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Abstract— This paper deals with the use of Bayesian Net-
works to compute system reliability of complex systems un-
der epistemic uncertainty. In the context of incompleteness
of reliability data and inconsistencies between the reliability
model and the system modeled, the evidence theory is more
suitable to manage this epistemic uncertainty. We propose
to adapt the Bayesian Network model of reliability in order
to integrate the evidence theory and then to produce an
Evidential Network. Three examples are proposed to observe
the propagation mechanism of the uncertainty through the
network and its influence on the system reliability.
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I. INTRODUCTION

The studies of reliability interest many fields like chem-

istry, civil engineering [1], [2], manufacturing processes,

transport [3], [4]. . . Taking into consideration failures

and accidents met, this science is of a major interest

for companies. In addition, our technological capacities

increase and we build systems increasingly complex and

large like the nuclear or thermal plants, infrastructure of

water distribution or electricity. The reliability studies of

such systems are consequently more difficult to carry out.

If current international standards like the IEC61508 [5],

IEC61511 [6] or the ISA S96 [7] recommend the use of

modeling tools referred like Markov chains, fault trees or

the simplified equations, they leave the place to the use

of other tools. Markov Chains [8] allow an exact com-

putation of system reliability so complex it is. However,

large systems become difficult to model by Markov chains

because they induce a combinatory explosion of the states.

Fault trees [6], [9] are also difficult to implement on large

systems and particularly if the studied system presents

redundant failures and where the minimal cuts can not

be reduced [10]. In addition, standard fault trees cannot

take into account common causes. Lastly, the simplified

equations are not exploitable if the reliability engineer

is not able to gradually approach the modeling of large

complex systems.

As mentioned above, the standard tools presents some

difficulties in their implementation for complex or large

systems. This is why the reliability engineers and the

researchers in the field of reliability sought tools offering

more important capacity of modeling. Within this frame-

work, there are improved versions of fault trees, reliability

diagrams, switching Markov chains. . . The Petri nets were

also used to model reliability and are very interesting

when they are associated with Monte Carlo simulations

[11]. However, these improvements make the models

more complicated to use.

In this context, the Bayesian Networks are a very

interesting tool. They allow the stochastic modeling of

reliability in a compact and graphic form. It is possible

to logically explain the functional propagation of failures,

to introduce the factors of common causes. The stochastic

dependencies between events can also be materialized

simply. Moreover, it is possible to use the Bayesian

Networks from the causal point of view to observe the

effect of a failure, to analyze the probable state of some

components knowing that of subsystems including them

in a diagnostic approach. The Bayesian Networks are

thus general-purpose tools making it possible to model

knowledge on the reliability of a system whatever its

complexity is. In addition, it can be used to manage

maintenance actions.

In spite of this high capacity of modeling offered by

the Bayesian Networks, the reliability engineer or the

engineer in maintenance is not always able to provide

an exact model of the studied system. Moreover, he does

not have at every moment the data necessary on the state

of each component. Indeed, this situation is found when

it is necessary to inspect the components when the system

is operating. We are thus in the presence of missing data

or of potential inconsistency between the data and the

model. The inconsistency and the incompleteness point

out a problem of uncertainty.

The problem arising from uncertainty is largely tackled

in the literature. Indeed, the probabilistic framework was

formalized for its treatment. However, it is now well

known that uncertainty presents several forms. The ran-

dom point of view of uncertainty, viewed by frequentist

or subjectivist, can be easily taken into account by the

Bayesian Networks. The possibility theory also offers a

framework to the treatment of uncertainty. The epistemic

point of view can not be handled appropriately by the

probability theory. The evidence theory finds its interest

in this context [12].

Indeed, the rigorous framework of probability on which

the Bayesian Networks are based does not make it pos-

sible to treat epistemic uncertainty suitably. Ellsberg [13]

illustrated this problem using a very traditional problem of

ballot box where the knowledge of the number of colored



balls is not complete. Ellsberg showed that the theory

of probability forces to define the probability of pulling

of the unnumbered balls in order to respect the theorem

of additivity. The definition of this number is then made

in the minimal commitment principle which results in a

uniform distribution.

The evidence theory or belief function theory brings an

interesting solution to the above problem while making it

possible to engage no more knowledge than we have in

the reasoning [14]. Its formal framework was proposed by

Dempster and Shafer in 1976. Many developments have

followed. Shenoy [15] developed the Sequential Valuable

Networks, a graphical model of knowledge formaliza-

tion. Smets [14] also proposed his graphical model but

based on the formal framework of the Transferable Belief

Model.

