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Brief survey of resolution of singularities in positive characteristic.

Resolution of singularities for algebraic varieties defined over a field of positive characteristic
has been a long standing open problem. Several programs for proving Resolution in all dimensions
have appeared in the last few years. Although none of them has been completed to this date,
encouraging partial results have been obtained.

Building on classical material mostly due to Zariski and Abhyankar, as well as on subsequent
works due to Hironaka, Giraud, and on Cossart’s thesis, we present a complete proof of Resolution
of singularities for algebraic varieties of dimension three defined over any ground field k& which is
differentially finite over a perfect field ky of characteristic p > 0 (this restrition means that Q}C Jko

has finite dimension).

Three basic approaches to the Resolution of singularities of curves appeared in the nineteenth
Century. A possibly singular germ of irreducible curve can be viewed alternately as: a covering of
a regular germ (Riemann), an integral domain D of dimension one, essentially of finite type over
the ground field (Dedekind), or a geometric object C' defined by variables and equations vanishing
at a certain order at the singular point (M. Noether). Corresponding approaches to the study of
the singularity respectively consist in: studying the local fundamental group of the pointed line,
the normalization of R, or the effect of a quadratic transform on the order of the equations. While
the last two approaches give a proof of Resolution which is characteristic free, the first one does
not, due to the failure of the Puiseux theorem in positive characteristic.

For surfaces (in positive characteristic), the question was raised, but not solved by Zariski.
Zariski systematically introduced valuation theory in the study of singularities. In particular, he
introduced the Local Uniformization problem, a weaker form of Resolution of singularities at the
center of a given valuation. He proved that Local Uniformization implies Resolution for surfaces of
arbitrary characteristic.

The first proof was given by Abhyankar [Al] in 1956. Namely, all characteristic zero proofs
at that time used either the structure of the local fundamental group of the complement of a
normal crossings curve in a regular surface (Jung [J], Walker [W]), or the Tschirnhausen transform
killing the degree m — 1 term in a polynomial of degree m by a linear change of variable. The
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corresponding first approach fails in characteristic p > 0 for similar reasons as in dimension one,
and the second fails if m is divisible by p. Abhyankar’s idea was to use ramification theory of
valuations to reduce the Local Uniformization of valuations to that of Artin-Schreier coverings
of a regular germ of surface. Then he could prove directly Local Uniformization in this case by
controlling the behaviour under quadratic transform of a certain monomial in the Newton polygon
of the singularity. All of these ideas have exerted a strong influence on our proof [CP1].

Refinement and extensions of Abhyankar’s theorem include the proof of Embedded Resolution
(Abhyankar [A2], Hironaka [CGO, Appendix]) for surfaces, and the extension of Resolution of
singularities to any excellent surface (Lipman [L]).

In dimension three, the only result available up to date was also due to Abhyankar [A2] in
1966. However, this result was restricted to algebraically closed ground fields and excluded the small
characteristics p = 2,3,5. The reason of this last restriction comes from an argument of Albanese
used by Abhyankar: one first constructs a birationally equivalent model to the singularity which
has multiplicity at most 6. When p > 6, Tschirnhausen transforms can be applied successfully to
the local equations of this model, and one essentially reduces to Embedded Resolution of surfaces,
previously proved by Abhyankar.

In his characteristic zero proof, Hironaka [H] introduced the very important notion of directrix.
This is the minimal space of linear forms necessary to write down the initial forms of the equation
of a singularity. Its importance is due to the following: when Hironaka’s main invariant (Hilbert-
Samuel function HS) does not strictly drop along his blowing up procedure, the dimension 7 of
this space does not decrease. Even more, the directrix appears as the space of initial forms of
the equations of a regular space W which has maximal contact with the singularity; there is a new
singularity defined on W whose resolution will make (H S, —7) strictly decrease for the lexicographic
ordering. The latter point is crucial in Hironaka’s proof.

This is no more true in characteristic p > 0. Giraud [Gil] showed that the appropriate space
to be considered in positive characteristic is the Ridge. The Ridge is the minimal space of additive
forms (linear combinations of p*-powers of variables with scalar coefficients) necessary to write
down the initial forms of the equations. He proves in [Gi2] the existence of a certain space W with
the above properties except one: W is no more regular, and Hironaka’s proof does not extend.

Another important tool introduced by Hironaka [H1] is the characteristic polyhedron. This
generalizes Newton polygons of plane curves to all dimensions and to arbitrary subschemes. Given
a germ of subscheme, Hironaka’s construction consists in choosing a concrete projection, transverse
to the directrix, which minimizes the induced projection of the Newton polyhedron associated with
the subscheme. The image of the Newton polyhedron by the resulting projection is called the
characteristic polyhedron. Hironaka used this tool to build his proof of Embedded Resolution for
surfaces. Cossart [5], Moh [Mo] used it to prove Resolution of singularities for threefolds with local
equation y? + f(uy,us,u3) =0, f € k[[u1, ua, us]].

A new approach to the Resolution problem was initiated by de Jong [dJ]. He proved that any
algebraic variety has a covering which admits Resolution. The composed map is called an alteration
and induces a finite extension of the function field. One can furthermore get this extension to be
separable if the ground field is perfect. This method leads to a new proof of (birational) Resolution
of singularities in characteristic zero (Bogomolov-Pantev [BP] and Abramovich-de Jong [AdJ]),
which unfortunately does not extend to positive characteristic.

The Local Uniformization problem has been attacked by Spivakovsky, Teissier [T] and F.V.
Kuhlmann [K], [KK]. Spivakovsky began a systematic study of the graded algebra associated with
a valuation v centered in the local ring R of a singularity. This graded ring gr, R is not Noetherian
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in general, but has a simple algebraic structure. When k is algebraically closed and equal to the
residue field of the valuation, gr, R can be defined by countably many generators and countably
many binomial relations.

Teissier considers a specialization of SpecR to gr, R, analoguous to the specialization to the
normal cone. Then resolving the special fiber by a toric morphism should extend to a resolution of
the general fiber, which is the singularity itself.

Using his structure theorems about valued fields, Kuhlmann succeeded in giving a valuation
theoretic proof of the valuative version of de Jong’s theorem. He also pointed out the essential
difficulty caused by the defect in finite extensions of valued fields. This defect is nontrivial when
the fundamental inequality of ramification theory n > > e; f; is not an equality.

In the last few years, Hironaka [H4|, Kawanoue [Ka| and Villamayor [V] initiated programs
to resolve singularities in positive characteristic. One common tool in these approaches is that
of differential operators of higher order (these already appear in Hironaka and Giraud). These
operators act on regular functions of the ambient space of a given subscheme. One can define
an associated graded algebra P(FE), where F = (I,b) is an idealistic exponent, I the ideal of the
subscheme, b > 0 a weight. Then the approaches differ. Hironaka proves the finiteness of B(F).
Kawanoue saturates in addition 3(E) by taking roots and obtains a different finiteness theorem for
the resulting algebra. Bravo and Villamayor (in preparation) construct by projection from B(FE)
an ”elimination algebra” on a regular space of smaller dimension than that of the ambient space of
the singularity.

INTRODUCTION

The purpose of this article is to prove the main theorem below. This will prove conjecture 3.1
of [CP1]. Let us recall a definition.

Definition. Let k be a field characteristic p > 0 and S be a regular local ring of dimension three,
essentially of finite type over k and such that K := QF(S) has transcendance degree 3 over k. An
Artin-Schreier (resp. purely inseparable) singularity of dimension three over S is the spectrum of
a local ring R of the form

R = (S[X]/(h))(X,ul,UQ,ug)v h:=X? — gp_lX + f7 (1)

where mg := (u1, ua, us) is the mazximal ideal of S, h is irreducible over the quotient field of S and
frg€ms, g#0 (resp. f € mg, g=0). We denote by n the morphism

n: Xo := Spec(R) — Spec(S).

Main theorem. Let k be a field of positive characteristic which is differentially finite over a perfect
field kg, i.e. Q}C/ko has finite dimension.

Let S be a reqular local ring of dimension three, essentially of finite type over k and such that
K := QF(S) has transcendance degree 3 over k. Let R be an Artin-Schreier or purely inseparable
singularity of dimension three over S.

Let K :== QF(S) and L := QF(R) (in particular L/K is a finite field extension,).
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Then, each k-valuation u of L dominating R and satisfying properties (i) and (ii) below has a
local uniformization:
(1) v has rank one and k(p)/k(S) is algebraic;
(ii) p is the unique extension of its restriction to K.

In [CP1], it is proved that this theorem gives an affirmative answer to conjecture [CP1, 3.1]
that we recall below.

Theorem. Let k be a field of positive characteristic which is differentially finite over a perfect field
ko and Z/k be a reduced quasiprojective scheme of dimension three with singular locus . There
exists a projective morphism m : 7 — Z, such that

(i) Z is regular.

(ii) T induces an isomorphim Z\n~'(X) ~ Z\X.

(iii) 7= (X)) C Z is a divisor with strict normal crossings.

We let R := S[X](x,ms), Xo =Spec(R/(h), z¢ his closed point, M = (X, ms), and k(zo) =
R/9M is a finitely generated field extension of k. We denote by (u1,us,us) a regular system of
parameters (r.s.p. for short) of S, so M = (X, uy, ug, us).

We denote by (X)) (resp. X,(Xo)) the singular locus (resp. the locus of multiplicity p) of
Xo, omitting reference to Xy when the context is clear.

Let R, be the valuation ring of 1 and 9, its maximal ideal. By assumption (i), the group of
values of p is Archimedean, and the center y of p in any model Y/k of L is always a closed point.
Note the following consequence of assumption (ii): (Xo,xo) is analytically irreducible. Namely,
(X0, z0) is analytically reduced because S is an excellent ring ([Ma] section 32); any two distinct
irreducible factors of h in R induce distinct extensions of R,NSto R/(h) =R.

From Hironaka’s theory of maximal contact [Gi2], and from resolution of singularities in di-
mension two, it is enough to build some local hypersurface model (X', 2’) of K(Xj) such that u
is centered in (X', 2’) and 2’ ¢ ¥,(X’). When such a model has been constructed, we say that
“the local uniformization problem is solved for p”. This model will be constructed by a sequence
of birational transformations which are either blowing ups of Xy along regular centers (chapter 1,
I1.4.6 and I1.5.1) or blowing ups along regular cylinders over the base SpecS (chapter 1, ITI).

A complete proof of the existence of such (X', z’) is given in the following four chapters.

Along all this article, we assume that

ord,, (h) = p.

GENERAL OVERVIEW OF THE PROOF

In chapter 1, we introduce our main invariant ¢(z) := (ord,h,Q(x)) at any point z € Xj.
To begin with, it can be assumed that X is nonsingular away from n~'(E), E a divisor with
normal crossings. So Spec(S) is endowed with a logarithm structure Q}9| ko 10gE). Then Q(z) =
(w(z),w'(z)) € N x {1,2,3} is built up from certain Jacobian ideals J(f, E) [5] when the Hironaka
characteristic polyhedron A(h;u1,uz,uz; X) C RE, associate with (1) is minimal [H1].

The case w(z) = 0 is easily dealt with in I1.4.6 by a simple combinatorial algorithm (Hironaka’s
game). When w(z) > 0, the refinement w’(z) € {1,2,3} essentially stores in the information that
w(x) is computed from g (W'(z) = 1), from f alone (w’'(x) = 2) or from both f and g (w'(x) = 3)
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in equation (1). The main point is our definition of permissible blowing ups for Q(x) and which
is non-increasing by such blowing ups (section II.5). Our notion of permissible blowing ups is
more restrictive than that of Hironaka (i.e. regular and equimultiple centers for the hypersurface
Xp). The main difficulty which is overcome here is to get some hold on the transformation laws
for Hironaka’s characteristic polyhedra under blowing ups which are permissible in our sense. The
cases w'(x) = 3 (theorem I1.5.6) and w’(z) = 1 (theorems I.1 and 1.2.7 of chapter 2) are easily
dispatched once this behavior has been understood. In these cases, there exists some form of
maximal contact for ¢(z).

In chapter 2, we begin the definition of a secondary invariant x(z) € {0,1,2,3,4,5,6} which is
a multivalued function. The case k(z) € {0,1} (I.2.3 and 1.2.5) corresponds to Abhyankar’s good
points: some reasonable algorithm makes Q(z) drop.

In the remaining case w’(x) = 2, we cannot produce any notion of maximal contact for +(z) in
general. The proof is then casuistic: we define k(z) € {2,3,4,5,6} in terms of the equation (1) and
the strategy is to drop the smallest value of the multi-valued function (¢(z), 5(x))jex. The proof
goes from chapter 2 section II to the end of this article.

Section II of chapter 2 recollects several cases where x(x) € {0, 1}.

In chapter 3 (resp. chapter 4), we define and resolve k(z) € {2,3,4} (resp. k(x) € {5,6}).
Roughly speaking, the cases k(z) € {2,3,4} (resp. k(x) € {5,6}) mean that our Jacobian ideal
J(f,E) is transverse (resp. tangent) to E in a certain sense.

It is worth noting that in the case k(z) = 3, we are lead to use nonpermissible blowing ups to
prepare the base SpecS.

We now include a detailed summary of the proof.



DETAILED SUMMARY OF THE PROOF

CHAPTER 1: Invariants and blowing ups.

In this chapter, we define our main invariant t(xg) = (ord,,(h),Q(z)) at the center zy €
Xo := Spec(R) of . We have Q(z¢) := (w(x0),w' (7)) € N x {1,2,3} (definition 11.4).

The case w(zg) = 0 is resolved by a simple combinatorial algorithm. This means that we can
make ord,, (h) strictly decrease at the center of 1 (I1.4.6).

When w(xo) > 1, we define a notion of permissible center and prove that «(zo) does not increase
by permissible blowing-ups (IL.5).

Finally, it is proved that «(zo) can be strictly decreased when w'(zo) = 3 (I1.5.6).

I. It can be assumed that X is regular away from n~!(E), E normal crossings divisor on Spec(S)

and g.c.d.g(f,g?) # 1.
II.1 to I1.1.5. Introduction of Hironaka’s characteristic polyhedron A(h;uy,us,us; X) C Rio at

any point z € X not necessarily closed. Associated invariants: 6(z) € %N, H(z):=g.cd.g(f,d")
and the directrix.

I1.2 to I1.2.3. Hironaka’s characteristic polyhedron A(h;uy, us, uz; X) C R;O requires coordinates

in R the formal completion of R. However, its initial face and our invariant §(z) can be computed
with coordinates in R, whenever n(Y") (Y = {z}) has normal crossings with E (proposition I1.2.2).

I1.3 to I1.4.3. We define J(f, E), the ideal generated by the coefficients of H (z)~1df € Q}g/ko (logE).I
The main invariant is:

w(z) := min{ord, (J(f, E), H(x) '¢?)},

where the minimum is taken over all possible (X, uj,us,u3) computing Hironaka’s characteristic
polyhedron and E Cdiv(ujusus) (I1.4). Another invariant is

e(x) :=ord, (H(z) ' f, H(z) ' ¢?),

and we always have e(x) — 1 < w(x) < e(x) (I1.3.3).

The invariant ord,(H (x)~1f, H(z) 'g”) does not depend on the choice of (X, u1,us,us) as
above, but ord, (J(f, E), H(x) 1g?) may depend on it (I1.3.3.1 and I11.3.3.2). This phenomenon
is encoded in w'(x) € {1,2,3}: when ord,(J(f, E), H(x) 'g”) depends on choices of coordinates,
we let w'(z) = 3. Otherwise, we let w'(z) = 1 if w(x) = ord,(H(z) 'gP) and w'(x) = 2 if
w(z) < ord, (H(z) tgP) (I1.4). We denote

I1.4.4 to I1.4.7. The case w(zg) = 0 is solved. The set W := {z € 3, | w(x) > 1} is Zariski closed
of dimension at most 1 (I1.4.7).
We assume that w(zg) > 1 from this point on.

IL.5 to I1.5.2. We define permissible centers for our invariant 2. A center Y C Xy with generic
point y is permissible if it is permissible in Hironaka’s sense (Y regular and ord,, (k) = ordy (h) = p),
n(y) has normal crossings with F and satisfies one of the following conditions:
(i) e(xo) = €(y) (first kind)
(ii) w(zo) = €(xo) — 1 = €(y) plus some extra transversality condition (second kind).

This is defined in I11.5.1. The point z¢ is always permissible of the first kind.
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I1.5.3 and I1.5.3.1. The condition H(zg) # 1 of I has an essential consequence: If (X, u1, us, us)
computes Hironaka's characteristic polyhedron and E Cdiv(ujusus), e : X1 — Xy is the blowing
up along a permissible (in Hironaka’s sense) center Y, then ord, (h’) < p, whenever 2’ is not on
the strict transform of div(X) where A’ is the strict transform of h (I1.5.3(i)).

