in general, but has a simple algebraic structure. When k is algebraically closed and equal to the residue field of the valuation, gr ν R can be defined by countably many generators and countably many binomial relations.

Teissier considers a specialization of SpecR to gr ν R, analoguous to the specialization to the normal cone. Then resolving the special fiber by a toric morphism should extend to a resolution of the general fiber, which is the singularity itself.

Using his structure theorems about valued fields, Kuhlmann succeeded in giving a valuation theoretic proof of the valuative version of de Jong's theorem. He also pointed out the essential difficulty caused by the defect in finite extensions of valued fields. This defect is nontrivial when the fundamental inequality of ramification theory n e i f i is not an equality.

In the last few years, Hironaka [H4], Kawanoue [Ka] and Villamayor [V] initiated programs to resolve singularities in positive characteristic. One common tool in these approaches is that of differential operators of higher order (these already appear in Hironaka and Giraud). These operators act on regular functions of the ambient space of a given subscheme. One can define an associated graded algebra P(E), where E = (I, b) is an idealistic exponent, I the ideal of the subscheme, b 0 a weight. Then the approaches differ. Hironaka proves the finiteness of P(E). Kawanoue saturates in addition P(E) by taking roots and obtains a different finiteness theorem for the resulting algebra. Bravo and Villamayor (in preparation) construct by projection from P(E) an "elimination algebra" on a regular space of smaller dimension than that of the ambient space of the singularity.
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Brief survey of resolution of singularities in positive characteristic.

Resolution of singularities for algebraic varieties defined over a field of positive characteristic has been a long standing open problem. Several programs for proving Resolution in all dimensions have appeared in the last few years. Although none of them has been completed to this date, encouraging partial results have been obtained.

Building on classical material mostly due to Zariski and Abhyankar, as well as on subsequent works due to Hironaka, Giraud, and on Cossart's thesis, we present a complete proof of Resolution of singularities for algebraic varieties of dimension three defined over any ground field k which is differentially finite over a perfect field k 0 of characteristic p > 0 (this restrition means that Ω 1 k/k 0 has finite dimension).

Three basic approaches to the Resolution of singularities of curves appeared in the nineteenth Century. A possibly singular germ of irreducible curve can be viewed alternately as: a covering of a regular germ (Riemann), an integral domain D of dimension one, essentially of finite type over the ground field (Dedekind), or a geometric object C defined by variables and equations vanishing at a certain order at the singular point (M. Noether). Corresponding approaches to the study of the singularity respectively consist in: studying the local fundamental group of the pointed line, the normalization of R, or the effect of a quadratic transform on the order of the equations. While the last two approaches give a proof of Resolution which is characteristic free, the first one does not, due to the failure of the Puiseux theorem in positive characteristic.

For surfaces (in positive characteristic), the question was raised, but not solved by Zariski. Zariski systematically introduced valuation theory in the study of singularities. In particular, he introduced the Local Uniformization problem, a weaker form of Resolution of singularities at the center of a given valuation. He proved that Local Uniformization implies Resolution for surfaces of arbitrary characteristic.

The first proof was given by Abhyankar [A1] in 1956. Namely, all characteristic zero proofs at that time used either the structure of the local fundamental group of the complement of a normal crossings curve in a regular surface (Jung [J], Walker [W]), or the Tschirnhausen transform killing the degree m -1 term in a polynomial of degree m by a linear change of variable. The (*) Partially supported by program Ayudas a la Movilidad de Profesores of the University of Valladolid corresponding first approach fails in characteristic p > 0 for similar reasons as in dimension one, and the second fails if m is divisible by p. Abhyankar's idea was to use ramification theory of valuations to reduce the Local Uniformization of valuations to that of Artin-Schreier coverings of a regular germ of surface. Then he could prove directly Local Uniformization in this case by controlling the behaviour under quadratic transform of a certain monomial in the Newton polygon of the singularity. All of these ideas have exerted a strong influence on our proof [CP1].

Refinement and extensions of Abhyankar's theorem include the proof of Embedded Resolution (Abhyankar [A2], Hironaka [CGO, Appendix]) for surfaces, and the extension of Resolution of singularities to any excellent surface (Lipman [L]).

In dimension three, the only result available up to date was also due to Abhyankar [A2] in 1966. However, this result was restricted to algebraically closed ground fields and excluded the small characteristics p = 2, 3, 5. The reason of this last restriction comes from an argument of Albanese used by Abhyankar: one first constructs a birationally equivalent model to the singularity which has multiplicity at most 6. When p > 6, Tschirnhausen transforms can be applied successfully to the local equations of this model, and one essentially reduces to Embedded Resolution of surfaces, previously proved by Abhyankar.

In his characteristic zero proof, Hironaka [H] introduced the very important notion of directrix. This is the minimal space of linear forms necessary to write down the initial forms of the equation of a singularity. Its importance is due to the following: when Hironaka's main invariant (Hilbert-Samuel function HS) does not strictly drop along his blowing up procedure, the dimension τ of this space does not decrease. Even more, the directrix appears as the space of initial forms of the equations of a regular space W which has maximal contact with the singularity; there is a new singularity defined on W whose resolution will make (HS, -τ ) strictly decrease for the lexicographic ordering. The latter point is crucial in Hironaka's proof. This is no more true in characteristic p > 0. Giraud [START_REF]Étude locale des singularités[END_REF] showed that the appropriate space to be considered in positive characteristic is the Ridge. The Ridge is the minimal space of additive forms (linear combinations of p α -powers of variables with scalar coefficients) necessary to write down the initial forms of the equations. He proves in [START_REF]Contact maximal en caractéristique positive[END_REF] the existence of a certain space W with the above properties except one: W is no more regular, and Hironaka's proof does not extend.

Another important tool introduced by Hironaka [H1] is the characteristic polyhedron. This generalizes Newton polygons of plane curves to all dimensions and to arbitrary subschemes. Given a germ of subscheme, Hironaka's construction consists in choosing a concrete projection, transverse to the directrix, which minimizes the induced projection of the Newton polyhedron associated with the subscheme. The image of the Newton polyhedron by the resulting projection is called the characteristic polyhedron. Hironaka used this tool to build his proof of Embedded Resolution for surfaces. Cossart [START_REF]Sur le polyèdre caractéristique[END_REF], Moh [Mo] used it to prove Resolution of singularities for threefolds with local equation

y p + f (u 1 , u 2 , u 3 ) = 0, f ∈ k[[u 1 , u 2 , u 3 ]].
A new approach to the Resolution problem was initiated by de Jong [dJ]. He proved that any algebraic variety has a covering which admits Resolution. The composed map is called an alteration and induces a finite extension of the function field. One can furthermore get this extension to be separable if the ground field is perfect. This method leads to a new proof of (birational) Resolution of singularities in characteristic zero (Bogomolov-Pantev [BP] and Abramovich-de Jong [AdJ]), which unfortunately does not extend to positive characteristic.

The Local Uniformization problem has been attacked by Spivakovsky, Teissier [T] and F.V. Kuhlmann [K], [KK]. Spivakovsky began a systematic study of the graded algebra associated with a valuation ν centered in the local ring R of a singularity. This graded ring gr ν R is not Noetherian

INTRODUCTION

The purpose of this article is to prove the main theorem below. This will prove conjecture 3.1 of [CP1]. Let us recall a definition.

Definition. Let k be a field characteristic p > 0 and S be a regular local ring of dimension three, essentially of finite type over k and such that K := QF (S) has transcendance degree 3 over k. An Artin-Schreier (resp. purely inseparable) singularity of dimension three over S is the spectrum of a local ring R of the form R := (S[X]/(h)) (X,u 1 ,u 2 ,u 3 ) , h := X p -g p-1 X + f, [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF] where m S := (u 1 , u 2 , u 3 ) is the maximal ideal of S, h is irreducible over the quotient field of S and f, g ∈ m S , g = 0 (resp. f ∈ m S , g = 0). We denote by η the morphism η : X 0 := Spec( R) -→ Spec(S).

Main theorem. Let k be a field of positive characteristic which is differentially finite over a perfect field k 0 , i.e. Ω 1 k/k 0 has finite dimension. Let S be a regular local ring of dimension three, essentially of finite type over k and such that K := QF (S) has transcendance degree 3 over k. Let R be an Artin-Schreier or purely inseparable singularity of dimension three over S.

Let K := QF (S) and L := QF ( R) (in particular L/K is a finite field extension).

Then, each k-valuation µ of L dominating R and satisfying properties (i) and (ii) below has a local uniformization: (i) µ has rank one and κ(µ)/κ(S) is algebraic; (ii) µ is the unique extension of its restriction to K.

In [CP1], it is proved that this theorem gives an affirmative answer to conjecture [CP1, 3.1] that we recall below.

Theorem. Let k be a field of positive characteristic which is differentially finite over a perfect field k 0 and Z/k be a reduced quasiprojective scheme of dimension three with singular locus Σ. There exists a projective morphism π : Z → Z, such that (i) Z is regular. (ii) π induces an isomorphim Z\π -1 (Σ) ≃ Z\Σ. (iii) π -1 (Σ) ⊂ Z is a divisor with strict normal crossings.

We let R := S[X] (X,m S ) , X 0 =Spec(R/(h), x 0 his closed point, M = (X, m S ), and k(x 0 ) = R/M is a finitely generated field extension of k. We denote by (u 1 , u 2 , u 3 ) a regular system of parameters (r.s.p. for short) of S, so M = (X, u 1 , u 2 , u 3 ).

We denote by Σ(X 0 ) (resp. Σ p (X 0 )) the singular locus (resp. the locus of multiplicity p) of X 0 , omitting reference to X 0 when the context is clear.

Let R µ be the valuation ring of µ and M µ its maximal ideal. By assumption (i), the group of values of µ is Archimedean, and the center y of µ in any model Y /k of L is always a closed point. Note the following consequence of assumption (ii): (X 0 , x 0 ) is analytically irreducible. Namely, (X 0 , x 0 ) is analytically reduced because S is an excellent ring ([Ma] section 32); any two distinct irreducible factors of h in R induce distinct extensions of R µ ∩ S to R/(h) = R. From Hironaka's theory of maximal contact [START_REF]Contact maximal en caractéristique positive[END_REF], and from resolution of singularities in dimension two, it is enough to build some local hypersurface model (X ′ , x ′ ) of K(X 0 ) such that µ is centered in (X ′ , x ′ ) and x ′ ∈ Σ p (X ′ ). When such a model has been constructed, we say that "the local uniformization problem is solved for µ". This model will be constructed by a sequence of birational transformations which are either blowing ups of X 0 along regular centers (chapter 1, II. 4.6 and II.5.1) or blowing ups along regular cylinders over the base SpecS (chapter 1, III).

A complete proof of the existence of such (X ′ , x ′ ) is given in the following four chapters. Along all this article, we assume that ord x 0 (h) = p.

GENERAL OVERVIEW OF THE PROOF

In chapter 1, we introduce our main invariant ι(x) := (ord x h, Ω(x)) at any point x ∈ X 0 . To begin with, it can be assumed that X is nonsingular away from η -1 (E), E a divisor with normal crossings. So Spec(S) is endowed with a logarithm structure Ω 1 S|k 0 (logE). Then Ω(x) = (ω(x), ω ′ (x)) ∈ N × {1, 2, 3} is built up from certain Jacobian ideals J(f, E) [START_REF]Sur le polyèdre caractéristique[END_REF] when the Hironaka characteristic polyhedron ∆(h; u 1 , u 2 , u 3 ; X) ⊆ R 3 0 associate with (1) is minimal [H1]. The case ω(x) = 0 is easily dealt with in II.4.6 by a simple combinatorial algorithm (Hironaka's game). When ω(x) > 0, the refinement ω ′ (x) ∈ {1, 2, 3} essentially stores in the information that ω(x) is computed from g (ω ′ (x) = 1), from f alone (ω ′ (x) = 2) or from both f and g (ω ′ (x) = 3) in equation [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF]. The main point is our definition of permissible blowing ups for Ω(x) and which is non-increasing by such blowing ups (section II.5). Our notion of permissible blowing ups is more restrictive than that of Hironaka (i.e. regular and equimultiple centers for the hypersurface X 0 ). The main difficulty which is overcome here is to get some hold on the transformation laws for Hironaka's characteristic polyhedra under blowing ups which are permissible in our sense. The cases ω ′ (x) = 3 (theorem II. 5.6) and ω ′ (x) = 1 (theorems I.1 and I.2.7 of chapter 2) are easily dispatched once this behavior has been understood. In these cases, there exists some form of maximal contact for ι(x).

In chapter 2, we begin the definition of a secondary invariant κ(x) ∈ {0, 1, 2, 3, 4, 5, 6} which is a multivalued function. The case κ(x) ∈ {0, 1} (I. 2.3 and I.2.5) corresponds to Abhyankar's good points: some reasonable algorithm makes Ω(x) drop.

In the remaining case ω ′ (x) = 2, we cannot produce any notion of maximal contact for ι(x) in general. The proof is then casuistic: we define κ(x) ∈ {2, 3, 4, 5, 6} in terms of the equation ( 1) and the strategy is to drop the smallest value of the multi-valued function (ι(x), κ(x)) lex . The proof goes from chapter 2 section II to the end of this article.

Section II of chapter 2 recollects several cases where κ(x) ∈ {0, 1}.

In chapter 3 (resp. chapter 4), we define and resolve κ(x) ∈ {2, 3, 4} (resp. κ(x) ∈ {5, 6}). Roughly speaking, the cases κ(x) ∈ {2, 3, 4} (resp. κ(x) ∈ {5, 6}) mean that our Jacobian ideal J(f, E) is transverse (resp. tangent) to E in a certain sense.

It is worth noting that in the case κ(x) = 3, we are lead to use nonpermissible blowing ups to prepare the base SpecS.

We now include a detailed summary of the proof.

DETAILED SUMMARY OF THE PROOF

CHAPTER 1: Invariants and blowing ups.

In this chapter, we define our main invariant ι(x 0 ) := (ord x 0 (h), Ω(x 0 )) at the center x 0 ∈ X 0 := Spec( R) of µ. We have Ω(x 0 ) := (ω(x 0 ), ω ′ (x 0 )) ∈ N × {1, 2, 3} (definition II.4).

The case ω(x 0 ) = 0 is resolved by a simple combinatorial algorithm. This means that we can make ord x 0 (h) strictly decrease at the center of µ (II. 4.6).

When ω(x 0 ) 1, we define a notion of permissible center and prove that ι(x 0 ) does not increase by permissible blowing-ups (II.5).

Finally, it is proved that ι(x 0 ) can be strictly decreased when ω ′ (x 0 ) = 3 (II. 5.6).

I. It can be assumed that X 0 is regular away from η -1 (E), E normal crossings divisor on Spec(S) and g.c.d. E (f, g p ) = 1.

II.1 to II. 1.5. Introduction of Hironaka's characteristic polyhedron ∆(h; u 1 , u 2 , u 3 ; X) ⊂ R 3 0 at any point x ∈ X 0 not necessarily closed. Associated invariants: δ(x) ∈ 1 p N, H(x) := g.c.d. E (f, g p ) and the directrix.

II.2 to II.2.3. Hironaka's characteristic polyhedron ∆(h; u 1 , u 2 , u 3 ; X) ⊂ R 3 0 requires coordinates in R the formal completion of R. However, its initial face and our invariant δ(x) can be computed with coordinates in R, whenever η(Y ) (Y = {x}) has normal crossings with E (proposition II.2.2). II.3 to II.4.3. We define J(f, E), the ideal generated by the coefficients of H(x) -1 df ∈ Ω 1 S/k 0 (logE). The main invariant is:

ω(x) := min{ord x (J(f, E), H(x) -1 g p )},
where the minimum is taken over all possible (X, u 1 , u 2 , u 3 ) computing Hironaka's characteristic polyhedron and E ⊂div(u 1 u 2 u 3 ) (II.4). Another invariant is ǫ(x) := ord x (H(x) -1 f, H(x) -1 g p ),

and we always have ǫ(x) -1 ω(x) ǫ(x) (II. 3.3).

The invariant ord x (H(x) -1 f, H(x) -1 g p ) does not depend on the choice of (X, u 1 , u 2 , u 3 ) as above, but ord x (J(f, E), H(x) -1 g p ) may depend on it (II. 3.3.1 and II.3.3.2). This phenomenon is encoded in ω ′ (x) ∈ {1, 2, 3}: when ord x (J(f, E), H(x) -1 g p ) depends on choices of coordinates, we let ω ′ (x) = 3. Otherwise, we let ω ′ (x) = 1 if ω(x) = ord x (H(x) -1 g p ) and ω ′ (x) = 2 if ω(x) < ord x (H(x) -1 g p ) (II.4). We denote Ω(x) = (ω(x), ω ′ (x)). II.4.4 to II.4.7. The case ω(x 0 ) = 0 is solved. The set W := {x ∈ Σ p | ω(x) 1} is Zariski closed of dimension at most 1 (II. 4.7).

We assume that ω(x 0 ) 1 from this point on. II.5 to II.5.2. We define permissible centers for our invariant Ω. A center Y ⊂ X 0 with generic point y is permissible if it is permissible in Hironaka's sense (Y regular and ord x 0 (h) = ord Y (h) = p), η(y) has normal crossings with E and satisfies one of the following conditions: (i) ǫ(x 0 ) = ǫ(y) (first kind) (ii) ω(x 0 ) = ǫ(x 0 ) -1 = ǫ(y) plus some extra transversality condition (second kind). This is defined in II.5.1. The point x 0 is always permissible of the first kind.

II. 5.3 and II.5.3.1. The condition H(x 0 ) = 1 of I has an essential consequence: If (X, u 1 , u 2 , u 3 ) computes Hironaka's characteristic polyhedron and E ⊂div(u 1 u 2 u 3 ), e : X 1 -→ X 0 is the blowing up along a permissible (in Hironaka's sense) center Y , then ord x ′ (h ′ ) < p, whenever x ′ is not on the strict transform of div(X) where h ′ is the strict transform of h (II. 5.3(i)).

The condition H(x 0 ) = 1 of I is not stable under permissible blowing up, but we can solve directly the local uniformization problem for µ whenever we lose this condition after performing a permissible blowing up (II. 5.3(ii)).

We assume that H(x 0 ) = 1 from this point on.

Important remark. In spite of this statement, we emphasize that there exists in general no choice of X in such way that div(X) has maximal contact with respect to the invariant ι. In particular, one needs to minimize polyhedra after each performed blowing up.

II. 5.3.2. This theorem is fundamental and repeatedly used along this article; resolution in dimension 2 heavily relies on this result. Whenever one performs a permissible blowing up e : X 1 -→ X 0 and pick x ′ ∈ X 1 on the strict transform of div(u 1 ), we can apply this result to get an estimate on ω(x ′ ).

II.5.4 to II.5.5. Proof that ι(x ′ ) := (ord x ′ (h ′ ), Ω(x ′ )) ι(x 0 ) if e : X 1 -→ X 0 is a permissible blowing up. Any point x ′ ∈ X 1 with e(x ′ ) = x 0 and ι(x ′ ) = ι(x 0 ) is said to be very near x 0 . II.5.6 to II.5.7. We prove that ι(x 0 ) can be strictly decreased after a finite number of closed point blowing ups when ω ′ (x 0 ) = 3.

II.6 to II.6.2. If H(x 0 ) = 1, the function ω is uppersemicontinuous on Σ p (X 0 ).

We assume that ω ′ (x 0 ) 2 from this point on.

III In those situations analysed in chapter 3 II below, we use nonpermissible blowing ups of a special type described in this section.

Important remark. In all that follows, it is always assumed that ∆(h; u 1 , u 2 , u 3 ; X) is minimal. Chapter 3 II and our definitions of κ(x) = 2, 3, 4, 5, 6 (chapters 3 and 4) rely on the shape of the expansion of f under this assumption.

CHAPTER 2: A few easy cases.

Note that X now denotes some iterated blowing up of X 0 and x ∈ X the center of µ in X.

We prove that ι(x 0 ) can be strictly decreased by a finite number of permissible blowing ups when ω ′ (x 0 ) = 1 (theorem I and I.2.7).

We introduce a new invariant κ with κ(x) ∈ {0, 1, ..., 6}. The case κ(x) 1 corresponds to Abhyankar's good points and we give a few examples with κ(x) 1 (I. 2.3 and I.2.5) and section II.

I.1 to I.2.7. To solve the case ω ′ (x) = 1, we argue on the number of irreducible components of the normal crossing divisor H(x) -1 g p . This is easy (theorem I.1) unless this number is 1, say div(H(x) -1 g p ) red =div(u 1 ). In this remaining case, we project Hironaka's characteristic polyhedron ∆(h; u 1 , u 2 , u 3 ; X) ⊂ R 3 0 on the (u 2 , u 3 ) plane and use Hironaka's invariants for dimension 2 resolution of singularities which we control under permissible blowing ups (I.2 to I.2.2). This works straightforwardly because there is maximal contact with div(u 1 ) for the invariant ι.

We introduce the multivalued function κ. We have κ(x) = 0 (resp. κ(x) = 1) if ι(x) strictly drops after performing a finite number of closed point blowing ups (resp. of permissible blowing ups) (definitions I. 2.3 and I.2.5).

We prove that ω ′ (x) = 1 implies κ(x) 1 using the above invariants (I.2.4 to I.2.7).

We assume that ω ′ (x) = 2 from this point on. II.1.1 to II.1.4. We define a notion of directrix adapted to our invariant ι and permissible blowing ups: if e : X 1 -→ X is a permissible blowing up of the first kind, any x ′ ∈ X 1 with ι(x ′ ) = ι(x) (x ′ very near x) maps to the projective space PDir(x) associated to the directrix VDir(x). We denote by τ ′ (x) the codimension of VDir(x).

II. [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF]II.3 and II.4. These examples of κ(x) 1 are fundamental preliminaries of chapter 3: they will be used to prove further on that the case κ(x) 2 is stable by blowing up closed points. II.5. This lemma classifies some cases when τ ′ (x) = 3, hence κ(x) = 0 by II.1.4. CHAPTER 3: Resolution when there is transverseness.

This chapter is devoted to some cases where VDir(x) is not contained in < {U i | div(u i ) ⊂ E} >, which we refer to as the "transverse case". Unfortunately, transverseness is not even stable by blowing up closed points.

We introduce subcases of transverseness called κ(x) = 2 (I, definition I.1), κ(x) = 3 (II, definition II.1.1), κ(x) = 4 (III, definition III.2).

We have that (ι(x), κ(x)) can be strictly decreased in each of these cases: theorem I.8 for κ(x) = 2; definition II.1.3 and II.7 for κ(x) = 3; definitions III.3 and III.4, propositions III.5 and III.6 for κ(x) = 4.

I Resolution of the case κ(x) = 2. I.1. Definition of κ(x) = 2. We have κ(x) = 2 if: (i) ǫ(x) = ω(x) and VDir(x) ⊂< {U i | div(u i ) ⊂ E} >.
Unfortunately, this is not stable by blowing up closed points, so we have to include as well the following case: (ii) ǫ(x) = 1 + ω(x) plus some cross derivative condition. We assume that this condition (*) holds up to the end of section I (remark I.4). I.5 to I.6.3. By (*), we have E ⊆div(u 1 u 2 ). We project Hironaka's characteristic polyhedron ∆(h; u 1 , u 2 , u 3 ; X) ⊂ R 3 0 on the (u 1 , u 2 ) plane. This projection can be minimized over all choices of the X and u 3 coordinates, and we call this minimizing "well preparedness of variables" (definitions I. 5.1.1 and I.5.1.2).

Then our invariants are essentially Hironaka's invariants for dimension two resolution of singularities computed for the projection of ∆(h; u 1 , u 2 , u 3 ; X) (section I.5). The main invariant is denoted γ(x) ∈ N (definition I. 5.2.3).

Existence of well prepared variables is proved in proposition I.6.

I.7.

Well prepared coordinates may be chosen in such a way that every very near point x ′ ∈ X 1 in the blowing up X 1 -→ X of x ∈ X lies on the strict transform of div(u 3 ) or κ(x) 1.

Important remark. In spite of this statement, we emphasize that there exists in general no choice of (X, u 3 ) in such way that div(u 3 ) has maximal contact with respect to our invariants. In particular, one needs to well prepare again coordinates after each performed blowing up.

I.8. Statement of the main theorem: ι(x) can be strictly decreased whenever κ(x) = 2. I.8.1. Proof of I.8 when γ(x) = 0.

We assume that γ(x) 1 up to the end of section I.

Important remark. The following is proved below. Let e : X 1 -→ X be the blowing up of x.

Then, either κ(x) 1 or

κ(x ′ ) = κ(x) = 2, (*) holds at x ′ and γ(x ′ ) γ(x). (Γ)
Unfortunately, none of cases (*1),(*2) or (*3) is stable by blowing up closed points, nor eventually gets stable by blowing up enough; this produces extra technical difficulties. I.8.2 to I.8.3. Control of γ(x) under blowing up the closed point x in case (*1) or (*2) and when x ′ belongs to the first chart of the blowing up X 1 (i.e. away from the strict transform of div(u 1 )).

(Γ) is proved in

I.8.3(a)(b)(c)(d).
All other statements in I.8.3 give sharper estimates of the invariants which appear along the proof. These estimates will be used to study the cases where γ(x ′ ) = γ(x).

Some very special case (Dis) appears when ω(x) = p = 2 which requires further work (theorem I.10 below).

I.8.4 to I.8.6. In some (*3) cases, blowing up a permissible curve of the second kind gives κ(x) 1. This result is included there to simplify I.8.7 and I.8.9. I.8.6.1 to I.8.7. Control of γ(x) under blowing up the closed point x in case (*3) and when x ′ belongs to the first chart of the blowing up X 1 .

(Γ) is proved in I.8.7(a)(b)(d). All other statements in I.8.7 give sharper estimates of the invariants which appear along the proof. These estimates will be used to study the cases where γ(x ′ ) = γ(x). I.8.8. Control of γ(x) under blowing up the closed point x in case (*1) or (*2) and when x ′ is at infinity in the blowing up X 1 : proof of (Γ) in this case. I.8.9. Control of γ(x) under blowing up the closed point x in case (*3) and when x ′ is at infinity in the blowing up X 1 : proof of (Γ) in this case. I.9. Proof of I.8 when γ(x) = 1 plus some extra condition in case (*3). I.10. Proof of I.8 when γ(x) = 2, x is in case (*1) plus some extra condition. This theorem deals with those special cases that appeared in I.8.3(e) and I.8.7(b) (in particular the case (Dis)).

Important remark. Synthesis of I.8.2 to I.10.

The invariant γ(x i ) takes a constant value γ(µ) for i >> 0 where

X o ←-X 1 ←-... ←-X i ←-...
is the quadratic sequence along µ and x i ∈ X i its center, or κ(x) 1.

I.11 to I.11.4. If γ(µ) = 1 or if γ(µ) 3, the estimates on γ(x) proved above imply the existence of a formal curve C ⊂ X, C ⊂ E whose strict transform contains all the x i 's, i 0. This is a contradiction since C is not contained in the singular locus Σ of X (remember that Σ ⊆ η -1 (E), chapter 1 I).

If γ(µ) = 2, we reduce successively in I.11.4 to lemmas I.11.1, I.11.2 and I.11.3. We eventually get the existence of a formal curve C ⊂ X as above -a contradiction -unless κ(x) 1.

II Resolution of the case κ(x) = 3.

II.1 and II.1.1. Definition of κ(x) = 3. This other important case of transverseness which is not contained in κ(x) = 2 goes as follows:

E ⊆div(u 1 u 2 ) and (H(x) -1 ∂f ∂u 3 ≡ (u

ω(x) 3 
) mod (u 1 , u 2 ). We may have ǫ(x) = ω(x) or ǫ(x) = 1 + ω(x). Necessarily 1 + ω(x) = 0 mod p.

We project Hironaka's characteristic polyhedron ∆(h; u 1 , u 2 , u 3 ; X) ⊂ R 3 0 on the (u 1 , u 2 ) plane. This projection can be minimized over all choices of the X and u 3 coordinates and we call this minimizing "well preparedness of variables".

Then our invariants are essentially Hironaka's invariants for dimension two resolution of singularities computed for the projection of ∆(h; u 1 , u 2 , u 3 ; X). The main invariant is denoted γ(x) ∈ N -{0} (II.1).

Existence of well prepared variables is proved in II.1.

Important remarks.

Unfortunately, κ(x) = 3 is not stable by blowing up a closed point. We will use certain non permissible blowing ups in this section which preserve the Artin-Schreier or purely inseparable structure of h, the assumption η(Σ) ⊆ E, H(x) = 1 and do not increase (ι(x), κ(x)) lex .

The strategy is as follows: list some cases where κ(x) = 3 can be reduced to κ(x) 2 by permissible blowing ups (II.1.2 to II.2.2). Then, in the general case of κ(x) = 3, perform a sequence of nonpermissible blowing ups to reduce to one of these previous cases (II.3 to II.7).

II.1.2 to II.2.2. Well prepared coordinates may be chosen in such a way that every very near point x ′ ∈ X 1 in the blowing up X 1 -→ X of x ∈ X lies on the strict transform of div(u 3 ) (II. 1.2).

We have κ(x) 1 in some cases where the projection of Hironaka's characteristic polyhedron has only one vertex (II.2). III.1 to III.2. The most general case of transverseness is defined in III.2. Once κ(x) = 2 and κ(x) = 3 have been solved, the only remaining case of transverseness is:

II.3. If κ(x) = 3 and e : X 1 -→ X is the blowing up along η -1 (V(u 1 , u 2 )) and x ∈ e -1 (x) then, ι(x) ι(x), κ(x ′ ) κ(x) = 3 and γ(x ′ ) γ(x).
E =div(u 1 ) and ord (u 2 ,u 3 ) (H(x) -1 ∂f ∂u 3 mod (u 1 )) = ω(x). This remaining case is reduced to lemma III.1. Note that the assumptions of III.1 do not imply κ(x) 4 rather there is an algorithm to reduce this case to κ(x) 3.

III.3 to the end. Assume κ(x) = 4, x is good if a finite sequence of permissible blowing ups makes (ι(x), κ(x)) strictly drop (III.3).

Assume that κ(x) = 4. We let τ (x

) := τ (cl ω(x) J(f, E) + ({U i | div(u i ) ⊆ E})) 2 (III.4).
Assume that κ(x) = 4. There are two different cases: τ (x) = 2 (III.5) or τ (x) = 3 (III.6). In both cases, x is good.

Important remark. κ(x) = 4 is not stable under permissible blowing ups; in a sequence of permissible blowing ups

X = X 0 ←-X 1 ←-• • • ←-X i • • • ←-X n ,
it may happen that for 0 < i < n, κ(x) > 4, but then, x i will verify the assumptions of III.1.

CHAPTER 4: Resolution when there is tangency

Tangency is the complement case of transverseness, i.e. all remaining cases are called tangent. In III, tangency is reduced to the case κ(x) = 5. When κ(x) = 5, we prove that (ι(x), κ(x)) lex can be strictly decreased by permissible blowing ups (theorem II.1 and definition I.1).

I.1 Definition of κ(x) = 5. We have κ(x) = 5 if div(u 1 ) ⊆ E and one of the following conditions holds:

ǫ(x) = ω(x), (H(x) -1 f ) ≡ (u ω(x) 1 ) mod (u 2 , u 3 ), ǫ(x) = 1 + ω(x), E ⊆div(u 1 u 2 ) and (H(x) -1 ∂f u 3 ) ≡ (u ω(x) 1 
) mod (u 2 , u 3 ). x is said to be good if a finite sequence of permissible blowing ups makes (ι(x), κ(x)) lex strictly drop.

I.2 to I.2.4. We project Hironaka's characteristic polyhedron ∆(h; u 1 , u 2 , u 3 ; X) on the (u 2 , u 3 ) plane.

Then our invariants are essentially Hironaka's invariants for dimension two resolution of singularities computed for the projection of ∆(h; u 1 , u 2 , u 3 ; X) (section I.5). The main invariant is denoted γ(x) ∈ N (definition I.2.4). I.3 to I.3.3. If e : X 1 -→ X is the blowing up of a closed point and x ′ ∈ e -1 (x), then (ι(x ′ ), κ(x ′ )) lex (ι(x), κ(x)) and, if equality holds, x ′ lies on the strict transform of div(u 1 ) (maximal contact) (I.3).

Same result as in I.3 for the blowing up of a permissible curve (with some extra assumption when ǫ(x) = 1 + ω(x)) (I. 3.3).

I.4 to I.4.1. If e : X 1 -→ X is the blowing up of a closed point with ω(x) = ǫ(x) and x ′ ∈ e -1 (x) in the first chart with (ι(x ′ ), κ(x ′ )) = (ι(x), κ(x)), then γ(x ′ )
γ(x) and control of auxiliary invariants.

I.4.2.

When ω(x) = ǫ(x) and the projection of ∆(h; u 1 , u 2 , u 3 ; X) has only one vertex plus some extra conditions, x is good. I.5. If e : X 1 -→ X is the blowing up of the closed point with 1+ω(x) = ǫ(x) and x ′ ∈ e -1 (x) in the first chart with (ι(x ′ ), κ(x ′ )) = (ι(x), κ(x)), then γ(x ′ ) γ(x) and control of auxiliary invariants. I.5.1. Some cases where x is good and γ(x) 1, 1 + ω(x) = ǫ(x). I.5.2 and I.5.3. Blowing up of the closed point x, case where x ′ is at infinity: (ι(x ′ ), κ(x ′ ), γ(x ′ )) (ι(x), κ(x), γ(x)) and control of auxiliary invariants (ω(x) = ǫ(x) in I.5.2, 1 + ω(x) = ǫ(x) in I.5.3). I.6. Some cases where x is good and γ(x) 1. I.7. Sharpening of I.4.2: when ω(x) = ǫ(x) and the projection of ∆(h; u 1 , u 2 , u 3 ; X) has only one vertex, x is good.

II End of the case κ(x) = 5 II.1. Statement of the theorem. Let x ∈ Σ p with κ(x) = 5, then x is good.
We perform the quadratic sequences along µ. We suppose that (ι(x), κ(x)) lex does not strictly decrease. As usual, there is a minimal value γ(µ) of γ(x i ) for i >> 0.

II.2. Proof of II.1 when m(x i ) = 2 for i >> 0. II.3. Proof of II.1 when m(x i ) = 3 for i >> 0.
Till the end of II, we assume that neither the assumption of II.2, nor II.3 is satisfied.

II.4 to II.4.2. For i >> 0, x i+1 is rational over x i and γ(µ) 2. Furthermore γ(µ) 1 implies x is good.

II.4.3. Proof of II.1 when γ(µ) = 2.
III End of the proof of the main theorem. III.1. κ(x) = 6 means "no expansion of h gives κ(x) ∈ {2, 3, 4, 5}".

x is said to be good if the quadratic sequence along µ makes (ι(x), κ(x)) lex strictly drop.

III.2. Main result: κ(x) = 6 implies x is good. The end is devoted to its proof.

III.3. κ(x) = 6 implies τ ′ (x) = 2. furthermore, if e : X 1 -→ X is the blowing up of the closed point x, and (ι(x ′ ), κ(x ′ )) = (ι(x), κ(x)), then x ′ is rational over x.
III.4 to III.5.1. If κ(x) = 6 and (either E =div(u 1 ), or VDir(x) ⊂< {U i |div(u i ) ⊆ E} >), then x is good.

III.5.2 and III.5.3. We reduce to the case div(u

1 u 2 ) ⊆ E, VDir(x) ⊆< {U i |div(u i ) ⊆ E} > and ǫ(x) = ω(x).
III.6 to III.6.3. Proof in this last case.

In this chapter, we define our main invariant Ω(x 0 ) ∈ N × {1, 2, 3} in II.4. When Ω(x 0 ) is minimal, resolution is easily obtained by some combinatorial blowing up process in II.4.6. Otherwise, some notion of permissible blowing up w.r.t. this invariant is given in II.5.1.

The main results II.5.4 and II.6 respectively deal with the behavior of Ω(x 0 ) by permissible blowing ups and upper-semicontinuity of Ω(x 0 ) on Σ p (X 0 ). Before going that far, we introduce techniques of characteristic polyhedra due to Hironaka and differential invariants due to the first author and to his advisor Jean Giraud in section II, after performing some preparation of the singular locus Σ(X 0 ) in section I. Those nonpermissible blowing ups used in this article are described in III.

I Preparation of the singular locus.

In the Artin-Schreier case g = 0, we can suppose that g is a monomial, i.e. that there exists a reduced normal crossings divisor E ⊂ SpecS, such that

g = γ div(u i )⊆E u β i i , (1) 
with β i 0 and γ ∈ S invertible. Indeed, apply [CP] 8.1 with f 0 := g. The integers 1 e j 3 are defined by:

E = div(u 1 • • • u j ), β 1 • • • β e = 0 and β e+1 = • • • = β j = 0. We let E 0 := div(u 1 • • • u e ). Note that η : X 0 → SpecS is étale away from η -1 E 0 . In particular Σ ⊆ η -1 E 0 .
In the inseparable case g = 0, let df be the image of f in Ω 1 S/k 0 (where k is differentially finite over the perfect field k 0 ). We have df = 0 since f ∈ S p (remember that h is irreducible). We pick ϕ ∈ S, ϕ = 0, such that df does not vanish away from the set {ϕ = 0}. By [CP] 8.1, it can be assumed that f 0 := ϕ is a monomial whose support is defined to be E = div(u 1 • • • u j ). We let β i = ∞ for 1 i j and E 0 := E in this case. Like in the Artin-Schreier case, we have Σ ⊆ η -1 E 0 . See II.3.1 for an important consequence of the assumption.

Also note that, if g = 0, or if g = 0 and s ∈ E 0 , the fiber ring Spec(k(s) ⊗ S R/(h)) is local, i.e. η -1 (s) is a single point.

From now on, we suppose that (1) holds if g = 0, or that E is defined as above if g = 0 and that (unless stated otherwise) r.s.p.'s (u 1 , u 2 , u 3 ) of S are chosen according to the above convention on E 0 and E. We then say that (u 1 , u 2 , u 3 ) is adapted to E. We let

f = div(u i )⊆E u a i i f 0 , (2) 
where f 0 ∈ S is not divisible by any u i with div(u i ) ⊆ E. Finally, note that since (f, g) ⊆ m S , it can also be assumed that (f, g) ⊆ (u i ) for some i, 1 i j.

II The invariant ω.

As said before, we suppose that the center of µ in X 0 is a closed point, but, to prove some semicontinuity theorems, we have to define our invariants also at all points. In this section, x ∈ X 0 is not necessarily the center x 0 of µ: x is a point such that x 0 ∈ {x}. We always assume that x 0 ∈ Σ p in this section, but do not necessarily assume that x ∈ Σ p .

II.1 Notations. Let (u 1 , . . . , u n ), n 3 be a r.s.p. of S η(x) and E x (resp. E 0,x ) be the stalk of E (resp. E 0 ) at η(x). Then (X, u 1 , . . . , u n ) is a system of coordinates at x.

The associated polyhedron ∆(h; u 1 , . . . , u n ; X) ⊆ R n 0 (projection on the (u 1 , . . . , u n )-space of 1/p times the Newton polyhedron of h from the point (0, . . . , 0, 1)) can be minimized by a "translation on X", i.e. by replacing X by Z := X + ψ, ψ ∈ S η(x) as in [H1]. This translation does not modify g, nor the vanishing locus of df ∈ Ω 1 S/k 0 if g = 0. Also note that ∆(h; u 1 , . . . , u n ; X) = ∅ by definition if g = 0, and because S[X]/(h) is analytically reduced. For a given system of coordinates (X, u 1 , . . . , u n ), we denote

δ(X, u 1 , . . . , u n ) := inf{x 1 + • • • + x n |(x 1 , . . . , x n ) ∈ ∆(h; u 1 , . . . , u n ; X)} < ∞.
We also maintain the writing

f = div(u i )⊆E x u a i i f 0 of I(2), allowing f 0 ∈ S η(x) for arbitrary coordinates (X, u 1 , . . . , u n ) on S η(x) [X]. II.1.1 Definition of δ. Assume that the polyhedron ∆(h; u 1 , . . . , u n ; X) is minimal. Then δ(x) < ∞ is defined by: δ(x) := inf{ord η(x) (g), ord η(x) (f ) p } ∈ 1 p N. II.1.2 Definition of d i . Assume that the polyhedron ∆(h; u 1 , . . . , u n ; X) is minimal. Let d i (x) := inf{β i , a i p } for div(u i ) ⊆ E x and H(x) := div(u i )⊆E x u pd i (x) i ∈ S η(x) .
We extend the notation by setting d i (x) = 0 for div(u i ) ⊆ E x . Although all numerical invariants which have been associated with x depend on f , hence on the choice of minimal coordinates, we will see in II.2 that they usually do not.

II.1.3 Definition.

Let k be a field, S 1 a k-vector space of finite dimension and S = k[S 1 ] be the symmetric algebra. Let V := SpecS and I be a homogeneous ideal of S which defines a cone C := Spec(S/I). Let F be the following subfunctor of the functor represented by V : for every

k-scheme k ′ , F(k ′ ) = {v ∈ V (k ′ ) | L v (C × k k ′ ) ⊂ C × k k ′ },
where L v is the translation defined by v, i.e.

L v : V × k k ′ -→ V × k k ′ , L v (v ′ ) = v + v ′ .
This functor is represented by a closed group subscheme F/k of V which is also a cone and called the ridge of V . The scheme F has for equations homogeneous additive polynomials with coefficients in k. By a theorem of Hironaka, the ridge is the larger group subscheme of V which leaves C stable by translations. See [START_REF]Étude locale des singularités[END_REF]prop 1.5.4] and [Gi2 1.5]. By Hironaka's quoted theorem, the directrix is the smallest k-vector subspace Dir(I) of S 1 which generates an ideal containing the ideal of the ridge. If x ∈ X 0 , we will denote by C h (x) := Proj(gr m x S x /in x h) the tangent cone of X 0 at x. II.1.5 Notation. We denote by τ (I) the codimension of VDir(I) in S 1 .

II.2 Proposition. The integer δ(x) does not depend on any choice of coordinates (X, u 1 , . . . , u n ) such that ∆(h; u 1 , . . . , u n ; X) is minimal.

If div(u 1 ) ⊆ E 0,x , d 1 (x) does not depend on any choice of coordinates (X, u 1 , . . . , u n ) such that E 0,x ⊆ div(u 1 • • • u n ) and ∆(h; u 1 , . . . , u n ; X) is minimal. For any such choice of coordinates, the following holds: if V (h, u 1 ) = V (X, u 1 ), we have d 1 (x) = d 1 (y) = δ(y) > 0, where y is the generic point of V (X, u 1 ); we have d 1 (x) = 0 otherwise. Proof. See [START_REF]Polyèdre caractéristique et éclatements combinatoires[END_REF] for a stronger form of this proposition that will not be needed here. Let us first prove that δ(x) does not depend on the choice of coordinates minimizing the polyhedron of h. If there exists coordinates (X

′ , u ′ 1 , . . . , u ′ n ) such that δ(X ′ , u ′ 1 , . . . , u ′ n ) > δ(X, u 1 , . . . , u n ), then if we write h = X ′ p -X ′ g p-1 + f ′ , we have f ′ , g p ∈ m pδ(X ′ ,u ′ 1 ,...,u ′ n ) S η(x) . So δ(X ′ , u 1 , . . . , u n ) δ(X ′ , u ′ 1 , . . . , u ′ n ) > δ(X, u 1 , . . . , u n ): ∆(h; u 1 , .
. . , u n ; X) is not minimal, and this proves the first part of the proposition.

Note that the finite map V (h, u 1 ) → div(u 1 ) is either an isomorphism or purely inseparable of degree p whenever div(u 1 ) ⊆ E 0 .

If 0 < d 1 (x), then (h, u 1 ) red = (X, u 1 ). By the lemma below, the value of d 1 (x) computed in a given system of coordinates such that the polyhedron ∆(h; u 1 , . . . , u n ; X) is minimal satisfies

d 1 (x) = d 1 (y) = δ(y)
where y is the generic point of V (X, u 1 ) and ∆(h; u 1 ; X) = [δ(y), +∞[⊂ R + is minimal. But δ(y) does not depend on the choice of minimal coordinates by the first part of the proposition and the conclusion follows.

If

d 1 (x) = 0 and if V (h, u 1 ) → div(u 1
) is an isomorphism, then (h, u 1 ) red = (X +ψ, u 1 ), ψ ∈ S. We replace X by X + ψ, and get that ∆(h; u 1 , . . . , u n ; X + ψ) does not contain ∆(h; u 1 , . . . , u n ; X), which contradicts the minimality hypothesis. So d 1 (x) = 0 is equivalent to: V (h, u 1 ) → div(u 1 ) is not an isomorphism (hence purely inseparable of degree p). II.2.1 Lemma (Semi-continuity of the characteristic polyhedron). Assume that the polyhedron ∆(h; u 1 , . . . , u n ; X) is minimal. Let Y := V (X, u 1 , . . . , u i ) ⊂ SpecR and y be the generic point of Y for some i, 1 i n. The polyhedron ∆(h; u 1 , . . . , u i ; X) is minimal, where h is viewed as an element of ( S η(x) ⊗ S η(x) S η(y) )[X]. We have the equivalences:

(i) inf{x 1 + • • • + x i |(x 1 , x 2 , . . . , x n ) ∈ ∆(h; u 1 , u 2 , . . . , u n ; X)} 1 ⇔ Y ⊆ Σ p ; (ii) inf{x 1 +• • •+x i |(x 1 , x 2 , . . . , x n ) ∈ ∆(h; u 1 , u 2 , . . . , u n ; X)} > 1 ⇔ Y ⊆ Σ p and τ (I Y S η(y) ) = 1.
Proof. In fact the polyhedron ∆(h; u 1 , . . . , u i ; X) is the image of ∆(h; u 1 , . . . , u n ; X) by the projection π on the (x 1 , . . . , x i )-space, so a vertex v = (x 1 , . . . , x i ) of ∆(h; u 1 , . . . , u i ; X) is the projection π(w) of at least one vertex w = (x 1 , . . . , x n ) of ∆(h; u 1 , . . . , u n ; X). Let us prove the first assertion. We write

h = X p -X x∈E ǫ x u 1 (p-1)x 1 • • • u n (p-1)x n + x∈E φ x u 1 px 1 • • • u n px n , where (a) x = (x 1 , . . . , x n ), E ⊂ ∆(h; u 1 , . . . , u n ; X); (b 
) E is finite and contains all vertices of ∆(h; u 1 , . . . , u n ; X); (c) each of ǫ x and φ x is either invertible or identically zero in S η(x) . Let v = (x 1 , . . . , x i ) be a vertex of ∆(h; u 1 , . . . , u i ; X) and let us look at 1)x n = 0, then v is not solvable in ∆(h; u 1 , . . . , u i ; X). We claim that if one vertex w = (x 1 , . . . , x i , w i+1 , . . . , w n ) with π(w) = v is not solvable over S η(x) , then v is not solvable in ∆(h; u 1 , . . . , u i ; X). Namely, otherwise we have x 1 , . . . , x i ∈ N and we can find

X p -X x,π(x)=v ǫ x u 1 (p-1)x 1 • • • u n (p-1)x n + x,π(x)=v φ x u 1 px 1 • • • u n px n . If x,π(x)=v ǫ x u 1 (p-1)x 1 • • • u n (p-
ψ ∈ T := ( S η(x) /(u 1 , . . . , u i ) S η(x) ) ⊗ (S η(x) /(u 1 ,...,u i )S η(x) ) k(y) such that ψ p ≡ x,π(x)=v φ x u i+1 px i+1 • • • u n px n mod (u 1 , . . . , u i ) S η(x) ⊗ S η(x) S η(y) .
Since S is regular and excellent, the fiber ring T is an integral domain ([Ma] section 32). Therefore there exists a ∈ S η(x) , b ∈ S η(x) with ab ∈ (u 1 , . . . , u i ) S η(x) such that b p x,π(x)=v

φ x u i+1 px i+1 • • • u n px n ≡ a p mod (u 1 , . . . , u i ) S η(x) .
Since w is a vertex of ∆(h; u 1 , . . . , u n ; X), we must have w i+1 , . . . , w n ∈ N, and φ w modm S η(x) ∈ k(x) p , so w is solvable: a contradiction. The last two equivalences are now straightforward.

At this point, we remark that d i (x) = 0 whenever div(u i ) ⊆ E 0,x . Otherwise, d i (x) does not depend on the choice of x such that div(u i ) ⊆ E 0,x and is determined by II.2. From now on, we thus relax the notation by writing d i instead of d i (x).

II.2.2 Proposition. Let N ∈ N, δ(x 0 ) N < +∞ (resp. N = +∞). There exists X ∈ R (resp. X ∈ R) such that E ⊆ div(u 1 u 2 u 3 ) and (i) d i = inf{x i |(x 1 , x 2 , x 3 ) ∈ ∆(h; u 1 , u 2 , u 3 ; X)} whenever div(u i ) ⊆ E; (ii) no vertex v = (x 1 , x 2 , x 3 ) of ∆(h; u 1 , u 2 , u 3 ; X) with x 1 + x 2 + x 3 < N is solvable. In particular, δ(x 0 ) = inf{x 1 + x 2 + x 3 |(x 1 , x 2 , x 3 ) ∈ ∆(h; u 1 , u 2 , u 3 ; X)}.
Furthermore, if for some r.s.p.

(X ′ , u 1 , u 2 , u 3 ) of R, Y := V (X ′ , u 1 , u 2 ) ⊆ η -1 E is such that η(Y ) = V (u 1 , u 2 ) has normal crossings with E, we can choose X ∈ R (resp. X ∈ R) such that moreover ∆(h; u 1 , u 2 ; X) is minimal and Y = V (X, u 1 , u 2 ).
Proof. We first point out that the formal version (X ∈ R) is a consequence of II.2.1 except when Y has been specified.

We start with some r.s.p.

(X ′ , u 1 , u 2 , u 3 ) of R such that E ⊆ div(u 1 u 2 u 3 ) and a writing h = X ′ p -X ′ g p-1 + f ∈ S[X], f = div(u i )⊆E u a i i f 0 ∈ S, with a i maximal for each i. II.2.2.1 Suppose that d 1 =inf{x 1 |(x 1 , x 2 , x 3 ) ∈ ∆(h; u 1 , u 2 , u 3 ; X ′ ). Then d 1 > 0, so that div(u 1 ) ⊆ E 0 and V (h, u 1 ) is regular by II.2. If a 1 = 0, we can choose ψ ∈ S such that (h, u 1 ) red = (X ′ +ψ, u 1 ) and get a 1 > 0 after changing X ′ to X ′ +ψ. Note that u 2 divides ψ if div(u 2 ) ⊆ E 0 and a 2 > 0. Also note that if h ∈ (X ′ , u 1 , u 2 ) then ψ ∈ (X ′ , u 1 , u 2 ) ∩ S = (u 1 , u 2 ). Finally, if h ∈ (X ′ , u 2 , u 3 ) then we can choose ψ ∈ (u 2 , u 3 )S satisfying f ≡ ψ p mod(u 1 ) and (h, u 1 ) red = (X ′ + ψ, u 1 ). Therefore V (X ′ , u 2 , u 3 ) = V (X ′ + ψ, u 2 , u 3 ) in this case.
In other terms, it can be assumed that a i > 0 whenever div(u i ) ⊆ E 0 and d i > 0; moreover we still have

Y = V (X ′ , u 1 , u 2 ) in the new variables if Y = V (X ′ , u 1 , u 2 ) has been specified. The polyhedron ∆(h; u 1 ; X ′ ) = [a 1 /p, +∞[⊂ R + is not minimal, so δ(X ′ , u 1 ) = a 1 /p ∈ N; the initial form of h with respect to the unique vertex δ(X ′ , u 1 ) is X ′ p + U pδ(X ′ ,u 1 ) 1 Ψ p with Ψ ∈ QF (S/(u 1 )). Since f ∈ S, we actually have Ψ ∈ S/(u 1 ). Since div(u i )⊆E 0 u a i i divides f , we can lift Ψ to ψ ∈ S in such a way that div(u i )⊆E 0 u a i i , i = 1 divides ψ p . Replacing X ′ with X ′′ := X ′ + u 1 a 1 /p ψ, we get ∆(h; u 1 ; X ′′ ) ⊂ ∆(h; u 1 ; X ′ ) and ∆(h; u i ; X ′′ ) ⊆ ∆(h; u i ; X ′ ) whenever div(u i ) ⊆ E 0 , i = 1. Moreover we can choose ψ ∈ S such that Y = V (X ′′ , u 1 , u 2 ) if Y = V (X ′ , u 1 , u 2 ) ⊂ η -1 E
has been specified, as in the previous paragraph. By induction on a i , we achieve an expression h

= X ′ p -X ′ g p-1 +f ∈ S[X] with d i =inf{x i |(x 1 , x 2 , x 3 ) ∈ ∆(h; u 1 , u 2 , u 3 ; X ′ )} whenever div(u i ) ⊆ E, that is, ∆(h; u i ; X ′ ) is minimal whenever div(u i ) ⊆ E so that (i) holds.
II.2.2.2 Now consider the case where Y := V (X ′ , u 1 , u 2 ) ⊆ η -1 E has been specified. The polyhedron ∆(h; u 1 , u 2 ; X ′ ) is the image of ∆(h; u 1 , u 2 , u 3 ; X ′ ) by the projection π on the space of the (x 1 , x 2 ). Suppose that a vertex v = (x 1 , x 2 ) of ∆(h; u 1 , u 2 ; X ′ ) is solvable, i.e. does not belong to the minimal polyhedron. This means that there exist x 1 , x 2 ∈ N such that the Newton polyhedron of f -(µu x 1 1 u x 2 2 ) p is strictly contained in that of f , where µ ∈ S is invertible in S (u 1 ,u 2 ) . By the same argument as above, we can ensure µ p ∈ u pd 3 3 S in case div(u 3 ) ⊆ E. After changing X ′ with X ′ + µu x 1 1 u x 2 2 , we dissolve v without losing (i). We claim that this algorithm is finite: if not, it would mean that we dissolve an infinite number of vertices with x 1 or x 2 minimal, say x 1 . Since the polyhedron ∆(h; u i ; X ′ ) is minimal whenever div(u i ) ⊆ E, we get that div(u 1 ) ⊆ E, and therefore div(u 2 ) ⊆ E. First suppose that x 1 = 0. Necessarily, we have g = 0, and there exists ψ ∈ S such that f ≡ ψ p modu 1 S. We can assume as above that ψ p ∈ u pd i i S whenever div(u i ) ⊆ E. Also we have ψ ∈ (u 1 , u 2 )S, since f ∈ (u 1 , u 2 )S. We then replace X ′ with X ′ + ψ to get x 1 > 0 without losing (i). Now, assuming x 1 > 0, we have (f, g p ) ⊆ (u p 1 ), so that V (X ′ , u 1 ) ⊆ Σ. Therefore div(u 1 ) ⊆ η(Σ) ⊆ E by definition of E in section I: a contradiction.