To model reliability in the epistemic context of un-

certainty, the combination of the evidence theory and

the Bayesian Networks offers a very interesting tool. In

this article, we show how this combination is carried

out in the goal of modeling system reliability. For that,

Section II is devoted to the basics of Bayesian Network

for the reliability modeling. Section III is dedicated to the

description of the useful bases of the evidence theory to

develop Evidential Networks for reliability modeling. The

last section is dedicated to some applications in order to

highlight the interest of our proposal.

II. BAYESIAN NETWORK FORMALISM

Bayesian Networks are Directed Acyclic Graphs used

to represent uncertain knowledge in Artificial Intelligence

[16]. A Bayesian Network is defined as a couple: G =
((N, A) , D), where (N,A) represents the graph; “N” is

the set of nodes; “A” is the set of arcs and “D” represents

the set of probability distributions that are associated to

each node. When a node is not a root node, i.e. when

it has some parent nodes, the probability distribution

is a conditional probability distribution that quantifies

the probabilistic dependency between this node and its

parents. A discrete random variable X is represented by

a node X ∈ N with a finite number (M) of mutually

exclusive states SX :
{

sX
1 , . . . sX

M

}

. The vector P (X)
denotes a probability distribution over these states as

equation (1):

P (X) =
[

P (X = sX
1 ) . . . P (X = sX

m) . . . P (X = sX
M )

]

(1)

P (X = sX
m) ≥ 0

with
M
∑

m=1

P (X = sX
m) = 1 (2)

where P (X = sX
m) is the marginal probability of node

X being in state sX
m. In the graph depicted in Figure 1,

nodes X and Y are linked by an arc. If (X, Y ) ∈ A and

(Y,X) /∈ A then X is considered as a parent of Y . The

set of the parents of node Y is defined as pa (Y ) = X .

Figure 1. Basic Bayesian Network

In this work, the set D is represented with conditional

probability tables. Each node has an associated condi-

tional probability table. For instance, in Figure 1, nodes

X and Y are defined over the sets SX :
{

sX
1 , . . . sX

M

}

and

SY :
{

sY
1 , . . . sY

L

}

. The conditional probability table of Y
is then defined by the conditional probabilities P (Y |X )
over each Y state knowing its parent states X . Concerning

the root nodes, i.e. those with no parents, the conditional

probability table contains only a row describing the a

priori probability of each state.

Various inference algorithms can be used to compute

the marginal probabilities for each unobserved node given

information on the states of the set of observed nodes.

The most classical one relies on the use of a junction tree

(see [16], pp. 76). Inference in Bayesian Networks [17]

allows to update the probabilities of the other variables

by taking into account any state variable observation (an

event). Without any event observation, the computation

is based on a priori probabilities. When observations are

given, this knowledge is integrated into the network and

all the probabilities are updated accordingly.

Knowledge is formalized as evidence. A hard evidence

of the random variable X indicates that the variable state

is one of the states SX :
{

sX
1 , . . . sX

M

}

. For instance X

is in state sX
1 : P

(

X = sX
1

)

= 1 and P
(

X = sX
m 6=1

)

=

0. Nevertheless, when this knowledge is uncertain, soft

evidence can be used (see [18]). A soft evidence for a

node X corresponds to an update of the prior probability

values for the states of this node. For example, if X is in

state sX
1 or sX

M then the corresponding prior probability

are P (X = sX
1 ) = 0.5, P (X = sx

M ) = 0.5 and the others

are P
(

X = sX
m 6={1,M}

)

= 0.

A. Bayesian Networks to model reliability

In order to model the reliability of systems, we propose

to use Bayesian Networks in the same way as Fault Trees

[19], [20] even if Bayesian Networks are able to do more.

We consider components or function with binary states

and the same assumptions as fault trees.

A fault tree allows to describe the propagation mecha-

nism of the failure into the system. The system reliability

or availability is modeled according to the assumption

of independence between the events affecting the entities

(hypothesis (a), see chapter 7 in [21]). Whereas a classical

model of the parallel structure, as shown in Figure 2,

is based on a fault tree, the modeling with a Bayesian

Network is realized with a single ‘V structure’ as depicted

in Figure 3. Note that the structure is the same for serial

configurations.



Figure 2. Classical fault tree model of parallel components

Figure 3. Equivalent Bayesian Network of parallel structure

The conditional probabilities table (CPT)

P (S3 |C1, C2 ) contains the conditional probabilities

(Table I) which explain the failure propagation mechanism

through the functional architecture of the system.

