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Abstract— This paper presents the identification of non-linear dynamical systems by recurrent fuzzy system models. Two types of 
recurrent fuzzy systems (RFS) models are discussed, the Takagi-Sugeno-Kang (TSK) type and the linguistic or Mamdani type. Both 
models are equivalent and the latter model may be represented by a fuzzy finite-state automaton. An identification procedure is 
proposed based on a standard general purpose genetic algorithm. First, the TSK rule parameters are estimated and, in a second step, 
the TSK model is converted into an equivalent linguistic model. The parameter identification is evaluated in some benchmark problems 
for non-linear system identification described in literature. The results show that RFS models achieve good numerical performance 
while keeping the interpretability of the actual system dynamics. 
 

Index Terms— Fuzzy finite-state automata, genetic algorithms, nonlinear systems, system identification, recurrent fuzzy systems.  

I. INTRODUCTION 

ONLINEAR system identification has been extensively 
studied during the last decades and several methods 

and applications have been developed  [1]. Multilayer feed-
forward neural networks is certainly the most usual method 
for the identification of non-linear dynamical systems  [2]. 
Feed forward neural networks are generally used as one 
step-ahead prediction models, in which the previous system 
outputs are available and are used as network inputs to 
compute the model output at the next sampling time step. 
Multi-step ahead prediction is achieved by additional output 
units to the neural network. 

For complex system forecasting, the use of long delayed 
inputs to provide enough memory to the model and multiple 
output units results in a very large network size. Moreover, 
feed-forward neural networks cannot be used for simulation, 
when actual system outputs are not available. 

Recurrent topologies allow a more compact model for 
processing dynamic systems, with good results for long term 
forecasting and simulation  [3] [4]. In a recurrent neural 
network, the system memory is achieved by feeding back 
some (or all) of the network units through time delay units.  

Fuzzy and neuro-fuzzy models for nonlinear dynamic 
system identification have been also studied, both for feed-
forward  [5] and recurrent topologies  [6]- [14]. Several 
recurrent fuzzy and neuro-fuzzy models have been 
developed in many applications, such as process modeling 
 [7]- [9], identification and control  [10]- [13] and fault 
diagnosis  [14]. Neuro-fuzzy models provide high accuracy 
and “human-like” interpretation of the model by a set of 
linguistic rules. 

The encoding of recurrent neural networks as fuzzy 
finite-state automata (FFA) has been recently investigated 
 [15]- [18]. Such relationship is useful, since the 

representation capabilities and theoretical properties derived 
from the FFA can be used to analyze and understand the 
dynamics of the identified model. Adamy and Kempf  [19] 
show that recurrent fuzzy systems can be directly encoded 
into a FFA and their dynamical behavior may be deduced 
from their rule base configuration  [20]. Fernándes and 
Lópes  [21] show that, under certain assumptions, recurrent 
fuzzy systems are asymptotically stable, independently of 
the initial state. These results, when combined with the 
universal approximation property of general fuzzy systems 
 [22] [23], yield to the perspective that recurrent fuzzy 
systems identification and FFA representation may provide 
an efficient, accurate and sound procedure for identification 
and analysis of nonlinear dynamic systems. 

The identification algorithms for recurrent neural 
networks and recurrent fuzzy and neuro-fuzzy models 
generally rely on gradient-based methods. Nevertheless, 
gradient calculations for recurrent neural networks are 
complex and highly dependant on the network topology. 
Recently, genetic algorithms (GAs) have also been used for 
model identification  [24]- [26]. A GA does not require 
derivative information and avoids the problem of local 
minima usually found in gradient based optimization. Thus, 
the use of GA makes the model identification more flexible, 
since several different model structures may be identified by 
the same procedure. 

Two types of recurrent fuzzy systems (RFS) are 
discussed in this work. The first type is the Takagi-Sugeno-
Kang (TSK) RFS, which has been introduced by Gorrini 
and Bersini  [6]. The second type, called linguistic or 
Mamdani RFS, is an extension of the model proposed by 
Adamy and Kempf  [19] [20], by the introduction of rule 
base weights. Both models are equivalent and the latter can 
be represented by a FFA, in which linguistic terms, 
associated to the fuzzy sets, are related to the automaton 
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alphabet and fuzzy inference correspond to the automaton 
transition function. 

A parameter estimation procedure is proposed for the 
RFS models discussed in this work. The identification 
algorithm is based on a standard general purpose GA and is 
composed of two steps. In the first step a GA is used to 
compute the TSK-type RFS output parameters  [26]. In the 
second step, the result obtained in the first step is used to 
compute the rule base weights of an equivalent linguistic 
type RFS model. 

This paper is organized as follows: next section presents 
the TSK and linguistic types RFS and the representation of 
the latter as a FFA; section three presents the identification 
algorithm; the results of the proposed methodology applied 
to system identification benchmark problems are presented 
in section four and the conclusions and future works are 
discussed in the last section. 

II.  RECURRENT FUZZY SYSTEMS 

Consider the general state space representation of 
discrete time, non-linear, multi input multi output dynamic 
systems: 

( ),)(),()1( ttt uxfx =+  (1) 

( ))(),()( ttt uxgy =  (2) 

where )(tx  is the state variables vector, )(tu  the input 

variables vector, f  and g  are respectively the transition 

and output functions and )(ty  is the system output.  

The state space representation is quite general and can 
represent several types of dynamic systems according to the 
ranges of input and state variables and the choice of the 
transition and the output functions. Continuous valued input 
and state variables are used to model linear and nonlinear 
systems according to the choice of functions f  and g . 

