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Parameter Identification of Recurrent Fuzzy
Systems with Fuzzy Finite-State Automata
Representation

Carlos A. Gama, Alexandre G. Evsukoff, Philippe \&iednd Nelson F. F. Ebecke$eniorMember, IEEE

Abstract— This paper presents the identification of non-liear dynamical systems by recurrent fuzzy system mets. Two types of
recurrent fuzzy systems (RFS) models are discussetthe Takagi-Sugeno-Kang (TSK) type and the linguist or Mamdani type. Both
models are equivalent and the latter model may beepresented by a fuzzy finite-state automaton. An ghtification procedure is
proposed based on a standard general purpose geretilgorithm. First, the TSK rule parameters are edmated and, in a second step,
the TSK model is converted into an equivalent lingistic model. The parameter identification is evaluged in some benchmark problems
for non-linear system identification described in iterature. The results show that RFS models achievgood numerical performance

while keeping the interpretability of the actual system dynamics.

Index Terms— Fuzzy finite-state automata, genetic algorithmsyonlinear systems, system identification, recurrenfuzzy systems.

I. INTRODUCTION

ONLINEAR system identification has been extensively

studied during the last decades and several methods
and applications have been develojEd Multilayer feed-
forward neural networks is certainly the most usuethod
for the identification of non-linear dynamical systs[2].
Feed forward neural networks are generally usecres
step-ahead prediction models, in which the preveystem
outputs are available and are used as network Snfmut
compute the model output at the next sampling tibeg.
Multi-step ahead prediction is achieved by add#iayutput
units to the neural network.

For complex system forecasting, the use of longyesl
inputs to provide enough memory to the model antfijphe
output units results in a very large network sMereover,
feed-forward neural networks cannot be used foulkition,
when actual system outputs are not available.

Recurrent topologies allow a more compact model for
processing dynamic systems, with good resultsdiog term
forecasting and simulatiof3][4]. In a recurrent neural
network, the system memory is achieved by feediacgkb
some (or all) of the network units through timeagelinits.

Fuzzy and neuro-fuzzy models for nonlinear dynamic
system identification have been also studied, fmtHeed-
forward [5] and recurrent topologie$6]-[14]. Several
recurrent fuzzy and neuro-fuzzy models have been
developed in many applications, such as proceszlngd
[7]-[9], identification and control[10]-[13] and fault
diagnosis[14]. Neuro-fuzzy models provide high accuracy
and “human-like” interpretation of the model by et &f
linguistic rules.

The encoding of recurrent neural networks as fuzzy
finite-state automata (FFA) has been recently itigated

[15]-[18]. Such relationship is wuseful, since the

representation capabilities and theoretical progederived
from the FFA can be used to analyze and underdtaed
dynamics of the identified model. Adamy and Kerfip8]
show that recurrent fuzzy systems can be directboded
into a FFA and their dynamical behavior may be dedu
from their rule base configuratiof20]. Fernandes and
Lopes[21] show that, under certain assumptions, rectirren
fuzzy systems are asymptotically stable, indepethgleari
the initial state. These results, when combinech wifite
universal approximation property of general fuzggtems
[22][23], yield to the perspective that recurrent fuzzy
systems identification and FFA representation mayide

an efficient, accurate and sound procedure fortifieation
and analysis of nonlinear dynamic systems.

The identification algorithms for recurrent neural
networks and recurrent fuzzy and neuro-fuzzy models
generally rely on gradient-based methods. Nevestisel
gradient calculations for recurrent neural netwod®
complex and highly dependant on the network topolog
Recently, genetic algorithms (GAs) have also besd dor
model identification[24]-[26]. A GA does not require
derivative information and avoids the problem otdb
minima usually found in gradient based optimizatidhus,
the use of GA makes the model identification mdegilhle,
since several different model structures may batified by
the same procedure.

Two types of recurrent fuzzy systems (RFS) are
discussed in this work. The first type is the Talaggeno-
Kang (TSK) RFS, which has been introduced by Gorrin
and Bersini[6]. The second type, called linguistic or
Mamdani RFS, is an extension of the model propdsed
Adamy and Kempf[19][20], by the introduction of rule
base weights. Both models are equivalent and ther lean
be represented by a FFA, in which linguistic terms,
associated to the fuzzy sets, are related to themmion



alphabet and fuzzy inference correspond to thenaation
transition function.

A parameter estimation procedure is proposed fer th
RFS models discussed in this work. The identifarati
algorithm is based on a standard general purposer@As
composed of two steps. In the first step a GA isdum®
compute the TSK-type RFS output paramef2fq. In the
second step, the result obtained in the first sepsed to
compute the rule base weights of an equivalentuistig
type RFS model.

This paper is organized as follows: next secticasents
the TSK and linguistic types RFS and the represientaf
the latter as a FFA; section three presents thatifabation
algorithm; the results of the proposed methodolagplied
to system identification benchmark problems aresgméed
in section four and the conclusions and future woake
discussed in the last section.

[l. RECURRENTFUZZY SYSTEMS

Consider the general state space representation of

discrete time, non-linear, multi input multi outpadgnamic
systems:

x(t +2) = f (x(t),u(t)), (1)
y(®) = gx(®),u()) 2)

where x(t) is the state variables vectou(t) the input
variables vector,f and g are respectively the transition
and output functions ang(t) is the system output.