C1 {Up} {Down}
C2 {Up} {Down} {Up} {Down}

S3

{Up} 1 1 1 0
{Down} 0 0 0 1

TABLE I.

CONDITIONAL PROBABILITIES TABLE OF PARALLEL STRUCTURE

Therefore, the conditional probabilities table is auto-

matically defined by the type of the gate. These condi-

tional probabilities tables are a priori given and prob-

abilities are equal to 0 or 1 since the logic of the

failure propagation is deterministic. Then, to compute

the reliability of the function S3, as shown on Figure 3,

when events on a component are considered statistically

independent [8], [22], the following equation is used:

P (S3 = {Up}) =

2
∏

i=1

P (Ci = {Up}) (3)

= 1 −
2

∏

i=1

(1 − P (Ci = {Down}))

B. Bayesian Network to model dependent failure modes

and uncertain propagations

Bayesian Networks provide a powerful mathematical

formalism to model complex stochastic processes because

this modeling method is based on a Direct Acyclic Graph

model and not a tree. Thus, the hypothesis of indepen-

dence between events (failures) made for a fault tree is

not necessary. Indeed, the Bayesian Network allows to

compute the exact influence of dependent variables to

the system reliability. Moreover, thanks to the conditional

probabilities table (CPT), Bayesian Networks provide a

model of the propagation of several failure modes in the

system.

The variables are not necessary Boolean therefore it is

possible to represent a system composed of some entities

with several failure modes in a factorized form. Failure

Mode Effects Analysis method (FMEA) [8] allows to

determine the failure modes associated with a component.

Therefore, the states (considered as exhaustive) of a

component node are, for instance: {Up} the component

is available, {Down1}: the component is unavailable due

to failure 1, {Down2}: the component is unavailable due

to failure 2, and so on. It is also possible to introduce

uncertainty by setting conditional probabilities in the

interval of value [0, 1].

The states of function S3 are defined by failure modes.

For instance, node S3 in the Bayesian Network (Figure 3)

takes the following states: {Up} or {Down}. No prior

probability is associated with these states because they

are computed according to the states of their parents,

i.e. the causes described by Ci nodes. The conditional

probability table of function S3 (Table II) is defined by

using the columns of the causes and the failure modes of

the FMEA analysis. Nevertheless, a Bayesian Network

representation can turn out to be useful insofar as a

combination of causes (for instance C1 = {Down2}
and C2 = {Up}) can lead to several failure modes of

the function with different probabilities. In Table II, the

uncertainty is represented by the probability distribution

(0.2; 0.8).

C1 {Up} {Down1}
C2 {Up} {Down} {Up} {Down}

S3 {Up} 1 1 1 0
{Down} 0 0 0 1

C1 {Down2}
C2 {Up} {Down}

S3 {Up} 0.2 0
{Down} 0.8 1

TABLE II.

UNCERTAIN PROPAGATION IN CPT OF PARALLEL STRUCTURE

As it is known in the FMEA analysis, a failure

mode can induce other failure modes according to the

mechanism of failure propagation through the system.

The Bayesian Network representation is useful to model

this kind of propagation but its development has to be

rigorously organized [23].



C. Conditional probability tables for AND/OR gates

As specified previously, the conditional probability

tables represent the propagation process of the failures

according to the functional architecture of the system.

The AND/OR gates are mainly encountered in reliability

analyzes. This is why the definition of conditional proba-

bility tables that correspond to these two modes of failure

propagation is essential in this work. The conditional

probability table of an AND gate is provided by Table III

and Table IV present an OR gate.

C1 {Up} {Down}
C2 {Up} {Down} {Up} {Down}

S3

{Up} 1 0 0 0
{Down} 0 1 1 1

TABLE III.

CONDITIONAL PROBABILITY TABLE FOR A AND GATE

C1 {Up} {Down}
C1 {Up} {Down} {Up} {Down}

S3

{Up} 1 1 1 0
{Down} 0 0 0 1

TABLE IV.

CONDITIONAL PROBABILITY TABLE FOR AN OR GATE

D. Conditional probability table for k/n gates

The k/n gate is a particular useful gate to model the

reliability of some parts of a system. The principle is that

k elements among n should be on state {Up} to warrant

the subsystem to be in state {Up}. This special gate is

easily modeled in Bayesian Networks with the appropriate

conditional probability table. For instance, Table V is the

conditional probability table for a 2/3 gate.

C1 {Up}
C2 {Up} {Down}
C3 {Up} {Down} {Up} {Down}

S3 {Up} 1 1 1 0
{Down} 0 0 0 1

C1 {Down}
C2 {Up} {Down}
C3 {Up} {Down} {Up} {Down}

S3 {Up} 1 0 0 0
{Down} 0 1 1 1

TABLE V.