Discrete valued input, state variables and discrete functions 
f  and g  are used to model discrete systems, represented by 

discrete finite-state automata. In a recurrent fuzzy system 
(RFS) model, input and output variables are continuous 
valued and functions f  and g  are nonlinear piecewise 

continuous functions. Linguistic interpretation of fuzzy sets 
allows recurrent fuzzy models to be analyzed as fuzzy 
finite-state automata (FFA). 

This work is mainly concerned with the identification of a 
RFS to model the transition function f . The output function 
is considered to be a linear function of states, such that: 

)()( tt Κxy = . (3) 

Two types of recurrent fuzzy systems are discussed in 
this section: the TSK-type recurrent fuzzy system and the 
linguistic or Mamdani type recurrent fuzzy system. The two 
models are equivalent and a representation of the linguistic 
type RFS as a FFA is proposed. 

A. TSK-type RFS model 

The TSK-type RFS model is an extension of the original 
TSK (or Sugeno) model in which the variable in the 
conclusion of the rules is a state variable, which also 
appears in the premise, providing recursion. For sake of 
simplicity, the TSK-type model is introduced for the first 
order, single input model and then generalized for higher 
order, multiple input models. 

The first order, single input, TSK-type RFS rules are 
written as: 

If ji BistuandAistx )()(  then rθtx =+ )1(  (4) 

where )(tx  is the state variable and )(tu  is the input 

variable. The fuzzy sets iA  and jB  are defined, 

respectively, on the state and input variables domains and 

rθ  is the output parameter for each one of the Mr ...1=  

rules. 
A fuzzy set is intrinsically1 related to a symbolic label, 

which is, in turn, associated to a meaningful linguistic 
concept. The fuzzy partitions of the state and input variables 
domains are thus respectively related to the label sets 

{ }piAi K1, ==A  and { }qjB j K1, ==B . The ordered 

symbolic labels in the labels sets will then be assigned to the 
state and the input alphabets of the FFA representation, as 
described in section  II.C.  

The fuzzy membership functions define the relationship 
between the numeric and the symbolic representation of a 
variable. In this work, fuzzy membership functions are 
considered to be continuous, convex, triangular-shaped and 
normalized, such that the following conditions hold: 

xxi Ai
∀=∑ ,1)(µ  (5) 

1)(:,
i

=∃∀ xxi Aµ  (6) 

Normalized and triangular-shaped membership functions 

are completely defined by the vector ( )paa ,,1 K=a , 

which locates the membership functions vertices, called the 
prototypes of the corresponding fuzzy sets. Consider, for 
instance the fuzzy partition shown in Fig. 1 for 5=p  fuzzy 

sets. 
The fuzzification of input and state variables yields the 

fuzzification (row) vectors: 

( )))((,)),(())((
1

txtxtx
pAA µµ K=Aµ  and (7) 

( )))((,)),(())((
1

tututu
qBB µµ K=Bµ . (8) 

The RFS model output is the state variable )1( +tx , 

which is computed as in standard TSK models as: 

 
1 In a strictly formal notation, a fuzzy set should be noted differently from 
the label to which it is related. However, as it is generally the case in the 
fuzzy systems literature, the same notation is used to refer to the fuzzy set 
and to its label, the difference being clear in the context. 
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θw )()1( ttx =+  (9) 

where ( )Mθθ ,,1 K=θ  is the output parameters vector and 

)(tw  is the vector whose components are the activation 

values of the rules premises.  
The components of the vector )(tw  are computed by the 

conjunction of the fuzzy sets in the premise. In this work, 
the product operator is used as t-norm such that the vector 

)(tw  can be computed by the Kronecker tensor product as: 

))(())(()( tutxt BA µµw ⊗= . (10) 

All the combinations of fuzzy sets are considered in the 
rules premises, such that the model covers the entire 
domain. The number of rules M  is defined by the number 
of fuzzy sets in the state and input variables fuzzy 
partitions; considering p  fuzzy sets in the state variable 

fuzzy partition and q  fuzzy sets in the input variables fuzzy 

partition, the total number of rules in the first order single 
input TSK-type RFS is qpM .= . 

More complex dynamics may be achieved by higher 
order RFS models. In this case, n  state variables are 
considered in the vector ( ))(,),()( 10 txtxt n−= Kx . In order 

to reduce the number of parameters, at each simulation time 
step, higher order state variables are updated as delayed 
copies of the state variable )(0 tx  such that: 

11),()( 0 −=−= nkktxtxk K .  (11) 

Adopting this representation, all the state variables are 
considered in the rule premises, but only the value of the 
state variable )(0 tx  is computed in the output of the RFS, 

such that the rules are written as: 

If ji BistuandCist )()(x  then rθtx =+ )1(0 . (12) 

The fuzzy set iC  in rule (12) is a multidimensional fuzzy 

set computed as the Cartesian product of fuzzy sets in the 
state variables domain. All combinations must be 
considered in such a way that the entire state variables 
domain is covered. The symbolic label set 

{ }n
i piC ...1, ==C  is thus the Cartesian product of the 

elements of the state variable the label set A , such that: 

nAAAC =××= K . (13) 

As the state variables are delayed copies of the state 
variable )(0 tx , the same fuzzy partition can be used to 

compute all the state variables membership vectors, 
avoiding additional parameters to be set. The membership 
vector ))(( txµC  is computed as the Kronecker tensor 

product of the corresponding components on each state 
variable domain, as: 

))(())(())(( 01 txtxt n AAC µµxµ ⊗⊗= − K  (14) 

where ))(( txkAµ  is the fuzzification vector of the state 

variable )(txk , computed as (7). 

