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Abstract: This paper deals with the use of Bayesian netsvéokcompute system reliability. The reliabilityadysis
problem is described and the usual methods fortgative reliability analysis are presented witlirtase study. Some
drawbacks that justify the use of Bayesian netwaks identified. The basic concepts of the Bayesiatworks
application to reliability analysis are introducaad a model to compute the reliability for the camely is presented.
Dempster Shafer theory to treat epistemic uncegtamreliability analysis is then discussed arglhisic concepts that
can be applied thanks to the Bayesian networkenfez algorithm are introduced. Finally, it is showith a numerical
example, how Bayesian networks’ inference algorithtompute complex system reliability and what thampster

Shafer theory can provide to reliability analysis.
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1 INTRODUCTION

There are many quantitative analysis methods dégyseliability. The use and efficiency of thesetinoels depends on
the type and the structure of the system as walhabe experience of the reliability engineerthe industry, some
tools are recommended and explicitly referencestandards such as IEC 61508 [1] and IEC 610259ate

precisely, the IEC 61025 standard describes thdslmand method to make quantitative reliabilitalgsis. Among



these methods, fault trees and Markov chains hfiga been employed and remain the reference metoodse

reliability engineer.

However, systems become increasingly complex andezuently the number of failures to be taken &utmount
increases. As it has been introduced in [3], io@mglex system composed mtomponents with positive random
lifetimes, two or more components can fail at tame time. Moreover, the system as well as the coents are
allowed to have an arbitrary (finite) number oteta(in the following: a multistate system or comgiat). In addition,
no assumption of independence is made concernigaimponent lifetime. Moreover, taking into accoiinet effects
of the combinations of failure within scenariosders the calculation of the reliability of such qdex systems very

difficult. The classical modelling methods reacaithimit.

The use of the fault tree method ([4] and [5]) asssi the independence of elementary probabiliti¢ailofres and
boolean variables. Fault Trees (FT) are very pawespecially when they are solved using BinaryiBien Diagrams
(BDD). Unfortunately when multiple failures are asgd to affect a component, the model needs aseptation as

multiple states variables. Then the fault tree apph is close to its limit.

The state space representation has been recodnjizethdemic literature ([6], [3], [4]) and induatrlEC61511
standards ([7], [8]). Usually, the structure funatiof the system reliability is modelled with a Mavian process. Each
accessible state of the system is representechbge@and the transitions between nodes are repeesiey arcs
modelling the transition rates. This method is welapted to study the reliability of various systeand allows an
exact analysis of their probability of failure. Hever, the system complexity induces a combinatesiplosion of the

number of states, which makide modelling stemore difficult.

Apart from current standards, Stochastic Petri([83t [10]) is a method traditionally used to moded system
reliability. They provide a powerful modelling foatism but, unfortunately, the reliability analysédies on a Monte

Carlo simulation procedure that usually requirgsesat number of simulation runs in order to geuaate results.

This work focus on Bayesian networks, which prosidelutions to the problems mentioned above byeumnating on
the modelling in a compact structure built from gt@tes of component. Recently, works on systeetysahd Bayesian
networks, developed by Boudali and Dugan [19] anbliBo, et al., [20], explain how the fault tree methodology te&n
implemented by using Bayesian networks. In [214, dlathors describe stochastic modelling technigadault trees,
Bayesian networks and Petri nets. They present sqpiécation cases and highlight the advantagesofi technique

with respect to the others. In order to improvéalslity analysis and maintenance decision procé&her [22] has



defined a dynamic Bayesian network model of thegss reliability, that allows to compute state pimlity
distributions by taking into account multistate @mments, age of the components and the latest emainte
operations. In [23] a study is dedicated to the gamnson between Markov chains and dynamic Bayesétworks for
the system reliability estimation and [24] descsibsodel of reliability to simulate a stochastic gess with exogenous
constraints. From a general point of view, Langsettt Portinale [25] investigate the properties aj@&ian networks

that make this formalism particularly well suited feliability applications.

In all mentioned methods,priori probabilities expressing the probability of compnhelementary failure are
considered as precise values even if they areeatbfrom statistical information based on experiraemtfrom
subjective experts’ opinion. In Bayesian netwodanditional probabilities allowing the realizatiohthe inference are
also precise values. Indeed, Bayesian network fiwesathe knowledge under a frequentist or subjsttpoint of

view and translates the uncertainty in its randenss but not in an epistemic way. In this caseptbbabilistic
framework is not suitable and another reasoningénasork such as the evidence theory should be peefer his
discussion about choosing a suitable frameworkke tnto account this kind of uncertainty remairggeat debate. The
purpose of this paper is not to provide such audision. The reader can refer to ([11], [12], [TB4], [15], [16]) to get

some elements on this controversy.