The state space representation is quite generalcand
represent several types of dynamic systems acaptdithe
ranges of input and state variables and the choicthe
transition and the output functions. Continuousigdlinput
and state variables are used to model linear antinear
systems according to the choice of functicghsand g.

Discrete valued input, state variables and disdietetions

f andg are used to model discrete systems, represented by

discrete finite-state automata. In a recurrent yugystem
(RFS) model, input and output variables are cowotisu
valued and functiond and g are nonlinear piecewise

continuous functions. Linguistic interpretationfakzy sets
allows recurrent fuzzy models to be analyzed asyfuz
finite-state automata (FFA).

This work is mainly concerned with the identificatiof a
RFS to model the transition functidn The output function
is considered to be a linear function of stateshghat:

y(t) = Kx(t). (3)

Two types of recurrent fuzzy systems are discussed
this section: the TSK-type recurrent fuzzy system ¢he
linguistic or Mamdani type recurrent fuzzy systérhe two
models are equivalent and a representation ofinlgeistic
type RFS as a FFA is proposed.

A. TSK-type RFS model

The TSK-type RFS model is an extension of the pabi
TSK (or Sugeno) model in which the variable in the
conclusion of the rules is a state variable, whatko
appears in the premise, providing recursion. Fdte saf
simplicity, the TSK-type model is introduced foretirst
order, single input model and then generalizedhigher
order, multiple input models.

The first order, single input, TSK-type RFS rule® a
written as:

If x(t) isA and u(t) isB; then x(t +1) =6, (4)

where X(t) is the state variable and(t) is the input

variable. The fuzzy setsA and B; are defined,

respectively, on the state and input variables diosnand
0, is the output parameter for each one of thel..M

rules.

A fuzzy set is intrinsically related to a symbolic label,
which is, in turn, associated to a meaningful listga
concept. The fuzzy partitions of the state and tivamiables
domains are thus respectively related to the ladmsb

A:{A,i :1...p} and B={Bj,j =1...q} . The ordered

symbolic labels in the labels sets will then begsd to the
state and the input alphabets of the FFA repretenjaas
described in sectioh.C.

The fuzzy membership functions define the relatiims
between the numeric and the symbolic representatica
variable. In this work, fuzzy membership functioase
considered to be continuous, convex, triangulapstiaand
normalized, such that the following conditions hold

> Hp () =10x (5)
Oi, OX: pp (0 =1 (6)

Normalized and triangular-shaped membership funstio
are completely defined by the vectox=(a ,...,ap) ,
which locates the membership functions verticeeddhe

prototypes of the corresponding fuzzy sets. Comsifte
instance the fuzzy partition shown in Fig. 1 for=5 fuzzy

sets.
The fuzzification of input and state variables g&lthe
fuzzification (row) vectors:

1A (K0 = [ (XO)..... i, (X)) and ™)
e (U0 = (e, U)..... 15, () - ®)
The RFS model output is the state variablé +1),

which is computed as in standard TSK models as:

1 n a strictly formal notation, a fuzzy set shoblel noted differently from

the label to which it is related. However, as igenerally the case in the
fuzzy systems literature, the same notation is tusedfer to the fuzzy set
and to its label, the difference being clear in¢batext.



x(t+1) = w(t)® (9)

where 0 = (49 oo O ) is the output parameters vector and
w(t) is the vector whose components are the activation

values of the rules premises.

The components of the vectar(t) are computed by the
conjunction of the fuzzy sets in the premise. lis thork,
the product operator is used as t-norm such thratvéetor
w(t) can be computed by the Kronecker tensor product as

w(t) = pa (X(1) O pg ().

All the combinations of fuzzy sets are considemedhie
rules premises, such that the model covers thereenti
domain. The number of rulel is defined by the number
of fuzzy sets in the state and input variables yuzz
partitions; consideringp fuzzy sets in the state variable

fuzzy partition andq fuzzy sets in the input variables fuzzy
partition, the total number of rules in the firgter single
input TSK-type RFS iV = pgq.

More complex dynamics may be achieved by higher
order RFS models. In this case, state variables are
considered in the vectox(t) =(x0(t),...,xn_1(t)). In order

to reduce the number of parameters, at each sionlame
step, higher order state variables are updatede&syetl
copies of the state variabbg (t) such that:

(10)

X (1) = Xo(t—K), k=1...n-1. (11)

Adopting this representation, all the state vagabare
considered in the rule premises, but only the vai¢he
state variablexg(t) is computed in the output of the RFS,

such that the rules are written as:

If x(t) isC; and u(t) isB; then xg(t+1) =06, . (12)

The fuzzy setC; in rule (12) is a multidimensional fuzzy

set computed as the Cartesian product of fuzzyisetse
state variables domain. All combinations must be
considered in such a way that the entire stateabkss
domain is covered. The symbolic label set

C={Ci,i =1...p”} is thus the Cartesian product of the
elements of the state variable the labelAetsuch that:

C=Ax..xA=A", (13)

As the state variables are delayed copies of thee st
variable x5(t) , the same fuzzy partition can be used to
compute all the state variables membership vectors,
avoiding additional parameters to be set. The meshiye
vector pc(x(t)) is computed as the Kronecker tensor

product of the corresponding components on eacte sta
variable domain, as:

pe(X(®) =pa G ®) T . Opa (Xo(D) (14)

where pp (X (t)) is the fuzzification vector of the state
variable x (t) , computed as (7).