The condition H(xg) # 1 of I is not stable under permissible blowing up, but we can solve
directly the local uniformization problem for p whenever we lose this condition after performing a
permissible blowing up (IL.5.3(ii)).

We assume that H(z() # 1 from this point on.

Important remark. In spite of this statement, we emphasize that there exists in general no choice

of X in such way that div(X) has maximal contact with respect to the invariant ¢. In particular,
one needs to minimize polyhedra after each performed blowing up.

I1.5.3.2. This theorem is fundamental and repeatedly used along this article; resolution in dimen-
sion 2 heavily relies on this result. Whenever one performs a permissible blowing up e : X; — X
and pick 2’ € X on the strict transform of div(u;), we can apply this result to get an estimate on
w(z').
I1.5.4 to I1.5.5. Proof that «(z') := (ord, (h'),Q(z")) < t(xg) if e : X1 — X is a permissible
blowing up. Any point ' € X; with e(z’) = z¢ and ¢(2") = ¢(x0) is said to be very near .
I1.5.6 to I1.5.7. We prove that ¢(xg) can be strictly decreased after a finite number of closed point
blowing ups when w’(xo) = 3.
I1.6 to I1.6.2. If H(x) # 1, the function w is uppersemicontinuous on ¥, (Xy).

We assume that w'(z¢) < 2 from this point on.

IIT In those situations analysed in chapter 3 II below, we use nonpermissible blowing ups of a
special type described in this section.

Important remark. In all that follows, it is always assumed that A(h;uq,u2, us; X) is minimal.
Chapter 3 IT and our definitions of k(z) = 2,3,4,5,6 (chapters 3 and 4) rely on the shape of the
expansion of f under this assumption.

CHAPTER 2: A few easy cases.

Note that X now denotes some iterated blowing up of Xy and x € X the center of i in X.

We prove that t(xg) can be strictly decreased by a finite number of permissible blowing ups
when w'(xg) = 1 (theorem I and 1.2.7).

We introduce a new invariant k with k(xz) € {0,1,...,6}. The case k(z) < 1 corresponds to
Abhyankar’s good points and we give a few examples with k(x) < 1 (1.2.3 and 1.2.5) and section
II.

I.1 to 1.2.7. To solve the case w'(x) = 1, we argue on the number of irreducible components
of the normal crossing divisor H(z)~!gP. This is easy (theorem I.1) unless this number is 1, say
div(H (2)71gP)eqa =div(u1). In this remaining case, we project Hironaka’s characteristic polyhedron
A(h;uy,ug,uz; X) C R;O on the (ug,u3) plane and use Hironaka’s invariants for dimension 2
resolution of singularities which we control under permissible blowing ups (I.2 to 1.2.2). This
works straightforwardly because there is maximal contact with div(u;) for the invariant ¢.

We introduce the multivalued function k. We have x(x) = 0 (resp. k(x) = 1) if ¢(z) strictly
drops after performing a finite number of closed point blowing ups (resp. of permissible blowing
ups) (definitions 1.2.3 and I.2.5).

We prove that w’(z) = 1 implies k(z) < 1 using the above invariants (I.2.4 to 1.2.7).
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We assume that w'(z) = 2 from this point on.

I1.1.1 to I1.1.4. We define a notion of directrix adapted to our invariant ¢+ and permissible blowing
ups: if e : X3 — X is a permissible blowing up of the first kind, any 2’ € X; with «(z") = () (2’
very near x) maps to the projective space PDir(z) associated to the directrix VDir(z). We denote
by 7/(z) the codimension of VDir(z).

II.1, I1.3 and II.4. These examples of k(z) < 1 are fundamental preliminaries of chapter 3: they
will be used to prove further on that the case (x) < 2 is stable by blowing up closed points.

I1.5. This lemma classifies some cases when 7/(x) = 3, hence k(z) = 0 by I1.1.4.

CHAPTER 3: Resolution when there is transverseness.

This chapter is devoted to some cases where VDir(z) is not contained in < {U; | div(u;) C
E} >, which we refer to as the “transverse case”. Unfortunately, transverseness is not even stable
by blowing up closed points.

We introduce subcases of transverseness called k(z) = 2 (I, definition 1.1), x(z) = 3 (II,
definition 11.1.1), k(z) = 4 (II1, definition I11.2).

We have that (u(x),r(x)) can be strictly decreased in each of these cases: theorem 1.8 for
k(x) = 2; definition 11.1.3 and I1.7 for k(x) = 3; definitions I11.3 and I11.4, propositions I11.5
and II1.6 for k(x) = 4.

I Resolution of the case x(z) = 2.

I.1. Definition of x(x) = 2. We have x(x) = 2 if:
(i) e(z) = w(x) and VDir(z) < {U; | div(u;) C E} >.
Unfortunately, this is not stable by blowing up closed points, so we have to include as well the
following case:
(ii) €(z) = 1 + w(x) plus some cross derivative condition.

I.1.1 to I.4. Using those “easy examples” of k(x) < 1 in chapter 2, one reduces k(z) = 2 to three
subcases (*1),(*2) and (*3) of definition I.1.2 (corollary 1.3).
We assume that this condition (*) holds up to the end of section I (remark I.4).

1.5 to 1.6.3. By (*), we have E Cdiv(ujug). We project Hironaka’s characteristic polyhedron
A(h;uy,ug,uz; X) C R?io on the (u1,us) plane. This projection can be minimized over all choices
of the X and ugz coordinates, and we call this minimizing “well preparedness of variables” (definitions
I.5.1.1 and 1.5.1.2).

Then our invariants are essentially Hironaka’s invariants for dimension two resolution of sin-
gularities computed for the projection of A(h;uy,us,us; X) (section I.5). The main invariant is
denoted y(z) € N (definition 1.5.2.3).

Existence of well prepared variables is proved in proposition 1.6.

1.7. Well prepared coordinates may be chosen in such a way that every very near point ' € X; in
the blowing up X; — X of x € X lies on the strict transform of div(ug) or x(z) < 1.

Important remark. In spite of this statement, we emphasize that there exists in general no
choice of (X, u3) in such way that div(us) has maximal contact with respect to our invariants. In
particular, one needs to well prepare again coordinates after each performed blowing up.

I.8. Statement of the main theorem: ¢(x) can be strictly decreased whenever x(z) = 2.

1.8.1. Proof of 1.8 when ~(x) = 0.
We assume that v(z) > 1 up to the end of section I
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Important remark. The following is proved below. Let e : X; — X be the blowing up of .
Then, either rk(z) < 1 or

k(2') = k(z) =2, (*) holds at 2" and v(z') < v(z). ()

Unfortunately, none of cases (*1),(*2) or (*3) is stable by blowing up closed points, nor even-
tually gets stable by blowing up enough; this produces extra technical difficulties.

1.8.2 to I.8.3. Control of v(z) under blowing up the closed point x in case (*1) or (*2) and when
a2’ belongs to the first chart of the blowing up X; (i.e. away from the strict transform of div(uy)).
(T") is proved in I.8.3(a)(b)(c)(d). All other statements in I1.8.3 give sharper estimates of the
invariants which appear along the proof. These estimates will be used to study the cases where
V(@) = ().
Some very special case (Dis) appears when w(z) = p = 2 which requires further work (theorem
1.10 below).

1.8.4 to I.8.6. In some (*3) cases, blowing up a permissible curve of the second kind gives x(z) < 1.
This result is included there to simplify 1.8.7 and 1.8.9.

1.8.6.1 to 1.8.7. Control of v(z) under blowing up the closed point z in case (*3) and when z’
belongs to the first chart of the blowing up Xj.

(T") is proved in I.8.7(a)(b)(d). All other statements in I.8.7 give sharper estimates of the
invariants which appear along the proof. These estimates will be used to study the cases where
V(@) = ~(x).

1.8.8. Control of v(z) under blowing up the closed point z in case (*1) or (*2) and when 2’ is at
infinity in the blowing up X;: proof of (T') in this case.

1.8.9. Control of v(x) under blowing up the closed point z in case (*3) and when 2’ is at infinity
in the blowing up Xj: proof of (I') in this case.

I.9. Proof of I.8 when ~y(z) = 1 plus some extra condition in case (*3).

1.10. Proof of 1.8 when «(x) = 2, = is in case (*1) plus some extra condition. This theorem deals
with those special cases that appeared in 1.8.3(e) and 1.8.7(b) (in particular the case (Dis)).
Important remark. Synthesis of 1.8.2 to I.10.

The invariant y(x;) takes a constant value (u) for ¢ >> 0 where

Xo+— X — ... — X; — ...

is the quadratic sequence along p and x; € X; its center, or x(z) < 1.

I.11 to I.11.4. If (u) = 1 or if () > 3, the estimates on ~(z) proved above imply the existence
of a formal curve C C X, C ¢ E whose strict transform contains all the x;’s, ¢ > 0. This is a
contradiction since C is not contained in the singular locus ¥ of X (remember that ¥ C n~!(E),
chapter 1 I).

If (1) = 2, we reduce successively in I.11.4 to lemmas I.11.1, I.11.2 and I.11.3. We
eventually get the existence of a formal curve C C X as above - a contradiction - unless x(z) < 1.

IT Resolution of the case x(z) = 3.

I1.1 and I1.1.1. Definition of x(z) = 3. This other important case of transverseness which is not

contained in k(z) = 2 goes as follows:
E Cdiv(ujug) and (H(an)‘lg—j3 = (u§($)) mod (u,us).

We may have e(x) = w(z) or €(z) =1+ w(z). Necessarily 1 + w(z) # 0 mod p.
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We project Hironaka’s characteristic polyhedron A(h;uy,us,uz; X) C R;O on the (up,us)
plane. This projection can be minimized over all choices of the X and ug coordinates and we call
this minimizing “well preparedness of variables”.

Then our invariants are essentially Hironaka’s invariants for dimension two resolution of sin-
gularities computed for the projection of A(h;uy,us,us; X). The main invariant is denoted y(x) €
N —{0} (I1.1).

Existence of well prepared variables is proved in II.1.

Important remarks.

Unfortunately, x(x) = 3 is not stable by blowing up a closed point. We will use certain non
permissible blowing ups in this section which preserve the Artin-Schreier or purely inseparable
structure of h, the assumption n(X) C E, H(x) # 1 and do not increase (t(x), k(Z))ex-

The strategy is as follows: list some cases where x(x) = 3 can be reduced to k(z) < 2 by
permissible blowing ups (I1.1.2 to II1.2.2). Then, in the general case of k(z) = 3, perform a
sequence of nonpermissible blowing ups to reduce to one of these previous cases (II.3 to IL.7).

I1.1.2 to I1.2.2. Well prepared coordinates may be chosen in such a way that every very near
point 2’ € X; in the blowing up X; — X of x € X lies on the strict transform of div(us) (I1.1.2).

We have k() < 1 in some cases where the projection of Hironaka’s characteristic polyhedron
has only one vertex (I1.2).

I1.3. If k() = 3 and e : X; — X is the blowing up along = *(V(uy,uz)) and x € e~ () then,
v(z) < u(x), k(z') < k(xz) = 3 and y(a’) < y(x). Statements (ii) to (vii) study the behaviour of
auxiliary invariants.

I1.4 to IL.5. Proof that x(z) < 1 in some cases where y(z) = 1.

I1.6. Sharpening of I1.2: we have k(z) < 1 whenever the projection of Hironaka’s characteristic
polyhedron has only one vertex.

I1.7. Those nonpermissible blowing ups considered in II.3 allow to drop the invariant y(x) to a
minimal value y(p). The case y(u) > 2 is dispatched on IL.7.1, I1.7.2. The case y(u) = 1 is
reduced to three different cases I1.7.4, I1.7.5 or 11.7.6.

IIT End of transverseness.

ITI.1 to ITI.2. The most general case of transverseness is defined in III.2. Once k(z) = 2 and
k(z) = 3 have been solved, the only remaining case of transverseness is:

E =div(u;) and ord(uz’uB)(H(ac)*l(,%f3 mod (u1)) = w(zx).

This remaining case is reduced to lemma III.1. Note that the assumptions of III.1 do not

imply k(z) < 4 rather there is an algorithm to reduce this case to x(x) < 3.

II1.3 to the end. Assume k(z) = 4, z is good if a finite sequence of permissible blowing ups makes
(¢(x), k(x)) strictly drop (II1.3).
Assume that x(z) = 4. We let 7(z) := 7(cly)J(f, E) + ({U; | div(u;) € E})) >
Assume that x(z) = 4. There are two different cases: 7(z) = 2 (IIL.5) or 7(z) =
both cases, = is good.

2 (IIL.4).
3 (IIL6). In

Important remark. r(xz) = 4 is not stable under permissible blowing ups; in a sequence of
permissible blowing ups X = Xg «— X; «— --- «— X;--- «—— X, it may happen that for
0 < i< n, k(xz) >4, but then, x; will verify the assumptions of ITI.1.

CHAPTER 4: Resolution when there is tangency
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Tangency is the complement case of transverseness, i.e. all remaining cases are called tangent.
In IT1, tangency is reduced to the case k(x) = 5. When k(z) =5, we prove that (1(x), k(x))1ex can
be strictly decreased by permissible blowing ups (theorem I1.1 and definition 1.1).

I.1 Definition of k(xz) = 5. We have r(z) = 5 if div(u;) C E and one of the following conditions
holds:
() = w(a), (H(x)™'f) = (ui'™) mod (us, us),
€(z) =14 w(x), £ Cdiv(ujug) and (H(:c)_l%g) = (u‘f(r)) mod (ug, us).

x is said to be good if a finite sequence of permissible blowing ups makes (:(z), k() )1ex strictly
drop.

1.2 to I.2.4. We project Hironaka’s characteristic polyhedron A(h;uy,ug,us; X) on the (ug,us)
plane.

Then our invariants are essentially Hironaka’s invariants for dimension two resolution of sin-
gularities computed for the projection of A(h;uy,us,us; X) (section I.5). The main invariant is
denoted y(z) € N (definition 1.2.4).

I.3 to 1.3.3. If e : X; — X is the blowing up of a closed point and 2’ € e~ !(z), then
(e(2),k(2")) <iex (t(x),k(x)) and, if equality holds, x’ lies on the strict transform of div(u;)
(maximal contact) (I.3).

Same result as in 1.3 for the blowing up of a permissible curve (with some extra assumption
when €(z) = 1 + w(x)) (1.3.3).

I.4 to 1.4.1. If e : X; — X is the blowing up of a closed point with w(z) = e(x) and 2’ € e7!(z)
in the first chart with (c(2'),k(2")) = (u(x),k(z)), then v(z') < (z) and control of auxiliary
invariants.

I1.4.2. When w(z) = €(z) and the projection of A(h;u,us,us; X) has only one vertex plus some
extra conditions, z is good.

I.5. If e : X; — X is the blowing up of the closed point with 1+w(z) = ¢(z) and 2’ € e~ *(z) in the
first chart with (v(2'), k(z")) = (¢(z), k(x)), then y(z') < v(z) and control of auxiliary invariants.

1.5.1. Some cases where z is good and y(x) < 1, 1 + w(z) = €(z).

1.5.2 and 1.5.3. Blowing up of the closed point x, case where 2’ is at infinity: (c(z'), k(z'),
(¢e(x), k(x),v(x)) and control of auxiliary invariants (w(z) = e(z) in 1.5.2, 1+ w(z) = e(x) i

I.6. Some cases where z is good and y(z) < 1.
I.7. Sharpening of I.4.2: when w(z) = €(x) and the projection of A(h;uy,us,us; X) has only one

vertex, z is good.

IT End of the case k(z) =5

II.1. Statement of the theorem. Let x € ¥, with x(z) = 5, then z is good.
We perform the quadratic sequences along ;. We suppose that (¢(z), £())1ex does not strictly
decrease. As usual, there is a minimal value v(u) of y(z;) for i >> 0.

I1.2. Proof of I1.1 when m(z;) = 2 for ¢ >> 0.
I1.3. Proof of I1.1 when m(xz;) = 3 for i >> 0.

Till the end of II, we assume that neither the assumption of II.2, nor II.3 is
satisfied.
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I1.4 to I1.4.2. For i >> 0, x;1 is rational over x; and y(u) < 2. Furthermore v(u) < 1 implies z
is good.

11.4.3. Proof of II.1 when ~(u) = 2.

IIT End of the proof of the main theorem.

II1.1. k(x) = 6 means “no expansion of h gives k(x) € {2,3,4,5}".
x is said to be good if the quadratic sequence along p makes (¢(x), K(z))iex strictly drop.

ITI.2. Main result: x(z) = 6 implies x is good. The end is devoted to its proof.

IT1.3. k(z) = 6 implies 7/(z) = 2. furthermore, if e : X3 — X is the blowing up of the closed
point z, and (¢(z'), k(2')) = (e(z), k(z)), then 2’ is rational over x.