II.2.2.3 We suppose that d i = inf{x i |(x 1 , x 2 , x 3 ) ∈ ∆(h; u 1 , u 2 , u 3 ; X ′ )} whenever div(u i ) ⊆ E and that ∆(h; u 1 , u 2 ; X ′ ) is minimal if V (X ′ , u 1 , u 2 ) ⊆ η -1 E has been specified. Then, we start Hiron- aka's algorithm of vertex dissolution: if there is a vertex v = (x 1 , x 2 , x 3 ) of ∆(h; u 1 , u 2 , u 3 ; X ′ ) which is solvable, there exists λ ∈ S invertible giving a translation on X ′ , say X = X ′ + λu x 1 1 u x 2 2 u x 3 3 , with ∆(h; u 1 , u 2 , u 3 ; X) ⊂ ∆(h; u 1 , u 2 , u 3 ; X ′ ) and v is not a vertex of ∆(h; u 1 , u 2 , u 3 ; X). Note that by projection ∆(h; u i ; X) ⊆ ∆(h; u i ; X ′ ) whenever div(u i ) ⊆ E, and ∆(h; u 1 , u 2 ; X) ⊆ ∆(h; u 1 , u 2 ; X ′ ) if Y = V (X ′ , u 1 , u 2 ) is specified.
Consequently, these projections are still minimal. Furthermore, if h ∈ (X ′ , u 1 , u 2 ), we have V (X, u 1 , u 2 ) = V (X ′ , u 1 , u 2 ). We will get the algebraic version (X ∈ R) of (ii) after a finite number of steps. In order to get ∆(h; u 1 , u 2 , u 3 ; X) minimal, we may need infinitely many steps. Then we construct a series X = X ′ + x λ x u x 1 1 u x 2 2 u x 3 3 ∈ R and this proves the formal version of the proposition. II.2.3 Definition. We call initial face or first face of ∆(h; u 1 , u 2 , u 3 ; X) (not necessarily minimal) the face of equation

x 1 + x 2 + x 3 = δ(X, u 1 , u 2 , u 3 ).
II.3 Adapted Jacobian ideals. We remind that k 0 is a perfect subfield of k and that Ω 1 k/k 0 has finite dimension. Then, for any r.s.p. (u 1 , u 2 , u 3 ) of S, a basis (dλ 1 , . . . , dλ s ) of Ω 1 S/k 0 may be chosen so that

u 1 = λ 1 , u 2 = λ 2 , u 3 = λ 3 . (1) 
The derivations ∂ ∂λ 1 , . . . , ∂ ∂λ s are defined by 1) is true for dλ 1 , . . . , dλ s , we can take

∂λ j ∂λ i = δ i,j , 1 i, j s. If (
λ i ∈ S, 4 i s, (2) 
such that S is unramified over k 0 (λ 4 , . . . , λ s )[u 1 , u 2 , u 3 ]. In this case, the derivations ∂ ∂λ i , 4 i s are so-called "derivations relative to constants".

For x ∈ SpecS, we extend the definition of H in II.1.2 by writing H(x) for H(x), where x is any point of X 0 such that η(x) = x. If x ∈ E 0 , x is uniquely determined as pointed out in I. On the other hand,

H(x) = 1 if x ∈ E 0 .
Let Y ⊆ E 0 be a regular closed subset of SpecS, having normal crossings with E. We denote I(Y ) = ({u i } i∈I ), I ⊆ {1, 2, 3}, where (u 1 , u 2 , u 3 ) is adapted to E. We let I E := I ∩ {1, . . . , j} (see It is easy to see that if [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF] is true for dλ 1 , . . . , dλ s , then

I
D = 1 i 1 j Su i 1 ∂ ∂u i 1 + j+1 i 2 3 S ∂ ∂u i 2 + 4 i 3 s S ∂ ∂λ i 3 , (3) 
D(Y ) = 1 i 1 j Su i 1 ∂ ∂u i 1 + i 2 ∈I\I E I(Y ) ∂ ∂u i 2 + i 3 ∈I c S ∂ ∂u i 3 + 4 i 4 s S ∂ ∂λ i 4 . (4) 
In particular, if Y = {η(x 0 )},

D(x 0 ) = 1 i 1 j Su i 1 ∂ ∂u i 1 + j+1 i 2 3 (u 1 , u 2 , u 3 ) ∂ ∂u i 2 + 4 i 3 s S ∂ ∂λ i 3 . (5) 
At every point (not necessarily closed) z ∈ SpecS, we let J (f, E) z := (Df )S z , J (f, E, Y ) z := (D(Y )f )S z and J (f, E, x) z := (D(x)f )S z . These definitions make J (f, E), J (f, E, Y ) and J (f, E, x) into sheaves of ideals on SpecS and we will usually omit the subscript z when the context is clear. Clearly, J (f, E, Y ) and

J (f, E, x) are subsheaves of J (f, E), J (f, E) z and J (f, E, Y ) z (resp. J (f, E, x) z ) coincide with S z for z ∈ E (resp. z ∈ E ∪{x}). If f = div(u i )⊆E u a i i f 0 , formula (3) shows that the monomial div(u i )⊆E u a i i divides J (f, E), J (f, E, x) and J (f, E, Y ). We let J(f, E) := H(x) -1 J (f, E), J(f, E, x) := H(x) -1 J (f, E, x), J(f, E, Y ) := H(x) -1 J (f, E, Y ).
The above definitions of J (f, E) z , J (f, E, Y ) z and J (f, E, x) z also make sense for f ∈ S z . In the special case when the polyhedron ∆(h; u 1 , . . . , u n ; X) is minimal, we will use the further notation ν(x) := ord x J(f, E), α(x) := ord x J(f, E, x), ǫ(x) := inf{ord x J(f, E, x), ord x (H(x) -1 g p )}.

We also write J (f, E, x), J(f, E, x), ν(x), α(x), ǫ(x) to mean J (f, E, x), J(f, E, x), ν(x), α(x), ǫ(x) respectively, where η(x) = x.

Note that all of these ideals depend on a choice of the variable X in S[X], since f does. If we make a translation on X, i.e. if we change

X to Z = X -θ, θ ∈ S, f is changed into f Z = f + θ p -θg p-1 . If g = 0, we have J(f, E) = J(f Z , E), J(f, E, x) = J(f Z , E, x) and J(f, E, Y ) = J(f Z , E, Y ).
In this purely inseparable case, we have:

II.3.1 Lemma. Assume that g = 0. Then J(f, E), J(f, E, x) and J(f, E, Y ) do not depend on any choice of coordinates (X, u 1 , u 2 , u 3 ) on R, even if ∆(h; u 1 , u 2 , u 3 ) is not minimal.
Moreover, there exists a closed subset W (resp.

W x , W Y ) of E of dimension at most one such that J(f, E) z = S z (resp. J(f, E, x) z = S z , J(f, E, Y ) z = S z ) whenever z ∈ W (resp. z ∈ E\W x , z ∈ W Y ).
Proof. The first part of the lemma has already been pointed out above. From our conventions in

I, J (f, E) z and J (f, E, Y ) z coincide with S z for z ∈ E. In case Y (resp. {x}) is an irreducible component of E, we have J(f, E, Y ) = J(f, E) (resp. J(f, E, x) = J(f, E)).
Therefore to prove the lemma, since J(f, E) and J(f, E, x) (resp. and J(f, E, Y )) coincide outside {x} (resp. Y ), it is enough to reach dimV(J(f, E)) 1.

If div(u 1 ) ⊆ E, it can be assumed by II.2.2 that f = u pd 1 1 f 0 , where u 1 does not divide f 0 , and either (i) d 1 ∈ N, or (ii) f 0 mod(u 1 ) ∈ QF (S/(u 1 )) p . In case (i), ord u 1 (u 1 ∂f ∂u 1 ) = pd 1 , and in case (ii), ord u 1 ( ∂f ∂λ i ) = pd 1 for some i = 1. Therefore u 1 does not divide J(f, E). This proves that dimV(J(f, E)) 1 and the proof is complete.

We now turn to the Artin-Schreier version of II.3.1. The important point now is that J(f, E), J(f, E, x) and J(f, E, Y ) do depend on the choice of coordinates (X, u 1 , u 2 , u 3 ) on R, even with ∆(h; u 1 , u 2 , u 3 ) minimal. However, the order of these ideals is better behaved. This is made precise in II.3.3 below and leads to the definition of our main invariant in II.4 below. The Artin-Schreier version of the set W in II.3.1 is defined in II.4.7.

II.3.2 Notations. Let x ∈ Σ. Then δ(x) > 0 and R x := O X,x = (S η(x) [X]) (X,u 1 ,...,u n ) .
With notations and conventions as in II.1, we define the monomial valuation v δ on R x by:

v δ (X) = 1, v δ (u i ) = 1 δ(x) , 1 i n. In particular, v δ (g) = ( div(u i )⊆E 0,x β i )/δ(x). When ∆(h; u 1 , . . . , u n ; X) is minimal, we define in δ h ∈ gr v δ R x = k(x)[X, U 1 , . . . , U n ] as follows: in δ h = X p -X γp-1 div(u i ) ⊆E x u i (p-1)β i div(u i )⊆E x U (p-1)β i i + div(u i ) ⊆E x u i pd i div(u i )⊆E x U pd i i Ψ
the initial form of h for the valuation v δ . Here, γ ∈ k(x), γ = 0 if ord η(x) g > δ(x), and Consistently with the previous paragraph, when ∆(h; u 1 , . . . , u n ; X) is minimal, we usually denote Φ := cl pδ(x) f, Ψ := cl ǫ(x) (H(x) -1 f ).

Ψ ∈ k(x)[X, U 1 , . . . , U n ] pδ(x)-ord η(x) H(x) , degrees counted w.r.t. ν δ . Given θ ∈ S η(x) and d = ord η(x) θ (resp. d < ord η(x) θ), we denote by cl d θ the initial form of θ (resp. zero) in gr (u 1 ,...,u n ) S η(x) = k(x)[U 1 , . . . , U n ]. Similarly, if I ⊂ S η(x)

II.3.3 Proposition.

With hypotheses and notations of II. 1, ǫ(x) does not depend on choices of coordinates (X, u 1 , . . . , u n ) such that ∆(h; u 1 , . . . , u n ; X) is minimal, and we have

ǫ(x) = p(δ(x) - div(u i )⊆E x d i ).
For x ∈ Σ, exactly one of the following three properties holds for all possible r.s.p.'s (X,

u 1 , . . . , u n ) of R x such that E x ⊆ div(u 1 • • • u n ) and ∆(h; u 1 , . . . , u n ; X) minimal: (i) we have v δ (g) = 1, and either v δ (f ) > p or (v δ (f ) = p and Φ ∈ k(x)[{U i | div(u i ) ⊆ E}]). In this case, ǫ(x) = ord η(x) (H(x) -1 g p ), ν(x) ǫ(x) and cl pδ(x) f ∈ k(x)[{U i | div(u i ) ⊆ E}]; (ii) we have v δ (g) > 1. In this case, ν(x) is independent of (X, u 1 , . . . , u n ) and ν(x) ǫ(x). Moreover, cl ν(x) J(f, E) (resp. cl ǫ(x) J(f, E, x) is independent of (X, u 1 , . . . , u n ) if ν(x) < ǫ(x) (resp. ν(x) = ǫ(x)); (iii) we have v δ (g) = 1, v δ (f ) = p and Φ ∈ k(x)[{U i | div(u i ) ⊆ E}].
Proof. The equality ord η(x) H(x) + ǫ(x) = pδ(x) is clear from the definitions, so ǫ(x) is an invariant by II.2.

Assume that we are in case (i) for some r.s.p. (X, u 1 , . . . , u n ). We emphasize that v δ (f ) and cl pδ(x) f are not at all stable under change of X such that ∆(h; u 1 , . . . , u n ; X) is minimal. In fact, we can replace X by any Z := X -θ such that the Newton polyhedron of θ is a subset of ∆(h; u 1 , . . . , u n ; X) and get ∆(h; u 1 , . . . , u n

; Z) = ∆(h; u 1 , . . . , u n ; X), f being changed into f Z := f + θ p -θg p-1 . Let Θ := cl δ(x) θ ∈ k(x)[U 1 , . . . , U j ],
where

E x = div(u 1 • • • u j ) by assumption. Then Φ Z := cl pδ(x) f Z = Φ + Θ p -ΘG p-1 ,
where

G := cl δ(x) g ∈ k(x)[U 1 , . . . , U j ]. Note that if ν δ (θ) > δ(x), then Φ Z = Φ but in general Φ Z = Φ.
We now prove (i) and begin with some r.s.p. (X, u 1 , . . . , u n ) at x satisfying (i). We perform the following coordinate changes:

(a) (u 1 , . . . , u n ) → (v 1 , . . . , v n ), with E x = div(u 1 • • • u j ) = div(v 1 • • • v j ); (b) X → Z := X -θ such that ∆(h; v 1 , . . . , v n ; Z) is minimal. After the change (a), the expansion of h remaining h = X p -Xg p-1 + f (with δ(x) unchanged by II.2), we minimize ∆(h; v 1 , . . . , v n ; X) in X by successive translations on X of the form X a := X -λ a v a 1 1 • • • v a n n , where a := (a 1 , . . . , a n ) is a solvable vertex of ∆(h; v 1 , . . . , v n ; X). In particular, (λ a v a 1 1 • • • v a n n ) p is a monomial in the expansion of f , so a j+1 = • • • = a n = 0 whenever a 1 + a 2 + • • • + a n = δ(x)
by assumption (i). In this case, let λ a ∈ k(x) be the residue of λ a and let λ a := 0 otherwise. The translation on X changes Φ into

Φ a = Φ + (λ a V a 1 1 • • • V a j j ) p -λ a V a 1 1 • • • V a j j G p-1 ,
where

G ∈ k(x)[V 1 , . . . , V j ] is the initial form of g. Therefore Φ a ∈ k(x)[V 1 , . . . , V j ] and x is still in case (i) w.r.t. the r.s.p. (X a , v 1 , . . . , v n ). Let Z := X -a λ a v a 1 1 • • • v a n
n be obtained by this minimizing process. Now, for any

X ′ ∈ S η(x) [X] such that (X ′ , v 1 , . . . , v n ) is a r.s.p. of R x and the polyhedron ∆(h; v 1 , . . . , v n ; X ′ ) = ∆(h; v 1 , . . . , v n ; Z) is minimal, we have X ′ = γ ′ Z -θ, γ ′ invertible, the Newton polyhedron of θ is a subset of ∆(h; v 1 , . . . , v n ; Z), so cl δ(x) θ ∈ k(x)[V 1 , . . . , V j ]
and after this new change of variable, x is still in case (i).

Finally by

II.3(1), if cl pδ(x) f ∈ k(x)[V 1 , . . . , V j ], then ν(x) = ord η(x) J(f, E) pδ(x) -ord η(x) H(x) = ord η(x) (H(x) -1 g p ) = ǫ(x).
In case (ii), we have in δ

(h) = X p + Φ with Φ ∈ (k(x)[U 1 , . . . , U n ]) p , since ∆(h; u 1 , . . . , u n ; X) is minimal. If we change parameters (u 1 , . . . , u n ) → (v 1 , . . . , v n ) as in (a) above, then X → Z as in (b) above to get ∆(h; v 1 , . . . , v n ; Z) minimal, the above computations show that the translations on X change Φ into Φ Z = cl pδ(x) f Z = Φ + ( λ a V a 1 1 • • • V a n n ) p for certain values of λ a ∈ k(x). For any X ′ ∈ S η(x) [X] such that (X ′ , v 1 , . . . , v n ) is a r.s.p. of R x and the polyhedron ∆(h; v 1 , . . . , v n ; X ′ ) = ∆(h; v 1 , . . . , v n ; Z) is minimal, Φ Z gets changed into γ′ -p (Φ Z + Θ p ), where 0 = γ′ ∈ k(x). Since Φ ∈ (k(x)[U 1 , . . . , U n ]) p , ν(x) = ord η(x) J(f, E
) is unaffected by all above coordinate changes and is equal to ǫ(x) -1 or ǫ(x). In the former (resp. latter) case, cl ν(x) J(f, E) (resp. cl ǫ(x) J(f, E, x) has been multiplied by γ′ -p along the above process and this proves (ii).

Since cases (i), (ii) and (iii) are mutually exclusive for any fixed r.s.p. (X, u 1 , . . . , u n ) of R x , which must belong to one of them, the independence on (X, u 1 , . . . , u n ) of (iii) is also proved. We produce two examples showing the possible ambiguity on ν(x) in case (iii). II.3.3.1 First example of ambiguous case. We take E = div(u 1 u 2 ) and

h = X p -X(u 1 u 2 ) 2(p-1) + i =0mod(p) u 3p-i 1 u i 2 u p 3 + j =0mod(p) u 4p-j 1 u j 2 .
An easy computation shows that ∆(h;

u 1 , u 2 , u 3 ; X) is minimal and that δ(x 0 ) = 4, g = (u 1 u 2 ) 2 , H(x 0 ) = (u 1 u 2 ), ν(x 0 ) = 4p -2 = ǫ(x 0 ). Now we change X into Z := X -u 2 1 u 2 u 3 . Then h = Z p -Z(u 1 u 2 ) 2(p-1) + i =0mod(p) u 3p-i 1 u i 2 u p 3 + j =0mod(p) u 4p-j 1 u j 2 + u 2p 1 u p 2 u p 3 -u 2 1 u 2 (u 1 u 2 ) 2(p-1) u 3 .
An easy computation shows that the exponents (2p, p, p) and (2p, 2p -1, 1) appearing in 1) u 3 lie in the interior of the convex hull of the exponents of

u 2p 1 u p 2 u p 3 -u 2 1 u 2 (u 1 u 2 ) 2(p-
i =0mod(p) u 3p-i 1 u i 2 u p 3 + j =0mod(p) u 4p-j 1 u j 2 .
Therefore ∆(h; u 1 , u 2 , u 3 ; Z) is still minimal. On the other hand, we now have

ord x 0 ( ∂ ∂u 3 (u 2 1 u 2 (u 1 u 2 ) 2(p-1) u 3 )) = 4p -1, so ν(x 0 ) = 4p -3 = ǫ(x 0 ) -1 w.r.t. the r.s.p. (Z, u 1 , u 2 , u 3 ).
II.3.3.2 Second example of ambiguous case. We take div(u

1 ) ⊆ E ⊆ div(u 1 u 2 ), a(1) + ǫ(x) ≡ 0 modp, a(2) ≡ 0 modp. If E = div(u 1 ), we take a(2) = 0. Let h = X p -Xγ p-1 u (p-1) a(1)+ǫ(x 0 ) p 1 u (p-1) a(2) p 2 + u a(1) 1 u a(2) 2    0 j ǫ(x 0 ) p λ j u ǫ(x 0 )-jp 1 u jp 3 + ψ    ,
where γ ∈ S is invertible, λ j ∈ k(x 0 ) and ord η(x 0 ) ψ > ǫ(x 0 ). Let j 0 := sup{j|λ j = 0}. We assume that λ j 0 ∈ k(x 0 ) p and j 0 > 0. In particular, k(x 0 ) is not a perfect field and ǫ(x 0 ) p.

An easy computation shows that ∆(h; u 1 , u 2 , u 3 ; X) is minimal, that its initial face is the segment with ends

a = ( a(1) + ǫ(x 0 ) p , a(2) p , 0), b = ( a(1) + ǫ(x 0 ) -j 0 p , a(2) p , j 0 p ), (1) 
and that

H(x 0 ) = u a(1) 1 u a(2) 2 , (H(x 0 ) -1 g p ) = (u ǫ(x 0 ) 1
) and ν(x 0 ) = ǫ(x 0 ).

Now we change

X into Z = X -u a(1)+ǫ(x 0 ) p -(j 0 -i) 1 u a(2) p 2 u j 0 -i 3 , i = 0 or 1 defined by j 0 -i ≡ 0 modp. Then h = Z p -γ p-1 Zu (p-1) (a(1)+ǫ(x)) p 1 u (p-1) a(2) p 2 + f Z ,
where

f Z = u a(1) 1 u a(2) 2    0 j ǫ(x 0 ) p λ j u ǫ(x 0 )-jp 1 u jp 3 + u ǫ(x 0 )-p(j 0 -i) 1 u p(j 0 -i) 3 -γ p-1 u ǫ(x 0 )-(j 0 -i) 1 u j 0 -i 3 + ψ    .
An easy computation shows that ∆(h; u 1 ,u 2 ,u 3 ). II.4 Definition (invariants Ω and τ ). With hypotheses and notations of II.1, for any (not necessary closed) x ∈ Σ p , let Ω(x) = (ω(x), ω ′ (x)) ∈ N × {1, 2, 3} be defined as follows:

u 1 , u 2 , u 3 ; Z) = ∆(h; u 1 , u 2 , u 3 ; X) is minimal and that ν(x 0 ) = ǫ(x 0 ) -1 w.r.t. the r.s.p. (Z,
ω(x) := inf{ord η(x) (J(f X , E), H(x) -1 g p )},
the infimum being taken over all possible f X 's corresponding to all possible r.s.p.'s (X,

u 1 , . . . , u n ) of R x such that E x ⊆ div(u 1 • • • u n ) and ∆(h; u 1 , . . . , u n ; X) is minimal. The refinement ω ′ (x) is given by ω ′ (x) = 1 if ω(x) = ord η(x) (H(x) -1 g p ), ω ′ (x) = 2 if ω(x) < ord η(x) (H(x) -1 g p ) and for every such r.s.p., ord η(x) J(f X , E) = ω(x). ω ′ (x) = 3 if ω(x) < ord x (H(x) -1 g p ) and for some such r.s.p., ord η(x) J(f X , E) = 1 + ω(x).
We denote by τ (x) the natural number:

τ (x) = max{τ (cl ω(x) (J(f X , E, x), H(x) -1 g p ))} if ω(x) = ǫ(x), τ (x) = max{τ (cl ω(x) J(f X , E))} if ω(x) = ǫ(x) -1,
where in both cases, the maximum is also taken over all possible f X 's corresponding to all possible r.s.p.'s computing ω(x).

With the help and notation of II.3.3, we can now explicit several different cases:

(i) v δ (g) = 1, and either v δ (f ) > p or (v δ (f ) = p and Φ ∈ k(x)[{U i | div(u i ) ⊆ E}]): we have Ω(x) = (ǫ(x), 1); (ii) v δ (g) > 1: we have Ω(x) = (ν(x), 2); (iii) v δ (g) = 1, v δ (f ) = p, Φ ∈ k(x)[{U i | div(u i ) ⊆ E}] and ord η(x) J(f, E) depends on the r.s.p. computing ω(x): we have Ω(x) = (ǫ(x) -1, 3); (iv) v δ (g) = 1, v δ (f ) = p, Φ ∈ k(x)[{U i | div(u i ) ⊆ E}] and for every r.s.p. computing ω(x), ord η(x) J(f, E) = ǫ(x): we have Ω(x) = (ǫ(x), 1). In this case, Φ ∈ k(x)[{U i , U p j | div(u i ) ⊆ E, div(u j ) ⊆ E}]; (v) v δ (g) = 1, v δ (f ) = p, Φ ∈ k(x)[{U i | div(u i ) ⊆ E}] and for every r.s.p. computing ω(x), ord η(x) J(f, E) = ǫ(x) -1: we have Ω(x) = (ǫ(x) -1, 2). In this case, Φ ∈ k(x)[{U i , U p j | div(u i ) ⊆ E, div(u j ) ⊆ E}].
So in the ambiguous case (iii), we give to ω(x) the least possible value w.r.t. choices of r.s.p.'s, but keep this ambiguity in mind by setting ω ′ (x) = 3 maximal. The philosophy is that the property v δ (g) = 1 is helpful for the local uniformization process only in cases (i) and (iv), i.e. ω ′ (x 0 ) = 1.

By II. 3.3(i), case (i) above is independent of the r.s.p. such that

E x ⊆ div(u 1 • • • u n ) and ∆(h; u 1 , . . . , u n ; X) is minimal.
By II. 3.3(ii), the definition of τ (x) in case (ii) above is independent of the r.s.p. such that

E x ⊆ div(u 1 • • • u n ) and ∆(h; u 1 , . . . , u n ; X) is minimal. On the other hand, in cases (iii)-(v), τ (x)
may depend on the r.s.p. used to compute ω(x). We will make use of the invariant τ (x) only in cases (iv) and (v). we have ω(x) ν(x) α(x) 1 + ν(x) andω(x) ǫ(x). Proof. This follows from the inclusions (m η(x) ∩ S)J(f, E) ⊆ J(f, E, x) ⊆ J(f, E) and the definitions, whether α(x) and ν(x) do or do not depend on the r.s.p. such that

II.4.1 Proposition. If x ∈ Σ p and {η(x)} is the intersection of components of E, then ω(x) = ǫ(x). Proof. Since x is the intersection of components of E, we have J(f, E) = J(f, E, x). Therefore if v δ (g) = 1, x belongs to case II.4(i), so ω(x) = ǫ(x). If v δ (g) > 1, then ω(x) = ν(x) = ord η(x) (H(x) -1 f ) = ǫ(x). II.4.2 Proposition. For any x ∈ Σ p ,
E x ⊆ div(u 1 • • • u n ) and ∆(h; u 1 , . . . , u n ; X) is minimal. II.4.3 Remark. In cases II.4(iii),(iv), we have ω(x) p. Proof. In these cases, Φ ∈ k(x)[{U i | div(u i ) ⊆ E}]. Moreover, there exists a choice of (X, u 1 , . . . , u n ) with E x ⊆ div(u 1 • • • u n ) and ∆(h; u 1 , . . . , u n ; X) minimal such that for each i, with div(u i ) ⊆ E, we have deg ∂Φ ∂U i degΦ.
Therefore ∂Φ ∂U i = 0; these U i 's appear in the expansion of Φ with exponents divisible by p, and at least one of them effectively appears by definition of cases II.4(iii), (iv). II.4.4. Proposition and Definition. If x 0 ∈ Σ p and ω(x 0 ) = 0, then (X 0 , x 0 ) is said to be a quasi-ordinary singularity. In this case, exactly one of the following properties holds for all possible r.s.p.'s (X,

u 1 , u 2 , u 3 ) of R such that E ⊆ div(u 1 u 2 u 3 ) and ∆(h; u 1 , u 2 , u 3 ; X) is minimal: (i) we have (H(x 0 )) = (g p ). In this case, δ(x 0 ) = ord η(x 0 ) g and ∆(h; u 1 , u 2 , u 3 ; X) has only one vertex (d 1 , d 2 , d 3 ); (ii) we have (g p ) ⊂ J (f, E) = (H(x 0 )) = (f ). In this case, δ(x 0 ) = (ord η(x 0 ) f )/p and the polyhedron ∆(h; u 1 , u 2 , u 3 ; X) has only one vertex (d 1 , d 2 , d 3 ); (iii) we have (f, g p ) ⊂ J (f, E) = (H(x 0 )). In this case, δ(x 0 ) = (1 + ord η(x 0 ) f )/p and v := H(x 0 ) -1 f is a regular parameter of S, transverse to E. If we choose indices i = 1, 2 such that E ⊆ div(u 1 u 2 ) and (u 1 , u 2 , v) is a r.s.p. of S, then ∆(h; u 1 , u 2 , v; X) is minimal. If g = 0 (resp. g = 0), ∆(h; u 1 , u 2 , v; X) has two vertices (resp. one vertex) (d 1 , d 2 , 1 p ) and (β 1 , β 2 , 0) (resp. (d 1 , d 2 , 1 p )). Proof. The condition ω(x 0 ) = 0 is equivalent to (J (f, E), g p ) = (H(x 0 )) for all (cf. II.4.3) r.s.p.'s (X, u 1 , u 2 , u 3 ) of R such that E ⊆ div(u 1 u 2 u 3 ) and ∆(h; u 1 , u 2 , u 3 ; X) is minimal. If (g p ) = (H(x 0
)), we are in case (i) and all assertions in (i) are clear.

If (g p ) ⊂ (H(x 0 )), then J (f, E) = (H(x 0 )). If (f ) = (H(x 0
)), we are in case (ii) and all subsequent assertions are clear. Otherwise, H(x 0 ) divides strictly f and we are in case (iii). Since there is a derivation

D ∈ D such that (Df ) = (H(x 0 )), we can choose a parameter v, div(v) ⊆ E, transverse to E, such that D = ∂ ∂v , E ⊆ div(u 1 u 2 ), (X, u 1 , u 2 , v) is a r.s.p. of R and f = vH(x 0 ). Then f is a monomial and defines the vertex (d 1 , d 2 , 1
p ) which is not solvable because the third coordinate is not an integer. If g = 0, this is the only vertex. If g = 0, g defines another vertex (β 1 , β 2 , 0) which is not solvable by definition.

II.4.5 Proposition. Let x ∈ Σ p . Assume that there exists a r.s.p. (X, u 1 , . . . , u n ) of R x , with E x ⊆ div(u 1 • • • u n ), such that h = X p -Xg p-1 + f ∈ S η(x) [X] satisfies (J (f, E), g p ) = (H(x)) and H(x) divides f . Then ω(x) = 0.
Proof. Note that we do not have any minimality assumption on ∆(h; u 1 , . . . , u n ; X).

If (H(x)) = (g p ), then ∆(h; u 1 , . . . , u n ; X) has only one vertex (d 1 , d 2 , d 3 ) which is not solvable by definition, hence minimal. So ω(x) = 0 in this case.

Otherwise, (g p ) ⊂ (H(x)) = J (f, E). Then we may have to do a translation Z := X -θ to make ∆(h; u 1 , . . . , u n ; Z) minimal. The Newton polyhedron of θ is a subset of ∆(h; u 1 , . . . , u n ; X). Since H(x) divides f , H(x) divides θ p . But H(x) strictly divides g p , so that there exists u

i , div(u i ) ⊆ E x , such that u i H(x) divides θg p-1 . Now after changing X to Z, f being changed into f Z = f + θ p -θg p-1 , we have J (f Z , E) ≡ J (f, E) mod(u i H(x)) and we get J (f Z , E) = (H(x)) as required. II.4.6 Theorem. If x 0 ∈ Σ p and ω(x 0 ) = 0, the local uniformization problem is solved for (X 0 , x 0 ). Proof. We first pick a r.s.p. (X, u 1 , u 2 , u 3 ) of R satisfying II.2.2 with N > δ(x 0 ) + 1. Then h = X p -Xg p-1 + f and H(x 0 ) divides f . If (H(x 0 )) = (g p ), we have (J (f, E), g p ) = (H(x 0 )). Otherwise, we have (g p ) ⊂ (H(x 0 )). By II.4.4(ii) and (iii), there exists Z = X -θ, θ ∈ R such that ∆(h; u 1 , u 2 , u 3 ; Z) is minimal, h = Z p -Zg p-1 + f Z with (f Z ) = (H(x 0 )) or (f Z = v Z H(x 0 ), div(v Z ) regular and transverse to E). In the latter case, the vertex (d 1 , d 2 , 1 p ) is a vertex of ∆(h; u 1 , u 2 , u 3 ; X) by II.2.2. We thus have either (f ) = (f Z ) = (H(x 0 )), in which case ∆(h; u 1 , u 2 , u 3 ; X) is already minimal, or (f Z = v Z H(x 0 ) and f = vH(x 0 ) for some v ∈ m S , div(v) regular and transverse to E). In particular, we always have (J (f, E), g p ) = (H(x 0 )), although ∆(h; u 1 , u 2 , u 3 ; X) is not necessarily minimal. Assuming x 0 ∈ Σ p and ω(x 0 ) = 0, we write H(x 0 ) = 3 i=1 u a(i) i , a(i) = 0 if i e + 1
, and apply the following (globally defined) algorithm:

(i) if ord η(x 0 ) H(x 0 ) p, there exists a nonempty subset I ⊆ {1, . . . , e} such that Y := V (X, {u i } i∈I ) ⊆ Σ p ,
i.e. i∈I a(i) p. We let π : X 1 → X 0 be the blowing up of Y , with (e-| I |, i∈I a(i)) maximal for the lexicographical ordering; (ii) if ord η(x 0 ) H(x 0 ) < p, we have f = vH(x 0 ) and δ(x 0 ) = 1. We let X 1 → X 0 be the blowing up of

Y := V (X, {u i | a(i) > 0}, v).
In both cases, we take E 1 to be the reduced inverse image of E in X 1 . If the center x ′ of µ in X 1 verifies x ′ ∈ Σ p (X 1 ), we define H(x ′ ) and ω(x ′ ) w.r.t. E 1 . We claim that such x ′ ∈ Σ p (X 1 ) lies on the strict transform of X = 0, has ω(x ′ ) = 0 and ord η(x ′ ) H(x ′ ) < ord η(x 0 ) H(x 0 ), where η ′ : (X 1 , x ′ ) → SpecS ′ is induced by π. The theorem will follow by descending induction on ord

η(x 0 ) H(x 0 ) = a(1) + a(2) + a(3). Case 1: (H(x 0 )) = (g p ). Then V (X, {u i | a(i) > 0}) ⊆ Σ p , so we are in case (i) above. If ord η(x 0 ) g = 1, say g = γu 1 , X 1 is the blowing up along V (X, u 1 ) and is regular. Otherwise, X p is in the ideal of the ridge of h, so x ′ ∈ Σ p (X 1 ) lies on the strict transform of X = 0. We change indices so that Y = V (X, u 1 , . . . , u k ),
where k e. By symmetry, we need only look at the chart of origin the point with r.s.p. 3) and,

(X ′ = X u 1 , u ′ 1 = u 1 , . . . , u ′ k = u k u 1 , {u ′ i = u i } k+1 i 3 ). Let h ′ = u -p 1 h = X ′ p - X ′ g ′ p-1 + f ′ be the strict transform of h. Then g ′ p = u -p 1 g p = γ p u ′ 1 a(1)+•••+a(k)-p u ′ 2 a(2) u ′ 3 a ( 
since g p divides f , g ′ p divides f ′ . So ω(x ′ ) = 0 by II.4.5. Since | I | is minimal, a(2)+• • •+a(k) < p, so ord η ′ (x ′ ) H(x ′ ) a(1) + • • • + a(k) -p + a(2) + a(3) < a(1) + a(2) + a(3) = ord η(x 0 ) H(x 0 )
as required.

Case 2: (g p ) ⊂ (H(x 0 )) = J (f, E) and (i) above holds. We change indices so that Y = V (X, u 1 , . . . , u k ) and once more distinguish two cases.

First assume that ord η(x 0 ) f = p. We have f = γ 1 H(x 0 ), γ 1 invertible, and Y = V (X, {u i | a(i) > 0}). After rearranging indices, it can be assumed that Y = V (X, u 1 , . . . , u k ) as above. By symmetry, we need only look at the chart of origin the point with r.s.p.

(X ′ = X u 1 , u ′ 1 = u 1 , . . . , u ′ k = u k u 1 , {u ′ i = u i } k+1 i 3 ) (the remaining point at infinity is not on the strict transform of X 0 ). Let h ′ = u -p 1 h = X ′ p -X ′ g ′ p-1 + f ′ be the strict transform of h, where u ′ 1 divides g ′ p-1 . If u ′ i is not invertible at η ′ (x ′ ) for some i, 2 i k, we have 0 < ord η ′ (x ′ ) f ′ < p; otherwise u ′ 2 • • • u ′ k is invertible at η ′ (x ′ ). In this case, we have ∂f ′ ∂u ′ 2 invertible if k 2; if k = 1, then γ 1 ∈ k(x) p because the vertex (1, 0, 0) of ∆(h; u 1 , u 2 , u 3 ; X) is not solvable and x ′ = (X ′ + γ 1 , u ′ 1 , u ′ 2 , u ′ 3 ) is a regular point of X 1 . Therefore x ′ ∈ Σ p (X 1 ) in all cases.
Assume now that ord η(x 0 ) f > p. Then every x ′ ∈ Σ p (X 1 ) mapping to x 0 lies on the strict transform of X = 0. By symmetry, we need only look at the chart of origin the point with r.s.p.

(X ′ = X u 1 , u ′ 1 = u 1 , . . . , u ′ k = u k u 1 , {u ′ i = u i } k+1 i 3 ). Let h ′ = u -p 1 h = X ′p -X ′ g ′ p-1 + f ′ be the strict transform of h. Note that u -p 1 H(x 0 ) = u ′ 1 a(1)+•••+a(k)-p 2 i e u ′ i a(i)
divides f ′ and strictly divides g ′ p . We claim that

H(x ′ ) = u -p 1 H(x 0 ). (1) 
If ( 1) is true, we get ω(x ′ ) = 0 by II.4.5, then ord η ′ (x ′ ) H(x ′ ) < ord η(x 0 ) H(x 0 ) as in the previous case when (H(x 0 )) = (g p ). Let us prove [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF]. Indeed, for every 3) , with at least one λ D invertible. Furthermore, u -p 1 H(x 0 ) strictly divides g ′ p , so when performing a translation 3) , with at least one λ D,Z ′ invertible, and this proves [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF].

D ∈ D 1 := D(E 1 ), Df ′ =: λ D u ′ 1 a(1)+•••+a(k)-p u ′ 2 a(2) u ′ 3 a(
Z ′ := X ′ -θ on X ′ in order to get ∆(h ′ ; u ′ 1 , u ′ 2 , u ′ 3 ; Z ′ ) minimal (i.e. f ′ is replaced by f ′ Z ′ = f ′ + θ p -θg ′ p-1 where the Newton polyhedron of θ is contained in ∆(h ′ ; u ′ 1 , u ′ 2 , u ′ 3 ; X ′ )), u -p 1 H(x 0 ) strictly divides θg ′ p-1 . Therefore we have Df ′ Z ′ = λ D,Z ′ u ′ 1 a(1)+•••+a(k)-p u ′ 2 a(2) u ′ 3 a(
Case 3: (g p ) ⊂ (H(x 0 )) = J (f, E) and (ii) above holds. Then f = vH(x 0 ) has order p, we blow up Y = V(X, {u i | a(i) > 0}, v) and H(x 0 ) strictly divides g p . If ord η(x 0 ) g = 1, say g = γu 1 , we must have H(x 0 ) = u p-1 1 and x ′ ∈ Σ p (X 1 )
. Otherwise X p is in the ideal of the ridge of h, so every point x ′ ∈ Σ p (X 1 ) mapping to x 0 lies on the strict transform of X = 0. We relabel indices so that Y = V (X, u 1 , . . . , u k ) (one of the u i 's being v) and by symmetry, we need only consider the chart of origin the point with r.s.p. 3) , with γ 1 invertible. By definition of Y , we had a(1) > 0, so ord 1) < p and this proves that x ′ ∈ Σ p (X 1 ).

(X ′ = X u 1 , u ′ 1 = u 1 , . . . , u ′ k = u k u 1 , {u ′ i = u i } k+1 i 3 ). Let h ′ = u -p 1 h = X ′p -X ′ g ′ p-1 + f ′ be the strict transform of h. Then f ′ = γ 1 u ′ 2 a(2) u ′ 3 a ( 
η ′ (x ′ ) (h ′ ) a(2) + a(3) = p -a(
II.4.7 Theorem. The set W := {x ∈ Σ p | ω(x)
1} is Zariski closed and of dimension at most one.

Proof. By II.2.2, there exists a r.s.p. (X,

u 1 , u 2 , u 3 ) of R such that h = X p -Xg p-1 + f , H(x 0 ) divides f and δ(x 0 ) = inf{ord x 0 g, (ord x 0 f )/p}.
First assume that ω(x 0 ) = 0. The r.s.p. (X, u 1 , u 2 , u 3 ) then satisfies the assumptions in II.4.5 (see the beginning of the proof of theorem II. 4.6), and these assumptions are stable by localizing at any x ∈ Σ p . Therefore W = ∅ in this case.

Assume now that ω(x 0 ) 1. It is sufficient to prove that there exists a Zariski closed subset Z ⊆ Σ p of dimension at most one such that W ⊆ Z. By II.2.2, and by definition of H(x 0 ) and D, the ideals (f, g p ) and (J (f, E), g p ) coincide, and are equal to H(x 0 ), when localized at the generic point of any component div(u i ) ⊆ E 0 . Therefore there exists Z ⊆ E 0 of dimension at most one such that (J (f, E), g p ) x = (f, g p ) x = H(x 0 ) x whenever x ∈ E 0 \Z. By II.4.5, we have W ⊆ Z as required.

II.5 Permissible blowing ups. Theorem II.4.6 settles the easy case of quasi-ordinary singularities, which are dealt with by combinatorial blowing ups in the same way as in characteristic zero.

To reduce to quasi-ordinary singularities, we need some notion of permissible blowing up which is well behaved w.r.t. our main invariant Ω(x 0 ). 

II.
(i) ǫ(x 0 ) = ǫ(y), (first kind of permissible blowing up), or (ii) ν(x 0 ) = ǫ(x 0 ) -1 = ord η(x 0 ) (J(f, E, Y ), H(x 0 ) -1 g p ) = ord η(y) (J(f, E, Y ), H(x 0 ) -1 g p ) = ǫ(y),
where f is given by some choice of the r.s.p.

(X, u 1 , u 2 , u 3 ) of R such that E ⊆ div(u 1 u 2 u 3 ) and ∆(h; u 1 , u 2 , u 3 ; X) is minimal (second kind of permissible blowing up).
The first (resp. second) type of permissible blowing up is studied in II.5.2, II.5.4.2 and II. 5.4.3 (resp. II.5.4.4) below. II.5.1.1 Proposition. Assume that x 0 ∈ Σ p and that ω(x 0 )

1. Any permissible center has dimension at most one and is contained in E 0 . Moreover, {x 0 } is a permissible center (of the first kind).

Proof. We have ǫ(y) = 0 if y is the generic point of a component of E 0 . If {y} were permissible, definition II.5.1 would imply ω(x 0 ) = 0. All other statements are obvious. II.5.2 Theorem. For each permissible center Y of the first kind, there exists a r.s.p.

(u 1 , u 2 , u 3 ) of S and X ∈ R such that E ⊆ div(u 1 u 2 u 3 ), ∆(h; u 1 , u 2 , u 3 ; X) is minimal, Y = V (X, {u i } i∈I )
for some I ⊆ {1, 2, 3}, and whose associated f satisfies one of the following conditions:

(i) ω(x 0 ) = ǫ(x 0 ) = ord η(x 0 ) (J(f, E, Y ), H(x 0 ) -1 g p ) = ord η(y) (J(f, E, Y ), H(x 0 ) -1 g p ) = ǫ(y), (ii) 1 + ω(x 0 ) = ǫ(x 0 ) = ord η(x 0 ) (J(f, E, Y ), H(x 0 ) -1 g p ) = ord η(y) (J(f, E, Y ), H(x 0 ) -1 g p ) = ǫ(y). Proof. The statement is trivial if Y = {x 0 }. Otherwise, Y is a curve by II.5.1.1. Since Y ⊆ Σ p and η(Y ) has normal crossing with E, it is of the form Y = V (Z, u 1 , u 2 ) for some r.s.p. (Z, u 1 , u 2 , u 3 ) of R such that E ⊆ div(u 1 u 2 u 3 ).
The formal version of II.2.2 implies that there exists a r.s.p. X ∈ R such that Y = V (X, u 1 , u 2 ) and both of ∆(h; u 1 , u 2 , u 3 ; X), ∆(h; u 1 , u 2 ; X) minimal. The associated f thus computes ǫ(x 0 ) and ǫ(y) at the same time. The statement now follows easily from formulaeII.3( 4) and ( 5) and the definitions. (H. Hironaka). Assume that x 0 ∈ Σ p and that ω(x 0 ) 1. Let e : X 1 → X 0 be a permissible blowing up and x ′ ∈ e -1 (x 0 ) be the center of µ in X 1 . Then (X 1 , x ′ ) has multiplicity at most p.

II.5.2.1 Proposition

Proof. Since Y ⊆ Σ p and Y is regular at x 0 , it is a permissible center in Hironaka's sense, and the assertion is classical. II.5.3 Proposition. Assume that x 0 ∈ Σ p and that ω(x 0 ) 1. Let e : X 1 → X 0 be a permissible blowing up with center Y and x ′ ∈ e -1 (x 0 ) be the center of µ in X 1 . The following holds:

(i) if H(x 0 ) = 1 and x ′ ∈ Σ p (X 1 ), then x ′ lies on the strict transform of {X = 0}, whenever Y is expressed as Y = V (X, {u i } i∈I ), with E ⊆ div(u 1 u 2 u 3 ) and ∆(h; u 1 , u 2 , u 3 ; X) minimal; (ii) if H(x 0 ) = 1 and H(x ′ ) = 1, then the local uniformization problem if solved for (X 0 , x 0 ).
Proof. Assertion (i) is an easy consequence of [H2, thm. 3, p. 331]: with notations as in loc.cit., if x ′ ∈ Σ p (X 1 ), then x ′ lies on the projective space B P,x ′ ⊆ e -1 (x 0 ) which verifies

B P,x ′ ⊆ PDir(in x 0 h) (1) 
except if p = 2 and there exists a r.s.p.

(Z, v 1 , v 2 , v 3 ) of R such that in x 0 h = Z 2 + uV 2 1 + vV 2 2 + uvV 2 3 , (2) 
where

u, v ∈ k(x 0 ) and [k(x 0 ) 2 (u, v) : k(x 0 ) 2 ] = 4. Since H(x 0 ) = 1
by assumption, we have [START_REF]Desingularization of embedded excellent surfaces[END_REF] does not hold and this proves (i).

I := in x 0 h = X 2 + U 1 (γX + λ 1 U 1 + λ 2 U 2 + λ 3 U 3 ), for some λ 1 , λ 2 , λ 3 ∈ k(x 0 ) and div(u 1 ) ⊆ E 0 . Since ∆(h; u 1 , u 2 , u 3 ; X) is minimal, we have in x 0 h = X 2 if δ(x 0 ) > 1; if δ(x 0 ) = 1, either in x 0 h ∈ k(x 0 )[X, U 1 ] or ∂I ∂U 1 = 0, so ( 
We now prove (ii). Since Y ⊆ Σ p , we have δ(y) 1. Let t = 0 be a local equation of 1), so u 1 /t is a regular parameter at x ′ and divides H(x ′ ), hence H(x ′ ) = 1.

E ′ := e -1 (x 0 ) at x ′ and h ′ := t -p h = X ′ p -g ′ p-1 X ′ + f ′ be the local equation of X 1 at x ′ , where X ′ := X/t by (i). If δ(y) > 1, we have (f ′ , g ′ ) ⊆ (t) so H(x ′ ) = 1. If δ(y) = δ(x 0 ) = 1, it can be assumed that (f, g) ⊂ (u 1 ) since H(x 0 ) = 1, where div(u 1 ) ⊆ E 0 . Then PDir(in x 0 h) ⊆ V (X, U 1 ) in (
Assume now that δ(x 0 ) > δ(y) = 1. In particular, Y is a permissible curve. After renumbering variables, it can be assumed that

Y = V (X, u 1 , u 2 ), div(u 1 ) ⊆ E ⊆ div(u 1 u 2 u 3 ). If H(x 0 ) ⊆ (u 3 )
we have H(x ′ ) ⊆ (u 3 ) as well, so from now on, after possibly renumbering again variables, it can be assumed that

H(x 0 ) = u a(1) 1 u a(2) 2
with a(1) > 0. By II.2 and II.3.3, this implies

ǫ(x 0 ) -ǫ(y) = p(δ(x 0 ) -δ(y)) > 0,
hence Y is permissible of the second kind. In particular E ⊆ div(u 1 u 3 ) by II.5.1(ii) and we have a(2) = 0. We get ǫ(x 0 ) = p + 1 -a(1) by II.3.3. Finally by permissibility of the second kind, we actually have E = div(u 1 ) and there is an expression

Φ := in x 0 f = U a(1) 1 (U 3 Φ 3 (U 1 , U 2 ) + Φ 0 (U 1 , U 2 )) , with 0 = Φ 3 ∈ k(x 0 )[U 1 , U 2 ] p-a(1) and Φ 0 ∈ k(x 0 )[U 1 , U 2 ] p+1-a(1) . In computing h ′ , it can be assumed that t = u 1 is a local equation of E ′ = div(u ′ 1 ) at x ′ if H(x ′ ) = 1. Then x ′ belongs to the chart with origin (X ′ := X/u 1 , u ′ 1 = u 1 , u ′ 2 := u 2 /u 1 , u 3 ). Then u -p 1 f = u 3 Φ 3 (1, u ′ 2 ) + u ′ 1 (Φ 0 (1, u ′ 2 ) + ϕ ′ ) (3) for some ϕ ′ ∈ (u ′ 1 , u 2 3 ). Since Φ 3 = 0, we have x ′ ∈ Σ p (X 1 ) unless a(1) = 1 and ord η ′ (x ′ ) Φ 3 (1, u ′ 2 ) = p -1.
Therefore x ′ is rational over x 0 and after possibly replacing (X, u 1 , u 2 , u 3 ) with a r.s.p.

(Z, u 1 , v 2 , u 3 ) such that ∆(h; u 1 , v 2 , u 3 ; Z) is minimal, it can be assumed in (3) that Φ 3 = λU p-1 2
for some λ = 0. Summing up, we get

h ′ = X ′ p -γ p-1 u ′ 1 b ′ (p-1) X ′ + λu 3 u ′ 2 p-1 + u ′ 1 φ ′ , (4) 
with

E ′ = div(u ′ 1 ), b ′ 1 and ord η ′ (x ′ ) φ ′ p -1, where x ′ = (X ′ , u ′ 1 , u ′ 2 , u 3 ) if x ′ ∈ Σ p (X 1 )
. Let e ′ : X 2 → X 1 be the blowing up of X 1 along x ′ and x ′′ ∈ e -1 (x ′ ) be the center of µ in X 2 . We consider two cases:

Case 1: b = 1 or ord η ′ (x ′ ) φ ′ = p -1. Then VDir(in x 0 h) =< X ′ , U ′ 1 , U ′ 2 , U 3 >, so PDir(in x 0 h) = ∅. Since (2) does not hold, x ′′ ∈ Σ p (X 2 ) by (1). Case 2: b > 1 and ord η ′ (x ′ ) φ ′ > p -1. Then VDir(in x 0 h) =< X ′ , U ′ 2 , U 3 >, so again by (1), x ′′ ∈ Σ p (X 2 ) only if x ′′ = (X ′′ = X ′ /u ′ 1 , u ′′ 1 = u ′ 1 , u ′′ 2 = u ′ 2 /u ′ 1 , u ′′ 3 = u 3 /u ′ 1 ). Hence h ′′ := u ′′ 1 -p h ′ satisfies (4) w.r.t. the r.s.p. (X ′′ , u ′′ 1 , u ′′ 2 , u ′′ 3
). We iterate the above argument. Let

X 1 ← X 2 ← • • • X n-1 ← X n ← • • • be the quadratic sequence along µ, i.e. X i is the blowing up along the center x i-1 of µ in X i-1 for i 2, where x 1 := x ′ . Assume that x i ∈ Σ p (X i ) for all i 1. Then x i-1 is in the above case 2, hence lies on the strict transform Y i in X i of the curve Y ′ := V (X ′ , u ′ 2 , u 3 ). By standard arguments, we have Y i ⊆ Σ p (X i ) for i >> 0. But this implies that η ′ (Y ′ ) ⊆ E 1 ,
in contradiction with our conventions in I. Therefore x i ∈ Σ p (X i ) for some i 1 and (ii) is proved. II.5.3.1 Remark. Theorem II.5.3 plays an essential role in our approach. Namely, we may assume that H(x 0 ) = 1 (last line of section I). This additional assumption will be maintained up to the end of this article.

Let e : X ′ → X 0 be a permissible blowing up. By II.5.3(i) and (ii), in order to reduce the multiplicity of the strict transform h ′ = t -p h of h = X p -Xg p-1 + f at the center x ′ of µ in X ′ (t being a local equation of the exceptional divisor at x ′ ), we may assume that h ′ = X ′ p -X ′ g ′ p-1 +f ′ and that H(x ′ ) = 1 where X ′ = X/t, (f ′ , g ′ p ) = t -p (f, g p ).

However, since our main invariant Ω(x 0 ) can be read off (f, g p ) only when ∆(h; u 1 , u 2 , u 3 ; X) is minimal, we need to relate some minimal ∆(h

′ ; v ′ 1 , v ′ 2 , v ′ 3 ; Z ′ ) at x ′ to a given minimal polygon ∆(h; u 1 , u 2 , u 3 ; X) at x 0 .
The following elementary result is essential for this purpose.

II.5.3.2 Theorem. Let F (U 2 , U 3 ) ∈ k(x 0 )[U 2 , U 3 ] be a homogeneous polynomial of degree i 0, and a, b ∈ N be such that U a 2 U b 3 F (U 2 , U 3 ) ∈ (k(x 0 )[U 2 , U 3 ]) p . Let x ′ ∈ Speck(x 0 )[ U 3 U 2 ] be a closed point with ideal (v := P (1, U 3 U 2 )), P ∈ k(x 0 )[U 2 , U 3 ] a nonzero homogeneous irreducible polynomial of degree d := [k(x ′ ) : k(x 0 )], unitary in U 3 . Let A ∈ T ′ := k(x 0 )[U 2 , U 3 U 2 ] (U 2 ,v) be such that U a+b+i 2 (resp. U a+b+i 2 v b ) divides A p in T ′ if P = U 3 (resp. P = U 3 ).
There exists an integer e 0 such that

U a+b+i 2 ( U 3 U 2 ) b F (1, U 3 U 2 ) + A p ≡ U a+b+i 2 ( U 3 U 2 ) b γv e mod(U a+b+i+1 2 T ′ ), ( 1 
)
with γ invertible in T ′ . We have the following estimates for e: (i) if P = U 3 (resp. P = U 3 ), we have e (iii) if i 1 and b = 0, then e i;

(iv) if i 2 and b = 0, there exists at most one x ′ as above with e = i. If such an x ′ exists, we have

P (U 2 , U 3 ) = λU 2 + U 3 for some λ ∈ k(x 0 ). In this case, U -(a-1) 2 ∂U a 2 F
∂U 2 and all ∂F ∂λ i 's, 4 i s, are multiples of (λU 2 + U 3 ) i , ∂F ∂U 3 is a multiple of (λU 2 + U 3 ) i-1 . In particular, x ′ is rational over x 0 . Proof. The existence of some integer e 0 satisfying ( 1) is clear from the assumptions. We prove the estimates in (i), (ii), (iii), then prove (iv).

Since

U a 2 U b 3 F (U 2 , U 3 ) ∈ (k(x 0 )[U 2 , U 3 ]) p , there exists a derivation D ∈ Der k 0 (k(x 0 )[U 2 , U 3 ]), D preserving degrees of homogeneous polynomials, such that D(U a 2 U b 3 F (U 2 , U 3 )) = U a 2 U b 3 F D (U 2 , U 3 ),
with F D = 0 a homogeneous polynomial of degree i. We pick D in such a way that ord

v F D (1, U 3 U 2 ) is minimal. With conventions as in II.3 on Der k 0 (k), we can take D ∈ {U 2 ∂ ∂U 2 , U 3 ∂ ∂U 3 , { ∂ ∂λ i } 4 i s }. (2) Since D((U 2 , U 3 )k(x 0 )[U 2 , U 3 ]) ⊆ (U 2 , U 3 )k(x 0 )[U 2 , U 3 ], we have D(U 2 T ′ ) ⊆ U 2 T ′ . So in T ′ there exists a derivation D ′ ∈ {U 2 ∂ ∂U 2 , ∂ ∂v , { ∂ ∂λ ′ i } 4 i s }, where (dU 2 , dv, {dλ ′ i } 4 i s ) is a basis of Ω 1 T ′ /k 0 , such that D ′ U a+b+i 2 ( U 3 U 2 ) b F (1, U 3 U 2 ) + A p = uU a+b+i 2 ( U 3 U 2 ) b F D (1, U 3 U 2 ), (3) 
with u ∈ T ′ invertible. We consider two cases:

Case 1: D ′ ∈ {U 2 ∂ ∂U 2 , { ∂ ∂λ ′ i } 4 i s }.
Then by [START_REF]Resolution of surface singularities[END_REF] the integer e in ( 1) satisfies

e ord x ′ F D (1, U 3 U 2 ) degF D d = i d .
This proves (i), (ii) and (iii) in this first case. Case 2: (3) is satisfied only by D ′ = ∂ ∂v . Then by ( 3), the integer e in ( 1) satisfies

e 1 + ord v F D (1, U 3 U 2 ) 1 + degF D d = 1 + i d , (4) 
and this proves (i) if P = U 3 . If some inequality is strict, we also get (i) if P = U 3 as well as (iii) for every P (note the trivial fact that 1

+ i d i whenever (i, d 2)). If P = U 3 , we have e ≡ 0 modp, since D ′ (( U 3 U 2 ) b F (1, U 3 U 2 ) + A p U a+b+i 2 ) ≡ ∂γ ′ v e ∂v modU 2 T ′ ,
where γ ′ is a unit. Then (ii) follows from (4) and the trivial inequalities

i d < 1 + i d p(1 + i pd )
for i 0 and d 1.