The same reasoning can be adopted to extend the single 
input TSK-type RFS models to multiple input RFS models, 
of which the rules are written as: 

If ji BistandCist )()( ux  then rθtx =+ )1(0  (15) 

where ( ))(,),()( 1 tutut mK=u  is the input variables vector. 

The input membership vector ))(( tuµB  can be computed 

as the combination of fuzzy sets in the input variables 
domain, as in the case of the state variables, but it will 
generally result in a large number of rules. It is preferable to 
compute the input membership vector directly over the 
multidimensional domain by fuzzy clustering methods  [5]. 
This approach becomes useful as the number of input 
variables increases, since the number of rules, and 
consequently the number of output parameters, grows 
exponentially with the number of variables  

In order to simplify the notations, the number of fuzzy 
sets in the input variable fuzzy partition (single or multi-
dimensional) is considered to be q . The total number of 

rules in the multi-variable TSK-type RFS model is thus 

qpM n.= , where n  is the model order and p  the number 

of fuzzy sets in the states variable fuzzy partition. 
The fuzzy model output )1(0 +tx  is then computed as: 

θw )()1(0 ttx =+ , (16) 

where ( )Mθθ ,,1 K=θ  is the output parameter vector and 

)(tw  is the rules activation vector, which is computed as: 

))(())(()( ttt uµxµw BC ⊗=  (17) 

Comparing (9) and (10) with (16) and (17), it can be 
observed that the extension from the first order single input 
model to higher order multiple input model is 
straightforward. 

The TSK-type RFS can be extended to more complex 
models by using polynomial functions in rules outputs  [24]. 
This work focuses only the models with constant values in 
the rules output, which can be equivalent to the linguistic 
RFS model as presented as follows. 

B. Linguistic recurrent fuzzy model 

In linguistic recurrent fuzzy systems, the output of each 
rule is a fuzzy expression on the state variable )(0 tx , such 

that the rules are written as: 

If ji BistandCist )()( ux  then kAistx )1(0 +  (18) 

where iC  and jB  are multi-dimensional fuzzy sets like 

before, and kA  is a fuzzy set defined on the state variables 

domain. 
The rule base can be represented by the fuzzy relation 
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matrix Φ , of which the components { }1,0∈rkϕ  represent 

the relationship between the premise and the output 
expressions. There is one rule Mr ...1=  for each 

combination ( )ji BC ,  of the terms in the premise, in such a 

way that 1=rkϕ  if the output of the rule r  is the fuzzy set 

kA  and 0=rkϕ , otherwise. The matrix Φ  has, thus, M  

lines and p  columns. 

The output of the linguistic recurrent fuzzy system is 
computed as an ordinary fuzzy system, choosing the sum-
product inference and singleton defuzzification  [19]- [21]. 
The result of sum-product inference is computed as: 

Φwv ).()( tt = , (19) 

where )(tw  is computed as above. 

The state variable value at the next simulation time step is 
computed as: 

TT .).().()1(0 aΦwav tttx ==+ , (20) 

where the vector ( )paa ,,1 K=a  is the state variable 

prototype (row) vector used in singleton defuzzification 
operation, where the superscript T indicates the transpose. 

The linguistic recurrent fuzzy model described above is 
equivalent to the one investigated by Adamy and Kempf 
 [19]. In this work, a more flexible model is adopted 
associating a confidence factor to each rule, represented by 
the weight [ ]1,0∈rkφ . In this case, the rules are written as: 

If ji BistandCist )()( ux  then 

 ( )rppr AAistx φφ /,,/)1( 110 K+ . (21) 

The output of the weighted linguistic recurrent fuzzy 
model is also computed by (20). 

Comparing the (16) and (20), the TSK-type RFS and the 
linguistic type RFS are equivalent when fuzzy rules weights 
are related to the output parameters as: 

T.aΦθ = . (22) 

The linguistic RFS model described above is derived 
from the numerical values of the state and input variables. A 
dual symbolic representation of the linguistic RFS allows it 
to be seen as a fuzzy finite-state automaton, as described 
next. 

C. FFA representation 

At each simulation time, the state variable value )(0 tx  

yields to the symbolic state tS , which is a fuzzy subset of 

the state variable label set A . The membership values of 
the symbolic state tS  to each label A∈iA  are defined by 

the fuzzification vector ))(( 0 txAµ  as: 

pitxA
it AiS ,,1)),(()( 0 K== µµ . (23) 

For higher order models, the multidimensional state 
variable )(tx  is described by the symbolic state tQ , which 

is a fuzzy subset of the symbolic label set C , of which the 
membership values are defined as: 

n
CiQ pitC

it
,,1)),(()( K== xµµ . (24) 

Analogously, the symbolic input tU  describes the input 

variable value )(tu  as a fuzzy subset of the input variable 

label set B , of which the membership values are defined by 
fuzzification vector ))(( tuµB  as: 

qitB
jt BjU ,,1)),(()( K== uµµ . (25) 

The rule base weights matrix Φ  is a fuzzy relation 
defined as a fuzzy subset of ( ) ABC ×× , such that a 

membership value [ ]1,0∈rkφ  is assigned to each 

combination of labels ( )( )kji ABC ,,  in the premise and 

conclusion of rule (21).  
The fuzzy (symbolic) inference computes the next 

simulation time symbolic state 1+tS  based on rule base 

weights matrix as: 

( ) Φottt UQS ×=+1 . (26) 

where “o ” stands form the sum-product composition 
operator and “× ” is the fuzzy Cartesian product, which is 
computed by the product t-norm operator. 