IT1.4 to ITL.5.1. If k(x) = 6 and (either E =div(uq), or VDir(x) ¢ < {U;|div(u;) C E} >), then
is good.

ITI.5.2 and III.5.3. We reduce to the case div(ujuz) C E, VDir(z) C< {U;|div(u;) € E} > and
e(z) = w(z).

II1.6 to I11.6.3. Proof in this last case.
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CHAPTER 1: invariants and blowing ups.

In this chapter, we define our main invariant Q(xg) € Nx{1,2,3} in IL.4. When Q(z() is min-
imal, resolution is easily obtained by some combinatorial blowing up process in 11.4.6. Otherwise,
some notion of permissible blowing up w.r.t. this invariant is given in I1.5.1.

The main results I1.5.4 and I1.6 respectively deal with the behavior of (xo) by permissible
blowing ups and upper-semicontinuity of Q(z¢) on ¥,(Xy). Before going that far, we introduce
techniques of characteristic polyhedra due to Hironaka and differential invariants due to the first
author and to his advisor Jean Giraud in section II, after performing some preparation of the
singular locus X(X() in section I. Those nonpermissible blowing ups used in this article are described
in III.

I Preparation of the singular locus.

In the Artin-Schreier case g # 0, we can suppose that g is a monomial, i.e. that there exists a
reduced normal crossings divisor E C SpecS, such that

g=~ I (

div(u;)CE

—
~—

with 3; > 0 and v € S invertible. Indeed, apply [CP] 8.1 with fp := ¢g. The integers 1 < e < j <3
are defined by: E = div(ui---u;), f1---0e # 0 and Bey; = -+ = §; = 0. We let Ey =
div(us - - - ue). Note that n: X — SpecS is étale away from n~!Ey. In particular ¥ C n~1Ej.

In the inseparable case g = 0, let df be the image of f in Qg Jko (where k is differentially finite
over the perfect field k). We have df # 0 since f ¢ SP (remember that h is irreducible). We pick
@ €5, ¢ # 0, such that df does not vanish away from the set {¢ = 0}. By [CP] 8.1, it can be
assumed that fo := ¢ is a monomial whose support is defined to be E = div(u; ---u;). We let
B; =oofor 1 <i<jand Ey:= F in this case. Like in the Artin-Schreier case, we have ¥ C n’lEg.
See I1.3.1 for an important consequence of the assumption.

Also note that, if g = 0, or if g # 0 and s € Fj, the fiber ring Spec(k(s) ®s R/(h)) is local, i.e.
n~1(s) is a single point.

From now on, we suppose that (1) holds if g # 0, or that E is defined as above if g = 0 and
that (unless stated otherwise) r.s.p.’s (u1, ua, u3) of S are chosen according to the above convention
on Fy and E. We then say that (uy,us,us3) is adapted to E. We let

= H u?if(h (2)

div(u;)CE

where fy € S is not divisible by any u; with div(u;) C E. Finally, note that since (f,g) C mg, it
can also be assumed that (f,g) C (u;) for some 7, 1 <4 < j.

IT The invariant w.

As said before, we suppose that the center of 1 in Xj is a closed point, but, to prove some semi-
continuity theorems, we have to define our invariants also at all points. In this section, x € Xg is
not necessarily the center xg of u: x is a point such that xg € @ We always assume that xg € X,
in this section, but do not necessarily assume that x € .

I1.1 Notations. Let (uy,...,u,), n < 3 be ars.p. of Sy, and E, (resp. Ep,) be the stalk of
E (resp. Ey) at n(x). Then (X, uq,...,u,) is a system of coordinates at x.
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The associated polyhedron A(h;us,...,u,; X) C RY, (projection on the (us,...,u,)-space
of 1/p times the Newton polyhedron of h from the point (0,...,0,1)) can be minimized by a
“translation on X7, i.e. by replacing X by Z := X +1, ¢ € S/n(;) as in [H1]. This translation does
not modify g, nor the vanishing locus of df € Q}g/ko if g = 0. Also note that A(h;uy, ..., u,; X) #
@ by definition if g # 0, and because S[X]/(h) is analytically reduced. For a given system of
coordinates (X, uy,...,u,), we denote

0( X, upy. . uy) :=1nf{zy + -+ xp|(z1, ..., 20) € AR ug, ..., up; X))} < 00.

—

We also maintain the writing f = Hdiv(ui)g E, ui fo of 1(2), allowing fy € S,y for arbitrary
coordinates (X, uq,...,u,) on %[X]

II1.1.1 Definition of 6. Assume that the polyhedron A(h;uy, ..., uy; X) is minimal. Then 0(x) <

oo is defined by:
Ordn(z)(f)} c EN

d(x) := inf{ord, . (9),
(z) {ordya)(9), — 5

I1.1.2 Definition of d;. Assume that the polyhedron A(h;uy,...,uy; X) is minimal. Let
di(x) = inf{B;, $+} for div(w;) € Ex and H(2) = [l (u,)cp, ufdi’(w) € Sy(a)-

p

We extend the notation by setting d;(x) = 0 for div(u;) € E,. Although all numerical invari-
ants which have been associated with z depend on f, hence on the choice of minimal coordinates,
we will see in I1.2 that they usually do not.

I1.1.3 Definition. Let k be a field, S1 a k-vector space of finite dimension and S = k[Si] be
the symmetric algebra. Let V := SpecS and I be a homogeneous ideal of S which defines a cone
C := Spec(S/I). Let § be the following subfunctor of the functor represented by V: for every
k-scheme k',

) ={v e V(K) | Ly(C x1 k) C C xp k' 1,

where L, is the translation defined by v, i.e.

L, : Vxpk' — VXK, L,()=v+".

This functor is represented by a closed group subscheme F'/k of V' which is also a cone and
called the ridge of V. The scheme F' has for equations homogeneous additive polynomials with
coefficients in k. By a theorem of Hironaka, the ridge is the larger group subscheme of V' which
leaves C' stable by translations. See [Gil, prop 1.5.4] and [Gi2 1.5].

II1.1.4 Definition. With notations as above, the directriz VDir(I) of C is the smallest k-vector
subspace W of Sy such that I = (K[W]N1I)S. We also denote IDir(I) := VDir(I)S, PDir(I) :=
Proj(S/IDir(1)).

By Hironaka’s quoted theorem, the directrix is the smallest k-vector subspace Dir(I) of S;
which generates an ideal containing the ideal of the ridge. If z € X, we will denote by Cj(z) :=
Proj(gr,,, S./in,h) the tangent cone of X at x.

II.1.5 Notation. We denote by 7(I) the codimension of VDir(I) in Si.

I1.2 Proposition. The integer 6(x) does not depend on any choice of coordinates (X, u,. .., uy,)
such that A(h;uy, ..., u,; X) is minimal.
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If div(uy) C Eg 4, di(z) does not depend on any choice of coordinates (X, u1, ..., u,) such that
Eyp Cdiv(ug -+ uy,) and A(hsus,. .., un; X) s minimal. For any such choice of coordinates, the
following holds: if V(h,u1) = V(X,u1), we have dy(z) = d1(y) = d(y) > 0, where y is the generic
point of V(X,uy1); we have di(x) = 0 otherwise.

Proof. See [6] for a stronger form of this proposition that will not be needed here. Let us first
prove that §(z) does not depend on the choice of coordinates minimizing the polyhedron of h.
If there exists coordinates (X', u},...,ul) such that 6(X',u},...,ul,) > 6(X,uy,...,uy,), then

» ¥'n r'n

if we write h = X'? — X'¢gP~! + f', we have f/,gP € mgé(x Waetin) g (X ug,y . yuy) =

(X ul, o oul) > 0( X, ur, ey un): A(Rug, ... un; X) s n](()t) minimal, and this proves the first
part of the proposition.

Note that the finite map V (h,u;) — div(uy) is either an isomorphism or purely inseparable of
degree p whenever div(u;) C Ejy.

If 0 < dy(x), then (h,u1)rea = (X,u1). By the lemma below, the value of d;(x) computed
in a given system of coordinates such that the polyhedron A(h;uy, ..., u,; X) is minimal satisfies
di(x) = d1(y) = §(y) where y is the generic point of V(X,u1) and A(h;u1; X) = [§(y), +oo[C RT
is minimal. But 6(y) does not depend on the choice of minimal coordinates by the first part of the
proposition and the conclusion follows.

If di(x) = 0 and if V/(h,u;) — div(u1) is an isomorphism, then (h, u1)rea = (X +1¢,u1), ¥ € S.
We replace X by X +1), and get that A(h;uy, ..., u,; X +1) does not contain A(h;uy,. .., u,; X),
which contradicts the minimality hypothesis. So di(z) = 0 is equivalent to: V' (h,u1) — div(uy) is
not an isomorphism (hence purely inseparable of degree p).

I1.2.1 Lemma (Semi-continuity of the characteristic polyhedron). Assume that the polyhedron
A(h;uy, ... up; X) is minimal. Let Y := V(X,uq,...,u;) C SpecR and y be the generic point of
Y for some i, 1 < i < n. The polyhedron A(h;uy,...,u;; X) is minimal, where h is viewed as an
element of (% ®S, ) %)[X] We have the equivalences:

(1) inf{zy + -+ x;|(x1, 22, ..., 2p) € A(Dsur,u2,...,up; X)} 21 &Y C Xy,

(ii) inf{xy 4 +x;[(x1, T2, ..., 2n) € A(hyur, Uz, ..., un; X)} > 16 Y C X, and 7(Iy Syyy)) = 1.
Proof. In fact the polyhedron A(h;uy,...,u;; X) is the image of A(h;uq,...,uy; X) by the projec-
tion 7 on the (z1,...,x;)-space, so a vertex v = (z1,...,x;) of A(h;uq,...,u;; X) is the projection
m(w) of at least one vertex w = (z1,...,%,) of A(hjuy, ..., un; X).

Let us prove the first assertion. We write

h=XP_-X Zemul(p_l)ml .. .un(p_l)wn + E ¢mu1p$1 .. 'Unpw”,
el el

where

(a) x = (z1,...,xn), € C A(h;uy, ..., up; X);
(b) £ is finite and contains all vertices of A(h;uy, ..., up; X);

—

(c) each of €, and ¢, is either invertible or identically zero in S, ,).
Let v = (z1,...,x;) be a vertex of A(h;uq,...,u;; X) and let us look at

XP _ X Z Ezul(p—l)ah ) ..un(p—l)wn + Z GpurPT - up P

z,m(x)=v z,m(x)=v

If Zw,ﬂ'(z):’u epup PDT gy, (P=1)Pn £ () then v is not solvable in A(hjuq,...,u; X). We

claim that if one vertex w = (z1,...,%;, Wit1,...,wy) with 7(w) = v is not solvable over %,
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then v is not solvable in A(h;uq,...,u;; X). Namely, otherwise we have z1,...,2; € N and we can
find

Y €T = (Syea)/(Ws -, ui)Sy(a) (S, 0y /(ur i) Syay) K (Y)
such that

wp = Z ¢xui+1p1i+1 o u, PP mod (ul, e Ui)Sn(x) ®Sn(:v) Sn(y).

z,m(x)=v

Since S is regular and excellent, the fiber ring 7" is an integral domain ([Ma] section 32).

—

Therefore there exists a € S/n(;), b € Sy) with ab & (u1, ..., u;)Sy(y) such that

e Z ¢zui+1pxi+l s Unpx" = a” mod (ul, ey uz)Sn(m)
z,m(z)=v
Since w is a vertex of A(h;uy, ..., u,; X ), we must have
Wit1,-.., Wy €N, and ¢, mode/<\) € k(x)P,
n(x

so w is solvable: a contradiction. The last two equivalences are now straightforward.

At this point, we remark that d;(x) = 0 whenever div(u;) € Epy,. Otherwise, d;(z) does not
depend on the choice of « such that div(u;) C Ey, and is determined by II.2. From now on, we
thus relax the notation by writing d; instead of d;(z).

I1.2.2 Proposition. Let N € N, §(zg) < N < 400 (resp. N = +o0). There exists X € R (resp.
X € R) such that E C div(ujusus) and
(i) d; = inf{x;|(x1, 2, x3) € A(h;u1,us,us; X)} whenever div(u;) C E;
(ii) no vertex v = (x1,x2,x3) of A(h;uy, uz, uz; X) with x1 +x9+2x3 < N is solvable. In particular,
d(xo) = inf{zy + 2 + x3|(21, 22, 23) € A(h;u1,u2,u3; X)}.

Furthermore, if for some r.s.p. (X', u1,uz,u3) of R, Y := V(X' ,u1,uz) Cn~1E is such that
n(Y) = V(uy,u2) has normal crossings with E, we can choose X € R (resp. X € ]TE) such that
moreover A(h;uy, ug; X) is minimal and Y = V (X, uy, ug).

Proof. We first point out that the formal version (X € }A%) is a consequence of I1.2.1 except when
Y has been specified.

We start with some r.s.p. (X', uj,uz,u3) of R such that E C div(ujugus) and a writing
h=X7?-X'gr-'+ fecSX], f= Hdiv(ui)gE u; fo € S, with a; maximal for each 1.

I1.2.2.1 Suppose that dy #inf{z1|(z1, z2,23) € A(h;u1,us, usz; X’). Then d; > 0, so that div(uy) C
Ey and V' (h, uy) is regular by I1.2. If a; = 0, we can choose ¢ € S such that (h, u1)req = (X' -+, u7)
and get a; > 0 after changing X’ to X'+1. Note that us divides ¢ if div(us) C Ep and ag > 0. Also
note that if h € (X', uy,uz) then ¢ € (X', uy,uz) NS = (uy,us). Finally, if h € (X', ug, us) then
we can choose ¥ € (ug,u3)S satisfying f = ¢ mod(uy) and (h, u1)red = (X' + ¥, up). Therefore
V(X' ug,u3) = V(X' 4+ 9, u2,u3) in this case. In other terms, it can be assumed that a; > 0
whenever div(u;) C Ey and d; > 0; moreover we still have Y = V(X' , u;,us) in the new variables
if Y = V(X', u1,usz) has been specified.

The polyhedron A(h;ui; X’) = [a1/p, +0o[C R is not minimal, so §(X’,u;) = a1/p € N;
the initial form of h with respect to the unique vertex §(X’,uq) is X' + Ufé(xl’ul)\lfp with U €
QF(S/(u1)). Since f € S, we actually have ¥ € S/(u1). Since [ [y, wi* divides f, we can lift
¥ to ¢ € S in such a way that [[y,(,)cm, wi's @ # 1 divides ¢P. Replacing X' with X" := X' +

u1/Pep, we get A(hyur; X)) € A(h;uy; X') and A(hyu; X)) € A(h;us; X') whenever div(u;) C
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Ey, i # 1. Moreover we can choose 1) € S such that Y = V(X" uy,us) if Y = V(X' us,up) Cn~LE
has been specified, as in the previous paragraph. By induction on ) a;, we achieve an expression
h=X"-X'gP=1+ f € S[X] with d; =inf{z;|(z1, 22, x3) € A(h;u1,u2,u3; X')} whenever div(u;) C
E, that is, A(h;u;; X') is minimal whenever div(u;) C F so that (i) holds.

I1.2.2.2 Now consider the case where Y := V(X' uy,us) C 7 'E has been specified. The poly-
hedron A(h;uy,ug; X') is the image of A(h;uy,us,us; X’) by the projection 7 on the space of the
(1, z2). Suppose that a vertex v = (z1,x2) of A(h;u1,u2; X’) is solvable, i.e. does not belong to
the minimal polyhedron. This means that there exist x1,x2 € N such that the Newton polyhedron
of f — (uui'u3®)P is strictly contained in that of f, where u € S is invertible in S(,, .,). By the
same argument as above, we can ensure pf € ugdSS in case div(us) C E. After changing X’ with
X' + puitui?, we dissolve v without losing (i).

We claim that this algorithm is finite: if not, it would mean that we dissolve an infinite number
of vertices with x; or xo minimal, say x;. Since the polyhedron A(h;wu;; X’) is minimal whenever
div(u;) C E, we get that div(u;) € E, and therefore div(uz) C E. First suppose that z; = 0.
Necessarily, we have g = 0, and there exists ¥ € S such that f = ¥ modu;.S. We can assume as
above that ¥? € uP"S whenever div(u;) € E. Also we have ¢ € (uy,uz)S, since f € (u1,us)S.
We then replace X’ with X’ + 4 to get x1 > 0 without losing (i). Now, assuming z; > 0, we have
(f,g?) C (u}), so that V(X’,uy) C X. Therefore div(u;) C n(X) C E by definition of F in section
I: a contradiction.