Nevertheless, from an industrial point of viewisitlassically accepted that observations madéesystem are
partially realized [17]. For instance, the obsensa can be done after inspection or maintenanienagr intervention;
therefore the knowledge is not available at angtiBuring the use of data from databases or witensored
measures, some incompleteness and incoherencieBarencountered. In the probability framework, mptete data
should be censored or completed according to tineipte of minimal commitment. It corresponds te tmaximum
entropy principle. The corresponding probabilitysses are equally distributed on each possible ciitsl focal
element. In the evidence framework, the belief nass®ciated to the incomplete data (iecertainty on the state) is
allocated to the uncertain focal element accortbrttpe minimal commitment principle. Thanks to gwdence theory
formalism, the principle of minimal commitment foalizes the idea that we should never give morerimébion than
justified to any subset of the frame of discernnj&8i. Consequently, the probability framework inrspe a random
view of uncertainty that is debatable. The relipgngineer can be interested in predicting tHkiémce of the

component’s states epistemic uncertainty on theesystate.

Bayesian networks are powerful modelling tools wtrenproblem is handled under a subjectivist pointiew [26]. In

addition, Valuation networks ([27], [29]) are pofgrtools, well adapted when the modelling problisrhandled under



a knowledge point of view. Shenoy [35] has shownatvantages and drawbacks of these tools andgtbei

equivalence under some conditions.

The probabilistic representation of uncertaintyehbeen successfully employed in reliability anadylset also
criticized for inducing an appearance of more kreglge with respect to the existing uncertainty fisaneally present
([30], [31]). Much of these criticisms are indudeglthe use of uniform distribution to charactenmeertainty in the
presence of incomplete knowledge. Uniform distiifiuis the best representation of the minimal commant in the
probabilistic representation [32]. As a resultumber of alternative mathematical structures ferrépresentation of
epistemic uncertainty have been proposed, incluelridence theory, possibility theory and fuzzytsebry ([33],
[34]). Evidence theory is a promising alternatikiattallows a fuller representation of the implioas of uncertainty in

knowledge than is the case in the probabilisticesgntation [43].

In this article, we propose to combine the evideheery with Bayesian networks to model systenalglity. The goal
is to obtain a powerful tool to compute the relidypiof a system by taking random and epistemicauntainties into
account. The manipulation of these uncertaintiethbyevidence theory thanks to the appropriate Slagenetwork
algorithms is presented. The paper shows how éxirence algorithms used by Bayesian networks\eo# tools
provide a support to the evidence theory appliegliability evaluation. In a first section, a silystem that
characterizes the drawbacks of standard methadadsed. In section two, principles of the Bayesiatwork
modelling and their application to the reliabilapalysis are proposed. In section three, basicepiaof the evidence
theory and the definition of a possible implemeantatn Evidential networks are discussed. Thedastion concerns a
comparison of numerical results for the differemthods of reliability analysis using the simpleecatidy proposed in

the first section in order to show the usefulndssuo approach.

2 RELIABILITY MODELING METHODS (PROBLEM STATEMENT)

The bridge system previously defined by Torres-@lat® in [36], is considered as a case study andislio
understand the issues and problems of reliabilidefiing in general. Its reliability diagram is styoon Fig. 1. This is
a complex system from the reliability point of vieWhe system has few components allowing the agipdic of
standard methods, nevertheless this system is siote association of serial and parallel blockafponents, this is
the reason why the bridge system is consideree # dpmplex system and used to argue the usefulhess

approach.



21 Case Study

The case study consists of five componddtgo C. (Fig. 1). Each component can only be in two digjstatesUp
and Down. The elementary event§ represent the failures causing compon@nto change from statdp to state

Down and are assumed to be independent. The syBismomogeneous and no repairs are consideredefbney

only the system reliability is discussed in thipga These assumptions are common in reliability.

2.2 Total Probability theorem
In order to solve the computation of the case staydyem reliability, a formal way through the tgtabbability
theorem is investigated. In this method, two street should be considered according to the sta@ off C.=Up,
the reliability diagram of the system is shown dq. 2. After the failure ofC., the equivalent reliability diagram

becomes the one presented on Fig. 3.

The total probability theorem helps us to write fbkkowing equation of the system reliabililtig(t):

Ry(t) = P(S=Up|C, =Up.t)Ry(t) + P(S=Up|C, = Down,t)fL- R (1)) (1)
From (1), the following equation is derived:

Ry(t) =[1- (1- R () tl- R, ()] - (1- Ry(®)) L - R, )] R (1)

2
+[1-(- RO R M)~ R () R )] - R (1) @)

Where R (t) is the reliability of componenE, at timet .