The same reasoning can be adopted to extend thke sin
input TSK-type RFS models to multiple input RFS reisd
of which the rules are written as:

If x(t) isC; and u(t) isB; then xg(t+1) =6, (15)

whereu(t) = (ul(t),...,um(t)) is the input variables vector.
The input membership vectrg (u(t)) can be computed

as the combination of fuzzy sets in the input \E&a
domain, as in the case of the state variables,itbudll
generally result in a large number of rules. fprisferable to
compute the input membership vector directly oves t
multidimensional domain by fuzzy clustering meth¢8k
This approach becomes useful as the number of input
variables increases, since the number of rules, and
consequently the number of output parameters, grows
exponentially with the number of variables

In order to simplify the notations, the number oty
sets in the input variable fuzzy partition (single multi-
dimensional) is considered to kep. The total number of

rules in the multi-variable TSK-type RFS model mig
M = p".q, wheren is the model order angh the number

of fuzzy sets in the states variable fuzzy partitio
The fuzzy model outpukg(t +1) is then computed as:

Xo(t +1) =w(t)0, (16)

where 0 = (6?1,...,6’M) is the output parameter vector and
w(t) is the rules activation vector, which is compuasd

w(t) = pc (x(1) O pp (ut)

Comparing (9) and (10) with (16) and (17), it cam b
observed that the extension from the first ordeglsi input
model to higher order multiple input model is
straightforward.

The TSK-type RFS can be extended to more complex
models by using polynomial functions in rules ouj24].

This work focuses only the models with constantigalin
the rules output, which can be equivalent to theguistic
RFS model as presented as follows.

(17)

B. Linguistic recurrent fuzzy model

In linguistic recurrent fuzzy systems, the outpfieach
rule is a fuzzy expression on the state variagjé) , such

that the rules are written as:

If x(t) is C; and u(t) isB; then Xg(t +1) is A (18)

where C; and B; are multi-dimensional fuzzy sets like

before, andA, is a fuzzy set defined on the state variables

domain.
The rule base can be represented by the fuzzyiarlat



matrix @, of which the componentg,, D{O,]} represent

the relationship between the premise and the output
expressions. There is one rule=1.M for each

combination(Ci , Bj) of the terms in the premise, in such a

way that @, =1 if the output of the ruleg is the fuzzy set
A¢ and ¢, =0, otherwise. The matrix@ has, thus,M
lines andp columns.

The output of the linguistic recurrent fuzzy systésn
computed as an ordinary fuzzy system, choosingstima-

product inference and singleton defuzzificatid®]-[21].
The result of sum-product inference is computed as:

v(t) =w(t).D, (19)

wherew(t) is computed as above.

The state variable value at the next simulatiore tatep is
computed as:

Xpt+D) =v(t)a =w(t)®a’, (20)

where the vectora=(a ,...,ap) is the state variable

prototype (row) vector used in singleton defuzzifion
operation, where the superscriphdicates the transpose.
The linguistic recurrent fuzzy model described abis
equivalent to the one investigated by Adamy and pfem
[19]. In this work, a more flexible model is adoghte
associating a confidence factor to each rule, spred by
the weightg D[O,l] . In this case, the rules are written as:

If x(t)isC; and u(t)isB; then
xo(t+Dis(A/ @1, Ayl o)

The output of the weighted linguistic recurrent Zyz
model is also computed by (20).

Comparing the (16) and (20), the TSK-type RFS dued t
linguistic type RFS are equivalent when fuzzy rulesghts
are related to the output parameters as:

(21)

0=da’. (22)

The linguistic RFS model described above is derived
from the numerical values of the state and inputiées. A
dual symbolic representation of the linguistic REBws it
to be seen as a fuzzy finite-state automaton, asritbed
next.

C. FFA representation

At each simulation time, the state variable valkgt)
yields to the symbolic stat& , which is a fuzzy subset of

the state variable label s&. The membership values of
the symbolic stateS; to each labelA OA are defined by

the fuzzification vectom p (Xg(t)) as:

U (&) = fp (@), 1=1...p. (23)

For higher order models, the multidimensional state
variable x(t) is described by the symbolic staf®, which

is a fuzzy subset of the symbolic label €21 of which the
membership values are defined as:

fo, (Ci) = g, (X(B), i =1,..., p". (24)

Analogously, the symbolic input); describes the input
variable valueu(t) as a fuzzy subset of the input variable

label setB , of which the membership values are defined by
fuzzification vectorpg (u(t)) as:

#, (B)) = pg, (U(D), i =1...,01. (25)

The rule base weights matri® is a fuzzy relation
defined as a fuzzy subset dCXB)XA, such that a

membership value gy D[O,l] is assigned to each

combination of Iabels((Ci,Bj )Ak) in the premise and

conclusion of rule (21).
The fuzzy (symbolic) inference computes the next
simulation time symbolic stateé5,; based on rule base

weights matrix as:
Sta = (Q xUy )o@

where “” stands form the sum-product composition
operator and X" is the fuzzy Cartesian product, which is
computed by the product t-norm operator.