CONDITIONAL PROBABILITY TABLE FOR 2/3 GATE

As shown with Tables II, III and IV, the Bayesian

Networks make it easy to explain the propagation mech-

anisms of the system failures. However, the states of the

components are necessarily disjoint and known ({Up}
and {Down} for the binary case in our previous exam-

ples). But, in operation, the components do not respect

perfectly the theoretical laws of degradation. Moreover,

all the components are not simultaneously inspected by

the maintenance team. In these situations, we are faced

to missing data or inconsistencies between the Bayesian

Network reliability model of the system and the reality.

The probabilistic framework on which are based Bayesian

Networks is not suitable to take into account these two

problems. Indeed, the first case leads to a censure or

a completion with a soft evidence using an uniform

distribution as defined in the section II. The second case

leads to the censure of the data.

The Evidence theory is, on some points, close to

the probability theory. It offers a more open formal

framework to deal with the problems quoted previously.

However, there is a lack of industrial tools allowing its

implementation, only some toolboxes exist [24], [25]. Our

goal is thus to use the flexibility offered by the Evidence

theory for the incompleteness and inconsistency problems

and to combine it with the modeling power of Bayesian

Networks for the reliability studies.

III. EVIDENCE THEORY FORMALISM

The evidence theory, sometimes called belief functions

theory, has been initiated by Dempster with its works on

milestones superior and inferior bounds of a family of

probability distributions [26] then reinforced by Shafer

[27]. Different processing models of imperfect informa-

tion have thus appeared [25]:

• The probability based belief function theory

– Upper and lower model [28]

– Dempster-Shafer Theory

– Hint Model of Kholas and Monney [29].

– The probabilistic argumentation system of

Haenni, Kholas and Lehman [30]

• The non-probabilistic belief function theory

– The theory presented in Shafer’s book [27]

– Transferable Belief Model [14], [31]

On some aspect, the evidence theory can be seen

close to the probability theory. Moreover, the Generalized

Bayesian Theorem can be found in the evidence theory

[25]. This theorem presents a major interest for the

applications of the Dempster-Shafer theory by Bayesian

Networks algorithms.

Within this formal framework, there is an allocation

process of a quantity (belief mass) ranging between 0

and 1 to the different proposals (basic belief assignment).

This allocation process is rather close to that of the

probabilistic framework, but is different by the possibility

to allocate a quantity to all tuples of proposals.

A. Basic belief assignment

The allocation process in the probability framework

follows the equation below:

P : 2Ω → [0, 1] such that: (4)

P (∅) = 0
∑

sX
i
∈Ω

P
(

X = sX
i

)

= 1



where the frame of discernment Ω is composed of each

disjoint proposals sX
i (states in reliability studies) and ∅.

This frame of discernment serves to elaborate prior prob-

abilities on component states and posterior probabilities

on subsystem states.

In the evidence theory, the basic belief assignment

follows the function below:

M : 2Ω → [0, 1] such that: (5)

M (∅) = 0 (6)
∑

sX
i
∈Ω

M
(

X = sX
i

)

= 1 (7)

where the frame of discernment Ω is composed of all

possible tuples of disjoint proposals sX
i . This frame of

discernment serves to elaborate prior masses on compo-

nent states and posterior masses on subsystem states.

As mentioned previously, the reliability studies made

in this paper concerns binary state components. The

corresponding frame of discernment is described by the

following equations:

Ω = {Up,Down}

And 2Ω = {∅; {Up}; {Down}, {Up, Down}}, under

the constraints (6) and (7).

Thus, the possibility to allocate a quantity to the

proposal {Up,Down} softens the probability framework.

The role of this reasoning modality is to characterize

our ignorance on the real state of the component without

commitment. It means that the component can be in

the state {Up} or {Down}. Of course, it should not

be considered that the component can be in the two

states simultaneously. This ignorance characterizes the

epistemic uncertainty and {Up,Down} the epistemic

state.

As mentioned before, hypotheses (6) and (7) are ver-

ified in our study and in the general case of reliability

study. When these assumptions are not verified the frame-

work concerns the open world concept which is out of the

scope of this paper [14], [30]. This concept can be very

interesting in more complex studies.

Note that we consider binary state components in previ-

ous equations. These assumptions are those generally used

in quantitative reliability analysis. Currently, reliability

engineers extend their works to multistate components.