We now assume that e = 1 + i d . In particular

i = 2 if d 2. If d 2 and i 2, we have 1 + i d i, which proves (iii) when d 2. Suppose now that d = 1. Then v = U 3 U 2 + λ, λ ∈ k(x 0 ), D ′ = ∂ ∂v = ∂ ∂U 3 .
The only possibility for the derivation D in ( 2) is D = U 3 ∂ ∂U 3 ; hence λ = 0 and this proves (i) and (iii) when P = U 3 . There remains to prove (iii) when d = 1 and P = U 3 . Then

D(U a 2 F (U 2 , U 3 )) = U a 2 F D (U 2 , U 3 ) = U a 2 U 3 G(U 2 , U 3 ),
with G = 0 a homogeneous polynomial of degree i -1. In ( 3), we now have

F D (1, U 3 U 2 ) = (v - λ)G(1, U 3 U 2 )
, and therefore get the sharper estimate

e 1 + ord v G(1, U 3 U 2 ) 1 + degG = i,
thus contradicting the assumption e = 1 + i.

Let us finally prove (iv), so i 2. If d 2, we have the inequality e

1 + i d < i except possibly if d = i = 2. In this last case, (U 3 ∂F ∂U 3 )(1, U 3 U 2 ) is a unit in T ′
, so that we get e 1 in this case. We can therefore assume that x ′ is rational over

x 0 . Then v = λ + U 3 U 2 , λ ∈ k(x 0 ). Note that (dU 2 , dv, {dλ i } 4 i s ) is then a basis of Ω 1 T ′ /k 0 . We denote by u 2 the image of U 2 in T ′ to avoid confusion in what follows Since dv = d( U 3 U 2 + λ) = d U 3 U 2 + 4 i s a i dλ i , dU 3 = u 2 d U 3 U 2 + U 3 U 2 du 2 ,
with a i ∈ k(x 0 ), 4 i s, we get the formulae

u 2 ∂ • f ∂u 2 = u 2 ∂ ∂U 2 + U 3 ∂ ∂U 3 , ∂ • f ∂v = u 2 ∂ ∂U 3 , ∂ • f ∂λ i = ∂ ∂λ i -a i u 2 ∂ ∂U 3 in Der k 0 (k(x 0 )[U 2 , U 3 ]), where f : k(x 0 )[U 2 , U 3 ] → T ′ is the natural map.
Then, if λ = 0, the (weak) transform of

I := U -a 2 U 2 ∂U a 2 F (U 2 , U 3 ) ∂U 2 , U 3 ∂U a 2 F (U 2 , U 3 ) ∂U 3 , { ∂U a 2 F (U 2 , U 3 ) ∂λ i } 4 i s is I ′ := u -a-i 2 u 2 ∂u a+i 2 F (1, U 3 U 2 ) ∂u 2 , ∂u a+i 2 F (1, U 3 U 2 ) ∂v , { ∂u a+i 2 F (1, U 3 U 2 ) ∂λ i } 4 i s .
Since we have e = i, all of these derivatives in

I ′ are multiples of v i , except u -a-i 2 ∂u a+i 2 F (1, U 3 U 2
) ∂v which is a multiple of v i-1 . So in I, the corresponding derivatives are multiples of (λU

2 + U 3 ) i , except U -a 2 U 3 ∂U a 2 F (U 2 ,U 3 ) ∂U 3
which is a multiple of U 3 (λU 2 + U 3 ) i-1 . If λ = 0, we have a i = 0, 4 i s, in the previous formulae, and I ′ becomes

I ′ := u -a-i 2 u 2 ∂u a+i 2 F (1, U 3 U 2 ) ∂u 2 , U 3 ∂u a+i 2 F (1, U 3 U 2 ) ∂ U 3 U 2 , { ∂u a+i 2 F (1, U 3 U 2 ) ∂λ i } 4 i s .
Since we have e = i, all of these derivatives in I ′ are multiples of ( U 3 U 2 ) i . So in I, all derivatives are multiples of U 3 i .

So if we have equality in (iii), either all the derivatives in I are multiples of U i 3 and the only possible x ′ has parameter v = U 3 U 2 , or they are all multiples of (λU

2 + U 3 ) i (except U -a 2 U 3 ∂U a 2 F (U 2 ,U 3 ) ∂U 3
which is a multiple of U 3 (λU 2 + U 3 ) i-1 ), for some λ ∈ k(x 0 ) -{0}. Since i 2 and U a 2 F (U 2 , U 3 ) is not a p th -power, λ is uniquely determined and gives as only possible x ′ the point with parameter v = λ + U 3 U 2 . We get (iv). We now come to the main result of this chapter: our main invariant (ord x 0 h, Ω(x 0 )) does not increase above x 0 when performing a permissible blowing up.

II.5.4 Theorem. Assume that x 0 ∈ Σ p , ω(x 0 )
1 and H(x 0 ) = 1. Let e : X 1 → X 0 be the blowing up along a permissible center Y and

x ′ ∈ e -1 (x 0 ) be the center of µ in X 1 . If x ′ ∈ Σ p (X 1 ), then Ω(x ′ ) Ω(x 0 ), where Ω(x ′ ) is computed w.r.t. E ′ := e -1 (E) red .
Proof. The proof is long and needs to study all different cases, depending on the kind of permissible blowing up and on the different values of ord η(y) g p .

By II.5.2, there exists a r.s.p. (X,

u 1 , u 2 , u 3 ) of R such that Y = V (X, {u i } i∈I ), E ⊆ div(u 1 u 2 u 3 )
, and both of ∆(h; u 1 , u 2 , u 3 ; X) and ∆(h; {u i } i∈I ; X) are minimal. If the blowing up is of the second kind, any r.s.p. satisfying the condition in definition II.5.1 (ii) automatically has these properties. We have | I |= 2 or 3 by II.5.1.1. Also, δ(y) 1 by II.2.1. We keep conventions on indices as in II.3 as well as the writings

f = div(u i )⊆E u a i i f 0 of II.1 and Ψ = cl ǫ(x 0 ) (H(x 0 ) -1 f ) of II.3.
By II.5.3(i), e -1 (Y ) = div(t), where t = u i for some i ∈ I. Let h ′ := t -p h be the strict transform of h at x ′ :

h ′ = X ′ p -X ′ t (p-1)(( i∈I E β i )-1) gp-1 + t ( i∈I a i )+α(y)-p f =: X ′ p -X ′ g ′(p-1) + f ′ , (1) 
where f (resp. g) is the strict transform of f (resp. g), y is the generic point of Y and X ′ := X/t. Let u ′ j := u j /t, j ∈ I (u ′ i = 1 for j = i) and

I i := I\{i}. Then (X ′ , t, {u ′ i } i∈I i , {u r } r∈I c ) is a system of coordinates at x ′ . Let η ′ : (X 1 , x ′ ) → S[{u ′ i } i∈I i ] be the induced map. We denote S ′ := S[{u ′ i } i∈I i ] η ′ (x ′ ) and R ′ := S ′ [X ′ ] x ′ . If x ′ ∈ Σ p (X 1 ), Ω(x ′
) is thus defined. Note that u ′ j may be a unit for some j ∈ I i . In any case: the polyhedron ∆(h

′ ; v 1 , v 2 , v 3 ; X ′ ) where (X ′ , v 1 , v 2 , v 3 ) is a r.s.p. of R ′ adapted to E ′ = e -1 (E) red is not in general minimal.
Let us recall the transformation laws given in [5, I.E.1]:

J (f, E ′ ) η ′ (x ′ ) = J (f, E, Y )S ′ ,
where Y is the center of the blowing up, the only hypothesis in this formula being that Y is regular, and that η(Y ) has normal crossings with E. Since we factor out the p th -power t p in h, we get

J (f ′ , E ′ ) η ′ (x ′ ) = t -p J (f, E, Y )S ′ .
(

) 2 
If the blowing up is of the first kind, then

Ψ ∈ k(x 0 )[{U i } i∈I ] and f ≡ M Ψ({u ′ i } i∈I ) modM (t, u r ). ( 3 
)
where

M := ( i∈I E u ′ i pd i )u pd r r (d i is defined in II.1.2) and {r} = I c .
If the blowing up is of the second kind, the definition implies that Y is a curve and Ψ

= Ψ 0 ({U i } i∈I ) + U r Ψ r ({U i } i∈I ), where {r} = I c is such that div(u r ) ⊆ E, Ψ r is (nonzero) homoge- neous of degree ǫ(x 0 ) -1 and Ψ 0 ∈ k(x 0 )[{U i } i∈I ] ǫ(x 0 ) . We have f ≡ M u r Ψ r ({u ′ i } i∈I ) modM (t, u 2 r ). ( 3 
′ )
In this case, it is easily seen that the function f ∈ S attached to any r.s.p. (X, u 1 , u 2 , u 3 ) of R satisfying the requirements stated in the beginning of the proof of this theorem produces a Ψ of the above form.

If δ(y) > 1, we consider the valuation w of S ′ [X ′ ] centered at V (X ′ , t) given by: w(

X ′ ) = 1, w(t) = 1 δ(y)-1 . As pδ(y) = inf{p i∈I E β i , α(y) + i∈I pd i }, we get w(h ′ ) = w(X ′ p ) = p, so vertices of the polyhedron ∆(h ′ ; v 1 , v 2 , v 3 ; X ′ ) where (X ′ , v 1 , v 2 , v 3
) is a r.s.p. of R ′ adapted to E ′ correspond to monomials with w-value at least p. Thus there is some

Z ′ ∈ R ′ such that ∆(h ′ ; v 1 , v 2 , v 3 ; Z ′ ) is minimal, where Z ′ = X ′ -θ ′ , θ ′ ∈ S ′ , w(θ ′ ) 1. After changing X ′ to Z ′ , the degree zero term in Z ′ of h ′ is: φ := t ( i∈I pd i )+α(y)-p f + θ ′ p -θ ′ t (p-1)(( i∈I E β i )-1) gp-1 . (4) 
Formula ( 4) is also valid when δ(y) = 1, where θ ′ ∈ S ′ has no weight estimate.

II.5.4.1 Lemma. We have (H(x ′ )) = (t p(δ(y)-1) ( i∈I E u ′ i pd i )u pd r r
). Proof. Indeed, as the exponents d i are defined by the generic point of the corresponding component of the exceptional divisor (cf. II.2), the only question is to compute the exponent of t in g ′p and φ, the minimum will be the exponent of t in H(x ′ ).

If ord η(y) g p ord η(y) f = α(y), then ǫ(y) = ord η(y) g p . Formulae( 1) and ( 4) and II.3.3 imply that ord t g ′p = i∈I E pd i + ǫ(y) -p = p(δ(y) -1),

ord t φ i∈I E pd i + ǫ(y) -p = p(δ(y) -1).
If ord η(y) g p > ord η(y) f = α(y), then ǫ(y) = α(y). Formula (1) implies that t 4) and strictly divides g ′p , so strictly divides

( i∈I E pd i )+ǫ(y)-p divides θ ′ p in (
θ ′ g ′p-1 = θ ′ t (p-1)(( i∈I E β i )-1) gp-1 . Therefore ord t φ = i∈I E pd i + ǫ(y) -p = p(δ(y) -1)
and this completes the proof.

The theorem is a consequence of the following three lemmas which also classify the equality cases Ω(x ′ ) = Ω(x 0 ). In II.5.4.2 and II.5.4.3, (X, u 1 , u 2 , u 3 ) is any r.s.p. of R such that Y = V (X, {u i } i∈I ), E ⊆ div(u 1 u 2 u 3 ) and ∆(h; u 1 , u 2 , u 3 ; X)is minimal (see comments in the beginning of the proof of this theorem). II.5.4.2 Lemma. If v δ (g) = 1, ǫ(x 0 ) = ǫ(y) (first kind of permissible blowing-up) and x ′ ∈ Σ p (X 1 ), then Ω(x ′ ) Ω(x 0 ). Moreover, the following holds:

(i) the strict transform of div(H(x 0 ) -1 g p ) is div(H(x ′ ) -1 g ′p ). We have Ω(x ′ ) < Ω(x 0 ) if x ′ does not map to the strict transform of each component of div(H(x 0 ) -1 g p );

(ii) if Y is a curve, there exists at most one x ′ such that Ω(

x ′ ) = Ω(x 0 ). Such x ′ satisfies η ′ (x ′ ) ∈ PDir(cl ǫ(x 0 ) J(f, E, x 0 )) (resp. η ′ (x ′ ) ∈ PDir(cl ω(x 0 ) J(f, E)) if ω(x 0 ) = ǫ(x 0 ) (resp. 1 + ω(x 0 ) = ǫ(x 0 )
), and has ω ′ (x ′ ) = ω ′ (x 0 ) 2;

(iii) if Y = {x 0 } and div(H(x 0 ) -1 g p ) has two components, there exists at most one x ′ such that Ω(x ′ ) = Ω(x 0 ). Such x ′ is the intersection of the exceptional divisor and of the strict transform of div(H(x 0 ) -1 g p ), and has either ω ′ (x ′ ) = ω ′ (x 0 ) = 2, or (ω ′ (x 0 ) = 1 and x 0 belongs to case II.4(i));

(iv) if Y = {x 0 } and div(H(x 0 ) -1 g p ) has one component, then: if ω ′ (x 0 ) = 2 and Ω(x ′ ) = Ω(x 0 ), η ′ (x ′ ) ∈ PDir(cl ω(x 0 ) J(f, E)); if ω ′ (x 0 ) = 3
, there exists at most one x ′ with Ω(x ′ ) = Ω(x 0 ), and such x ′ is rational over x 0 .

Proof of (i). We note that v δ (g) = 1 is equivalent to ord η(x 0 ) (H(x 0 ) -1 g p ) = ǫ(x 0 ). By II.5.4.1, div(H(x ′ ) -1 g ′p ) is the strict transform of div(H(x) -1 g p ) since ǫ(x 0 ) = ǫ(y). So for every point x ′ above x 0 not on the strict transform of all components of H(x 0 ) -1 g p , we have

ǫ(x ′ ) ord η ′ (x ′ ) (H(x ′ ) -1 g ′p ) < ord η(x 0 ) (H(x 0 ) -1 g p ) = ǫ(x 0 ), thus ω(x ′ ) ǫ(x ′ ) ǫ(x 0 ) -1 ω(x 0 ). If ω(x ′ ) = ω(x 0 ), then ω(x ′ ) = ord η ′ (x ′ ) (H(x ′ ) -1 g ′p ), that is ω ′ (x ′ ) = 1 by definition II.4, and ω(x 0 ) = ǫ(x 0 ) -1, which implies ω ′ (x 0 ) 2 by definition II.4.
Hence Ω(x ′ ) < Ω(x 0 ) and this ends the proof of (i). Proof of (ii). Since Y is a curve and ǫ(y) = ǫ(x 0 ) = ord η(x 0 ) (H(x 0 ) -1 g p ), div(H(x 0 ) -1 g p ) has at most two components. We consider two cases:

Case 1: div(H(x 0 ) -1 g p ) has two reduced components, say is equal to div(u 1 u 2 ). Since ǫ(x 0 ) = ǫ(y), we have ord η(x 0 ) (H(x 0 ) -1 g p ) = ǫ(x 0 ) = ord η(y) (H(x 0 ) -1 g p ), so that Y = V (X, u 1 , u 2 ). There is no point x ′ on the strict transform of div(u 1 u 2 ), so by (i), Ω(x ′ ) < Ω(x 0 ).

Case 2: div(H(x 0 ) -1 g p ) has only one reduced component. After possibly changing indices, we have (H(x 0 ) -1 g p ) = (u ǫ(x 0 ) 1

) and Y = V (X, u 1 , u 2 ). By (i), the only point x ′ to be considered has r.s.p.

( X u 2 , u 1 u 2 , u 2 , u 3 ) in R ′ . The polyhedron ∆(h ′ ; u 1 u 2 , u 2 , u 3 ; X u 2 ) is still minimal: if v ′ = (x 1 , x 2 , x 3 ) is a vertex of ∆(h ′ ; u 1 u 2 , u 2 , u 3 ; X u 2 ), then v = (x 1 , x 2 -x 1 + 1, x 3 ) is a vertex of ∆(h; u 1 , u 2 , u 3 ; X) and in v ′ (h ′ ) = U -p 2 in v (h) ∈ k(x ′ )[ X U 2 , U 1 U 2 , U 2 , U 3 ] is not solvable (note that k(x ′ ) = k(x 0 )). We have Ψ ∈ k(x 0 )[U 1 , U 2 ] in (3), so H(x ′ ) -1 f ′ ≡ Ψ( u 1 u 2 , 1) mod(u 2 , u 3 ). If Ψ ∈ k(x 0 )[U 1 ],
we have Ω(x 0 ) = (ǫ(x 0 ), 1) by II.4. On the other hand,

ω(x ′ ) ord η ′ (x ′ ) (H(x ′ ) -1 g ′p ) = ǫ(x 0 ) = ω(x 0 ).
Therefore Ω(x ′ ) < Ω(x 0 ) if inequality is strict. If equality holds, we have by

II.4 Ω(x ′ ) = (ω(x ′ ), 1) = Ω(x 0 ). Note that cl ǫ(x 0 ) J(f, E, x 0 ) = k(x 0 ).U ǫ(x 0 ) 1 , so IDir(cl ǫ(x 0 ) J(f, E, x 0 )) = (U 1 ) as required. If Ψ ∈ k(x 0 )[U 1 ], we have ω(x ′ ) ord η ′ (x ′ ) Ψ( u 1 u 2 , 1) ǫ(x 0 ) -1 < ǫ(x 0 ) = ord η ′ (x ′ ) (H(x ′ ) -1 g ′p ).
We have Ω(x ′ ) < Ω(x 0 ) unless ω(x ′ ) = ω(x 0 ) = ǫ(x 0 ) -1. In the latter case, we get ω(x ′ ) = ǫ(x ′ ), so Ω(x ′ ) = (ω(x ′ ), 2) by II.4. Since ω(x 0 ) = ǫ(x 0 ) -1, we have ω ′ (x 0 ) 2 and this proves that Ω(x ′ ) Ω(x 0 ). Equality holds only if Ψ = aU

ω(x 0 ) 1 U 2 +bU 1+ω(x 0 ) 1 for some 0 = a ∈ k(x 0 ), b ∈ k(x 0 ). Then cl ω(x 0 ) J(f, E) = k(x 0 ).U ω(x 0 ) 1
and IDir(cl ǫ(x 0 ) J(f, E, x 0 )) = (U 1 ) as required. This ends the proof of (ii). Proof of (iii). After possibly changing indices, we have (H(x 

0 ) -1 g p ) = (u a 1 u b 2 ), a + b = ǫ(x 0 ), a, b > 0.
Then, by (i), the only point x ′ we have to consider has coordinates ( X u 3 ,

u 1 u 3 , u 2 u 3 , u 3 ). The polyhedron ∆(h ′ ; u 1 u 3 , u 2 u 3 , u 3 ; X u 3 ) is still minimal: if v ′ = (x 1 , x 2 , x 3 ) is a vertex of ∆(h ′ ; u 1 u 3 , u 2 u 3 , u 3 ; X u 3 ) then v = (x 1 , x 2 , x 3 -x 1 -x 2 + 1) is a vertex of ∆(h; u 1 , u 2 , u 3 ; X) and in v ′ (h ′ ) = U -p 3 in v (h) ∈ k(x 0 )[ X U 3 , U 1 U 3 , U 2 U 3 , U 3 ] is not solvable (note that k(x ′ ) = k(x 0 )). We have Ψ ∈ k(x 0 )[U 1 , U 2 , U 3 ] in (3) and H(x ′ ) -1 f ′ ≡ Ψ( u 1 u 3 , u 2 u 3 , 1) mod(u 3 ). If Ψ ∈ k(x 0 )[U 1 , U 2 ],
we have Ω(x 0 ) = (ǫ(x 0 ), 1) and x 0 belongs to case II. 4(i).

Then ω(x ′ ) ord η ′ (x ′ ) (H(x ′ ) -1 g ′ p ) = ǫ(x 0 ) and we conclude that Ω(x ′ ) (ǫ(x 0 ), 1) as in (ii). If Ψ ∈ k(x 0 )[U 1 , U 2 ], then ω(x ′ ) ord η ′ (x ′ ) (Ψ( u 1 u 3 , u 2 u 3 , 1)) ǫ(x 0 ) -1 < ǫ(x 0 ) = ord η ′ (x ′ ) (H(x ′ ) -1 g ′p ),
and we get Ω(x ′ ) Ω(x 0 ) with equality only if ω ′ (x 0 ) = 2 as in the proof of (ii). This concludes the proof of (iii).

Proof of (iv). After possibly changing indices, we have (H(x 0 ) -1 g p ) = (u

ǫ(x 0 ) 1
). By (i), we only have to look at points x ′ on the strict transform of div(u 1 ). At such a point, (H(x ′ ) -1 g ′ p ) = ((

u 1 t ) ǫ(x 0 ) ), where t = 0 is an equation of the exceptional divisor. So ω(x ′ ) ord η ′ (x ′ ) (H(x ′ ) -1 g ′ p ) = ǫ(x 0 ). If ω(x 0 ) = ǫ(x 0 ), we get ω(x ′ ) ω(x 0 ). Equality holds if and only if we have ω(x ′ ) = ord η ′ (x ′ ) (H(x ′ ) -1 g ′ p ), i.e. ω ′ (x ′ ) = 1.
This ends the proof of (iv) in the case ω(x 0 ) = ǫ(x 0 ).

Let us now prove (iv) when ǫ(x 0 ) = 1 + ω(x 0 ). In this case, we have ω ′ (x 0 ) 2, ord η(x 0 ) g p = ord η(x 0 ) f , and div(u 1 ) ⊆ E ⊆ div(u 1 u 2 ). First we note that, since (g p ) = (u

a(1) 1 u a(2) 2 u ǫ(x 0 ) 1
), where

H(x 0 ) = u a(1) 1 u a(2) 2 (a(2) = 0 if E = div(u 1
)), we have a(1) + ǫ(x 0 ) ≡ 0 modp, a(2) ≡ 0 modp.

(

) 5 
In particular, δ(x 0 ) = a(1)+a( 2)+ǫ(x 0 ) 3) (j is the number of components of E). We may suppose that U 3 effectively appears in the expansion of Ψ and expand Ψ =

p ∈ N. We have Ψ ∈ k(x 0 )[U 1 , U 2 , U 3 ], Ψ ∈ k(x 0 )[U 1 , . . . , U j ] in (
0 i i 0 U ǫ(x 0 )-i 1 F i (U 2 , U 3 ), (6) 
where i 0 := sup{i|F i = 0}. We have

i 0 > 0 because Ψ ∈ k(x 0 )[U 1 , . . . , U j ].
Let us look at a point x ′ above x 0 on the strict transform of div(u 1 ), in the chart centered at the point of parameters

X u 2 = X ′ , u 1 u 2 = u ′ 1 , u 2 = u ′ 2 , u 3 u 2 = u ′ 3 .
Then we have

g ′p-1 = γ p-1 u ′ 1 p-1 p (a(1)+ǫ(x 0 )) u ′ 2 (p-1)(δ(x 0 )-1)
in ( 1) above, and

f ′ = u ′ 1 a(1) u ′ 2 p(δ(x 0 )-1)   0 i i 0 u ′ 1 ǫ(x 0 )-i F i (1, u ′ 3 ) + u ′ 2 Σ   (7) 
in ( 3) above, where Σ ∈ S ′ . When u ′ 3 is invertible at x ′ , we have to choose an irreducible homogeneous polynomial P ∈ k(x 0 )[U 2 , U 3 ], unitary in U 3 and such that, if we denote v

′ := P (1, u ′ 3 ), (X ′ , u ′ 1 , u ′ 2 , v ′ ) is a r.s.p. of R ′ . Then, there is no reason for ∆(h ′ ; u ′ 1 , u ′ 2 , v ′ ; X ′
) to be minimal: we have to make a translation Z ′ := X ′ -θ ′ to minimize this polyhedron.

To begin with, we compute the vertex w of ∆(h ′ ; u ′ 1 , u ′ 2 , v ′ ; Z ′ ) with (x 1 , x 2 ) minimal for the inverse lexicographical ordering.

As we change

X ′ into Z ′ = X ′ -θ ′ , f ′ is changed into φ = f ′ + θ ′ p -θ ′ g ′p-1 .
Since the Newton polyhedron of θ ′ is a subset of ∆(h ′ ; u ′ 1 , u ′ 2 , v ′ ; X ′ ), every (y 1 , y 2 , y 3 ) in this Newton polyhedron verifies (for the inverse lexicographical ordering)

(y 1 , y 2 ) ( a(1) + ǫ(x 0 ) -i 0 p , δ(x 0 ) -1), so every (z 1 , z 2 , z 3 ) in the Newton polyhedron of θ ′ g ′p-1 verifies (z 1 , z 2 ) ( a(1) + ǫ(x 0 ) -i 0 p + p -1 p (a(1) + ǫ(x 0 )), p(δ(x 0 ) -1)).
In particular, all terms of order p(δ(x 0 ) -1) in u ′ 2 in θ ′ g ′p-1 have order in u ′ 1 strictly bigger than a(1) + ǫ(x 0 ) -i 0 , so the vertex w will be given by

u ′ 1 a(1) u ′ 2 p(δ(x 0 )-1) u ′ 1 ǫ(x 0 )-i 0 F i 0 (1, u ′ 3 ) + Θ ′ p , (8) 
where Θ ′ ∈ S ′ is zero or has order exactly (a(1) + ǫ(x 0 ) -i 0 )/p in u ′ 1 and δ(x 0 ) -1 in u ′ 2 . We now consider two cases:

Case 1: i 0 ≡ 0 modp. Then [START_REF]Sur le polyèdre caractéristique[END_REF] implies that Θ ′ is necessarily zero. So in this case

f ′ = u ′ 1 a(1)+ǫ(x 0 )-i 0 u ′ 2 p(δ(x 0 )-1) (F i 0 (1, u ′ 3 ) + Σ ′ ), for some Σ ′ ∈ (u ′ 1 , u ′ 2 )
. Case 1 splits into two subcases:

Case 1a: ord η ′ (x ′ ) F i 0 (1, u ′ 3 ) < i 0 . Then ǫ(x ′ ) ǫ(x 0 ) -1 = ω(x 0 ) and we deduce that Ω(x ′ ) Ω(x 0 ). Equality holds only if ω ′ (x 0 ) = 2, ǫ(x ′ ) = ω(x ′ ) = ǫ(x 0 ) -1, and ord η ′ (x ′ ) F i 0 (1, u ′ 3 ) = i 0 -1. Then i 0 -1 =: pα, α ∈ N, since ǫ(x ′ ) = ω(x ′ ) and we have F i 0 (U 2 , U 3 ) = P (U 2 , U 3 ) pα Q(U 2 , U 3 ), with degQ = 1. Now, ǫ(x ′ ) α + ǫ(x 0 ) -i 0 = ǫ(x 0 ) -1 -(i 0 -1)(1 - 1 degP
). ( 9)

If α = 0, we have cl ω(x 0 ) J(f, E) = k(x 0 ).U ω(x 0 ) 1
as required. If α > 0, we have degP = 1 by ( 9), since ǫ(x ′ ) = ǫ(x 0 ) -1 and i 0 -1 > 0. We now choose (X, u 1 , u 2 , v := P (u 2 , u 3 )) as r.s.p. of R, where X has been chosen in such a way that the polyhedron ∆(h;

u 1 , u 2 , v; X) is minimal. The point x ′ has parameters (X ′ = X u 2 , u ′ 1 = u 1 u 2 , u ′ 2 = u 2 , v ′ = v u 2 ) and ∆(h ′ ; u ′ 1 , u ′ 2 , v ′ ; X ′
) is thus minimal (see the argument at the beginning of the proof of II.5.4.2(iii)). Since ǫ(x ′ ) = ǫ(x 0 ) -1, we get that in [START_REF]Polyèdre caractéristique et éclatements combinatoires[END_REF], Ψ is of the form

Ψ = Ψ 1 (U 1 , V ) + U ǫ(x 0 )-i 0 1 U 2 Ψ 2 (U 1 , V ) with Ψ 2 (0, V ) = 0. On the other hand, ω(x ′ ) = ǫ(x ′ ), thus Ψ 2 ∈ k(x 0 )[U 1 , V p ]. Therefore, E = div(u 1 ) and VDir(cl ω(x 0 ) J(f, E)) =< U 1 , V >,
which proves the statement about the directrix.

Case 1b:

ord η ′ (x ′ ) F i 0 (1, u ′ 3 ) = i 0 . Then (F i 0 (1, u ′ 3 )) = (v ′ i 0 ),
x ′ is rational over x 0 and we have ǫ(x ′ ) ǫ(x 0 ). If inequality is strict, we get Ω(x ′ ) Ω(x 0 ) as in case 1a, and the equality case (only if ω ′ (x 0 ) = 2) is dealt with similarly.

If ǫ(x ′ ) = ǫ(x 0 ), with notations as in case 1a, Ψ is of the form Ψ = U

ǫ(x 0 )-i 0 1 Ψ 1 (U 1 , V ) with Ψ 1 (0, V ) = 0. Thus ǫ(x 0 ) -1 ω(x ′ ) ord η ′ (x ′ ) (H(x ′ ) -1 ∂f ′ ∂v ′ ) = ǫ(x 0 ) -1 = ω(x 0 ) (10) 
and VDir(cl ω(x 0 ) J(f, E)) =< U 1 , V >. We claim that ω ′ (x ′ ) = 2, which concludes the proof of case 1b.

To begin with, the vertex w = ( a(1)+ǫ

(x 0 )-i 0 p , δ(x 0 ) -1, i 0 /p) of ∆(h ′ ; u ′ 1 , u ′ 2 , v ′ ; X ′
) is not solvable, since it has two coordinates which are not integers. Furthermore, if we change our r.s.p.

(u ′ 1 , u ′ 2 , v ′ ) of S ′ to a new r.s.p. adapted to E ′ , the latter is of the form (u ′′ 1 := γ ′ 1 u ′ 1 , u ′′ 2 := γ ′ 2 u ′ 2 , v ′′ := γ ′ v ′ + ϕ), where ϕ ∈ (u ′′ 1 , u ′′ 2 )S ′ and γ ′ 1 γ ′ 2 γ ′ ∈ S ′ is a unit. Then w still appears as a vertex in ∆(h ′ ; u ′′ 1 , u ′′ 2 , v ′′ ; X ′ ) as well as in the minimal polyhedron ∆(h ′ ; u ′′ 1 , u ′′ 2 , v ′′ ; Z ′′ ) after performing a translation Z ′′ = X ′ -θ ′′ .
The computation in [START_REF]Uniformisation et désingularisation des surfaces[END_REF] remains valid with derivatives w.r.t. (u ′′ 1 , u ′′ 2 , v ′′ ), so x ′ is in case II. 4(v), ω ′ (x ′ ) = 2 and the claim is proved. Case 2: i 0 ≡ 0 modp. Then the series Θ ′ in ( 8) may be nonzero. Since i 0 > 0, we have i 0 p 2. Note that the terms H(x 0 )u

ǫ(x 0 )-i 0 1 F i 0 (u 2 , u 3 ) correspond to a face of the minimal polyhedron ∆(h; u 1 , u 2 , u 3 ; X), so that in particular U a(2) 2 F i 0 (U 2 , U 3 ) is not a p th -power. We apply I.5.3.2(iii), (iv) to U a(2) 2 F i 0 (U 2 , U 3 ). Then, in (8), we get u ′ 1 a(1) u ′ 2 p(δ(x 0 )-1) u ′ 1 ǫ(x 0 )-i 0 F i 0 (1, u ′ 3 ) + Θ ′ p ≡ u ′ 1 a(1) u ′ 2 p(δ(x 0 )-1) u ′ 1 ǫ(x 0 )-i 0 (γ ′ v ′ e + u ′ 2 ϕ),
with γ ′ invertible, ϕ ∈ S ′ and e i 0 . Then

ǫ(x ′ ) e + ǫ(x 0 ) -i 0 ǫ(x 0 ). ( 11 
)
If some inequality is strict (for instance if e < i 0 ), we get Ω(x ′ ) Ω(x 0 ) as in case 1a, and the equality case (only if ω ′ (x 0 ) = 2) is dealt with similarly.

So from now on, we assume that all inequalities in (11) are equalities. In particular, ǫ(x 0 ) = ǫ(x ′ ). By I.5.3.2(iv), we have

v ′ = λ + u ′ 3 ; λ ∈ k(x 0 ), U 2 ∂F i 0 ∂U 2 , ∂F i 0 ∂λ i , 4 i s are multiples of (λU 2 +U 3 ) i 0 ; ∂F i 0
∂U 3 is a multiple of (λU 2 +U 3 ) i 0 -1 (remember that p divides a( 2)). Since i 0 ≡ 0 modp, we must have

∂F i 0 ∂U 3 = 0; since F i 0 is not a p th -power, one of the other derivatives is nonzero. So Vect k(x 0 ) < U 2 ∂F i 0 ∂U 2 , { ∂F i 0 ∂λ i } 4 i s >= k(x 0 ).(λU 2 + U 3 ) i 0 .
Therefore, there exists 0 =

µ i 0 ∈ k(x 0 ), Θ ∈ k(x 0 )[U 2 , U 3 ] i 0 p such that F i 0 (U 2 , U 3 ) = µ i 0 (λU 2 + U 3 ) i 0 + Θ p . Since ∆(h; u 1 , u 2 , u 3 ; X) is minimal, the monomial µ i 0 u a(1)+ǫ(x 0 )-i 0 1 u a(2) 2 u i 0 3 must define a non solv- able vertex w of the initial face of ∆(h; u 1 , u 2 , u 3 ; X), hence µ i 0 ∈ k(x 0 ) p .
We now choose (X, u 1 , u 2 , v = u 3 + λu 2 ) as r.s.p. of R, where X has been chosen in such a way that the polyhedron ∆(h;

u 1 , u 2 , v 3 ; X) is minimal. The point x ′ has parameters (X ′ = X u 2 , u ′ 1 = u 1 u 2 , u ′ 2 = u 2 , v ′ = v u 2 ) and ∆(h ′ ; u ′ 1 , u ′ 2 , v ′ ; X ′
) is thus minimal (see the argument at the beginning of the proof of II. 5.4.2(iii)). Since ǫ(x ′ ) = ǫ(x 0 ), we have

F i (1, u ′ 3 ) = µ i v ′ i , µ i ∈ k(x 0 ) in (7) for each i, 0 i i 0 , so F i (U 2 , U 3 ) = µ i V i . This means that the initial face of ∆(h; u 1 , u 2 , v; X) is a segment with ends a := ( a(1) + ǫ(x 0 ) -i 0 p , a (2) p 
, i 0 p ), b := ( a(1) + ǫ(x 0 ) p , a (2) 
p , 0), ( 12 
)
where a corresponds to the vertex w and b to the monomial Xg p-1 . By [START_REF]Contact maximal en caractéristique positive et petite multiplicité[END_REF], this also implies that the face of ∆(h ′ ; u ′ 1 , u ′ 2 , v ′ ; X ′ ) with minimal second coordinate is the segment with ends

a ′ := ( a(1) + ǫ(x 0 ) -i 0 p , δ(x 0 ) -1, i 0 p ), b ′ := ( a(1) + ǫ(x 0 ) p , δ(x 0 ) -1, 0). ( 13 
)
Suppose we changed X into

Z := X -µu a(1)+ǫ(x 0 )-i 0 p +i 1 u a(2) p 2 v i 0 p -i ,
where i ∈ {0, 1} is such that i 0 /p -i ≡ 0 modp and µ i 0 p -i -µγ p-1 = 0, where γ is the image of γ in k(x 0 ). We would have ∆(h; u 1 , u 2 , v; Z) = ∆(h; u 1 , u 2 , v; X) by construction, and the coefficient of the monomial u a(1)+ǫ(x 0 )-

i 0 p +i 1 u a(2) 2 v i 0 p -i in f + u a(1)+ǫ(x 0 )-i 0 p +i 1 u a(2) p 2 v i 0 p -i p -u a(1)+ǫ(x 0 )-i 0 p +i 1 u a(2) p 2 v i 0 p -i g p-1
would be nonzero. This proves that VDir(cl ω(x 0 ) J(f, E)) =< U 1 , V > and, comparing with [START_REF]Contact maximal en caractéristique positive et petite multiplicité[END_REF], that ω(x ′ ) = ǫ(x 0 ) -1 = ω(x 0 ). If ω ′ (x 0 ) = 3 or if ω ′ (x ′ ) = 2, we are done. Fortunately, we cannot have at the same time ω ′ (x 0 ) = 2 and ω ′ (x ′ ) = 3. The idea is that, since x ′ is rational over x 0 , if there are translations over X ′ which drop the order of J(f ′ , E ′ ) by one, there are corresponding translations on X which also drop the order of J(f, E) by one.

More precisely, suppose we have Ω(x ′ ) = (ω(x 0 ), 3). By definition, there exists a r.s.p.

(w ′ 1 , w ′ 2 , w ′ ) of S ′ , with w ′ 1 = γ ′ 1 u ′ 1 , w ′ 2 = γ ′ 2 u ′ 2 , w ′ 3 = ν ′ 1 u ′ 1 + ν ′ 2 u ′ 2 + ν ′ 3 v, γ ′ i , ν ′ j ∈ S ′ , γ ′ 1 γ ′ 2 ν ′ 3 
invertible, and θ ′ ∈ S ′ such that the following holds: denoting

Z ′ := X ′ -θ ′ , the polyhedron ∆(h ′ ; w ′ 1 , w ′ 2 , w ′ 3 ; Z ′ ) is minimal and the order of J(f ′ + θ ′ p -θ ′ g ′p-1 , E ′ ) is ǫ(x ′
). Now, by [START_REF]Contact maximal en caractéristique positive et petite multiplicité[END_REF], the initial form Φ ′ of f ′ , written in the coordinates (W

′ 1 , W ′ 2 , W ′ 3 ) is of the form Φ ′ = (γ ′ 1 -1 W ′ 1 )
a( 1)

(γ ′ 2 -1 W ′ 2 ) p(δ(x 0 )-1)
(

0 i i 0 (γ ′ 1 -1 W ′ 1 ) ǫ(x 0 )-i µ i ν ′ 3 -i (W ′ 3 - ν ′ 1 γ ′ 1 W ′ 1 ) i + W ′ 2 Σ),
where

γ ′ i , ν ′ j are the images of γ ′ i , ν ′ j in k(x ′ ) = k(x 0 ). Since the Newton polyhedron of θ ′ is a subset of ∆(h ′ ; w ′ 1 , w ′ 2 , w ′ 3 ; X ′
), the segment (13), whose ends are not solvable, is still a face of ∆(h ′ ; w ′ 1 , w ′ 2 , w ′ 3 ; Z ′ ): b ′ is not solvable by definition, and we have

in a ′ f ′ = µ i 0 (γ ′ 1 -1 W ′ 1 ) a(1)+ǫ(x 0 )-i 0 p (γ ′ 2 -1 W ′ 2 ) δ(x 0 )-1 (ν ′ 3 W ′ 3 ) i 0 p p , with µ i 0 ∈ k(x ′ ) p , so a ′ is not solvable either. Since ord η ′ (x ′ ) J(f ′ + θ ′ p -g ′ p-1 θ ′ , E ′ ) = ǫ(x ′ ), Φ ′ must be of the form Φ ′ = W ′ 1 a(1) W ′ 2 p(δ(x 0 )-1)    0 j i 0 p µ ′ jp W ′ 1 ǫ(x 0 )-jp W ′ 3 jp + W ′ 2 Σ(W ′ 1 , W ′ 2 , W ′ 3 p )    + Σ p 1 , (14) 
for some

µ ′ jp ∈ k(x ′ ) and Σ 1 ∈ k(x ′ )[W ′ 1 , W ′ 2 , W ′ 3 ]
. We pick γ i , ν j , ∈ S such that γ i ≡ γ ′ i modm S ′ , ν j ≡ µ ′ j modm S ′ and let w i := γ i u i , i = 1, 2 and w 3 := ν 1 u 1 + ν 2 u 2 2 + ν 3 v. By construction, ∆(h; w 1 , w 2 , w 3 ; X) and ∆(h; u 1 , u 2 , v; X) have the same initial face: the segment (12). The vertex a is given by the monomial µ i 0 λ

-(a(1)+ǫ(x 0 )-i 0 ) 1 ν -i 0 3 w a(1)+ǫ(x 0 )-i 0 1 w a(2) 2 
w i 0 3 and is not solvable, since µ i 0 ∈ k(x 0 ) p . The vertex b is not solvable either by definition. Consider, if necessary, a change of coordinates Z := X -θ making ∆(h; w 1 , w 2 , w 3 ; Z) minimal. Then f becomes f Z := f + θ p -θg p-1 in these new coordinates. Since neither a nor b is solvable, we have

θ p ∈ H(x 0 )m ǫ(x 0 )+1 S , so that f ≡ f Z modH(x 0 )m ǫ(x 0 )+1 S
. Comparing now ( 7) and ( 14), the initial form Φ of f (or f Z ), written in the variables (W 1 , W 2 , W 3 ) must be

Φ = W a(1) 1 W a(2) 2    0 j i 0 p µ ′ jp W 1 ǫ(x 0 )-jp W 3 jp    . This shows that ord η(x 0 ) J(f Z , E) = ǫ(x 0 ). Since ω(x 0 ) = ǫ(x 0 ) -1 and ∆(h; w 1 , w 2 , w 3 ; Z) is minimal, we have ω ′ (x 0 ) = 3, thus Ω(x ′ ) = Ω(x 0 ).
This concludes the study of the first chart of the blowing up X 1 . The last point x ′ to look at is the point with coordinates ( X u 3 =:

X ′ , u 1 u 3 =: u ′ 1 , u 2 u 3 =: u ′ 2 , u 3 =: u ′ 3 )
. If E =div(u 1 ), then u 2 and u 3 have symmetric role and by changing indices, we come back to the origin of the chart studied above. Only note that if there was a point x ′′ with Ω(x ′′ ) = Ω(x 0 ) and ω ′ (x 0 ) = 3 in the first chart, (11) implies that ǫ(x ′ ) ǫ(x 0 ) -i 0 ǫ(x 0 ) -p, so that the uniqueness statement in (iv) is established.

If div(u 1 u 2 ) ⊆ E, then, with notations as in [START_REF]Contact maximal en caractéristique positive et petite multiplicité[END_REF], we have

h ′ = X ′p -X ′ g ′ p-1 + f ′ with g ′p-1 = γ p-1 u ′ 1 p-1 p (a(1)+ǫ(x 0 )) u ′ 2 p-1 p a(2) u ′ 3 (p-1)(δ(x 0 )-1) , f ′ = u ′ 1 a(1) u ′ 2 a(2) u ′ 3 p(δ(x 0 )-1) ( i u ′ 1 ǫ(x 0 )-i F i (u ′ 2 , 1) + u ′ 3 Σ),
where Σ ∈ S ′ . We are at the origin of a chart, so that by the argument in the proof of II.5.4.2(iii),

∆(h ′ ; u ′ 1 , u ′ 2 , u ′ 3 ; X ′ ) is minimal. If, for all i, F i ∈ k(x 0 )[U 2 ], we have Ω(x 0 ) = (ǫ(x 0 ), 1). Since E ′ = div(u ′ 1 u ′ 2 u ′ 3 ) in this case, we have ω(x ′ ) = ǫ(x ′ ) ord η ′ (x ′ ) (H(x ′ ) -1 g ′p ) = ǫ(x 0 ) = ω(x 0 ). We thus have Ω(x ′ ) < Ω(x 0 ) if ǫ(x ′ ) < ord η ′ (x ′ ) (H(x ′ ) -1 g ′p ), and Ω(x ′ ) = Ω(x 0 ) if ǫ(x ′ ) = ord η ′ (x ′ ) (H(x ′ ) -1 g ′p ).
If, for some i,

F i ∈ k(x 0 )[U 2 ], then ǫ(x ′ ) ǫ(x 0 ) -1. We have Ω(x ′ ) Ω(x 0 ), with equality only if Ω(x 0 ) = (ǫ(x 0 ) -1, 2) and Ψ is of the form Ψ = Ψ 1 (U 1 , U 2 ) + U 3 Ψ 2 (U 1 , U 2 ). Therefore E = div(u 1 u 2 ) and < U 1 >⊆ VDir(cl ω(x 0 ) J(f, E)) ⊆< U 1 , U 2 >
as required. This concludes the proof. II.5.4.3 Lemma. If v δ (g) > 1, ǫ(x 0 ) = ǫ(y) (first kind of permissible blowing-up) and x ′ ∈ Σ p (X 1 ), we have Ω(x ′ ) Ω(x 0 ). If equality holds, then:

(i) η ′ (x ′ ) ∈ PDir(cl ǫ(x 0 ) J(f, E, x 0 )) if ω(x 0 ) = ν(x 0 ) = ǫ(x 0 ), (ii) η ′ (x ′ ) ∈ PDir(cl ω(x 0 ) J(f, E)) if ω(x 0 ) = ν(x 0 ) = ǫ(x 0 ) -1.
Proof. Since v δ (g) > 1, we have ω ′ (x 0 ) = 2 and x 0 belongs to case II.4(ii). We keep notations as in the beginning of the proof of II.5.4. By II.5.2, we have: either ord η(y) (H(x 0 ) -1 g p ) > ord η(y) (H(x 0 ) -1 f ) = ǫ(y), and then g ′ p ∈ tH(x ′ )S ′ in II. 5.4(1), so

θ ′ t (p-1)(( i∈I E β i )-1) gp-1 ∈ tH(x ′ )S ′ (1) 
in II.5.4(4); or ord η(y) (H(x 0 ) -1 g p ) = ord η(y) (H(x 0 ) -1 f ) = ǫ(y), in which case some u r with 1 r e, r ∈ I E , divides H(x 0 ) -1 g p , since ord η(x 0 ) (H(x 0 ) -1 g p ) > ord η(x 0 ) (H(x 0 ) -1 f ) = ǫ(x 0 ) = ǫ(y).

In this case, we have

θ ′ t (p-1)(( i∈I E β i )-1) gp-1 ∈ u r H(x ′ )S ′ (1 ′ )
in II. 5.4(4). In both cases, II.5.4(3) and II.5.4.1 together imply that

φ ≡ H(x ′ )Ψ({u ′ i } i∈I ) + θ ′ p modH(x ′ )(t, u r )S ′ (2) 
in II. 5.4(4). By II.5.4(2) and II.5.4.1, we have

H(x ′ ) -1 J (φ, E ′ ) ≡ t -ǫ(y) H(x 0 ) -1 J (H(x 0 )Ψ({u i } i∈I ), E, Y ) modH(x ′ )(t, u r )S ′ (3) if Y = {x 0 } (then {r} = ∅), or if (Y is a curve and div(u r ) ⊆ E). If (Y is a curve and div(u r ) ⊆ E), then H(x ′ ) -1 J (φ, E ′ ) ≡ (t -ǫ(y) H(x 0 ) -1 J (H(x 0 )Ψ({u i } i∈I ), E, Y ), H(x ′ ) -1 ∂φ ∂u r ) modH(x ′ )(t, u r )S ′ .
(3 ′ ) We consider two case: Case 1: ω(x 0 ) = ǫ(x 0 ). As the blowing up is of the first kind, we have by II.5.2(i)

ω(x 0 ) = ǫ(x 0 ) = ǫ(y) = ord η(x 0 ) (H(x 0 ) -1 J (H(x 0 )Ψ({u i } i∈I ), E, Y )), so ω(x ′ ) ω(x 0 ) by (3) or (3'). Furthermore, cl ǫ(x 0 ) (H(x 0 ) -1 J (H(x 0 )Ψ({u i } i∈I ), E, Y ) = cl ǫ(x 0 ) J(f, E, x 0 ) = cl ǫ(x 0 ) J(f, E, Y ), so if η ′ (x ′ ) ∈ PDir(cl ǫ(x 0 ) J(f, E, x 0 )), we have ω(x ′ ) < ω(x 0 ) as required.
Finally, if we change (t, {u ′ i } i∈I i , {u i } i∈I c ) to new variables in S ′ , then minimize the corresponding polyhedron by a translation over

Z ′ , Z ′′ := Z ′ -θ ′′ , (1) (resp. (1')) implies that ord t (θ ′′ g ′ p-1 ) > ord t H(x ′ ), (resp. ord u r (θ ′′ g ′ p-1 ) > ord u r H(x ′ )).
This translation therefore only adds some p th -power to

H(x ′ )Ψ({u ′ i } i∈I ) modulo (tH(x ′ )) (resp. modulo (u r H(x ′ ))) in (2). So if ω(x ′ ) = ω(x 0 ) = ǫ(x 0 ), we have ω(x ′ ) = ord η ′ (x ′ ) (H(x ′ ) -1 J (H(x ′ )Ψ({u ′ i } i∈I ), E ′ )
independently of coordinate changes at x ′ , so ω ′ (x ′ ) 2 and Ω(x ′ ) Ω(x 0 ) as required.

Case 2: ω(x 0 ) = ǫ(x 0 ) -1. As the blowing up is of the first kind, we have by II.5.2(ii)

ω(x 0 ) = ǫ(x 0 ) -1 = ǫ(y) -1 = ord η(x 0 ) (H(x 0 ) -1 J (H(x 0 )Ψ({u i } i∈I ), E, Y )) -1.
It is easily seen that

I(Y )J(f, E) ⊆ J(f, E, Y ), I(Y )H(x 0 ) -1 J (H(x 0 )Ψ, E) ⊆ H(x 0 ) -1 J (H(x 0 )Ψ, E, Y ),
so with notations as in II.5.4(2), we have

t -ω(x 0 ) J(f, E) = t -ǫ(x 0 ) I(Y )J(f, E) ⊆ J(f ′ , E ′ ). Now (3) or (3') combined with II.5.4(3) imply that ω(x ′ ) ord η ′ (x ′ ) (t -ω(x 0 ) H(x 0 ) -1 J (H(x 0 )Ψ({u i } i∈I ), E)) ω(x 0 ). If η ′ (x ′ ) ∈ PDir(cl ω(x 0 ) J(f, E)), we have ord η ′ (x ′ ) (t -ω(x 0 ) H(x 0 ) -1 J (H(x 0 )Ψ({u i } i∈I ), E)) < ω(x 0 ), so ω(x ′ ) < ω(x 0 ). If η ′ (x ′ ) ∈ PDir(cl ω(x 0 ) J(f, E))
and ω(x ′ ) = ω(x 0 ), we conclude by the same argument as in case 1 that ω ′ (x ′ ) 2, and therefore Ω(x ′ ) Ω(x 0 ). .5.4.4 Lemma. If Y is a permissible center of second kind at x 0 , then ω ′ (x 0 ) 2. There exists a r.s.p.

II

(X, u 1 , u 2 , u 3 ) of R such that ∆(h; u 1 , u 2 , u 3 ; X) is minimal and (i) div(u 1 ) ⊆ E ⊆ div(u 1 u 2 ) and Y = V (X, u 1 , u 2 ); (ii) Ψ = cl ǫ(x 0 ) (H(x 0 ) -1 f ) = U 3 Ψ 3 (U 1 , U 2 ) + Ψ 0 (U 1 , U 2 ), Ψ 3 = 0, Ψ 0 , Ψ 3 ∈ k(x 0 )[U 1 , U 2 ]. Furthermore, every x ′ ∈ Σ p (X 1 ) has Ω(x ′ ) Ω(x 0 ). If Ω(x ′ ) = Ω(x 0 ), we have ω ′ (x 0 ) = 2, Ψ 3 (U 1 , U 2 )
is the power of a linear form, and η ′ (x ′ ) = PDir(Ψ 3 (U 1 , U 2 )). In particular, x ′ is rational over x 0 .

Proof. By II.5.1.1, Y is a curve. We choose the r.s.p. (X, u 1 , u 2 , u 3 ) of R in the definition of permissibility of second kind. Then ∆(h; u 1 , u 2 , u 3 ; X) is minimal, E ⊆ div(u 1 u 2 u 3 ), div(u 1 ) ⊆ E 0 and Y = V (X, u 1 , u 2 ); moreover, we have H(x 0 ) -1 f ∈ (u 1 , u 2 ) ǫ(x 0 )-1 and ord η(y) J(f, E, Y ) = ǫ(x 0 ) -1, so that there exists an expression of Ψ as in (ii) (see remarks in the beginning of the proof of theorem II.5.4). Note that, still by definition of permissibility of second kind, we have

ord η(x 0 ) J(f, E, Y ) = ǫ(x 0 ) -1 < ǫ(x 0 ) ord x 0 H(x 0 ) -1 (u 1 , u 2 ) ∂f ∂u i for i = 1, 2, 3. Therefore H(x 0 ) -1 ∂f ∂u 3 ∈ J(f, E, Y
), so div(u 3 ) ⊆ E and this gives (i) and (ii). Also note that 0

< ω(x 0 ) = ǫ(x 0 ) -1 < ord x 0 (H(x 0 ) -1 g p ), (1) 
which implies that ω ′ (x 0 ) 2. Let us prove that Ω(x ′ ) Ω(x 0 ). If x ′ is in the chart of origin ( X u 1 = X ′ , u 1 = u ′ 1 , u 2 u 1 = u ′ 2 , u 3 = u ′ 3 ), then h ′ = X ′ p -X ′ g ′ p-1 + u ′ 1 a(1)+a(2)+ω(x 0 )-p u ′ 2 a(2) (Ψ 3 (1, u ′ 2 )u ′ 3 + u ′ 1 φ ′ 1 + u ′ 3 2 φ ′ 2 ) (2) with φ ′ 1 , φ ′ 2 ∈ S ′ , where H(x 0 ) = u a(1) 1 u a(2) 2 . Since (H(x ′ ) -1 g ′p ) = u ′ 1 -ǫ(y) (H(x 0 ) -1 g p ) in II.5.4(1)
and ǫ(y) = ǫ(x 0 ) -1, (1) implies that u ′ 1 divides H(x ′ ) -1 g ′p . When performing a translation

Z ′ = X ′ -θ ′ in order to get ∆(h ′ ; u ′ 1 , v ′ , u ′ 3 ) minimal (where (u ′ 1 , v ′ , u ′ 3 ) is a r.s.p. of S ′ ),

we thus get an expression h

′ = Z ′ p -g ′ p-1 Z ′ + f ′ Z ′ with f ′ Z ′ ≡ u ′ 1 a(1)+a(2)+ω(x 0 )-p u ′ 2 a(2) Ψ 3 (1, u ′ 2 )u ′ 3 + φ ′ p modH(x ′ )(u ′ 1 , u ′ 3 2 )
for some φ ′ ∈ S ′ by [START_REF]Desingularization of embedded excellent surfaces[END_REF]. So if ord v ′ Ψ 3 (1, u ′ 2 ) < ǫ(x 0 ) -1 = degΨ 3 , then ν(x ′ ) < ǫ(x 0 ) -1 = ω(x 0 ) and ω(x ′ ) < ω(x 0 ). So we are interested in the case where ord

v ′ Ψ 3 (1, u ′ 2 ) = ǫ(x 0 ) -1, that is, Ψ 3 = λ(U 2 + µU 1 ) ǫ(x 0 )-1 , 0 = λ ∈ k(x 0 ), µ ∈ k(x 0 ), and R ′ has r.s.p. (X ′ , u ′ 1 , v ′ := u ′ 2 + µ, u ′ 3 )
. By the previous comments,

ord η ′ (x ′ ) (H(x ′ ) -1 ∂f ′ Z ′ ∂u ′ 3 ) ord v ′ Ψ 3 (1, u ′ 2 ) = ǫ(x 0 ) -1.
This proves that ν(x ′ ) ǫ(x 0 ) -1 = ω(x 0 ). If equality holds, note that

Ψ ′ := cl ǫx 0 (H(x ′ ) -1 f ′ Z ′ ) = λV ′ ǫ(x 0 )-1 U ′ 3 + U ′ 1 F ′ (U ′ 1 , V ′ , U ′ 3 )
for some

F ′ ∈ k(x ′ )[U ′ 1 , V ′ , U ′ 3 ] ǫ(x 0 )-1 . We then deduce that ω ′ (x ′ ) 2, therefore Ω(x ′ ) Ω(x 0 ), since ord u ′ 1 (H(x ′ ) -1 g ′p ) > 0 and Ψ ′ (0, V ′ , U ′ 3 ) ∈ k(x ′ )[V ′ p , U ′ 3 p ].
We now have to consider the case where R ′ has parameters (

X u 2 = X ′ , u 1 u 2 = u ′ 1 , u 2 = u ′ 2 , u 3 = u ′ 3 ). If E = div(u 1 u 2 )
, then u 1 and u 2 play symmetric roles and there is nothing to prove. Otherwise,

h ′ = X ′ p -X ′ g ′ p-1 + H(x ′ )(Ψ 3 (u ′ 1 , 1)u ′ 3 + u ′ 2 φ ′ 1 + u ′ 3 2 φ ′ 2 ) with φ ′ 1 , φ ′ 2 ∈ S ′ .
As above we see that u ′ 2 divides H(x ′ ) -1 g ′ p and the only case to be considered is when Ψ 3 = λU ǫ(x 0 )-1 1, 0 = λ ∈ k(x 0 ); the proof ends like in the first chart. II.5.5 Definition. If e : X ′ -→ X 0 is a composition of permissible blowing ups, a point x ′ ∈ e -1 (x 0 ) is said to be near (resp. very near) x 0 if x ′ ∈ Σ p (X ′ ) (resp. x ′ ∈ Σ p (X ′ ) and Ω(x ′ ) = Ω(x 0 )).