2.3 Fault treeanalysis

In this paper we deal with the fault tree in i@nstard representation. A great number of softwaokages for fault tree
analysis exist; some includes dynamic relationpeddencies between variables and even betweenhaso€ the fault
tree. These software packages rely generally otifgpalgorithms that depend on the automatic gati@n of Markov
chains or Binary Decision Diagrams (BDD). In ourrigonve do not discuss these specific methods andonsider

only the basic definitions of the validity of fatitees.

The quantitative fault tree analysis is made irrduttive manner from the top event that corresptmtise undesirable
event. By studying the system, the tree on Fig. Built and each minimal cut of the system is fouDde observes that

the same elementary event may appear several timg® bottom of the tree. Moreover, the repeatedts in the



Fault tree induce dependence between minimal batscan induce an estimation error of the systdiabitity if it is

not computed with Binary Decision Diagrams or Marlkhain.

24  State Space Method

First, let us consider the following notations fdarkov chains. LeK be a discrete random variable used to model a

process with a finite number of mutually exclusi;tate:{sl,...sM }

Assuming that the occurrence of events impliesesysttate transitions from a state at time ste]) (o another state at

time step K), the process produces a sequencP(Of, ) , the probability distribution at timé); This sequence can be
modelled as a discrete time Markov chain. Markaaicimakes it possible to specify the statisticktienship between

states as a transition probability matiy. ( P(X, = SJ|Xk-1 =5) ). The Markov chain is considered as homogeneous if

the state transition probabilities are time indejgsn. This method leads to a graphical representgi#], pp. 124). In
our case study, each component has two statesystdm repairs are not considered, and we asswanhthére will be
no more than one failure at a time. Then, Markaasitimodel is defined over 24 nodes as shown ong-égmd Table 1.

Moreover, 576 parameters have to be defined tewhi transition matrix.

In the case study, the small number of componemtdizeir representation as boolean variables ledhtacceptable
number of states. Nevertheless, in a practicaliegpn the number of component is usually morenjiritive resulting
in a important number of states. In this situatite, Markov Chain method leads to a combinatoryastpn of the

number of states and associated parameters.

3 BAYESIANNETWORK SOLUTION

In the previous section, some problems in the Gistamdard methods to compute reliability have bdisoussed. It is
observed that for a complex system with a significaumber of components, the state space appreads to a
combinatorial explosion and with multistate compusehe fault tree analysis is inapplicable. At,ldse total
probability theorem cannot be applied automaticafiy requires significant investigations. As relyeptoposed in the
literature, Bayesian networks are able to stiese problems. In this section, we summarizeghent works in
Bayesian network implementation to compute religbiith dependent failure modes and uncertainiythe last

subsection, the Bayesian network reliability moafehe case study is given [36].



3.1 Bayesian Network Formalism
Bayesian networks are Directed Acyclic Graphs (DAGgd to represent uncertain knowledge in Artifibigelligence
[37]. A Bayesian network is defined as a coupies ((N A), D), where(N, A) represents the graphN'” is a set of

nodes; “A” is a set of arcs an® represents the set of probability distributioret tre associated with each node.
When a node is not a root nodle, when it has some parent nodes, the probabilityibligion is a conditional

probability distribution that quantifies the proliedtic dependency between this node and its paregntiscrete
random variableX is represented by a nodeUN with a finite number of mutually exclusive staggs: {slx 3;(}
The vectorP(X) denotes a probability distribution over theseestats equation (3):

P(X) =|P(X =5)...P(X =sX)...P(X =),

P(X=sX)=0 @)

with 3 P(X =s¢) =1
m=1

where P(X =) is the marginal probability of nodX being in states . In the graph depicted in Fig. 6, nodXs
andY are linked by an arc. I&X,Y)D A and (Y, X)D A then X is considered as a parentyaf The set of the parents

of nodeY is defined aspa(Y): X.

In this work, the seD is represented with conditional probability tabl€sen, each node has an associated conditional
probability table. For instance, in Fig. 6, nodé¢sandY are defined over the se§ :{slx 36} ands, {sfs[}
The conditional probability table of is then defined by the conditional probabilitiBéY|X) over eachY state

knowing its parent states. For the root nodlesthose without parents, the conditional probabiiitlyle contains only a

row describing tha priori probability of each state.