In this case, the number of combinations in the allocation

function M increases and consequently the number of

epistemic modalities increases too. This is a well-known

practice problem in evidence theory. Nevertheless, in the

case of reliability studies based on databases, basic belief

assignments are computed directly from data and this

computing mitigates engineers’ efforts.

B. Plausibility and belief functions

In the evidence theory, two main functions help us to

obtain information about the uncertainty in the knowl-

edge, the plausibility and belief functions.

Plausibility function characterizes the degree in which

a proposal X = sX
i is plausible based on available

evidence X = sX
j expressed by each basic belief mass

that contributes to the realization of X = sX
i . This

function is defined as pls : 2Ω → [0, 1] by the following

equation:

pls
(

X = sX
i

)

=
∑

sX
j |sX

i
∩sX

j
6=∅

M
(

X = sX
j

)

(8)

The dual function is the belief function that character-

izes the degree in which a proposal X = sX
i is believable

based on available evidence expressed by each basic belief

mass assigned on the frame of discernment. This function

is defined as bel : 2Ω → [0, 1] by the following equation:

bel
(

X = sX
i

)

=
∑

sX
j |sX

j
⊆sX

i

M
(

X = sX
j

)

(9)

C. Probability boxing

By using equations (8) and (9), we obtain an interesting

characteristic which is the boxing of the probability by the

belief and plausibility functions [27], [32].

bel
(

X = sX
i

)

≤ P
(

X = sX
i

)

≤ pls
(

X = sX
i

)

(10)

The property (10) is well known, Shafer has already

defined it in his works in 1976 [27]. Many authors have

used this direct relation between interval [bel, pls] and

basic belief assignment [33]–[35]. Some authors [12],

[34], [36] prefer taking the problem by defining interval

valued probability rather than assigning belief masses.

Two reasons make us reject this last approach. On the

one hand, the uncertainty on the state of a component

is not expressed in an epistemic manner with interval

valued probabilities. It concerns an imprecision on the

value of the failure probability and not an expression of

our ignorance about the allocation of masses for some

events. It concerns a calculation of imprecise probabilities

[12], [37], a random uncertainty problem rather than a

calculation with the epistemic uncertainty. On the other

hand, Bayesian Networks do not allow this mode of

processing.

D. Decision, pignistic or plausibility transformation

In his works, Smets [25] argue that evidence theory is

a two level mental model in order to distinguish between

two aspects of belief, belief as weighted opinions and

belief for decision making. The two levels are :

• the credal level where beliefs are entertained,

• the pignistic level where beliefs are used to make

decision

Beliefs at the credal level are represented by belief

function or basic belief assignments. When decision must

be made, the belief held at the credal level induced a

pignistic probability at the pignistic level through a pig-

nistic transformation [38], [39]. Shenoy [40] has criticized



the pignistic transformation because it can induces incon-

sistencies in some particular cases. He proposed a more

convenient transformation, the plausibility transformation.

E. Discussion

As mentioned previously, the evidence theory formal-

ism is close to the probability one, but it takes into account

inconsistencies and incompleteness in a better way. The

frame of discernment allows to define how many events

concern the state {Up} or the state {Down} and how

many events can not be affected to the previous cases. In

addition, plausibility and belief functions help to compute

measures that bound the real value of the probability

of failure that is often preferred by reliability engineer

in current reliability analysis. The precise value can be

obtained by a transformation of belief from the credal

level to the pignistic one.

By introducing the allocation process of the evidence

theory in Bayesian Networks, new properties are offered

to manage incompleteness, inconsistencies and therefore

uncertainty in reliability studies. By staying in the credal

level, we attempt to keep the epistemic and the aleatory

uncertainty in the same model. We are able to draw

them, to evaluate their impact on the system reliability.

Moreover, the transformation from the credal level to the

pignistic one truncates our knowledge about the system

reliability and does not help the maintenance engineer to

manage his actions according the uncertainty and the risks

during the system exploitation.

The goal is to produce an Evidential Network by adapt-

ing the propagation mechanism of Bayesian Networks

according to the main concepts of the evidence theory

previously defined.

IV. EVIDENTIAL NETWORKS TO MODEL RELIABILITY

In order to use Bayesian Networks tools with the evi-

dence theory, we should adapt the conditional probability

tables and prior probabilities.

A. Conditional mass tables

This adaptation consists in the transformation of the

conditional probability tables into conditional mass table

in order to integrate the basic belief assignment and to

describe the propagation mechanism of failures.

On the base of Tables III, IV and V the condi-

tional mass tables for AND, OR and k/n gates should

be designed. The conditional probability for {Up} and

{Down} modalities can be used directly and efforts

should be made on the {Up,Down} modality.