If the rule base weights are defined such that conditions 
(5) and (6) hold for the inference result )(tv  in (19), then 

))1(()( 0 += txt Aµv  and it can be fed back directly into the 

RFS, without defuzzification. In this case, the symbolic 
states computed by symbolic inference (26) are coherent 
with (19) such that: 

pitxA
it AiS ,,1)),1(()( 01

K=+=
+

µµ .  (27) 

Considering the update rule (11), the multivariate 
symbolic state 1+tQ  may be computed directly by the fuzzy 

Cartesian product of the symbolic states 1,,0, −=− niS it K  

as: 

11 +−+ ××= tntt SSQ K . (28) 

Equations (26) and (28) define the function 
( ) ]1,0[: →×× CBCδ , based on the rule base weights 

matrix Φ , which can be regarded as the transition function 
of a fuzzy finite-state automaton.  

A fuzzy finite-state automaton is usually defined as a six-

tuple ωδ ,,,,, 0 ZQQF Σ=   [27] [28], where Q  is a finite 

set of symbolic states; Σ  is a finite set of input symbols; 
]1,0[: →×Σ× QQδ  is the fuzzy finite-state automaton 

transition function that computes the next state membership 
values based upon the current state and the input; QQ ∈0  is 
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the initial state; Z  is a finite set of output symbols and 
ZQ →:ω  is the output function that maps the states into 

the output set. 
The dual symbolic derivation of the linguistic RFS model 

can be seen as a special type of fuzzy finite-state automaton, 
of which both the states and the inputs are fuzzy subsets of 
the corresponding numeric variables’ label sets. The output 
set and the output function are not considered in this fuzzy 
automaton representation, since the RFS models only the 
state space transition function (1). Therefore, the fuzzy 
automaton corresponding to the linguistic RFS is the four-

tuple 0,,, QF δBC= , where: 

� the set of symbolic states is the set of symbolic labels 

{ }n
i piC ...1, ==C , of which the symbolic state tQ  

is a fuzzy subset; 
� the input alphabet is the input variables label set 

{ }qjB j ...1, ==B , of which the symbolic input tU  

is a fuzzy subset; 
� the transition function ( ) ]1,0[: →×× CBCδ  is 

computed by (26) and (28), and 
� the initial fuzzy state 0Q  is a fuzzy subset of the set 

of the symbolic states C , whose membership values 
are computed as the fuzzification of the state 
variables at initial simulation time )0( =tx , such that 

))0(()(
0

x
iCiQ C µµ = . 

The RFS model defined by non-weighted fuzzy rules as 
(18) is a special case where the rule base weights 

{ }1,0∈rkϕ . Moreover, when input and states variables 

values are constraint to the prototypes of the corresponding 
fuzzy sets, the non-weighted linguistic RFS model behaves 
like the deterministic finite-state automaton with no 
uncertainty in the activation of the states. In this case, only 
one symbolic state of the fuzzy automaton is activated at 
each time and the membership values are binary. 

Adamy and Kempf have investigated the non-weighted 
recurrent fuzzy models and formally derive several 
dynamical properties from structural configuration of the 
rule base and membership functions  [19] [20]. They showed 
that linguistic recurrent fuzzy models are nonexpansive and 
have at least one equilibrium point for any input vector )(tu  

 [20]. Moreover, for a certain rule structure, called by the 
authors “rule-continuous”  [19], and if a regular (equidistant) 
prototype vector is used for defuzzification, the resulting 
linguistic recurrent fuzzy model is stable in the sense of 
Liapunov and converges to a stable output, for any initial 
state variable value  [20]. 

Fernándes and Lópes  [21] presented a similar fuzzy 
recurrent system, called by the authors Fuzzy Feedback 
System (FFS). In their system, non-weighted rules are used 
to compute the fuzzy membership values that are directly 
fed back into the inputs, without a deffuzification step as in 
the approach by Adamy and Kempf  [19]. The authors have 

used an inference methodology based on transition matrices 
to show that, for the sum-product inference operator, the 
FFS asymptotically reaches a steady state provided that the 
transition matrix is diagonalizable and the largest 
eigenvalue is real. 

Although related to slightly different models, the results 
presented by Kempf and Adamy  [20] and Fernándes and 
Lópes  [21] show that RFS models described by non-
weighted rules as (18) can be used to adjust stable, 
oscillatory or even chaotic systems. Theoretical results to 
characterize the RFS model described by weighted rules as 
(21) are still an open issue. 

The FFA representation allows a better interpretation of 
the dynamics of the linguistic RFS model, as illustrated by 
the following example. 

D. Discussion 

Consider, for instance, a linguistic RFS model, 
represented by the following set of rules: 

If 11 )()( BistuandAistx  then 

( )122111 /,/)1( φφ AAistx + , 

If 21 )()( BistuandAistx  then ( )222211 /,/)1( φφ AAistx + , 

If 12 )()( BistuandAistx  then ( )322311 /,/)1( φφ AAistx + , 

If 22 )()( BistuandAistx  then ( )422411 /,/)1( φφ AAistx + .

 (29) 

The model output )()( txty =  such that only the transition 

function is modeled. The fuzzy partition { }21,BB=B  for 

the input variable and the fuzzy partition { }21, AA=A  for 

the state variables are defined on their respective domains. 
The fuzzy relation matrix in Table I defines the set of rules 
(29).  

This fuzzy model can be represented as a fuzzy finite-

state automaton 0,,, SF δBA= , since AC =  for first 

order models (cf. (13)), such that the initial state 00 SQ = . 

The transition rule base weights are defined by and the 
initial state 10 AS = . The fuzzy finite-state automaton is 

represented by its state graph, as shown in Fig. 2. 
With all other parameters fixed, the dynamic behavior of 

the model is a function only on the rule base weights. A 
qualitative discussion of possible RFS model behavior is 
made for four model parameters configurations presented in 
Table II. 

