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Abstract

Given a remarkable representation of the generalized Pauli operators of two-qubits in terms of
the points of the generalized quadrangle of order two, W (2), it is shown that specific subsets
of these operators can also be associated with the points and lines of the four-dimensional pro-
jective space over the Galois field with two elements — the so-called Veldkamp space of W (2).
An intriguing novelty is the recognition of (uni- and tri-centric) triads and specific pentads of

the Pauli operators in addition to the “classical” subsets answering to geometric hyperplanes of
W(2).
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1 Introduction

A deeper understanding of the structure of Hilbert spaces of finite dimensions is of utmost
importance for quantum information theory. Recently, we made an important step in this respect
by demonstrating that the algebra of the generalized Pauli operators on the 2V-dimensional
Hilbert spaces is embodied in the geometry of the symplectic polar space of rank N and order
two ]f[ﬂ] The case of two-qubit operator space, N = 2, was scrutinized in very detail [, B]
by explicitly demonstrating, in different ways, the correspondence between various subsets of
the generalized Pauli operators/matrices and the fundamental subgeometries of the associated
rank-two polar space — the generalized quadrangle of order two, W (2). In this paper we will
reveal another interesting geometry hidden behind the Pauli operators of two-qubits, namely
that of the Veldkamp space defined on W (2), V(W (2)).



2 Finite Generalized Quadrangles and Veldkamp spaces

In this section we will briefly highlight the basics of the theory of finite generalized quadrangles
[@] and introduce the concept of the Veldkamp space of a point-line incidence geometry [ﬂ] to
be employed in what follows.

A finite generalized quadrangle of order (s,t), usually denoted GQ(s, t), is an incidence struc-
ture S = (P, B,I), where P and B are disjoint (non-empty) sets of objects, called respectively
points and lines, and where I is a symmetric point-line incidence relation satisfying the following
axioms [{]: (i) each point is incident with 1+ lines (+ > 1) and two distinct points are incident
with at most one line; (ii) each line is incident with 1 + s points (s > 1) and two distinct lines
are incident with at most one point; and (iii) if « is a point and L is a line not incident with z,
then there exists a unique pair (y, M) € P x B for which aIMIyIL; from these axioms it readily
follows that |P| = (s + 1)(st + 1) and |B| = (¢ + 1)(st + 1). It is obvious that there exists a
point-line duality with respect to which each of the axioms is self-dual. Interchanging points
and lines in S thus yields a generalized quadrangle S of order (¢, s), called the dual of S. If
s =1, S is said to have order s. A generalized quadrangle of order (s, 1) is called a grid and that
of order (1,t) a dual grid. A generalized quadrangle with both s > 1 and ¢ > 1 is called thick.

Given two points x and y of S one writes x ~ y and says that = and y are collinear if there
exists a line L of S incident with both. For any x € P denote 2+ = {y € P|y ~ x} and note
that = € z; obviously, 2 = 1 4 s + st. Given an arbitrary subset A of P, the perp(-set) of A,
At is defined as At = N{zt|r € A} and A+ := (A1)L. A triple of pairwise non-collinear
points of S is called a triad; given any triad T, a point of T is called its center and we say that
T is acentric, centric or unicentric according as |T| is, respectively, zero, non-zero or features
just a single point. An ovoid of a generalized quadrangle S is a set of points of S such that each
line of S is incident with exactly one point of the set; hence, each ovoid contains st + 1 points.

The concept of crucial importance is a geometric hyperplane H of a point-line geometry
I'(P, L), which is a proper subset of P such that each line of T" meets H in one or all points.
For T" = GQ(s,t), one can check that H is one of the following three kinds: (i) the perp-set of
a point x, x; (ii) a (full) subquadrangle of order (s,#'), ' < t; and (iii) an ovoid.

Finally, we need to introduce the notion of the Veldkamp space of a point-line incidence
geometry T'(P, L), V(I) [E] V(T) is the space in which (i) a point is a geometric hyperplane
of ' and (ii) a line is the collection HyHs of all geometric hyperplanes H of T' such that
H (N Hy = HH(\H = Hy(\H or H = H; (i = 1,2), where Hy and H, are distinct points of
V(). If ' = S, from the preceding paragraph we learn that the points of V(S) are, in general,
of three different types.