If the rule base weights are defined such that itiomd
(5) and (6) hold for the inference reswift) in (19), then

V(t) =pa (X (t+1) and it can be fed back directly into the

RFS, without defuzzification. In this case, the bpfic
states computed by symbolic inference (26) are reste
with (19) such that:

Hs, (A) = pp (Xt +1),i=1...,p.

(26)

(27)

Considering the update rule (11), the multivariate
symbolic stateQ;,; may be computed directly by the fuzzy

Cartesian product of the symbolic sta®gs;,i =0,...,n-1
as:

Q1 = S-n XX S41.-

Equations (26) and (28) define the function
0. (CXB)XC - [01], based on the rule base weights
matrix @ , which can be regarded as the transition function
of a fuzzy finite-state automaton.

A fuzzy finite-state automaton is usually definedaasix-
tuple F =(Q,%,5,Qp,Z,w) [27][28], where Q is a finite
set of symbolic states? is a finite set of input symbols;
0:QxxxQ - [01] is the fuzzy finite-state automaton
transition function that computes the next statenbrership
values based upon the current state and the Ui Q is

(28)



the initial state;Z is a finite set of output symbols and
«:Q - Z is the output function that maps the states into

the output set.

The dual symbolic derivation of the linguistic RF®8del
can be seen as a special type of fuzzy finite-statematon,
of which both the states and the inputs are fuzibgsts of
the corresponding numeric variables’ label sete dhtput
set and the output function are not consideredim fuzzy
automaton representation, since the RFS models thely
state space transition function (1). Therefore, thezy
automaton corresponding to the linguistic RFS & fibur-
tuple F =(C,B,3,Qp), where:

= the set of symbolic states is the set of symbaliels

C ={Ci i :1...p”} , of which the symbolic stat€;

is a fuzzy subset;
= the input alphabet is the input variables label set

B ={Bj v =1...q} , of which the symbolic input);
is a fuzzy subset;

= the transition function J: (CXB)XC - [01] is
computed by (26) and (28), and

= the initial fuzzy stateQ, is a fuzzy subset of the set

of the symbolic state€ , whose membership values
are computed as the fuzzification of the state
variables at initial simulation timeg(t = 0), such that

1o, (C) = pic, ((0)) -
The RFS model defined by non-weighted fuzzy rules a

(18) is a special case where the rule base weights
Pk D{O,]}. Moreover, when input and states variables

values are constraint to the prototypes of theesponding
fuzzy sets, the non-weighted linguistic RFS modshdves
like the deterministic finite-state automaton witho

uncertainty in the activation of the states. Irs tbase, only
one symbolic state of the fuzzy automaton is attivaat
each time and the membership values are binary.

Adamy and Kempf have investigated the non-weighted
recurrent fuzzy models and formally derive several
dynamical properties from structural configuratiofithe
rule base and membership functi¢h8][20]. They showed
that linguistic recurrent fuzzy models are nonexgdanand
have at least one equilibrium point for any inpecttor u(t)

[20]. Moreover, for a certain rule structure, cdllby the
authors “rule-continuouq’9], and if a regular (equidistant)
prototype vector is used for defuzzification, thesulting
linguistic recurrent fuzzy model is stable in thense of
Liapunov and converges to a stable output, for iaitial
state variable valugO0].

Ferndndes and LépeR1l] presented a similar fuzzy
recurrent system, called by the authors Fuzzy Fesdb
System (FFS). In their system, non-weighted rutesused
to compute the fuzzy membership values that arectijyr
fed back into the inputs, without a deffuzificatistep as in
the approach by Adamy and Kenjfi®]. The authors have

used an inference methodology based on transitamicas

to show that, for the sum-product inference operatwe
FFS asymptotically reaches a steady state prowiuzdthe
transition matrix is diagonalizable and the largest
eigenvalue is real.

Although related to slightly different models, thesults
presented by Kempf and Adanjg20] and Fernandes and
Lépes [21] show that RFS models described by non-
weighted rules as (18) can be used to adjust stable
oscillatory or even chaotic systems. Theoreticalits to
characterize the RFS model described by weightkes as
(21) are still an open issue.

The FFA representation allows a better interpretatf
the dynamics of the linguistic RFS model, as illattd by
the following example.

D. Discussion

Consider, for instance, a linguistic RFS model,
represented by the following set of rules:

If x(t)is A and u(t)is B; then

x(t+Dis (A /a1 Aol o),

If x(t)is Ay and u(t)is B, thenx(t +1)is(A1/¢J21, A /@2),

If x(t)is Ay and u(t)is B, thenx(t +1)is (Allqosl, Ay /4032),

If x(t)is Ay and u(t)is B, thenx(t +1)is(A /@1, A/ @y5) .
(29)

The model outputy(t) = x(t) such that only the transition

function is modeled. The fuzzy partitioB ={Bl,Bz} for

the input variable and the fuzzy partitidh={A1,A2} for

the state variables are defined on their respectbraains.
The fuzzy relation matrix in Table | defines the skrules
(29).

This fuzzy model can be represented as a fuzziefini
state automatonF =(A,B,J,S), since C=A for first

order models (cf. (13)), such that the initial st@y = ;.