I1.2.2.3 We suppose that d; = inf{z;|(z1, x2, 23) € A(h;u1, us, us; X’)} whenever div(u;) C E and
that A(h;u1,ug; X') is minimal if V(X' u1,u2) € n~1E has been specified. Then, we start Hiron-
aka’s algorithm of vertex dissolution: if there is a vertex v = (z1, z2, x3) of A(h;u1, us, ug; X’) which
is solvable, there exists A € S invertible giving a translation on X', say X = X’ + Auj'ui?u3?®, with
A(h;uy,ug,uz; X) C A(h;ug, uz,usz; X') and v is not a vertex of A(h;uy,usz,us; X). Note that by
projection A(h;u;; X) C A(h;u;; X') whenever div(u;) C E, and A(h; ug, ug; X) C A(h;ug, ug; X')
if Y = V(X' uy, usg) is specified. Consequently, these projections are still minimal. Furthermore, if
h € (X', uy,uz), we have V(X,u1,u2) = V(X' u1,uz). We will get the algebraic version (X € R)
of (ii) after a finite number of steps. In order to get A(h;uy,us,us; X) minimal, we may need
infinitely many steps. Then we construct a series X = X' + 3" A jui'uzus® € R and this proves
the formal version of the proposition.

I1.2.3 Definition. We call initial face or first face of A(h;uy,us,us; X) (not necessarily minimal)
the face of equation x1 + xo + x3 = 0(X, uy, ug, us).

I1.3 Adapted Jacobian ideals. We remind that kg is a perfect subfield of k and that Q}C Jko

has finite dimension. Then, for any r.s.p. (uy,usg,us) of S, a basis (dA,...,d\s) of Q}S/ko may be
chosen so that

up = A1, Uz = A2, U3 = A3. (1)

The derivations 6‘971, e, 86—/\5 are defined by gii = 0;j, 1 < 4,5 < s If (1) is true for
dM1,...,d)\s, we can take

N €S, 4<i<s, (2)

such that S is unramified over kg(A4, . .., As)[u1, u2, us]. In this case, the derivations %, 4<i<s

are so-called “derivations relative to constants”.

For z € SpecS, we extend the definition of H in I1.1.2 by writing H(x) for H(z), where  is
any point of Xy such that n(z) = z. If x € Ey, & is uniquely determined as pointed out in I. On
the other hand, H(x) =1 if x ¢ Ej.
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Let Y C Ey be a regular closed subset of SpecS, having normal crossings with £. We denote
I(Y) = ({ui}icr), I € {1,2,3}, where (u1,us,us3) is adapted to E. We let Ip :=IN{l,...,7} (see
I for the definition of j) and I°:= {1,2,3}\I.

Let us denote D := {D € Dery,(S) | D(I(E)rea) € I(E)ea}, where Derg, (S) = (Ql/ )V
denotes the S-module of ko-derivations of S into itself. We let D(Y) := {D € D | D(I(Y )) C
I(Y)}. More generally, for every point (not necessarily closed) = € SpecS we let D(z) = {D €
D | D(I(z)) CI(x)}. If € Xy, we also write D(z) for D(z), where n(Z) = x.

It is easy to see that if (1) is true for dAq,...,d\s, then

Zsuhajt > S

1<i1 < t 7+1<i2<3 i2 4<i3<s
E Sm1 g + E S (4)

8u12 Ou,,

1< g zzel\IE izele 4<ia<s
In particular, if Y = {n(zo)},
0
E Sm1 + E (u1,usz,us) 8u (5)
1<y 7+1<i2<3 ‘2 4<i3<s

At every point (not necessarily closed) z € SpecS, we let J(f, E), := (Df)S., J(f,E,Y), :=
(D(Y)f)S, and J(f,E,x), = (D(z)f)S.. These definitions make J(f,E), J(f,E,Y) and
J(f, E, z) into sheaves of ideals on SpecS and we will usually omit the subscript z when the context
is clear. Clearly, J(f,E,Y) and J(f, FE,x) are subsheaves of J(f,E), J(f,E), and J(f,E,Y),
(resp. J(f, E,x).) coincide with S for z ¢ E (resp. z ¢ EU{z}). If f = []4iy(u,)cp ui' fo, formula
(3) shows that the monomial []y;,(,,)cpui’ divides J(f, E), J(f, E,z) and J(f,E,Y). We let

J(f,E) = H(x)" T (f. E), J(f,E,x):=H(x)"'J(f,E,x), J(f,E,Y):=H(x)"'J(f,E,Y).

The above definitions of J(f, E)., J(f,E,Y), and J(f, E, ), also make sense for f € 3;
In the special case when the polyhedron A(h;uy,...,u,;X) is minimal, we will use the further
notation

v(x) := ord, J(f, E), a(x):= ord,J(f, E,x), e(z) := inf{ord, J(f, E, x),ord,(H(z) " g")}.

We also write J(f,E,z), J(f,E, %), v(Z), a(Z), (&) to mean J(f,E,z), J(f, E,x), v(x),
a(z), €(x) respectively, where n(Z) = x.

Note that all of these ideals depend on a choice of the variable X in S[X], since f does.
If we make a translation on X, i.e. if we change X to Z = X — 6, 8 € S, f is changed into
fz = f+0P —0gP~t. If g = 0, we have J(f,E) = J(fz,E), J(f,E,x) = J(fz,E,x) and
J(f,E,)Y)=J(fz,E,Y). In this purely inseparable case, we have:

I1.3.1 Lemma. Assume that g = 0. Then J(f,E), J(f,E,x) and J(f,E,Y) do not depend on
any choice of coordinates (X, u1,us,us) on R, even if A(h;u1,us,us) is not minimal.

Moreover, there exists a closed subset W (resp. W, Wy ) of E of dimension at most one such
that J(f,E), = S, (resp. J(f,E,x), =5,, J(f,E,Y), =5,) whenever z ¢ W (resp. z € E\W,,

Proof. The first part of the lemma has already been pointed out above. From our conventions in
I J(f,E), and J(f,E,Y), coincide with S, for z ¢ E. In case Y (resp. {z}) is an irreducible
component of E, we have J(f, E,Y) = J(f, E) (resp. J(f, E,x) = J(f, E)).
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Therefore to prove the lemma, since J(f, E) and J(f, E,x) (resp. and J(f, E,Y)) coincide
outside {z} (resp. Y), it is enough to reach dimV(J(f, E)) < 1.

If div(uy) C E, it can be assumed by I1.2.2 that f = u’l’d1 fo, where u; does not divide fp,
and either (i) di ¢ N, or (ii) fo mod(u1) € QF(S/(u1))P. In case (i), ordul(ulaa—ufl) = pd;, and in
case (ii), ord,, (68—/{_) = pd; for some i # 1. Therefore u; does not divide J(f, E). This proves that
dimV(J(f, F)) < 1 and the proof is complete.

We now turn to the Artin-Schreier version of I1.3.1. The important point now is that J(f, E),

J(f,E,x) and J(f, E,Y) do depend on the choice of coordinates (X, u1,us,us) on R, even with
A(h;uy,uz,u3z) minimal. However, the order of these ideals is better behaved. This is made precise
in I1.3.3 below and leads to the definition of our main invariant in I1.4 below. The Artin-Schreier
version of the set W in I1.3.1 is defined in I1.4.7.
I1.3.2 Notations. Let x € ¥. Then 6(z) > 0 and R, = Oxz = (Sy@)[X])(xu1,...oun)-
With notations and conventions as in II.1, we define the monomial valuation vs on R, by:
vs(X) = 1, vs(u;) = ﬁ, 1 < i < n. In particular, vs(9) = (X aiy(u)cr,., i)/0(x). When
A(h;uy, ..., un; X) is minimal, we define insh € gr,, R, = k(x)[X, Uy, ...,U,] as follows:

insh=Xx? - xy~ 0 J[ we v [ v+ [ wt [ urtwe
div(u;)Z Ey div(u;)CEy div(u;)ZE, div(u;)CEy

the initial form of h for the valuation vs. Here, ¥ € k(z), ¥ = 0 if ord, ;g > 0(z), and ¥ €
k(x)[X, U, ..., Un]pﬁ(w)fordn(z)H(a:)a degrees counted w.r.t. v;.

Given 0 € S, ;) and d = ord, ;0 (resp. d < ord,(,)f), we denote by clgf the initial form of
0 (vesp. zero) in gr(y, . )Sn) = k(@)[U1,...,Uy]. Similarly, if I C S, ;) and d < ord, ()1, we
denote
clgl = Vect({clif}oer).

Consistently with the previous paragraph, when A(h;uq, ..., u,; X) is minimal, we usually denote

b= Clp(;(w)f7 ¥ = Cle(w) (H(x)ilf)

I1.3.3 Proposition. With hypotheses and notations of I11.1, €(x) does not depend on choices of

coordinates (X, uq,...,uy) such that A(h;uy,...,uy; X) is minimal, and we have
(@) =pez) - Y d.
div(u;)CE,

For z € ¥, exactly one of the following three properties holds for all possible r.s.p.’s (X, uy,...,uy)
of Ry such that E, C div(uy -+ up) and A(hyuq, ..., uy; X) minimal:

(i) we have vs(g) = 1, and either vs(f) > p or (vs(f) =p and ® € k(zx)[{U; | div(u;) C E}]). In
this case, e(x) = ord, ) (H(x) " 1g?), v(z) > e(z) and clpsy f € k(z)[{U; | div(u;) € E}];

(i) we have vs(g) > 1. In this case, v(x) is independent of (X, uy,...,uy) and v(z) < e(x).
Moreover, cl, ) J(f,E) (resp. cleq)J(f, E,x) is independent of (X, uy,...,un) if v(z) < ()
(resp. v(z) = e(x));

(i1i) we have vs(g) =1, v5(f) =p and © & k(z)[{U; | div(u;) C E}].

Proof. The equality ord, ) H (z) +¢€(x) = pd(x) is clear from the definitions, so €(z) is an invariant
by IL.2.
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Assume that we are in case (i) for some r.s.p. (X,u,...,u,). We emphasize that vs(f)
and cl,5(,)f are not at all stable under change of X such that A(h;u1,...,u,; X) is minimal. In
fact, we can replace X by any Z := X — 0 such that the Newton polyhedron of 6 is a subset
of A(hjuy,...,un; X) and get A(h;uy, ... ,un;Z) = A(hjuy,...,u,; X), f being changed into
fz:=f+0P —0g°P~. Let

O := 015(1;)9 S k(.%‘)[Ul, e Uj],

where E, = div(uy - - -u;) by assumption. Then
B = clysn) [z = D+ OF — OGP,

where G := clsyg9 € k(z)[U1,...,U;]. Note that if vs(6) > (), then &z = @ but in general
B, + 0.

We now prove (i) and begin with some r.s.p. (X, uq,...,u,) at x satisfying (i). We perform
the following coordinate changes:
() (ut,...,up) — (v1,...,0,), with By =div(uy - - u;) = div(vy - - vj);
(b) X +— Z := X — 0 such that A(h;vy,...,v,;Z) is minimal.

After the change (a), the expansion of h remaining h = X? — X gP~! + f (with §(x) unchanged

by II.2), we minimize A(h;v1,...,v,; X) in X by successive translations on X of the form X, :=
X — Xavyt - - vl where a := (aq, ..., a,) is a solvable vertex of A(h;vy,...,v,;X). In particular,
(Aavyt - --v2)P is a monomial in the expansion of f, so aj41 = - = a, = 0 whenever a; + as +

-+ +a, = d(x) by assumption (i). In this case, let Ay € k(z) be the residue of A, and let A\, := 0
otherwise. The translation on X changes ® into
Do =0+ NaVi™ - VI = XV - VI GP,

where G € k(x)[V1,...,V;] is the initial form of g. Therefore ®, € k(z)[Vi,...,V;] and z is
still in case (i) w.r.t. the r.s.p. (Xa,v1,...,0,). Let Z := X — > Aqvi" ---v%" be obtained by
this minimizing process. Now, for any X’ € S, [X] such that (X', v1,...,v,) is a r.5.p. of R,
and the polyhedron A(h;vy,...,v,; X") = A(h;v1,...,v0,;Z) is minimal, we have X' =~'Z -6, v/
invertible, the Newton polyhedron of 6 is a subset of A(h;v1,...,vn; Z), 50 clgz)0 € k(x)[V1,. .., V}]

and after this new change of variable, z is still in case (i).
Finally by IL1.3(1), if clps(z) f € k(x)[V1,...,V;], then

v(z) = ord, ) J(f, E) = pd(z) — ord, ) H(z) = ord, ) (H(z) '¢") = ().

In case (ii), we have ins(h) = XP? + & with & & (k(x)[U,...,U,])?, since A(h;uq, ..., up; X)
is minimal. If we change parameters (ui,...,u,) — (v1,...,v,) as in (a) above, then X +— Z as
in (b) above to get A(h;v1,...,v,; Z) minimal, the above computations show that the translations
on X change ® into

(PZ = C]_p(s(z)fz = @ _|_ (Zxa‘/'lal PN V’rgn)p

—

for certain values of Ay € k(z). For any X' € S, (,[X] such that (X', vy,...,v,) is a r.s.p. of
R, and the polyhedron A(h;vy,...,v,; X") = A(h;v1,...,v0,; Z) is minimal, & gets changed into
7' "P(®7 + OP), where 0 # 7' € k().

Since ® & (k(z)[U1,...,Un])P, v(x) = ordy,)J(f, E) is unaffected by all above coordinate
changes and is equal to e(z) — 1 or e(x). In the former (resp. latter) case, cl, () J(f, E) (resp.

clez)J(f, £, ) has been multiplied by 7'~ " along the above process and this proves (ii).
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Since cases (i), (ii) and (iii) are mutually exclusive for any fixed r.s.p. (X,u1,...,uy) of R,,
which must belong to one of them, the independence on (X, uq,...,u,) of (iii) is also proved. We
produce two examples showing the possible ambiguity on v(x) in case (iii).

I1.3.3.1 First example of ambiguous case. We take E = div(ujus) and

h=XP — X(ujug)®®~" 4 Z uSP T ubul + Z uiP Il
i#0mod(p) j#0mod(p)

An easy computation shows that A(h;ui,us,us; X) is minimal and that 6(xg) = 4, g =

(uru9)?, H(xg) = (uyus), v(xg) = 4p — 2 = (o).
Now we change X into Z := X — u%uzug. Then

h = ZP — Z(ujug)?®P~Y + Z P bl + Z uy? I ud 4w ubul — udug (uyug) > P Vs,
i#0mod(p) Jj#0mod(p)

An easy computation shows that the exponents (2p,p,p) and (2p,2p — 1,1) appearing in

WP ubul — udug (uyug)2®~Dug lie in the interior of the convex hull of the exponents of

3p—i, i, P 4p—j, 3
E uy usus + E U Uy,

i#0mod(p) Jj#0mod(p)

Therefore A(h;uy,ug,us; Z) is still minimal. On the other hand, we now have

ord,, ( (u%ug(’U/1U2)2(p_l)U3)) =4p—1,

dug

so v(xg) = 4p — 3 = €(xg) — 1 w.r.t. the rs.p. (Z,u1,uz,us).

I1.3.3.2 Second example of ambiguous case. We take div(u1) € E C div(ujug), a(l) + e(z) =
0 modp, a(2) = 0 modp. If £ = div(uy), we take a(2) = 0. Let

1y a()+e(zg) a@
h:Xp—X’yp_lugp 1) 2 uép D5 utll(l)ug@) Z A ue(wo) Jp JP+¢ :

o< <)

where v € S is invertible, A\; € k(zo) and ordy,,)¥ > €(x0). Let jo := sup{j|\; # 0}. We assume
that A\, & k(zo)? and jo > 0. In particular, k(z¢) is not a perfect field and e(zg) > p.

An easy computation shows that A(h;uy,us,us; X) is minimal, that its initial face is the
segment with ends

~a(l) 4 e(x0) a(2) B 0 j Jo
a=( ’ " ,0), b= ( ) " ,p% (1)

and that H(zg) = ua(l)ua(z), (H(z0) g?) = (u 6(960)) and v(xg) = €(zg).

a(1>+6(950) —(jo—1) a(2)

Now we change X into Z = X — u, Uy ” u?f‘ﬂ i = 0 or 1 defined by jo — i #
0 modp. Then
(a(Dte(@) (5_1)a
h=27P_— p IZ (p 1) U;P 1)p +fZ,
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where

fg = u?(l)ug@) Z )\jui(xo)*jpuép + ui(xo)*P(jo*i)ug(jO*i) pflui(ﬂco)*(jO*i)ug’o—i +

-

0 < <o)

An easy computation shows that A(h;uy,us,us; Z) = A(h;uy,us,us; X) is minimal and that
v(zg) = €(xg) — 1 wr.t. the rs.p. (Z,u1,uz,us).