3 The Simplest Thick GQ and its Veldkamp space

The simplest thick GQ is obviously the one with s = ¢ = 2, frequently denoted as W (2) and
dubbed the “doily.” This quadrangle has a number of interesting representations of which we
mention the most important two [E] one in terms of the points of PG(3,2) together with the
totally isotropic lines with respect to a symplectic polarity, other by the totally singular points
and lines of a parabolic quadric in PG(4,2). From the preceding section we readily get that
W(2) is endowed with 15 points/lines, each line contains three points and, dually, each point
is on three lines; moreover, it is a self-dual object, i.e., isomorphic to its dual. W (2) features
all the three kinds of hyperplanes, of the following cardinalities [E] 15 perp-sets, x*, seven
points each; 10 grids (of order (2,1)), nine points each; and six ovoids, five points each — as
depicted in Figure 1. The quadrangle exhibits two distinct kinds of triads, viz. unicentric and
tricentric. A point of W(2) is the center of four distinct unicentric triads (Figure 2, left); hence,
the number of such triads is 4 x 15 = 60. Tricentric triads always come in “complementary”
pairs, one representing the centers of the other, and each such pair is the complement of a
grid of W(2) (Figure 2, right); hence, the number of such triads is 2 x 10 = 20. A unicentric
triad is always a subset of an ovoid, which is never the case for a tricentric triad; the latter,
in graph-combinatorial terms, representing a complete bipartite graph on six vertices. Now, we
have enough background information at hand to reveal the structure of the Veldkamp space of
our “doily,” V(W (2)).
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Figure 1: The three kinds of geometric hyperplanes of W (2). The points of the quadrangle are
represented by small circles and its lines are illustrated by the straight segments as well as by
the segments of circles; note that not every intersection of two segments counts for a point of
the quadrangle. The upper panel shows the points’ perp-sets (yellow bullets), the middle panel
grids (red bullets) and the bottom panel ovoids (blue bullets); the use of different colouring
will become clear later. Each picture — except that in the bottom right-hand corner — stands
for five different hyperplanes, the four other being obtained from it by its successive rotations
through 72 degrees around the center of the pentagon.

Figure 2: Left: — The four distinct unicentric triads (grey bullets) and their common center
(black bullet); note that the triads intersect pairwise in a single point and their union covers
fully the center’s perp-set. Right: — A grid (red bullets) and its complement as a disjoint union
of two complementary tricentric triads (black and grey bullets); the two triads are also seen to
comprise a dual grid (of order (1,2)).



Table 1: A succinct summary of the properties of the five different types of the lines of V(W (2))
in terms of the core-sets and the types of geometric hyperplanes featured by a generic line of a
given type. The last column gives the total number of lines per the corresponding type.

Type of Core-Set | Perp-Sets Grids Ovoids | #
Single Point 1 0 2 15

Collinear Triple 3 0 0 15
Unicentric Triad 1 1 1 60
Tricentric Triad 3 0 0 20
Pentad 1 2 0 45

From the definition given in Sec. 2, we easily see that V(W (2)) consists of 31 points of which
15 are represented /generated by single-point perp-sets, 10 by grids and six by ovoids. The lines
of V(W (2)) feature three points each and are of five distinct types, as illustrated in Figure 3.
These types differ from each other in the cardinality and structure of “core-sets,” i.e., the sets
of points of W (2) shared by all the three hyperplanes forming a given line. As it is obvious from
Figure 3, the lines of the first three types (the first three rows of the figure) have the core-sets
of the same cardinality, three, differing from each other only in the structure of these sets as
being unicentric triads, tricentric triads and triples of collinear points, respectively. The lines of
the fourth type have as core-sets pentads of points, each being a quadruple of points collinear
with a given point of W(2), whereas core-sets of the last type’s lines feature just a single point.
A much more interesting issue is the composition of the lines. Just a brief look at Figure 3
reveals that only one kind of a geometric hyperplane, namely perp-sets, are present on each line
of V(W(2)); grids and ovoids occur only on two kinds of the lines. We also see that the purely
homogeneous types are those whose core-sets feature collinear triples and tricentric triads, the
most heterogeneous type — the one exhibiting all the three kinds of hyperplanes — being that
characterized by unicentric triads. We also notice that there are no lines comprising solely grids
and/or solely ovoids, nor the lines featuring only grids and ovoids, which seems to be connected
with the fact that the cardinality of a core-set is an odd number. From the properties of W(2)
and its triads as discussed above it readily follows that the number of the lines of type one to
five is 15, 15, 60, 20 and 45, respectively, totalling 155. All these observations and facts are
gathered in Table 1. We conclude this section with the observation that V(W (2)) has the same
number of points (31) and lines (155) as PG(4,2), the four-dimensional projective space over
the Galois field of two elements [ﬁ], this is not a coincidence, as the two spaces are, in fact,
isomorphic to each other [f].