As mentioned previously, the modality {Up, Down}
characterizes our ignorance about the component state.

As the component can take the two defined states only,

the conditional masses of {Up, Down} in the conditional

mass tables are defined by the Boolean logic.

For instance, let’s consider an AND gate. If component

1 is in state {Up} and component 2 is in state {Up} then

output S3 is in state {Up}, but if component 2 is in state

{Down} the output S3 is in state {Down}. Now let’s

imagine that the state of component 2 is in the epistemic

state and thus can be {Up} or {Down}, the output S3 can

also be in the two states {Up} or {Down}. We express

this ignorance on the state of S3 by affecting a conditional

mass on the epistemic state {Up, Down}.

By continuing this reasoning, the conditional mass table

for an AND gate is established and described in Table VI.

S3

C1 C2 {Up} {Down} {Up, Down}

{Up}

{Up} 1 0 0
{Down} 0 1 0

{Up, Down} 0 0 1

{Down}

{Up} 0 1 0
{Down} 0 1 0

{Up, Down} 0 1 0

{Up, Down}

{Up} 0 0 1
{Down} 0 1 0

{Up, Down} 0 0 1

TABLE VI.

CONDITIONAL MASS TABLE FOR AN AND GATE

The same reasoning is carried out for the construction

of the conditional mass table of an OR gate given in Table

VII.

S3

C1 C2 {Up} {Down} {Up, Down}

{Up}

{Up} 1 0 0
{Down} 1 0 0

{Up, Down} 1 0 0

{Down}

{Up} 1 0 0
{Down} 0 1 0

{Up, Down} 0 0 1

{Up, Down}

{Up} 1 0 0
{Down} 0 0 1

{Up, Down} 0 0 1

TABLE VII.

CONDITIONAL MASS TABLE FOR AN OR GATE

The development of these conditional mass tables

makes possible to model the propagation of the failure

within the model of the system reliability but also the

way in which uncertainty is propagated on the knowledge

of the state of the components. These propagations will

take place from parent nodes or root nodes to child nodes

through the network in order to characterize the reliability

of the complete system.

B. Conditional Mass Table for k/n gate

Like the case of AND/OR gates, the conditional prob-

ability table of the k/n gate should be translated to

integrate the Evidential Network with the correct condi-

tional mass table. The specific {Up,Down} modality is

introduced for each component state and also the output.

For instance, let’s consider a 2/3 gate. When two

components from the three are in the same state, the

output is in the state of the majority of components.

In addition, if 2 components among the three are in

opposite states {Up} and {Down}, the state of the third



component implies the state of the output. Thus, if the

state of this last component is uncertain, the output is also

uncertain. The following table gives the conditional mass

table. Please, note that for convenience we use {U,D} in

place of {Up, Down} in Tables VIII to IX.

S3

C1 C2 C3 {Up} {Down} {U, D}

{Up}

{Up}

{Up} 1 0 0
{Down} 1 0 0
{U, D} 1 0 0

{Down}

{Up} 1 0 0
{Down} 0 1 0
{U, D} 0 0 1

{U, D}

{Up} 1 0 0
{Down} 0 0 1
{U, D} 0 0 1

{Down}

{Up}

{Up} 1 0 0
{Down} 0 1 0
{U, D} 0 0 1

{Down}

{Up} 0 1 0
{Down} 0 1 0
{U, D} 0 1 0

{U, D}

{Up} 0 0 1
{Down} 0 1 0
{U, D} 0 0 1

{U, D}

{Up}

{Up} 1 0 0
{Down} 0 0 1
{U, D} 0 0 1

{Down}

{Up} 0 0 1
{Down} 0 1 0
{U, D} 0 0 1

{U, D}

{Up} 0 0 1
{Down} 0 0 1
{U, D} 0 0 1

TABLE VIII.

CONDITIONAL PROBABILITY TABLE FOR 2/3 GATE

C. Plausibility and belief functions

To implement the computation of belief and plausi-

bility functions within the simulation tool of Bayesian

Networks, we should separate their computing in two

different nodes (bel,pls). This solution allows to release

the additive constraint (see eq. 7) inherent to Bayesian

Networks algorithm which does not exist in the general

framework of the evidence theory. The conditional mass

table (Table IX) converts relation 9 into the Bayesian

Network to compute the plausibility that the system is

in state {Up}. In addition, note that we have introduce

the modality NotBelieve to allow the Bayesian Network

node to respect the additive constraint.

System state {Up} {Down} {U, D}
bel (System state Believe 1 0 0

= {Up}) NotBelieve 0 1 1

TABLE IX.