I1.4 Definition (invariants Q and 7). With hypotheses and notations of IL.1, for any (not necessary
closed) v € ¥, let Q(z) = (w(z),w'(z)) € N x {1,2,3} be defined as follows:

w(z) := inf{ord, ) (J(fx, E), H(x)_lgp)},

the infimum being taken over all possible fx’s corresponding to all possible r.s.p.’s (X, uy,...,uy)
of Ry such that E, C div(uy ---uy,) and A(h;uy, ..., uy; X) is minimal. The refinement &' (z) is
given by
() =1ifw(z) = ordn(z)(H(x)_lgp),
W'(z) =2 if w(x) < ord, ) (H(z) 'gP) and for every such r.s.p., ord, ) J(fx, E) = w(x).
w'(z) =3 if w(x) < ord,(H(xz)"'g?) and for some such r.s.p., ordy)J(fx, E) =1+ w(x).

We denote by T(x) the natural number:

7(z) = max{7(clyw) (J(fx, B, x), H(z)"'g"))} if w(z) = e(z),

7(x) = max{7(cly@)/ (fx, E))} if w(z) = e(x) — 1,

where in both cases, the maximum is also taken over all possible fx’s corresponding to all possible
r.s.p.’s computing w(x).

With the help and notation of I1.3.3, we can now explicit several different cases:
(i) vs(g) = 1, and either vs(f) > p or (vs(f) = p and ® € k(z)[{U; | div(u;) € E}]): we have
(z) = (e(x), 1);
(ii) vs(g) > 1: we have Q(z) = (v(x),2);
(iii) vs(g) = 1, vs(f) = p, ® & k(z)[{U; | dlv(uz) C E}] and ord, ;) J(f, E) depends on the r.s.p.
computing w(z): we have Q(x) = (e(x) — 1,3);
(iv) vs(g) = 1, vs(f) = p, ® & Kk( ac)[{U \ div(u;) € E}] and for every r.s.p. computing w(x),
ord, ) J(f, E) = €(z): we have Q(z) = (e(x),1). In this case,

® € k(2)[{Us, U} | div(u;) € E, div(u;) € E}];

(v) vs(g) = 1, vs(f) = p, ® & k(z)[{U; | div(u;) € E}| and for every r.s.p. computing w(x),
ord, ) J(f, E) = e(x) — 1: we have Q(z) = (e(x) — 1,2). In this case,

® ¢ k(x)[{U;, U? | div(w;) C B, div(u;) € E}].

So in the ambiguous case (iii), we give to w(x) the least possible value w.r.t. choices of r.s.p.’s,
but keep this ambiguity in mind by setting w’(z) = 3 maximal. The philosophy is that the property
vs(g) = 1 is helpful for the local uniformization process only in cases (i) and (iv), i.e. w'(zg) = 1.

By IL.3.3(i), case (i) above is independent of the r.s.p. such that E, C div(u;---u,) and
A(h;uq, ..., up; X) is minimal.

By II.3.3(ii), the definition of 7(z) in case (ii) above is independent of the r.s.p. such that
E, Cdiv(u; - - up) and A(h;uq,. .., u,; X) is minimal. On the other hand, in cases (iii)-(v), 7(z)
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may depend on the r.s.p. used to compute w(z). We will make use of the invariant 7(z) only in
cases (iv) and (v).

I1.4.1 Proposition. If z € 3, and {n(z)} is the intersection of components of E, then w(zx) =
e(x).

Proof. Since x is the intersection of components of E, we have J(f, E) = J(f, E,z). Therefore
if vs(g) = 1, = belongs to case IL.4(i), so w(z) = e(x). If vs(g) > 1, then w(z) = v(z) =
ord, ) (H(2) 1) = (2).

I1.4.2 Proposition. For any x € 3, we have w(z) < v(z) < o(z) < 1+ v(z) and w(z) < €(x).

Proof. This follows from the inclusions (1, N S)J(f, E) € J(f,E,z) € J(f,E) and the defini-
tions, whether a(z) and v(z) do or do not depend on the r.s.p. such that E, C div(uy - --u,) and
A(hjuq, ..., uy; X) is minimal.

11.4.3 Remark. In cases I1.4(iii), (iv), we have w(x) > p.

Proof. In these cases, ® ¢ k(z)[{U; | div(u;) C E}]. Moreover, there exists a choice of (X, u1, ..., u,)J}
with E, C div(uy - - - uy) and A(h;uq,. .., uy; X) minimal such that for each i, with div(u;) € F,
we have deg% > deg®. Therefore gg’_ = 0; these U;’s appear in the expansion of ® with exponents

divisible by p, and at least one of them effectively appears by definition of cases ILA4(iii), (iv).

II.4.4. Proposition and Definition. If zy € ¥, and w(zg) = 0, then (Xo,x0) is said to be a
quasi-ordinary singularity. In this case, exactly one of the following properties holds for all possible
r.s.p.’s (X, uy,us,u3) of R such that E C div(ujusug) and A(h;uy, us,us; X) is minimal:

(i) we have (H(x0)) = (g7). In this case, 6(xo) = ordy(z,)g and A(h;uy,us,us3; X) has only one
vertez (dy,ds,ds);

(ii) we have (g*) C J(f, E) = (H(xo)) = (f). In this case, d(xg) = (ordy,)f)/p and the
polyhedron A(h;uy,us,us; X) has only one vertezx (dy,ds,ds);

(iii) we have (f,g”) C J(f, E) = (H(xo)). In this case, §(wg) = (1 + ordy(yy)f)/p and v :=
H(xo)~Yf is a regular parameter of §, transverse to E. If we choose indices i = 1,2 such that
E C div(ujuz) and (uy,us,v) is a r.8.p. of §, then A(h;uy,ug,v; X) is minimal. If g # 0
(resp. g =0), A(h;uy,uz,v; X) has two vertices (resp. one vertezx) (di,da, Il)) and (51, B2,0) (resp.

(dh d27 %))

Proof. The condition w(zg) = 0 is equivalent to (J(f, E),g”) = (H(xo)) for all (¢f. I1.4.3) r.s.p.’s
(X, u1,uz,us) of R such that E C div(ujugug) and A(h;uq, ug, us; X) is minimal.

If (¢?) = (H(xp)), we are in case (i) and all assertions in (i) are clear.

If (¢?) C (H(x0)), then J(f,E) = (H(xo)). If (f) = (H(x0)), we are in case (ii) and all
subsequent assertions are clear. Otherwise, H () divides strictly f and we are in case (iii). Since
there is a derivation D € D such that (Df) = (H(x)), we can choose a parameter v, div(v) € E,
transverse to F, such that D = 8%7 E C div(ujus), (X, u1,uz,v) is a r.s.p. of R and f = vH(zo).
Then f is a monomial and defines the vertex (dy,da, %) which is not solvable because the third
coordinate is not an integer. If g = 0, this is the only vertex. If g # 0, g defines another vertex
(41, B2,0) which is not solvable by definition.

I1.4.5 Proposition. Let z € ¥,. Assume that there exists a r.s.p. (X,ui,...,u,) of Ry, with
E, Cdiv(uy - uy), such that h = XP — XgP~' + f € S, ) [X] satisfies (T (f, E), g?) = (H(z)) and
H(x) divides f. Then w(z) = 0.

Proof. Note that we do not have any minimality assumption on A(h;uy, ..., uy; X).
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If (H(z)) = (¢*), then A(h;uq,...,u,;X) has only one vertex (dy, ds, d3) which is not solvable
by definition, hence minimal. So w(z) = 0 in this case.

Otherwise, (¢?) C (H(z)) = J(f, E). Then we may have to do a translation Z := X — 6 to
make A(h;uy,...,u,; Z) minimal. The Newton polyhedron of 6 is a subset of A(h;uy, ..., uy; X).
Since H(z) divides f, H(z) divides 6. But H(z) strictly divides gP, so that there exists u,,
div(u;) C E,, such that u; H(x) divides gP~!. Now after changing X to Z, f being changed into
fz=f+0°—0gP~t we have J(fz, E) = J(f, E) mod(u; H(z)) and we get J(fz, E) = (H(z)) as
required.

I1.4.6 Theorem. If zyp € ¥, and w(zg) = 0, the local uniformization problem is solved for
(X0,$0)-

Proof. We first pick a r.s.p. (X, u1,uz,us) of R satisfying I1.2.2 with N > 6(xg) + 1. Then
h=XP—XgP~! + f and H(zg) divides f.

If (H(xzo)) = (g?), we have (J(f, E),g?) = (H(xp)). Otherwise, we have (¢g?) C (H(xo)).
By I1.4.4(ii) and (iii), there exists Z = X — 6, 0 € R such that A(h;uy,uz,us; Z) is minimal,
h = 2P — ZgP~! + fz with (fz) = (H(z0)) or (fz = vzH(z0), div(vz) regular and transverse to
E). In the latter case, the vertex (di,ds, %) is a vertex of A(h;uq,uz,uz; X) by I1.2.2.

We thus have either (f) = (fz) = (H(xo)), in which case A(h; uq, ug, us; X) is already minimal,
or (fz = vzH(xg) and f = vH(zo) for some v € mg, div(v) regular and transverse to E). In
particular, we always have (7 (f, E), g?) = (H(zo)), although A(h;uq,uz2,uz; X) is not necessarily
minimal.

3 ua(i)

Assuming zg € ¥, and w(zg) = 0, we write H(zo) = [[;_;u; ', a(i) =01ifi > e+ 1, and

apply the following (globally defined) algorithm:
(i) if ordy(4q)H (20) = p, there exists a nonempty subset I C {1,...,e} such that

Y =V (X, {ui}ier) C Xy,

ie. > cra(i) =p Welet m: X; — Xo be the blowing up of Y, with (e— | I |,>,; a(i)) maximal
for the lexicographical ordering;
(ii) if ordy(z,)H (70) < p, we have f = vH (o) and 6(zg) = 1. We let X; — Xg be the blowing up
of

Y = V(X,{u; | a(i) > 0},v).

In both cases, we take E; to be the reduced inverse image of E in X;. If the center 2’ of u
in X verifies 2’ € ¥,(X7), we define H(z') and w(z’) w.r.t. E;. We claim that such 2’ € 3,(X)
lies on the strict transform of X = 0, has w(z’) = 0 and ord,, H(z') < ord,(g,)H (xo), where
n : (X1,2") — SpecS’ is induced by w. The theorem will follow by descending induction on
ordy, (o) H (20) = a(1) + a(2) + a(3).

Case 1: (H(zo)) = (¢?). Then V(X,{u; | a(i) > 0}) C X, so we are in case (i) above. If
ord, ;)9 = 1, say g = yu1, X, is the blowing up along V (X, u1) and is regular. Otherwise, X” is in
the ideal of the ridge of h, so 2’ € ¥,(X) lies on the strict transform of X = 0. We change indices
so that Y = V(X,uy,...,ux), where k < e. By symmetry, we need only look at the chart of origin
the point with r.s.p. (X' = u%,u’l =Up,..., U = ok, {u}, = ui}pt1<ics). Let B/ =ujPh = X" —
X'g’"~' + f be the strict transform of h. Then ¢’ = u;Pg? = fypu’la(1)+"'+a(k)7pu’2a(2)uga(?’) and,
since gP divides f, ¢'* divides f’. So w(2’) = 0 by I1.4.5. Since | I | is minimal, a(2)+---+a(k) < p,
SO

ord, (o H(z') <a(l)+---+alk) —p+a(2) + a(3) < a(l) + a(2) + a(3) = ord, (4, H(xo)
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as required.

Case 2: (g*) C (H(xzo)) = J(f,FE) and (i) above holds. We change indices so that ¥ =
V(X,u1,...,ux) and once more distinguish two cases.

First assume that ord, ) f = p. We have f = y1H(2¢), 71 invertible, and Y = V(X {u; |
a(i) > 0}). After rearranging indices, it can be assumed that Y = V(X, uq,...,ux) as above. By
symmetry, we need only look at the chart of origin the point with r.s.p. (X’ = %, Uy =g, ..Uy =
ik {u; = uitrt1<ics) (the remaining point at infinity is not on the strict transform of Xo). Let
W = u;Ph = X® — X'¢’""" + ' be the strict transform of h, where u/ divides ¢’*~'. If u} is
not invertible at 7'(z’) for some i, 2 < i < k, we have 0 < ord,y ) f" < p; otherwise uy - --uj, is

invertible at 7’(z’). In this case, we have gf:,/ invertible if k > 2; if k = 1, then 7, & k(x)? because
2

the vertex (1,0,0) of A(h;ui,us,us; X) is not solvable and 2’ = (X' 4+ 7, u}, u), uf) is a regular

point of X;. Therefore 2’ ¢ ¥,(X1) in all cases.

Assume now that ord,,)f > p. Then every z’ € ¥,(X;) mapping to zo lies on the strict
transform of X = 0. By symmetry, we need only look at the chart of origin the point with r.s.p.
(X' =X ul =y, up = % {uf = witkiicica). Let b = uyPh = X'? — X'g"' 4 f' be the
strict transform of h. Note that

Ui H o) = of "0 TT O
2<ike

divides f’ and strictly divides ¢g’’. We claim that
H(z') = uy "H(20). (1)

If (1) is true, we get w(z') = 0 by II.4.5, then ord, . H(z') < ord,y,)H(zo) as in the
previous case when (H(xg)) = (¢”). Let us prove (1). Indeed, for every D € Dy := D(E,), Df’ =:
Apu, DT Faltk)=py a2 aB) with at least one Ap invertible. Furthermore, uy?H(zo) strictly
divides g’”, so when performing a translation Z’ := X’ —6 on X’ in order to get A(h';u}, uh, us; Z")
minimal (i.e. f’ is replaced by f,, = f' + 67 — 0g'"~! where the Newton polyhedron of 6 is
contained in A(h/;uf, ub, ul; X)), uyPH(xq) strictly divides 8g’”". Therefore we have Df,, =

)\Dyz/u’la(l)Jr'"+a(k)_pu’2a(2)uga(3), with at least one Ap z invertible, and this proves (1).

Case 3: (gP) C (H(zo)) = J(f, F) and (ii) above holds. Then f = vH(z() has order p, we
blow up Y = V(X, {u; | a(i) > 0},v) and H(xg) strictly divides gP. If ord, ;.9 = 1, say g = yuu,
we must have H(zo) = u?~" and 2’ ¢ ¥,(X;). Otherwise X” is in the ideal of the ridge of h, so
every point 2’ € ¥,(X;) mapping to z lies on the strict transform of X = 0. We relabel indices

so that Y = V(X,uq,...,ux) (one of the u;’s being v) and by symmetry, we need only consider
the chart of origin the point with r.s.p. (X' = u%,u’l = U, up = 38 {up = uitktigigs). Let

B =u;Ph = X" — X'g’P"" + f' be the strict transform of h. Then f’ = vlu’za(z)uga(g), with 1
invertible. By definition of Y, we had a(1) > 0, so ord, (/) (k') < a(2) + a(3) = p —a(1) < p and
this proves that =’ ¢ ¥,(X;).

I1.4.7 Theorem. The set W :={x € ¥, | w(x) > 1} is Zariski closed and of dimension at most
one.

Proof. By II.2.2, there exists a r.s.p. (X, uy,us,us) of R such that h = X? — XgP~! + f H(x)
divides f and d(z¢) = inf{ord,,g, (ord,, f)/p}.

First assume that w(zg) = 0. The r.s.p. (X, u1, u2, us) then satisfies the assumptions in I1.4.5
(see the beginning of the proof of theorem II1.4.6), and these assumptions are stable by localizing
at any x € X,. Therefore W = & in this case.
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Assume now that w(zg) > 1. It is sufficient to prove that there exists a Zariski closed subset
Z C %, of dimension at most one such that W C Z. By I1.2.2, and by definition of H(xy) and D,
the ideals (f, ¢g?) and (J(f, F), g*) coincide, and are equal to H(z(), when localized at the generic
point of any component div(u;) C Ey. Therefore there exists Z C Ey of dimension at most one
such that

(j(fv E)7 gp)a: = (f7 gp)x = H(-TO)x
whenever x € Ep\Z. By I1.4.5, we have W C Z as required.

I1.5 Permissible blowing ups. Theorem I1.4.6 settles the easy case of quasi-ordinary singular-
ities, which are dealt with by combinatorial blowing ups in the same way as in characteristic zero.
To reduce to quasi-ordinary singularities, we need some notion of permissible blowing up which is
well behaved w.r.t. our main invariant Q(zo).

I1.5.1 Definition. Assume that zo € ¥, and that w(xg) > 1. A Zariski closed subsetY C ¥, with
generic point y, is a permissible blowing up center if Y is reqular at xo, n(Y) has normal crossing
with E, and if one of the following conditions holds:

(i) e(xo) = €(y), (first kind of permissible blowing up), or

(ZZ) V(:L'O) = E(xO) -1= Ordn(mo)(‘](fv E, Y)’ H(x())ilgp) = Ordn(y)(‘](fv E, Y)’ H(xO)ilgp) = G(y),
where f is given by some choice of the r.s.p. (X, uy,us,us) Ofﬁ such that E C div(ujugus) and
A(h;uy, ug,us; X) is minimal (second kind of permissible blowing up).