4 Pauli Operators of Two-Qubits in Light of V(11 (2))

As discovered in [fl] (see also [{]), the fifteen generalized Pauli operators/matrices associated
with the Hilbert space of two-qubits (see, e. g., [) can be put into a one-to-one correspondence
with the fifteen points of the generalized quadrangle W (2) in such a way that their commutation
algebra is completely and uniquely reproduced by the geometry of W (2) in which the concept
commuting/non-commuting translates into that of collinear/non-collinear. Given this mapping,
it was possible to ascribe a definitive geometrical meaning to sets of three pairwise commuting
generalized Pauli operators in terms of lines of W(2) and to other three kinds of distinguished
subsets of the operators having their counterparts in geometric hyperplanes of W(2) as shown
in Table 2 (see [i], ] for more details). Yet, V(W (2)) puts this bijection in a different light,
in which other three subsets of the Pauli operators come into play, namely those represented
by the two types of a triad and by the specific pentads occurring as the core-sets of the lines
of V(W (2)) (Table 1). As already mentioned, the role of tricentric triads of the operators has
been recognized in disguise of complete bipartite graphs on six vertices [ A true novelty
here is obviously unicentric triads and pentads of the generalized Pauli operators as these are all
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Figure 3: The five different kinds of the lines of V(W (2)), each being uniquely determined by
the properties of its core-set (black bullets). Note that the “yellow” hyperplanes (i.e., perp-
sets) occur in each type, and yellow is also the colour of two homogeneous (i. e., endowed with
only one kind of a hyperplane) types (2nd and 3rd row). It is also worth mentioning that the
cardinality of core-sets is an odd number not exceeding five. The three hyperplanes of any line
are always in such relation to each other that their union comprises all the points of W (2).



Table 2: Three kinds of the distinguished subsets of the generalized Pauli operators of two-
qubits (PO) viewed as the geometric hyperplanes in the generalized quadrangle of order two

(GQ) (i, B

PO  set of five mutually set of six operators nine operators of a
non-commuting operators commuting with a given one Mermin’s square
GQ ovoid perp-set\ {reference point} grid

intimately connected with single-point perp-sets; given a point of W (2) (i. e., a generalized Pauli
operator of two-qubits), its perp-set fully encompasses four unicentric triads (Figure 2, left) and
three pentads (Figure 3, 4th row) of points/operators. This feature has also a very interesting
aspect in connection with the conjecture relating the existence of mutually unbiased bases and
finite projective planes raised in [ﬂ], because with each point @ of W(2) there is associated a
projective plane of order two (the Fano plane) whose points are the elements of 2+ and whose
lines are the spans {u,v}*++, where u,v € x+ with u # v [E]

5 Conclusion

By employing the concept of the Veldkamp space of the generalized quadrangle of order two,
we were able to recognize other, on top of those examined in [Eﬂf[ﬂ], distinguished subsets of
generalized Pauli operators of two-level quantum systems, namely unicentric triads and pentads
of them. It may well be that these two kinds of subsets of the two-qubit Pauli operators hold
an important key for getting deeper insights into the nature of finite geometries underlying
multiple higher-level quantum systems [E], in particular when the dimension of Hilbert space is
not a power of a prime [[Ld].
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