Various inference algorithms can be used to comiiitenarginal probabilities for each unobservedengigen
information on the states of a set of observed si0tlee most classical one relies on the use afctipn tree (see [37],
pp. 76). Inference in Bayesian networks [38] alldavsipdate the probabilities of the other varialigsaking into
account any state variable observation (an ev@fithout any event observation, the computatioreiseal ora priori
probabilities. When observations are given, thisWledge is integrated into the network and allghebabilities are

updated accordingly.

Knowledge is formalized as evidenceh#&rd evidence of the random variabl& indicates that the variable state is one



of the state§, :{S_LX SQ(} For instance iK is in stateS," then P(X =g )=1 and P(X = s;;l)= 0. Nevertheless,
when this knowledge is uncertasoft evidence can be used (see [39]). A soft evidence for a ngdeorresponds to an

update of the prior probability values for the esaof this node. For example, X is in states” or s, then the

corresponding prior probability arlé(X = slx): 05, P(X = s,f,ﬁ ): 05 and the others ar@(X = 3§¢{1M}): 0.

3.2  Fault treesand Bayesian networksto model reliability

The equivalence between Bayesian Networks andidissical fault trees method is described in thivfdhg section.
This description is done in the same way as theiopaper [20] and [19] under the hypothesis oftfames validity,

that is events related to components or functionighivcan only be modelled with binary states.

A fault tree allows to describe the propagation nagism of the failure in the system. The systermalpdity or
availability is modelled according to the assumpiid independence between the events affectingrtiges
(hypothesis (a), see chapter 7 in [21]). Wheregassical model of the parallel structure showRim 7 is based on a
fault tree, the modelling with a Bayesian netwarkealized with a single 'V structure’ as depiciedrig. 8 (the

structure is identical for serial configurationshe conditional probability table (CPT) in (Table@ntains the

conditional probabilitie@(Ss|Cl,C2) which explain the failure propagation mechanismulgh the functional

architecture of the system. Therefore, the conutitiprobability table is defined automatically fax OR/AND gate.
The conditional probabilities are equal to 0 oirice the logic of the failure propagation is detistic. For example,
to compute the reliability of the function $hown on Fig. 8, events on a component are comsiddatistically

independent ([6], [40]):

P(S, =Up)= I'J P(C, =Up)=1- I'J P(C, = Down) @

3.3 Bayesian network to model dependent failure modes and uncertain propagations

Bayesian networks provide a powerful mathematioahflism to model complex stochastic processesusecihis
modelling method is based on a DAG model and ricgea Thus, the hypothesis of independence betereents
(failures) made for a fault tree is not necesskgyeed, the Bayesian network allows to computeettaet influence of
dependent variables on the system reliability. Mueg, thanks to the conditional probability talBayesian networks

provide a way to model several failure modes insiystem and multistate components.



The variables are not necessarily boolean therdéftggossible to represent a system composedtifes with several
failure modes in a factorized form. Failure ModéeEfs Analysis method (FMEA) [6] allows to determithe failure
modes associated with a component [22]. Theretbeestates (considered as exhaustive) of a compooee are, for

instance:Up the component is availabl®own, : the component is unavailable due to failurédbwn, : the

component is unavailable due to failure 2, etc.

The states of functiors, are defined by failure modes. For instance, n8dén the Bayesian network (Fig. 8) takes the
following states:Up or Down. No prior probability is associated with these stdiecause they are computed
according to the states of their parents,the causes described By nodes. The conditional probability table of
function S, (Table 3) is defined by using the causes anddtheré modes of the FMEA analysis. Nevertheless, a
Bayesian network representation can turn out todedul insofar as a combination of causes (foaimst C,= Down,

and C,=Up), and the combination of causes can lead to skfaitzre modes of the functionS;) [22]. In Table 3, the
uncertainty is represented by the probability distion (0.2; 0.8).

As it is known in the FMEA analysis, a failure mazhn induce other failure modes according to thehaeism of

failure propagation through the system. The Bayes&work representation is able to model this agapion but the

development of the model has to be rigorously degah[22].

34  Casestudy modelled as a Bayesian networ k

The hypotheses previously used in the case studglso applicable for the Bayesian network modeé development
of the Bayesian network which computes the systmahility is inspired by the fault tree presentadFig. 4 but the
Bayesian network representation is built accordintipe functional point of view of the system. Thetwork obtained
with the software BayesiaLab®© is presented on idts structure looks like the fault tree struetand the Bayesian
network shows graphically the conditional dependesfche elementary events.

We definea priori probabilities for elementary evelii that imply the probability distribution on the &s of
componentC, (Table 4) as well as conditional probability tedté conjunctive and disjunctive operators (Tabén8

Table 6).