The transition rule base weights are defined by #rel
initial state Sy = A . The fuzzy finite-state automaton is

represented by its state graph, as shown in Fig. 2.

With all other parameters fixed, the dynamic bebawif
the model is a function only on the rule base wisigh
gualitative discussion of possible RFS model bedrais
made for four model parameters configurations prieskein
Table II.

Consider the linguistic term{é‘loW‘,"higH‘} to represent
the statesA ={A1,A2} and the terms["small',"big"} to
represent the input aIphabBt:{Bl, Bz}. The model 1 is a
non weighted model. According to the rule base imalr,

when the model state idow", the state in the next time
step will be "high', no matter the input variable value.

Conversely, when the state'ibigh’, the next state will be
"low", independently of the input variable. If the ialiti



state x(0) #0, this rule base yields to an oscillatory
behavior, independently of the input variable.

The second model is a weighted model defined by the
rule matrix @, that produces a different behavior
depending on the state variable value. When thie sta
"low", it will remain "low" in the next step if the input is
"small' or it will change to"high" if the input is"big" .
When the state i$high' and the input is'small', the state
"high' will still be activated in the next step, at aerat

defined by the weigh%zz =07, but the"low" state is also

activated by the Weightygl = 0.3. These weights produce a

damping effect and while the input value remdissnall’,

the state variable value (and the output) will gty
stabilize on the'low' state prototype value. When the state
is "high' and the input is'big", the model activates the

state"low" at (0421 = 08, but also activates the stathigh’

at qa}z =02. While the input remainsbig" , these weights
produce a damped oscillation effect since 80% ef'taw’
state activation will return to the statdigh' in the next
simulation time step, due to the second rule amdrthe
weight (/fl =10.

In the third model, defined by the rule matdx;, when

the model state i8low' and the input is'small', the state
will remain "low'. As the input increases tbbig", the

model gradually activates the stdtieigh', according to the

weight (0232 = 0.7. The state will remain' high' as long as
the input value is'big" . As the input decreases temall’,
the model gradually activates the sttew', according to

the Weightng’l = 0.2. This rule base configuration produces

a model that behaves like a linear first order dyica
system, but with different time responses accordmnghe
direction of the input change.

The fourth model is a non weighted model definedhay
rule base matrix®,, in which the state variable just

follows the input. The outputs for each one of ther
models, according to a sequence of step inputstaren in
Fig. 3.

In this simple example, the rule base weights waresen
to illustrate their effect on the RFS model accogdio the
location of the weights. More complex non-lineandgics
can be obtained by a recurrent fuzzy system witlremo
complex structure. For an unknown system, if a datais
available, a recurrent fuzzy model can be idemtifiy the
algorithm presented in next section.

[ll.  IDENTIFICATION ALGORITHM

The identification of complex processes generallipfvs
a three steps methodology:

1. Structure identification that is generally sub-diva

three steps:

a. Choice of modeltype i.e. linear, non-linear
polynomial, fuzzy, neural, etc.

b. Choice of modelsize by selecting input and
output variables, system order and delay in the
case of dynamic systems.

c. Choice of parameters set for
according to model’s type and size.

2. Parameters estimation from a data set that is

representative of a system behavior caliedning

set;

3. Model validation, considering modeling objectives:

prediction, simulation, diagnosis, etc.

For a fuzzy system model, the structure identiizats
the determination of the model type and the nundet
location of fuzzy sets in the domain of each vde4R9].

The estimation of the model parameters is generally
associated with the rule conclusions. The moddtiatbn
must check the model precision, but also certiffedt the
model is readable by domain experts.

The structure identification step is generally thest
difficult one and has a strong influence on the aiod
performance and flexibility[5]. This work is mainly
concerned with the interpretability of the idemdi model,
such that the model parameters are estimated fyiven
model structure, which is supposed to be meaninfgiul
domain experts. It is thus assumed that the nuwbtrzzy
sets associated to each variable is given and the
corresponding prototypes are known.

The output parameters of the TSK-type RFS model are
estimated from a training s&étcomposed b\ samples of
input-output pairs (u(t),y(t)), by minimizing the mean
squared error (MSE) between the real outp(t) and its

the model,

estimation by the model outpuft(t) as:

> (yet) - 9(1))? .

t=..N

J= (30)

Z||—\

In a non-recurrent fuzzy system, the minimizatidrtha
criterion (30) is done by solving a linear systerh o
equations, since output parameters occur linearhthie
output estimatey(t) . Whereas in a recurrent fuzzy system,

the values of the state variables depend on ttaireg in

the past time sample, as shown by (9) and (10), thad
output estimate becomes non-linear with respectht
output parameters.

The most common approach for the parameter estimati

in recurrent fuzzy (or neuro-fuzzy) systems is f&e wa
gradient based algorithiig], [8], [10], [14]. Recently, the
use of genetic algorithms (GA) for the identificati of
recurrent fuzzy systems has been proposed with good

2 The presentation will be focused on the multipieut single output
(MISO) systems. The extension while multiple out@tMO) systems is
straightforward considering a MIMO system as ao$&lISO systems.



results[24], [25], [26].

The proposed identification algorithm is composdd o
two steps. First, a standard GA is used to comihetd SK-
type RFS output parametef@6] and, in the second step,
this result is used to compute the rule base weightan
equivalent linguistic RFS model defined by (22).