Consider the linguistic terms { }"","" highlow  to represent 

the states { }21, AA=A  and the terms { }"","" bigsmall  to 

represent the input alphabet { }21,BB=B . The model 1 is a 

non weighted model. According to the rule base matrix 1Φ , 

when the model state is "" low , the state in the next time 
step will be "" high , no matter the input variable value. 

Conversely, when the state is "" high , the next state will be 

"" low , independently of the input variable. If the initial 
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state 0)0( ≠x , this rule base yields to an oscillatory 

behavior, independently of the input variable. 
The second model is a weighted model defined by the 

rule matrix 2Φ  that produces a different behavior 

depending on the state variable value. When the state is 
"" low , it will remain "" low  in the next step if the input is 

"" small  or it will change to "" high  if the input is ""big . 

When the state is "" high  and the input is "" small , the state 

"" high  will still be activated in the next step, at a rate 

defined by the weight 7.02
32 =φ , but the "" low  state is also 

activated by the weight 3.02
31 =φ . These weights produce a 

damping effect and while the input value remains "" small , 
the state variable value (and the output) will gradually 
stabilize on the "" low  state prototype value. When the state 
is "" high  and the input is ""big , the model activates the 

state "" low  at 8.02
41 =φ , but also activates the state "" high  

at 2.02
42 =φ . While the input remains ""big , these weights 

produce a damped oscillation effect since 80% of the "" low  
state activation will return to the state "" high  in the next 

simulation time step, due to the second rule and the rule 

weight 0.12
21 =φ . 

In the third model, defined by the rule matrix 3Φ , when 

the model state is "" low  and the input is "" small , the state 
will remain "" low . As the input increases to ""big , the 

model gradually activates the state "" high , according to the 

weight 7.03
22 =φ . The state will remain "" high  as long as 

the input value is ""big . As the input decreases to "" small , 

the model gradually activates the state "" low , according to 

the weight 2.03
31 =φ . This rule base configuration produces 

a model that behaves like a linear first order dynamic 
system, but with different time responses according to the 
direction of the input change. 

The fourth model is a non weighted model defined by the 
rule base matrix 4Φ , in which the state variable just 

follows the input. The outputs for each one of the four 
models, according to a sequence of step inputs are shown in 
Fig. 3. 

In this simple example, the rule base weights were chosen 
to illustrate their effect on the RFS model according to the 
location of the weights. More complex non-linear dynamics 
can be obtained by a recurrent fuzzy system with more 
complex structure. For an unknown system, if a data set is 
available, a recurrent fuzzy model can be identified by the 
algorithm presented in next section. 

III.  IDENTIFICATION ALGORITHM 

The identification of complex processes generally follows 
a three steps methodology: 

1. Structure identification that is generally sub-dived in 
three steps: 
a. Choice of model type, i.e. linear, non-linear 

polynomial, fuzzy, neural, etc. 
b. Choice of model size, by selecting input and 

output variables, system order and delay in the 
case of dynamic systems. 

c. Choice of parameters set for the model, 
according to model’s type and size. 

2. Parameters estimation from a data set that is 
representative of a system behavior called training 
set; 

3. Model validation, considering modeling objectives: 
prediction, simulation, diagnosis, etc. 

For a fuzzy system model, the structure identification is 
the determination of the model type and the number and 
location of fuzzy sets in the domain of each variable  [29]. 
The estimation of the model parameters is generally 
associated with the rule conclusions. The model validation 
must check the model precision, but also certifies that the 
model is readable by domain experts. 

The structure identification step is generally the most 
difficult one and has a strong influence on the model 
performance and flexibility  [5]. This work is mainly 
concerned with the interpretability of the identified model, 
such that the model parameters are estimated for a given 
model structure, which is supposed to be meaningful for 
domain experts. It is thus assumed that the number of fuzzy 
sets associated to each variable is given and the 
corresponding prototypes are known. 

The output parameters of the TSK-type RFS model are 
estimated from a training set T composed by N samples of 
input-output pairs2 ( ))(),( tytu , by minimizing the mean 

squared error (MSE) between the real output )(ty  and its 

estimation by the model output )(ˆ ty  as: 

( )∑
=

−=
Nt

tyty
N

J
..

2)(ˆ)(
1

. (30) 

In a non-recurrent fuzzy system, the minimization of the 
criterion (30) is done by solving a linear system of 
equations, since output parameters occur linearly in the 
output estimate )(ˆ ty . Whereas in a recurrent fuzzy system, 

the values of the state variables depend on their values in 
the past time sample, as shown by (9) and (10), and the 
output estimate becomes non-linear with respect to the 
output parameters. 

The most common approach for the parameter estimation 
in recurrent fuzzy (or neuro-fuzzy) systems is to use a 
gradient based algorithm  [6],  [8],  [10],  [14]. Recently, the 
use of genetic algorithms (GA) for the identification of 
recurrent fuzzy systems has been proposed with good 
 
2 The presentation will be focused on the multiple input single output 
(MISO) systems. The extension while multiple output (MIMO) systems is 
straightforward considering a MIMO system as a set of MISO systems. 
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results  [24],  [25],  [26]. 
The proposed identification algorithm is composed of 

two steps. First, a standard GA is used to compute the TSK-
type RFS output parameters  [26] and, in the second step, 
this result is used to compute the rule base weights of an 
equivalent linguistic RFS model defined by (22). 