II.5.6 Theorem. Assume x 0 ∈ Σ p and ω ′ (x 0 ) = 3. Let X 0 ← X 1 ← • • • X n-1 ← X n ← • • •
be the quadratic sequence along µ, i.e. X i is the blowing up along the center x i-1 of µ in X i-1 for i 1. There exists n 1 such that x n is not very near x 0 .

Proof. By II.5.4.2(iii), the only case we have to consider is when div(H(x 0 ) -1 g p ) has only one component, say div(u 1 ). Then, by II.5.4.2(iv), for i 1, x i is on the strict transform of div(u 1 ) and x i is rational over x 0 if x i is very near x 0 . For each i 0, there is a map η i : (X i , x i ) → SpecS i , where S i is an iterated quadratic transform of S. Let π i : SpecS i → SpecS be the composed map and E i := π -1

i (E) red be the exceptional divisor. Then E i has at most two components as long as Ω(x i ) = Ω(x 0 ) since ω ′ (x 0 ) = 3. By II.5.4.2(i), E i has exactly two components: an "old" component, the strict transform of div(u 1 ) ⊂ SpecS, and a "new" component which is exceptional for SpecS i → SpecS i-1 for i 1.

So we can choose the r.s.p. (X, u 1 , u 2 , u 3 ) of R such that ∆(h; u 1 , u 2 , u 3 ; X) is minimal and u 2 = 0 is the equation of the exceptional divisor of SpecS i → SpecS i-1 for i 1. So the equation of i) , where g (i) = u -i 2 g. Then µ(g (i) ) = µ(g) -iµ(u 2 ) > 0. Since the value group of µ is Archimedean, we have

X i at x i is h (i) = u -ip 2 h =: X (i) p -X (i) g (i) p-1 + f (
i < µ(g) µ(u 2 ) < ∞.
II.5.7 Remark. As a consequence of II.5.6, we lower Ω(x 0 ) in the ambiguous case ω ′ (x 0 ) = 3 by performing a finite quadratic sequence along the valuation µ.

We assume from now on that ω ′ (x 0 ) 2.

II.6 Theorem. If H(x 0 ) = 1, the function ω is upper-semicontinuous over Σ p (X 0 ).

Proof. If g = 0, then ω ′ (x 0 ) = 2 by definition and ω(x 0 ) = ord η(x 0 ) J(f, E). Since J(f, E) is well defined as a sheaf of ideals on SpecS (II.3.1) and is independent on choices of coordinates, ω is upper-semicontinuous on Σ p (X 0 ). So we have only to deal with the case g = 0.

By II.4.7, the set W := {x ∈ Σ p | ω(x) 1} is Zariski closed and of dimension at most one. There only remains to prove the following: if Y ⊆ Σ p is a curve, y its generic point, and ω(y) 1, then ω(y) ω(x 0 ). This is implies by the following very useful lemma (where g may or may not be nonzero). II.6.1 Lemma. Assume that H(x 0 ) = 1. Let Y ⊆ Σ p be a curve with generic point y such that ω(y) 1. For n 0, let e n : X n+1 -→ X n be the blowing up along some closed point x n ∈ X n , where x n is on the strict transform Y n of Y .

Then, for n >> 0, Y n is permissible of the first kind at x n and

ω(y) = ω(y n ) ω(x n ) ω(x 0 ),
where y n is the generic point of Y n .

Proof. First note that the condition H(x 0 ) = 1 is preserved by blowing up closed points lying on the consecutive strict transforms Y n of Y if Y ⊆ Σ p (see proof of II.5.3.1).

For each n 0, there is a map η n : (X n , x n ) → SpecS n , where S n is an iterated quadratic transform of S. Let π n : SpecS n → SpecS be the composed map and E n := π -1 n (E) red be the reduced exceptional divisor. Since e n is an isomorphism at y n , we have Y n ⊆ Σ p (X n ) ⊆ E n and ω(y n ) = ω(y). For n big enough, Y n is regular at x n and η n (Y n ) has normal crossing with E n . Also note that x n+1 is rational over x n , since Y n is regular at x n , and that E n has at least two irreducible components. By II.5.4, it can be assumed that n = 0 without loss of generality.

By II.2.1, we can choose a r.s.p. (X, u 1 , u 2 , u 3 ) of R such that Y = V (X, u 1 , u 2 ), with div(u 1 u 3 ) ⊆ E and the polyhedra ∆(h; u 1 , u 2 , u 3 ; X) and ∆(h; u 1 , u 2 ; X) are both minimal. We denote

H(x 0 ) = u a(1) 1 u a(2) 2 u a(3) 3 , g p = γ p H(x 0 )u b 1 1 u b 2 2 u b 3 3 (with a(2) = b 2 = 0 if div(u 2 ) ⊆ E), and 
H(x 0 ) -1 f = (a 1 ,a 2 ,a 3 )∈N 3 λ a 1 a 2 a 3 u a 1 1 u a 2 2 u a 3 3 , λ a 1 a 2 a 3 ∈ k(x 0 ).
We have

ǫ(y) = min{b 1 + b 2 , {a 1 + a 2 | ∃a 3 ∈ N : λ a 1 a 2 a 3 = 0}}, (1) 
and

ǫ(x 0 ) = min{b 1 + b 2 + b 3 , {a 1 + a 2 + a 3 | λ a 1 ,a 2 ,a 3 = 0}}. ( 2 
)
The point

x ′ := x 1 has coordinates ( X u 3 =: X ′ , u 1 u 3 =: u ′ 1 , u 2 u 3 =: u ′ 2 , u 3 =: u ′ 3 ). We have Y 1 = V (X ′ , u ′ 1 , u ′ 2 ), with div(u ′ 1 u ′ 3 ) ⊆ E 1 . Let h ′ = X ′ p -X ′ g ′ p-1 + f ′ be the strict transform of h. Then ∆(h ′ ; u ′ 1 , u ′ 2 , u ′ 3 ; X ′
) is minimal, since x ′ is rational over x 0 (see the argument at the beginning of the proof of II.5.4.2(iii)). By II.3.3, II.5.4.1 and elementary computations, we have

g ′ p = γ p H(x ′ )u ′ 1 b 1 u ′ 2 b 2 u ′ 3 b 1 +b 2 +b 3 -ǫ(x 0 ) , (3) 
and

H(x ′ ) -1 f ′ = (a 1 ,a 2 ,a 3 )∈N 3 λ a 1 a 2 a 3 u ′ 1 a 1 u ′ 2 a 2 u ′ 1 a 1 +a 2 +a 3 -ǫ(x 0 ) . ( 3 
′ )
One deduces from ( 1), ( 2), ( 3) and (3') that ǫ(x 0 ) ǫ(x ′ ) ǫ(y), and that ǫ(x 0 ) = ǫ(x ′ ) if and only if ǫ(x 0 ) = ǫ(y).

Therefore for n >> 0, we get ǫ(x n ) = ǫ(y) = ǫ(y n ) and this proves that Y n is permissible of the first kind for n >> 0. As before, it can be assumed that n = 0 without loss of generality. There remains to prove that ω(x n ) ω(y n ). By theorem II.5.4, it can be assumed that Ω(

x n ) is constant for n 0. Since ǫ(x n ) -1 ω(x n ) ǫ(x n ) and ǫ(y n ) -1 ω(y n ) ǫ(y n ), we must prove that ω(x n ) = ǫ(x n ) -1 and ω(y n ) = ǫ(y n ) cannot
hold at the same time for arbitrarily large n.

The latter is certainly true if E = div(u 1 u 2 u 3 ), since this implies that E n has three components for each n 0, and therefore ǫ(x n ) = ω(x n ). So, we now assume that E = div(u 1 u 3 ), and in particular b 2 = 0 if g = 0. Since ǫ(x 0 ) = ǫ(y), each (a 1 , a 2 , a 3 ) ∈ N 3 achieving the minimum in ( 2 Assume that ω(y) = ǫ(y). Since ∆(h; u 1 , u 2 ; X) is minimal, we now have

cl ǫ(x 0 ) (H(x 0 ) -1 (g p , f )) ∈ k(x 0 )[U 1 , U p 2 ] ǫ(x 0 ) . (4) 
This proves that ω(

x 0 ) = ǫ(x 0 ) if ω ′ (x 0 ) 2. Suppose that ω ′ (x 0 ) = 3. Since ∆(h; u 1 , u 2 , u 3 ; X) is minimal, we must have ν δ (g) = 1
, so a(1) + ǫ(x 0 ) and a(3) are divisible by p, and

Ψ = cl ǫ(x 0 ) (H(x 0 ) -1 f ) ∈ k(x 0 ).U ǫ(x 0 ) 1 . We expand Ψ = 0 i i 0 U pi 2 Ψ i (U 1 )
, where i 0 > 0 is such that Ψ i 0 = 0. Then ( a(1)+ǫ(x 0 ) p i 0 , i 0 , a(3) p ) ∈ N 3 is a vertex of ∆(h; u 1 , u 2 , u 3 ; X) and thus Ψ i 0 = λU ǫ(x 0 )-pi 0 1

with λ ∈ k(x 0 ) p (in particular, k(x 0 ) is infinite). Let µ ∈ S be a unit and let

θ := µu a(1)+ǫ(x 0 ) p -1 1 u 2 u a(3) p 3 , Z := X -θ. Since k(x 0 ) is infinite, the monomial u a(1)+ǫ(x 0 )-1 1 u 2 u a(3) 3 
appears with nonzero coefficient in f +θ pθg p-1 for a general value of the residue class µ ∈ k(x 0 ). On the other hand, ∆(h; u 1 , u 2 , u 3 ; Z) = ∆(h; u 1 , u 2 , u 3 ; X) so that a fortiori ∆(h; u 1 , u 2 ; Z) = ∆(h; u 1 , u 2 ; X) and this proves that the polygon ∆(h; u 1 , u 2 ; Z) is minimal. Therefore

ω(y) ord η(y) H(x 0 ) -1 ∂(f + θ p -θg p-1 ) ∂u 2 = ǫ(y) -1,
and this contradicts the assumption ω(y) = ǫ(y). The argument extends to the proof of ω(x n ) ω(y n ) for all n 0 and the lemma is proved.

II.6.2 Remark (not used elsewhere). Theorem II.6 can be extended to the following more general situation: S is a k-algebra of finite type and dimension three, every point of SpecS is regular, and k is differentially finite over the perfect field k 0 . So we have infinitely many closed points in SpecS and in each subvariety Y ⊆ X 0 = Spec(S[X]/(h)) of positive dimension. The normal crossings divisor E is chosen as in I and H(x), J (f, E) x as well as Ω(x) are defined pointwise for x ∈ X 0 , i.e. w.r.t. the local ring S x . By a well known criterion of Nagata ([Ma] theorem 24.2), theorem II.6 extends to this more general situation provided we can prove the following: for each integral subscheme Y ⊆ Σ p (X 0 ) of positive dimension, there is a nonempty open subset U ⊆ Y such that ω(x) = ω(y) for all x ∈ U , where y is the generic point of Y . We give the proof when Y is a curve, the proof being somewhat simpler when Y is a component of E 0 (see the argument below when ω(y) = 0). By theorem II.5.4, it can be assumed that η(Y ) is regular and has normal crossings with E. We pick some closed point x 0 ∈ Y as origin such that E y and E x 0 have the same irreducible components. By II.2.2, there exists a system of coordinates (X, u 1 , u 2 , u 3 ) at x 0 , with div(u 1 ) ⊆ E ⊆ div(u 1 u 2 u 3 ), such that Y = V (X, u 1 , u 2 ), ∆(h; u 1 , u 2 ; X) minimal and we can read the d i 's on this polyhedron (in particular, H(x 0 ) = H(y) =: u a( 1)

1 u a(2) 2 with a(2) = 0 if div(u 2 ) ⊆ E). Then h = X p -X γu a(1)+b 1 p 1 u a(2)+b 2 p 2 p-1 + u a(1) 1 u a(2) 2 (a 1 ,a 2 )∈F µ a 1 a 2 u a 1 1 u a 2 2 ,
where γ ∈ S y is invertible, F is a finite set such that ( a(1)+a 1 p , a(2)+a 2 p ) ∈ ∆(h; u 1 , u 2 ; X) for each (a 1 , a 2 ) ∈ F , and µ a 1 a 2 ∈ S y is invertible. Note that, in particular, we have (a 1 , a 2 ) ∈ F whenever ( a(1)+a 1 p , a(2)+a 2 p ) is a vertex of ∆(h; u 1 , u 2 ; X) and (a 1 , a 2 ) = (b 1 , b 2 ). It can also be assumed that Ω 1 S/k 0 is a free module. We fix a basis B of the dual space Der k 0 (S) containing ∂ ∂u 1 and ∂ ∂u 2 . Let U be the nonempty open set consisting of those x ∈ Y where (i) γ is defined and invertible at x; (ii) the µ a 1 a 2 's are defined and invertible at x for each (a 1 , a 2 ) ∈ F (so in particular, f is defined at x);

(iii) E y and E x have the same irreducible components (thus H(x) = H(y) by II.2 and J (f, E) x as defined in II.3 is the stalk at x of one and the same ideal J (f, E)).

(iv) for each vertex w = ( a(1)+a 1 p , a(2)+a 2 p

), w = w 0 := ( a(1)+b 1 p , a(2)+b 2 p ), of ∆(h; u 1 , u 2 ; X) with integer coordinates, and for each D ∈ B, Dµ a 1 a 2 either vanishes at y or is invertible at x.

First note the following consequence of conditions (i) and (ii): if π : R 3 → R 2 is the projection (x 1 , x 2 , x 3 ) → (x 1 , x 2 ), then ∆(h; u 1 , u 2 , v; X) = π -1 (∆(h; u 1 , u 2 ; X)) whenever (X, u 1 , u 2 , v) is an adapted system of coordinates at x.

Also by (ii), a vertex (w, 0), w = ( a(1)+a 1 p , a(2)+a 2 p ), of ∆(h; u 1 , u 2 , v; X) is solvable if only if w = w 0 , w has integer coordinates and the image of µ a 1 a 2 in k(x) is a p th -power. By (iv), if some D ∈ B such that Dµ a 1 a 2 is invertible at x is a derivation w.r.t. constants at x, then (w, 0) is not solvable. If there is only one D w ∈ B such that D w µ a 1 a 2 is invertible at x and D w is a derivation w.r.t. a local parameter at x, then it can be assumed that D w = ∂ ∂v . In this case, (w, 0) is solvable. However, after performing a translation Z := X -θ is order to resolve (w, 0), f is changed into

f ′ = f + θ p -θg p-1 and w x := (w, 1 p ) is a vertex of ∆(h; u 1 , u 2 , v; Z) (remember that w = w 0 ). Hence ord η(x) (D w (H(x)µ a 1 a 2 u a 1 1 u a 2 2 )) = ord η(y) (D w (H(x)µ a 1 a 2 u a 1 1 u a 2 2 )).
This proves that there exists

X x ∈ S x such that ∆(h; u 1 , u 2 , v; X x ) is minimal, h = X p x -X x g p-1 +f x and ord η(x) J(f x , E x ) = ord η(y) J(f, E y )
whenever x ∈ U . Therefore ω(x) ω(y) and the inequality can possibly be strict only if ω ′ (x) = 3.

In this last case, one proceeds as in the end of the proof of lemma II.6.1: we must have ǫ(x) = ǫ(y) and there exists a coordinate change of the form Z

x := X x -θ, θ := µu a(1)+ǫ(x) p -1 1 u 2 , µ ∈ S x invertible, such that ∆(h; u 1 , u 2 , v; X x ) = ∆(h; u 1 , u 2 , v; Z x ). We then have ω(y) ord η(y) (H(x) -1 ∂f x ∂u 2 ) ord η(x) (H(x) -1 ∂f x ∂u 2 ) = ǫ(x) -1 = ω(x)
as required.

We assume that ω ′ (x 0 ) 2 from this point on.

III Nonpermissible blowing ups.

In certain situations (see chapter 3, section II below), we will perform some blowing ups of a particular type which are not permissible: blowing ups of prime ideals I ⊂ S such that V (I) has normal crossing with E (blowing up the base SpecS).

If π 0 : Z → SpecS is such a blowing up, and z ′ ∈ π -1 0 (η(x 0 )), there is an induced map π :

X ′ := SpecR ′ → SpecR,
where

S ′ := O Z,z ′ , R ′ := S ′ [X]
x ′ and x ′ := (m S ′ , X). We have a projection η ′ : SpecR ′ → SpecS ′ and a normal crossings divisor E ′ := π -1 0 (E) red which satisfies the requirements in

I. Also note that H(x 0 ) divides H(x ′ ) in S ′ , so H(x ′ ) = 1 if H(x 0 ) = 1.
Then the invariants ω(x ′ ) and Ω(x ′ ) are defined as in II.4 and we point out that II.4.7 remains valid for the germ (X ′ , x ′ ). We also keep on using the terminology of "near" and "very near" in definition II.5.5 whenever e : X ′ -→ X 0 is a composition of permissible and nonpermissible blowing ups of the above type and x ′ ∈ e -1 (x 0 ). CHAPTER 2: a few easy cases.

In this section, we consider some cases where our main invariant Ω(x) = (ω(x), ω ′ (x)), ω(x) 1 (chapter 1, definition II.4) can be decreased by permissible blowing ups (chapter 1, definition II.5.1). Section I of this chapter contains resolution when ω ′ (x) = 1. Section II contains some cases when ω ′ (x) = 2, which mainly rely on the directrix and its associated invariant τ (x) (chapter 1, definition II.4).

From now on, x will denote the center of the valuation µ in some blowing up X of X 0 obtained by a composition of permissible or of nonpermissible blowing ups of the type described in chapter 1, III. In particular, the local equation of X at x is of the form h = X p -Xg p-1 + f , ord x h = p and H(x), Ω(x) are always defined.

I Resolution of the case ω ′ (x) = 1.
By chapter I, II.5.6, the uniformization problem is reduced to the case ω ′ (x) 2. As usual, we suppose that the r.s.p. (u 1 , u 2 , u 3 ) of S and X ∈ R are such that E = div(u 1 • • • u j ) and the polyhedron ∆(h; u 1 , u 2 , u 3 ; X) is minimal. If ω ′ (x) = 1, then by chapter 1, definition II.4, we have g = 0 and

ord η(x) (H(x) -1 g p ) = ω(x) = ǫ(x). I.1 Theorem. Assume that x ∈ Σ p , ω ′ (x) = 1 and div(H(x) -1 g p ) has at least two irreducible components. Let X 0 ← X 1 ← • • • ← X n-1 ← X n ← • • •
be the quadratic sequence along µ, i.e. X i is the blowing up along the center

x i-1 of µ in X i-1 for i 1. There exists n 1 such that x n ∈ Σ p (X n ) or Ω(x n ) < Ω(x).
Proof. By chapter 1 II. 5.4.2(i), at most one point x ′ in X 1 is very near x = x 0 . If x ′ = x 1 is very near x, div(H(x) -1 g p ) has exactly two irreducible components, say H(x) -1 g p = γ p u a 1 1 u a 2 2 , a 1 , a 2 > 0, γ invertible, and x ′ ∈ X 1 has r.s.p. (X ′ :=

X u 3 , u ′ 1 := u 1 u 3 , u ′ 2 := u 2 u 3 , u ′ 3 := u 3 ).
We have

H(x ′ ) -1 g ′ p = γ p u ′ 1 a 1 u ′ 2 a 2 = u -p 3 H(x) -1 g p . Hence µ(H(x ′ ) -1 g ′ p ) = µ(H(x) -1 g p ) -pµ(u 3 )
, where µ is the given valuation. As the group of values of µ is Archimedean, we have

n < µ(g) µ(u 3 ) < ∞ provided x n ∈ Σ p (X n )
and Ω(x n ) = Ω(x), which concludes the proof.

I.2. If ω ′ (x) = 1, it can furthermore be assumed that H(x) -1 g p = γ p u ǫ(x) 1 
by I.1. Let m(x) be the number of irreducible components of E. By chapter 1 II. 5.4.2(i), if e : X ′ → X is a permissible blowing up of the first kind and x ′ ∈ e -1 (x) is very near x, then x ′ is on the strict transform of div(u 1 ). Therefore it can be assumed that m(x) 2, i.e. div(u 1 u 2 ) ⊆ E, after blowing up once along x. Let us denote:

H(x) =: u a(1) 1 u a(2) 2 u a(3) 3 , a(3) = 0 if E = div(u 1 u 2 ); g p =: γ p u pβ 1 1 u pβ 2 2 u pβ 3 3 , γ invertible, β i = 0 if div(u i ) ⊆ E 0 ; H(x) -1 f =: 0 i ǫ(x) u ǫ(x)-i 1 φ i , φ 0 ∈ S and φ i ∈ k(x)[[u 2 , u 3 ]], 1 i ǫ(x).

I.2.1 Definition. With notations as above, let us denote

A j := inf { ord u j φ i i , 1 i ǫ(x)}, j = 2, 3; B := inf { ord (u 2 ,u 3 ) φ i i , 1 i ǫ(x)}, C := B -A 2 -A 3 0; β := inf { ord u 3 (φ i /u iA 2 2 mod(u 2 )) i , 1 i ǫ(x)}, where ord u 3 denotes the natural valuation of the discrete valuation ring k(x)[[u 3 ]]; γ := 1 + ⌊C⌋ (resp. γ := sup{1, ⌈β⌉}) if E = div(u 1 u 2 u 3 ) (resp. E = div(u 1 u 2 )).
Obviously, these definitions may depend on (u 1 , u 2 , u 3 ), but not on X, since ∆(h; u 1 , u 2 , u 3 ; X) is minimal and A j , B and C (resp. β) are computed by evaluating the minimum of a linear function on some (linear) projection of this polyhedron. When there is a risk of confusion, we will make explicit this dependence on (u 1 , u 2 , u 3 ) by writing A j (u 1 , u 2 , u 3 ), etc... We also use the notation A j (x), A j (x ′ ), etc... when dealing with a blowing up e : X ′ → X and x ′ ∈ e -1 (x). In this case, we always compute invariants w.r.t. E ′ := (e -1 E) red .

Finally note that B(x) 1, since ord η(x) f ǫ(x), and that all of these invariants are finite (i.e. φ i = 0 for some i, 1 i ǫ(x)) by definition of H(x), since ω(x) 1.

I.2.2 Theorem.

Assume that the following condition holds:

(*) x ∈ Σ p , ω ′ (x) = 1, H(x) -1 g p = γ p u ǫ(x) 1 and m(x) 2.
Let e : X ′ → X be the blowing up at x and x ′ ∈ X ′ be very near x. Then x ′ also satisfies (*) and there exists a r.s.p.

(Z, v 1 , v 2 , v 3 ) at x ′ such that ∆(h ′ ; v 1 , v 2 , v 3 ; Z) is minimal and the following holds: (i) γ(v 1 , v 2 , v 3 ) γ(u 1 , u 2 , u 3 ); (ii) if m(x) = m(x ′ ) = 2, then β(v 1 , v 2 , v 3 ) β(u 1 , u 2 , u 3 ); (iii) if x ′ is in the chart with origin ( X u 2 , u 1 u 2 , u 2 , u 3 u 2 ) then A 2 (v 1 , v 2 , v 3 ) = B(u 1 , u 2 , u 3 ) -1 and β(v 1 , v 2 , v 3 ) < 1 + ⌊β(u 1 , u 2 , u 3 )⌋.
If moreover x ′ is distinct from the origin of the chart, we also have

β(v 1 , v 2 , v 3 ) < 1 + ⌊C(u 1 , u 2 , u 3 )⌋;
(iv) if (x ′ is not rational over x and γ(u

1 , u 2 , u 3 ) 2), then γ(v 1 , v 2 , v 3 ) < γ(u 1 , u 2 , u 3 ), except possibly if (m(x) = 2 and β(u 1 , u 2 , u 3 ) = 2) in which case β(v 1 , v 2 , v 3 ) < 2; (v) if x ′ = ( X u 3 , u 1 u 3 , u 2 u 3 , u 3 ) is the point at infinity, then A 2 (v 1 , v 2 , v 3 ) = A 2 (u 1 , u 2 , u 3 ) and β(v 1 , v 2 , v 3 ) = β(u 1 , u 2 , u 3 ) + A 2 (u 1 .u 2 , u 3 ) -1. If moreover (m(x) = 2 and γ(u 1 , u 2 , u 3 ) 2), then γ(v 1 , v 2 , v 3 ) < γ(u 1 , u 2 , u 3 ) except possibly if (β(u 1 , u 2 , u 3 ) = 2 and C(v 1 , v 2 , v 3 ) = 1). Proof. For 1 i ǫ(x), we let Φ i := in x φ i ∈ k(x)[U 2 , U 3 ] and write Φ i =: U a i (2) 2 U a i (3) 3 Ψ i with U j not dividing Ψ i , j = 2, 3.
By definition, we have degΦ i iB(x) and a i (j) iA j (x), j = 2, 3. If L is the linear form on R 4 given by

L(x 1 , x 2 , x 3 , X) = 1 ǫ(x) + a(1) + a(2)+a(3) B(x) x 1 + x 2 + x 3 B(x) + X p , then in L h = X p -XG p-1 + U a(1) 1 U a(2) 2 U a(3) 3 ord x φ i =iB(x) U ǫ(x)-i 1 Φ i , (1) 
where G := in x g. By chapter 1, II.5.4.2, any x ′ very near x maps to the strict transform of div(u 1 ). We first look at the chart with origin (X ′ :=

X u 2 , u ′ 1 := u 1 u 2 , u ′ 2 := u 2 , u ′ 3 := u 3 u 2 ). We have E ′ = div(u ′ 1 u ′ 2 u ′ 3 )
. By chapter 1, II.5.4.1, we have

(H(x ′ )) = (u ′ 1 a(1) u ′ 2 p(δ(x)-1) u ′ 3 a(3) ) and (H(x ′ ) -1 g ′ p ) = (u ′ 1 ǫ(x) ). I.2.2.1 If x ′ = (X ′ , u ′ 1 , u ′ 2 , u ′ 3 )
is the origin of the chart, then the polyhedron ∆(u -p 2 h; u ′ 1 , u ′ 2 , u ′ 3 ; X ′ ) remains minimal. Computing in these coordinates, it is easily seen that

A 2 (x ′ ) = B(x) -1, β(x ′ ) C(x) + A 3 (x) β(x), C(x ′ ) C(x),
and these inequalities give (i),(ii) and (iii) (note that in this case, the hypotheses of (iv) and (v) do not occur).

I.2.2.2 If u ′ 3 is invertible at x ′ , let P ∈ k(x)[u 2 , u 3 ] be irreducible, homogeneous and unitary in u 3 such that (X ′ , u ′ 1 , u ′ 2 , v ′
) is a system of coordinates at x ′ , where v ′ := P (1, u ′ 3 ). We have 1) . If B(x) > 1 and L ′ is the linear form on R 4 given by

E ′ = div(u ′ 1 u ′ 2 ) in this case and take H(x ′ ) := u ′ 1 a(1) u ′ 2 p(δ(x)-
L(x ′ 1 , x ′ 2 , x ′ 3 , X ′ ) = 1 ǫ(x) + a(1) + p(δ(x)-1) B(x)-1 x ′ 1 + x ′ 2 B(x) -1 + X ′ p , then in L ′ (u -p 2 h) = X ′ p -X ′ G ′ p-1 +U ′ 1 a(1) U ′ 2 p(δ(x)-1) u ′ 3 a(3) ord x φ i =iB(x) U ′ 1 ǫ(x)-i U ′ 2 i(B(x)-1) u ′ 3 a i (3) Ψ i (1, u ′ 3 ),
where

G ′ := in x ′ g ′ . Let i 0 := sup{i | ord x φ i = iB(x)} 1.
Any translation Z ′ := X ′ -θ ′ we have to make in order to get the polyhedron ∆(u -p

2 h; u ′ 1 , u ′ 2 , v ′ ; Z ′ ) minimal will verify ord u ′ 2 θ ′ δ(x) -1 and ord u ′ 1 ( θ ′ p u ′ 2 p(δ(x)-1) mod(u ′ 2 )) a(1) + ǫ(x) -i 0 .
The latter inequality is strict if a(1) + ǫ(x) -i 0 ≡ 0 modp. Since ord u 1 g p = a(1) + ǫ(x) ≡ 0 modp, a(1) + ǫ(x) -i 0 ≡ 0 modp is equivalent to i 0 ≡ 0 modp. We consider two cases:

Case 1: i 0 ≡ 0 modp. The above translation preserves the term

H(x ′ )u ′ 3 a(3) u ′ 1 ǫ(x)-i 0 u ′ 2 i 0 (B(x)-1) u ′ 3 
a i 0 (3) Ψ i 0 (1, u ′ 3 ) in u -p 2 h. Therefore A 2 (x ′ ) = B(x) -1 β(x) + C(x) -1 and β(x ′ ) ord v ′ Ψ i 0 (1, u ′ 3 ) i 0 C(x) [k(x ′ ) : k(x)] β(x) [k(x ′ ) : k(x)]
.

This gives (i)(ii)(iii)(iv), the exceptional case in (iv) not occurring in this case.

Case 2: i 0 ≡ 0 modp. The possible translation we have to make on X ′ will at most add to

H(x ′ )u ′ 3 a(3) u ′ 1 ǫ(x)-i 0 u ′ 2 i 0 (B(x)-1) u ′ 3 a i 0 (3) Ψ i 0 (1, u ′
3 ) some p th -power of the form

A p := u ′ 1 a(1)+ǫ(x)-i 0 u ′ 2 i 0 (B(x)-1)+p(δ(x)-1) A ′ (v ′ ) p , since i 0 > 0. Then U a i 0 (2)+a(2) 2 U a i 0 (3)+a(3) 3 Ψ i 0 (U 2 , U 3
) is not a p th -power because it induces an edge (or vertex) of ∆(h; u 1 , u 2 , u 3 ; X) by ( 1), and we apply theorem II. 5.3.2(i) of chapter 1. This gives

e := ord v ′ u ′ 3 a i 0 (3)+a(3) Ψ i 0 (1, u ′ 3 ) + A ′ (v ′ ) p degΨ i 0 [k(x ′ ) : k(x)] + 1, (2) 
which implies A 2 (x ′ ) = B(x) -1 and

i 0 β(u ′ 1 , u ′ 2 , v ′ ) e degΨ i 0 [k(x ′ ) : k(x)] + 1. ( 3 
)
By definition I.2.1, we get

degΨ i 0 i 0 C(u 1 , u 2 , u 3 ) i 0 β(u 1 , u 2 , u 3 ). ( 4 
)
First assume that e [START_REF]Desingularization of embedded excellent surfaces[END_REF]. Then ( 3) is strengthened to

degΨ i 0 [k(x ′ ):k(x)] in ( 
i 0 β(u ′ 1 , u ′ 2 , v ′ ) degΨ i 0 [k(x ′ ) : k(x)] ,
and then ( 4) implies (i), (ii), (iii) and (iv).

Up to the end of the proof of case 2, we assume that e = [START_REF]Desingularization of embedded excellent surfaces[END_REF]. Then the integer e in ( 2) is not divisible by p by II.5.3.2(ii) of chapter 1. Therefore

degΨ i 0 [k(x ′ ):k(x)] + 1 in
β(u ′ 1 , u ′ 2 , v ′ ) < 1 + e i 0 1 + degΨ i 0 i 0 [k(x ′ ) : k(x)] . ( 5 
)
Comparing with ( 4), this completes the proof of (iii). If m(x) = 3, then (i) is a consequence of (iii) and (iv) is a direct consequence of ( 4) and ( 5).

If m(x) = 2, we have a(3) = 0 and i 0 A 3 (x) a i 0 [START_REF]Resolution of surface singularities[END_REF]. We now apply theorem II. 5.3.2(iii) of chapter 1 to U

a i 0 (2)+a(2) 2 F (U 2 , U 3 ), where F (U 2 , U 3 ) := U a i 0 (3) 3 Ψ i 0 (U 2 , U 3 ). We get (note that i 0 p 2) i 0 β(u ′ 1 , u ′ 2 , v ′ ) e degΨ i 0 + a i 0 (3). ( 6 
)
By definition I.2.1, we actually have the following refinement of ( 4):

degΨ i 0 + 3 j=2 (a i 0 (j) -i 0 A j (x)) = i 0 C(u 1 , u 2 , u 3 ) i 0 (β(u 1 , u 2 , u 3 ) -A 3 (x)).
Comparison with [START_REF]Polyèdre caractéristique et éclatements combinatoires[END_REF] gives

β(u ′ 1 , u ′ 2 , v ′ ) β(u 1 , u 2 , u 3
) and this proves (ii), hence (i). We finally prove (iv): by ( 4) and ( 5), we have 3) (remark: this last case does actually occur when p = 2).

β(u ′ 1 , u ′ 2 , v ′ ) < 1 + degΨ i 0 i 0 [k(x ′ ) : k(x)] 1 + β(u 1 , u 2 , u 3 ) [k(x ′ ) : k(x)] ⌈β(u 1 , u 2 , u 3 )⌉, since [k(x ′ ) : k(x)] 2 and γ(u 1 , u 2 , u 3 ) = ⌈β(u 1 , u 2 , u 3 )⌉ 2. If β(u 1 , u 2 , u 3 ) > 2, the right-hand side inequality is strict and (iv) is proved. If β(u 1 , u 2 , u 3 ) = γ(u ′ 1 , u ′ 2 , v ′ ) = 2, then [k(x ′ ) : k(x)] = 2 and β(u ′ 1 , u ′ 2 , v ′ ) 1 + 1 i 0 < 2 by (
I.2.2.3 If x ′ is the point with parameters ( X u 3 , u 1 u 3 , u 2 u 3 , u 3 ), the polyhedron ∆(u -p 3 h; u 1 u 3 , u 2 u 3 , u 3 ; X u 3 ) is minimal. We have E ′ = div(u ′ 1 u ′ 2 u ′ 3 ) and it is easily seen that A 2 (x ′ ) = A 2 (x), A 3 (x ′ ) = A 2 (x) + A 3 (x) + C(x) -1, β(x ′ ) = β(x) + A 2 (x) -1, C(x ′ ) C(x) and C(x ′ ) β(x) -A 3 (x) -C(x). ( 7 
)
By symmetry, (i) has already been proved if m(x) = 3. So assume that m(x) = 2, and let us prove (i) and (v). Since C(x ′ ) C(x), [START_REF]Contact maximal en caractéristique positive et petite multiplicité[END_REF] implies

C(x ′ ) β(x) -A 3 (x) 2 β(x) 2 ,
and this concludes the proof.

We now begin the first two steps in the definition of our secondary invariant κ(x). The function κ is a multiform function which is defined recursively, and takes values in the set {0, 1, 2, 3, 4, 5}. The statement "κ(x)

i" means "some value of κ(x) is not greater than i". The statement "κ(x) > i" is the set-theoretic complement of "κ(x) i". I.2.3 Definition. Let x ∈ Σ p (X). We say that κ(x) = 0 if the following algorithm is finite. 1. Let X ′ → X be the blowing up of X along x and x ′ be the center of µ in X ′ . If x ′ ∈ Σ p (X ′ ), or if Ω(x ′ ) < Ω(x) then STOP. Otherwise, go to 2; 2. Replace (X, x) with (X ′ , x ′ ) and go to 1.

Note that theorem II.5.4 of chapter 1 implies that Ω(x ′ ) = Ω(x) whenever the algorithm passes through step 2.

I.2.4 Proposition.

With notations and hypotheses of I.2.1 and I.2.2, if (A 2 (x) < 1 and β(x) < 1), then κ(x) = 0. Proof. Assume that x ′ in step 1 of the above algorithm is very near x.

By

I.2.2(iii), if x ′ is in the chart with origin ( X u 2 , u 1 u 2 , u 2 , u 3 u 2 ) then β(x ′ ) < 1 and A 2 (x ′ ) = B(x) -1 A 2 (x) + β(x) -1 < A 2 (x). By I.2.2(v), if x ′ is the point at infinity ( X u 3 , u 1 u 3 , u 2 u 3 , u 3 ), then A 2 (x ′ ) = A 2 (x) and β(x ′ ) = β(x) + A 2 (x) -1 < β(x).
In both cases, (A 2 (x ′ ), β(x ′ )) < (A 2 (x), β(x)) for the lexicographical ordering. An induction ends the proof. I.2.5 Definition. Let x ∈ Σ p (X). We say that κ(x) = 1 if there exist consecutive choices of Y 's in step 1 of the following algorithm for which it is finite. 1. Choose Y ⊆ Σ p (X) to be permissible at x. Let X ′ → X be the blowing up of X along Y and x ′ be the center of µ in X ′ . If x ′ ∈ Σ p (X ′ ) or if Ω(x ′ ) < Ω(x), then STOP. Otherwise, go to 2; 2. Replace (X, x) with (X ′ , x ′ ) and go to 1.

Note that necessarily x ′ ∈ Σ p (X ′ ) and Ω(x ′ ) = Ω(x) whenever the algorithm passes through step 2. Also κ(x) = 0 implies κ(x) = 1, and in particular κ(x) = 1 whenever (Ω(x ′ ) = Ω(x) and κ(x ′ ) = 0) in step 1. We also point out that Y will not be uniquely determined in general when step 1 results in a stop. Finally, note that we can achieve a reduction in (ord x h, Ω(x)) for the lexicographical ordering if κ(x) = 1.

I.2.6 Proposition. With notations and hypotheses of I.2.1 and

I.2.2, if (m(x) = 2 and β(x) < 1), or if (m(x) = 3 and C(x) = 0), then κ(x) 1. Proof. If A 2 (x) < 1 and β(x) < 1, then κ(x) = 0 by I.2.4. If (A 2 (x) < 1, A 3 (x) < 1 and C(x) = 0), then β(x) = A 3 (x) < 1, so κ(x) = 0 as well.
Otherwise, it can be assumed that div(u

1 u 2 ) ⊆ E and A 2 (x) 1. Let P := (X, u 1 , u 2 ) ⊂ R. By lemma I.2.6.1 below, Y := V (X, u 1 , u 2 ) is actually a regular curve on X. Since A 2 (x) 1, we have ord (u 1 ,u 2 ) (g p , f ) a(1) + ǫ(x) = ord u 1 g p p, therefore ord P h = p (recall that ǫ(x) = ω(x) > 0), so Y ⊆ Σ p (X). Since A 2 (x)
1, we have ǫ(y) = ǫ(x), where y is the generic point of Y , i.e. Y is permissible of the first kind. This gives our choice of Y in step 1 of the algorithm in I.2.5.

By II.5.4.2 (i), the only point x ′ in the blowing up X ′ of X along Y which may be very near x has parameters ( X u 2 , u 1 u 2 , u 2 , u 3 ). This is the origin of a chart, there is no translation to do, and m(x ′ ) = m(x). We have

A 2 (x ′ ) = A 2 (x) -1, A 3 (x ′ ) = A 3 (x), and β(x ′ ) = β(x) (resp. C(x ′ ) = C(x) = 0) if m(x) = 2 (resp. m(x) = 3
). An induction on A 2 (x) + A 3 (x) ends the proof.

I.2.6.1 Lemma. Assume that the r.s.p. (u 1 , u 2 , u 3 ) of S and X ∈ R are such that (i) div(u 1 ) ⊆ E 0 ⊆ E ⊆ div(u 1 u 2 u 3 ), and (ii) h ∈ P, where P := ( X, u 1 , u 2 ) ⊂ R.
Then there exists X ∈ R such that P = (X, u 1 , u 2 ). Proof. Pick any Z ∈ R such that (Z, u 1 , u 2 , u 3 ) is a r.s.p. of R. then there exists a series

ϕ(u 3 ) ∈ k(x)[[u 3 ]] such that (Z -ϕ(u 3 ), u 1 , u 2 ) = ( X, u 1 , u 2 ). Let h = Z p -Zg p-1 + f Z be the expansion of h, with f Z , g ∈ S. Since h ∈ P, we have f Z + ϕ(u 3 ) p -ϕ(u 3 )g p-1 ∈ (u 1 , u 2 ) S.
Since u 1 divides g by assumption (i), we must have f + ϕ(u 3 ) p ∈ (u 1 , u 2 ) S. But f ∈ S and S is regular, so ϕ(u 3 ) ∈ S. Let X := Z -ϕ(u 3 ).

I.2.7 Theorem. Assume that x ∈ Σ p (X), ω ′ (x) = 1 and H(x) -1 g p = γ p u ǫ(x) 1 . Then κ(x) 1. Proof. Let X 0 ← X 1 ← • • • X n-1 ← X n ← • • •
be the quadratic sequence along µ, i.e. X n is the blowing up along the center x n-1 of µ in X n-1 for n 1. Then (Ω(x n )) n 0 is a non-increasing sequence, and we have κ(x) = 0 unless it is constant. We thus assume that Ω(x n ) = Ω(x) for n 0. We have m(x n ) 2 for n 2. I.2.7.1 If there exists n 1 0 such that m(x n ) = 3 for n n 1 , x n is always at the origin of a chart in the blowing up X n -→ X n-1 and there is no translation to do to minimize polyhedra.

By standard arguments, the ideal ({φ

ǫ(x)! i i } 1 i ǫ(x) ) gets principal and monomial in u 2,n , u 3,n for n >> 0, where h(n) :== X(n) p -X(n)g(n) p-1 + f (n) is a local equation of X n at x n and ∆(h(n); u 1,n , u 2,n , u 3,n ; X(n)) is minimal, i.e. we have C(x n ) = 0. Therefore κ(x) 1 by I.2.6.
I.2.7.2 If there exists n 1 0 such that m(x n ) = 2 for n n 1 , then it can be assumed that n 1 = 0 without loss of generality. Each x n is on the strict transform of div(u 1 ) and we can choose a r.s.p. (X, u 1 , u 2 , u 3 ) of R such that the exceptional divisor of X n -→ X n-1 is div(u 2 ) for all n 0, the strict transform of h being h(n) := h u pn 2 . As seen in I.1, or in II.5.6 of chapter 1, we have

g u n 2 ∈ O X n ,x n , µ( g u n 2 ) > 0, so n < µ(g) µ(u 2 ) < ∞
since the value group of µ is Archimedean. Therefore κ(x) = 0 in this case.

I.2.7.3 None of the above. By I.2.2(i), there exists n 1 such that γ(x n ) = γ(x n 1 ) for n n 1 . By I.2.2(v), we have γ(x n 1 ) 2. Pick n 2 > n 1 such that m(x n 2 -1 ) = 3 and m(x n 2 ) = 2. By I.2.2(iii),

β(x n 2 ) < γ(x n 2 -1 ) = γ(x n 1 ) 2. ( 1 
)
Let n 3 be the least integer n > n 2 such that (m(x n-1 ) = 2 and either x n is not rational over x n-1 or m(x n ) = 3). By definition of n 3 , we have m(x n ) = 2 for n 2 n n 3 -1. Therefore (1) and

I.2.2(iii) imply that β(x n 3 -1 ) β(x n 2 ) < 2.
By I.2.2(iv) or (v), we have γ(x n 3 ) = γ(x n 1 ) 1. Going back to (1), we now get the sharper upper bound β(x n 2 ) < 1, so κ(x) = κ(x n 2 ) 1 by I.2.6.

We assume that ω ′ (x) = 2 from this point on.

II A few cases where κ(x) 1.

In view of theorems I.1, I.2.7 and chapter 1 II.5.6, we may restrict our attention to the case ω ′ (x) = 2. From now on and up to the end of this article, we thus assume that ω ′ (x) = 2.

All along this section, we suppose that the r.s.p. (u 1 , u 2 , u 3 ) of S and X ∈ R are such that E ⊆ div(u 1 u 2 u 3 ) and the polyhedron ∆(h; u 1 , u 2 , u 3 ; X) is minimal. We gather in here some criteria to have κ(x) 1 that will be used in the next chapters, as well as some auxiliary lemmas.

II.1 Proposition. Assume that div(u 1 ) ⊆ E 0 and H(x) -1 f = u 1 φ+γ 1 u ω(x) 2 u 3 , with ord η(x) (u 1 φ) = ω(x)
and γ 1 invertible. We have κ(x) 1 provided one of the following properties holds:

(i) ω(x) 2 and E ⊆ div(u 1 u 2 ); (ii) ω(x) 3; (iii) ω(x) = 2, div(u 1 u 3 ) ⊆ E and cl 1 φ ∈ k(x).U 3 ; (iv) ω(x) = 1 and E = div(u 1 u 2 ).
We first recollect from chapter 1 a lemma which leads to important corollaries. II.1.1 Lemma. We suppose that ω ′ (x) = 2 and that the r.s.p. (X, u 1 , u 2 , u 3 ) of R is such that E ⊆ div(u 1 u 2 u 3 ) and the polyhedron ∆(h; u 1 , u 2 , u 3 ; X) is minimal. Let Y be a permissible center of first kind, and

X ′ → X be the blowing up of X along Y . If x ′ ∈ X ′ is very near x, then x ′ maps to PDir(cl ǫ(x) J(f, E, x)) (resp. PDir(cl ω(x) J(f, E))) if ǫ(x) = ω(x) (resp. if ǫ(x) = 1 + ω(x)).
Proof. When ǫ(x) = ω(x), as ω ′ (x) = 2, we have ord η(x) (H(x) -1 g p ) > ǫ(x) and chapter 1 II. 5.4.3(i) gives the conclusion. When ǫ(x) = 1 + ω(x), chapter 1 II.5.4.2(ii), (iii), (iv) or II. 5.4.3(ii) give the conclusion. This lemma leads to the next statements. Recall the definition of τ (x) in chapter 1, II.4.

II.1.2 Corollary. If ω(x) = ǫ(x) and τ (x) = 3, then κ(x) = 0.
Proof. Here, τ (x) = 3 means that PDir(cl ǫ(x) J(f, E, x)) = ∅.

We now introduce some remarks and definitions about the directrix.

If ǫ(x) = ω(x), we have ord η(x) (H(x) -1 g p ) > ω(x) since ω ′ (x) = 2. More generally, if ord η(x) (H(x) -1 g p ) > ǫ(x) then cl ǫ(x) J(f, E, x) (resp. cl ω(x) J(f, E)) does not depend on any choice of parameters (X, u 1 , u 2 , u 3 ) with E ⊆ div(u 1 u 2 u 3 ) and ∆(h; u 1 , u 2 , u 3 ; X) minimal if ǫ(x) = ω(x) (resp. ǫ(x) = 1 + ω(x)), as noticed in chapter 1 II.3.2(ii).
If ǫ(x) = 1 + ω(x) and ord η(x) (H(x) -1 g p ) = ǫ(x), then cl ω(x) J(f, E) may depend on the parameters (X, u 1 , u 2 , u 3 ) with E ⊆ div(u 1 u 2 u 3 ) and ∆(h; u 1 , u 2 , u 3 ; X) minimal. When making a translation on X, say Z := X -θ is the new variable, f is changed into f

Z := f + θ p -θg p-1 . If ∆(h; u 1 , u 2 , u 3 ; Z) is minimal, the Newton polyhedron of θ is a subset of ∆(h; u 1 , u 2 , u 3 ; X), H(x)
divides θg p-1 , so we have the following congruence of vector spaces:

cl ω(x) J(f Z , E) ≡ cl ω(x) J(f, E) modk(x)[{U i : u i | H(x) -1 g p }] ω(x) .
Furthermore, by chapter 1 II.5.4.2(i), if we blow up x, every point x ′ very near x maps to the strict transform of H(x) -1 g p . By II.1.1 above, x ′ maps to Proj(W ) where

I(W ) = IDir(cl ω(x) J(f, E) + ({U i : u i | H(x) -1 g p })),
and W does not depend on any choice of parameters (X, u 1 , u 2 , u 3 ) with E ⊆ div(u 1 u 2 u 3 ) and ∆(h; u 1 , u 2 , u 3 ; X) minimal. This leads to the following definitions.

II.1.3 Definition. Let VDir(x) := VDir(cl ǫ(x) J(f, E, x)) if ǫ(x) = ω(x); VDir(x) := VDir(cl ω(x) J(f, E)+({U i : u i | H(x) -1 g p })) if ǫ(x) = 1+ω(x) and ord η(x) (H(x) -1 g p ) = ǫ(x); VDir(x) := VDir(cl ω(x) J(f, E)) if ǫ(x) = 1 + ω(x) and ord η(x) (H(x) -1 g p ) > ǫ(x).
We denote by τ ′ (x) the codimension of the k(x)-vector space VDir(x) and by IDir(x) the ideal generated by VDir(x).

The previous considerations give II.1.4 Corollary. The vector space VDir(x) and the integer τ ′ (x) do not depend on choices of parameters with E ⊆ div(u 1 u 2 u 3 ) and ∆(h; u 1 , u 2 , u 3 ; X) minimal. Furthermore, if τ ′ (x) = 3, then κ(x) = 0.

Proof of II.1. The assumption on the expansion of f implies that

ord η(x) (H(x) -1 g p ) > ord η(x) (H(x) -1 f ) = ǫ(x) = ω(x). (1) 
Moreover, U 1 divides cl ω(x) J(f, E, x), so by II.1.1, if e : X ′ → X is a permissible blowing up of the first kind, any x ′ ∈ X ′ very near X maps to the strict transform of div(u 1 ). Let Y := V (X, u 1 , u 2 ) ⊆ Spec( R/(h)) and y be the generic point of Y .

If div(u 1 u 2 ) ⊆ E, then Y = V (X, v 1 , v 2 ) if (v 1 , v 2 , v 3
) is any r.s.p. of S such that div(v i ) = div(u i ) for i = 1, 2. Therefore lemma I.2.6.1 applies and Y is a regular curve on X such that η(Y ) has normal crossings with E.

If ω(x) = 1, assumption (iv) holds, so E = div(u 1 u 2 ). Then ord η(x) J(f, E, x) = ord η(y) J(f, E, Y ) = 1, ord η(x) (H(x) -1 g p ) = ord η(y) (H(x) -1 g p ),
and ord η(x) f = ord η(y) f = ord η(x) H(x) + ω(x), so Y ⊆ Σ p (X) and ǫ(x) = ǫ(y): Y is permissible of the first kind.

More generally, if div(u 1 u 2 ) ⊆ E and Y is permissible of the first kind, Take e : X ′ → X to be the blowing up along Y ; by II.1.1, the only point which can possibly be very near x is

x ′ = (X ′ := X u 2 , u ′ 1 := u 1 u 2 , u ′ 2 := u 2 , u 3 ). Then div(u ′ 1 u ′ 2 ) ⊆ E ′ := (e -1 E) red and h ′ := u -p 2 h = X ′ p -X ′ g ′ p-1 + f ′ , where f ′ = H(x ′ )(u ′ 1 u ′ 2 -(ω(x)-1) φ + γ 1 u 3 ).
We are at the origin of a chart, so ∆(h

′ ; u ′ 1 , u ′ 2 , u 3 ; X ′ ) is minimal. Hence ω(x ′ ) 1 and ω(x ′ ) = 0 if (iv) holds, so κ(x) = 1.
¿From now on, we assume that ω(x)

2. Let H(x) = u a(1) 1 u a(2) 2 u a (3) 3 
, with a(i) = 0 if div(u i ) ⊆ E. Let e : X ′ → X be the blowing up at x, E ′ := (e -1 E) red and x ′ ∈ X ′ be very near x. Then x ′ maps to the strict transform of div(u 1 ) (cf. comments in the beginning of the proof of this proposition). We claim that x ′ is on the strict transform of

Y if κ(x ′ ) > 0. If x ′ is in the chart of origin (X ′ := X u 2 , u ′ 1 := u 1 u 2 , u ′ 2 := u 2 , u ′ 3 := u 3 u 2 ), then (X ′ , u ′ 1 , u ′ 2 , v ′ ) is a system of coordinates at x ′ , where v ′ := P (1, u ′
3 ) for some irreducible homogeneous polynomial 2)+ω(x)-p , and we have

P ∈ k(x)[U 2 , U 3 ], unitary in U 3 . Let h ′ := u -p 2 h = X ′ p -X ′ g ′ p-1 + f ′ . If P = U 3 , then E ′ = div(u ′ 1 u ′ 2 ), H(x ′ ) := u ′ 1 a(1) u ′ 2 a(
H(x ′ ) -1 f ′ = u ′ 3 a(3) (u ′ 1 u ′ 2 -(ω(x)-1) φ + γ 1 u ′ 2 u ′ 3 ). (2) 
By ( 1), u ′ 2 divides H(x ′ ) -1 g ′ p . We may have to make a translation

Z ′ := X ′ -θ ′ on X ′ to get the polyhedron ∆(h ′ ; u ′ 1 , u ′ 2 , v ′ ; Z ′ ) minimal. If ord η ′ (x ′ ) (H(x ′ ) -1 g ′ p ) 2, we get Ω(x ′ ) (2, 1): x ′ is not very near to x, since Ω(x) (2, 2). If ord η ′ (x ′ ) (H(x ′ ) -1 g ′ p ) 3, as ord (u ′ 1 ,u ′ 2 ) (H(x ′ ) -1 θ ′ p ) 1 by (2), we get ord (u ′ 1 ,u ′ 2 ) (H(x ′ ) -1 θ ′ g ′ p-1 ) 3 p -1 p + 1 p = 3 - 2 p 2.
If p does not divide a(1), we have

ord η ′ (x ′ ) (H(x ′ ) -1 u ′ 1 ∂(f ′ + θ ′ p -θ ′ g ′ p-1 ) ∂u ′ 1 ) = 1 by (2), since u ′ 3 is invertible at x ′ . If p divides a(1), we apply chapter 1, II.5.3.2(i) to the monomial γ 1 U a(2)+ω(x) 2 U a(3)+1 3
(which is not a p th -power because ∆(h; u 1 , u 2 , u 3 ; X) is minimal), where γ 1 denotes the image of γ 1 in k(x). We then get

ord η ′ (x ′ ) (H(x ′ ) -1 ∂(f ′ + θ ′ p -θ ′ g ′ p-1 ) ∂λ ′ i ) = 1
for some i, 2 i s, with conventions on derivations as in chapter 1 II.3. Therefore ω(x ′ ) 1 < ω(x).