A. Genetic algorithms

The problem solving procedure of genetic algorithims
inspired in natural evolution. Candidate soluticios a
given problem are encoded into an individual. Aftiah
population of randomly generated individuals is legd
towards the solution. At each iteration (called eyation),
the individuals are rated by their fithess to tbkiton and a
selection mechanism assures that only the bestidhdils
are kept for the next generation. The next germrati
individuals are computed by recombination operasush
as mutation and crossover. Randomly driven recoatioin
operators allow the individuals to explore the engiolution
space, avoiding local minima. Although many vargaenist,

a typical GA structure, which has been used inwhsk, is
sketched in Fig. 4.

Genetic algorithms are simple, flexible, robust #ade
been widely used in a number of applications ofzyuz
systemg30]. GAs can overcome the local minima problems
found in most of gradient-based optimization altjoris
due to its stochastic natur¢3l]. Moreover, many
implementations of GAs are available on the interne

When applying a GA to a problem, two main issuestmu
be considered: the codification of the variablego in
individuals and the fithess function. These isswze
discussed in the following subsection for paranseter
estimation of the TSK-type RFS.

B. TSK-type RFS parameter identification

The fitness function is defined by the MSE criter{@0),
where the output estimatg(t) is computed by a linear

function of the state variables as:

y(t) =Kx(t), (31)

where X(t) =(x0(t),...,xn_1(t)) is the vector ofn state
variables andK = [Kl...Kn] is the model output parameters

vector, which must also be computed by the idexatifon
algorithm.

Each individual is coded as a vector, in which the
components are the parameters to be estimatedutbe
output parametersﬂ=(01,...,6’,\,|) and the model output

parameters K = [Kl.../(n]. The codification imposes
bounds to the solution, such that the rules oytpuameters
0 D[—l,l]'vI and model output parameteks[-11]" . The

codification bounds must be respected by the output
variables, such that the output values in theitmgiset must
be scaled to the[— 1,1] interval. The minimum and the
maximum values of the actual system output are dsawe

convert the model output into the actual systenhesdehis
codification ensures bounded input-bounded outpotieh
stability.

In this work, a public domain genetic algorithm szl
code called GENESIS, version 5[82], was used. The
program is a standard genetic algorithm impleméntat
where the user must provide an evaluation funcfion
computing the individuals’ fithess and specify & sé
algorithm’s parameters. In the benchmark problems
discussed in sectionV, the parameters were set to:
population size of 20 individuals, 60% of crossorate and
1% of mutation rate and maximum number of iteratiof
10,000. The selection procedure used was the defasl
provided by GENESIS, which implements the standard
roulette procedurg81].

C. Equivalent rule base weights

The parametersIj computed for the TSK-type RFS are
used to compute an equivalent linguistic RFS rudeseb
weights by (22), which lead to an underdetermiriadalr
system of equations. The solution is therefore uratue
but could be computed in the least squares semeaghn
standard numerical techniquel83]. Nevertheless, the
numerical solution may not be interpreted as rudeseb
weights since they may lie outside tf@&l] interval.

The equivalent fuzzy rule base weights can be deted
in a much more simple, direct and efficient waydshen
the complementary property of the fuzzification and
defuzzification methods used in linguistic type RFS

A fuzzification methodFuz is said to be complementary
to a defuzzification methodef when, for any variable ,

the following condition hold§34]:
Def(Fuz(&))=¢.

Rondeau et al.[34] showed that the fuzzification
computed by the normalized and triangular-shapexyfu
membership functions is complementary to the stongle
defuzzification, such that condition (32) can béten as:

pa@)a =o".

From (22) and (33), the

corresponding to the rules output parameter veotoris
computed by its fuzzification as:

Ha(ED) . Ha (6D

(32)

(33)

rule base matrisb”

@ =pp(0)) = (34)

Ha (BM) - fin (BM)
Additionally, the lines of the matrix ®" satisfy
conditions (5) and (6), such that they are alsonimggul as
transition membership values in the FFA represimtat
The same reasoning can also be applied to the state
variable Xg(t) such that the (20) can be rewritten by



condition (32) as:

Ba(X(t+1)a" =xo(t+1) (35)

and, from equation (20), the inference result cawfitten
as:

V() =w(t) @ = pa (Xt +D) . (36)

The result of the sum-product operator inferencetbas
be directly fed back to compute the membership arect
pc(X(t+1) in the next simulation time step (cf. (28)),

without defuzzification.

The overall identification procedure can be sumpeati
in the diagram shown in Fig. 5. A set of input/autgata,
collected from the actual system, is used for thedeh
identification. In the first step of the identifioan
procedure, the rules parameters of the TSK-type RIS
computed by a standard GA. Next, the equivalerg balse
weights of the linguistic type RFS, are computed(34).
The set of weighted if-then fuzzy rules and the
corresponding fuzzy automaton, issued form the mode
identification, can be used to understand and apatiie
RFS model.

IV. RESULTS

The identification procedure presented above wstede
with two benchmarks for non-linear system idendifion
problems found in the literature. The first examdethe
classic Box and Jenkins data §&%]. The second example
is the non-linear dynamic system first presented by
Narendra and Parthasaratf®], but also tested in many
other workg6], [8], [11], [24].