A. Genetic algorithms 

The problem solving procedure of genetic algorithms is 
inspired in natural evolution. Candidate solutions for a 
given problem are encoded into an individual. An initial 
population of randomly generated individuals is evolved 
towards the solution. At each iteration (called generation), 
the individuals are rated by their fitness to the solution and a 
selection mechanism assures that only the best individuals 
are kept for the next generation. The next generation 
individuals are computed by recombination operators such 
as mutation and crossover. Randomly driven recombination 
operators allow the individuals to explore the entire solution 
space, avoiding local minima. Although many variants exist, 
a typical GA structure, which has been used in this work, is 
sketched in Fig. 4. 

Genetic algorithms are simple, flexible, robust and have 
been widely used in a number of applications of fuzzy 
systems  [30]. GAs can overcome the local minima problems 
found in most of gradient-based optimization algorithms 
due to its stochastic nature  [31]. Moreover, many 
implementations of GAs are available on the internet.  

When applying a GA to a problem, two main issues must 
be considered: the codification of the variables into 
individuals and the fitness function. These issues are 
discussed in the following subsection for parameters 
estimation of the TSK-type RFS. 

B. TSK-type RFS parameter identification 

The fitness function is defined by the MSE criterion (30), 
where the output estimate )(ˆ ty  is computed by a linear 

function of the state variables as: 

)()(ˆ tty Κx= , (31) 

where ( ))(,),()( 10 txtxt n−= Kx  is the vector of n  state 

variables and [ ]nκκ K1=Κ  is the model output parameters 

vector, which must also be computed by the identification 
algorithm. 

Each individual is coded as a vector, in which the 
components are the parameters to be estimated: the rules 
output parameters ( )Mθθ ,,1 K=θ  and the model output 

parameters [ ]nκκ K1=Κ . The codification imposes 

bounds to the solution, such that the rules output parameters 
M]1,1[−∈θ  and model output parameters n]1,1[−∈Κ . The 

codification bounds must be respected by the output 
variables, such that the output values in the training set must 
be scaled to the [ ]1,1−  interval. The minimum and the 

maximum values of the actual system output are saved to 

convert the model output into the actual system scale. This 
codification ensures bounded input-bounded output model 
stability. 

In this work, a public domain genetic algorithm source 
code called GENESIS, version 5.0  [32], was used. The 
program is a standard genetic algorithm implementation 
where the user must provide an evaluation function for 
computing the individuals’ fitness and specify a set of 
algorithm’s parameters. In the benchmark problems 
discussed in section  IV, the parameters were set to: 
population size of 20 individuals, 60% of crossover rate and 
1% of mutation rate and maximum number of iterations of 
10,000. The selection procedure used was the default one 
provided by GENESIS, which implements the standard 
roulette procedure  [31]. 

C. Equivalent rule base weights 

The parameters ∗θ  computed for the TSK-type RFS are 
used to compute an equivalent linguistic RFS rule base 
weights by (22), which lead to an underdetermined linear 
system of equations. The solution is therefore not unique 
but could be computed in the least squares sense through 
standard numerical techniques  [33]. Nevertheless, the 
numerical solution may not be interpreted as rule base 
weights since they may lie outside the ]1,0[  interval. 

The equivalent fuzzy rule base weights can be determined 
in a much more simple, direct and efficient way based on 
the complementary property of the fuzzification and 
defuzzification methods used in linguistic type RFS. 

A fuzzification method Fuz  is said to be complementary 
to a defuzzification method Def  when, for any variable ξ , 

the following condition holds  [34]: 

( ) ξξ =)(FuzDef . (32) 

Rondeau et al.  [34] showed that the fuzzification 
computed by the normalized and triangular-shaped fuzzy 
membership functions is complementary to the singleton 
defuzzification, such that condition (32) can be written as: 

∗∗ = θaθµA
T).( . (33) 

From (22) and (33), the rule base matrix ∗Φ  

corresponding to the rules output parameter vector ∗θ  is 
computed by its fuzzification as: 



















==
∗∗

∗∗

∗∗

)()(

)()(

)(

11

1 11

MAMA

AA p

θµθµ

θµθµ

L

MOM

K

θµΦ A . (34) 

Additionally, the lines of the matrix ∗Φ  satisfy 
conditions (5) and (6), such that they are also meaningful as 
transition membership values in the FFA representation. 

The same reasoning can also be applied to the state 
variable )(0 tx  such that the (20) can be rewritten by 
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condition (32) as: 

)1()).1(( 00
T +=+ txtx aµA  (35) 

and, from equation (20), the inference result can be written 
as: 

))1(().()( 0 +== ∗ txtt AµΦwv . (36) 

The result of the sum-product operator inference can thus 
be directly fed back to compute the membership vector 

))1(( +txµC  in the next simulation time step (cf. (28)), 

without defuzzification.  
The overall identification procedure can be summarized 

in the diagram shown in Fig. 5. A set of input/output data, 
collected from the actual system, is used for the model 
identification. In the first step of the identification 
procedure, the rules parameters of the TSK-type RFS are 
computed by a standard GA. Next, the equivalent rule base 
weights of the linguistic type RFS, are computed by (34). 
The set of weighted if-then fuzzy rules and the 
corresponding fuzzy automaton, issued form the model 
identification, can be used to understand and analyze the 
RFS model. 

IV.  RESULTS 

The identification procedure presented above was tested 
with two benchmarks for non-linear system identification 
problems found in the literature. The first example is the 
classic Box and Jenkins data set  [35]. The second example 
is the non-linear dynamic system first presented by 
Narendra and Parthasarathy  [2], but also tested in many 
other works  [6],  [8],  [11],  [24]. 

The results are discussed from two different points of 
view. In the first example, the focus is in the fuzzy 
automaton representation and the resulting model 
interpretability, while in the second example the numeric 
performance is compared to other results presented in the 
literature. 