If P = U 3 , ∆(h ′ ; u ′ 1 , u ′ 2 , u ′ 3 ; X ′
) is minimal and we get

H(x ′ ) -1 f ′ = u ′ 1 u ′ 2 -(ω(x)-1) φ + γ 1 u ′ 2 u ′ 3 . (3) 
Therefore

ω(x ′ ) ord η ′ (x ′ ) (u ′ 2 u ′ 3 ) = 2.
We are done unless possibly if ω(x) = ω(x ′ ) = 2 (so div(u 3 ) ⊆ E), in which case assumption (iii) holds. In particular, we now have

E ′ = div(u ′ 1 u ′ 2 u ′ 3 ). Let then cl 1 φ =: λ 1 U 1 + ν 3 U 2 + µ 2 U 3 , λ 1 , µ 2 , ν 3 ∈ k(x)
, and (λ 1 , ν 3 ) = (0, 0) by assumption. Since ω(x ′ ) = 2, we have ν 3 = 0 by (3), so λ 1 = 0. We claim that τ (x ′ ) = 3, whence κ(x) = κ(x ′ ) = 0 by II.1.2. Note that x ′ then satisfies the assumptions of lemma II.1.5 below with µ 1 := γ 1 and λ 2 := 0 for some µ 3 ∈ k(x ′ ), and the conclusion follows.

The last point we have to consider is thus the point

x ′ = (X ′ := X u 3 , u ′ 1 := u 1 u 3 , u ′ 2 := u 2 u 3 , u ′ 3 := u 3 ), i.e.
x ′ is on the strict transform of Y . This is the origin of a chart, so ∆(u -p

3 h; u ′ 1 , u ′ 2 , u ′ 3 ; X ′ ) is minimal. Let h ′ := u -p 3 h = X ′ p -X ′ g ′ p-1 + f ′ , where H(x ′ ) -1 f ′ = u ′ 1 u ′ 3 -(ω(x)-1) φ + γ 1 u ′ 2 ω(x) u ′ 3 . Let us see that x ′ , (X ′ , u ′ 1 , u ′ 2 , u ′ 3 ) verify the hypotheses II.1(ii) or (iii). This is obvious if ω(x) 3. If ω(x) = ω(x ′ ) = 2, then φ := cl 1 φ ∈< U 1 , U 2 >, cl 1 (u ′ 3 -1 φ) = φ(U ′ 1 , U ′ 2 ) ∈ k(x ′ ).U ′ 3 and div(u ′ 1 u ′ 3 ) ⊆ E ′ , so (iii) holds. Let X = X 0 ← X 1 ← • • • X n-1 ← X n ← • • •
be the quadratic sequence along µ, i.e. X n is the blowing up along the center

x n-1 of µ in X n-1 for n 1. Let h(n) be a local equation of X n .
By well known results, ord

x n h(n) = ord y h for n >> 0, so x n ∈ Σ p (X n ) if Y ⊆ Σ p (X). Since ω(x) 2, we have Y = V (X, u 1 , u 2 ) ⊆ W := {z ∈ X | ω(z) > 0}. If Y ⊆ Σ p (X), the strict transform Y n of Y in X n
is permissible of the first kind at x n for n >> 0 by chapter 1 II.6.1. As noticed in the beginning of the proof, this implies κ(x) 1.

II.1.5 Lemma. Assume that E = div(u 1 u 2 u 3 ), ∆(h; u 1 , u 2 , u 3 ; X) is minimal and Ψ := cl 2 (H(x) -1 f ) = λ 1 U 2 1 + µ 2 U 1 U 3 + µ 3 U 1 U 2 + λ 2 U 2 2 + µ 1 U 2 U 3 ,
with λ 2 µ 2 = 0 and λ 1 µ 1 = 0. Then τ (x) = 3.

Proof. For each

F = a 1 a 2 a 3 λ a 1 a 2 a 3 U a 1 1 U a 2 2 U a 3 3 ∈ k(x)[U 1 , U 2 , U 3 ] 2 , we denote S(F ) := {(a 1 , a 2 , a 3 ) | λ a 1 a 2 a 3 = 0}. Let K ⊂ {(x 1 , x 2 , x 3 ) ∈ R 3 : x 1 + x 2 + x 3 = 2} be the convex hull of S(Ψ). Since E = div(u 1 u 2 u 3 ), we have S(F ) ⊆ K for every F ∈ cl 2 J(f, E, x); in particular, the monomial U 2 3 and either U 2 2 or U 1 U 3 appears in no F ∈ cl 2 J(f, E, x). Furthermore, the monomial U 2 1 (resp. U 2 U 3 ) appears with nonzero coefficient in some element G 1 (resp. G 2 ) of cl 2 J(f, E, x), since H(x)u 2 1 and H(x)u 2 u 3 induce vertices of ∆(h; u 1 , u 2 , u 3 ; X) which is minimal. Suppose that τ (x) 2. Then cl 2 J(f, E, x) ⊆ k(x)[V 1 , V 2 ] 2 , where V 1 = U 1 + α 2 U 2 + α 3 U 3 and V 2 = α ′ 2 U 2 + α ′ 3 U 3 , since U 2 1 appears in G 1 .
The rank of the matrix

α 2 α 3 α ′ 2 α ′ 3 is two, since U 2 U 3 but not U 2 3 appears in G 2 .
Without loss of generality, it can thus be assumed that α 2 α 3 = 0. Let {i, j} = {2, 3} be such that α i = 0 and α j = 0. Without loss of generality, it can also be assumed that α ′ i = 1. Since U 2 3 and either U 2 2 or U 1 U 3 appears in no element of cl 2 J(f, E, x), elementary considerations show that α ′ j = 0 and that every F ∈ cl 2 J(f, E, x) must be a scalar multiple of one and the same polynomial

G := V 2 1 + c 1 V 1 V 2 + c 2 V 2 2 for some c 1 , c 2 ∈ k(x).
We get the following list of possible cases:

Case 1: i = 3, µ 2 = 0, λ 2 = 0, c 2 = 0, c 1 = -α 2 α ′ 2 ; Case 2: i = 2, λ 2 = 0, c 2 = 0, c 1 = -α 3 α ′ 3 ; Case 3: i = 2, µ 2 = 0, c 1 = -2 α 3 α ′ 3 , c 2 = ( α 3 α ′ 3 ) 2 .
Case 3 is easily discarded from the assumption µ 1 = 0. We give the proof in case 2, the proof of case 1 being similar. Let us denote

H(x) = u a(1) 1 u a(2) 2 u a(3) 3 and F i := cl 2 (H(x) -1 u i ∂f ∂u i ), i = 1, 2, 3.
All of these forms should be proportional:

G = U 2 1 + c 1 U 1 U 2 + α 3 U 1 U 3 + c 1 α 3 U 2 U 3 ; F 1 = a(1)µ 1 U 2 U 3 + (a(1) + 1)(µ 3 U 1 U 2 + µ 2 U 1 U 3 ) + (a(1) + 2)λ 1 U 2 1 ; F 2 = a(2)(λ 1 U 2 1 + µ 2 U 1 U 3 ) + (a(2) + 1)(µ 3 U 1 U 2 + µ 1 U 2 U 3 ); F 3 = a(3)(λ 1 U 2 1 + µ 3 U 1 U 2 ) + (a(3) + 1)(µ 2 U 1 U 3 + µ 1 U 2 U 3 ). So the matrix M :=    1 c 1 α 3 c 1 α 3 (a(1) + 2)λ 1 (a(1) + 1)µ 3 (a(1) + 1)µ 2 a(1)µ 1 a(2)λ 1 (a(2) + 1)µ 3 a(2)µ 2 (a(2) + 1)µ 1 a(3)λ 1 a(3)µ 3 (a(3) + 1)µ 2 (a(3) + 1)µ 1   
must have rank one. The last two rows are not both zero, and are linearly dependent if and only if (µ 2 = µ 3 = 0 and a(2) = a( 3)). But then M has rank two, since c 1 = 0: a contradiction which proves that τ (x) = 3.

II.2 Proposition. Assume that E = div(u 1 ) and ǫ(x) = ω(x). If VDir(x) ≡< U 2 , U 3 > mod(U 1 ), then κ(x) = 0. Proof. We have ord η(x) (H(x) -1 g p ) > ord η(x) (H(x) -1 f ) = ǫ(x) = ω(x) since ω ′ (x) = 2. Let F := cl ω(x) (H(x) -1 f ). Since ǫ(x) = ω(x), we have F ∈ k(x)[U 1 , U p 2 , U p 3 ]. If τ (x) = 3, then κ(x) = 0 by II.1.2, so we assume that τ (x) = 2.
We can now pick a r.s.p. (u 1 , v 2 , v 3 ) of S, where v i := u i + α i u 1 , α i ∈ S invertible, i = 2, 3, and get an expression

H(x) -1 f = F (u 1 , v 2 , v 3 ) + φ, ord η(x) φ > ǫ(x) and VDir(x) =< V 2 , V 3 >.
Of course, we may have to do a translation Z := X -θ on X in order to get ∆(h;

u 1 , v 2 , v 3 ; Z) minimal. Since ord η(x) (H(x) -1 g p ) > ω(x), we have cl ǫ(x) J(f, E, x) = cl ǫ(x) J(f Z , E, x) ∈ k(x)[V 1 , V 2 ] ω(x) , where h = Z p -g p-1 Z + f Z . By II.1.1, if e : X ′ → X is the blowing up of x and x ′ ∈ X ′ is very near X, then x ′ = (Z ′ := Z u 1 , u ′ 1 := u 1 , v ′ 2 := v 2 u 1 , v ′ 3 := v 3 u 1 )
. This is the origin of a chart, so ∆(h

′ ; u ′ 1 , v ′ 2 , v ′ 3 ; Z ′ ) is minimal, E ′ := (e -1 E) red = div(u ′
1 ) and we get an expression

H(x ′ ) -1 f ′ = F (1, v ′ 2 , v ′ 3 ) + u ′ 1 φ ′ ). If x ′ is very near x, we have ord η ′ (x ′ ) φ ′ ω(x) -1 and therefore ǫ(x ′ ) = ω(x). Also note that ord u ′ 1 (H(x ′ ) -1 g ′ p ) > ω(x), since otherwise Ω(x ′ ) (ω(x), 1) < Ω(x). By construction, cl ω(x) J(f ′ , E ′ , x ′ ) ≡ cl ω(x) J(H(x ′ )F (1, v ′ 2 , v ′ 3 ), E ′ , x ′ ) modU ′ 1 k(x ′ )[U ′ 1 , V ′ 2 , V ′ 3 ] ω(x)-1 , hence VDir(x ′ ) ≡< V ′ 2 , V ′ 3 > mod(U ′ 1
) and x ′ satisfies again the assumptions of II.1 w.r.t. the r.s.p.

(Z ′ , u ′ 1 , v ′ 2 , v ′ 3 ). Let X = X 0 ← X 1 ← • • • X n-1 ← X n ← • • •
be the quadratic sequence along µ, i.e. X n is the blowing up along the center x n-1 of µ in X n-1 for n 1. We iterate the previous argument: if κ(x) > 0, there exists series

w i := u i + j 1 α ij u j 1 , α ij ∈ k(x), i = 2, 3 and Z ∈ R with the following property: (a) the polyhedron ∆(h; u 1 , w 2 , w 3 ; Z) is minimal; (b) if x n is very near x, then x n is on the strict transform Y n in X n of Y := V (Z, w 2 , w 3 ) ⊆ Spec( R/(h)).
As in the proof of proposition II.1, we have

x n ∈ Σ p (X n ) for n >> 0 unless Y ⊆ Σ p (X). But this is a contradiction, since η(Y ) ⊆ E. II.3 Proposition. Assume that ω(x) 2, E = div(u 1 ) and H(x) -1 f = F (u 2 , u 3 ) + u 1 φ with ord η(x) (u 1 φ) = ω(x) and F ∈ k(x)[u 2 , u 3 ] 1+ω(x) . If moreover VDir(cl ω(x) J(f, E, x) + cl ω(x) J(F, E)) =< U 1 , U 2 , U 3 >, (1) 
then κ(x) 1.

Proof. We have ord

u 1 (H(x) -1 g p ) > ord η(x) (H(x) -1 f ) since ǫ(x) = ω(x).
In particular, we have

F = 0 by definition of H(x). Moreover, cl ω(x) (u 1 φ) ∈ k(x)[U 1 , U p 2 , U p 3 ]
, since ǫ(x) = ω(x). We discuss according to the value of τ (x). II.3.1 If τ (x) = 3, then κ(x) = 0 by II.1.1. II.3.2 If τ (x) = 2, as ord η(x) (u 1 φ) = ω(x), U 1 divides cl ω(x) J(f, E, x), so U 1 ∈ VDir(x). Let VDir(x) =< U 1 , λU 2 + µU 3 >, λ, µ ∈ k(x), (λ, µ) = (0, 0). In particular, cl ω(x)-1 φ ∈ k(x)[U 1 ], and thus ω(x) 1 + p.

By symmetry, it can be assumed that µ = 0 and we replace u 2 by v := u 2 + µ λ u 2 . We may have to do a translation Z := X -θ, θ ∈ k(x)[[u 1 , u 2 , u 3 ]] in order to get ∆(h; u 1 , v, u 3 ; Z) minimal. Then f is changed to f Z := f + θ p -θg p-1 . As ω ′ (x) = 2, E = div(u 1 ) and ω(x) = ǫ(x), u 1 divides H(x) -1 g p-1 θ and ord η(x) (H(x) -1 g p-1 θ) > ω(x), so H(x) -1 f Z = F (v, u 3 ) + u 1 φ Z and the vector space cl ω(x) J(f, E, x) is unchanged. Hypothesis ( 1) is equivalent to:

< ∂F ∂U 2 , ∂F ∂U 3 > ⊆ k(x)[V ].
This condition is independent of the choice of the variables (u 2 , u 3 ); in other terms, it can be assumed without loss of generality that VDir(x) =< U 1 , U 2 >, hypothesis (1) then reading

F (U 2 , U 3 ) ∈ k(x)[U 2 ] + U p 3 k(x)[U p 2 , U p 3 ]. (2) 
Let e : X ′ → X be the blowing up along x. If x ′ ∈ e -1 (x) is very near x, we have

x ′ = (X ′ := X u 3 , u ′ 1 := u 1 u 3 , u ′ 2 := u 2 u 3 , u ′ 3 := u 3 ) by II.1.1, so E ′ := e -1 (x) = div(u ′ 1 u ′ 3 )
. This is the origin of a chart, so ∆(h

′ ; u ′ 1 , u ′ 2 , u ′ 3 ; X ′ ) is minimal. Let Φ(U 1 , U 2 ) := cl ω(x)-1 φ. We get H(x ′ ) -1 f ′ = u ′ 3 F (u ′ 2 , 1) + u ′ 1 φ ′ , where φ ′ = Φ(u ′ 1 , u ′ 2 ) + u ′ 3 ψ ′ and ψ ′ ∈ k(x)[[u ′ 1 , u ′ 2 , u ′ 3 ]]. We have ord (u ′ 1 ,u ′ 3 ) (H(x ′ ) -1 g ′ p > ǫ(x). If x ′ is very near x, we get ord η ′ (x ′ ) (u ′ 1 φ ′ ) = ω(x ′ ) = ω(x) and ω(x) = ω(x ′ ) = ǫ(x ′ ) 1 + ord u ′ 2 F (u ′ 2 , 1) 1 + ω(x),
where the right-hand side inequality holds because

F ∈ k(x)[U 2 ]. So x ′ is not very near x unless possibly if ord u ′ 2 F (u ′ 2 , 1) ω(x) -1.
We consider two cases:

Case 1: ord u ′ 2 F (u ′ 2 , 1) = ω(x). Then H(x ′ ) -1 f ′ = γ ′ u ′ 3 u ′ 2 ω(x) + u ′ 1 φ ′ with γ ′ invertible. Since ω(x) 1 + p 3, we have κ(x ′ ) 1 by II.1(ii). Case 2: ord u ′ 2 F (u ′ 2 , 1) = ω(x) -1, Then H(x) -1 f ′ = γ ′ u ′ 3 u ′ 2 ω(x)-1 + u ′ 1 φ ′ with γ ′ invertible. If x ′ is very near x, then ω(x) -1 ≡ 0 modp, otherwise ω(x ′ ) ord η ′ (x ′ ) (H(x ′ ) -1 ∂f ′ ∂u ′ 2 ) < ω(x).
We have 1)+ω(x)-p and

H(x ′ ) = u ′ 1 a(1) u ′ 3 a(
F ′ := cl ω(x) (H(x ′ ) -1 f ′ ) = U ′ 1 Φ(U ′ 1 , U ′ 2 ) + U ′ 1 U ′ 3 K(U ′ 1 , U ′ 2 , U ′ 3 ) + γ ′ U ′ 3 U ′ 2 ω(x)-1 .
By the lemma below (with indices 2 and 3 exchanged and Ψ = 0), we get τ (x ′ ) = 3 so κ(x ′ ) = 0. 2) , with a(2) ≡ a(1) + 1 modp, and (ii) F := cl ω(x) (H(x) -1 f ) has an expansion

II.3.3 Lemma. Assume that ω(x) 2, E = div(u 1 u 2 ) and the polyhedron ∆(h; u 1 , u 2 , u 3 ; X) is minimal. We have τ (x) = 3 provided (i) H(x) = u 1 a(1) u 2 a(
F = U 1 Φ(U 1 , U 2 , U 3 ) + U 2 2 Ψ(U 2 , U 3 ) + λU 2 U 3 ω(x)-1 , (1) 
with Φ = 0 and λ = 0.

Proof. Since F = 0, we have ǫ

(x) = ω(x), so Φ ∈ k(x)[U 1 , U 2 , U p 3 ], Ψ ∈ k(x)[U 2 , U p 3 ]
and ω(x) -1 ≡ 0 modp. With notations about derivations as in chapter 1 II.3, the vector space cl ǫ(x) J(f, E, x) is generated by forms

F i = U 1 Φ i (U 1 , U 2 , U 3 ) + U 2 2 Ψ i (U 2 , U 3 ) + λ i U 2 U 3 ω(x)-1 , 1 i s.
Since ∆(h; u 1 , u 2 , u 3 ; X) is minimal, there exists i 0 , i 1 such that λ i 0 = 0, Φ i 1 = 0 by (ii). We have 0 x) , so U 1 ∈ VDir(x). Hence τ (x) = 3 as well in this case.

< deg U 3 F i 0 = ω(x) -1 < degF i 0 = ω(x), so τ (x) 2. If U 1 ∈ VDir(x), then U 2 2 Ψ i 0 (U 2 , U 3 ) + λ i 0 U 2 U 3 ω(x)-1 ∈ IDir(x) ω(x) , so τ (x) = 3. If U 2 ∈ VDir(x), then U 1 Φ i 1 (U 1 , U 2 , U 3 ) ∈ IDir(x) ω(
Suppose that τ (x) = 2. The previous discussion shows that

VDir(x) =< U := µ 1 U 1 + µ 2 U 2 , V := U 3 + ν 1 U 1 + ν 2 U 2 >, with µ 1 , µ 2 , ν 1 , ν 2 ∈ k(x) and µ 1 µ 2 = 0. It can be assumed that ν 1 = 0 in V by replacing V with V -ν 1 µ 1 U . Let F ′ := F (U 1 , U 2 , V -ν 2 U 2 ).
Then F ′ has an expansion as in [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF] with λ and the property Φ = 0 unchanged. The vector space cl ǫ(x) J(f, E, x) is also unchanged. In other terms, it can be assumed that VDir(x) =<

µ 1 U 1 + µ 2 U 2 , U 3 >, µ 1 µ 2 = 0.
There is an expansion

F = U ω(x)-1 3 (αU 1 + λU 2 ) + 1 a ω(x)-1 p U ω(x)-1-ap 3 F a (U 1 , U 2 ), with F a ∈ k(x)[U 1 , U 2 ] ap+1 , α ∈ k(x).
Then

F 1 = U ω(x)-1 3 
((a(1) + 1)αU 1 + a(1)λU 2 ) +

1 a ω(x)-1 p U ω(x)-1-ap 3 F a,1 (U 1 , U 2 ),
and 1)λU 2 and L 2 := a(2)αU 1 + (a(2) + 1)λU 2 must be proportional. The linear forms L 1 and L 2 are linearly dependent if and only if (a(1) + a(2) + 1)α ≡ 0 modp, so 2(a(1) + 1)α ≡ 0 modp by (i). Hence p = 2, or a(1) + 1 ≡ 0 modp or α = 0.

F 2 = U ω(x)-1 3 (a(2)αU 1 + (a(2) + 1)λU 2 ) + 1 a ω(x)-1 p U ω(x)-1-ap 3 F a,2 (U 1 , U 2 ). Since VDir(x) =< µ 1 U 1 + µ 2 U 2 , U 3 >, the linear forms L 0 := µ 1 U 1 + µ 2 U 2 , L 1 := (a(1) + 1)αU 1 + a(
If a(1) + 1 ≡ 0 modp, then L 2 = λU 2 is not proportional to L 0 since λµ 1 µ 2 = 0. If p = 2 and a(1) + 1 ≡ 0 modp, then L 1 = αU 1 , so we must have α = 0, since µ 1 µ 2 = 0. If α = 0 and a(1) + 1 ≡ 0 modp, then L 1 = a(1)λU 2 , L 2 = (a(1) + 2)λU 2 so we must have p = 2. Then, since the monomial λu a( 1)

1 u a(2)+1 2 u ω(x)-1 3
induces a vertex of the minimal polyhedron ∆(h; u 1 , u 2 , u 3 ; X), we have λ ∈ k(x) 2 . Hence

F λ := ∂F ∂λ = U 2 U ω(x)-1 3 + 1 a ω(x)-1 p U ω(x)-1-ap 3 F a,λ (U 1 , U 2 ) ∈ k(x)[U 3 , µ 1 U 1 + µ 2 U 2 ],
thus contradicting at last the assumption τ (x) = 2. This concludes the proof. and VDir(x) = k(x).U 1 . We thus have

H(x) -1 f = F (u 2 , u 3 ) + λu 1 ω(x) + u 1 ψ,
with λ ∈ k(x) nonzero and ord η(x) ψ ω(x). Assumption (1) in the proposition is then equivalent to VDir(

∂F ∂U 2 , ∂F ∂U 3 ) =< U 2 , U 3 > . (1) 
Let e : X ′ → X be the blowing up along x. By II.1.1, a point x ′ ∈ e -1 (x) is very near x only if it maps to the strict transform of div(u 1 ). As u 2 and u 3 play symmetric roles, we can assume x ′ is in the chart with origin (X ′ := 1)+ω(x)-p and

X u 2 , u ′ 1 := u 1 u 2 , u ′ 2 := u 2 , u ′ 3 := u 3 u 2 ). Then E ′ := (e -1 E) red = div(u ′ 1 u ′ 2 ), H(x ′ ) = u ′ 1 a(1) u ′ 2 a(
H(x ′ ) -1 f ′ = u ′ 2 F (1, u ′ 3 ) + λu ′ 1 ω(x) + u ′ 1 u ′ 2 ψ ′ for some ψ ′ ∈ S ′ . We pick local coordinates (u ′ 1 , u ′ 2 , v ′ := P (1, u ′ 3 )) at x ′ , with P ∈ k(x)[U 2 , U 3 
] irreducible, homogeneous and unitary in U 3 .

If P = U 3 , we may have to perform a translation Z [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF], ω(x) + 1) ≡ (0, 0) modp. (c) λ Z ′ is not invertible if and only if (a(1) + ω(x) ≡ 0 modp and λ ∈ k(x ′ ) p ). In this case, since λ ∈ k(x) p , P is inseparable, i.e. ∂P ∂U 3 = 0. Note that the conditions on a(1) and ω(x) in (b) and (c) are mutually exclusive. By (1), we have

′ := X ′ -θ ′ , θ ′ ∈ k(x ′ )[[u ′ 1 , u ′ 2 , v ′ ]] to get ∆(u -p 2 h; u ′ 1 , u ′ 2 , v ′ ; Z ′ ) minimal. Then f ′ is changed into f ′ Z ′ := f ′ + θ ′ p -θ ′ g ′ p-1 and get an expansion H(x ′ ) -1 f ′ Z ′ = u ′ 2 F Z ′ (v ′ ) + λ Z ′ u ′ 1 ω(x) + u ′ 1 u ′ 2 ψ ′ Z ′ , (2) 
with λ Z ′ , ψ ′ Z ′ ∈ k(x ′ )[[u ′ 1 , u ′ 2 , v ′ ]], F Z ′ (v) ∈ k(x ′ )[[v ′ ]]. As u ′ 1 divides H(x ′ ) -1 g ′ p , the following holds: (a) H(x ′ )u ′ 2 (F Z ′ (v ′ ) -F (1, u ′ 3 )) ∈ (k(x ′ )[[u ′ 1 , u ′ 2 , v ′ ]]) p . In particular, J(f Z ′ , E ′ ) ≡ J(H(x ′ )u ′ 2 F (1, u ′ 3 ), E ′ ) mod(u ′ 1 ). (b) ord v ′ F Z ′ (v ′ ) > ord v ′ F (1, u ′ 3 ) only if (a(
ord v ′ J(H(x ′ )u ′ 2 F (1, u ′ 3 ), E ′ ) 1 + (ω(x) -1) = ω(x). (3) 
Assume that x ′ is very near x. By (a), equality holds in [START_REF]Resolution of surface singularities[END_REF] and this implies ω(x) - 2). Let us first look at the case where (a(1), ω(x)+1) ≡ (0, 0) modp. By (b), we have ord

1 ord v ′ F Z ′ (v ′ ) ω(x). Moreover, we must have ord η ′ (x ′ ) (u ′ 1 u ′ 2 ψ ′ Z ′ ) ω(x) in (
v ′ F Z ′ (v ′ ) = ord v ′ F (1, u ′ 3 ). Case 1: ord v ′ F Z ′ (v ′ ) = ω(x). We have F = P ω(x) Q, with Q ∈ k(x)[U 2 , U 3 ] homogeneous. Counting degrees, we get ω(x) + 1 = [k(x ′ ) : k(x)]ω(x) + degQ.
Since ω(x) 2 by assumption in the proposition, we must have k(x ′ ) = k(x). The last statement in (c) then implies that λ Z ′ = λ is a unit. Then κ(x ′ ) 1 by II.1. Note that, if ω(x) = 2, the extra assumption in II.1 (iii) holds since

U ′ 1 -1 cl 2 (H(x ′ ) -1 f ′ Z ′ ) = λU ′ 1 + U ′ 2 ψ ′ Z ′ (0, 0, 0) ∈ k(x ′ ).U ′ 2 .
Case 2:

ord v ′ F Z ′ (v ′ ) = ω(x) -1.
Since equality holds in (3), we have ω(x) -1 ≡ 0 modp. By (b),

F = P ω(x)-1 Q, with Q ∈ k(x)[U 2 , U 3 ] homogeneous. Counting degrees, we get ω(x) + 1 = [k(x ′ ) : k(x)](ω(x) -1) + degQ. (4) 
Suppose that x ′ is not algebraic over x, i.e. [k(x ′ ) : k(x)] 2. Since ω(x) 2 by assumption in the proposition, counting degrees in (4) we get:

degQ = 0, [k(x ′ ) : k(x)] = 2 and ω(x) = 3, or degQ = 0, [k(x ′ ) : k(x)] = 3 and ω(x) = 2, or degQ = 1, [k(x ′ ) : k(x)] = 2 and ω(x) = 2. By (c), λ Z ′ is a unit unless k(x ′ )/k(x) is inseparable. Since ω(x) -1 ≡ 0 modp, λ Z ′ is a unit unless possibly if (p = 2, degQ = 0, [k(x ′ ) : k(x)] = 2
and ω(x) = 3). In this case, we have F = µP 2 , µ ∈ k(x) which contradicts [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF], since p = 2.

It has thus been proved that λ Z ′ is a unit in all cases (by (c) if x ′ is rational over x and by the above argument otherwise). Thus the initial form F ′ := cl ω(x) (H(x ′ ) -1 f Z ′ ) has an expansion

F ′ = U ′ 1 Φ(U ′ 1 , U ′ 2 , V ′ ) + λ ′ U ′ 2 V ′ ω(x)-1
for all G i ∈ k(x)[u i ] and each i = 2, 3. Then τ (W ) = 3 except possibly if one of the following conditions is satisfied: (i) a ≡ 0 modp, a(1) + ω -a ≡ 0 modp, a(2)a(3) ≡ 0 modp and a(2) + a(3) + a = p where α ∈ {0, . . . , p -1} denotes the remainder of the division of the integer α by p. In particular p 3;

(ii) a ≡ 0 modp and ψ -cHu ω-a

1 (u 2 + µu 3 ) a ∈ (k(x)[u 1 , u 2 , u 3 ]) p
for some c, µ ∈ k(x) -{0}. In particular, VDir(W ) =< u 1 , u 2 + µu 3 >.

Proof. Let

H -1 λ i ∂ψ ∂λ i =: u ω-a 1 F i (u 2 , u 3 ) ∈ W,
where

F i ∈ k(x)[u 2 , u 3 ] a .
By [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF] and the assumption a > 0, k(x).u 1 ⊂ VDir(W ) (inclusion is necessarily strict), so τ (x) 2 and the first part of the proposition is proved. Assume now that τ (W ) = 2. Then all F i 's are proportional to some (u 2 + µu 3 ) a , µ = 0 by ( 2). Let us denote

F i =: d i (u 2 + µu 3 ) a , (3) 
where d i = 0 for some i, 1 i s.

II.5.1 Assume that a ≡ 0 modp. Let c ∈ k(x) be such that deg u 2 (F -c(u 2 + µu 3 ) a ) < a. Since a ≡ 0 modp, we have

H -1 λ i ∂Hc(u 2 + µu 3 ) a u ω-a 1 ∂λ i =: c i u ω-a 1 (u 2 + µu 3 ) a for some c i ∈ k(x). As deg u 2 (H(x) -1 λ i ∂H(F -c(u 2 +µu 3 ) a ) ∂λ i
) < a, we have c i = d i and therefore

Hu ω-a 1 (F (u 2 , u 3 ) -c(u 2 + µu 3 ) a ) ∈ (k(x)[u 1 , u 2 , u 3 ]) p ,
which proves (ii).

II.5.2 Assume now that a ≡ 0 modp. Let us denote α(j) ∈ k(x) the coefficient of u a j in F , j = 2, 3. By (3), we have α(2)α(3) = 0. Computing the coefficient of u a j in F 1 , F 2 , F 3 for j = 2, 3, the following couples must be proportional: v 1 := ((a(1) + ω -a)α( 2), (a(1) + ω -a)α( 3)), v 2 := ((a(2) + a)α(2), a(2)α( 3)), and v 3 := (a(3)α( 2), (a(3) + a)α( 3)).

Since det(v 1 , v 2 ) = 0 and a ≡ 0 modp, we have a(1) + ω -a ≡ 0 modp and we are thus reduced to a question on u

a(2) 2 u a(3) 3 F (u 2 , u 3 ). Since det(v 2 , v 3 ) = 0, we have a(2) + a(3) + a ≡ 0 modp. ( 4 
)
Suppose a(2) + a ≡ 0 modp. Then a(3) ≡ 0 modp by [START_REF]Forme normale d'une fonction sur un k-schéma de dimension 3 and de caractéristique positive[END_REF]. The Euler identity applied to u a(2) 2 F (u 2 , u 3 ) gives

F 2 + u 3 ∂F ∂u 3 = 0.
On the other hand, we have deg u 2 F 2 < a, so F 2 = 0, and we get ∂F ∂U 3 = 0, so a = deg U 3 F ≡ 0 modp, since α(3) = 0: a contradiction. Hence a(2) + a ≡ 0 modp. Mutatis mutandis, a(3) + a ≡ 0 modp. All this, together with ( 4), leads to a(2)a(3) ≡ 0 modp. Let a =: a 0 + a 1 p + ... + a m p m be the p-adic expansion of a, a i ∈ {0, . . . , p -1}, a 0 = 0. For each j ∈ N, 0 j a, let j =: j 0 + j 1 p + ... + j m p m be the p-adic expansion of j. As

(X + Y ) a = (X + Y ) a 0 (X p + Y p ) a 1 • • • (X p m + Y p m ) a m in Z/p, we have a j ≡ a 0 j 0 a 1 j 1 • • • a m j m modp.
Then, for each j, 0 j a < p, we have a j ≡ a j ≡ 0 modp.

Let F =: 0 j a γ j u j 2 u a-j

3

. Since a(2) + a ≡ 0 modp, we have

d 2 = 0 in F 2 = d 2 (u 2 + µu 3 ) a . Computing explicitly F 2 , we get γ j (a(2) + j) = d 2 a j = 0
whenever 0 j a < p, hence a(2)+j ≡ 0 modp. We deduce a(2)+ a < p, since a(2)+a ≡ 0 modp. By ( 4), a(2) + a(3) + a = p.

CHAPTER 3: Resolution when there is transverseness

In all this chapter, we assume that x ∈ Σ p , Ω(x) = (ω(x), 2) and that the r.s.p. (X, u 1 , u 2 , u 3 ) of R is such that E ⊆ div(u 1 u 2 u 3 ) and the polyhedron ∆(h; u 1 , u 2 , u 3 ; X) is minimal.

We naturally define "transverseness" for J(f, E) by the following property:

J(f, E) is transverse ⇔ cl ω(x) J(f, E) ⊆ ({U i | div(u i ) ⊆ E}). (1) 
This is our definition of κ(x) = 4 in III.2 below. A slightly more general definition can be given adjoining to [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF] those cases when ǫ(x) = ω(x) and

cl ω(x) J(f, E, x) ⊆ k(x)[{U i | div(u i ) ⊆ E}]. (2) 
This is our definition of κ(x) = 2 (i) in I.1 below. Under each assumption ( 1) or ( 2), we have E ⊆ div(u 1 u 2 ) up to renumbering components of E.

Two main difficulties arise: on the one hand, transverseness as defined above is not preserved by permissible blowing ups at very near points, and we will have to use those nonpermissible blowing ups specified in chapter 1, III in resolving the κ(x) = 3 case (section II below); on the other hand, some easy reductions (corollary I.3 and section III) focus our attention on those cases where E ⊆ div(u 1 u 2 ), J(f, E) ≡ (u ω(x) 3) mod(u 1 , u 2 ) and τ (x) = 1. These in turn contain two very different subcases: κ(x) = 2, which contains again two subcases:

Case (*1) or (*2): (H(x) -1 f ) ≡ (u ω(x) 3 ) mod(u 1 , u 2 ), E = div(u 1 ) or E = div(u 1 u 2 ), and Case (*3): (H(x) -1 ∂f ∂u 2 ) ≡ (u ω(x) 3 
) mod(u 1 ), E = div(u 1 ), ω(x) ≡ 0 modp;

κ(x) = 3: (H(x) -1 f ) ≡ (u 1+ω(x) 3 
) mod(u 1 , u 2 ), 1 + ω(x) ≡ 0 modp. Unfortunately, these assumptions are not stable by blowing up and we still have to introduce more general definitions of κ(x) = 2, 3. We recall that, κ being a multiform function, one may have at the same time κ(x) ∈ {2, 3, 4} and κ(x) 1.

I. Resolution of the case κ(x) = 2.

I.1 Definition of κ(x) = 2. We say that κ(x) = 2 if one of the following (mutually exclusive) conditions is satisfied:

(i) ǫ(x) = ω(x), E ⊆ div(u 1 u 2 ), VDir(x) ⊆< {U i | div(u i ) ⊆ E} >; (ii) ǫ(x) = 1 + ω(x), E = div(u 1 )
and, for a suitable r.s.p. (u 1 , u 2 , u 3 ) of S with ∆(h; u 1 , u 2 , u 3 ; X) minimal,

cl ω(x) (H(x) -1 ∂f ∂u 2 ) = Φ(U 2 , U 3 ) + U 1 Ψ(U 1 , U 2 , U 3 ), where Φ ∈ k(x)[U 2 , U p 3 ] \ k(x)[U 2 ]
, and U 3 ∈ VDir(Φ). The reader verifies that this definition includes the two subcases of κ(x) = 2 stated above in the introduction of this chapter, and that κ(x) = 2 in the example f = u a 1 ((u 2 + λu 3 ) 1+ω(x) + {higher order terms}), λ = 0. We first recollect from definition II.1.3 in chapter 2 and related comments:

I.1.1 Remarks. (i) If κ(x) = 2 and ǫ(x) = ω(x) then: ord η(x) (H(x) -1 g p ) > ω(x); VDir(x) := VDir(cl ω(x) J(f, E, x))
is independent of any choice of parameters with ∆(h; u 1 , u 2 , u 3 ; X) minimal and E ⊆ div(u 1 u 2 u 3 ). 1)+a( 2)+ω(x)-p (v ′ 2 -λ) a( 2)

0 i ⌊ ω(x) p ⌋ u ′ 3 pi F i (1, v ′ 2 -λ)
in ( 1) induces unsolvable vertices of ∆(h ′ ; u ′ 1 , v ′ 2 , u ′ 3 ; Z ′ ), so we have ω(x ′ ) = ǫ(x ′ ) since x ′ is very near x. Since F i = 0 for at least one index i 1 and condition (*) does not hold, F is not the power of a linear form, hence VDir(x ′ ) ≡< V ′ 2 , U ′ 3 > mod(U ′ 1 ). By II.2 of chapter 2, we have κ(x) = 0. Case 2: a(1) + a(2) + ω(x) ≡ 0 modp. We have

f ′ Z ′ ≡ f ′ + θ ′ p mod(u ′ 1 ), since u ′ 1 divides H(x ′ ) -1 g ′ p . Therefore J(f ′ Z ′ , E ′ ) ≡ J(f ′ , E ′ ) mod(u ′ 1 ). Given D ∈ D(x), we denote F D := cl ω(x) (H(x) -1 Df ) ∈ k(x)[U 1 , U 2 , U 3 ] ω(x)
. By assumption, we may pick We thus get cl

D ∈ D(x) such that F D ∈ k(x)[U 1 , U 2 ]. If e * D ∈ D(x ′ ), then F ′ D := cl ω(x ′ ) (H(x ′ ) -1 (e * D)f ′ Z ′ ) mod(U ′ 1 ) ∈ k(x)[V ′ 2 , U ′ 3 p ]\k(x)[V ′ 2 ], so ω(x ′ ) = ǫ(x ′ ), κ(x ′ ) =
ω(x ′ ) (H(x ′ ) -1 (e * D)f ′ Z ′ ) ∈ k(x)[U ′ 1 , V ′ 2 , U ′ 3 p ]\k(x)[U ′ 1 , V ′ 2 ]. (2) 
If ǫ(x) = 1 + ω(x), this proves that κ(x ′ ) = 2. Since condition (*) does not hold at x, we have

F ω(x) p = 0 if ω(x) ≡ 0 modp. Therefore cl ω(x ′ ) (H(x ′ ) -1 (e * D)f ′ Z ′ ) ∈ V ′ 2 k(x)[U ′ 1 , V ′ 2 , U ′ 3 p ], (3) 
by [START_REF]Desingularization of embedded excellent surfaces[END_REF], which proves that VDir(x ′ ) ≡< V ′ 2 , U ′ 3 > mod(U ′ 1 ). Hence x ′ is in case (iii) of the proposition or κ(x) = 0.

If ǫ(x) = ω(x), we expand

H(x ′ ) -1 f ′ Z ′ = φ ′ (v ′ 2 , u ′ 3 ) + u ′ 1 ψ ′ , where φ ′ ∈ k(x)[[v ′ 2 , u ′ 3 ]
] and ord η ′ (x ′ ) φ ′ 1+ω(x ′ ). Since condition (*) does not hold at x, equation (3) above implies that x ′ satisfies the assumptions of chapter 2, II.4, so κ(x) = 0 in this case.

I.2.5 Proof of (v). By I.1 (ii), we have τ (x) = 3 (so κ(x) = 0) if ǫ(x) = 1 + ω(x). Assume now that ǫ(x) = ω(x). Since VDir(x) =< U 1 , U 3 >, we have x ′ = (X ′ = X u 2 , u ′ 1 = u 1 u 2 , u ′ 2 = u 2 , u ′ 3 = u 3 u 2 ) and E ′ := (e -1 E) red = div(u ′ 1 u ′ 2 )
. We are at the origin of a chart, so ∆(h;

u ′ 1 , u ′ 2 , u ′ 3 ; X ′ ) is minimal. Note that cl ω(x) (H(x) -1 f ) ∈ k(x)[U 1 , U 3 ], so we get ǫ(x ′ ) = ω(x ′ ), VDir(x ′ ) ≡< U ′ 1 , U ′ 3 > mod(U ′ 2 )
, and the conclusion follows.

I.3 Corollary. Let X = X 0 ← X 1 ← • • • ← X i ← • • • be the quadratic sequence along µ. If for each i 1, the center x i of µ in X i satisfies (x i ∈ Σ p (X i ), Ω(x i ) = (ω(x i ),
2) and κ(x i ) = 2), then κ(x) 1 or condition (*) holds for some i 1.

Proof. Otherwise, there exists i 0 0 such that either all x i 's are in case (iii) or are in case (v) for i i 0 by I.2. Without loss of generality, it can be assumed that i 0 = 0. In case (iii), all x i 's are on the strict transform of a formal curve C := V ( X, u 2 , u 3 ), where X = X + λ i u i 1 and u j = u j + λ ij u i 1 for j = 2, 3. We have C ⊂ E, so x i is a regular point of X i for i >> 0: a contradiction. In case (v), we have E i = div(u 1,i u 2 ), where E i is the exceptional divisor at x i and u

1,i = u -i 2 u 1 , so i < µ(u 1 ) µ(u 2 ) < ∞,
since the value group of µ is Archimedean: a contradiction.

I.4 Remark. From now on till the end of section I, we may therefore assume that (κ(x) = 2 and condition (*) holds at x). In particular, we have ω(x) ≡ 0 modp by I. Let m(x) be the number of irreducible components of E at x, where κ(x) = 2 and condition (*) holds at x. There are three different cases:

(*1) m(x) = 1, ǫ(x) = ω(x); (*2) m(x) = 2, ǫ(x) = ω(x); (*3) m(x) = 1, ǫ(x) = 1 + ω(x). In the following definition, the r.s.p. (u 1 , u 2 , u 3 ) of S is such that div(u 1 ) ⊆ E ⊆ div(u 1 u 2 ). Remember that X ∈ R is such that ∆(h; u 1 , u 2 , u 3 ; X) is minimal. We expand f =: H(x) 0 j ω(x) u ω(x)-j 3 φ j , where φ j ∈ k[[u 1 , u 2 ]], 1 j ω(x), φ 0 ∈ S.
We have φ 0 invertible in cases (*1) or (*2), and (u 1 , φ 0 , u 3 ) is a r.s.p. of S in case (*3). I.5.1 Preparation of the variables. We now define well-preparedness of variables in cases (*1) and (*2), then in case (*3). Existence of well prepared variables is proved in I.6 below. I.5.1.1 Definition. In cases (*1) or (*2), we say that (X, u 1 , u 2 , u 3 ) is well prepared if the following conditions are satisfied: (wp1) ∆(h; u 1 , u 2 , u 3 ; X) is minimal; (wp2) no vertex w = (w 1 , w 2 ) of ∆(H(x) -1 (f, g p ); u 1 , u 2 ; u 3 ) is solvable (definition of this polyhedron and of vertex solvability below).

The polygon in (wp2) is defined in this way: given an ideal I ⊆ S, let N P (I) ⊂ R 3 0 be its Newton polyhedron, i.e. N P (I) is the convex hull of {s + R 3 0 }, where s =: (s 1 , s 2 , s 3 ) ∈ N 3 ranges over all monomials u s 1 1 u s 2 2 u s 3 3 appearing with nonzero coefficient in the expansion of some φ ∈ I. Assume that moreover ord u 3 (I mod(u 1 , u 2 )) = ω(x). Then ∆(I; u 1 , u 2 ; u 3 ) is defined to be 1/ω(x) times the projection of N P (I) on the first two coordinates plane from the point (0, 0, ω(x)). Note: each vertex w of ∆(I; u 1 , u

2 ; u 3 ) has coordinates in ( 1 ω(x)! N) 2 . It is easily checked that ∆(H(x) -1 (f, g p ); u 1 , u 2 ; u 3 ) = ∆(H(x) -1 ({λ i ∂f ∂λ i } 1 i s , g p ); u 1 , u 2 ; u 3 ). $B3$
Before blowing up case (*3)

$\beta3$ $\beta3_2$ $\beta3_3$ $A_1$ $\alpha3_2$
Obviously, the above definitions may depend on the choice of well prepared coordinates (X, u 1 , u 2 , u 3 ). When there is a risk of confusion, we will make explicit this dependence on (u 1 , u 2 , u 3 ) by writing A j (u 1 , u 2 , u 3 ), etc... We also use the notation A j (x), A j (x ′ ), etc... when dealing with a blowing up e : X ′ → X and x ′ ∈ e -1 (x) if κ(x ′ ) = 2 and x ′ satisfies condition (*). In this case, we always compute invariants w.r.t. E ′ := (e -1 E) red .

I.5.2.3 Definition. Assume that (X, u 1 , u 2 , u 3 ) is well prepared. We denote γ(u 1 , u 2 , u 3 ) := ⌈β(u 1 , u 2 , u 3 )⌉ 0 if x is in case (*1); γ(u 1 , u 2 , u 3 ) := 1 + ⌊C(u 1 , u 2 , u 3 )⌋ 1 if x is in case (*2); γ(u 1 , u 2 , u 3 ) := 1 + ⌊β3(u 1 , u 2 , u 3 )⌋ 0 if x is in case (*3).
We will also use the notation γ(x) = γ(u 1 , u 2 , u 3 ) for short. About existence of well prepared coordinates, we have: I.6 Proposition. Assume that κ(x) = 2 and condition (*) holds for the r.s.p.

(X, u 1 , u 2 , u 3 ) of R. There exists ψ ∈ (u 1 , u 2 )k(x)[[u 1 , u 2 ]], θ ∈ S = k(x)[[u 1 , u 2 , u 3 ]] such that (X -θ, u 1 , u 2 , v := u 3 -ψ) is well prepared.
Proof. By assumption, (wp1) holds for (X, u 1 , u 2 , u 3 ). In cases (*1) and (*2) (resp. (*3)), suppose there exists a vertex (resp. a left vertex) w = (w 1 , w 2 ) of ∆(H(x) -1 (f, g p ); u 1 , u 2 ; u 3 ) (resp. ∆(H(x) -1 u -1 2 (f, g p ); u 1 , u 2 ; u 3 )) which is solvable. By definition of solvability, if L is a linear form on R 3 with coefficients in R >0 (resp. and with L(1, 0, 0) > L(0, 1, 0)) such that in w (H(x) -1 f ) = in L (H(x) -1 f ), then in gr L (S) (resp. in gr L (u -1 2 S)), we have equality of ideals (resp. submodules): in 

L (H(x) -1 ({λ i ∂f ∂λ i } 1 i s , g p )) = k(x).(U 3 -λU w 1 1 U w 2 2 ) ω(x) (resp. in L (H(x) -1 u -1 2 ({λ i ∂f ∂λ i } 1 i s , g p )) = k(x).(U 3 -λU w 1 1 U w 2 2 ) ω(x)
L (H(x) -1 λ i ∂f ∂λ i ) = γ i V ω(x) w (resp. in L (H(x) -1 u -1 2 λ i ∂f ∂λ i ) = γ i V ω(x) w ). So L(w ′ , 0) > L(0, 0, ω(x)) for all vertices w ′ of ∆(H(x) -1 (f, g p ); u 1 , u 2 ; v w ) = ∆(H(x) -1 ({λ i ∂f ∂λ i } 1 i s , g p ); u 1 , u 2 ; v w ) (resp. of ∆(H(x) -1 u -1 2 (f, g p ); u 1 , u 2 ; v w )). Let w ′ = w be a vertex (resp. a "left" vertex) of ∆(H(x) -1 (f, g p ); u 1 , u 2 ; u 3 ) (resp. of ∆(H(x) -1 u -1 2 (f, g p ); u 1 , u 2 ; u 3 )),
and L ′ be a linear form on R 3 with coefficients in R >0 (resp. and with

L ′ (1, 0, 0) > L ′ (0, 1, 0)) such that in w ′ (H(x) -1 f ) = in L ′ (H(x) -1 f ) (resp. in w ′ (H(x) -1 u -1 2 f ) = in L ′ (H(x) -1 u -1 2 f ) ).
In particular, we have L ′ (w, 0) > L ′ (w ′ , 0). By I.6.1 above,

in w ′ (H(x) -1 ({λ i ∂f ∂λ i } 1 i s , g p )) (resp. in w ′ (H(x) -1 u -1 2 ({λ i ∂f ∂λ i } 1 i s , g p )) )
is unaffected by the change of differential basis. So w ′ is still a vertex of

∆(H(x) -1 (f, g p ); u 1 , u 2 ; v w ) = ∆(H(x) -1 u -1 2 ({λ i ∂f ∂λ i } 1 i s , g p ); u 1 , u 2 ; v w ) (resp. of ∆(H(x) -1 u -1 2 (f, g p ); u 1 , u 2 ; v w ))
. We may have lost (wp1) in this process, in which case we make a change of variable X w := X -θ w , to get (wp1) anew. This translation necessarily makes not larger the polygon

∆(H(x) -1 (f X w , g p ); u 1 , u 2 ; v w ) (resp. ∆(H(x) -1 u -1 2 (f X w , g p ); u 1 , u 2 ; v w ))
which is a projection (resp. the projection of a translate) of ∆(h; u 1 , u 2 , v w ; X w ), where f X w := f + θ p w -g p-1 θ w . After iterating (possibly infinitely many times) this vertex dissolution and minimizing step, one gets a non-increasing sequence of polyhedra of the form ∆(H(x) -1 u -1 2 (f j , g p ); u 1 , u 2 ; v j ), j 1, where h = (X -θ j ) p -g p-1 (X -θ j ) + f j and v j = u 3 -ψ j . The series ψ j and θ j respectively converge in k(x)[[u 1 u 2 ]] and in S, since (w 1 + w 2 , w 1 ) increases for the lexicographical ordering in each step I.6.1.

I.6.3 Proposition. Assume that κ(x) = 2 and x is in case (*3) for the r.s.p. (X, u 1 , u 2 , u 3 ) of R. If w := (0, 1) is a vertex of ∆(H(x) -1 u -1 2 (f, g p ); u 1 , u 2 ; u 3 ), then w is not solvable. As a consequence, we have

v = u 3 + u 1 φ 1 + φ, with φ 1 , φ ∈ S, ord η(x) φ 2 in the dissolution I.6. Therefore V ∈ VDir(H(x) -1 ∂f Z ∂u 2 ), where h = Z p -g p-1 Z + f Z . Proof. Suppose that w := (0, 1) is a vertex of ∆(H(x) -1 u -1
2 (f, g p ); u 1 , u 2 ; u 3 ). By I.1 (ii), we have VDir(Φ) =< U 3 , U 2 >, so w does not satisfy equation ( 1 

(Z, u 1 , u 2 , v) such that condition (*2) holds, (Z, u 1 , u 2 , v) is well prepared, B(u 1 , u 2 , v) = C(u 1 , u 2 , v) = 1, and we have VDir(x) =< V, U 1 + bU 2 > for some b = 0); (ii) in case (*3), either U 3 ∈ VDir(cl ω(x) (H(x) -1 ∂f ∂u 2 )),
or (B3(x) = 1 and there exists a r.s.p.

(Z, u 1 , u 2 , v) with v ≡ u 3 mod(u 1 ) such that condition (*3) holds, (Z, u 1 , u 2 , v) is well prepared, V ∈ VDir(cl ω(x) (H(x) -1 ∂f Z ∂u 2 
)),

and the following holds: ∆(H(x) -1 u -1 2 (f Z , g p ); u 1 , u 2 ; v) and ∆(H(x) -1 u -1 2 (f, g p ); u 1 , u 2 ; u 3 ) have the same "left" vertices, one of which is (α3 2 , β3 2 ), where 0 α3 2 < 1 and α3 2 + β3 2 = 1 (in particular B3(u 1 , u 2 , v) = 1 and β3(u 1 , u 2 , v) = β3(u 1 , u 2 , u 3 ))). I.7.1 Proof of (i). If we are in cases (*1) or (*2), then

cl ω(x) (H(x) -1 f ) = λ(U ω(x) 3 + 1 i ω(x) U ω(x)-i 3 P i (U 1 , U 2 )) =: λF, where λ = 0, P i ∈ k(x)[U 1 , U 2 ] i , and P i = 0 if B(x) > 1 or if i ≡ 0 modp. The case B(x) > 1 is proved (take v := u 3 ), so assume B(x) = 1. By well-preparedness, we have τ (x) 2, so τ (x) = 2 if κ(x) > 1.
Assume that U 3 ∈ VDir(x). Then VDir(x) =< U 3 + aU i , U j + bU i >, where a = 0, b ∈ k(x) and {i, j} = {1, 2}. By chapter 2 II.2, we have κ(x) = 0 if div(u j ) ⊆ E, so it can be assumed that j = 1, i = 2. We claim that b = 0. Indeed, if b = 0, then for 1 j s, we have

cl ω(x) (H(x) -1 λ j ∂f ∂λ j ) = µ j (U 3 + aU 2 ) ω(x) + 1 i ω(x) µ ji (U 3 + aU 2 ) ω(x)-i U i 1 .
By equation (1) of I.5.1.1, the vertex (0, 1) of ∆(H(x) -1 (f, g p ); u 1 , u 2 ; u 3 ) is solvable: a contradiction, so b = 0. Once again, this implies E = div(u 1 u 2 ) by chapter 2 II.2. If C(x) < 1, we have A 1 (x) > 0 or A 2 (x) > 0. Therefore there exists i 0 ∈ {1, 2} such that for each j, 1 j s, we have x) φ 0 in expression [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF], where φ 0 denotes the image of φ 0 in k(x ′ ). When making a translation on X ′ , Z 1)+a( 2)+ω(x)-p p in order to get ∆(h ′ ; u ′ 1 , v ′ , u ′ 3 ; Z ′ ) minimal, we consider three cases: Case 1: a(1) + a(2) ≡ 0 modp. The monomial M ′ is preserved by this translation.

cl ω(x) (H(x) -1 λ j ∂f ∂λ j ) -µ j U ω(x) 3 ∈ U i 0 k(x)[U 1 , U 2 , U 3 ], µ j ∈ k(x), Let M ′ be the monomial M ′ := u ′ 1 a(1)+a(2)+ω(x)-p u ′ 2 a(2) u ′ 3 ω ( 
′ := X ′ -u ′ 1 a θ ′ , θ ′ ∈ S ′ , a a(
Case 2: a(1) ≡ a(2) ≡ 0 modp and x ′ separable over x. Then φ 0 is not a p th -power in k(x), therefore neither in k(x ′ ) (recall that ω(x) ≡ 0 modp). As ord η(x) (H(x) -1 g p ) > ǫ(x), the monomial M ′ is preserved by this translation.