The results are discussed from two different powits
view. In the first example, the focus is in the Zyz
automaton representation and the resulting model
interpretability, while in the second example themeric
performance is compared to other results presentdéde
literature.

A. Example 1

This example is the well-known Box & Jenkins dag s
where the system to be modeled is a gas furnace. Th
original data set is composed of 296 pairs. Thia dat has
been used to evaluate several system identificatiethods,
but the data have not always been used in the sayeln
this work, the model was built using delayed valoéshe
system inputu(t —3) to compute an estimatiofi(t) . Each
training sample s, thus, expressed in the form
(utt -3, y©).

In order to discuss FFA representation, a simptamrent
fuzzy system structure was chosen, using=2 state
variables with p=2 fuzzy sets for their fuzzification and

g =3 fuzzy sets for the fuzzification of the input \atle.

Fuzzy sets are defined equally spaced in the doofaihe
corresponding variable. This structure results in

M =223=12 rules and the total number of parameters to
be identified in the first step of the identificati algorithm

is 14, considering the two parameters of the outpatrix

(cf. (32)).

The model output against the training data settpam
shown in Fig. 6. It can be seen that this simplezyu
recurrent model is able to simulate the processxin the
end of simulation.

The output parametemD computed in the first step of
the identification procedure and equivalent ruleseéba

weights ®" are shown in Table IIl for each combination of
terms in the rules premise. The state graph forRRA
representation of the linguistic RFS model is shanvirig.

7 where the transition membership valugg refers to the

rule weights presented in Table Il for the row and

columnk of the rule matrix®".
The multidimensional fuzzy setS; are combinations of

fuzzy sets A, defined on the state variables domain such

that a rule as (15) can also be written as:
“if Xo(t=1) is A and Xo(t) is Aj and u(t-3)is By,

then Xg(t +1) is (Ai/@l,Azl(prz)"

The rules written in this way allow a better undansling
of the temporal relationship among the input vdeadnd
the state variables.

In the state graph representation shown in FignR; the
transitions that are consistent with the stateatdeis update
rule (11) are shown. There are some interestinigpest that
should be mentioned: the stable states are thosehate a
transition to themselves; there are transitions lgeve the
stable states, transitions that reach the stalagesstand
oscillatory transitions. Observing which kind ofpirts
activate those transitions, some conclusions cadrbe/n
about system dynamics.

It can be seen, for instance, that when the syigémthe
“low” stable stateC; = (Al,Al), the system remains in the

“low” state when the input isB; (*big”) while it leaves
stability to the stateA, (“high”) when the input isB;

(“small”). The opposite behavior occurs when thaesis in
the “high” stable stat€, = (Az, Az). When the input iB,

(“medium”), the system remains on its last staterédver,
it can be seen that the system does never havscilatory
behavior if the input remains constant.

The model performance depends on the model stauctur
and a more complex model can adjust a more complex
behavior. For instance, a RFS model structure with2
state variablesp =4 fuzzy sets for their fuzzification and

g=>5 fuzzy sets for the fuzzification of the input \abie

was able to reduce the model error in the endrmofilsition
as shown in Fig. 8. Nevertheless, this structusallte in

M =425=80 rules and 82 model parameters.
For a complex system, model interpretability and



numerical performance are generally not achieved
simultaneously. Moreover, a large number of addélo
rules are necessary for a small decrease in thelnsocbr.

B. Example 2

In this example, the actual system output is gozeroy
the following difference equation:

@)yt -1yt - 2u(t -1(y(t - 2) -1) +u(t)

(37)
1+y2(t-0+y%(t-2)

yt+1) =

The training data set was computed from an inpj

generated as follows: 400 samples of an indepenaiet
identically distributed uniform sequence over t[rel,l]

interval and 400 samples of a sinusoidal signal
u(t) = 105sin(n2t /45) . The testing data set was generated

considering 1000 samples of the following signal:

sin(rrt /25) t <250

1 250<t <500

-1 500<t <750

u(t) = (38)

03sin(rrt /25  750<t <1000
+ 0.1sin(7rt /32)

+ 0.6sin(r7t /10)

In order to find the best model structure, an estiae
search was performed. Several structures were aeallby
combining different values for the model structure
parameteran (range: 1 to 3),p andq (range: 2 to 11). A

model structure was evaluated if the number of srule
M <90. The evaluation of a total of 112 model structures
has taken about 4 hours in a Pentium 1V 3.0 GHzmger.
The best RFS model structure found used 2 state
variables with p =3 fuzzy sets for their fuzzification and

g=>5 fuzzy sets for the fuzzification of the input \atsle.

This structure results inM =3°5=45 rules and,
consequently, 47 parameters must be identifiedsidenng
the two output parameters.

The plot of the model output against the actuatesys
output is shown in Fig. 9. It can be observed thatmodel
can track adequately the actual systems.

Results obtained with the proposed method (RFS-TSK)
are compared to the ones reported in the literatufieable
IV. The present model is better than those repartdd1]
and[24], but is worst than those reported[8] and [10].
The RFNN model[10] employs a very large number of
parameters. The DFNN[8] proposes an interesting
identification algorithm that could also be applitd the
current model. Nevertheless, most of these metheds
Gaussian membership functions, of which the pararset
are optimized by gradient-based algorithms, yigdio
fuzzy sets with no linguistic meaning.