A. Example 1 

This example is the well-known Box & Jenkins data set, 
where the system to be modeled is a gas furnace. The 
original data set is composed of 296 pairs. This data set has 
been used to evaluate several system identification methods, 
but the data have not always been used in the same way. In 
this work, the model was built using delayed values of the 
system input )3( −tu  to compute an estimation )(ˆ ty . Each 

training sample is, thus, expressed in the form 
( ))(),3( tytu − .  

In order to discuss FFA representation, a simple recurrent 
fuzzy system structure was chosen, using 2=n  state 
variables with 2=p  fuzzy sets for their fuzzification and 

3=q  fuzzy sets for the fuzzification of the input variable. 

Fuzzy sets are defined equally spaced in the domain of the 
corresponding variable. This structure results in 

123.22 ==M  rules and the total number of parameters to 
be identified in the first step of the identification algorithm 
is 14, considering the two parameters of the output matrix 
(cf. (31)). 

The model output against the training data set points is 
shown in Fig. 6. It can be seen that this simple fuzzy 
recurrent model is able to simulate the process, except in the 
end of simulation. 

The output parameters ∗θ  computed in the first step of 
the identification procedure and equivalent rule base 

weights ∗Φ  are shown in Table III for each combination of 
terms in the rules premise. The state graph for the FFA 
representation of the linguistic RFS model is shown in Fig. 
7 where the transition membership values rkφ  refers to the 

rule weights presented in Table III for the row r  and 

column k  of the rule matrix ∗Φ . 
The multidimensional fuzzy sets iC  are combinations of 

fuzzy sets kA  defined on the state variables domain such 

that a rule as (15) can also be written as: 
“if )1(0 −tx  is iA  and )(0 tx  is jA  and )3( −tu is kB , 

then )1(0 +tx  is ( )2211 /,/ rr AA φφ ” 

The rules written in this way allow a better understanding 
of the temporal relationship among the input variable and 
the state variables.  

In the state graph representation shown in Fig. 7, only the 
transitions that are consistent with the state variables update 
rule (11) are shown. There are some interesting patterns that 
should be mentioned: the stable states are those who have a 
transition to themselves; there are transitions that leave the 
stable states, transitions that reach the stable states and 
oscillatory transitions. Observing which kind of inputs 
activate those transitions, some conclusions can be drawn 
about system dynamics.  

It can be seen, for instance, that when the system is in the 
“low” stable state ( )111 , AAC = , the system remains in the 

“low” state when the input is 3B  (“big”) while it leaves 

stability to the state 2A  (“high”) when the input is 1B  

(“small”). The opposite behavior occurs when the state is in 
the “high” stable state ( )224 , AAC = . When the input is 2B  

(“medium”), the system remains on its last state. Moreover, 
it can be seen that the system does never have an oscillatory 
behavior if the input remains constant. 

The model performance depends on the model structure 
and a more complex model can adjust a more complex 
behavior. For instance, a RFS model structure with 2=n  
state variables, 4=p  fuzzy sets for their fuzzification and 

5=q  fuzzy sets for the fuzzification of the input variable 

was able to reduce the model error in the end of simulation 
as shown in Fig. 8. Nevertheless, this structure results in 

805.42 ==M  rules and 82 model parameters. 
For a complex system, model interpretability and 
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numerical performance are generally not achieved 
simultaneously. Moreover, a large number of additional 
rules are necessary for a small decrease in the model error.  

B. Example 2 

In this example, the actual system output is governed by 
the following difference equation:  

=+ )1(ty
( )

)2()1(1

)(1)2()1()2()1()(
22 −+−+

+−−−−−

tyty

tutytutytyty
 (37) 

The training data set was computed from an input )(tu  

generated as follows: 400 samples of an independent and 
identically distributed uniform sequence over the [ ]1,1−  

interval and 400 samples of a sinusoidal signal 
)45/.sin(05.1)( ttu π= . The testing data set was generated 

considering 1000 samples of the following signal: 


















<≤

+
+

<≤−

<≤

<

=

1000750

)10/.sin(6.0

)32/.sin(1.0

)25/.sin(3.0

7505001

5002501

250)25/.sin(

)(

t

t

t

t

t

t

tt

tu

π
π

π

π

 (38) 

In order to find the best model structure, an exhaustive 
search was performed. Several structures were evaluated by 
combining different values for the model structure 
parameters n  (range: 1 to 3), p  and q  (range: 2 to 11). A 

model structure was evaluated if the number of rules 
90<M . The evaluation of a total of 112 model structures 

has taken about 4 hours in a Pentium IV 3.0 GHz computer. 
The best RFS model structure found used 2=n  state 

variables with 3=p  fuzzy sets for their fuzzification and 

5=q  fuzzy sets for the fuzzification of the input variable. 

This structure results in 455.32 ==M  rules and, 
consequently, 47 parameters must be identified, considering 
the two output parameters.  

The plot of the model output against the actual system 
output is shown in Fig. 9. It can be observed that the model 
can track adequately the actual systems. 

Results obtained with the proposed method (RFS-TSK) 
are compared to the ones reported in the literature in Table 
IV. The present model is better than those reported in  [11] 
and  [24], but is worst than those reported in  [8] and  [10]. 
The RFNN model  [10] employs a very large number of 
parameters. The DFNN  [8] proposes an interesting 
identification algorithm that could also be applied to the 
current model. Nevertheless, most of these methods use 
Gaussian membership functions, of which the parameters 
are optimized by gradient-based algorithms, yielding to 
fuzzy sets with no linguistic meaning. 