In cases 1 and 2, we get ǫ(x ′ ) ω(x) = ǫ(x). Since x ′ is very near x, we have κ(x ′ ) = 2 and condition (*1) holds at x ′ .

Case 3: all other cases. In particular, we have a(1) + a(2) ≡ 0 modp. Then

f ′ Z ′ := f ′ + (u ′ 1 a θ ′ ) p -u ′ 1 a θ ′ g ′ p-1 satisfies H(x ′ ) -1 f ′ Z ′ ≡ (u ′ 2 a(2) φ 0 + ψ ′ p )u ′ 3 ω(x) + 1 j ω(x) p u ′ 3 ω(x)-pj (u ′ 2 a(2) Φ ′ pj (u ′ 2 ) + ψ ′ pj (v ′ ) p ) mod(u ′ 1 ), (2) 
where deg u

′ 2 Φ ′ pj pj, and ord v ′ ψ ′ pj (v ′ ) p ord v ′ Φ ′ pj (u ′ 2 ), 1 j ω(x). Let λ ′ := u ′ 2 a(2) φ 0 + ψ ′ p . There exists D ′ ∈ D ′ := {D ∈ Der S ′ /k 0 | D(I(E ′ )) ⊆ I(E ′ )} such that D ′ λ ′ is a unit, since J(f ′ , E ′ ) is the weak transform of J(f, E, x). Hence either (λ ′ is a unit and D ′ ∈ D ′ (x ′ )), or (D ′ = ∂ ∂v ′ and D ′ λ ′ is a unit).
Case 3a: in the former case, we have ω(x ′ ) = ω(x), κ(x ′ ) = 2 and x ′ verifies (*1).

Case 3b: in the latter one, we claim that κ(x ′ ) 1 or (κ(x ′ ) = 2 and x ′ is in case (*1) or (*3)). To prove the claim, we consider two more subcases:

Case 3ba: assume that Φ ′ pj = 0 for 1 j

ω(x) p . Then κ(x ′ ) = 1 by chapter 2 II.1 if ord η ′ (x ′ ) (H(x ′ ) -1 f ′ Z ′ ) = ω(x). Assume now that ord η ′ (x ′ ) (H(x ′ ) -1 f ′ Z ′ ) = 1 + ω(x), so H(x ′ ) -1 ∂f ′ Z ′ ∂v ′ ≡ ∂λ ′ ∂v ′ u ′ 3 ω(x) mod(u ′ 1 ), so κ(x ′ ) = 2 and x ′ is in case (*3).
Case 3bb: assume now that not all Φ ′ pj 's are zero. Then B(x) = 1 and

U i ∈ VDir(x) for i = 1, 2 since x ′ = (X ′ , u ′ 1 , u ′ 2 , u ′ 3 ), so C(x) = B(x) = 1. Since x ′ is very near x, we have VDir(x) =< U 3 , bU 1 + U 2 >, b = 0 and v ′ = b + u ′ 2 .
Moreover, m(x) = 2 and a(2) ≡ 0 modp since we are dealing with case 3. By chapter 2 II.5(ii) (with variables u 1 and u 2) ∈ k(x) p for some j, then ǫ(x ′ ) = ω(x) and κ(x ′ ) = 2. By chapter 2 II.2, we have κ(x) = 0 unless µ ω(x) b a(2) ∈ k(x) p and µ pj b a(2) ∈ k(x) p for pj = ω(x), in which case (2) leads to

3 exchanged), this implies that u ′ 2 a(2) Φ ′ pj (u ′ 2 ) = µ pj (v ′ -b) a(2) v ′ pj + ϕ ′ pj (v ′ ) p , for some µ pj ∈ k(x) and ϕ ′ pj (v ′ ) ∈ k(x ′ )[[v ′ ]] for each j, 1 j ω(x) p . If µ pj b a(
H(x ′ ) -1 f ′ Z ′ ≡ µ ′ 1 (v ′ )v ′ u ′ 3 ω(x) + 1 j ω(x) p -1 µ ′ pj (v ′ )u ′
since G is not a scalar multiple of an ω(x) th -power; equality holds implies ω(x ′′ ) = ǫ(x) -1 < ω(x), so x ′′ is not very near x ′ . This concludes the proof of the claim, hence of (c) and of the remaining part of (a).

We now prove I.8.3 in the special case B(x) = 1. Assume first that (m(x) = 2 and B(x) = C(x) = 1). In the above case 1, we have κ(x ′ ) = 0 by chapter 2, II.2. In case 3, we are already done by the above computations except in case 3a. We argue along the lines and notations of the proof in case 3bb above: if µ pj b a(2) ∈ k(x) p for some j, 1 j

ω(x) p , then A 1 (x ′ ) = 0 and VDir(x ′ ) ≡< U ′ 3 , V ′ > mod(U ′ 1 ) so κ(x ′ ) = 0 by chapter 2, II.2; if µ pj b a(2) ∈ k(x) p for each j, 1 j ω(x) p , then A 1 (x ′ ) = 0 and β(x ′ ) = 1 + inf{ 1 pj | µ pj = 0} < 2.
Assume now that B(x) = 1 and either C

(x) < 1 or m(x) = 1. Since x ′ = (X ′ , u ′ 1 , u ′ 2 , u ′ 
3 ) and we are in the first chart, it can be assumed as well that < U 3 , bU 1 + U 2 >⊆ VDir(x), b = 0. If m(x) = 1, we have κ(x) = 0 by chapter 2, II.2. If m(x) = 2, then U i ∈ VDir(x) for some i ∈ {1, 2} because C(x) = 1 (see argument at the end of I.7.1), so τ (x) = 3 and κ(x) = 0.

All statements have been proved for B(x) = 1, so we assume that B(x) > 1 from now on. Before proving (d), (e) and statements (i)-(ix), recall that a j (1) + a j (2) + d j -j j(B(x) -1) in ( 1), with equality if and only if j ∈ J 0 (definition I.8.2.1). As the well preparation will replace ∆

(H(x ′ ) -1 (f ′ , g ′ p ); u ′ 1 , v ′ ; u ′ 3 
) by a smaller polyhedron, we get

A 1 (x ′ ) B(x) -1. I.8.3.1 Proof of (i). If b(1)+b(2)-(a(1)+a(2)) = ω(x)B(x), then A 1 (x ′ ) = B(x)-1 and (A 1 (x ′ ), 0) is a vertex of ∆(H(x ′ ) -1 (f ′ , g ′ p ); u ′ 1 , v ′ ; u ′ 3 )
which is not solvable by definition, so β(x ′ ) = 0. We have κ(x ′ ) 1 by I.8.1. I.8.3.2 Preliminary remarks and proof of (ii). Let µ 1 be the monomial valuation on S ′ defined by

µ 1 ( abc λ abc u ′ 1 a v ′ b u ′ 3 c ) = min{c + a B(x) -1 | λ abc = 0}. Note that µ 1 (H(x ′ ) -1 f ′ ) = ω(x).
In the well preparation algorithm at x ′ , we replace u ′ 3 by

w ′ := u ′ 3 -u ′ 1 a s ′ , s ′ ∈ k(x ′ )[[u ′ 1 , v ′ ]], a B(x) -1, (1) 
and X ′ by

Z ′ := X ′ -u ′ 1 a ′ θ ′ , θ ′ ∈ S ′ , a ′ a(1) + a(2) + ω(x) -p p . (2) 
The Newton polyhedron of u

′ 1 a ′ θ ′ is a subset of ∆(h ′ ; u ′ 1 , u ′ 2 , u ′ 3 ; X ′ ), so µ 1 (u ′ 1 a ′ θ ′ ) µ 1 (H(x ′ )) + ω(x) p .
Let

F ′ := u ′ 2 a(2)   φ 0 U ′ 3 ω(x) + j 0 ∈J 0 U ′ 3 ω(x)-j 0 U ′ 1 j 0 (B(x)-1) u ′ 2 a j (2) cl 0 ψ ′ j   (3) be the initial form of H(x ′ ) -1 f ′ in the graded algebra G µ 1 ( S ′ ) = k(x ′ )[[v ′ ]][U ′ 1 , U ′ 3 ] of S ′ w.r.t. µ 1 , where cl 0 denotes residue w.r.t. µ 1 , i.e. the image in S ′ /(u ′ 1 , u ′ 3 ) ≃ k(x ′ )[[v ′ ]]. Note that F ′ is the weak transform of U 1 a(1) U 2 a(2) in µ 0   0 j ω(x) u ω(x)-j 3 φ j   =: U 1 a(1) U 2 a(2) F (see definition I.8.2.3 for the definition of µ 0 ). Substitution (1) changes F ′ by an automorphism U ′ 3 → W ′ + λ(v ′ )U ′ 1 B(x)-1 , λ ∈ k(x ′ )[[v ′ ]]
(with λ = 0 if B(x) ∈ N), while substitution ( 2) only changes it by some

H(x ′ ) -1 Θ ′ p , Θ ′ ∈ G µ 1 ( S ′ ) by (i). Therefore we have µ 1 (J ′ ) = ω(x) and in µ 1 J ′ =< (in µ 1 H(x ′ )) -1 .(in µ 0 H(x)).cl µ 0 ,ω(x) J >, (4) 
where 1)+a( 2)+ω(x)-p F ′ , E ′ ). By well-preparedness, the right hand side is not generated by an ω(x) th -power, so the left hand side is not generated by

J ′ := J(U ′ 1 a(
W ′ ω(x) : letting f ′ Z ′ := f ′ + (u ′ 1 a ′ θ ′ ) p - u ′ 1 a ′ θ ′ g ′ p-1 , there exists a vertex v ′ = (B(x) -1, v ′ 2 ) in ∆(H(x ′ ) -1 (f ′ Z ′ , g ′ p ); u ′ 1 , v ′ ; w ′ ). This proves that A 1 (x ′ ) = B(x) -1, so (ii) holds.
We now proceed to prove (d) and (e) in each of cases (iii)-(vi). Note that (d) is a trivial consequence of equations ( 1) and ( 2) in (e) if x ′ is in case (*1) and of (iii)-(vi) if (x is in case (*2) and x ′ is in case (*3)). So (d) only needs to be proved when (x is in case (*1) and x ′ is in case (*3)). By (c), we may then assume furthermore that x ′ is inseparable over x. I.8.3.3 Proof in case (iii). Let j 1 := inf{j 0 ∈ J 0 |j 0 ≡ 0 modp}. The comments below equation ( 3) in I.8.3.2 show that the monomial

H(x ′ )u ′ 2 a(2) u ′ 1 a j 1 (1)+a j 1 (2)+d j 1 -j 1 u ′ 2 a j 1 (2) u ′ 3 ω(x)-j 1 Ψ j 1 (1, u ′ 2 )
in f ′ is preserved by the well preparation algorithm at x ′ , so β(x ′ ) [START_REF]Resolution of surface singularities[END_REF]. The conclusion of (iii) follows from this fact and lemma I.8.2.2. The corresponding parts of (d) and (e) are trivial consequences of (iii) (note the trivial fact ∀d 2, ∀y > 0, 1 + y d ⌈y⌉,

d j 1 j 1 d and β3(x ′ ) d j 1 j 1 d -1 j 1 if x ′ is in case (*
where equality holds only if 0 < y 1 or if d = y = 2). I.8.3.4 Proof in case (iv). Equation ( 1) and subsequent comments in I.8.3.2 imply that the monomial

H(x ′ )u ′ 2 a(2) u ′ 1 a j 0 (1)+a j 0 (2)+d j 0 -j 0 u ′ 2 a j 0 (2) u ′ 3 ω(x)-j 0 Ψ j 0 (1, u ′ 2 ) in f ′ is preserved by the translation w ′ = u ′ 3 -u ′ 1 a s ′ for each j 0 ∈ J 0 , since B(x) ∈ N. Let j 1 := inf{j 0 ∈ J 0 |U a(1)+a j 0 (1) 1 U a(2)+a j 0 (2) 2 Ψ j 0 (U 1 , U 2 ) ∈ (k(x)[U 1 , U 2 ]) p }.
Since ∆(h; u 1 , u 2 , u 3 ; X) is minimal, j 1 exists. By equation ( 2) and subsequent comments in I.8.3.2, the translation

Z ′ = X ′ -u ′ 1 a ′ θ ′ plugs into f ′ Z ′ a term of the form H(x ′ )u ′ 3 ω(x)-j 1 (u ′ 2 a(2)+a j 1 (2) Ψ j 1 (1, u ′ 2 ) + A j 1 (v ′ ) p ), with A j 1 (v ′ ) ∈ k(x ′ )[[v ′ ]]
. We apply II.5.3.2(i) of chapter 1 to the above form and get:

ord v ′ (u ′ 2 a(2)+a j 1 (2)) Ψ j 1 (1, u ′ 2 ) + A j 1 (v ′ ) p ) d j 1 d + 1. (1) 
This implies β(x ′ ) d j 1 j 1 d + 1 j 1 . If x ′ is in case (*3), β3(x ′ ) d j 1 j 1 d . From this and I.8.2.2, (iv) is established.

We now prove (e). By II. 5.3.2(ii) of chapter 1, we have ord v ′ (u ′ 2 a(2)+a j 1 (2) 

Ψ j 1 (1, u ′ 2 ) + A j 1 (v ′ ) p ) < p(1 + d j 1 pd ).
Therefore the right hand side in (1) above is not in pN if equality holds in [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF]. Since j 1 ≡ 0 modp, we have

β(x ′ ) ord v ′ (u ′ 2 a(2)+a j 1 (2) Ψ j 1 (1, u ′ 2 ) + A j 1 (v ′ ) p ) j 1 < 1 + d j 1 j 1 d .
If E = div(u 1 ), then a(2) = a j 1 (2) = 0 by definition, so II.5.3.2(iii) of chapter 1 now yields

j 1 β(x ′ ) ord v ′ (Ψ j 1 (1, u ′ 2 ) + A j 1 (v ′ ) p ) degΨ j 1 j 1 β(x) (2) 
provided degΨ j 1 1. If degΨ j 1 = 0, then j 1 β(x ′ ) 1. This concludes the proof of (e).

To prove (d), we may assume (last paragraph before I.8.3.3) that (x is in case (*1), x ′ is in case (*3) and d 2). So γ(x ′ ) 1 + ⌊ β(x) d ⌋ γ(x) by lemma I. 8.2.2 and I.8.3.3(1). I. 8.3.5 Proof of (v). Since dim k(x) (cl µ 0 ,ω(x) J) 2, there exists 0 = G ∈ cl µ 0 ,ω(x) J of the form G = j 0 ∈J 0 U ω(x)-j 0 3 U a j 0 (1) 1 U a j 0 (2) 2 G j 0 (U 1 , U 2 ), with G j 0 homogeneous of degree d j 0 . Let

G ′ := U ′ 1 -ω(x) G = j 0 ∈J 0 U ′ 3 ω(x)-j 0 U ′ 1 j 0 (B(x)-1) u ′ 2 a j 0 (2) G j 0 (1, u ′ 2 ).
By I. 8.3.2(4), we have G ′ ∈ in µ 1 J ′ . Let j 1 := inf{j 0 ∈ J 0 |G j 0 = 0}. Then U ′ 3 ω(x)-j 1 U ′ 1 j 1 (B(x)-1) u ′ 2 a j 1 (2) G j 1 (1, u ′ 2 ) is preserved by any translation on u ′ 3 or on X ′ in the well preparation algorithm at x ′ . In general, we can only insure that

v ′ G ′ ∈ in µ 1 J(f ′ Z ′ , E ′ , x ′ ), so j 1 β(x ′ ) d j 1 d + 1 (1) 
and we get β(x ′ ) [START_REF]Resolution of surface singularities[END_REF], so (v) is established. Now note that equality holds in (1) only if the monomial u ′ 3 ω(x)-j 1 v ′ j 1 β(x ′ )-1 appears with nonzero coefficient in the expansion of H(x ′ ) -1 ∂f ′ Z ′ ∂v ′ . Since j 1 ∈ pN, this implies that β(x ′ ) ∈ N. The first statement in (e) follows easily from this remark. For the proof of the second part of (e) and of (d), x is now in case (*1). We get the same upper bound as in I. 8.3.4(2) from which the conclusion follows. I. 8.3.6 Proof of (vi). Write

d j 1 dj 1 + 1 j 1 , β3(x ′ ) d j 1 j 1 d if x ′ is in case (*
G = U ω(x) 3 + j 0 ∈J 0 U ω(x)-j 0 3 U a j 0 (1) 1 U a j 0 (2) 2 G ′ j 0 (U 1 , U 2 ),
with G ′ j 0 ∈ k(x)[U 1 , U 2 ] d j 0 . Let j 1 := inf{j 0 ∈ J 0 |G ′ j 0 = 0}. We denote ω(x) = p α l where l is prime to p.

If j 1 = p α and U G ′ p α =: K(U 1 , U 2 ) p a , we replace u 3 by w := u 3 + l -1 p α K(u 1 , u 2 ), so

G = W ω(x) + j 0 ∈J 0 W ω(x)-j 0 U a ′ j 0 (1) 1 U a ′ j 0 (2) 2 G ′′ j 0 (U 1 , U 2 ).
Since ∆(H(x) -1 f ; u 1 , u 2 ; u 3 ) has no solvable vertex by well-preparedness, its initial side is unchanged by the above translation. Therefore not all G ′′ j 0 's are zero and we have degG ′′ j 0 j 0 C(G).

(1)

Note that we do not mean that h is well prepared for (X, u 1 , u 2 , w), only that the derivative G is unchanged by further translations Z := X -θ in order to get ∆(f ; u 1 , u 2 , w; Z) minimal. We assume from now on that the above preparation has been performed and denote j ′ 1 := inf{j 0 |G ′′ j 0 = 0} > p α . If no preparation has been performed, we let w = u 3 , j ′ 1 = j 1 p in what follows. Let w ′ := w u 2 . By I.8.3.2(4), we have

k(x ′ ).G ′ = in µ 1 J ′ = in µ 1 (H(x ′ ) -1 (u ′ 1 ∂f ′ ∂u ′ 1 , ∂f ′ ∂v ′ , w ′ ∂f ′ ∂w ′ , λ i ∂f ′ ∂λ i )), (2) 
where -ω(x) in µ 0 G(U 1 , U 2 , W ′ ). By (2) above, either G ′ ∈ in µ 1 J(f ′ , E ′ , x ′ ) or < G ′ >= in µ 1 (H(x ′ ) -1 ∂f ′ ∂v ′ ). Note that G ′ is unchanged by any translation on X ′ in the well-preparation algorithm at x ′ , since G ′ is (the initial form of) some derivative of f ′ .

G ′ = U ′ 1 
Assume that x ′ is in case (*1). Then G ′ ∈ in µ 1 J(f ′ , E ′ , x ′ ) and we consider two cases: Case 1: j ′ 1 = p α . The vertex of first coordinate A 1 (x ′ ) of ∆(H(x ′ ) -1 f ′ ; u ′ 1 , v ′ ; w ′ ) is not solvable: any translation on w ′ in the well preparation algorithm is of the form w ′ → w ′ -u ′ 1 a s ′ with a > A 1 (x ′ ), so preserves the monomial W ′ ω(x)-j ′ 1 U ′ 1 j 1 (B(x)-1) u ′ 2 a ′ j ′ 1

(2) G ′′ j ′

1

(1, u ′ 2 ) in in µ 1 (H(x ′ ) -1 f ′ ). We get

j ′ 1 β(x ′ ) d j ′ 1 d j ′ 1 C(G) d ,
from which (vi) follows.

Case 2: j ′ 1 = p α . The translation on w ′ in the well-preparation algorithm produces some term of the form W ′ p a (l-1) U ′ 

1 p α (B(x)-1) (u ′ 2 a p α (2) G ′ p α (1, u ′ 2 ) + ϕ ′ (v ′ ) p α ) in H(x ′ ) -1 f ′ Z ′ . Let α ′ <
p α β(x ′ ) ord v ′ (u ′ 2 a p α (2) G ′ p α (1, u ′ 2 ) + ϕ ′ (v ′ ) p α ) p α C(G) d + p α ′ p α ( C(G) d + 1 p ).
in H(x ′ ) -1 f ′ for j 0 ∈ J 0 . The translation Z ′ = X ′ -u ′ 1 a ′ θ ′ plugs into f ′ Z ′ some term of the form H(x ′ )u ′ 3 ω(x)-j 0 u ′ 1 j 0 (B3(x)-1) (Ψ j 0 (1, u ′ 2 ) + A j 0 (v ′ ) p ) with A j 0 = 0 unless a(1) + 1 + j 0 (B3(x) -1) ≡ 0 modp. If a(1) + 1 + j 0 (B3(x) -1) ≡ 0 modp for each j 0 ∈ J 0 , then U a(1)+a j 1 (1) 1

Ψ j 1 (U 1 , U 2 ) ∈ (k(x)[U 1 , U 2 ]
) p for at least one index j 1 ∈ J 0 , since ∆(h; u 1 , u 2 , u 3 ; X) is minimal. By chapter 1, II. 5.3.2(i), (ii) we get

ord v ′ (Ψ j 1 (1, u ′ 2 ) + A j 1 (v ′ ) p ) 1 + d j 1 d + 1 (1) 
and

1+d j 1 d
+ 1 ∈ pN if equality holds. Also note that

ord v ′ (Ψ j 1 (1, u ′ 2 ) + A j 1 (v ′ ) p ) sup{1 + d j 1 , 1} (2) 
by chapter 1, II. 5.3.2(iii). This proves that A 1 (x ′ ) = B3(x) -1 (so (b') holds),

β(x ′ ) 1 + d j 1 dj 1 + 1 j 1 , (3) 
and either β(x ′ )

1 j 1 1 p or β(x ′ ) 1 + d j 1 j 1 ; (3 ′ ) if x ′ is in case (*3), then β3(x ′ ) 1 + d j 1 dj 1 (4) 
and either β3(x ′ ) 0 or + 1 ∈ pN if equality holds in [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF].

β3(x ′ ) d j 1 j 1 . ( 4 
Case 2: B3(x) ∈ N and dim k(x) (cl µ 0 ,ω(x) J) 2. Recall the definition of the vector space cl µ 0 ,ω(x) J in I.8.6.3. Following the lines of I.8.3.2, there is a formula

in µ 1 J ′ =< (in µ 1 H(x ′ )) -1 .(in µ 0 H(x))U 2 cl µ 0 ,ω(x) J,
where the valuation

µ 1 on S ′ ≃ k(x ′ )[[u ′ 1 , v ′ , u ′ 3 ]
] is now defined by

µ 1 ( abc λ abc u ′ 1 a v ′ b u ′ 3 c ) = min{c + a B3(x) -1
| λ abc = 0}, and J ′ := J(U ′ 1 a(1)+1+ω(x)-p F ′ , E ′ ), where

F ′ := in µ 1 (H(x ′ ) -1 f ′ ) = U ′ 3 ω(x) (µ 1 + µ 2 u ′ 2 ) + j 0 ∈J 0 U ′ 3 ω(x)-j 0 U ′ 1 j 0 (B3(x)-1) Ψ j 0 (1, u ′ 2 ).
The proof goes along the same lines as I.8.3.5; following theses lines, we pick 0 = G ∈ cl µ 0 ,ω(x) J of the form G = U -1 2 j 0 ∈J 0 U ω(x)-j 0 3 U a j 0 (1) 1

G j 0 (U 1 , U 2 ),
with G j 0 homogeneous of degree 1 + d j 0 and j 1 := inf{j 0 ∈ J 0 |G j 0 = 0}. We get the same upper bounds ( 3), (3'), ( 4) and (4') as in case 1, and the conclusion follows in the same way. Ψ j 0 (U 1 , U 2 ).

Let j 1 := inf{j 0 ∈ J 0 | ∂Ψ j 0 ∂U 2 = 0}. As seen in I.8.3.6, we may suppose that µ -1 2 U a j 1 (1) 1 ∂Ψ j 1 ∂U 2 is not a (p α ) th -power if j 1 = p α , where ω(x) = p α l, l prime to p. The argument in I.8.3.6 produces the upper bounds This completes the proof of (ii) and (iii) in case 3. Finally, (v) follows from (ii) except possibly if d = p = 2. Equation ( 5) above yields j 1 = p α and 1 + d j 1 = p α : a contradiction, since 1+d j 1 p α-1 d + 1 = 2 ∈ pN if equality holds in [START_REF]Sur le polyèdre caractéristique[END_REF]. I.8.7.9 Proof of (iv). See end of I.8.7.7 when J 0 ⊂ pN and thus assume J 0 ⊂ pN.

β(x ′ ) 1 + d j 1 j 1 d + 1 p , (5) 
If γ(x) 3, (ii) and I.8.6.2 give

β(x ′ ) γ(x) d + 1 p γ(x) -1.
When x ′ is in case (*3), we have β3(x ′ ) < β(x ′ ) in any case, so (iv) holds if γ(x) 3. If γ(x) = 2, (ii) yields β(x ′ ) 3 2 , so β3(x ′ ) < 3 2 if x ′ is in case (*3). In this case, when d 3 and p 3, we get β3(x ′ ) < β(x ′ ) 1, let us see the case d = 2 and p 3. Then x ′ is separable over x, we will prove that β3(x ′ ) < β(x ′ ) 1, this will end the proof of (iv).

Case 1: in µ 0 (H(x) -1 ∂f ∂u 2 ) is not proportional to an ω(x)-power.

in µ 0 (H(x) -1 ∂f ∂u 2 ) = µ 2 U ω(x) 3 + p j 0 ω(x)
U ω(x)-j 0 3 U a j 0 (1) 1

∂Ψ j 0 ∂U 2 .

Let j 1 be the smallest j 0 with ∂Ψ j 0 ∂U 2 = 0, as in I.8.3.6, we may suppose j 1 = p α or µ 2 -1 ∂Ψ j 1 ∂U 2 not a p α -power. In the first case, we get β3(x ′ ) β(u -ω(x) 1 H(x) -1 ∂f ∂u 2 ; u ′ 1 , v ′ ; w ′ )

d j 1 j 1 d < 1,
where β(u

-ω(x) 1 
H(x) -1 ∂f ∂u 2 ; u ′ 1 , v ′ ; w ′ ) is the β of the polyhedron ∆(u

-ω(x) 1 
H(x) -1 ∂f ∂u 2 ; u ′ 1 , v ′ ; w ′ ). In the second case, we get, with the notations of I.8.3.6 Case 2

p α β(u -ω(x) 1 H(x) -1 ∂f ∂u 2 ; u ′ 1 , v ′ ; w ′ ) ord x ′ ( ∂Ψ j 1 ∂U 2 (1, u ′ 2 ) + ϕ ′ (v ′ ) p α ) d j 1 d + p α ′ , as ord x ′ ( ∂Ψ j 1 ∂U 2 (1, u ′ 2 ) + ϕ ′ (v ′ ) p α ) ∈ p α ′ N and as ord x ′ ( ∂Ψ j 1 ∂U 2 (1, u ′ 2 ) + ϕ ′ (v ′ ) p α ) > d j 1 d ⇒ ord x ′ ( ∂Ψ j 1 ∂U 2 (1, u ′ 2 ) + ϕ ′ (v ′ ) p α ) ∈ p 1+α ′ N,
this leads to: β3(x ′ ) β(u

-ω(x) 1 H(x) -1 ∂f ∂u 2 ; u ′ 1 , v ′ ; w ′ ) < 1 + ⌊ d j 1 j 1 d ⌋ = 1.
Case 2: in µ 0 (H(x) -1 ∂f ∂u 2 ) is proportional to an ω(x)-power. Say in µ 0 (H(x) -1 ∂f ∂u 2 ) = µ 2 (U 3 + Q(U 1 , U 2 )) ω(x) , then we replace u 3 by v = u 3 + Q(u 1 , u 2 ) and eventually X by Y = X + θ to get ∆(h; u 1 , u 2 , v; Y ) minimal, by the preparation of u 1 , u 2 , u 3 , X, the left vertices of ∆(H(x) -1 (f, g p ); u 1 , u 2 ; u 3 ) and ∆(H(x) -1 (f, g p ); u 1 , u 2 ; v) are the same and well prepared. So we reach the next case. 1 Ψ j 0 is not a p-power. During the preparation at x ′ , we will only add a p-power K p to u ′ 1 a(1)+a j 1 +d j 1 -j 1 Ψ j 1 (1, u ′

2 ). When a(1) + a j 1 + d j 1 = 0mod p, β(x ′ )

1+d j 1 j 1 d
1. When a(1) + a j 1 + d j 1 = 0mod p, let us denote

F i := ∂Ψ j 1 (U 1 , U 2 ) ∂λ i , 4 i s.
The F i are not all 0. Let us denote p i := v P (U 1 ,U 2 ) (F i ). i.e. F i = P (U 1 , U 2 ) p i F ′ i , F ′ i prime to P when F i = 0. Let q = inf{p i |4 i s}, then β3(x ′ ) q j 1 , as deg(P ) = 2 = 2, q 1+d j 1 d j 1 , we get the announced result except if q = j 1 , this means that

F i = γ i P (U 1 , U 2 ) j 1 , γ i ∈ k(x), 4 i s.
This implies Ψ j 1 (U 1 , U 2 ) = µP (U 1 , U 2 ) j 1 + G p , µ ∈ k(x) -k(x) p . As k(x ′ )/k(x) is separable, we get ord v ′ (Ψ j 1 (1, u ′

2 ) + K p ) j 1 which leads to β(x ′ ) 1.

We now turn to the study and control of the invariants for points x ′ away from the first chart. This is done in I.8.8 (resp. I.8.9) when x is in cases (*1) and (*2) (resp. in case (*3)).

When x is in cases (*1) and (*2) and κ(x) > 1, we have U 3 ∈ VDir(x) unless we are in the special case specified in I. 7(i). But then we have τ (x) = 2 and VDir(x) ⊕ k(x).U 1 =< U 1 , U 2 , U 3 >, so every x ′ which is very near x belongs to the first chart. This proves that if x ′ ∈ e -1 (x) is very be the quadratic sequence along µ, i.e. X n is the blowing up along the center x n-1 of µ in X n-1 for n 0. First assume that x 0 := x satisfies furthermore the following extra two assumptions: (a) 0 A 1 (x 0 ) < 1, and (b) β(x 0 ) < 1 if x 0 is in case (*2).

We prove by induction on n 0 that κ(x n ) 1 or x n also satisfies the assumptions of I.9, together with (a) and (b). Moreover, the invariant i n := (A 1 (x n ), d(x n )) satisfies i n i n-1 for n 1, where d(x n ) := β(x n ) (resp. d(x n ) := β3(x n )) if x is in case (*1) or (*2) (resp. in case (*3)), and the ordering is lexicographical.

To prove this claim, first note that κ(x) 1, or γ(x n ) = γ(x n-1 ) = 1 by I.8. 1 and I.8.3(d), I.8.8 (resp. and I.8.7(b), (d), I.8.9) if x n-1 is in case (*1) or (*2) (resp. in case (*3)). If x n does not belong to the first chart, κ(x n ) 1 or x n is in case (*2) by I.8.8 or I.8.9 which give i n = (A 1 (x n-1 ), A 1 (x n-1 ) + β(x n-1 ) -1) (resp. = (A 1 (x n-1 ), A 1 (x n-1 ) + β3(x n-1 ) -1)) and the claim is proved (with i n < i n-1 ), since A 1 (x n ) < 1. Assume now that x n belongs to the first chart. By I.8.3 (resp. I.8.7), we have A 1 (x n ) = B(x n-1 )-1 A 1 (x n-1 )+β(x n-1 )-1 (resp. B3(x n-1 )-1 A 1 (x n-1 )+β3(x n-1 )-1), so the claim is proved provided we show that β(x n ) < 1 (resp. β3(x n ) < 1 -1 ω(x) ) if x n is in case (*2) (resp. in case (*3)). Note that moreover i n < i n-1 except if (x n and x n-1 are in case (*1) and β(x n-1 ) = β(x n ) = 1 and x n is rational over x n-1 ).

The claim follows directly from I.8.3(b) if x n is in case (*2). Assume that x n is in case (*3). We may assume that B3(x n-1 ) > 1 if x n-1 is in case (*3) by I. 8.7(b), in which case the result follows from I.8.7(i), (iii). If x n-1 is in case (*1) or (*2), we have β(x n ) < 1 by I.8.3(e) except possibly if (x n-1 is in case (*1) and β(x n-1 ) = C(x n-1 )). By I.8.3(c), x n must then be inseparable over x n-1 so I.8.3(e) also yields β(x n ) < 1. By definition of β(x n there exists some index j, 1 j ω(x), such that the monomial u ω(x)-j 3,n u jA 1 (x n ) 1,n u jβ(x n ) 2,n appears with nonzero coefficient in the expansion of H(x n ) -1 f n , where (X n , u 1,n , u 2,n , u 3,n ) is some r.s.p. at x n which is well prepared. So we have jβ(x n ) j -1 and

β3(x n ) j -2 j = 1 - 2 j < 1 - 1 ω(x) (1) 
and the claim is proved.

Remember that, if κ(x) > 1, then i n = i n-1 only if both x n-1 and x n are in case (*1), β(x n-1 ) = β(x n ) = 1 and x n is rational over x n-1 . If this happens for all n n 0 for some n 0 0, some formal curve C ′ = V ( X n 0 , u 2,n 0 , u 3,n 0 ) is contained in Σ p (X n 0 ), a contradiction since C ′ ⊂ E n 0 . Therefore i n eventually drops so that κ(x) 1.

We now turn to the general case, so x is now in case (*2) and we have C(x) < 1, β(x) 1. If x n is in case (*2) for all n 0, all points x n are either at the origin of the first chart, or the unique point away from the first chart. By standard arguments, there exists n 0 0 such that C(x n 0 ) = 0. Otherwise, there exists a smaller n 0 1 such that x n 0 -1 is in case (*2) and x n 0 is either in case (*1) or in case (*3). By I. 8.3(b), (ix) and I.8.8(iii), we have β(x n 0 ) < 1 in the latter case. The argument in [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF] above shows that β3(x n 0 ) < 1 -1 ω(x) if x n 0 is in case (*3), so x n 0 satisfies the assumption of I.9 in any case.

Summing up, we have κ(x)

1 or the following holds: by blowing up permissible curves (argument at the beginning of the proof of this theorem), there exists a composition of blowing ups of permissible curves e ′ : X ′ → X n 0 such that either (x ′ is in case (*2), C(x ′ ) = 0 and In the latter case, we have β(x n+1 ) β(x n ) for all n n 2 , where equality is strict if x n+1 is not rational over x n . The assumption on µ implies the existence of an increasing sequence of integers (n i ) i 2 such that β(x n i+1 ) < β(x n i ) for all i 2: a contradiction, since β(x n i ) ∈ 1 ω(x)! N. Therefore we had κ(x) 1 and the proof of I.8 is thus complete.

+1 , d ′ i 1 + c ′ i 1 = i 1 A 1 , (a) 
with Ψ ′ i 1 homogeneous of degree d ′ i 1 or

H(x) -1 g p = γu ′ 1 (1+ω(x))A 1 u ′ 2 (1+ω(x))A 1 . (b) 
In case (b), H(y) -1 g ′′ p = γv (2A 1 -1)(1+ω(x)) 1

, as 2A 1 -1 < 1, ord y (H(y) -1 g ′′ p ) ω(x): at worse, ω(y) = ω(x) and ω ′ (y) = 1 < ω ′ (x): y is not very near to x.

From now on, we are in case (a).

H(y) -1 f ′′ = w ω(x)+1 φ 0 +

1 i 1+ω(x) w ω(x)+1-i v 1 b ′ i +c ′ i +d ′ i -i u ′ 2 c ′ i (Ψ ′ i (1, u ′ 2 ) + v 1 φ i ). for i = i 1 , w ω(x)+1-i v 1 b ′ i +c ′ i +d ′ i -i u ′ 2 c ′ i Ψ ′ i (1, u ′ 2 ) = w ω(x)+1-i 1 v 1 i 1 (2A 1 -1) u ′ 2 c ′ i 1 Ψ ′ i 1 (1, u ′ 2 ). Case where 2A 1 = 1: w ω(x)+1-i 1 v 1 i 1 (2A 1 -1) u ′ 2 c ′ i 1 Ψ ′ i 1 (1, u ′ 2 ) = w ω(x)+1-i 1 u ′ 2 c ′ i 1 Ψ ′ i 1 (1, u ′ 2 )
. If 1 + ω(x)-i 1 = 0 mod (p) or a(1)+a( 1)+ω(x)+1-p+i 1 = 0 mod (p), a translation on Y will not spoil

w ω(x)+1-i 1 u ′ 2 c ′ i 1 Ψ ′ i 1 (1, u ′ 2 ), ord y (u ′ 2 c ′ i 1 Ψ ′ i 1 (1, u ′ 2 )) d ′ i 1 +c ′ i 1 = i 1 2
, so ǫ(y) 1+ω(x)-i 1 + i 1 2 ω(x): at worse, Ω(y) = Ω(x) and κ(y) = 2. If u ′ 2 (x ′ ) = 0, we are at the origin of a chart: there is no translation to do, we conclude as above. If 1+ω(x)-i 1 = 0 mod (p) and a(1)+a( 1)+ω(x)+1-p+ i 1 = 0 mod (p) and u ′ 2 (x ′ ) = 0, a translation on X ′ may add a p-power to w ω(x)+1-i

1 u ′ 2 c ′ i 1 Ψ ′ i 1 (1, u ′ 2 ), by chapter 2 II.5(ii), the D(H(x ′ )u ′ 1 b ′ i 1 u ′ 2 c ′ i 1 Ψ ′ i 1 ) = D(u ′ 1 a(1) u ′ 2 a(1)+1+ω(x)-p u ′ 1 b ′ i 1 u ′ 2 c ′ i 1 Ψ ′ i 1 ), D ∈ D are not all proportional to u ′ 1 a(1) u ′ 2 a(1)+1+ω(x)-p u ′ 1 b ′ i 1 u ′ 2 c ′ i 1 .d ′ i 1
th -power, or Ψ ′ i 1 is a monomial, so, after an eventual translation, w ω(x)+1-i

1 u ′ 2 c ′ i 1 Ψ ′ i 1 (1, u ′ 2 ) which will become w ω(x)+1-i 1 γ ′ v a 2 , a d ′ i 1 + c ′ i 1 = i 1 2
, γ ′ invertible, we conclude as above. From now on, 1 2 < A 1 . For our index i

1 , i 1 2 < i 1 A 1 = b ′ i 1 ∈ N, so i 1 3. Further- more, 1 > B -1 = 2A 1 -1 > 0: B -1 ∈ N , so w ω(x)+1-i 1 v 1 i 1 (2A 1 -1) u ′ 2 c ′ i 1 Ψ ′ i 1 (1, u ′ 2 ) = w ω(x)+1-i 1 u ′ 2 c ′ i 1 Ψ ′ i 1 (1, u ′ 2 )
will not be spoilt by an eventual translation on w, after an eventual translation on Y , w ω(x)+1-i

1 u ′ 2 c ′ i 1 Ψ ′ i 1 (1, u ′ 2 ) which will become w ω(x)+1-i 1 γ ′ v a 2 , a d ′ i 1 + c ′ i 1 + 1 = i 1 2 + 1,

I. 1 . 1

 11 to I.4. Using those "easy examples" of κ(x) 1 in chapter 2, one reduces κ(x) = 2 to three subcases (*1),(*2) and (*3) of definition I.1.2 (corollary I.3).

  Statements (ii) to (vii) study the behaviour of auxiliary invariants. II.4 to II.5. Proof that κ(x) 1 in some cases where γ(x) = 1. II.6. Sharpening of II.2: we have κ(x) 1 whenever the projection of Hironaka's characteristic polyhedron has only one vertex. II.7. Those nonpermissible blowing ups considered in II.3 allow to drop the invariant γ(x) to a minimal value γ(µ). The case γ(µ) 2 is dispatched on II.7.1, II.7.2. The case γ(µ) = 1 is reduced to three different cases II.7.4, II.7.5 or II.7.6. III End of transverseness.

II. 1 . 4

 14 Definition. With notations as above, the directrix VDir(I) of C is the smallest k-vector subspace W of S 1 such that I = (k[W ] ∩ I)S. We also denote IDir(I) := VDir(I)S, PDir(I) := Proj(S/IDir(I)).

  for the definition of j) and I c := {1, 2, 3}\I. Let us denote D := {D ∈ Der k 0 (S) | D(I(E) red ) ⊆ I(E) red }, where Der k 0 (S) = (Ω 1 S/k 0 ) ∨ denotes the S-module of k 0 -derivations of S into itself. We let D(Y ) := {D ∈ D | D(I(Y )) ⊆ I(Y )}. More generally, for every point (not necessarily closed) x ∈ SpecS, we let D(x) := {D ∈ D | D(I(x)) ⊆ I(x)}. If x ∈ X 0 , we also write D(x) for D(x), where η(x) = x.

  and d ord η(x) I, we denote cl d I := Vect({cl d θ} θ∈I ).

  ) has a 3 = 0; if g = 0 and this minimum is achieved by (b 1 , b 2 , b 3 ), then we have b 3 = b 2 = 0.

II. 3 . 4 (

 34 end of the proof of II.3) If τ (x) = 1, as ord η(x) (u 1 φ) = ω(x), we have cl ω(x) J(f, E, x) = k(x).U ω(x) 1

Case 1 :

 1 a(1) + a(2) + ω(x) ≡ 0 modp. The term u ′ 1 a(

  2 and τ (F ′ D ) = 2 if condition (*) does not hold at x ′ . Then κ(x ′ ) = 0 by chapter 2, II.2. Assume now that e * D ∈ D(x ′ ) for each such choice of D. We can pick D ∈ {u 1 ∂ ∂u 1 , u 2 ∂ ∂u 2 }: since ǫ(x) = ω(x), we have F ∂ ∂u 3 = 0, moreover, x ′ being rational over x, we have (with notations as in chapter 1, II.3)

  ) in I.5.1.2 and the proposition follows. I.7 Proposition. Assume that κ(x) = 2, condition (*) holds and (X, u 1 , u 2 , u 3 ) is well prepared. We have κ(x) 1 or the following holds: (i) in cases (*1) and (*2), either U 3 ∈ VDir(x) or (m(x) = 2, B(x) = C(x) = 1, and there exists a r.s.p.

  ′ ) Using lemma I.8.6.2, this completes the proof of (ii) and (iii) in case1. Statement (v) follows from (ii) except possibly if d = p = 2. In this case, we have β(x ′ ) < 1 unless equality holds in (1) above. By (3), β(x ′ ) < 1 except possibly if j 1 = 2, so1+d j 1 d + 1 = 2: a contradiction since 1+d j 1 d

Case 3 : 2 - 1 3 (µ 1 U 1 + µ 2 U 2

 32131122 B3(x) ∈ N and cl µ 0 ,ω(x) J =: k(x).G. We may take G = µ ∂F ∂U 2 , whereF := in µ 0 (H(x) -1 f ) = U ω(x)

Case 3 : 3 . 1 a

 331 in µ 0 (H(x) -1 ∂f ∂u 2 ) = µ 2 U ω(x)Then, in the translation w ′ = u ′ 3 -u ′ s ′ , we get a > B3(x) -1. Let j 1 the smallest j

  5.1 Definition. Assume that x 0 ∈ Σ p and that ω(x 0 ) 1. A Zariski closed subset Y ⊆ Σ p , with generic point y, is a permissible blowing up center if Y is regular at x 0 , η(Y ) has normal crossing with E, and if one of the following conditions holds:

  1 and I.1.2. Namely, by I.3, local uniformization in this special case implies local uniformization whenever κ(x) = 2.

	I.5 Well prepared variables, invariants.

  We perform the dissolution of w in cases (*1) and (*2) (resp. in case (*3)). Let us denote v w := u 3 -ψ w , ψ w := λu w 1 1 u w 2 2 . The basis (du 1 , du 2 , du 3 , dλ 4 , . . . , dλ s )of Ω 1 S/k 0 gets changed to (du 1 , du 2 , dv w , dλ 4 , . . . , dλ s ),

	so H(x) -1 ∂f ∂u 3 = H(x) -1 ∂f ∂v w and, for 1 (u w 1 1 u w 2 2 H(x) -1 ∂f ∂u 3 ).	i	s, H(x) -1 λ i	∂f ∂λ i is unchanged modulo the ideal
	I.6.2 If L is a linear form as above, we have			
	in			

). I.6.1

  α be the largest integer such that U

	By II.5.3.2(i) of chapter 1 applied to the form (U	a p α (1) 1	U	a p α (1) 1 a p α (2) 2 G ′ p α ) U	a p α (2) 2 1 p α ′ , we get G ′ p α ∈ (k(x)[U 1 , U 2 ]) p α ′	.

  with (j 1 = p α and1+d j 1 p α-1 d + 1 ∈ pN) if equality holds, and

		β(x ′ ) sup{	1 p	,	1 + d j 1 j 1	}.
	If x ′ is in case (*3), we get similarly						
		β3(x ′ )	1 + d j 1 j 1 d	+	1 p	-	1 j 1
	and	β3(x ′ ) sup{	1 p	-	1 j 1	,	d j 1 j 1	}.

i d + 1 (resp. e i);(ii) if P = U 3 , then e < p(1 + ⌊ i pd ⌋) (equivalently: for every N ∈ N such that i pd < N , we have e < N p);

ω(x)-j v ′ pj+1 + µ ′ ω(x) (v ′ )v ′ ω(x) mod(u ′ 1 ),

with Φ = 0 (since λ Z ′ = 0) and λ ′ = 0. By lemma II.3.3, we have τ (x ′ ) = 3, so κ(x ′ ) 1 by II. 1.2. Finally,[START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF], ω(x) + 1) ≡ (0, 0) modp, then λ Z ′ = λ is a unit by (c) and we conclude that κ(x ′ ) 1 using II. 1 (resp. II.3.3) as in case 1 (resp. case 2) above.

II.4 Proposition.

Assume that E = div(u 1 ) and H(x)-1f = F (u 2 , u 3 ) + u 1 φ + ψ, where ord η(x) (u 1 φ) = ω(x), F ∈ k(x)[u 2 , u p 3 ] is homogeneous of degree 1 + ω(x) (so F = 0) and ψ ∈ (u 2 , u 3 ) ω(x)+2 . If moreover VDir(cl ω(x) J(F, E)) =< U 2 , U 3 >, [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF] then κ(x) = 0.

Proof. We have ord u 1 (H(x) -1 g p ) > ord η(x) (H(x) -1 f ) and cl ω(x) (u 1 φ) ∈ k(x)[U 1 , U p 2 , U p 3 ], since ǫ(x) = ω(x). As ord η(x) (u 1 φ) = ω(x), U 1 divides cl ω(x) J(f, E, x), so U 1 ∈ VDir(x). As F ∈ k(x)[u 2 , u p 3 ], cl ω(x) J(F, E) = k(x). ∂F ∂U 2 = 0 by [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF]. By the Euler identity, (1 + ω(x))F = U 2 ∂F ∂U 2 = 0, whence 1 + ω(x) ≡ 0 modp. We get F = U 2 F ′ (U 2 , U 3 ), and claim that VDir(F ′ ) =< U 2 , U 3 >. If not, then F ′ ∈ k(x).(λ 2 U 2 +λ 3 U 3 ) ω(x) for some λ 2 , λ 3 ∈ k(x). Since F ′ ∈ k(x)[U 2 , U p 3 ], we would have λ 3 = 0 or ω(x) ≡ 0 modp, which both contradict [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF].

Let e : X ′ → X be the blowing up along x. By II.1.1, a point x ′ ∈ X ′ is very near x only if it maps to the strict transform of div(u 1 ).

We first look at the chart with origin ( 1)+ω(x)-p and there is an expression

with φ ′ , ψ ′ ∈ S ′ , Φ := cl ω(x)-1 φ. We pick local coordinates (u ′ 1 , u ′ 2 , v ′ := P (1, u ′ 3 )) at x ′ , with P ∈ k(x)[U 2 , U 3 ] homogeneous, irreducible and unitary in U 3 .

If P = U 3 , we may have to perform a translation

and there is an expansion

Moreover, we have (a [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF], a(1) + 1 + ω(x)) ≡ (0, 0) modp [START_REF]Resolution of surface singularities[END_REF] since 1 + ω(x) ≡ 0 modp, so the monomial H(x ′ )u ′ 2 is not a p th -power. Hence

By ( 2) and ( 4), we have 2 ).

Note that

F (u 2 , u 3 ).

Similarly,

2 ), and

. By [START_REF]Resolution of surface singularities[END_REF] and the above computations, 2 ). ( 5)

As F = u 2 F ′ (u 2 , u 3 ) and VDir(F ′ ) =< U 2 , U 3 >, we have ord v ′ F (1, u ′ 3 ) ω(x) -1. If x ′ is very near x, we get from [START_REF]Sur le polyèdre caractéristique[END_REF] that

thus ǫ(x ′ ) = ω(x ′ ) and therefore ω(x) -1 ≡ 0 modp. Necessarily ω(x) p + 1, since U p 3 explicitly appears in the form

As ω(x) + 1 ≡ 0 modp, we have p 3. We resume the argument at the beginning of case 2, end of the proof of proposition II.3: equation ( 6) implies that x ′ is rational over x unless possibly if ω(x) 3. But here ω(x) p + 1 4, since p 3.

The argument at the beginning of II.3.2 then shows that, after possibly changing u 3 with u 3 + λu 2 , λ ∈ S invertible, we may assume that x ′ = ( X u 2 , u 1 u 2 , u 2 , u 3 u 2 ) is the origin of the chart (i.e. P = U 3 with notations as above). Hence ∆(h ′ ; u ′ 1 , u ′ 2 , u ′ 3 ; X ′ ) is already minimal and we turn back to equation [START_REF]Desingularization of embedded excellent surfaces[END_REF]: since x ′ is very near x, we have

and II.3.3 gives τ (x ′ ) = 3, so κ(x ′ ) = 0. We finally turn to the point at infinity x ′ = (X ′ = X u 3 , u ′ 1 = X u 3 , u ′ 2 = u 2 u 3 , u ′ 3 = u 3 ). We get

with φ ′ , ψ ′ ∈ S ′ , Φ := cl ω(x)-1 φ. This is the origin of a chart, so ∆(h

)) 1 + ω(x) -p < ω(x), so x ′ is not very near x.

II.5 Proposition. Let (a(1), a(2), a(3)) ∈ N 3 and H := u a(1)

. Let (a, ω) ∈ N 2 satisfy 0 < a < ω and F ∈ k(x)[u 2 , u 3 ] be homogeneous of degree a (so F = 0). We assume that ψ := Hu ω-a

With conventions on derivations as in chapter 1 II.3, we have τ (W ) 2, where

Assume moreover that

Hu ω-a

(ii) If κ(x) = 2, ǫ(x) = 1 + ω(x) and ord η(x) (H(x) -1 g p ) = ǫ(x) (resp. ord η(x) (H(x) -1 g p ) > ǫ(x)), then

VDir(x) := VDir(cl ω(x) J(f, E)) + k(x).U 1 (resp. VDir(x) := VDir(cl ω(x) J(f, E)))

is independent of any choice of the parameters satisfying the conditions in I.1(ii) above.

I.1.2 Definition. Assume that κ(x) = 2. We say that condition (*) holds if there exists a r.s.p.

(u 1 , u 2 , u 3 ) of S (with ∆(h; u 1 , u 2 , u 3 ; X) minimal) such that one of the following conditions is satisfied:

) mod(u 1 , u 2 ); (ii) ǫ(x) = 1 + ω(x) and deg U 3 Φ = ω(x) in I.1(ii). I.2 Proposition. Assume that κ(x) = 2 and condition (*) does not hold. We have κ(x) 1 or the following holds:

(i) ω(x) > p, τ (x) = 2 and U 3 ∈ VDir(x) for a suitable choice of parameters (u 1 , u 2 , u 3 ) satisfying I.1. Moreover, we have ord η(x) (H(x) -1 g p ) > ǫ(x); (ii) there is no permissible curve C containing x.

Let e : X ′ → X be the blowing up along x and x ′ ∈ e -1 (x) be very near x.

(iii) if (E = div(u 1 ) and U 1 ∈ VDir(x)), then ǫ(x) = 1 + ω(x) and VDir(x) =< U 2 , U 3 > for a suitable choice of the parameters satisfying I. 1(ii). We have

u 1 ), κ(x ′ ) = 2, and either condition (*) holds at

, and either condition (*) holds at x ′ or x ′ is in case (iii) above;

, κ(x ′ ) = 2, and either condition (*) holds at x ′ or VDir(x ′ ) ≡< U ′ 1 , U ′ 3 > mod(U ′ 2 ). I.2.1 Proof of (i). If ǫ(x) = 1 + ω(x), then ω(x) p by definition I.1 (ii), and ω(x) = p implies deg U 3 Φ = p, i.e. condition (*) holds. If ǫ(x) = ω(x) p, we have

by definition I.1 (i), say U 3 occurs in the expansion of Φ 0 . Since ǫ(x) = ω(x), we must have ∂Φ 0 ∂U 3 = 0, so deg U 3 Φ 0 p, i.e. we have ω(x) = p and condition (*) holds.

In all cases, we have U 3 + λ 1 U 1 + λ 2 U 2 ∈ VDir(x) for some λ 1 , λ 2 ∈ k(x) (after possibly renaming variables if ǫ(x) = ω(x) and E = div(u 1 )). If ǫ(x) = ω(x) (resp. ǫ(x) = 1 + ω(x)), then cl ω(x) J(f, E, x) (resp. cl ω(x) J(f, E)) is not generated by an ω(x) th -power since condition (*) does not hold by assumption, so τ (x)

2. Therefore τ (x) = 2 if κ(x) > 0. Furthermore, if we are in case I.1(ii), we must have VDir(Φ) =< U 2 , U 3 > since U 3 ∈ VDir(Φ) but deg U 3 Φ < ω(x) by assumption.

If ǫ(x) = ω(x), then after replacing u 3 with v := u 3 + λ 1 u 1 + λ 2 u 2 , then picking Z := X -θ in order to have ∆(h; u 1 , u 2 , v; Z) minimal, we get V ∈ VDir(x). If ǫ(x) = 1 + ω(x) and ord η(x) (H(x) -1 g p ) = ǫ(x), then τ ′ (x) = 3, so κ(x) = 0 by corollary II.1.4 in chapter 2. Therefore ord η(x) (H(x) -1 g p ) > ǫ(x) and the end of the proof goes as in the case ǫ(x) = ω(x). I.2.2 Proof of (ii). If C is permissible of the first kind (for example if ǫ(x) = ω(x), cf. chapter 1 II.5.1), we have cl ǫ(x) (H(x)

By chapter 1 II.5.4.3, there is no point very near x on the blowing up of X along C because τ (x) 2, so κ(x) = 1.

If C is permissible of the second kind (then ǫ(x) = 1 + ω(x), cf. chapter 1 II.5.1), we have

where partial must be w.r.t.

by definition of permissibility of the second kind, so Φ ∈ k(x) [U 3 ]. This proves that condition (*) holds.

I.2.3 Proof of (iii). It can be assumed that VDir(x) =< U 2 , U 3 > after possibly changing coordinates, the assumption being unchanged. By chapter 2, II.2, we have κ(x) = 0 if ǫ(x) = ω(x), so ǫ(x) = 1 + ω(x).