TABLE OF bel(System state = {Up})

On the same way, we define the conditional mass table

(Table X) to compute the plausibility function of the sys-

tem (eq. 8) and introduce the modality Notplausibility to

allow the Bayesian Network node to respect the additive

constraint.

System state {Up} {Down} {U, D}
pls (System state Plausibility 1 0 0

= {Up}) Not plausibility 0 1 1

TABLE X.

TABLE OF pls(system state = {Up})

Besides, we can note that these tables can be used to

compute plausibility and belief functions on each compo-

nent or node of the network in order to give information

on probability boxes that bound the real value of the

probability for subsystems.

V. APPLICATIONS

We dedicate this section to examples in order to show

how the Evidential Network computes the reliability of

complex systems under uncertainty. Our first example is

the simulation of a simple system with a 2/3 gate to eval-

uate the propagation mechanism. The second example is

the bridge system previously defined by Torres-Toledano

in [10]. The third example is a complex system defined

by Kamat and Riley [41] for the evaluation of quantitative

reliability method with Monte Carlo simulations. For each

example, the Evidential Network that model the system

reliability model is presented and the according basic

belief assignments (bar graphes) are shown on the right

side.

A. system with 2/3 gate

For this first example, we propose to simulate a k/n
gate. The goal is to show the ability of the Evidential

Network to compute the system reliability. The Bayesian

Network of a 2/3 gate is translated into the Bayesian

Network tool Bayesialab c© with the structure presented

on Figure 4.

Figure 4. k/n gate in Bayesialab.

We consider each component with the same basic belief

assignment arbitrarily chosen. The elementary events that

drive the components from state {Up} to state {Down}
are independent. The system is homogeneous and no

repair is considered. The system reliability is given theo-

retically by the following equation:

R (TF ) =

n
∑

k=m

Ck
nrk (1 − r)

n−k
with Ck

n =
n!

k! (n − k)!

(11)



If we consider the probability value of the state {Up}
is r = 0.7 for each component in order to compute the

system reliability then by using the equation 11, we found

R (TF ) = 0.784 where TF is the time of mission.

Note that this value is computed by the Network for the

reliability of the system (Figure 4). The boxing property

is maintained with a k/n gate. Moreover, we can notice

that the epistemic uncertainty on each component has a

large contribution on the system state.

B. Bridge system

This system has been previously defined by Torres-

Toledano in [10]. It seems to be quite simple but presents

a difficulty in computing the system reliability. The bridge

system consists of five components C1 to C5 (Figure 5).

The component failures are independent. The system is

homogeneous and no repair is considered.

Figure 5. Reliability diagram of the bridge system.

The corresponding Evidential Network is presented on

Figure 6. The network propagates basic belief assign-

ments according to conditional mass tables defined by

Table VI and VII.

Figure 6. Bridge system reliability model with the Evidential Network.

To evaluate the exactness of the Evidential Network,

let us define numerical values for failure rates of each

component (λ1 = λ2 = λ5 = 10−3h−1; λ3 = λ4 =
2.10−3h−1). We consider the time of mission up to TF =
200 h, then R1 (TF ) = R2 (TF ) = R5 (TF ) = 0.81873
and R3 (TF ) = R4 (TF ) = 0.7032.

By applying the total probabilities theorem, we obtain

the exact value of the system reliability RS(TF ) = 0.85.

If the reliability of the system components is intro-

duce as prior masses in the corresponding nodes of the

Evidential Network, the system reliability is given by

bel(system state = {Up}) or pls(system state =
{Up}) as it can be seen on the right part of Figure 6.

Now, let’s consider the Evidence Network with epis-

temic uncertainty introduced on the state of the com-

ponent C1. The propagation of this uncertainty can be

observed in the Bayesian Network. According to the im-

portance of the component in the system and the quantity

of uncertainty attached, the epistemic uncertainty on the

system reliability can vary importantly. For example, if the

mass of epistemic uncertainty M (C1 = {Up,Down}) =
0.1 is introduced in the prior mass table of C1 then:

bel (System state = {Up}) = 0.84

P (System state = {Up}) = 0.85

pls (System state = {Up}) = 0.86

The basic belief assignment of each component can be

observed on Figure7.

Figure 7. Basic belief assignments with M (C1 = {Up, Down}) =
0.1

That leads to M (System state = {Up, Down}) =
0.0187. If the uncertainty on C1 grows up to 0.3
M (System state = {Up, Down}) goes to 0.0561.

bel (System state = {Up}) = 0.82

P (System state = {Up}) = 0.85

pls (System state = {Up}) = 0.88



The new basic belief assignment of each component

can be observed on Figure 8.