4 EVIDENCE THEORY FORMALISM

As it can be seen in Tables 5 and 6, probabiléresgiven according to component states with respabe additive



theorem. This is the strongest constraint of tlebability framework. In practice, when probabilitiare derived from
databases, there is some incomplete informati@o(ipleteness) or some incoherency between dattnamdliability
model. In these cases, the probabilistic apprositdss flexible than the evidence theory [42] bseain fact,
incompleteness and inconsistencies express episterertainty. The evidence theory is, in someeesimilar to the
probability theory [43]. It offers a more open fahframework to deal with the problems mentioneevjusly.
However, there is a lack of industrial tools allagiits implementation, only some toolboxes exi87]] [28]). Our goal
is thus to use the flexibility offered by the evide theory for the incompleteness and inconsistpnalylems and to
combine it with the modelling power of Bayesianwatks for the reliability studies. The followinga®n defines
basic concepts and functions to process the egistamertainty on component states to be used ideftial

networks.

The evidence theory (sometimes called belief fumst) has been initiated by Dempster with his warksuperior and
inferior bounds of a family of probability distribans [44] then reinforced by Shafer [45]. Diffetgmocessing models

of imperfect information have thus appeared:
» Upper and lower model [46]
» Dempster-Shafer theory and Hint model of Kholas ldiathney [47].
» Transferable belief model ([18], [48])

The theory of Dempster-Shafer is a generalized &apanodel [41]. This property presents a majaridt for the
applications of the Dempster-Shafer theory by Byesetworks algorithms. The idea of this theorioisllocate a
number between 0 and 1 to indicate a degree adfbmti a proposal as in the probability frameworkvattheless, this

allocation is called belief ma$4 and should not be considered as a probabilitgassent.

4.1  Basic belief assignment

In the Dempster-Shafer theory, the allocation psede called the basic belief assignment. The lmief assignment

follows a similar function as the allocation fumctiof the probability framework. This function isfthed

by: M :2% _, [04] verifying:
M(d)=0 (5)

SM(x=5)=1 (6)



where Q is the frame of discernment. Such a functionss akllled a basic probability structure by Shadéi.[

The frameQ is the set of disjoint states or focal element$/of Thus, the possibility to allocate a quantityhe t

proposal{qx, slx} softens the probability framework. The role of fbeal elementM ({ax,ij }) is to characterize our

ignorance on the real state of the variable witlbmmmitment. It means that the variable can baénstates™ or ij

but in some cases, we are not able to define tlrahof masses to attribute to each case. Of cpiidees not mean

that the variable can be in the two states simattasly. This ignorance characterizes the epistemiertainty and

{sx, slx} is the epistemic state.

When hypotheses (5) and (6) are strongly verifiee framework concerns the close world concept @/ber study
takes place. Nevertheless, in evidence theory tt@saditions can be relaxed. This is the case obpen world concept

([28], [49]) whereM (D) is interpreted as the part of belief committethim assumption that none of the hypotheses in

Q might be true [48].

4.2  Plausibility and belief functions

Once the reliability engineer has defined the blsief assignment for each component and the n&thas computed
the assignment for each state of the system, wecexp get some information about the system faiprobability. In

the Dempster Shafer theory, two main functions lslpo obtain this information: plausibility andilbéfunctions.

Plausibility function characterizes the degree hiol a proposalX =s* is plausible based on available evidence
X= ij expressed by each basic belief mass that corgsliatthe realization of = s* . This function is defined as

pls:2% - [0,1] by the following equation:

pls(x=sx)= 3 M(X=ij) (7)

X| X X
Sj ‘s nsj#0

A belief function exists and characterizes the dedn which a proposaX =s* is believable based on available
evidence expressed by each basic belief mass adsignthe frame of discernment. This function isndel as

bel :2° - [0,1] by the following equation:

bel(X =s*)= > M(x=s) (8)

X[ X X
S| ‘sl Os



By using egs. (7) and (8), we obtain an interestimgracteristic which is the bounding of the pralitgtby the belief

and plausibility functions ([50], [45]).
beI(Xzsx)s P(ngx)s pIs(X :sx) (9)

Property (9) is well known and Shafer has alreaafinéd it in his works in 1976 [45], and many authbave used this

direct relation between intervétbel, pls] and basic belief assignment ([51], [52], [53]).