By chapter 1 II.5.4.3,

We have E ′ := (e -1 E) red = div(u ′ 1 ). As we are at the origin of a chart, ∆(u -p

), and we have

1 in this case by chapter 2, II.3. From now on, ord η ′ (x ′ ) (u ′ 1 φ ′ ) 1 + ω(x), so ǫ(x ′ ) = 1 + ω(x). We then have

, so κ(x ′ ) = 2 and VDir(x ′ ) ≡< U ′ 2 , U ′ 3 > mod(U ′ 1 ) as required. I. 2.4 Proof of (iv). By definition of κ(x) = 2, we have ǫ(x) = ω(x). Since VDir(x

) and E ′ := (e -1 E) red = div(u ′ 1 ). Let us denote f = u a(1) 1 u a( 2) 2 (F (u 1 , u 2 , u 3 ) + φ) where F ∈ k(x)[u 1 , u 2 , u 3 ] ω(x) and ord η(x) φ 1 + ω(x). We have F =:

Let Z ′ := X ′ -θ ′ be such that ∆(h ′ ; u ′ 1 , v ′ 2 , u ′ 3 ; Z ′ ) is minimal, and we let f ′ Z ′ = f ′ + θ ′ p -θ ′ g ′ p-1 as usual. We consider two cases:

A vertex w = (w 1 , w 2 ) ∈ N 2 of this polygon is then called solvable if there exists λ ∈ k(x), λ = 0, such that following condition is satisfied:

and if (w 1 , w 2 ) = 1 ω(x)

(ord u 1 (H(x) -1 g p ), ord u 2 (H(x) -1 g p )).

(2) I.5.1.2 Definition. In case (*3), we say that (X, u 1 , u 2 , u 3 ) is well prepared if the following conditions are satisfied: (wp1) ∆(h; u 1 , u 2 , u 3 ; X) is minimal; (wp2) no "left" vertex w = (w 1 , w 2 ) of ∆(H(x) -1 u -1 2 (f, g p ); u 1 , u 2 ; u 3 ) is solvable (definition of this polyhedron, of "left" vertices and of vertex solvability below).

We define N P (u -1 2 I) as follows for an ideal I ⊆ S such that (a) ord x I = ord (u 2 ,u 3 ) (I mod(u 1 )) = ω(x) + 1, and (b) ord u 3 ( ∂φ ∂u 2 mod(u 1 , u 2 )) = ω(x) for some φ ∈ I. The polyhedron N P (u -1 2 I) is the convex hull of

where s =: (s 1 , s 2 , s 3 ) ∈ N × (N ∪ {-1}) × N ranges over all monomials u s 1 1 u s 2 2 u s 3 3 appearing with nonzero coefficient in the expansion of some u -1 2 φ ∈ u -1 2 I with 0 s 3 ω(x) -1 (i.e. we disregard all monomials with s 3 ω(x) distinct from u ω(x) 3

). Then ∆(u -1 2 I; u 1 , u 2 ; u 3 ) is defined to be 1/ω(x) times the projection of N P (I) on the first two coordinates plane from the point (0, 0, ω(x)) as before, thus allowing vertices with negative second coordinate. If w = (w 1 , w 2 ) is a vertex of ∆(u -1 2 I; u 1 , u 2 ; u 3 ), we thus have

Note that, since Φ ∈ k(x)[U 2 , U p 3 ] in definition I. 1 (ii) and condition (*3) holds, (a) and (b) are verified for I = H(x) -1 (f, g p ).

In case (*3) a vertex w = (w 1 , w 2 ) ∈ N × N is then called solvable if there exists λ ∈ k(x), λ = 0, such that following conditions are satisfied:

and (w 1 , w 2 ) = 1 ω(x) (ord u 1 (H(x) -1 g p ), -1).

(2)

A "left" vertex is a vertex w such that there exists a linear form L ∈ (R 2 ) ∨ , L(w 1 , w 2 ) = mw 1 +nw 2 , (m, n ∈ Q + and m > n) with {w} = ∆(H(x) -1 u -1 2 (f, g p ); u 1 , u 2 ; u 3 ) ∩ {v | L(v) = 1}.

All other vertices are called "right" vertices. We have

for each "left" vertex w, since ǫ(x) = 1 + ω(x) and L(1, 0) > L(0, 1) for linear forms as in the definition of "left" vertices. Actually, the left hand side of ( 5) is a i U ω(x) 3

for some a i ∈ k(x) if the "left" vertex w is distinct from [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF]0). However for "right" vertices, we emphasize the following fact: we only have in w (H(x) -1 u -1

For example, assume F := cl 1+ω(x) (H(x) -1 f ) has an expansion

(aU 1 + bU 2 + cU 3 ) + {terms of smaller degree in U 3 }, with a = 0. Then for any "right" vertex, we have

+ {terms of smaller degree in u 3 }, with a i = 0, b i ∈ k(x) for some i, 1 i s. Fortunately, only left vertices are important w.r.t. the invariants that we define now. A similar fact occurs when x is in case (*1), although right vertices are better behaved in this case.

I.5.2 Notations and invariants. We define the resolution invariants in cases (*1) and (*2) (resp. (*3)) from the polygon ∆(H(x) -1 (f, g p ); u 1 , u 2 ; u 3 ) (resp. ∆(H(x) -1 (f, g p ); u 1 , u 2 ; u 3 )), once well prepared coordinates have been chosen.

I.5.2.1 Definition. In cases (*1) and (*2), let us denote

,

,

, where ord u 2 denotes the natural valuation of the discrete valuation ring k

Note that

and that

We will denote those vertices w = (w 1 , w 2 ) of ∆(H(x) -1 (f, g p ); u 1 , u 2 ; u 3 ) with x 1 + x 2 = B by (α 2 , β 2 ) and (α 3 , β 3 ) with α 2 α 3 . We point out that, if x is in case (*1),

Before blowing-up

Definition. In case (*3), let us denote

, 

Note that

and that

We will denote those vertices w

2 (f, g p ); u 1 , u 2 ; u 3 ) if and only if w 1 α3 2 . We point out the following implications, if x is in case (*3):

so U i 0 ∈ VDir(x): a contradiction. Hence C(x) = B(x) = 1. Then we replace u 3 by v := u 3 + au 2 and get VDir(x) =< V, U 1 +bU 2 >. The r.s.p. (Z, u 1 , u 2 , v) is obtained after applying the algorithm I.6. The same argument as above shows that B(x) and C(x) are unchanged.

for some a ∈ k(x), a = 0. In particular B3(x) = 1. The vertex (α3 2 , β3 2 ) (defined at the end of I.5.2.2) of the initial face of ∆(H(x) -1 u -1 2 (f, g p ); u 1 , u 2 ; u 3 ) is unsolvable by definition of wellpreparedness and has 0 < α3 2 1 by assumption. Suppose that α3 2 = 1. Then

. This is impossible, since (1, 0) is not solvable.

We have proved that 0 α3 2 < 1. Then we replace u 3 by v := u 3 +au 1 , the r.s.p. (Z, u 1 , u 2 , v) being obtained after applying the algorithm I.6. We get

Note that theorem I.8 proves local uniformization when κ(x) = 2. By I.3, it can be assumed that condition (*) holds. By I.6, there exists then a well prepared r.s.p. (X, u 1 , u 2 , u 3 ) of R. We maintain these assumptions up to the end of this chapter. The proof needs long computations. We start by an easy lemma. I.8.1 Lemma. If β(x) = 0, then κ(x) 1. In particular, theorem I.8 holds when γ(x) = 0. Proof. We have ǫ

p where C := V (X, u 1 , u 3 ). By chapter 1 II.4.7, C is an analytic branch of an algebraic curve on X. On the other hand, we have

x is in case (*1) or (*2), C is thus permissible of the first kind. By I.7(i), we have

The conclusion follows by descending induction on A 1 (x).

If ǫ(x) = 1 + ω(x), i.e. x is in case (*3), then there appears in the expansion of H

i.e. C is permissible of the second kind. Let e : X ′ → X be the blowing up along C. We have VDir(cl

and there is an expansion

where γ ′ is a unit and ord

We conclude by descending induction on A 1 (x). The last statement in the lemma follows from equation (1) in I.5.2.2.

Lemma I.8.1 settles cases (*1) and (*3) when γ(x) = 0. Therefore from now on, we assume that γ(x) 1. We now control the behavior of γ(x) by blowing up a closed point. and: H(x) -1 f =:

ψ j , where ψ j = 0 or ψ j is not divisible by u 1 , nor by u 2 if x is in case (*2). As usual, we take a j (2) = 0 and ψ j = 0 or ψ j is not divisible by u 1 if x is in case (*1). I.8.2.1 Definition. For 1 j ω(x) such that φ j = 0, we denote

The following lemma is obvious from the definitions. I.8.2.2 Lemma. We have

I.8.2.3 Definition. Let µ 0 be the monomial valuation on S given by

We denote by cl µ 0 ,ω(x) J the k(x)-vector space in µ 0 J, where J is the ideal

By definition of B(x) and well-preparedness, we have dim k(x) (cl µ 0 ,ω(x) J) x) .

1, and for every

Let e : X ′ → X be the blowing up along x. We call "first chart" the chart with origin ( (a) κ(x ′ ) = 2 and x ′ maps to the strict transform of div(u 3 ) except possibly if (m(x) = 2 and

and all properties below are satisfied:

be such that cl µ 0 ,ω(x) J = k(x).G and define

)), then: if p 3, we have β3(x ′ ) < 1 and x ′ is not rational over x; if p = 2, we have β3(x ′ ) 3 2 , and if equality holds, then (a(1) ≡ 0 mod2, x ′ is rational over x and the monomial

appears with nonzero coefficient in the expansion of

2 ), in which case equality holds only if the monomial

Proof. We assume all along the proof that x ′ is very near x. The last statement in (a) is a direct consequence of I.7(i). If (m(x) = 2 and B(x) = C(x) = 1), we apply I.7(i) and replace (X, u 1 , u 2 , u 3 ) with (Z, u 1 , u 2 , v). All computations will henceforth be performed with the variables (Z,

where 2) .

Assume that

) is well prepared. Looking at the figure below after blowing up and comparing with that in I.5.2.1, the reader sees that

This proves (b) and the corresponding part of (a) and (d).

After blowing up, origin of the first chart

We assume from now on that

p -1. Hence κ(x ′ ) = 2 and x ′ is in case (*1). Since µ ′ 1 (0) = 0 and ω(x) ≡ 0 modp, there exists a vertex

This is the special case announced in the statement of (e), where "Dis" stands for "Disaster" (change of directrix).

If

the first equality since B(x) = 1, so µ 0 = ord η(x) (definition I.8.2.3). Therefore we get

.

Explicitly, we have (up to multiplication by a constant)

where µ 1 = φ 0 . Now, (2) leads to

and ϕ ′ ∈ S ′ , so we get by identification with (3)

Now note that, since (X, u 1 , u 2 , u 3 ) is well prepared, G is not a scalar multiple of an ω(x) thpower.

If [START_REF]Resolution of surface singularities[END_REF]. By ( 3) and ( 4), (0, 1) is an unsolvable vertex of ∆(H

, it is easily seen along the following lines that κ(x ′ ) = 0: we have U ′ 1 ∈ VDir(x ′ ); by ( 3) and ( 4), every

Furthermore, by II. 5.3.2(ii) of chapter 1,

and this completes the proof of (vi) when x ′ is in case (*1).

Assume that x ′ is in case (*3). Then G ′ ∈ in µ 1 (H(x ′ ) -1 ∂f ′ ∂v ′ ). The proof runs along the same lines as above, with β(x ′ ) replaced by β3(x ′ ). The worst upper bound we can get is

The remaining statements are proved along the same lines as in I. 8.3.4 or I.8.3.5. I.8.3.7 Proof of (vii). We include this statement here to deal with some extra difficulty when p = 2 (see I.11.1 below). If x ′ is not rational over x, i.e. d 2, the result follows from (iii)-(vi). From now on, x ′ is rational over x. We have

). So we have p = 2, a(1) ≡ 0 mod2 and φ0 ∈ k(x) 2 .

In cases (iii)-(v) above, we get β3(x ′ ) 1. In case (vi), we get β3(x ′ ) 1 + 1 p = 3 2 . With notations as in the end of the proof of (vi), β3(x ′ ) = 3 2 implies that the monomial

appears with nonzero coefficient in the expansion of H(x ′ ) -1 ∂f ′ Z ′ ∂v ′ . Necessarily, j 1 ≡ 0 mod4. I. 8.3.8 Proof of (viii). Assume that γ(x) 2 and d 2. By (e) and (iii)-(vi), γ(x ′ ) < γ(x) except possibly if (d = 2, γ(x) = 2, β(x) = C(x) = 2 and x is in case (*1)). In this case, we only get β(x ′ ) < 2 if x ′ is in case (*1). If x ′ is in case (*3), then we only get β3(x ′ ) 1 + 1 p 3 2 . Equality implies p = 2, the end of the proof of I.8.3.6 giving the required statement. I.8.3.9 Proof of (ix). This follows from (e).

We now deal with when x is in case (*3). I.8.4 Notations. Assume that κ(x) = 2, x is in case (*3) and (X, u 1 , u 2 , u 3 ) is well prepared. We denote:

] for 1 j ω(x) and ∂ψ 0 ∂u 2 invertible. We let a j (1) := ord u 1 ψ j jA 1 (x) for 1 j ω(x). I.8.5 Lemma. With assumptions and notations of I.8.4, assume furthermore that B3(x) A 1 (x). Then κ(x) 1.

Proof. We argue by induction on ⌊A 1 (x)⌋. If A 1 (x)

1, then we have

The first step of the induction ⌊A 1 (x)⌋ = 1 is performed in (i) of the next lemma for 1 < A 1 (x) < 2 (which yields κ(x) = 1, since 1 B3(x ′ ) = B3(x) -1 if κ(x) > 1) and in (ii) of the next lemma for A 1 (x) = 1. The induction step is performed in (i) of the next lemma, and thus completes the proof. I.8.6 Lemma. With assumptions and notations of I.8.4, assume furthermore that A 1 (x) 1. The curve C = V (X, u 1 , u 3 ) is permissible of the second kind. Let e : X ′ → X be the blowing up along C. There is at most one point x ′ ∈ e -1 (x) very near x, with r.s.p. ( X u 1 , u 1 , u 2 , u 3 u 1 ). Moreover, (i) if A 1 (x) > 1, then κ(x) 1 or the following holds: κ(x ′ ) = 2, x ′ is in case (*3), and we have

) mod(u 1 ) so C = {y ∈ η -1 (E) | ω(y) > 0}. By II.4.7 of chapter 1, C is a curve on X. Therefore C is permissible of the second kind by chapter 1, II. 5.1(ii).

By II.5.4.4 of chapter 1, we have κ(x)

) ∈ e -1 (x) and assume that x ′ is very near x. We have 1)+ω(x)-p . This is the origin of a chart, so

with

] for 1 j ω(x) and ∂u 2 φ 0 ∂u 2 invertible. First assume that B3(x) < 2 (in particular 1

, then Ω(x ′ ) (ω(x), 1): a contradiction, since x ′ is very near x. By ( 2), there appears in H(x ′ ) -1 f ′ some term of the form u ′

, where 1 j ω(x) and either ord

). In the former case, note that ω(x)

, so κ(x) 1 by chapter 2, II.1. In the latter case, note that ω(x) -j + jβ3(x) < ω(x) -j ω(x) < ω(x) by assumption. Since x ′ is very near x, we have ǫ(x ′ ) = ω(x) and j < ω(x) whenever ord u 2 φ(0, u 2 ) = jβ3(x). So there is an expression

with µ j ∈ k(x) and µ j = 0 for some j. Hence VDir(x ′ ) ≡< U 2 , U ′ 3 > mod(U ′ 1 ) and κ(x ′ ) 1 by II.2 of chapter 2.

Assume now that B3(x) 2 (in particular A 1 (x) > 1). Then ǫ(x ′ ) = 1 + ω(x) and it is easily seen from ( 2) that x ′ is in case (*3). Moreover, (X ′ , u ′ 1 , u 2 , u ′ 3 ) remains well prepared since we are at the origin of a chart. We get A 1 (x ′ ) = A 1 (x) -1, B3(x ′ ) = B3(x) -1 and β3(x ′ ) = β3(x). This concludes the proof.

We now turn to the general case B3(x) > A 1 (x). With assumptions and notations of I.8.4, we define the analogues of I.8.2 when x is in case (*3).

2 Ψ j 0 and d j 0 := degΨ j 0 -1 ∈ N ∪ {-1}. We also denote

The definition of J 0 and d j 0 for j 0 ∈ J 0 is motivated by the following obvious fact, where only preparation of "left" vertices is needed (definition I.5.1.2): I.8.6.2 Lemma. We have

and

I.8.6.3 Definition. Let µ 0 be the monomial valuation on u -1 2 S given by

We denote by cl µ 0 ,ω(x) J the k(x)-vector space U -1 2 in µ 0 J, where J is the ideal

By definition B3(x) and well-preparedness, we have dim k(x) (cl µ 0 ,ω(x) J) 1, and for every λ ∈ k(x), we have cl µ 0 ,ω(x) J = k(x).(U 3 -λU x) .

Let e : X ′ → X be the blowing up along x. We call "first chart" the chart with origin (

. Let E ′ := (e -1 (x)) red = div(u ′ 1 ). For x ′ ∈ e -1 (x) in the first chart, we pick P (u 1 , u 2 ) homogeneous of degree d 1, irreducible and unitary in u 2 such that v 

and x ′ is rational over x. We have A 1 (x ′ ) = 0 and γ(x ′ ) sup{γ(x), 2}. If (γ(x) = 1 and γ(x ′ ) = 2), then x ′ is in case (*1) and either β(x ′ ) < 2, or (p = ω(x) = 2 and x ′ satisfies equation (Dis) in I.8.3(e)); (b') if B3(x) > 1, then the point x ′ maps to the strict transform of div(u 3 ) (in particular,

;

From now on, we assume that either B3(x) > 1 or (B3(x) = 1 and x ′ is in case (*3)). The following holds: (d) we have γ(x ′ ) γ(x);

More precisely, the following holds:

We assume all along the proof that x ′ is very near x. If κ(x) > 1, x ′ maps to the strict transform of div(u 3 ) unless possibly if B3(x) = 1 by I. 7(ii). In this case, without loss of generality, it can be assumed that (u 1 , u 2 , u 3 ) is the r.s.p. (u 1 , u 2 , v) given in I.7(ii), since B3(u 1 , u 2 , v) = 1, β3(u 1 , u 2 , v) = β3(u 1 , u 2 , u 3 ) and the vertex (α3 2 (x), β3 2 (x)) is unaffected by this coordinate change.

I.8.7.1 We first prove the theorem when B3(x) = 1. In particular, U 3 ∈ VDir(cl ω(x) (H(x) -1 ∂f ∂u 2 )) by the previous comments. Note that cases 1 and 2 below are unaffected by the above coordinate change. Also note that ω(

2 (f, g p ); u 1 , u 2 ; u 3 ), so A 1 (x) = 0, β3(x) = 1 and γ(x) = 2. After possibly changing u 2 to u 2 + au 1 , a ∈ k(x) and picking again well prepared coordinates, it can be assumed that

all assumptions remaining unchanged. Since x is in case (*3) and VDir(x) =< U 2 , U 3 >, we have

Since x ′ is very near x, we have

with notations as in I.8.6.1. Note that ω(x ′ ) ǫ(x ′ ) ω(x) -p unless we have

which we assume from now on. Remember that by assumption, we have VDir(

This yields to the following subcases: Case 1a:

1 by ( 2) and II.3 of chapter 2. we have ǫ(x ′ ) = 1 + ω(x), so x ′ is again in case (*3). Note that (0, 1) is an unsolvable vertex of ∆

where W is picked in such a way that < V, W >=< U 2 , U 3 >. Note that µ = 0, and that µ ∈ k(x) p (resp.

Since VDir( ∂F ∂U 2 , ∂F ∂U 3 ) = VDir( ∂F ′ ∂V , ∂F ′ ∂W ) =< V, W >, there exists j 0 p -1 such that µ j 0 = 0. Equation ( 2) then reads

where µ and F ′ 1 are defined in [START_REF]Forme normale d'une fonction sur un k-schéma de dimension 3 and de caractéristique positive[END_REF]. In particular, x ′ is in case (*1). After picking well prepared coor-

Case 2: 

) has an unsolvable vertex of the form (α3 2 , β3 2 ), where 0 α3 2 < 1 and α3 2 + β3 2 = 1. Note that we now have

First assume that α3 2 = 0. This implies that VDir(x) ≡< U 2 , U 3 > mod(U 1 ), A 1 (x) = 0, β3(x) = 1 and γ(x) = 2. After possibly changing u 2 to u 2 + au 1 , a ∈ k(x) and picking again well 91 prepared coordinates, it can be assumed that VDir(x) =< U 3 , U 2 >, all assumptions remaining unchanged. Since x ′ is very near x, we have

The proof now runs parallel to that of case 1; to begin with, we have

, since x ′ is very near x. Now, we split case 3 into case 3a (F 1 = 0) and case 3b (F 1 = 0), and have the same conclusion as in cases 1a and 1b.

Assume now that α3 2 > 0. We now have

Since x ′ is very near x and belongs to the first chart, we have

where

for some j 0, since B3(x) = 1 and α3 2 < 1. Moreover, we have either a( 1)

Note that VDir(x) = k(x).U 3 . By chapter 1, II.5.3.2(iv), x ′ is rational over x since it is very near x. After possibly changing u 2 to u 2 + au 1 , a ∈ k(x) and picking again well prepared coordinates, it can be assumed that

where

Assume finally that VDir(J(U

where µ = 0 and µ ∈ k(x) p (resp.

In all cases, we have γ(x ′ ) 2. Suppose that (γ(x) = 1 and γ(x ′ ) = 2). The above analysis shows that we are in the situation of the previous paragraph, with β3(x) = 1 -1 ω(x) , and the conclusion follows. Otherwise, we may assume that x ′ is in case (*3) (cases 1a and 3a above) and (ii) holds, so all statements have been proved when B3(x) = 1. I.8.7.2 From now on, we assume that B3(x) > 1. We have

, with µ 2 = 0. In particular VDir(x) = k(x).U 3 and the first part of (b') is proved. 8.7.3 Proof of (c). Assume that (a) and the second part of (b') have been proved

)) and is not solvable by definition. By I.8.1 (resp. I.8.5), we get κ(x) 1. 8.7.4 From now on, B3(x) > 1 andord η(x) (H(x) -1 g p ) > 1 + B3(x)ω(x). According to I.8.4 andI.8.6.1, let us denote h 

I.

where 1)+ω(x)+1-p , and 8.7.5 We first consider the origin

In this case, the module

where

M , where

Since x ′ is very near x, we have ǫ(x ′ ) ǫ(x) -1. We consider three cases:

) is a r.s.p. of S ′ and there is an expression

for some j 0 ∈ J 0 . This concludes the proof of I.8.7 when x ′ is the origin of the first chart.

There remains to prove (a), the second statement in (b') and all statements from (d) on. Note that (d) is a direct consequence of (i), (ii) and (iii) and I.8.6.2. The proof will be parallel to that of I.8.3 (iii)-(vi).

Recall equation ( 1) in I.8.7.4. Note that

where

) p and either a(1) + 1 ≡ 0 modp or µ 0), we have similarly

This ends the proof of (a).

This completes the proof of (b') and (i) from which all other statements in the theorem easily follow in the case J 0 ⊂ pN (with γ(x ′ ) < γ(x) in (iv)). I.8.7.8 Proof when J 0 ⊂ pN. We prove together (b'), (ii), (iii) and (v). We consider three cases, exactly like in the proof of I. 8.3, see I.8.3.4, I.8.3.5 and I.8.3.6.

near x and does not belong to the first chart, then

With hypotheses and notations as in I.8.2, we have κ(x) 1 or all following statements hold:

) has only two vertices: w ′ 1 and w ′ 2 , which are the ends of its initial side

Proof. We have

with notations as in

All statements before (i) have been proved. This is visualized in the following figure.

$\alpha_2(x)$

After blowing-up

and this proves (i).

Proof of (ii). By assumption, β(x) > 1, so 1 + ⌊ β(x) 2 ⌋ ⌈β(x)⌉, and equality holds only if β(x) = 2. The statement follows from (i) and ( 2), where

Proof of (iii). This is a consequence of I. 8.3 (b) by symmetry on u 1 andu 2 . When x is in case (*3) and κ(x) > 1, we have U 3 ∈ VDir(x) unless we are in the special case specified in I. 7(ii). But then we can replace the r.s.p. (X, u 1 ,u 2 ,u 3 ) by (Z,u 1 ,u 2 ,v) of loc.cit. (where v ≡ u 3 mod(u 1 )) and get V ∈ VDir(x). In other terms, we may assume without loss of generality in the lemma below that, if x ′ ∈ e -1 (x) does not belong to the first chart, then

I.8.9 Lemma. Assume that x in case and the center of µ in X ′ is the point

With hypotheses and notations as in I.8.4, we have κ(x) 1 or all following statements hold:

with notations as in

) is well prepared (it is only used here that no "left" vertex of the former polygon is solvable). The vertex with smaller first (resp. sec-

(

We have κ(x)

otherwise by ( 2), from which γ(x ′ ) γ(x) immediately follows. This proves all statements before (i). For all remaining statements, it can be assumed that

I.8.9.1 Proof of (i). This is an obvious consequence of ( 2) above. I.8.9.2 Proof of (ii). We have 0

I.8.9.3 Proof of (iii). Assume that γ(x ′ ) = 2, i.e. 1 C(x ′ ) < 2. In particular we must have β3 2 (x) < 0 by the above argument. We discuss according to x ′′ . If x ′′ does not belong to the first chart, equation ( 2) in the proof of I.8.8 gives

We have

Similarly, if x ′′ is the origin of the first chart, we have by symmetry on u 1 and u 2 :

Finally, let x ′′ belong to the first chart and be distinct from the origin. First note that

Consistently with I.8.2.1 and (1) above, we denote

We claim that for all j ∈ J ′ 0 ,

Namely, if d ′ j > 0, there exist two monomials

Then 2(d ′ j -j) < -b which proves ( 1), since b -1. We apply I.8.3 to the well-prepared r.s.p.

Assume from now on that x ′′ is in case (*3). By I.8.3(iii)-(vi), we have β3(x ′′ ) 1 unless x ′ is in case I. 8.3(vi) by [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF]. If x ′ is in case I. 8.3(vi), an explicit computation gives 8.3(vi). We claim that C(G ′ ) < 1, which implies γ(x ′′ ) = 1 by I. 8.3(vi).

prove the claim, let (a 1 , b 1 ) and (a 2 , b 2 ), a 1 a 2 , be those two vertices of the polygon ∆(H(x) -1 ∂f ∂u

. By definition and with notations as in I. 8.3(vi), C(G ′ ) = a 2 -a 1 . We do similar computations as in the above claim (d ′ j j) w.r.t. f ′ 2 . This time, no division by u 2 occurs in the computation and we get

We now turn to proving that κ(x) 1 in some cases when γ(x) = 1.

I.9 Theorem. Assume that κ(x) = 2, condition (*) holds and (X, u 1 , u 2 , u 3 ) is well prepared. We have κ(x) 1 provided one of the following conditions is satisfied:

), then C is permissible of the second kind by I.8.6, which also reduces theorem I.9 to 0 < A 1 (x) < 1, β3(x) being unchanged. If x is in case (*1) or (*2), then similarly C is permissible of the first kind and we get reduced to 0 A 1 (x) < 1, β(x) being unchanged (see argument in the beginning of the proof of I.8.1).

If (A 1 (x) = 0 and x is in case (*1)), then β(x) = 1, so we have VDir(x) ≡< U 2 , U 3 > mod(U 1 ), whence κ(x) = 0 by chapter 2, II.2. In particular, it can actually be assumed that 0 < A 1 (x) < 1 as in case (*3). Finally if x is in case (*2), it can be assumed that 0 A 2 (x) < 1 by symmetry on u 1 and u 2 . Moreover, (A

or (x ′ is in case (*1) or (*3), 0 < A 1 (x ′ ) < 1 and x ′ satisfies the assumptions of I.9). In the former case, note that β(x ′ ) = A 2 (x ′ ) < 1. Hence in every case, x ′ verifies (a) and (b) above, so κ(x) 1 and the proof is complete.

We now prove that κ(x) 1 in some special cases when (x is in case (*1) and γ(x) = 2).

I.10 Theorem. Assume that κ(x) = 2, x is in case (*1) and (X, u 1 , u 2 , u 3 ) is well prepared. We have κ(x) 1 provided one of the following conditions is satisfied:

(ii) x is a "disaster" (as specified in I.8.3(e)), i.e. (ω(x) = p = 2 and

with µ 1 µ 2 ∈ S invertible and ord η(x) ϕ 1).

Proof of (i). Let e : X ′ → X be the blowing up along x and x ′ be the center of µ in X ′ . If x ′ does not belong to the first chart, then κ(x) 1 by I.8.8(i) and I.9(i). If x ′ is not rational over x, then β(x ′ ) < 1 by I.8.3(ix), so κ(x) 1 by I.9(i) or I.9(ii) (using equation ( 1), proof of I.9, if x ′ is in case (*3)).

If x ′ is rational over x and belongs to the first chart, then x ′ verifies assumption I.10(i) by I. 8.3(b), (c) and (e), so we iterate the process. An argument already used several times -e.g. in the proof of I.9 above, after equation ( 1)-shows that either κ(x) 1, or there exists some

Proof of (ii). We have A 1 (x) = 0 and β(x) = 2. By I.7, U 3 ∈ VDir(x). Let e : X ′ → X be the blowing up along x and x ′ be the center of µ in X ′ .

If x ′ does not belong to the first chart, then ω(x ′ ) = 1 by (Dis), so κ(x) = 0 in this case. In particular, if ord η(x) (u 1 ϕ) = 2, we have < U 1 , U 3 >⊆ VDir(x), so κ(x) = 0. From now on, we assume that ord η(x) (u 1 ϕ) 3 and x ′ belongs to the first chart.

Suppose that x ′ is not the origin of the first chart. If x ′ is in case (*1), then x ′ satisfies I.10(i) except possibly if C(x) = 2 and x ′ is rational over x by I. 8.3(e). But C(x) = B(x) = 2 in this case, so cl 2 ϕ ∈ k(x)[U 1 , U 2 ] 2 and we get ω(x ′ ) = 1 from (Dis). If x ′ is in case (*3), then x ′ is inseparable over x by I.8.3(c); then I.8.3(e) yields β(x ′ ) < 1 (so β3(x ′ ) < 1 -1 ω(x) and κ(x) 1 by I.9(ii))

2 and we also get ω(x ′ ) = 1 from (Dis).

From now on, x ′ is the origin of the first chart. In particular, (X ′ :=

) is well prepared and x ′ is in case (*1) if it is very near x. We get

2 , which we assume now. We have β(x ′ ) = 1, so κ(x)

, which we also assume from now on. Then the curve

) is permissible of the first kind and we perform the blowing up e ′ :

3 , so we need only consider the case when x ′′ is the origin of the first chart. If ω(x ′′ ) = 2, then tracing back to X, we had

) is well prepared and

2 , so κ(x ′′ ) 1 by (i). Finally, if Φ 2 = 0, x ′′ satisfies again the assumptions of (ii).

The conclusion now follows as in the proof of (i): either κ(x) 1, or the curve

be the quadratic sequence along µ, i.e. X n is the blowing up along the center x n-1 of µ in X n-1 for n 0. We assume that κ(x) = 2, κ(x) > 1 and derive a contradiction. By I.8.3, I.8.7, I.8.8 and I.8.9, we have γ(x n ) γ(x n-1 ) for each n 1 unless we are in the special case specified in I.8.7(b): x n-1 is in case (*3) with γ(x n-1 ) = 2, and x n satisfies the assumptions of I.10. By I.10, this is a contradiction since κ(x n ) 1 in this case. Therefore there exists n 0 1 such that γ(x n ) = γ(x n-1 ) for n n 0 . Let γ(µ) be this limit value of γ(x n ). Without loss of generality, it can be assumed that n 0 = 0.

First assume that γ(µ) = 1. By I.9, we are done unless x n is in case (*3) for all n 0. Since β3(x n ) < 1 for each n 0, we have

1 by I.9(ii) unless β(x n ) = 1 for all n 0. By I.8.7(v), x n is rational over x n-1 for all n 1. Therefore there exists some formal curve C = V ( X, u 2 , u 3 ) contained in Σ p (X): a contradiction since C ⊂ E.

Assume that γ(µ) 3. By I.8.8(ii) and I.8.9(i), (ii), x n always belong to the first chart of the blowing up along x n-1 provided m(x n ) = 1 for some n 1. Then x n is rational over x n-1 for all n 1 by I. 8.3(viii) and I.8.7(b), (iv). We conclude as in the case γ(µ) = 1 unless x n is in case (*2) for all n 0. By standard arguments, we then get C(x n ) = 0 for n >> 0, a contradiction, since γ(µ) = 3.

Assume from now on that γ(µ) = 2. The argument of the previous paragraph settles the case when x n is in case (*2) for all n >> 0, or when (x n is rational over x n-1 and m(x n ) = 1) for all n >> 0. From now on, there exists infinitely many values of n 1 such that (m(x n-1 ) = 1 and either m(x n ) = 2 or x n is not rational over x n-1 ).

We first sum up some of the conclusions of I.8.3, I.8.7 and I.10; since κ(x) > 1, the following holds when x n is not rational over

2 . The situation we want to reduce to is that in the lemma below. The argument is somewhat more involved when p = 2, due to the characteristic two version of I. 8.3(vii), I.8.7(iv) and (a), (b) above.

I.11.1 Lemma. Assume that κ(x) > 1, x is in case (*1) with β(x) = 2 and x 1 is in case (*2). Then p = 2 and x 2 satisfies the assumptions of I.11.2 below.

Proof. By I.8.8(ii), we have κ(x) 1 unless x 1 has C(x 1 ) = 1 and x 2 is in case (*1) or (*3). By I.8.3(e), we have β(x 2 ) < 2 if x 2 is in case (*1): a contradiction by I.10(i). Note that x 1 then satisfies all assumptions in I. 8.3(vii) from which the conclusion follows.

I.11.2 Lemma. Assume that κ(x) > 1 and x is in case (*3) with either β3(x) < 3 2 , or (p = 2, β3(x) = 3 2 and the monomial u 3 ω(x)-j 1 u 1

appears with nonzero coefficient in the expansion of H(x) -1 u 2 ∂f ∂u 2 for some j 1 , 1 j 1 ω(x), j 1 ≡ 0 mod4, and (X, u 1 , u 2 , u 3 ) is wellprepared).

Let x ′ := x 1 be the center of µ in the blowing up X ′ := X 1 along x. Exactly one of the following properties holds:

satisfies again the assumptions of I.11.2; β(x ′ ) β(x) and equality is strict if x ′ is not rational over x.

Proof. Recall the definition of J 0 in I.8.6.1 and lemma I.8.6.2. Remark that β3(x)

Note that equality possibly holds only if (j 0 = 1 and β3(x) = 1): if j 0 3, then

1 by I.8.7(iv) and I.10(i) if x ′ is in case (*1): a contradiction.

Suppose finally that J 0 ⊂ pN and x ′ is in case (*3). Then β(x ′ ) 3 2 by I.8.7(ii), so β3(x ′ ) < 3 2 . By I.8.7(ii) and I.8.6.2, we have

I.11.2.2 Assume that x ′ is in case (*2). By I.8.9(i), (iii) and I.10(i), we have κ(x) 1 unless possibly (x ′′ is in case (*3) and β3(x ′′ ) = 1), where x ′′ is the center of µ in the blowing up

This holds only if equality d ′ j = degΨ ′ j = j holds for some j ∈ J ′ 0 in I.8.9.3 [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF]. Since β3(x) 3 2 , (2

The comments right after (1) above discard the value [START_REF]Desingularization of embedded excellent surfaces[END_REF][START_REF]Resolution of surface singularities[END_REF] in the above list, so we had β3(x) = 1:a contradiction by I.8.9(i), since γ(x ′ ) = γ(µ) = 2.

I.11.2.3 Assume that x ′ is in case (*1). By I.8.7(ii), we have β(x ′ ) < 2 (so κ(x) 1 by I.10(i)) unless equality holds in (1) above (so 1 8.7.1, I.8.7.8 and I.8.7.9). Necessarily, we have j 1 ≡ mod4, since p = 2 in this case.

Let x ′ := x 1 be the center of µ in the blowing up X ′ := X 1 along x. Then x ′ is rational over x and satisfies again the assumptions of I.11.3.

Proof. We have C(x) β(x) = 2. With notations as in I.8.2.1, we have C(x) < 2 or (C(x) = 2 and 1 ∈ J 0 ).

If x ′ is again in case (*1), then x ′ satisfies equation (Dis) or β(x ′ ) < 2 whenever C(x) < 2 by I. 8.3(e). Otherwise 1 ∈ J 0 , so β(x ′ ) 2 by I.8.3(iii) and x ′ satisfies again the assumption of the lemma if equality holds (in which case x ′ is rational over x). The conclusion follows from I.10.

If x ′ is in case (*2), then β(x) = 2 and x ′ satisfies the conclusion of I. 8.8(ii). In particular, C(x ′ ) = 1. Let x ′′ be the center of µ in the blowing up X ′′ := X 2 → X ′ of X ′ along x ′ . The conclusion of I.8.8(ii) implies the following: if x ′′ is in case (*2), we have C(x ′′ ) = 0; if x ′′ is in case (*1) or (*3), then x ′ satisfies the assumption in I. 8.3(iii) whose conclusion gives γ(x ′′ ) = 1 or x ′′ satisfies equation (Dis) (so κ(x) 1 by I.10(ii)). In all cases, this contradicts the assumption γ(µ) = 2.

If x ′ is in case (*3), then x ′ is inseparable over x by I. 8.3(c). Then β3(x ′ ) < 1 by I. 8.3(iii), once again a contradiction, since γ(µ) = 2.

We can now conclude the proof of theorem I.8: I.11.4 Recall equations (a) and (b) above and reminder right before them of the assumption on µ: there exists infinitely many values of n 1 such that (m(x n-1 ) = 1 and either m(x n ) = 2 or x n is not rational over x n-1 ). I.11.4.1 First assume that m(x n ) = 1 for every n 0. Pick n 2 > 0 such that x n 2 is not rational over x n 2 -1 . By I. 8.3(viii) or I.8.7(iv) and I.10(i), x n 2 satisfies the assumptions of I.11.2. I.11.4.2 Assume that for some n 1 > 0, x n 1 -1 is in case (*1) and x n 1 is in case (*2). Then κ(x) 1 by I.10(i) unless possibly if β(x n 1 -1 ) = 2, i.e. x n 1 -1 satisfies the assumption of I.11.1. The conclusion of I.11.2 produces some integer n 2 := n 1 + 1 such that x n 2 the assumptions of I.11.2. I.11.4.3 Assume finally that for some n 1 > 0, x n 1 -1 is in case (*3) and x n 1 is in case (*2). By I.8.9(iii) and I.10, we have κ(x) 1 or x n 2 satisfies the assumptions of I.11.2, where n 2 := n 1 + 1. I.11.4.4 If κ(x) > 1, the conclusion of I.11.2 either produces some integer n 3 > n 2 such that x n 3 satisfies the assumptions of I.11.3, or states that x n satisfies the assumptions of I.11.2 for all n n 2 .

In the former case, x n satisfies the assumptions of I.11.3 (in particular x n is in case (*1)) and x n+1 is rational over x n for all n n 3 : this contradicts the assumption on µ.

II Resolution of the case κ(x) = 3.

We will solve this case by a sequence of permissible and non-permissible blowing ups.

II.1 Notations

We are interested in the case where for a suitable r.s.p. (X, u 1 , u 2 , u 3 ) with div(u 1 ) ⊆ E ⊆ div(u 1 u 2 ), 1 + ω(x) = 0 mod (p) and ∆(h; u 1 , u 2 , u 3 ; X) minimal:

) mod (u 1 , u 3 ). Let us note that we may have ǫ(x) = 1+ω(x) or ǫ(x) = ω(x). We do not assume that u 1 , u 2 , u 3 are in S: we may take them in S. We will always assume that

.

(1) This can be made this way: let s the smallest vertex for the order (| |, lex) where ( 1

. This translation on u 3 does not modify in s ′ (H(x) -1 f ) and in s ′ ( ∂H(x) -1 f ∂u 3

) =in s ′ ( ∂H(x) -1 f ∂v ) for s ′ = s vertex of ∆(H(x) -1 (f, g p ); u 1 , u 2 ; u 3 ). Either s is dissolved, or we get (1) for s. The polyhedra ∆(h; u 1 , u 2 , v 1 ; X) may be not minimal, if not, we make a translation over X, we get a new variable

and f becomes f 1 . We have the inclusions ∆(H(x) -1 (f 1 , g p ); u 1 , u 2 ; v 1 ) ⊆ ∆(H(x) -1 (f, g p ); u 1 , u 2 ; v 1 ) ⊆ ∆(H(x) -1 (f, g p ); u 1 , u 2 ; u 3 ), this translation will not spoil the in s ′ (H(x) -1 f ) for s ′ < s, may add a p-power to in s (H(x) -1 f ), so will not spoil in s ( ∂H(x) -1 f ∂v ) = aV ω(x) . Either we get (1) for (u 1 , u 2 ; v 1 ), or we go on with a new vertex strictly greater than s. We will get v and X as limits in S and in S[X]. Note that, in an extreme case, it may happen that there is a r.s.p. such that f = H(x)γv 1+ω(x) , which implies condition [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF]. Now, we mimic chapter 2 and we set

,

,

We note γ(x) = γ(u 1 , u 2 , u 3 ) for short.

II.1.1 Definition

We say that κ(x) = 3 if, for a suitable r.s.p. (X, u 1 , u 2 , u 3 ) with div(u 1 ) ⊆ E ⊆div(u 1 u 2 ), 1 + ω(x) = 0 mod (p) and ∆(h; u 1 , u 2 , u 3 ; X) minimal:

) mod (u 1 , u 3 ).

Proof. In that case the ideal of the directrix of

) and that these initial forms are not = φ0 W ω(x) (else II( 1) is not true for (X;

From now on A 1 = 0 and, by symetry,

) is not proportional to an ω(x)-power, (W, U 2 ) ⊆IDir(x) mod U 1 , τ ′ (x) = 3: contradiction. So b = 0, then V ∈IDir(x) + (U 1 ) =: W (x). Or ord x (H(x) -1 g p ) > ǫ(x), then we make a translation over X, so that Y = X -θ and ∆(h; u 1 , u 2 ; w) is minimal. Let us denote:

The reader sees that, if ab = 0, then the polyhedra ∆( ∂H(x) -1 f ∂w ; u 1 , u 2 ; w) has two non solvable vertices (1, 0) and (0, 1), so we have II.1(1) for (Y ; u 1 , u 2 , w) and cd = 0. If a = 0, b = 0, the polyhedra ∆( ∂H(x) -1 f ∂w ; u 1 , u 2 ; w) has (0, 1) for unique vertex of its initial side, this vertex is not solvable, to get (1), we have to modify Y and w, but we will not modify in x ( ∂H(x) -1 f ∂w ) nor in x (w). we get the assertion.

), γ invertible and ord x (u 1 u 2 φ) = ω(x). Then κ(x) = 0.

Proof. Indeed, ω(x) =ord x (u 1 u 2 φ) 2. Blow up x, the only possible very near point has for parameters

As we are at the origin of a chart, there is no translation to do,

II.2.1 Proof of (i): case where ǫ(x) = ω(x). Either A 1 A 2 > 0, then by II.1.4, κ(x) = 0. Or (with an eventual permutation on u 1 , u 2 ) A 2 = 0:

) ω(x), indeed, there is equality.

.

, v is the only point above which may be very near to x, an easy computation show that 1 ω(x ′ ), we are done except if ω(x) = 1. In this last case, we get 1)-p . Then by chapter 2 II.5(i), the cl a 1 +a 2 +1+a(1)+1-p (D(u

are not all proportional: U 1 and V are in the directrix of x ′ . The curve of ideal (X ′ , v ′ , u 1 ) is permissible, it is the preimage of x, so it is not a formal curve. We blow up this curve: there is no very near point above. If a(1) + ω(x) < p, we claim κ(x) 1, let us first state:

Proof. Blow up x, any x ′ very near to x is on the strict transform of div(u 1 ), x ′ is at the origin of a chart and the pair of exponents (a ′ , b ′ ) becomes (a ′ + b ′ -ω(x), b ′ ) or (a ′ , a ′ + b ′ -ω(x)), an induction on a ′ + b ′ gives the result.

Proof. By induction on a [START_REF]Desingularization of embedded excellent surfaces[END_REF].

is the only point which may be very near to x,

, a(2) + a(1) + ω(x) -p < a(2): we get the result by induction on a(2).

When i < ω(x), we blow up x. Every point very near to x is on the strict transform of div(u 1 ). In the chart of origin (

.

When i ω(x) -2, the origin is the only point possibly very near to x, a(2) + a(1) + ω(x) -p < a(2): we get the result by induction on a [START_REF]Desingularization of embedded excellent surfaces[END_REF].

When i = ω(x) -1, at the origin we are in the case above, so κ( x) . If we blow up Y ′ , there is no very near point.

The last point we have to study is (

) and the reader sees that there is no point very near to x ′ : κ(x ′ ) = 1. II.2.2 Proof of II.2(ii). By II.2.1, we have just to look at the case where ǫ(x) = 1 + ω(x). In that case or there exists i 0 ,

Condition (1) in I.1 and ǫ(x) = 1 + ω(x) imply that V is in the ideal of the directrix of x. If we blow-up x, the reader will see that only the origins of the two possible charts, i.e. the points of parameters

). An induction on A 1 + A 2 and (i) give the result.

2 and, if there is equality, ∆(H(x) -1 f +H(x) -1 g p ; u 1 , u 2 ; v) has only two vertices

Proof of (iii).

We are at the origin of a chart, there is no translation to do, etc. As φ 0 is invertible and 1+ω(x) = 0 mod (p), no translation can spoil the initial form of H(x ′ )φ 0 v 1+ω(x) : κ(x ′ ) = 3. The transformations on the polyhedras are now well known,

2 ) (smallest ordinate). If ∆(H(x) -1 (f, g p ); u 1 , u 2 ; v) had another vertex, it would be under the side of ends (A 1 (x), β(x)) and ( A

2 ) which have both 2A 1 (x) + β(x) for sum of coordinates: we would get

2 .

II.3.2 First chart

The first chart has for origin the point of parameters (X,

Either there is some index i 0 with

(case (b)). When x ′ is the origin of the chart, there is no translation to do, (i)(ii)(iii)(iv)(vi) are clear. When x ′ is not the origin, u ′ 2 (x ′ ) = 0, we may have to do some translations on X, v to get (1) in x ′ for the new parameters. In case (a), we take i 0 minimal. In case (b), nothing happens to g, β(x ′ )

As the chart we consider contains all the points x ′ above x with m(x ′ ) = 1, (i)(ii)(iii)(iv)(vi) are proven in case (b). In case (a) and not (b), let

for every i 0 ∈ I 0 , 1 + ω(x) -i 0 = 0 mod (p), to get II.1(1) in x ′ , the eventual translation on v will change

, this translation will not touch

for all i 0 , the eventual translation on X ′ will add a p-power.

, and, by chapter 1, II.5.3.2(iii), β(x ′ )

where d is the degree of the residual extension. When β(x) > 1, i 0 β(x) > i 0 which implies

In that last case, I claim that κ(x ′ ) 1: indeed ω(x) = 0 mod (p),

) is the only possible very near point and u ′ 1 a(1) v ω(x) w mod u ′ 1 is the strict transform of f ′ : κ(y) 2, in every case, κ(x ′ ) 1.

If for some i 0 ∈ I 0 , 1 + ω(x) -i 0 = 0 mod (p), then an eventual translation on v ′ will spoil

which is the initial part of H(x ′ ) -1 ∂f ′ ∂v ′ with respect to the valuation ν which defines

Then by the usual transformation laws on the Newton polyhedron

, where d is the degree of the extension of the residual fields of x and x ′ , and, if

. The reader will use the definition of γ to see that this inequality proves (i)(ii)(iii)(vi) in case (a). Proof of (vii). When 0 < C(x) < 1 2 , (b), β(x ′ ) = 0. When 0 < C(x) < 1 2 , case (a) and f ′ 1 = 0, by the computations above, β(x ′ )

, case (a) and f ′ 1 = 0, then, by the computations above, we have just to consider the case 1 + ω(x) -i 0 = 0 mod (p) and then,

2 , as f ′ 1 = 0, to get the condition II.1(i), the translation on v ′ will be w = v ′ + u ′ 1 a φ with φ ∈ S ′ and a 1 + B(x), so will

II.4 Theorem Let x ∈ Σ p with κ(x) = 3, (X, u 1 , u 2 , v) a r.s.p. veryfying II.1(1), v ∈ S and possibly

2 ), then κ(x) 1. Proof. When m(x) = 1, then as β < 1, we suppose ǫ(x) = 1 + ω(x), else κ(x) = 2, furthermore a(1) + 1 + ω(x) p: by a sequence of blowing ups centered at (X, u 1 , v), we reach the case where

When 0 < A 1 (X) < 1 and 1 + ω(x) = ǫ(x), then we blow up x: by II.1.2 V ∈IDir(x), for first chart, we get

), when m(x) = 1, the computations are exactly the same as in II. 3(iv)

1, if C(x) = 0, we blow up x, the computations are exactly the same as in II.3(vii):

2 < 1 2 . An induction on (A 1 (x), β(x)) gives the result. II.5 Corollary Let x ∈ Σ p with κ(x) = 3, (X, u 1 , u 2 , v) a r.s.p. veryfying [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF] and m(x) = 1 and ∆(H(x) -1 (f, g p ); u 1 , u 2 ; v) has only two vertices (A 1 , 1) and (A 1 + 1 2 , 0), then κ(x) 1. Proof. We make an induction on A 1 .

II.5.1

If A 1 1, then, V(X, v, u 1 ) =div(u 1 ) ∩ {ω 1}: its an algebraic curve permissible of first kind. We blow up this curve, as V ∈ W (x), there is at most one very near point x ′ which has

for parameters. Of course, we are at the origin of a chart, there is no translation to do, ∆(H(x ′ ) -1 (f ′ , g ′ p ); u ′ 1 , u ′ 2 ; v ′ ) is ∆(H(x) -1 (f, g p ); u 1 , u 2 ; v) translated horizontally of -1. Of course, the monomial H(x ′ )φ 0 v ′ 1+ω(x) occurs in the expansion of f ′ , if Ω(x ′ ) = Ω(x), then κ(x ′ ) = 3. So we have just to start the induction. From now on, A 1 (x) < 1.

, we have κ(x) = 2 except maybe in the case where the monomial in H(x) -1 f or H(x) -1 g p which defines the vertex (

. In that case, ∆(H(x) -1 (f, g p ); u 1 , u 2 ; v) has two vertices ( ω(x)-1 2(1+ω(x)) , 1) and ( ω(x) 1+ω(x) , 0). So in the expansion of

) is permissible of first kind, it is div(u 1 ) ∩ {ω 1}, we blow it up, U 1 ∈IDir(x), there is at most one very near point and we get

Or ω(x) 2, then we blow up x, U 1 ∈IDir(x) and, because of v 1+ω(x) , there is at most one very near point x ′ which has for parameters (

. We are at the origin of a chart, etc.... the monomial v

+1 occurs in the expansion of H(x ′ ) -1 f ′ . A computation shows that i ω(x)-1 2(1+ω(x)) + i ω(x)-1 2(1+ω(x)) + 1 the sum of the exponents of u ′ 1 and u ′ 2 is < i + 1 so is i.

2(1+ω(x)) + i ω(x)-1 2(1+ω(x)) + 1 = ω(x), we have

. We remark that, as the exponent i ω(x)-1 2(1+ω(x)) = ω(x)-1 2 is integer, ω(x) = 2, so ω(x) 3. We blow up x ′ , the only possible very near point y has for parameters

is integer, ω(x) 5. We blow up x ′ , as U ′ 1 is in its directrix and, because of the monomial φ 0 v ′ 1+ω(x) u ′ 2 , the only possible very near point y has for parameters

1 v 2 : a quick computation shows that ω(x) 5 implies that the sum of the exponents is ω(x), at worse Ω(y) = Ω(x) and κ(y) = 2. End of the case A 1 < 1 2 .

II.5.3

We blow up x. As 1 + ω(x) = 0 mod (p), the monomial H(x ′ )φ 0 v 1+ω(x) cannot be destroyed by a translation on X ′ : Ω(x ′ ) Ω(x), if equality, κ(x ′ ) = 3.

II.5.4

Let us look at the first chart of origin the point (

, there is no very near point in this chart.

From now on, we are in case (a). For i with b i + c i + d i = iB (notations of II.3.1), as the initial side of ∆(H(x) -1 f ; u 1 , u 2 ; v) has only (A 1 + 1 2 , 0) for vertex:

As i(A 1 + 1 2 ) is an exponent in the expansion of H(x) -1 f , it is an integer, say

Then, the sum of the exponents

If there is some i > 1 with b 1)+ω(x)+1-p γv ′ ω(x) of ( 1). Either ω(x) = 0 mod (p) or a(1) + 1 = 0 mod (p), then this monomial cannot be spoilt by any translation on X ′ , and ω(x ′ ) ω(x) if ω(x) = 0 mod (p), at worse Ω(x ′ ) = Ω(x) and κ(x ′ ) = 2 if a(1) + 1 = 0 mod (p). Or ω(x) = 0 mod (p) and a( 1) + 1 = 0 mod (p): this implies that γ ∈ k(x) is not a p-power: if x ′ is rational over x, the monomial cannot be spoilt by any translation on X ′ , we conclude as above. Or by a translation, this monomial becomes u ′ 1 a(1)+ω(x)+1-p v ′ ω(x) w where w ∈ k(x)[u ′ 2 ] is a parameter at x ′ , then, after translation, as there is no other possibility for i, f ′ becomes

by chapter 2 II.1, we have at worse Ω(x ′ ) = Ω(x) and κ(x ′ ) = 2.

). We call y the point we consider in this chart: y is assumed to be very near to x. If y is the origin, then by the usual transformation laws,

From now on, v 2 (y) = 0. As 1 + ω(x) = 0 mod (p), the initial form of H(y)φ 0 v 1+ω(x) will not be spoilt by any translation on Y : κ(y) 3. In the expansion of

By II.4, κ(x) 1. Finally, we have to look at the origin of the second chart above x ′ . Then C(y

Proof. Let us recall that, by II.2, if ǫ(x) = ω(x), or (A 1 < 1 and A 2 < 1) κ(x) 1. So, we suppose:

, then ord x (H(x)f ) p, so a( 1)a( 2) > 0: E =div(u 1 u 2 ). So u 1 and u 2 play the same role. As C(x) = 0, we have A i > 0 for some i = 1, 2, by II. 1.2,V ∈IDir(x). Let us blow up x. in the first chart of origin ( 2), C(x ′ ) = 0: an induction on a(1) + a( 2) gives the result. By symetry, it is the same thing in the second chart.

is the only point which may be very near to x, if it is, then κ

where Y =V(X, v, u 2 ) ⊆ E: this contradicts the cleaning condition of chapter 1, this case is impossible. II.6.3 Case 1 + ω(x) < p and there exists i ∈ {1, 2} such that a(i) + ω(x) + 1 p. Then a(i) > 0, so div(u i ) ⊆ E. We make a descending induction on

we blow up V(X, u i , v). If both i = 1 and i = 2 verifies (1), we choose i with

is the only point which may be very near to x. The reader sees that κ(

where n becomes 1.

II.6.3.2

The remaining case. Then for all i ∈ {1, 2} such that a(i) + ω(x) + 1 p, A i < 1 and there exists such an i. So div(u i ) ⊆ E, mutatis mutandis, i = 1. Then, A 2 1 and a(2) + ω(x) + 1 < p. I say that E = div(u 1 u 2 ).

Suppose E = div(u 1 ). If g = 0, then, as A 2

1, ǫ(V(X, u 2 , v)) ω(x) + 1, (X, u 2 , v) ⊃ J(f, E), this contradicts the cleaning condition of chapter 1. If g = 0, then H(x) -1 g p = γu a 1 , a ∈ N, so A 2 = 0 which contradicts A 2 1. We blow up x, let us look at the first chat of origin the point of parameters (

is the origin, then the reader sees that (cf.