The first (resp. second) type of permissible blowing up is studied in II.5.2, I1.5.4.2 and
I1.5.4.3 (resp. I1.5.4.4) below.

I1.5.1.1 Proposition. Assume that xy € ¥, and that w(xg) > 1. Any permissible center has
dimension at most one and is contained in Ey. Moreover, {zo} is a permissible center (of the first
kind).

Proof. We have €(y) = 0 if y is the generic point of a component of Ey. If {y} were permissible,
definition I1.5.1 would imply w(zg) = 0. All other statements are obvious.

I1.5.2 Theorem. For each permissible center Y of the first kind, there exists a r.s.p. (uy,us,us)
of S and X € R such that E C div(uyugus), A(h;uy,ug,us; X) is minimal, Y = V(X, {u; }icr) for
some I C {1,2,3}, and whose associated f satisfies one of the following conditions:

(Z) w(w()) = 6(1'0) = Ordn(azo)(J(f7 E, Y)? H(xO)_lgp) = Ordn(y)(J(f7 E, Y)? H($0)_lgp) = G(y);

(ii) 1+ w(x()) = 6(.1‘0) = Ordn(xo)(*](fv E, Y)> H(xO)_lgp) = Ordn(y)(J(fa E, Y)> H(xO)_lgp) = 6(3/)

Proof. The statement is trivial if Y = {z(}. Otherwise, Y is a curve by I1.5.1.1. Since Y C ¥, and
n(Y) has normal crossing with E, it is of the form Y = V(Z, uy, uz) for some r.s.p. (Z,uy,us,us3)
of R such that E C div(ujugus).

The formal version of I1.2.2 implies that there exists ar.s.p. X € Rsuch that Y = V(X,uy,usz)
and both of A(h;uy,us,us; X), A(h;uy,us; X) minimal. The associated f thus computes €(xq)
and €(y) at the same time. The statement now follows easily from formulaeII.3(4) and (5) and the
definitions.

I1.5.2.1 Proposition (H. Hironaka). Assume that zo € ¥, and that w(zg) > 1. Lete: X; — Xy
be a permissible blowing up and x' € e~ (xq) be the center of  in X1. Then (X1,2") has multiplicity
at most p.

Proof. Since Y C ¥, and Y is regular at zg, it is a permissible center in Hironaka’s sense, and the
assertion is classical.
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I1.5.3 Proposition. Assume that xoy € ¥, and that w(xo) > 1. Let e : X1 — X be a permissible
blowing up with center Y and x' € e~ '(z0) be the center of u in X1. The following holds:

(1) if H(xo) # 1 and 2’ € ¥,(X1), then 2’ lies on the strict transform of {X = 0}, whenever Y is
expressed as Y = V(X, {u;}ier), with E C div(ujugus) and A(h;uy, us, us; X) minimal;

(ii) if H(xg) # 1 and H(x') = 1, then the local uniformization problem if solved for (Xg,xo).
Proof. Assertion (i) is an easy consequence of [H2, thm. 3, p. 331]: with notations as in loc.cit., if
z' € ¥,(X1), then 2’ lies on the projective space Bp ,» C e~ !(z¢) which verifies

Bp ,» C PDir(ing, h) (1)
except if p = 2 and there exists a r.s.p. (Z, vy, v2,v3) of R such that
ing,h = Z% + uVZ + oVi + uwVy, (2)
where u, v € k(xq) and [k(xg)?(u,v) : k(x)?] = 4. Since H(zo) # 1 by assumption, we have
I:=in,,h = X + Ui (FX + MUi + AUz + \3U3),

for some A1, A2, A3 € k(zg) and div(u;) C Ey. Since A(h;uq,us,us; X) is minimal, we have
ing h = X2 if §(x) > 1; if 6(z0) = 1, either in, h € k(xo)[X, U] or 8‘% # 0, so (2) does not hold
and this proves (i).

We now prove (ii). Since Y C ¥,, we have d(y) > 1. Let ¢ = 0 be a local equation of
E' :=e 1(xg) at 2’ and h' :=t"Ph = X'* — ¢P7 X' + f' be the local equation of X; at 2/, where
X' =X/t by (i).

If 6(y) > 1, we have (f’,¢’) C (t) so H(z') # 1. If §(y) = 6(xg) = 1, it can be assumed that
(f,9) C (u1) since H(zg) # 1, where div(u1) € Ey. Then PDir(in,,h) C V(X,U;) in (1), so uq/t
is a regular parameter at 2’ and divides H(z'), hence H(z') # 1.

Assume now that §(zg) > d(y) = 1. In particular, Y is a permissible curve. After renumbering
variables, it can be assumed that Y = V(X, u1,u2), div(uy) C E C div(ujugug). If H(zg) C (us)
we have H(x') C (ug) as well, so from now on, after possibly renumbering again variables, it can
be assumed that H(zg) = u(f(l)ug@) with a(1) > 0. By II.2 and II.3.3, this implies

€(x0) — €(y) = p(d(z0) = 3(y)) >0,
hence Y is permissible of the second kind. In particular E C div(ujus) by I1.5.1(ii) and we have

a(2) = 0. We get €(zg) =p+ 1 —a(l) by I1.3.3. Finally by permissibility of the second kind, we
actually have E = div(u;) and there is an expression

® = ing, [ = UV (Us®3(Uy, Us) + o (Un, Ua))

with 0 #£ ®3 € k(mo)[Ul, U2]p—a(1) and ®q € k(xo)[Ul, Ug]p+1_a(1).
In computing h’, it can be assumed that ¢t = u is a local equation of E' = div(u}) at 2’ if
H(z2") # 1. Then 2’ belongs to the chart with origin (X’ := X/uy,u} = uy,ub := uz/us,us). Then

up P f = us®s(1, u5) + ui (Po(1, u5) + ¢) 3)

for some ¢’ € (u},u3). Since @3 # 0, we have 2’/ € X,,(X1) unless a(1) = 1 and ord,; ,/®3(1,ub) =
p — 1. Therefore z’ is rational over xy and after possibly replacing (X, u,us,us3) with a r.s.p.
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(Z,u1,v9,u3) such that A(h;uq,ve,us; Z) is minimal, it can be assumed in (3) that ®3 = )\Ugfl
for some A # 0. Summing up, we get

B o= X'P _ ,yp—lu/lb/(p—l)X/ + )\U3u/2p_1 g, (4)

with E' = div(u}), ' > 1 and ord,;(,)¢" = p — 1, where o' = (X', u}, uh, u3) if 2’ € ¥,(X1). Let
¢/ : X5 — X; be the blowing up of X; along 2’ and 2 € e~!(2’) be the center of y in X5. We
consider two cases:

Case 1: b =1 or ord, (¢’ = p—1. Then VDir(in,,h) =< X', U1, U3, U3 >, so PDir(in,,h) =
@. Since (2) does not hold, 2" ¢ ¥,(X2) by (1).

Case 2: b > 1 and ord,y(yy¢’ > p — 1. Then VDir(in,,h) =< X',U;,Us >, so again by (1),
" € ¥,(Xs) only if 2" = (X" = X'/ul,u] = v}, uf = uh/u},uf = uz/u}). Hence h" := v} "H
satisfies (4) w.r.t. the r.s.p. (X", uf,uf, u¥).

We iterate the above argument. Let
X; e Xge Xy g = X, -+

be the quadratic sequence along pu, i.e. X; is the blowing up along the center x; 1 of u in X; 4
for i > 2, where z; := 2/. Assume that z; € ¥,(X;) for all ¢ > 1. Then x;_; is in the above
case 2, hence lies on the strict transform Y; in X; of the curve Y’ := V(X' u}, uz). By standard
arguments, we have Y; C ¥,(X;) for ¢ >> 0. But this implies that »’(Y’) C Ej, in contradiction
with our conventions in I. Therefore z; ¢ ¥,(X;) for some ¢ > 1 and (ii) is proved.

I1.5.3.1 Remark. Theorem II.5.3 plays an essential role in our approach. Namely, we may
assume that H(xg) # 1 (last line of section I). This additional assumption will be maintained up
to the end of this article.

Let e : X' — Xg be a permissible blowing up. By I1.5.3(i) and (ii), in order to reduce the
multiplicity of the strict transform h’ = t=Ph of h = X? — XgP~! + f at the center 2’ of u in X’ (¢
being a local equation of the exceptional divisor at z'), we may assume that ' = X'* — X'¢/?~ '+ f/
and that H(z') # 1 where X' = X/t, (', g'") = t7P(f, g").

However, since our main invariant €(zg) can be read off (f, g?) only when A(h;uq, ug, us; X)
is minimal, we need to relate some minimal A(h';v],v5,v5; Z") at 2’ to a given minimal polygon
A(h;uy,uz,us; X) at zg. The following elementary result is essential for this purpose.

I1.5.3.2 Theorem. Let F(Us,Us) € k(x0)[Ua,Us] be a homogeneous polynomial of degree i > 0,
and a,b € N be such that USULF (Us, Us) & (k(z0)[Ua, Us])P.

Letx' € Speck(xo)[g—z] be a closed point with ideal (v := P(1, g—g)), P € k(x0)[Usz, Us] a nonzero
homogeneous irreducible polynomial of degree d := [k(z') : k(xo)], unitary in Us.

Let A € T' := k(x0)[Us, %](Uz,v) be such that USTV (resp. USTPTib) divides AP in T' if
P # Us (resp. P =Us). There exists an integer e > 0 such that

Us
Us

U. U ;
V(1L 2) + AP = U (20 mod(UgHHITY), (1)

Ua+b+z'
( U2 U2

2

with v invertible in T'. We have the following estimates for e:
(i) if P # Us (resp. P =1Us), we have e < % +1 (resp. e <i);
(ii) if P # Us, then e < p(1 + Lp’—dj) (equivalently: for every N € N such that pid < N, we have
e < Np);
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(iii) if i > 1 and b =0, then e < i;
(i) if i = 2 and b = 0, there exists at most one &' as above with e = i. If such an ' exists, we have

P(Us,Us) = AUz + Us for some X € k(xg). In this case, U;(a_l)agé and all ‘9F s, 4 <i<s, are
multiples of (AU + U3)?, 87 is a multiple of (\Us + Us)*~ . In particular, x' is mtzonal over xg.
Proof. The existence of some integer e > 0 satisfying (1) is clear from the assumptions. We prove
the estimates in (i), (ii), (iii), then prove (iv).

Since USULF(Us,Usz) & (k(xo)[Uz, Us])P, there exists a derivation D € Dery, (k(zo)[Us, Us)),
D preserving degrees of homogeneous polynomials, such that

D(USULF (U, Us)) = USULFp (Us, Us),

with Fp # 0 a homogeneous polynomial of degree i. We pick D in such a way that ord, Fp(1, g—z)
is minimal. With conventions as in I1.3 on Dery, (k), we can take

0 0 0

D e {Ug U3 a0 {5>\¢ bagigs ) (2)

Since D((UQ,Ug)k($O)[UQ,U3]) (UQ,Ug) ( )[ 2,U3] we have D(UQT’) Q UQT/. So in T/
there exists a derivation D" € {Us 8%2 2, {w\,} <i<s ), where (dUsz,dv,{d\;}4<i<s) is a basis of

Ol such that

T’/ko’

Us .y
Us

Us
"Uy

Us
Us

U. .
JPF(L, ) + Ap> = w2

= )P0

o (wgre? %) 3

with u € T’ invertible. We consider two cases:
Case 1: D' € {Ugaa—Ug, {88—/\;}4@@}. Then by (3) the integer e in (1) satisfies

U. degF ]
e < ord, Fp(l 3y ¢ S84D !

A B
This proves (i), (ii) and (iii) in this first case.
Case 2: (3) is satisfied only by D’ = 2. Then by (3), the integer e in (1) satisfies

Us

degF'p i
=14+- 4
U + (4)

1+01‘d FD( d d

=) <1+

and this proves (i) if P # Us. If some inequality is strict, we also get (i) if P = U; as well as (iii)
for every P (note the trivial fact that 1 + 5 < i whenever (i,d > 2)).
If P # Us, we have e # 0 modp, since

Us Us AP ovy've
12 3\b ~o —
D (( ) F(lv UZ) + Uéz—l-b—i-i) ~

U2 mOdUQT/,

where 4/ is a unit. Then (ii) follows from (4) and the trivial inequalities

- 1 - <p(1
31+ |5 <ma )
fori>0and d >
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We now assume that e = 1 + 2 In particular ¢ # 2 if d > 2. If d > 2 and ¢ > 2, we have
1+ 4 <4, which proves (iii) when d >

Suppose now that d = 1. Then v = g—; + M\ A€ k(xg), D' = % = aa—U?). The only possibility
for the derivation D in (2) is D = Ugaa—%; hence A # 0 and this proves (i) and (iii) when P = Us.

There remains to prove (iii) when d = 1 and P # Us. Then

D(USF(Uy,Us)) = Us Fp(Ua,Us) = USU3G(Ua, Us),

with G # 0 a homogeneous polynomial of degree i — 1. In (3), we now have Fp(1, lU]—‘:) = (v—
ANG(1, g—z), and therefore get the sharper estimate

U) <14 degG =1,

< 1+ ord,G(1, T
2

thus contradicting the assumption e = 1 + 1.

Let us finally prove (iv), so i > 2. If d > 2, we have the inequality e < 1 + ; < i except
possibly if d = i = 2. In this last case, (Us g5 oF -)(1, Ug) is a unit in 77, so that we get e < 1 in this
case. We can therefore assume that z’ is ra‘monal over xo. Then v = A —|— , A € k(z0). Note that

dUs, dv, {d\;}a<i<s) is then a basis of L, ,, . We denote by us the 1mage of Uy in T" to avoid
<ig T /ko
confusion in what follows

Since I U U, U
dv = d(=> + A 3 AN, dUs = usd—> + =2 dus
v = (U2+ ) U2+4<Zl<sa ) 3 uo U U2
with a; € k(zo), 4 < i < s, we get the formulee
uaof—u 4 + U. 4 aof—ua—
2 Ous  COU, | POUs v CoUs
gof 0 0
VR VP 1A

in Dery, (k(xo)[Uz, Us]), where f: k(xo)[Us,Us] — T is the natural map.
Then, if A # 0, the (weak) transform of

_ OUSF(Usy, Us) OUSF(Uy,Us) OUSF(Us,Us)
I:I a 1S
U2 <U2 8U2 ;U3 aU3 b { 8 } < <
is . )
[ augﬂF(l, g—g) ﬁugJ”F(l, 5—2) ou ‘”’F (1, gz
= Uy U2 Oty ) 90 A O hagigs
_ 8u2+zF(1

Since we have e = i, all of these derivatives in I’ are multiples of v*, except uj*
which is a multiple of v*~1. So in I, the corresponding derivatives are multiples of (AU + U3) ,

except U{aUng(f’U‘?) which is a multiple of Uz(AUs + Us)*~1.
If A =0, we have a; = 0, 4 <1 < s, in the previous formulee, and I’ becomes

PR dusT F(1, 3) - dusT F(1, 32) {8ug+ZF(1, g;)}
2 2 8U2 sy U3 85—; y 8)\1 4<i<s
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Since we have e = i, all of these derivatives in I’ are multiples of (%)z So in I, all derivatives are

multiples of Us".

So if we have equality in (iii), either all the derivatives in I are multiples of U and the only pos-
sible ' has parameter v = g—g, or they are all multiples of (AUs + Us)* (except Uy aUngU;”U?’)
which is a multiple of Us3(AUz + U3)*™1), for some A € k(z¢) — {0}. Since i > 2 and USF(Us, Us) is
not a pt"-power, \ is uniquely determined and gives as only possible 2’ the point with parameter

v=A+ 5—2 We get (iv).

We now come to the main result of this chapter: our main invariant (ord,,h, Q(xg)) does not
increase above xy when performing a permissible blowing up.

I1.5.4 Theorem. Assume that o € ¥, w(xg) = 1 and H(zg) # 1. Let e : X1 — Xo be the
blowing up along a permissible center Y and x’ € e~ (o) be the center of u in X1. If 2’ € X,(X1),
then Q(z') < Q(z0), where Q(a') is computed w.r.t. E' := e 1 (E) eq.

Proof. The proof is long and needs to study all different cases, depending on the kind of permissible
blowing up and on the different values of ord,,)g".

By IL.5.2, there exists a r.s.p. (X, u1,u2,u3) of R such that Y = V(X,{ui}ic1), E C
div(ujugus), and both of A(h;uy,us,us; X) and A(h; {u;}icr; X) are minimal. If the blowing up
is of the second kind, any r.s.p. satisfying the condition in definition I1.5.1 (ii) automatically has
these properties. We have | I |= 2 or 3 by I1.5.1.1. Also, §(y) > 1 by I1.2.1. We keep conventions
on indices as in IL.3 as well as the writings f = [ ]y (u,)cp i fo of IL1 and ¥ = Cle(we) (H (z0) 71 f)
of 11.3.