Figure 8. Basic belief assignments with M (C1 = {Up, Down}) =
0.3

If the basic belief assignment on the system state

expresses an epistemic uncertainty then bel and pls mea-

sures are not equal and bound the system reliability. So,

further decision can be made according to this uncertainty.

C. Kamat-Riley system

Let’s consider a more complex system extracted from

a study of Kamat and Riley [41] shown on Figure 9.

This system is considered as a complex system since it

can not be rewritten by a combination of series-parallel

subsystems [8]. In order to simplify this example, we

consider that all components have the same basic belief

assignment for the current mission time. We choose the

following value for the reliability of each component:

Ri (TF ) = 0.81873

Figure 9. Complex system from a study of Kamat and Riley

By determining all success path of this system, we

construct the following Bayesian Network which is the

solution to compute the system reliability.

Figure 10. Bayesian Network solution of Kamat-Riley system

As we can see, with 9 components, the system becomes

a little bit more complicate. Note that AND/OR gates

with multiple inputs are introduced to reduce the number

of nodes. Like in the previous example and as waited,

we found the boxing property of the probability that the

system is {Up}. Of course, as we don’t introduce any

epistemic uncertainty on basic belief assignments of the

components, the belief and plausibility measures are equal

to the probability measure.

Let us introduce an epistemic uncertainty value of 0.20
into the basic belief assignments of C2, C5 and C9. The

resulting basic belief assignment and belief measures of

the system reliability can be observed on Figure 11. This

epistemic uncertainty propagates through the network and

induces an epistemic uncertainty on the system state. We

can notice that even if three components have a large

value of epistemic uncertainty, the value for the system

remains low. This value depends on the importance of the

components in the system and is mitigated by the basic

belief assignment of the other components.

Let’s consider a new set of basic belief

assignments where M (C2 = {Up}) =
0.4397, M (C2 = {Down}) = 0.2010 and

M (C2 = {Up,Down}) = 0.3593. By computing

the belief and plausibility measures on the unreliability

of C2, we obtain bel (C2 = {Down}) = 0.2010 and

pls (C2 = {Down}) = 0.5603. We can conclude that

the component is plausibly {Down}. In this situation,

the maintenance manager can launch an inspection to

definitively reduce the uncertainty on this component.

The simulation tool allows us to define the state of C2

as up for instance and computes the new set of basic

belief assignments given this new information as shown

on Figure 12. This ability of the simulation tool can be



Figure 11. Kamat-Riley system with epistemic uncertainty value set to
0.2 on C2, C5 and C9.

of a great interest for the maintenance team.

Figure 12. Basic belief assigments with M (C2 = {Up}) = 1

VI. CONCLUSION

In this paper, the powerful representation and the

exactness of Bayesian Networks in reliability studies is

shown. In some context like incomplete data in databases

or incoherency between data and reliability models, we

can use uncensored data with the Dempster Shafer Theory

to consider the epistemic uncertainty. The paper shows

how basic concepts of the Dempster Shafer Theory can

be implemented in Bayesian Networks tools to treat this

kind of uncertainty and to extract the most of information

from the available data. Moreover, the Dempster-Shafer

Theory offers a generalized Bayesian framework which

allows us to use Evidential Networks in their original

form without modification. It provides a more powerful

tool to manage uncertainty in artificial intelligence and

approximate reasoning. In the framework of the evidence

theory, we recognize a two-level mental model: the credal

level where beliefs are held and represented by belief

functions and the pignistic level where decisions are

made [25]. Many transformation functions can be found:

the pignistic transformation defined by Smets [38] or

the plausibility transformation [40]. In this paper, we

have chosen to work on the credal level only and to

manipulate the basic belief assignments and their prop-

agation through Bayesian Networks inference algorithm.

The goal is to help the reliability engineer to handle the

epistemic uncertainty of the system state according to the

epistemic uncertainty of the state of the components. The

belief measure informs the reliability engineer about the

worst value of the reliability of the system. By running

diagnostic or intercausal modes of Bayesian Networks

inference algorithm, the reliability engineers can identify

the components which introduce the epistemic uncer-

tainty on the state of the system. Then, he can plan

all needed inspection to reduce this uncertainty. This

ability of Evidence Networks to manage the epistemic

uncertainty allows us to investigate problems with time

dependence like maintenance policies and we have to

work on implementing some transformations to elaborate

pignistic decision. Furthermore, the investigation of mul-

tistate systems and diagnostic problems with soft evidence

can be of great interest for the reliability engineer.
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