II.7 End of the story

We make an infinite sequence of blowing-ups X i ← X i+1 of (u 1 , u 2 ) for a suitable choice of parameters verifying [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF]. Let x i ∈ X i , the centers of the valuation µ we are uniformizing. We are going to prove that there exists some i such that κ(x i ) 2. That will end the case κ(x) = 3. By II.3(i), for i >> 0, γ(x i ) = γ(x i+n ), n > 0. Let us call γ(µ) this value (which depends of µ and of choices among the possible u 1 , u 2 ).

If, for all i, β(x i ) > 0, then the sequence A 1 (x i ) ∈ 1 (1+ω(x))! N strictly increases, but, as g p = u a 1 in x i , and that u 1 belongs to the choosen parameters of x i+1 ,

, this is impossible for i >> 0. Or g = 0. Either for all i there exists j i such that x j+1 is not rational over x j , then, by II.3.2, we reach the case where β(x n ) < 1 for some n, by II.4, κ(x n )

1. Or x i+1 is rational over x i for i >> 0. As in the corresponding case of κ(x) = 2, there exists

The proof runs along the same lines. So let us choose (X, u 1 , v, u 3 ) as r.s.p. of x n 0 , let us make a well preparation: we get (Y, u 1 , v, w) as new well prepared r.s.p.. Then, in the sequence of the first line of II.7, we stay on the strict transform of v, the parameters at x n 0 +i are (Y, u 1 , v u i 1 , w) and as we are at the origin of the first chart in all the blowing ups, (Y, u 1 , v u i 1 , w) is well prepared, so, for i >> 0, C(x i ) = 0, by II.6, κ(x i ) 1. II.7.1. II.7.3 (ii) γ(µ) = 1, m(x i ) = 2 for i >> 0. We are always at the origin of a chart, so, as seen many times, for i >> 0, C(x i ) = 0, by II.6, κ(x i ) 1. II. 7.3 (iii) 

2 ), then by II.5, κ(x i+j ) 1. If not, then by II.3 (iii), C(x i+j ) < 1 2 . Go to II. 7.3 (iii).

III End of transverseness.

We conclude the analysis of those cases of transverseness where cl ω(x) J(f, E) is not contained in the ideal ({U i | div(u i ) ⊆ E}). This is formalized in definition III.2 below. Now that the main cases κ(x) = 2 and κ(x) = 3 have been dealt with, reduction to κ(x) 3 (propositions III.5 and III. 6) is based on the following lemma which is an extension of proposition II.1 of chapter 2.

, where λ ∈ k(x), λ = 0 and ord u 3 (ψ mod(u 1 , u 2 )) = ω(x). There exists a sequence of permissible blowingups, X =:

, which we assume from now on. We then have VDir(x) ⊆< U 1 , U 2 >, VDir(x) = k(x).U 2 . We have κ(x)

1 if ω(x) = 1 by II.1(iv) of chapter 2, so assume that ω(x) 2. Let e : X ′ → X be the blowing up along x and x ′ ∈ e -1 (x) be very near x.

We first consider the case when

. We are at the origin of a chart, so ∆(h

In the expansion of ) -1 f ′ , there appears the monomial u ′ 2 u ′ 3 with nonzero coefficient. Since x ′ is very near x, we have ω(x) = 2 and there is an expression

where λλ 3 = 0. By lemma II.1.5 in chapter 2, we have τ (x ′ ) = 3, so κ(x) = 0. We now discuss according to VDir(x) and consider three cases.

)), where P ∈ k(x)[u 2 , u 3 ] is homogeneous and unitary in u 3 . We have ord

by assumption, so

, where P ∈ k(x)[u 2 , u 3 ] is homogeneous and unitary in u 3 . Moreover, we have ord η

we have an expression of the form

where either λ ′ or ∂λ ′ ∂w ′ is a unit and ord

) is not a p th -power, since ∆(h; u 1 , u 2 , u 3 ; X) is minimal. We apply theorem II. 5.3.2(iii) and (iv) of chapter 1 to the form U

with equality only if x ′ is rational over x. Note that κ(

. There remains to study the equality case in [START_REF]Desingularization of embedded excellent surfaces[END_REF]. Since x ′ is rational over x, λ ′ is a unit in this case. After possibly performing a linear change of coordinates w := u 3 + µu 2 , followed by a translation Z := X -θ in order to get ∆(h; u 1 , u 2 , w; Z) minimal, it can be assumed that x ′ is the origin of the chart, the assumptions in the lemma remaining unchanged. Then ∆(h ′ ; u ′ 1 , u ′ 2 , w ′ ; X ′ ) is minimal and x ′ satisfies the assumption of the lemma, i.e. we can iterate the argument. Let

< ∞, the center x n of µ in X n is either not very near x, or has κ(x n ) = 2, or is in case 1 or 2 above for some n > 0 and the conclusion follows.

III.2 Definition. We say that κ

III.3 Definition. Assume that κ(x) = 4. We say that x is good if there exists a sequence of permissible blowing-ups, X =:

We do not suppose κ(x i ) 4 for 1 i < n.

III.4 Definition. Assume that κ(x) = 4. We let

III.5 Proposition. Assume that κ(x) = 4 and τ (x) = 2. Then x is good.

Proof. Since τ (x) = 2, we have E = div(u 1 ). Let F j := cl ω(x) (H(x) -1 ∂f ∂u j ), for j = 2, 3.

, then after possibly relabelling (u 2 , u 3 ), we may assume that

, we have κ(x) = 3. Otherwise, since τ (x) = 2, we have

for some α, µ 2 ∈ k(x), µ 2 = 0. Once again, κ(x) = 3 if α = 0, so assume that α = 0. Since τ (x) = 2, we have

whence ω(x) ≡ 0 modp and this proves that κ(x) = 2.

. Thus it can be assumed that VDir(x) = k(x).U 1 , so Ψ = λu ω(x) 1

for some λ ∈ k(x), λ = 0. Since τ (x) = 2, we have κ(x) = 3 as in III.5.

for some µ 2 ∈ k(x), µ 2 = 0, and ω(x) ≡ 0 modp, which we assume from now on. Note that the monomial

necessarily appears with nonzero coefficient in the expansion of Ψ 1 . Let e : X ′ → X be the blowing up along x and x ′ ∈ e -1 (x) be very near x. Since VDir(x) = k(x).U 1 , x ′ maps to the strict transform of div(u 1 ).

We first look at the point x ′ with coordinates (

We now consider the case where x ′ is in the chart with origin (

where

We pick P ∈ k(x)[u 2 , u 3 ] homogeneous and unitary in u 3 such that

where µ, ν ∈ k(x ′ ), µ = 0, and

If x ′ is rational over x, then after changing u 3 into v := u 3 +µu 2 for some µ ∈ k(x), followed by a translation on Z := X -θ in order to get ∆(h; u 1 , u 2 , v; Z) minimal, it can be assumed that x ′ is the origin of the chart, the assumption in the proposition being unchanged. Then ∆(h

Since the monomial U 2 U ω(x) 3

appears with nonzero coefficient in the expansion of Ψ 1 , x ′ satisfies the assumption of lemma III.1 and the conclusion follows.

III.6 Proposition. Assume that κ(x) = 4 and τ (x) = 3. Then x is good.

We assume from now on that E = div(u 1 ).

Let e : X ′ → X be the blowing up along x and x ′ ∈ e -1 (x) be very near x. Since VDir(x) = k(x).U 1 , x ′ maps to the strict transform of div(u 1 ). By symmetry, it can be assumed that

where

)). After possibly performing a translation

since ord η(x) g p > ord η(x) f . By (1), we have

where γ ′ is a unit, since x ′ is very near x.

If ω(x) = 1, ( 2) and ( 3)

On the other hand, we have

where

and that no point of the blowing up of X ′ along Y ′ is very near x ′ , so x is good by II.5.4.2 (ii) of chapter 1.
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In this last case, one contradicts the assumption that x ′ is very near x as in the proof of III.

where µ, ν ∈ k(x ′ ), µ = 0, and

]]) p . Hence x ′ satisfies the assumption of lemma III.1 and the conclusion follows if x ′ is not rational over x.

Assume now that x ′ is rational over x. After performing a linear change of coordinates on (u 2 , u 3 ), followed by a translation Z := X -θ in order to get ∆(h; u 1 , u 2 , u 3 ; Z) minimal, it can be assumed that x ′ is the origin of the chart, equation ( 1) remaining valid. Then ∆(h

It can be assumed that cl

, since otherwise κ(x) = 2. By ( 2) and ( 3) above, we then have

so in particular ω(x) ≡ 0 modp and x ′ satisfies the assumption of lemma III.1, from which the conclusion follows.

III.6.2 If ǫ(x) = 1 + ω(x), then, after possibly performing a linear change of coordinates on (u 2 , u 3 ) and a translation Z = X -θ in order to get ∆(h; u 1 , u 2 , u 3 ; Z) minimal, it can be assumed that < U 2 , U 3 >⊆ VDir(x), since τ (x) = 3. We are done if τ (x) = 3, so assume that VDir(x) =< U 2 , U 3 >.

Let e : X ′ → X be the blowing up along x and x ′ ∈ e -1 (x) be very near x.

and we have E ′ := (e -1 E) red = div(u ′ 1 ). This is the origin of a chart, so ∆(h

), we are done by III.6.1. Otherwise, we have ǫ(x ′ ) = 1 + ω(x ′ ) and τ (x ′ ) = 3, so we may iterate. Let

CHAPTER 4: Resolution when there is tangency

In all this chapter, we assume that x ∈ Σ p , Ω(x) = (ω(x), 2) and that the r.s.p. (X, u 1 , u 2 , u 3 ) of R is such that E ⊆ div(u 1 u 2 u 3 ) and the polyhedron ∆(h; u 1 , u 2 , u 3 ; X) is minimal.

This case is very closed to κ(x) = 2, the invariants are the same, up to a permutation on the indices of (u 1 , u 2 , u 3 ) and the fact that u 1 which, for κ(x) = 4, plays the role of u 3 for κ(x) = 2 may divide H(x) -1 g p . There is a fantastic simplification: div(u 1 ) has maximal contact for κ(x) = 5. This assertion will be precised in I.3.

I.1 Definition of κ(x) = 5. We say that κ(x) = 5 if Ω(x) = (ω(x), 2) and div(u 1 ) ⊂ E and there is a derivation

As usual, assume that κ(x) = 5. We say that x is good if there exists a sequence of permissible blowing-ups, X =:

such that either x n is not very near x or (Ω(x) = Ω(x n ) and κ(x n ) 4), where x n ∈ X n is the center of µ.

We do not suppose κ(x i ) 5 for 1 i < n.

There are three different subcases: case (*1):

When m(x) 2 (cases 1,3), we suppose E ⊂div(u 1 u 2 ). In all cases, H(x

φ 0 mod (u 2 , u 3 ) with φ 0 ∈ S. In the first and second cases, φ 0 is invertible. In case 3, D(φ 0 ) invertible, we choose the indices so that E ⊂div(u 1 u 2 ):

We make the following expansion:

where

)-1 i , 1 i ω(x)}. In every case, we call i 1 or i 1 (x) the smallest i, 1 i ω(x), such that the monomial

I.2.3

In cases (*1)(*2) (resp. (*3)), the vertices of the side of points x = (x 2 , x 3 ) of ∆(H(x) -1 (f, g p ); u 2 , u 3 ; u 1 ) (resp. ∆(H(x) -1 u -1 2 (f, g p ); u 2 , u 3 ; u 1 )) of equation x 2 + x 3 = B (resp. x 2 + x 3 = B3) are denoted (α 2 , β 2 ) and (α 3 , β 3 ) , α 2 α 3 (resp. (α3 2 , β3 2 ) and (α3 3 , β3 3 ), α3 2 α3 3 ).

Obviously, C, A j , i 0 , B and β depend on the choice of prepared r.s.p. (X, u 1 , u 2 , u 3 ), if there is no possible confusion, we write

I.3 Theorem Assume κ(x) = 5 and κ(x) > 4. We blow up the origin, then all x ′ above x with κ(x ′ ) 5 are on the strict transform of div(u 1 ).

Furthermore, x is good or, for all these x ′ , κ(x ′ ) = 5, and we have I.2 for some r.s.p. at x ′ of the form

P homogeneous and irreducible. Moreover, if x is in case (*1) or (*2) and (a(1) + ω(x) = 0 mod (p) or a(2) + a(3) = 0 mod (p) or (x in case (*1) and x ′ separable over x)), then x ′ is in case (*1) or (*2).

Proof. Assume x ′ is very near x is not on the strict transform of div(u 1 ), then u

where X/u i , v, w, u i is a r.s.p. at x ′ and v transverse to E ′ : then κ(x ′ ) 4. From now on, x ′ is on the strict transform of div(u 1 ).

I.3.1 Case (*1) or (*2).

There is no problem at the origin of each chart. So we look at a point x ′ in the chart of origin

. After a possible translation on X/u 2 , we get, with usual notations:

we get the result. Else, we have

When λ i = 0, for i > 0, we have κ(x ′ ) 1 by chapter 2 II.1. From now on, we suppose that one λ i = 0, for i > 0. Then, for some , c(i [START_REF]Resolution of surface singularities[END_REF]. After an eventual translation on X/u i which becomes X ′ = X/u i + θ, we get, with usual notations:

We look only at the case i = 2, j = 3, the origin of the second chart is left to the reader. As above, we reach the case

x ′ rational over x. As E ⊂div(u 1 u 2 ),

, λ 0 invertible, λ i ∈ S ′ , λ ′ , λ i invertible or = 0, if λ i = 0 for i > 0, we get κ(x ′ ) 1 by chapter 2 II.1. Else, if some λ i = 0 for i > 0, we want to prove that we have κ(x ′ ) 4. We suppose κ(x

. We look first at the case where x ′′ is in the chart of origin (

x), γ invertible. We get, after an possible translation on X ′′ to minimalize the characteristic polyhedra of u ′ 1 -p h ′ :

As x ′′ is very near to x, ord x ′′ (H(x ′′ ) -1 g ′′ ) 1 + ω(x). When ord x ′′ (H(x ′′ ) -1 g ′′ ) = 1 + ω(x), the reader sees that κ(x ′′ ) 1. From now on, ord x ′′ (H(x ′′ ) -1 g ′′ ) > 1 + ω(x), so the possible translation on X ′′ to minimalize the characteristic polyhedra of u ′ 1 -p h ′ just adds p-powers modulo

where d is the degree of the residual extension, we get e 1 + c 1 + ω(x) d . If all are equal, then in x ′ (

) is equal, up to a multiplication by an invertible, to a power of an irreducible homogeneous polynomial of k

d , e ω(x). So when ord x ′′ (u 2 φ ′′ ) = ω(x), we get κ(x ′′ ) 2 by chapter 2, II.1.

Let us look at the case where x ′′ is not rational over x, ord x ′′ (u 2 φ ′′ ) = ω(x) + 1. Then e < 1 + ω(x) d and x ′′ very near to x lead to e = 0modp, ω(x ′′ ) = 1, e = 0 or 1. In both cases

, λ invertible, by chapter 2, II.1, κ(x ′ ) 1, a contradiction. At the origin of the other chart, we denote

with ψ ∈ S ′′ , ord x ′′ (ψ) = ω(x) -1, so V 3 ∈VDir(x ′′ ), the reader will see that (x ′′ ) = 3 and will end the proof. of the last assertion. Assume x is in Case (*1) or (* 2) and (a(1) + ω(x) = 0 mod (p) or a(2) + a(3) = 0 mod (p) or (x in case (*1) and x ′ separable over x)).

The last assertion is clear when x ′ is the origin of a chart. Else, x ′ is in the chart of origin

+ ω(x) = 0 mod (p) or a(2) + a(3) = 0 mod (p), this monomial will not be spoilt by any translation on X ′ , else, φ0 is not a p th -power in k(x), if x is in case (*1) and x ′ is separable over x, a(3) = 0, again, no translation will touch this monomial.

I.3.3 Theorem

Let us suppose κ(x) = 5, div(u 1 u 2 ) ⊂ E, x not good and A 2 (x) 1.

In addition, we suppose A 2 (x) > 1 or β(x) 1 if x is in case (*3). Then V(X, u 1 , u 2 ) is permissible. We blow it up.

Then the point

is the only point above x which may be very near to x with κ(

We have

, for some D ∈ D, D(M) ⊂ M in cases (*1)(*2). We have just to look at the chart where u 1 generates the exceptional divisor: u

The remaining case is when U 1 ∈IDir(x). The only point x ′ we have to look at has

for parameters. We are at the origin of a chart, etc. The only difficult case is when x is in case (*3) and ǫ(x ′ ) = ω(x) and x ′ very near to x. Then in

, by chapter 2 II.1, we are done: this ends the case A 2 > 1. If A 2 = 1 and β(x) = 1, then in the expansion of φ, there is the monomial u

The end of the proof is clear.

I.4 Theorem

With hypotheses and notations of I.2, assume x is in case (*1) or (*2). We blow-up x and x ′ is a closed point of the first chart.

From now on, u ′ 3 (x ′ ) = 0, we have

and, if x is in case (*1),

If x ′ is not rational over x and γ(x) 2, then γ(x ′ ) < γ(x), except in the following case: m(x) 2, β(x) = 2 where we get β(x ′ ) < 2 and, if x ′ is in case (*3), β3(x ′ ) = 1, p = 2, a(1) + ω(x) = 0 mod (p) and i 1 (x ′ ) = 0 mod (p) (notations of I.2.3).

Proof.

If u ′ 3 (x ′ ) = 0, we are at the origin of the chart, there is no translation to do all the assertions are easy consequences of the transformation laws on the polyhedra. From now on:

Let us prove ( 1) and ( 2). Let µ 0 the monomial valuation given by µ 0 (u

is the initial form of H(x ′ ) -1 f ′ with respect to monomial valuation given by µ

If µ 0 (H(x) -1 g p ) > ω(x) or ord u 1 (H(x) -1 g p ) ω(x), then we call

When we may start the minimization of ∆(h ′ ; u ′ 1 , u ′ 2 , v; X ′ ) with the cleaning of the vertex with µ 1 minimal and first coordinate minimal, we add a p th -power to 1)+a( 2)+a( 3)+ω(x)-p u ′

in general. Either β(x ′ ) < e(i 0 )

i 0

and we get all our assertions or β(x ′ ) = e(i 0 ) i 0 and, if e(i 0 ) = deg(F i 0 )+c(i 0 ) d + 1, by the following remark, a(1) + ω(x) -i 0 (x ′ ) = 0 mod (p). Let us remark that, if there exists i such that F i = 0 and a(1) + ω(x) -i = 0 mod (p), then

will not be spoilt by a translation on X ′ and we get β(

d . This gives A 2 (x ′ ) = B(x) -1 and all the assertions in the case where (a(1) + ω(x) -i 0 = 0 mod (p) or a(2) + a(3) + i 0 B(x)0 = 0 mod (p)). The other assertions are clear except may be the case γ(x) = 2 = β(x), x in case (*1). By [START_REF]Sur le polyèdre caractéristique[END_REF], we get γ(x ′ ) = 1 when d 3.

From now on d = 2 = β(x), a(1) + ω(x) -i 0 = 0 mod (p), a(2) + i 0 B(x) = 0 mod (p).

Then either ∂u c(i 0 ) 3

, as e(i 0 ) ∈ N, we get e(i 0 ) i 0 , we are done. Or ∂u c(i 0 ) 3

we get e(i 0 ) i 0 , else x ′ is inseparable over x, p = d = 2, e(i 0 ) i 0 + 1 and, in case equality, i 0 + 1 = 0 mod (2), etc. The reader ends the proof.

Let us remark that, if we blow up x and that C(x) = 0, A 2 (x) < 1 and

which has order < ω(x) or u ′ 1 ω(x)-i 0 u ′ 2 i 0 (B(x)-1) γ i 0 v e(i 0 ) has order < ω(x).

The next corollary is already proven. 130 I.4.1 Corollary With hypotheses and notations of I.2, we blow up x. If x is in case (*1) or (*2) and if x ′ is a point in the first chart very near to x with u ′ 3 (x) = 0, either µ 0 (H(x) -1 g p ) = ω(x) and ord u 1 (H(x) -1 g p ) < ω(x), then β(x ′ ) = 0, or µ 0 (H(x) -1 g p ) > ω(x) or ord u 1 (H(x) -1 g p ) ω(x), then β(

), where i 0 , F i are defined just above in [START_REF]Resolution of surface singularities[END_REF] [START_REF]Forme normale d'une fonction sur un k-schéma de dimension 3 and de caractéristique positive[END_REF].

I.4.2 Corollary

With hypotheses and notations of I.2, if x is in case (*1) or (*2), if C(x) = 0, A 2 (x) < 1 and A 3 (x) < 1, then x is good.

Proof. We remark that B(x) = C(x) + A 2 (x) + A 3 (x) 1, so C(x) 0, A 2 (x) < 1 and A 3 (x) < 1 imply 0 < A 2 (x) and 0 < A 3 (x), so we blow up x, we note that either µ 0 (H(x) -1 g p ) = ω(x) and ord u 1 (H(x) -1 g p ) < ω(x) or deg(F i 0 ) = 0, we apply the last lines of the proof of I.4: if x ′ is not at the origin of a chart, ω(x ′ ) < ω(x), if x ′ is at the origin of a chart, A 2 (x ′ ) + A 3 (x ′ ) < A 2 (x) + A 3 (x), an induction on A 2 (x) + A 3 (x) gives the result.

I.5 Theorem With hypotheses and notations of I.2, we suppose x in case (*3) and x is not good. We blow-up x.

Let x ′ be a closed point very near to x in the chart of origin

β3(x), the inequality is strict if 1 β3(x) and x ′ is not rational over x. (iii) When β3(x) = 1 and i 1 (x) = 0 mod (p), if x ′ is not rational over x, then γ(x ′ ) = 1, if x ′ is rational over x, then β(x ′ ) < 2 and, if x ′ is in case (*3) and γ(x ′ ) = 2, then β3(x ′ ) = 1 and i 1 (x ′ ) = 0 mod (p). (For the definition of i 1 (x), see the end of I.2.2.) (iv) In every case we have

Proof.

We make the blowing up. By I.3,

) is a r.s.p. of x ′ on the strict transform of div(u 1 ), with

) with minimal second and third coordinates, if a(1)+ω(x) = 0 mod (p) or a(2) + 1 = 0 mod (p), this vertex is not solvable, x ′ is in case (*1).

Let µ 0 the monomial valuation given by µ 0 (u
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is the initial form of H(x ′ ) -1 f ′ with respect to monomial valuation given by µ

Furthermore, in the case of the blowing up of x, if B3(x) = 1, we get ǫ(x ′ ) ord x ′ (H(x ′ ) -1 g ′ p ) 0:

power}. By computations as above in the proof of I.4, we get A 2 (x ′ ) = B3(x) -1 and

This gives (iv). If x ′ is not rational over x, then β(x ′ )

. This proves (ii). To end the proof of (iii), we have to look at the case β3 = 1, i 1 (x) = 0 mod (p). If i 0 = i 1 (x), then deg(F i 0 ) + b i 0 -i 0 A 1 < i 0 β3 = i 0 , so deg(F i 0 ) < i 0 , we get the result. If i 0 = i 1 (x), then, β(x ′ ) 1 + 1 i 0 < 2 and, if x ′ is in case (*3), i 0 β3(x ′ ) deg(F i 0 ) -1 i 0 , the inequality is strict if x ′ is not rational over x. Furthermore, the index i 0 is the smallest i such that the factor of λu

I.5.1 Proposition With hypotheses and notations of I.2, if x is in case (*3) with β3(x) 0, then, x is good.

Proof. We make an induction on A 2 (x). If A 2 (x) < 1, then the monomial u

occurs in the expansion of H(x) -1 f , its order is ω(x) -1: a contradiction. If A 2 (x) 1, then V(X, u 1 , u 2 ) is permissible of second kind, we apply I.3.3: either the point x ′ is not very near to x, either κ(x ′ ) 4 or it is very near to x with case (*3) and (A 2 (x ′ ), β3(x ′ )) = (A 2 (x) -1, β3(x)).

I.5.2 Lemma

With hypotheses and notations of I.2, assume x is in case (*1) or (*2), we blow up x.

If

) which are the ends of its initial side, (ii) in every case, C(x ′ ) C(x), γ(x ′ ) γ(x). Proof. Recopy I.8.8 in chapter 3.

I.5.3 Lemma With hypotheses and notations of

with strict inequality when 3 γ(x). Furthermore

, where x ′′ is the center of the valuation µ in the blowing up of x ′ , (iii) if B3(x) -A 2 (x) < 1 and β3(x) = 1 and γ(x) = 2, then the following holds: either (a(1) + ω(x) = 0 mod (p)), either (x ′′ is in case (*1) and β(x ′′ ) < 2) or (x ′′ is in case (*3) and β3(x ′′ ) 1), where x ′′ is the center of µ in the blowing up X ′′ of X ′ along x ′ .

Proof. We are at the origin of the second chart, there is no translation to do on X ′ , etc. For (i)(ii), we cannot recopy directly chapter 3 I.8.9.1 which uses chapter 3 I.8.5: we have no corresponding proposition. What remains valid (mutatis mutandis) is that the vertex of smallest ordinate of ∆(

This gives the first assertions of the lemma, (i) and also (ii

)⌋ and we get also (ii) when B3(x) -A 2 (x) < 0 or (B3(x) -A 2 (x) = 0 and α3 2 < 1 + B3(x)).

To end the proof of (ii), we have to consider the case C(

and in the expansion of

if we go back to the proof of I.4, we have, in the first case line above, i 0 = 1, so a(1) + ω(x) -i 0 = 0 mod (p), so β(x ′′ ) C(x ′ ) = 1: this leads to γ(x ′′ ) = 1, in the second case, we have β(x ′′ ) = 0. If m(x ′′ ) = 3, we get C(x ′′ ) = 0.

For (iii), by the same arguments as in chapter 3 I.8.9.3, we get that if µ 0 the monomial valuation given by µ

F i = 0 or F i homogeneous of degree d i i. If x ′′ is the origin of a chart above x ′ , then, recopy chapter 3 I.8.9.3: the proof is made just by looking at polyhedrons. If x ′′ is not the origin of the first chart, then, iβ(x ′′ ) d i + 1 or β(x ′′ ) = 0 if all the F i = 0.

So we get γ(

This means that a(1) + ω(x) -1 = 0 mod (p). In particular a(1) + ω(x) = 0 mod (p).

I.6 Theorem Let x ∈ Σ p with κ(x) = 5, m(x) 2. Then x is good if one of the following is true: (i) case (*1) and β(x) 1, (ii) case (*2) and β(x) < 1, (iii) case (*3), β3(x) < 1. Proof. We have A 2 (x) > 0. Indeed A 2 (x) = 0 implies that in the expansion of f appears the monomial u

, 1 i ω(x). This is impossible in case (*2), in case (*1), κ(x) 2, there is nothing to prove. In case (*3), β3(x) < 1 implies β(x) 1, this contradicts ǫ(x) = 1 + ω(x). I.6.1 Case 0 < A 2 (x) < 1. We blow up x.

First chart, cases (*1)(*2). We get A 2 (x ′ ) A 2 (x)+β(x)-1 A 2 (x), x ′ verifies the hypotheses of I.6 when x ′ is the origin, as γ(x ′ ) γ(x), x ′ verifies the hypotheses of I.6 when x ′ is not the origin.

In case (*3), if κ(x ′ ) = 5, we can apply I.4, I.5:

, as γ(x ′ ) γ(x), x ′ verifies the hypotheses of I.6.

Case 0 < A 2 (x) < 1, second chart. We get A 2 (x ′ ) = A 2 (x). Furthermore, β(x ′ ) A 2 (x) + β(x) -1 < β(x) in cases (*1)(*2), β(x ′ ) A 2 (x) + β3(x) -1 < β3(x) in cases (*3): x ′ verifies the hypotheses of I.6.

End of the case 0 < A 2 (x) < 1. Then, we blow up x ′ and we go on if Ω does not strictly drop, etc. We associate to x the couple (A 2 , β) if x is in case (*1) or (*2), (A 2 , β3) in case (*3). This couple strictly drops for the lexicographical ordering except maybe if x is in case (*1) and β(x ′ ) = 1, which implies x ′ rational over x.

If the sequence of blowing ups is infinite, all the x(i) centers of µ in X(n) are in case (*1) with β(x(n)) = 1. All the x(n + 1) are rational over x(n), we can choose v, eventually

]], such that x(n + 1) are on the strict transform of a curve C = V(X, u 1 , v) which is contained in Σ p and which gets permissible for n >> 0. We conclude by the usual argument. I.6.2 Case 1 A 2 (x). We blow up V(X, u 1 , u 2 ), by I.3.3, we get the result by induction on A 2 . I.7 Theorem Let x ∈ Σ p κ(x) = 5, x in case (*1) or (*2). If for a r.s.p. (X, u 1 , u 2 , u 3 ) verifying the conditions of I.2, C(x) = 0 and, possibly u 3 ∈ S if div(u 3 ) ⊂ E, then x is good. Proof. The case A 2 (x) < 1 and A 3 (x) < 1, has been made in I.4.2. From now on, A i 1 for some i, i = 2 or i = 3.

, then ord x (H(x)f ) p, so a(2)a(3) > 0: E =div(u 1 u 2 u 3 ). So u 2 and u 3 the same role. Let us blow up x. We just look at the first chart. By I.3, a point x ′ very near to x is on the strict transform of div(u 1 ). By I.4, H(

is the origin of the first chart and an induction on a(2) + a(3) gives the result. I.7.2 Other cases, let us test the blowing up of x.

By I.3, every point x ′ very near to x is on the strict transform of div(u 1 ). As C(x) = 0, if x ′ is not the origin of a chart, we get β(x ′ ) 1, so x ′ is good. If x ′ is the origin of a chart we get C(x ′ ) = 0. The components of ω > 0 at x ′ in the strict transform of div(u 1 ) are the strict transforms of those going through x plus, may be a projective line which projects on Spec(S) on the intersection of the strict transform of div(u 1 ) and the new exceptional component. After a finite sequence of blowing ups, we may suppose that, div(u 2 ) ⊂ E and if div(u 3 ) ⊂ E, there is at most one component of {ω > 0}∩div(u 1 ) not contained in div(u 2 ). I.7.3 Case a(1) + ω(x) p. Once the condition above obtained, we make an induction on A

, it is not formal and we blow it up. The only possible very near point is x ′ , the point on the strict transform of div(u 1 ) and

is not formal, it is the component of {ω 1}∩div(u 1 ) not contained in div(u 2 ), we blow it up and we conclude as above. I.7.4 Case a(1) + ω(x) < p and there exists i ∈ {2, 3} such that a(i) + ω(x) p. Then a(i) > 0: div(u i ) ⊂ E. We make a descending induction on (sup{A i , i = 2, 3}, sup{a(j), j = 2, 3}) for lex . I.7.4.1 If there exists i ∈ {2, 3} such that

we blow up V(X, u i , u 1 ). If both i = 2 and i = 3 verifies (1), we choose i with (A i , a(i)) maximal. Mutatis mutandis, i = 2. Then the point x ′ of parameters ( X u 2 , u 1 u 2 , u 2 , u 3 ) is the only point which may be very near to x. The reader sees that κ( 2): (sup(A i ), sup(a(j))) strictly drops except if (A 2 , a(2)) = (A 3 , a(3)), in that case we blow up ( X u 2 , u 1 u 2 , u 3 ) and (sup(A i ), sup(a(j))) strictly drops. I.7.4.2 The remaining case. There is one i ∈ {2, 3} such that a(i) + ω(x) + a(1) p, A i < 1: so div(u i ) ⊂ E, mutatis mutandis, i = 2. Then, A 3 1, a(3) + a(1) + ω(x) < p, (sup(A i ), sup(a(j))) = (A 3 , a(2)), a(2) + a(1) + ω(x) p.

We blow up x, as seen in I.7.2, we have to look only at the origins of the first and second chart. In the first chart, if x ′ is very near to x, we get A 2): (sup(A i ), sup(a(j))) strictly drops.

In the second chart, if x ′ is very near to x, we get

We blow up x, by I.3, every point x ′ very near to x is on the strict transform of div(u 1 ).

As A3 3 (x) = β3(x), in the proof of I.5, deg(F i 0 ) = 0: if x ′ is not the origin of a chart, we get β(x ′ ) 1, so x ′ is good. If x ′ is the origin of the first chart and is very near to x, as φ

the origin of a the second chart, x ′ is in case (*1) or (*2) and, by I.5.3, (A

= 0, by I.7, x ′ is good. I.8.2 So we are only interested in x ′ the origin of the first chart. If x ′ is not in a case of goodness seen above, then x ′ verifies the hypotheses of I.8. We blow it up and we go on... Then we create a sequence of points x = x 0 ← x 1 = x ′ ← x 2 ← ... all on the strict transform of V(X, u 1 , u 3 ): by the usual argument, this sequence is finite.

We make an infinite sequence of blowing-ups X i ← X i+1 along the centers x i ∈ X i , the centers of the valuation µ, we suppose that x i+1 is very near to x i for all i 0. For i 1, E(i) has at least two components.

We are going to prove that there exists some i such that x i is good. That will end the case κ(x) = 5.

As γ(x i ) γ(x i+1 ), for i >> 0, γ(x i ) = γ(x i+n ), n > 0. Let us call γ(µ) this value (which depends of µ and of choices among the prepared parameters at each step).

II.2 m(x i ) = 2 for all i >> 0.

Case where for n 0 >> 0 all the x n 0 +i are rational over x n 0 . By I.4, with n 0 bigger if necessary, we can suppose that they are all in the same case (*1) or (*3). By a translation on the indices, we make n 0 = 0, x = x 0 .

So there exists

] such that the projection of the x i over SpecS are all on the strict transform of v, as (u 2 , u 3 ) S = (u 2 , v) S, we replace the couple (u 2 , u 3 ) by (u 2 , v): all the x i are origins of the first chart, the reader sees that for i >> 0 we reach the hypotheses of I.7 if they are all in case (*1): x i is good. If they are all in case (*3), it means that φ 0 ∈ (u 1 , v) S after a while, we reach the hypotheses of I.8: x i is good.

Case where for every i there exists j i such that x j+1 is not rational over x i . By I.4, I.5, for some i, we reach one of the four cases: (i) κ(x i ) 4, (ii) γ(x i ) = 1, m(x i ) = 2: by I.6, x i is good, (iii) x i in case (*1) and β(x i ) < 2, then by I.4, I.5.2, for the smallest j ′ i such that (x j ′ is not rational over x i or m(x j ′ ) = 3), γ(x j ′ ) = 1: by I.6, if m(x j ′ ) = 2, x j is good, if m(x j ′ ) = 3, then for the smallest j j ′ such that m(x j ) = 2, γ(x j ) = 1: by I.6 x j is good, (iv) x i in case (*3) and β3(x i ) = 1 and i 1 (x i ) = 0 mod (p), then by I.5, I.5.3, for the smallest j ′ i such that (x j ′ is not rational over x i or m(x j ′ ) = 3), γ(x j ′ ) = 1 or γ(x j ′ +1 ) = 1 or a(1) + ω(x) = 0 mod (p): in the last case, this means for any n > 0, x j ′ +n will be in case (*1)(*2), by I.4 we will reach (ii), in the other cases, we conclude as above by I.6. II.3 m(x i ) = 3 for i >> 0.

We are always at the origin of a chart, so by all the x i are in case (*2), by the usual transformation laws on polyhedrons, for i >> 0, C(x i ) = 0, by I.7, x i is good.

Till the end of II, we assume that neither the assumption of II.2, nor II.3 is satisfied.

II.4 For all n ∈ N, there is some i n with m(x i ) = 2 and m(x i+1 ) = 3, the x i are rational over x 0 , 0 < i. II.4.1 With the hypothesis of II.4 and with a(1) + ω(x) = 0 mod (p).

Then, by I.4, I.5.2, there exists i > 0 such that x i is in case (*2) and x i+j in case (*1) or (*2), for all j, 1 j. Furthermore, γ(µ) = 1. Then, for j >> 0 such that m(x i+j ) = 2, we have β(x i+j ) 1, by I.6, x i+j is good. II.4.2 With the hypothesis of II.4 and a(1) + ω(x) = 0 mod (p).

Then γ(µ) 2. All the x i are rational over x = x 0 and γ(x i ) = γ(µ), i 0.

If for i >> 0 all the x i are in case (*1) or (*2), as above we can apply I.4 and I.5.2, γ(µ) = 1. Then, for j such that m(x i+j ) = 2, we have β(x i+j ) 1, by I.6, x i+j is good.

Last case: for all n ∈ N, there is some i n with x i in case (*3) and some j n with x j in case (*2). If γ(µ) = 1, then by I.6, for i >> 0, x i is good. II.4.3 From now on, γ(µ) = 2.

Let i such that m(x i ) = 2 and m(x i+1 ) = 3. Either x i is in case (*1), as γ(x i ) = γ(x i+1 ) = γ(µ) = 2, by I.5.2, β(x i ) = 2, ∆(H(x ′ ) -1 f ′ + H(x ′ ) -1 g ′ p ; u ′ 1 , u ′ 2 ; u ′ 3 ) has only two vertices (A 1 (x), β(x)+A 1 (x)-1), (α 2 (x), B(x)-1), (α 2 (x), B(x))) are the ends of its initial side, where x = x i , x ′ = x i+1 . Then C(x i+1 ) = 1, if m(x i+2 ) = 3, C(x i+2 ) = 0: contradicts γ(µ) = 2. So m(x i+2 ) = 2, with the notations of I.4(4), either a(1) + ω(x) -i 0 = 0 mod (p): we get i 0 β(x i+2 ) deg(F i 0 ) i 0 : contradicts γ(µ) = 2. So a(1)+ω(x)-i 0 = 0 mod (p), i 0 = 0 mod (p) and β(x i+2 ) 1+ 1 i 0 1+ 1 p . If x i+2 is in case (*1), by I.4, all the x i+j with m(x i+j ) = m(x i+j-1 ) = 2, j 3, are in case (*1) with

So for the smallest j 0 such that m(x i+j 0 ) = 3, we get C(x i+j 0 ) < β(x i+2 ) 2 < 1, this contradicts γ(µ) = 2. So x i+2 is in case (*3), we get i 0 β3(x i+2 ) deg(F i 0 ) i 0 , as γ(µ) = 2, β3(x i+2 ) = 1, which implies: a(1) + ω(x) -i 0 = 0 mod (p) (end of the proof of I.4, same notations) so i 0 = 0 mod (p): x i+2 is in case II.2(iv) above.There exists some j > i + 2 such that x j is in case (*1) or m(x j ) = 3, let j 0 the smallest. When x j 0 is in case (*1), β(x j 0 ) < 2, then for the smallest j ′ j 0 such that m(x j ′ ) = 3, we get γ(x j ′ ) = 1: contradiction. When m(x j 0 ) = 3, by I.5.3, γ(x j 0 ) = 1 or x j 0 is good, etc.: I.5.3(ii)(iii) ends the proof.

III End of the proof of the main theorem.

In this last section, we reduce the local uniformization problem when ω ′ (x) = 2 to one of the previously studied cases, i.e. κ(x) 5.

So κ(x) = 6 means "no expansion of h gives κ(x) ∈ {2, 3, 4, 5}".

x is said to be good if the quadratic sequence along µ makes (ι(x), κ(x)) lex strictly drop. We always assume that the r.s.p. (X, u 1 , u 2 , u 3 ) of R is such that E ⊆ div(u 1 u 2 u 3 ) and ∆(h; u 1 , u 2 , u 3 ; X) is minimal.

III.1 Definition. Assume that κ(x) > 5. Let X =: X 0 ← X 1 ← • • • ← X n be the quadratic sequence along µ, i.e. X i is the blowing up along the center x i-1 of µ in X i-1 for i 1.

We say that x is good, if x n ∈ Σ p (X n ), or Ω(x n ) < Ω(x) or (Ω(x n ) = Ω(x) and κ(x n ) 5) for some n 1.

The final theorem of this paper is then: III.2 Theorem. Assume that κ(x) > 5. Then x is good.

We first study the possible occurrences for VDir(x) when κ(x) > 5. Recall the definition of VDir(x) and τ ′ (x) in chapter 2, II. 1.3 and corollary II.1.4. III.3 Lemma. Assume that κ(x) > 5. The following holds: (i) τ (x) = τ ′ (x) = 2. If e : X ′ → X is the blowing up along x, there is thus at most one x ′ ∈ e -1 (x) very near x and x ′ is rational over x; (ii) if E = div(u 1 ), then ǫ(x) = 1 + ω(x) and U 1 ∈ VDir(x).

Proof. If τ ′ (x) = 3, then κ(x) = 0 by chapter 2 II.1.4.

If τ (x) = 1, then VDir(x) = k(x).(α 1 U 1 + α 2 U 2 + α 3 U 3 ), α i ∈ k(x) for i = 1, 2, 3. If there exists i with α i = 0 and div(u i ) ⊆ E, then there is transverseness: κ(x) ∈ {2, 4}; otherwise, there is tangency: κ(x) = 5. This proves (i).

Assume that E = div(u 1 ). If ǫ(x) = ω(x), let Ψ := in x (H(x) -1 f ). We have κ(x) = 2 unless Ψ ∈ k(x).U ω(x) 1 : then κ(x) = 5. If ǫ(x) = 1 + ω(x), We have κ(x) = 4 unless cl ω(x) J(f, E) (U 1 ). Then U 1 ∈ VDir(x).

III.4 Lemma. Assume that κ(x) > 5 and E = div(u 1 u 2 ). If VDir(x) =< U 1 + λU 2 , U 3 >, λ = 0, then ǫ(x) = 1 + ω(x) and x is good.

Proof. If ǫ(x) = ω(x), we have κ(x) = 2 by definition, since U 3 ∈ VDir(x). So ǫ(x) = 1 + ω(x). Let e : X ′ → X be the blowing up along x. If x ′ ∈ e -1 (x) is very near x, then x ′ has coordinates (X ′ := X u 2 , v ′ 1 := u 1 u 2 + λ, u ′ 2 := u 2 , u ′ 3 := u 3 u 2 ). Therefore E ′ := (e -1 E) red = div(u ′ 2 ). By III.3(ii), x is good if ǫ(x ′ ) = ω(x ′ ). If ǫ(x ′ ) = 1 + ω(x ′ ), then u -ω(x) 2 J(f, E) ⊆ J(f ′ , E ′ ), where h ′ := u -p 2 h = X ′ p -X ′ g ′ p-1 + f ′ . We may have to perform a translation Z ′ := X ′ -θ ′ in order to get ∆(h ′ ; v ′ 1 , u ′ 2 , u ′ 3 ; Z ′ ) minimal, f ′ being changed into f ′ Z ′ := f ′ + θ ′ p -θ ′ g ′ p-1 . Since τ ′ (x) = 2, ord η(x) (H(x) -1 g p ) > ǫ(x) and therefore u ′ 2 divides H(x ′ ) -1 g ′ p , so we have

This implies cl ω(x) J(f ′ Z ′ , E ′ ) ⊆ (U ′ 2 ), so κ(x ′ ) = 4 and x is good.

III.5 Lemma. Assume that κ(x) > 5 and div(u 1 ) ⊆ E ⊆ div(u 1 u 2 ). If VDir(x) =< U 1 , U 3 >, then ǫ(x) = 1 + ω(x) and x is good.

Proof. As in III.4, U 3 ∈ VDir(x) and κ(x) > 2 implies ǫ(x) = 1 + ω(x). Let e : X ′ → X be the blowing up along x. Since x ′ ∈ e -1 (x) is very near x, x ′ has coordinates (X ′ := X u 2 , u ′ 1 := u 1 u 2 , u ′ 2 := u 2 , u ′ 3 := u 3 u 2 ). We are at the origin of a chart, the polyhedron ∆(h ′ ; u ′ 1 , u ′ 2 , u ′ 3 ; X ′ ) is thus minimal. Let us denote H(x) -1 f =: Ψ(u 1 , u 2 , u 3 ) + φ, (a(2) = 0 if E = div(u 1 )), Ψ ∈ k(x)[u 1 , u 2 , u 3 ] homogeneous of degree ǫ(x) and ord η(x) φ > ǫ(x). Then E ′ := (e -1 E) red = div(u ′ 1 u ′ 2 ), H(x ′ ) = u ′ 1 a(1) u ′ 2 a(1)+a( 2)+ω(x)+1-p , and

with φ ′ ∈ S ′ . We consider three cases: Case 1: ord η ′ (x ′ ) Ψ(u ′ 1 , 1, u ′ 3 ) ω(x). Then equality holds and ω(x ′ ) = ǫ(x ′ ). We have κ(

1 , U ′ 2 >: κ(x ′ ) = 2 and x is good.

From now on, we assume that ord η ′ (x ′ ) Ψ(u ′ 1 , 1, u ′ 3 ) = 1 + ω(x) = ǫ(x), i.e. Ψ ∈ k(x)[U 1 , U 3 ]. We have ord η ′ (x ′ ) (u ′ 2 φ ′ ) ω(x ′ ) = ω(x). Moreover, since κ(x) = 3, we actually have VDir(x) = VDir( ∂Ψ ∂U 3 ) =< U 1 , U 3 > .

(1)

Case 2: ord η ′ (x ′ ) (u ′ 2 φ ′ ) = ω(x). In particular, we have ǫ(x ′ ) = ω(x ′ ). We denote in

, then κ(x ′ ) = 2. It can thus be assumed that

Then VDir(x ′ ) =< U ′ 1 , U ′ 2 >. Let e ′ : X ′′ → X ′ be the blowing up along x ′ . Since x ′′ ∈ E ′′ := (e ′ -1 E ′ ) red is very near x ′ , x ′′ has coordinates (X ′′ :=

) and the polyhedron ∆(h ′′ ; u ′′ 1 , u ′′ 2 , u ′′ 3 ; X ′′ ) is minimal. Then

with φ ′′ ∈ S ′′ . By [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF], deg U 3 Ψ(U 1 , U 3 ) 2, so ord η ′′ (x ′′ ) Ψ(u ′′ 1 , 1, 1) = 1 + ω(x)deg U 3 Ψ(U 1 , U 3 ) ω(x) -1. Since x ′′ is very near x, equality holds and we get

where γ ′′ ∈ S ′′ is a unit. Then ǫ(x ′′ ) = ω(x),

where λ = 0, H(x ′′ ) = u ′′ We claim that τ (x ′′ ) = 3, which implies that κ(x) = κ(x ′′ ) = 0 by chapter 2 II.1.2, contradicting the assumption κ(x) > 5. To prove the claim, let us denote Ψ ′′ =:

U ′′ 1 ω(x)-j Ψ j (U ′′ 2 , U ′′ 3 ).

By (3), Ψ ′′ ∈ k(x)[U ′′ 2 , U ′′ 3 ] and deg U ′′ 1 Ψ ′′ < ω(x) = degΨ ′′ , so we have τ (x ′′ ) 2. If τ (x ′′ ) = 2, then VDir(x ′′ ) =< U ′′ 1 + α 2 U ′′ 2 + α 3 U ′′ 3 , β 2 U ′′ 2 + β 3 U ′′ 3 > for some α i , β i ∈ k(x), i = 2, 3 with (β 2 , β 3 ) = (0, 0). Note that, since Ψ 1 ∈ k(x)[U 2 ], we must have β 3 = 0. Without loss of generality, it can be assumed that α 3 = 0 and β 3 = 1, i.e.

VDir(x

If β 2 = 0, then with notations about derivations as in chapter 1 II.3, we have

for each i, 1 i s. By ( 2) and ( 3), F i 0 = 0 for some i 0 , 1 i 0 s and U ′′ 2 divides F i 0 : this contradicts (4). Hence β 2 = 0. By (4), we have

for each i, 1 i s. Since λ = 0, we have Ψ 1 = 0. By ( 5), Ψ 1 = µ 2 U ′′ 2 + µ 3 U ′′ 3 with µ 2 µ 3 = 0 and we may apply chapter 2 II.5(i) (with a = 1 and F = Ψ 1 ). This yields a( 1 Case 3: ord η ′ (x ′ ) (u ′ 2 φ ′ ) > ω(x). Then ǫ(x ′ ) = 1 + ω(x) and

By ( 1), we thus have VDir(

Since κ(x) > 5, we must have τ ′ (x ′ ) = 2, so VDir(x ′ ) =< U ′ 1 + λU ′ 2 , U ′ 3 > for some λ ∈ k(x), after possibly changing coordinates to (u ′ 1 , u ′ 2 , v ′ 3 := u ′ 3 + α 1 u ′ 2 ) and letting Z ′ := X ′ -θ ′ in order to get ∆(h ′ ; u ′ 1 , u ′ 2 , v ′ 3 ; Z ′ ) minimal. If λ = 0, then x is good by III.4. If x is not good, then κ(x ′ ) > 5, VDir(x ′ ) =< U ′ 1 , V ′ 3 > and E ′ = div(u ′ 1 u ′ 2 ), so x ′ verifies the hypotheses of III.5 and we iterate the process.

Let X = X 0 ← X 1 ← • • • X n-1 ← X n ← • • • be the quadratic sequence along µ. There exists a series v 3 = u 3 + j 2 α j u j 2 , α j ∈ k(x), and Z ∈ R with the following properties: (a) the polyhedron ∆(h; u 1 , u 2 , v 3 ; Z) is minimal; (b) if x n is very near x and κ(x n ) > 5, then x n is on the strict transform Y n of Y := V (Z, u 1 , v 3 ) ⊆ Spec( R/(h)) in X n .

As pointed out several times in this paper, (b) implies that n < µ(u 1 ) µ(u 2 ) : a contradiction, since the value group of µ is Archimedean. Hence x is good. III.5.1 Corollary. If κ(x) > 5 and either E = div(u 1 ) or (E = div(u 1 u 2 ) and VDir(x) =< U 1 , U 2 >), then x is good.

Proof. This follows from III.3 and III.5 (resp. III.4 and III.5) if E = div(u 1 ) (resp. E = div(u 1 u 2 )). III.5.2 Lemma. Assume that κ(x) > 5, E = div(u 1 u 2 ) and VDir(x) =< U 1 , U 2 >. Let e : X ′ → X be the blowing up along x and x ′ ∈ e -1 (x) be very near x. Then ǫ(x ′ ) = ω(x ′ ).

Proof. Since VDir(x) =< U 1 , U 2 >, x ′ has coordinates (X ′ = X u 3 , u ′ 1 = u 1 u 3 , u ′ 2 = u 2 u 3 , u ′ 3 = u 3 ), so E ′ := (e -1 E) red = div(u ′ 1 u ′ 2 u ′ 3 ). In particular, ǫ(x ′ ) = ω(x ′ ).

III.5.3 Remark. Corollary III.5.1 and lemma III.5.2 reduce theorem I.2 to the case where div(u 1 u 2 ) ⊆ E ⊆ div(u 1 u 2 u 3 ), VDir(x) ⊆< {U i | div(u i ) ⊆ E} > and ǫ(x) = ω(x). Then theorem III.2 is a consequence of propositions III.6.2 and III.6.3 below.

III.6 Definition. Assume that κ(x) = 6, div(u 1 u 2 ) ⊆ E ⊆ div(u 1 u 2 u 3 ), VDir(x) ⊆< {U i | div(u i ) ⊆ E} > and ǫ(x) = ω(x). We let c(x) = 2 if VDir(x) =< U i 1 , U i 2 > for some i 1 , i 2 such that div(u i 1 u i 2 ) ⊆ E. Otherwise, let c(x) = 3.

III.6.1 Lemma. Assume that κ(x) = 6, E = div(u 1 u 2 ), VDir(x) =< U 1 , U 2 > and ǫ(x) = ω(x). Then F 3 := cl ω(x) (H(x) -1 ∂f ∂u 3 ) ∈ k(x)[U 1 , U 2 ]. Proof. Let e : X ′ → X be the blowing up along x. The only point x ′ ∈ e -1 (x) very near x has parameters (X ′ = X u 3 , u ′ 1 = u 1 u 3 , u ′ 2 = u 2 u 3 , u ′ 3 = u 3 ), so the polyhedron ∆(h ′ ; u ′ 1 , u ′ 2 , u ′ 3 ; X ′ ) is minimal. We have E ′ := (e -1 E) red = div(u ′ 1 u ′ 2 u ′ 3 ), so J(f ′ , E ′ ) = J(f ′ , E ′ , x ′ ) and

Since x ′ is very near x, ord η ′ (x ′ ) f ′ 3 ω(x). We have

2 ),

. Therefore equality holds and U ′ 3 ∈ VDir(x ′ ).

If ϕ ∈ J(f, E, x), then u

-ω(x) 3

, where Φ := cl ω(x) ϕ. Therefore

since VDir(x) =< U 1 , U 2 >. This implies τ (x ′ ) = 3, so κ(x) = κ(x ′ ) = 0: a contradiction.

III.6.2 Proposition. Let x be as in definition III.6. If c(x) = 3, then x is good.

Proof. Necessarily E = div(u 1 u 2 u 3 ). Let e : X ′ → X be the blowing up along x. As c(x) = 3, the center x ′ of µ in X ′ is not on the strict transform of any two components of E, so m(x ′ ) 2. By III.5.1, it can be assumed that m(x ′ ) = 2. After possibly renumbering coordinates, it can be assumed that VDir(x) =< U 1 , U 3 + λU 2 > with λ = 0. Then x ′ = (X ′ := X u 2 , u ′ 1 := u 1 u 2 , u ′ 2 := u 2 , v ′ 3 := u 3 u 2 + λ) and E ′ := (e -1 E) red = div(u ′ 1 u ′ 2 ). Let ϕ ∈ J(f, E, x) be such that Φ :

where

) is minimal (since ǫ(x) = ω(x), ord η(x) (H(x) -1 g p ) > ω(x) in here).

If ǫ(x ′ ) = 1 + ω(x), then x ′ (hence x) is good by [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF] and III.5.1, since Φ ∈ k(x)[U 1 ]. If ǫ(x ′ ) = ω(x) and x is not good, then VDir(x ′ ) =< U ′ 1 , U ′ 2 > by III.5.1, so

.

Since E ′ = div(u ′ 1 u ′ 2 ), [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF] implies that

a contradiction by III.6.1.

III.6.3 Proposition. Let x be as in definition III.6. If c(x) = 2, then x is good.

Proof. After possibly renumbering coordinates, it can be assumed that VDir(x) =< U 1 , U 2 >. Let e : X ′ → X be the blowing up along x. Since the center x ′ of µ in X ′ is very near x, x ′ = (X ′ := X u 3 , u ′ 1 := u 1 u 3 , u ′ 2 := u 2 u 3 , u ′ 3 := u 3 ). We have E ′ := (e -1 E) red = div(u ′ 1 u ′ 2 u ′ 3 ) and ∆(h ′ ; u ′ 1 , u ′ 2 , u ′ 3 ; X ′ ) is minimal. Moreover J(f ′ , E ′ , x ′ ) = u

-ω(x) 3

J(f, E, x), since m(x ′ ) = 3, so we have VDir(x ′ ) ≡< U ′ 1 , U ′ 2 > mod(U ′ 3 ). We are done by III.6.2 unless VDir(x ′ ) =< U ′ 1 , U ′ 2 >, i.e. x ′ satisfies again the assumptions of III.6.3 with the same numbering of variables if κ(x ′ ) > 5.

be the quadratic sequence along µ. We cannot have κ(x i ) > 5 for i µ(u 1 )

µ(u 3 ) , so x is good and the conclusion follows.

"On n'est jamais, jamais assez fort pour ce calcul" (Comtesse Maxime de la Falaise).