The same RFS-TSK model was presented before  [26], 
using 2=n  state variables with 3=p  fuzzy sets for their 

fuzzification and 3=q  fuzzy sets for the fuzzification of 

the input variable, resulting in a slightly worst performance 
but with a more compact model. 

The linguistic RFS model for this example can be 

represented as a fuzzy automaton with 932 =  symbolic 
states, of which the state graph is shown in Fig. 10. It is 
obviously hard to understand such a state graph but it is 
worst to read 45 recurrent rules. Nevertheless, the same 
patterns discussed previous example can be found in this 
topology: the stable states can be identified by the nodes 
with transitions to themselves; the transitions that make the 
system leave the stable states, the oscillatory transitions and 
the transitions that reach the stable states. Identifying which 
kind of inputs activate those transitions could help the 
domain experts to get a better understanding of the system 
dynamics as a whole, in complement to the localized view 
provided by the recurrent rules. 

V. CONCLUSIONS 

This work has discussed two types of equivalent RFS for 
non-linear dynamical systems modeling: the TSK type and 
the linguistic type. A standard genetic algorithm is used for 
the parameters estimation of a TSK-type RFS model and the 
solution is used to compute the equivalent rule base weights 
of the linguistic type. The linguistic type RFS can be 
represented as a fuzzy finite-state automaton. 

The main contribution of this work is the conversion from 
the TSK-type to the linguistic type RFS and its 
corresponding fuzzy automaton representation, which allow 
the domain experts to analyze and interpret the identified 
model. Furthermore this method can be a powerful tool for 
modeling systems with hybrid (discrete and continuous) 
behavior. 

The GA has shown to be an efficient and flexible tool for 
model identification. As a gradient-free optimization 
technique, GA is almost independent of the model structure 
and its stochastic nature avoids local minima. The results 
have shown that the proposed strategy has good 
performance when compared to other methods described in 
literature. A standard GA using default parameters was used 
to obtain the results, showing the robustness of the model 
with respect to the identification algorithm. This is very 
important for real world applications, where practitioners 
are more concerned with the model structure than with 
mathematical details of the identification algorithm. 

In the present work the structure of the fuzzy model was 
fixed off-line and was not optimized. Several methods are 
reported in the literature in which a GA is used to identify 
the fuzzy systems structure. An optimized structure can 
certainly achieve a better numerical performance. This is 
one of the directions for future work in this research project.  
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TABLE I  
FUZZY RELATION MATRIX  

)(tx  )(tu  1A  2A  

1A  1B  11φ  12φ  

1A  2B  21φ  22φ  

2A  1B  31φ  32φ  

2A  2B  41φ  42φ  
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TABLE II 
FOUR MODELS FOR DISCUSSION 

1Φ  2Φ  3Φ  3Φ  



















0.00.1

0.00.1

0.10.0

0.10.0

 



















2.08.0

7.03.0

0.10.0

0.00.1

 



















0.10.0

8.02.0

7.03.0

0.00.1

 



















0.10.0

0.00.1

0.10.0

0.00.1
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TABLE III 
FUZZY RELATION MATRIX AND OUTPUT PARAMETERS 

 Rules’ premise ∗
Φ  ∗

θ  

rule )(tx  )3( −tu  1A  2A   

1 ( )111 , AAC =  1B  0.2483 0.7517 0.5034 

2 ( )111 , AAC =  2B  0.6363 0.3637 -0.2727 

3 ( )111 , AAC =  3B  0.8827 0.1173 -0.7654 

4 ( )212 , AAC =  1B  0.4585 0.5415 0.0831 

5 ( )212 , AAC =  2B  0.2747 0.7253 0.4506 

6 ( )212 , AAC =  3B  0.8231 0.1770 -0.6461 

7 ( )123 , AAC =  1B  0.1760 0.8240 0.6481 

8 ( )123 , AAC =  2B  0.7498 0.2502 -0.4995 

9 ( )123 , AAC =  3B  0.9941 0.0059 -0.9883 

10 ( )224 , AAC =  1B  0.0420 0.9580 0.9159 

11 ( )224 , AAC =  2B  0.2874 0.7126 0.4252 

12 ( )224 , AAC =  3B  0.6285 0.3715 -0.2571 

 
 



 

 
15 

 

TABLE IV: 
COMPARATIVE ANALYSIS 

Model MSE Parameters 
TRFN-S  [24] 0.0346 33 
RSONFIN  [11] 0.0441 30 
RFNN  [10] 0.0013 112 
DFNN  [8] 0.0025 39 
RFS-TSK  [26] 0.0082 27 
RFS-TSK 0.0036 47 
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Fig. 1: Triangular shaped membership functions. 
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Fig. 2: Fuzzy finite-state automaton corresponding to the rules (29). 
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Fig. 3: Example of four configuration of the recurrent fuzzy model. 
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Procedure GA 

1) begin 

2)  t = 0; 

3)  initialize P(t); 

4)  evaluate structures in P(t); 

5)  while (not termination) 

6)  begin 

7)   t = t + 1; 

8)   select P(t) from P(t-1); 

9)   recombine structures in P(t); 

10)   evaluate structures in P(t); 

11)  end 

12)end. 

Fig. 4: A Typical GA structure. 
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Fig. 5: The basic steps of the proposed methodology. 
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Fig. 6: The 12 rules RFS model result for Box & Jenkins data set. 
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Fig. 7: The state graph for the fuzzy automaton representation of the 12 rules 
RFS model. 
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Fig. 8: The 80 rules RFS model result for Box & Jenkins data set. 
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Fig. 9: RFS model result for testing data in example 2. 
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Fig. 10: The fuzzy automaton representation for RFS model in example 2. 

 
 


