
3 ,

Wr if λ+
3 < ξ,

where the unknowns are WI , WII and the velocities λ2, λ±
i , i = 1, 3 which satisfy

λ−
1 ≤ λ+

1 < λ2 < λ−
3 ≤ λ+

3 .
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Furthermore, if λ−
i < λ+

i (resp. if λ−
i = λ+

i ) then the i-wave is a rarefaction
wave (resp. a shock of velocity σ = λ−

i = λ+
i ). When the i-wave is a rarefaction,

the computation of W = R(ξ, Wl, Wr) , for λ−
i < ξ < λ+

i is classically carried out
by expressing that the three Riemann invariants are constant in the i-rarefaction
(see [13]).

On the other hand, we have pI = pII = p⋆. If no vacuum occurs, we can also
write uI = uII = u⋆. Moreover, from remark 7.2, we have that γI = γl, γII = γr,
πI = πl, πII = πr. It is then classical to compute the 1- and 3-waves from the
pressure p⋆ common to the two intermediate states WI et WII . For this purpose,
we introduce the functions

ha(p⋆) = τa
(γa + 1)(pa + πa) + (γa − 1)(p⋆ + πa)

(γa + 1)(p⋆ + πa) + (γa − 1)(pa + πa)
, a = l or r,

Φa(p⋆) =
√

(p⋆ − pa)(τa − ha(p⋆)),

ga(p⋆) = τa

(
pa + πa

p⋆ + πa

)1/γa

,

Ψa(p⋆) =
2

γa − 1
(τaγa(pa + πa))1/2

(
(
p⋆ + πa

pa + πa
)

γa−1

2γa − 1

)
,

Xa(p⋆) =

{
Φa(p⋆) if p⋆ > pa,
Ψa(p⋆) if p⋆ < pa,

Ha(p⋆) =

{
ha(p⋆) if p⋆ > pa,
ga(p⋆) if p⋆ < pa.

We thus get

uI = ul − Xl(p
⋆),

uII = ur + Xr(p
⋆),

τI = Hl(p
⋆),

τII = Hr(p
⋆),

and the Riemann problem is solved when p⋆ is known.
If no vacuum region appears, the following theorem holds.

Theorem 7.4. Let p0 = min(πl, πr). If

(7.1) ur − ul ≤ − (Xl(−p0) + Xr(−p0)) ,

then the Riemann problem has a unique solution. The pressure p⋆ ≥ −p0 is the
unique solution of

ul − Xl(p
⋆) = ur + Xr(p

⋆).

This result is quite similar to the case of the Riemann problem for a single fluid.
For the proof we refer (for example) to [14], [13].

When inequality (7.1) is not true, a vacuum has to be introduced. This vacuum
region appears in the fluid whose coefficient π is the smallest.

Theorem 7.5. If

ur − ul > − (Xl(−p0) + Xr(−p0)) ,

the Riemann problem has still an entropy solution. For example, if p0 = πl, then
we have p⋆ = −p0, ρI = 0, u⋆ = uII = ur + Xr(p

⋆). uI = ul − Xl(p
⋆), and, in

general uI 6= uII .
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Proof. Suppose that p0 = min(πl, πr) = πl. In the two open sets x < u⋆t and
x > u⋆t, the computation of the 1- and 3-wave curves is identical to the mono-
fluid case. Thus, W (t, x) is indeed an entropy solution of the Riemann problem in
these two open sets. It is then sufficient to verify that, at the contact discontinuity
x/t = u⋆, Rankine-Hugoniot jump relations are satisfied, together with the entropy
condition. The discontinuity velocity is σ = u⋆. We thus have vII = u⋆ − σ = 0.
Mass conservation ρIvI = 0 = ρIIvII is then satisfied. In the same way, ρIv

2
I +p⋆ =

p⋆ = ρIIv
2
II + p⋆. The jump relation for the conservation of ρϕ is also satisfied:

ρIvIϕI = 0 = ρIIvIIϕII . For the energy jump relation, we use the fact that the 1-
wave is necessarily a rarefaction because p⋆ = −p0 ≤ pl. However, in a rarefaction,

when p → −π, then ρε+π → 0 (see remark 7.1) and we have (ρIεI +p⋆)vI +ρI
v3

I

2 =

0 = (ρIIεII + p⋆)vII + ρII
v3

II

2 . Finally, the entropy inequality (which degenerates
to an equality) is also satisfied: ρIvIsI = 0 = ρIIvIIsII . ¤
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