Some authors ([42], [52], [54],) prefer tacklingthroblem by defining interval valued probabiliitirer than assigning
belief masses. Two reasons make us reject the &giproach. On the one hand, the uncertainty osttite of a
component is not expressed in an epistemic manitieraw interval. The upper and lower bounds of@bpbility

model an imprecision on the value of the failurelqability. It does not define an impossibility tssign an amount of
probability to a focal element without introducingre information than it is available. The resslaicomputation of
imprecise probabilities ([42], [55]). Thus, thisdagandom uncertainty problem rather than an apistene. This is

why we propose to work with basic belief assignnjéBi called the credal level that corresponds tleelarative mode

of the real amount of probabilities by the religpiengineers.

4.3 Evidential network

Several variables describe in the evidence theonp@el of a complex process with epistemic uncetyail he
variables represent components, entities or funstamd there exist relations between these vasablee relations

define the dependence between variables. Thencaiptasn of the problem is presented as a grapmihef an

Evidential network. Evidential network is a Diredtacyclic Graphs (DAG)G" = ((N A ) D*), where (N*,A*)

represents the graphN"” is a set of nodes; A" " is a set of arcs an®” represents the set of belief distributions that
are associated with each node. The network propsadatsic belief assignments as a priori belief reassriables. A
conditional belief table quantifies the dependepetween a node and its parents and allows to canifzunass

distribution according to other variables.

4.4  Evidential network inference

In the literature the inference algorithms basegmciples stated by Pearl [56] are recommendezhtoy on
propagation in an Evidential network. Recent aldpons developed for inference in Bayesian netwasksh as the

junction trees by Jensen, provide a more efficsehition to propagation in acyclic directed graphsh as Evidential



network. We propose to use this exact inferencerdhgn to compute the belief mass propagation i idential

network using the Bayesian Network software Bayedi®.

45  Frame of discernment in reliability analysis model
The frame of discernment we used in this reliapaihalysis is described by the following equations:
Q= {Up, Down}
M 22 - [o4]
And 2¢ :{M (X = D)zo; M (X :{Up});M (X :{Down});M (X :{Up, Down})}, under constraint (6).
The assumptions on components states are the omgsysly used in quantitative reliability analysissection2. The
basic belief assignment is possible on {lhp, Down} focal element wher&lp and Down are the two disjoint states of
a component. This possibility allows us to exprsasepistemic uncertainty on a component states basic belief
assignment can be considered as priori belief mass for root nodes in Evidential networks.

Currently, reliability engineers extend this franmelvto multistate components. In this case, the memof
combinations in the allocation functidhincreases and consequently the number of epistecat elements increases
too. This is a well-known practical problem in esigte theory. Nevertheless, in the case of reltglstudies based on

databases, basic belief assignments are computstligifrom data and this computation mitigatesieegrs' efforts.

4.6  Casestudy model by Evidential network

The Evidential network is transformed into a DAGhthe same structure presented on Fig. 9. Theanktwropagates
basic belief assignments according to conditiomdiebtables. Assignments of a priori belief massiaitialised as

defined in Table 7 to express the basic beliefgassent on componer@€, and do not take into account the epistemic
uncertainty if the assignment {1ﬂp, Down} is 0. If the expert wants to include an episteuricertainty, he/she should

define an assignment on the focal eIefT{UFI, Down} according to the additive constraint (eg. 6).

In the system studied here, we just use AND or @R So, in order to compute the system relighile should
model conjunctive and disjunctive operators andgrdate them into the Evidential network. These rwtdke into

account the particula{Up, Down} focal element into the inference algorithm. Thehrtables for a Fault tree were

given by Guth in [51]. The failure logic is explaithin Tables 8 and 9 whei® define a failure of componemtand



takes the value$ =True, F = False and {T, F}:{Trueor False}.

As we can see, the main difficulty is to define thkation betweer{T, F} input focal element and all output focal
elements. For an AND gate (Table 8) if one inpul ishen the output is in the same state as the senpntl If one
input is in stateF then there is no ambiguity for the output whictFis If one input is in uncertain focal element
{T.F} then two cases are encountered. Either the seopatlis T or {T,F} then the output i§T, F} or the second

input is F then it is sure that the outputks.

For an OR gate (Table 9) the analysis is similaheWone input iF , it is sufficient to define that the outputTs. If
one input isF then the output follows the status of the secapdt. Finally, if one input is in uncertain focément

{T, F} then two cases are encountered. If the second imdu then the output i . When the second input is in the

other states, then the output is in an uncertaialfelement and the epistemic uncertainty is prajesh

In order to use these tables in Bayesian netwoekshould translate the truth tables into inferaabées called
conditional belief tables to define the Bayesideri@ance inside nodes used in the network on FigThik translation is
done according to the functional point of view loé system studied. Note that for a convenientusiee Bayesian

network simulation tool, th&Jp_Down focal element refers to the s{élp, Down}. The AND truth table is translated

into BayesiaLab© environment as an equivalent dardil probability table defined in Table 10. Ttable then
replaces Table 5. In the same manner, we tran$lat®R truth table defined by Table 11 to its egléat conditional

probability table defined in Table 6.