By I1.5.3(i), e }(Y) = div(t), where t = u; for some i € I. Let h’ := t~Ph be the strict
transform of h at x':

B o= X"?_ X/t(p_l)((ZiEIE /3i)—1)§p—1 +t(2i61ai)+a(y)*pf —. x'P _ X/g/(p—l) T (1)

where f (resp. g) is the strict transform of f (resp. g), y is the generic point of Y and X' := X/t.

Let u} := w;/t, j € I (uj =1 for j = i) and I; := I\{i}. Then (X', t,{u}}icr,, {ur}rere) is
a system of coordinates at x’. Let n' : (X1,2') — S[{u}}ic1,] be the induced map. We denote
S" = S{u}tier ]y 2y and R := S'[X']. If ' € ¥,(X1), Q(2') is thus defined. Note that u; may
be a unit for some j € I;. In any case: the polyhedron A(h';v1,va,vs; X') where (X', v1,va,v3) is
a r.5.p. of R' adapted to E' = ¢71(E).eq is not in general minimal.

Let us recall the transformation laws given in [5, LE.1]:

j(f?'E/)’r]’(z/) = j(f7E7Y)S,7

where Y is the center of the blowing up, the only hypothesis in this formula being that Y is regular,
and that n(Y") has normal crossings with E. Since we factor out the p"-power t* in h, we get

T E gy = 77T (f, E,Y)S" (2)
If the blowing up is of the first kind, then ¥ € k(z¢)[{U;}ic1] and

f=MY({ui}ier) modM(t, uy). (3)
where M := ([[;c;, u;pdi)u{,’dr (d; is defined in I1.1.2) and {r} = I°.
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If the blowing up is of the second kind, the definition implies that Y is a curve and ¥ =
Uo({U;}ier) + Ur ¥, ({U; }ier), where {r} = I¢ is such that div(u,) € E, ¥, is (nonzero) homoge-
neous of degree €(zo) — 1 and Wg € k(z0)[{Ui}icr]e(z,)- We have

f = Mu, ¥, ({u}ier) modM(t, uf). (3"

In this case, it is easily seen that the function f € S attached to any r.s.p. (X, uq,us,us) of R
satisfying the requirements stated in the beginning of the proof of this theorem produces a ¥ of
the above form.

If §(y) > 1, we consider the valuation w of S'[X’] centered at V(X' t) given by: w(X') =

1, w(t) = 5(15_1. As

po(y) = inf{p Y _ Biay) + > pd;},
i€lp el
we get w(h') = w(X'?) = p, so vertices of the polyhedron A(h'; vy, v, v3; X’) where (X', v1,v2,v3)
isar.s.p. of R adapted to E’ correspond to monomials with w-value at least p. Thus there is some
Z' € R’ such that A(h/;vy,vg,vs3; Z") is minimal, where Z/ = X' — ', 0’ € S’, w(0') > 1. After
changing X’ to Z’, the degree zero term in Z’ of b’ is:

b = Qe pdi)toly)=p f 4 gP _ 0P D icry, m)—ngp,l. (4)

Formula (4) is also valid when §(y) = 1, where ¢’ € 5" has no weight estimate.

I1.5.4.1 Lemma. We have (H(z')) = (tp(‘s(y)_l)(l_[ieIE wPhypdr).

Proof. Indeed, as the exponents d; are defined by the generic point of the corresponding component
of the exceptional divisor (cf. I1.2), the only question is to compute the exponent of ¢ in ¢’? and
¢, the minimum will be the exponent of ¢ in H(z').

If ord,,)g" < ord,(,)f = a(y), then €(y) = ord,(,)g". Formulee(1l) and (4) and II.3.3 imply
that

ordyg” = Y " pd; + e(y) —p = p(6(y) — 1),

iGIE

ordip > Y pdi + €(y) —p = p(6(y) — 1).

i€lg

If ord,;(y)g” > ord, ) f = a(y), then e(y) = a(y). Formula (1) implies that t(ZiUE pditelu) =

divides 0% in (4) and strictly divides g7, so strictly divides #'¢g’?~! = H’t(pil)((ZiUE ﬁ")*l)gl’*l.
Therefore
ordip = Y pd; + e(y) —p = p(S(y) — 1)

iEIE
and this completes the proof.

The theorem is a consequence of the following three lemmas which also classify the equality
cases Q(z') = Q(xp). In I1.5.4.2 and I1.5.4.3, (X, u1,uz,u3) is any r.s.p. of R such that ¥ =
V(X,{ui}icr), E C div(ujugus) and A(h;uq,us,us; X)is minimal (see comments in the beginning
of the proof of this theorem).

I1.5.4.2 Lemma. Ifvs(g) =1, e(xo) = €(y) (first kind of permissible blowing-up) and z’ € ¥,(X1),
then Q(z") < Q(zg). Moreover, the following holds:
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(i) the strict transform of div(H (x¢) 1gP) is div(H(z")"1g'P). We have Q(z') < Q(xo) if 2’ does
not map to the strict transform of each component of div(H (z) " 1gP);
(i1) if Y is a curve, there exists at most one x' such that Q(x') = Q(xzg). Such 2’ satisfies

n'(z') € PDir(cle(z)/ (f; E, 20)) (resp. n'(z") € PDir(cly(z0)J (f, E))

if w(zg) = €(xo) (resp. 1+ w(xo) = €(xg)), and has W' (z') = W' (xg) < 2;

(iii) if Y = {wo} and div(H(z0)"'gP) has two components, there exists at most one x' such that
Q(z") = Q(zg). Such ' is the intersection of the exceptional divisor and of the strict transform
of div(H (z0)"1gP), and has either w'(2') = w'(x0) = 2, or (W'(wo) = 1 and zo belongs to case
11.4(7));

(iv) if Y = {0} and div(H (z0)"1gP) has one component, then: if W' (xo) = 2 and Q(z') = Q(xo),
n'(z") € PDir(cly(g)J(f, E)); if w'(x0) = 3, there exists at most one x' with Q(z') = Q(xo), and
such ' is rational over x.

Proof of (i). We note that vs(g) = 1 is equivalent to ordn(xo)(H(azo)_lgp) = ¢(zp). By IL.5.4.1,

div(H (x')~1g'P) is the strict transform of div(H (z)~1gP) since e(xo) = €(y). So for every point x’
above xp not on the strict transform of all components of H(x) 'g?, we have

6(%") < Ordn’(m’)(H(x/)_lg,p) < Ordn(zo)(H(xO)_lgP) = 6(.1,‘0),

thus w(z’) < (@) < e(z0) — 1 < w(wo). If w(a') = w(xo), then w(z’) = ord,y ) (H(z')"1g"?), that
is w'(2’) = 1 by definition I1.4, and w(xg) = €(x() — 1, which implies w’(xg) > 2 by definition I1.4.
Hence Q(z') < Q(z0) and this ends the proof of (i).

Proof of (ii). Since Y is a curve and e(y) = e(xo) = ordy(gq) (H (x0) " g?), div(H (z0) 'g?) has at
most two components. We consider two cases:

Case 1: div(H (7)) 1gP) has two reduced components, say is equal to div(ujuz). Since €(zg) =
e(y), we have ord,(zo) (H (z0) " 'gP) = €(x0) = ord, ) (H (z0) 'g”), so that Y = V (X, uy, uz). There
is no point z’ on the strict transform of div(ujuz), so by (i), Q(a’) < Q(zo).

Case 2: div(H (x¢)~'gP) has only one reduced component. After possibly changing indices, we
have (H(zo) tg?) = (ui(zo)) and Y = V(X,uy,uz). By (i), the only point 2’ to be considered has
I.8.p. (u%, g, uz) in R’. The polyhedron A(h/; o u2, ug; u%) is still minimal: if v' = (x1, 22, z3)
is a vertex of A(h/; %,Ug,’u,g,; %), then v = (1,29 — x1 + 1,23) is a vertex of A(h;uy,us,us; X)
and in, (k') = U, Pin, (h) € k‘(:n’)[U%, %, Us, Us] is not solvable (note that k(z') = k(z¢)). We have
U € k(zo)[Ur,Us] in (3), so H(z")~' f' = U(2,1) mod(ug, us).

If ¥ € k(x)[U1], we have Q(z¢) = (e(xp), 1) by I1.4. On the other hand,

w(z') < ordn/(z/)(H(m’)_lg’p) = €(zo) = w(wo).

Therefore Q(z') < Q(zo) if inequality is strict. If equality holds, we have by II.4 Q(z') =
(w(2'),1) = Q(x0). Note that clez)J(f, B, z0) = k(20).U™, so IDir(cl,(ny)J(f, B, 20)) = (U1)
as required.

If U & k(xo)[U1], we have

w(z') < ordn/(m/)\ll(%, 1) < €e(zg) — 1 < €(xg) = ord,y (H(z') " g).
2

We have Q(2') < Q(z0) unless w(z’) = w(zp) = €(xp) — 1. In the latter case, we get w(z’) = e(a'),
so Q(z') = (w(2"),2) by II.4. Since w(xg) = €(xp) — 1, we have w'(xg) > 2 and this proves that
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Q(2') < Q(x). Equality holds only if ¥ = an(zO)UQ—i—bUle(zo) for some 0 # a € k(xg), b € k(xo).
Then cly(z0)J (f, E) = k(wo).Ulw(mo) and IDir(cle(z0)J(f, B, x0)) = (U1) as required. This ends the
proof of (ii).

Proof of (iii). After possibly changing indices, we have (H(xo) 'g?) = (ufu), a +b = e(wp),

a,b > 0. Then, by (i), the only point 2’ we have to consider has coordinates (5 w12, u3). The

polyhedron A(h/; Z;, 52 us; f ) is still minimal: if v" = (21, x9, x3) is a vertex OfA(h’, Z;, Zz us; ji)
then v = (xl,[EQ,CL'?, —x1 —z2+ 1) is a vertex of A(h;uy,uz,us; X) and in, (h') = U; Pin,(h) €
k(xo)[[ﬁ, g;, 72 Us] is not solvable (note that k(z') = k(z0)). We have ¥ € k(zo)[Uy, Us, Us] in

(3) and H(z")~'f = ¥ (2, 22,1) mod(u3).

If ¥ € k(xo)[Uy,Us], we have Q(x0) = (e(xo), 1) and z¢ belongs to case I1.4(i). Then w(z') <
ord, ) (H(x")"1¢'") = e(x0) and we conclude that Q(z’) < (€(xo), 1) as in (ii).

Ifw ¢ k({L‘o)[Ul, UQ], then

w(@) < ordy (uy (W2, 22, 1)) < e(wo) — 1 < e(xg) = ordyy (o (H(2') "' g'?),
usz us

and we get Q(z') < Q(zg) with equality only if w'(xg) = 2 as in the proof of (ii). This concludes
the proof of (iii).
Proof of (iv). After possibly changing indices, we have (H(x) 1g?) = (u 6(gﬁo)) By (i), we only have
to look at points 2’ on the strict transform of div(u1). At such a point, (H(z')"1¢'"") = ((% ye(@o)y,
where ¢ = 0 is an equation of the exceptional divisor. So w(z) < ord, ) (H(z")"'g'") = €e(x0).

If w(zg) = €(xg), we get w(z’) < w(xp). Equality holds if and only if we have w(z’) =
ord,y (z (H(z')"1g'"), i.e. w'(2’) = 1. This ends the proof of (iv) in the case w(xo) = €(zo).

Let us now prove (iv) when e(xg) = 1 + w(xo). In this case, we have w'(zg) > 2, ord, (9" =
ordy(z,)f, and div(uy) € E C div(uyuz). First we note that, since (g7) = (u‘f(l)ugmu;(%)), where

H(xo) = u(f(l)ug(z) (a(2) =0 if E =div(uy)), we have
a(1) + €(xp) = 0 modp, a(2) =0 modp. (5)

In particular, 6(z¢) = w e N.
We have ¥ € k(xo)[Ui,Us,Us], ¥ & k(xo)[Ui,...,U;] in (3) (j is the number of components
of E). We may suppose that Us effectively appears in the expansion of ¥ and expand

= Y U TR0, Us), (6)

0<Z<’Lo

where ig := sup{i|F; # 0}. We have iy > 0 because ¥ & k(z¢)[U1,...,Uj].
Let us look at a point a2’ above z( on the strict transform of div(u;), in the chart centered at
the point of parameters = == =X/, Z; = uj,uy = ub, Zz = uj. Then we have

rp—1 p—1u/1”Tfl(a(1)+6(wo))u/2(pfl)(5(:to)*1)

g =7

in (1) above, and
f = uzla(l)uép(fs(wo)*l) Z u/lﬁ(ﬂco)*iFi(ljug) S (7)
0<i<io
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in (3) above, where ¥ € 5.

When uf is invertible at 2/, we have to choose an irreducible homogeneous polynomial P €
k(x0)[Us, Us], unitary in Us and such that, if we denote v" := P(1,u%), (X', u},u),v") is a r.s.p. of
R’. Then, there is no reason for A(h/;u}, ub,v'; X') to be minimal: we have to make a translation
7' := X' — 0’ to minimize this polyhedron.

To begin with, we compute the vertex w of A(h/;u),ub,v'; Z") with (z1,22) minimal for the
inverse lexicographical ordering.

As we change X’ into Z/ = X’ — @', f’ is changed into

(25 — f/ + H/p o glg/pfl.
Since the Newton polyhedron of 0’ is a subset of A(h/;u}, ub,v'; X'), every (y1,y2,ys3) in this Newton
polyhedron verifies (for the inverse lexicographical ordering)
a(l) + 6([50) — i()
p

(ylny) 2 ( 75(1'0) - 1)7

so every (21, 22, 23) in the Newton polyhedron of §'¢g’?~! verifies

a(l) + e(xp) — i L P 1

(Zlv 22) 2 (
p p

(a(1) + €(x0)), p(d(x0) — 1)).

In particular, all terms of order p(d(zg) — 1) in ub in #’¢g’?~! have order in u} strictly bigger than
a(l) + e(zp) — ig, so the vertex w will be given by

u/la(l)u/zp((s(wo)*l)u/lﬁ(mo)*io Fi, (1’ ué) + @/p’ (8)

where O € S’ is zero or has order exactly (a(1) + e(zo) —i0)/p in w} and d(z¢) — 1 in uh. We now
consider two cases:

Case 1: igp Z 0 modp. Then (5) implies that ©’ is necessarily zero. So in this case
f = u/1a(1)+6(960)*i0u/217(5(900)*1)(Fio(17 u’3) + E/),

for some ¥/ € (uf,u)). Case 1 splits into two subcases:

Case 1a: ord, i Fi,(1,u3) < idp. Then e(z') < €(x9) — 1 = w(xo) and we deduce that Q(z’) <
Q(x0). Equality holds only if w'(x) = 2, e(z’) = w(z’) = €(x0) — 1, and ord, () Fj, (1, u3) = io — 1.
Then ig — 1 =: pa, @ € N, since €(z') = w(a’) and we have F; (Us,Us) = P(Us,U3)P*Q(Us, Us),
with deg@) = 1. Now,

1

6(1”) <a+ 6(1’0) — ’io = 6(.%’0) —-1- (Zo — 1)(1 — degP) (9)

If a =0, we have cl,o)J(f, E) = k:(xo).Uf(xO) as required. If a > 0, we have degP = 1 by
(9), since e(2’) = e(zp) — 1 and 7o — 1 > 0. We now choose (X, u1,us,v := P(ug,us)) as r.s.p.
of R, where X has been chosen in such a way that the polyhedron A(h;uy,us,v; X) is minimal.
The point 2’ has parameters (X' = £ v} = i uy = ug, v = ) and A(R;uf, up,v's X') is thus

71/427

minimal (see the argument at the beginning of the proof of II.5?4.2(iii)). Since €(z’) = €(zg) — 1,
we get that in (6), U is of the form ¥ = Wy (Uy, V) + Uf™) "0 Uy, (U1, V) with Uo(0, V) # 0. On
the other hand, w(z') = e(z’), thus ¥y € k(z0)[U1, VP]. Therefore, E = div(uy) and

VDir(Clw(IO)J(f, E)) =< U,V >,
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which proves the statement about the directrix.

Case 1b: ord,y ) Fi,(1,u3) = ig. Then (F,(1,u3)) = (v/"), «' is rational over zy and we have
e(z’) < e(xp). If inequality is strict, we get Q(x ) < Q(xzp) as in case la, and the equality case (only
if w'(xg) = 2) is dealt with similarly.