The same RFS-TSK model was presented befaég
using n=2 state variables withp =3 fuzzy sets for their

fuzzification and q =3 fuzzy sets for the fuzzification of

the input variable, resulting in a slightly worgrformance
but with a more compact model.
The linguistic RFS model for this example can be

represented as a fuzzy automaton wah=9 symbolic
states, of which the state graph is shown in F@.ILis
obviously hard to understand such a state graphithst
worst to read 45 recurrent rules. Nevertheless, strae
patterns discussed previous example can be fourtisn
topology: the stable states can be identified k& nbdes
with transitions to themselves; the transitiong thake the
system leave the stable states, the oscillatongitians and
the transitions that reach the stable states. ifgliengt which
kind of inputs activate those transitions could phehe
domain experts to get a better understanding obyiseem
dynamics as a whole, in complement to the localizied
provided by the recurrent rules.

V. CONCLUSIONS

This work has discussed two types of equivalent RFS
non-linear dynamical systems modeling: the TSK tgpd
the linguistic type. A standard genetic algorithsrused for
the parameters estimation of a TSK-type RFS moakithe
solution is used to compute the equivalent rules hesights
of the linguistic type. The linguistic type RFS céme
represented as a fuzzy finite-state automaton.

The main contribution of this work is the conversfoom
the TSK-type to the linguistic type RFS and its
corresponding fuzzy automaton representation, walldw
the domain experts to analyze and interpret thatiiiksd
model. Furthermore this method can be a powerfuil fior
modeling systems with hybrid (discrete and contus)o
behavior.

The GA has shown to be an efficient and flexiblel for
model identification. As a gradient-free optimipati
technique, GA is almost independent of the modelctire
and its stochastic nature avoids local minima. Témults
have shown that the proposed strategy has good
performance when compared to other methods deslciibe
literature. A standard GA using default parameteas used
to obtain the results, showing the robustness efniodel
with respect to the identification algorithm. This very
important for real world applications, where praetiers
are more concerned with the model structure thath wi
mathematical details of the identification algomith

In the present work the structure of the fuzzy nhokes
fixed off-line and was not optimized. Several methare
reported in the literature in which a GA is useddentify
the fuzzy systems structure. An optimized structoem
certainly achieve a better numerical performandas Ts
one of the directions for future work in this resgmproject.
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TABLE |
FUZZY RELATION MATRIX
X(t) u(t) A A
A B A1 A2
A B> ®1 @2
A B &1 B2
A B> W1 D2
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TABLE Il
FOUR MODELS FOR DISCUSSION

D, D, D3 D3
00 10 10 00 10 00 10 00
00 10 00 10 03 07 00 10
10 00 03 07 02 08 10 00
10 00 08 02 00 10 00 10
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TABLE lll
FUZzY RELATION MATRIX AND OUTPUT PARAMETERS
Rules’ premise @ oY
rule x(t) u(t-3) A A
1 G =(ALA) B, 02483 07517 0.5034
2 ¢ =(ALA) B, 0.6363 0.3637 -0.2727
3 G =(ALA) B;  0.8827 0.1173 -0.7654
4 Cr=(ALA) B 04585 05415 0.0831
5  Co=(A,A) B, 0.2747 0.7253  0.4506
6  Cr=(ALA) B;  0.8231 0.1770 -0.6461
7 Ci=(AyA) B, 01760 0.8240 0.6481
8  Cy=(AA) B, 0.7498 0.2502 -0.4995
9 Cy=(AxA) B;  0.9941 0.0059 -0.9883
10 Cu=(As,Ay) B, 0.0420 0.9580  0.9159
11 Cp=(AyA) B, 0.2874 0.7126  0.4252
12 Cu=(As, Ay) By 0.6285 0.3715 -0.2571
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TABLE IV:

COMPARATIVE ANALYSIS
Model MSE Parameters
TRFN-S[24] 0.0346 33
RSONFIN[11] 0.0441 30
RFNN[10] 0.0013 112
DFNN [8] 0.0025 39
RFS-TSK][26] 0.0082 27

RFS-TSK 0.0036 47
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Fig. 1: Triangular shaped membership functions.
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Bl/d)lz BZ /¢22
Fig. 2: Fuzzy finite-state automaton correspondathe rules (29).
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Fig. 3: Example of four configuration of the reant fuzzy model.
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Procedure GA

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)

begi n
t =0;
initialize P(t);
evaluate structures in P(t);
while (not term nation)
begi n

t =t + 1

select P(t) fromP(t-1);

reconbi ne structures in P(t);

evaluate structures in P(t);
end
end.

Fig. 4: A Typical GA structure.
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Fig. 5: The basic steps of the proposed methodology
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Fig. 6: The 12 rules RFS model result for Box &Klem data set.
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Fig. 7: The state graph for the fuzzy automatomesgntation of the 12 rules
RFS model.
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Fig. 8: The 80 rules RFS model result for Box &Kles data set.
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Fig. 9: RFS model result for testing data in exanl
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Fig. 10: The fuzzy automaton representation for Rfeflel in example 2.
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