If the reliability analysis is extended to multi&@omponents but restricted to series and/or lphcannections
between subsystems, some efforts should be matkgriiee the conditional belief tables. For examifla,three-state
reasoning is introduced for a subsystem compos@dcomponents and the output is also based on $teiees, the
number of parameters for the conditional beliefaalwill increase to7® . Practically, conditional belief tables are
equal to the truth tables of an AND or OR GateausTlonly the relation between the basic disjoictfelements of the
inputs (not the epistemic focal elements) shoulddfmed. The relations between all other focainelets were derived
directly from De Morgan'’s laws. However, if theiedility engineer wants to describe some particplapagation

mechanisms as shown in secti@3, he/she needs to explicitly define all condaitibprobabilities.

4.7  Plausibility and belief functions computation in Evidential networks

To implement the computation of belief and plaugibfunctions within the Bayesian network tool, whkould separate



the computation in two different nodelse(, pls) as shown on Fig. 10. This solution allows to xdlze additive

constraint inherent to Bayesian networks algorithimich does not exist in the general framework efekiidence
theory. Table 12 converts eq. (8) from evidencemhé¢o the Bayesian network in order to computeltigef function
of the system reliability. This table is a conditab probability table implemented in a belief nadehe Bayesian

network.

In the same manner, we define Table 13 to compat@hausibility function of system reliability (ed).

As Bayesian Networks respect the additive const(aj P(X = sx)zl), we should introduce IdotBelieve focal
§0Q

element (respgmplausibility) in the bel (Reliability) node (resp.pls(ReIiabiIity) node) to compute the belief function
(resp. plausibility function).
Furthermore, we can note that these tables andetiveork structure can also be used to compute ipititysand belief

functions on each component or node in order te giformation on probability intervals that boume treal value of

the probability for subsystems.

5 NUMERICAL ANALYSIS
In order to compare methods mentioned in this papehave devoted this section to numerical res@ltsording to
the common hypotheses in reliability analysis giiresection2.1, let's define numerical values for failure satd each
component 4, = A, = A, =10°h™; A, =4, = 210°h™). We consider the mission tinfe =200h, then
R(T:)=R,(T.)=R,(T: )= 081873 and R,(T. ) = R, (T ) = 0,67032.
By applying the total probability theorem (eq. 2tg@n 2.2), we obtain the exact value of the reliability
R;(T:) =0,850134. Obviously, the Markov Chain approach gives thaesaalues. For Bayesian networ&griori

probabilities have been defined according to previealues. When applying the Bayesian network shanvhig. 11,
we find the system reliability value equal to tme@omputed by the total probability theorem orNf@kov chain. It

confirms the exactness of the Bayesian network.

5.1 Evidential network, case with no epistemic uncertainty

Let's consider the Evidential network implementthg Dempster Shafer theory and apply it to our moakstudy

(Fig. 14). If no epistemic uncertainty is introddda component statesV ({Up, Down}) =0), then the reliability value



previously obtained is confirmed.

Obviously, the Dempster Shafer theory offers a gErigayesian framework entirely compatible with pgrebabilistic
one. The results without uncertainty can be obskeoreFig. 11 and the following results are obtained

bel (alstem State= Up) = P(&/stem state= Up) =pl s(&lstem state= Up) =0.85013.

5.2  Evidential network, case with an epistemic uncertainty

Let's consider the case of an epistemic uncertaimtgduced on the state of one component. Thegmafion of this
uncertainty is observed in the Bayesian network (§g. 12). According to the importance of the comgnt in the
system and its uncertainty, the epistemic uncestain the system reliability can vary significantijor example, if the
mass of epistemic uncertainiy (C1 ={Up, Down}) =01 is introduced in componer@, then:

bel (System state =Up) = 0.8408

P(System state =Up) = 0.85013
pl s(&lstem State= Up) =0.8595

This leads toM (&/stem state={Up, Down}) =0.0187. If the uncertainty orC, grows up to 0.3

M (System state={Up, Down}) goes to 0.0561:

bel (System state =Up) = 0.8221
P(System state =Up) = 0.85013
pl s(&lstem State= Up) =0.8782

If the basic belief assignment on the system stgpeesses an epistemic uncertainty theh and pls measures are not

equal and bound the system reliability. Thus, frilecision can be made according to this unceytain

6 CONCLUSION

In this paper, the powerful representation andettectness of Bayesian networks in reliability stsds shown. In
some context like incomplete data in databasesamnisistencies between data and reliability modedscan use
uncensored data with the Dempster Shafer theargrisider the epistemic uncertainty. The paper shmmsbasic
concepts of the Dempster Shafer theory can be mgaed in Bayesian networks tools to treat thigl kihuncertainty
and to extract the most of information from theikide data. Moreover, the Dempster-Shafer theffier®a general

Bayesian framework which allows us to use Evidémdworks in their original form without modifidan. It provides



a more powerful tool to manage uncertainty in @itif intelligence and approximate reasoning. la flamework of
the evidence theory, we recognize a two-level nientalel: the credal level where beliefs are held spresented by
belief functions and the pignistic level where demis are made [57]. Many transformation functicais be found: the
pignistic transformation defined by Smets [57] e plausibility transformation [58]. In this pape® have chosen to
work on the credal level only and manipulate theidhelief assignments and their propagation thnahg use of
Bayesian networks inference algorithms. The gotd Iselp the reliability engineer to handle thesggrinic uncertainty
of the system state according to the epistemicrteiogy of the state of the components. The beliedsure informs
the reliability engineer about the worst valuelw teliability of the system. The plausibility mees of the system
reliability informs the reliability engineer aboall possible evidence in favour of the system beéligible. By these
two measures the engineer has less precise infiomiait a more credible one.. In an industrialisgitthis
information is valuable during decision making, wéhene has to make a compromise between risksasts.
Moreover, by running diagnostic or intercausal nsodeBayesian networks inference algorithm, thabdity
engineer can identify the components which intredilie epistemic uncertainty on the state of theesysand plan all
needed inspection accordingly to reduce this uaggst This ability of Evidential networks to marathe epistemic
uncertainty allows us to investigate, in future k&mroblems with time dependence like maintengdieies and the
implementation to elaborate pignistic decision.tReirmore, the investigation of multistate systents diagnostic
problems with soft evidence can be of great intefarsthe reliability engineer. In future works,ree efforts are to be
made for a comparison between standard probabiligtrence of Bayesian networks and belief funtdipropagation

in reliability studies.
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TABLES

Table 1: Sates of system

0
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Table 2: Conditional Probabilities Table of parallel structure

C Up Down

C, Up Down Up Down
S, Up 1 1 1 0

Down 0 0 0 1

Table 3: Uncertain propagation in CPT of parallel structure

C Up Down, Down,

C, Up Down Up Down Up Down
s, Up 1 1 1 0 0.2 0

Down 0 0 0 1 0.8 1

Table 4: A priori probability distribution for C,

Up Down
C 0.818 0.182
1




Table 5: conditional probability table for AND gate

C Up Down

C, Up Down Up Down
AND Up 1 0 0 0

Down 0 1 1 1

Table 6: conditional probability table for OR gate

Cs Up Down

C, Up Down Up Down
OR Up 1 1 1 0

Down 0 0 0 1

Table 7: a priori belief mass assignment on C,

Up  Down {Up,Down}
C, 81873 18127 0

Table 8: AND truth table

E,
AND
T F {r.F}
T T F {r.F}
& F F F F
{r.F} {r.F} F {r.F}




Table 9: OR truth table

E2
OR
T F {r.F}
T T T T
& F T F {r.F}
{r.F} T {r.F} {r.F}
Table 10: Conditional belief Table for AND gate
Cs Up Down {up, Down}
C, Up Down {Up,Down} Up Down {Up,Down} Up Down {Up,Down}
AND Up 1 0 0 0 0 0 0 0 0
Down 0 1 0 1 1 1 0 1 0
{U P, Down} 0 0 1 0 0 0 1 0 1
Table 11: Conditional belief Table for OR gate
AND, Up Down {Up, Down}
C, Up Down {Up,Down} Up Down {Up,Down} Up Down {Up,Down}
OR Up 1 1 1 1 0 0 1 0 0
Down 0 0 0 0 1 0 0 0 0
{Up, Down} 0 0 0 0 0 1 0 1 1
Table 12; Table of bel(Reliability)
System state Up Down {Up,Down}
bel (System state =UP) Believe 1 0 0
NotBelieve 0 1 1




Table 13: Table of pls(Reliability)

System state Up  Down {U p,D own}
pls(System state =UP) Plausibility 1 0 o
Implausibility 0 1 1

Table 14: System reiability by inference without uncertainty

Up Down {up, Down}
R{(T¢) 0.85013 14.987 0
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