If €(2') = e(xp), with notations as in case la, ¥ is of the form ¥ = Uf(wO)_ZO‘Ill(Ul, V) with
U, (0,V) #0. Thus

€(rg) — 1 <w(z') < ordnf(m/)(H(a:')_l gi:) = ¢€(wo) — 1 = w(zo) (10)

and VDir(clyz,)J(f, E)) =< U1,V >. We claim that w'(2’) = 2, which concludes the proof of case
1b.

To begin with, the vertex w = (%,5(%) — 1,ip/p) of A(KW;uf,ub,v'; X") is not
solvable, since it has two coordinates which are not integers. Furthermore, if we change our r.s.p.
(u’l,u’z,v') of S” to a new r.s.p. adapted to E’, the latter is of the form (uf := ~ju},uy :=
Youh, v = y'v" + ), where ¢ € (uf,u5)S’ and v{v4y € S’ is a unit. Then w still appears as
a vertex in A(R/;uf,uf,v"; X’) as well as in the minimal polyhedron A(h';uf,uf,v”;Z") after
performing a translation Z” = — 0"”. The computation in (10) remains valid with derivatives
w.r.t. (uf,uf,v"”), so x’ is in case II.4(V), w'(2") = 2 and the claim is proved.

Case 2: ip = 0 modp. Then the series ©’ in (8) may be nonzero. Since iy > 0, we have
io = p = 2. Note that the terms H (zq)u 6(IO)%OF o (u2,u3) correspond to a face of the minimal
polyhedron A(h;uq,uz,us; X), so that in particular UQ( )F o (Uz,U3) is not a pt"-power. We apply

1.5.3.2(iii), (iv) to U;(Z)FiO(UQ, Us). Then, in (8), we get

a(l 6(xp)—1 e(xo)—1 a(l 6(xp)—1 e(xo)—1 e
" ()UIQP( (zo) )u/l (wo) OFiO(l,ug)—i—@/pEu/l ()U/QP( (zo) )u/1 (zo) °(40'® + auhep),

with 4/ invertible, ¢ € S” and e < ig. Then
e(z') < e+ e(zg) —ip < e(wp). (11)

If some inequality is strict (for instance if e < ip), we get Q(z’) < Q(xg) as in case la, and the
equality case (only if w’(z¢) = 2) is dealt with similarly.
So from now on, we assume that all inequalities in (1 1) are equalities. In particular, e(zg) =

(). By L88203), we e o/ = A+ \ € ), D2, 25

(AU +Us); aU is a multiple of (A\Uz+Us)%~! (remember that p divides a(2)). Since ig = 0 modp,

4 < i < s are multiples of

we must have 2 5T 10 = 0; since Fj, is not a p*"-power, one of the other derivatives is nonzero. So

oF,, OF,

oUy "~ O\

VeCtk(xo) < Uy—— >= ]f(l‘o) ()\UQ + Ug)io

Therefore, there exists 0 # p;, € k(xo), © € k(xo)[Uz, Us] i, such that

F;, (Uy, Us) = piy(NUz + Us)™ 4 ©F.

Since A(h; u1,usz,us; X) is minimal, the monomial p;, u‘f(l)Jre(wO)_iO ug@)uéo must define a non solv-
able vertex w of the initial face of A(h;u1,us,us; X), hence u;, & k(xo)P.
We now choose (X, uy, u2,v = uz+ Aug) as r.s.p. of R, where X has been chosen in such a way

that the polyhedron A(h;u;,us2,v3; X) is minimal. The point ' has parameters (X' = %,u’l =
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wouh = ug,v" = ) and A(R;uy, uh, v’y X7) is thus minimal (see the argument at the beginning

of the proof of I1.5.4.2(iii)). Since e(z') = €(xq), we have Fy(1,u}) = p;v'’, i € k(zo) in (7) for
each i, 0 < i < ig, so F;(Us,Us) = p;V*. This means that the initial face of A(h;uy,us,v; X) is a
segment with ends

_,a(1) +e(®o) —io a(2) io a(l) 4+ e(zo) a(2)
a:= ( ) o b0 (12)

where a corresponds to the vertex w and b to the monomial XgP~1. By (7), this also implies that
the face of A(h/;u),ub,v’; X') with minimal second coordinate is the segment with ends

a(l) + e(xg) — 29 10 a(l) + e(xg
W elwo) 2o ) - 1,%0), 3y o= (T 20)

a = (
p p p

,0(x0) —1,0). (13)

Suppose we changed X into

a(1)+6(zo)—io+i a4, .
04

Z =X — pu, r Uy’ ve T,
where i € {0,1} is such that io/p —i # 0 modp and ps_, — pAP~t #£ 0, where 7 is the image of v
P
in k(zo). We would have A(h;uy,uz,v; Z) = A(h;ur, uz,v; X) by construction, and the coefficient

. o a(l)te(zo)—L+i g(2) fo_; .
of the monomial u, P ug( Jur " in

a(l)+e(xzg)—1 .oa(2) p a(1l)+e(zg)—i ;a2
N R A R T S W pd
f+{u Uy ” v —uy u,’ vr g

would be nonzero. This proves that VDir(cl, () J(f, £)) =< U1,V > and, comparing with (7),
that w(z') = e(z9) — 1 = w(xp). If W' (xg) =3 or if W' (') = 2, we are done.

Fortunately, we cannot have at the same time w’(xg) = 2 and w’(2’) = 3. The idea is that,
since z’ is rational over xg, if there are translations over X’ which drop the order of J(f’, E’) by
one, there are corresponding translations on X which also drop the order of J(f, E) by one.

More precisely, suppose we have Q(2') = (w(x0),3). By definition, there exists a r.s.p.
(whwhow) of S, with w) = yuf, wh = vouh, wh = viuf + vhup + vho, ALk € S, i
invertible, and 0’ € S’ such that the following holds: denoting Z’ := X’ — ¢, the polyhedron
A(W;wh, wh, wh; Z') is minimal and the order of J(f' + 67 —0'g’P~1, E') is ¢(2’). Now, by (7), the
initial form @ of f’, written in the coordinates (W7, W3, W3) is of the form

— 1) o p(8(za)—1) S RN 2 e — v
o= W) (h W) (> (6w pivh (Wi — =W{)" + W53),

0<i<io M

where ’72’,1/7 are the images of v;,v; in k(2') = k(zo). Since the Newton polyhedron of ¢ is a
subset of A(h';w],ws, wh; X'), the segment (13), whose ends are not solvable, is still a face of
A(W;wl, wh,wh; Z'): b is not solvable by definition, and we have

1 a(l)+e(zg)—ig

3 I __ . N W/ —_— 7/_1wl 0(xzo)—1 lwl o \P
ing: f* = pi, ( (1 1) i (73 2) (vsW3)» ),
with u;, & k(z')P, so @’ is not solvable either.
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Since ord,y ) J(f' 4+ 0" — g E") = e(2’), ® must be of the form

a(l 6(zo)—1 e(xo)—7 j
(I)/ — Wll ( )Wz/p( (z0)—1) Z /J/;pW{ (z0) ]pWéJp—i‘WéE(Wl/,WQ/,Wép) _'_Z]i?’ (14)

0<< 2

for some p, € k(z') and %y € k(a)[W1, W3, W3]. We pick v;,v;, € S such that v; = v/ modmsy,
v; = ,ug modmg: and let w; = vu;, i = 1,2 and w3 = vyu; + voui + vzv. By construction,
A(h;wy, we, ws; X) and A(h;uy, us, v; X) have the same initial face: the segment (12). The vertex
a is given by the monomial uio)\l_(a(l)Jre(wO)_io)ugi” w?(1)+€(w°)_i° wg@)wg‘) and is not solvable, since
i, & k(xo)P. The vertex b is not solvable either by definition. Consider, if necessary, a change of
coordinates Z := X — 0 making A(h; wy,ws,ws; Z) minimal. Then f becomes fz := f+ 0P —gP~1
in these new coordinates. Since neither a nor b is solvable, we have 6 € H (xo)mg(wo)ﬂ, so that
f=fz modH(:L'o)mg(mO)H. Comparing now (7) and (14), the initial form ® of f (or fz), written
in the variables (W7, Wy, W3) must be

P = Wla(l)W;@) M;pwlé(wo)—jpngp

0<j< L

This shows that ord,(,,)J(fz, E) = €(xo). Since w(xo) = €(xo) — 1 and A(h; wy, w2, ws; Z) is
minimal, we have w’(z¢) = 3, thus Q(z') = Q(zo).

This concludes the study of the first chart of the blowing up X;. The last point 2’ to look at
is the point with coordinates (X k=i, 2 = uh, ug =t ug).

If £ =div(uy), then us and us have symmetric role and by changing indices, we come back to
the origin of the chart studied above. Only note that if there was a point 2’ with Q(z") = Q(xg)
and w'(xz9) = 3 in the first chart, (11) implies that e(z’) < e(xg) — io < €(z9) — p, so that the
uniqueness statement in (iv) is established.

If div(ujug) C E, then, with notations as in (7), we have b/ = X"? — X'¢g/?~" + f’ with

p=1 =1, — zo)—
p—1 :,}/p—lu/l7(61(1)4-6(9f»‘0))u/2 > (2)ug(10 1)(6(z0) 1)’

= ulla(l)uga@)ugp(fs(wo)—l)(Z u/IE(JCo)—iFi(u/27 1) + uly),
where ¥ € §’. We are at the origin of a chart, so that by the argument in the proof of I1.5.4.2(iii),
A(KW;ul, uby, uh; X7) is minimal.

If, for all i, F; € k(x)[Us], we have Q(zg) = (e(x0),1). Since E' = div(ujubub) in this case,
we have w(z’) = e(2’) < ord,, (x/)(H(x )71g'P) = €(xg) = w(xo). We thus have Q(z') < Q(zg) if
e(z') < ordy o (H(2")"g'?), and Q(z') = Q(x0) if €(a’) = ord,y ) (H(z') " gP).

If, for some i, F; & k(xo)[Uz], then e(z’) < e(xg) — 1. We have Q(z') < Q(zg), with equality
only if Q(zg) = (e(xo) — 1,2) and ¥ is of the form ¥ = W, (Uy,Us) + UsWy(Uy,Us). Therefore
E = div(ujuz) and < Uy >C VDir(cl,(40)J(f, E)) €< U1,Uz > as required. This concludes the
proof.

I1.5.4.3 Lemma. Ifvs(g) > 1, e(xg) = €(y) (first kind of permissible blowing-up) and z' € ¥,(X1),
we have Q(z') < Q(xo). If equality holds, then:

(1) ' (x") € PDir(cleaq)J (f; B, 20)) if w(wo) = v(x0) = €(0),
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(ii) ' (z") € PDir(clyz)J (f, E)) if w(zo) = v(20) = €(x0) — 1.
Proof. Since vs(g) > 1, we have w'(z9) = 2 and x¢ belongs to case I1.4(ii). We keep notations
as in the beginning of the proof of IL.5.4. By IL5.2, we have: either ord, ) (H(zo) 'g?) >
ord, ) (H(xo) " f) = €(y), and then ¢'* € tH(z')S" in I1.5.4(1), s

ot ier, P9V o1 ¢ (a5 (1)

in I1.5.4(4); or ordn(y)(H(xo) LgP) = ord,y)(H(xo) "' f) = €(y), in which case some u, with 1 <
r<e,r ¢l divides H(xo) 'gP, since ord,(z,) (H(xo) " gP) > ordyge) (H (20) 1 f) = e(x0) = €(y).
In this case, we have

ot e, gt e () (1)
in I1.5.4(4). In both cases, I1.5.4(3) and I1.5.4.1 together imply that

¢ = H(2')U({u;}ier) + 0" modH (a')(t, ur)S’ (2)
in I1.5.4(4). By I1.5.4(2) and I1.5.4.1, we have
H(a')" T (¢, B') = t~“W H(x0) "' T (H(20)¥({us}icr), B,Y) modH (z') (¢, ur) S’ (3)

if Y = {xo} (then {r} = @), orif (Y is a curve and div(u,) C E). If (Y is a curve and div(u,) € F),
then

99

H(x' S
8%) modH (x")(t, u,)S

(3"

H(a") "' T (¢, E") = (¢t W H(wo) "' T (H(20)¥({ui}ier), E,Y), H(a') ™!

We consider two case:
Case 1: w(zg) = €(zo). As the blowing up is of the first kind, we have by I1.5.2(i)

w(zo) = €(zo) = €(y) = Ordn(xo)(H(»To)_IJ(H@O)‘I’({Ui}ieI), E.Y)),

so w(x’) <w(xo) by (3) or (3”). Furthermore,

Cle(wo)(H(xo)_lj(H(xO)\p({ui}iEI)v E, Y) = ClE(zo)J(fa E, 'f()) = Cle(mo)J(fa E, Y)7
so if n'(z") € PDir(cle(z)J (f, £, %0)), we have w(z’) < w(xg) as required.

Finally, if we change (¢, {u}}ic1,,{wi}icrc) to new variables in S’, then minimize the corre-
sponding polyhedron by a translation over Z’, Z"” := Z' — 6", (1) (resp. (1’)) implies that
ord (0" g'"") > ord, H(a'),
(resp. ord, (6"g""") > ord,, H(z')).

This translation therefore only adds some p'*-power to H(z')¥({u’}ic;) modulo (tH(z')) (resp.
modulo (u,H(z'))) in (2). So if w(x’') = w(xy) = €(x(), we have

w(a') = ordy o (H(«") T (H (") ¥ ({ui}ier), E)
independently of coordinate changes at 2, so w'(2’') < 2 and Q(z") < Q(z0) as required.
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Case 2: w(xg) = €(xp) — 1. As the blowing up is of the first kind, we have by II.5.2(ii)
w(wo) = €(x0) — 1 = €(y) — 1 = ordy(uq) (H(x0) ™' T (H (0) ¥ ({ui }ier), B,Y)) —
It is easily seen that
I(Y)J(f,E) CJ(f,B,Y), I(Y)H(z0) ™ T (H(20)¥, E) C H(x0)™'J (H(x0)¥, E,Y),
so with notations as in I1.5.4(2), we have
I (f B) = 7O I(Y)I(f, B) € I(f B,
Now (3) or (3’) combined with I1.5.4(3) imply that
w(a') < ordy (o (t™ ) H(zo) ™ T (H(20)¥({ui}ier), B)) < w(zo)-

If /(') & PDir(clu(eg)J (f, E)), we have ord,y (o (¢~ H (wo) =1 T (H (20) ¥ ({ui}ier), E)) < w(wo) ||
so w(z') < w(zg). If '(a') € PDir(clw(Io)J(f E)) and w(z') = w( 0), we conclude by the same
argument as in case 1 that w’(z’) < 2, and therefore Q(z") < Q(zo

I1.5.4.4 Lemma. IfY is a permissible center of second kind at zq, then w'(xg) > 2. There exists

ar.s.p. (X,u1,us,us) of R such that A(h;uy,us,us; X) is minimal and

(i) div(uq) C E C div(ugug) and Y = V (X, u1,ug);

(i) O = cle(uy) (H(x0) " f) = UsW3 (U1, Uz) + Wo(Ur, Uz), W3 # 0, W, U3 € k(w0)[Us, Us).
Furthermore, every x' € 3,(X1) has Q(z") < Q(zo). If Q') = Q(z0), we have W' (xg) = 2,

U3(Uy,Us) is the power of a linear form, and n'(z’) = PDir(Vs(Uy,Uz)). In particular, x' is

rational over xg.

Proof. By IL.5.1.1, Y is a curve. We choose the r.s.p. (X, u1,ug,us) of R in the definition of
permissibility of second kind. Then A(h;uy, us, us; X) is minimal, E C div(ujusus), div(uy) C Ey
and Y = V(X,u1,uz); moreover, we have H(zo) 'f € (u1,u2)®)~1 and ord,,)J(f,E,Y) =
e(xg) — 1, so that there exists an expression of ¥ as in (ii) (see remarks in the beginning of the
proof of theorem II.5.4). Note that, still by definition of permissibility of second kind, we have

ordyy(zo)J (f, B,Y) = €(z0) — 1 < €(z0) < ordy, (H(wo)_l(ul’“ﬁgj.)

for i = 1,2,3. Therefore lET(:Uo)_lg—J3 € J(f,E,Y), sodiv(usz) € E and this gives (i) and (ii). Also
note that

0 < w(wg) = €(wg) — 1 < ord,, (H(z0) *g?), (1)
which implies that w’(zg) > 2.
Let us prove that Q(z") < Q(zg). If 2’ is in the chart of origin ( = X' w1 =uy, 2 = uh,uz =
uf), then
h/ — X/p X/ /p—1 + u/la(1)+a(2)+w(m0)—pu/2a(2) (\I/3<17 ué)ué + ’U,/l(ﬁll + ugZ /2) (2)

with ¢, ¢} € S, where H(zo) = uMul®. Since (H(z')"1¢’P) = u, ¥ (H(20)~'¢?) in IL5.4(1)
and e(y) = e(zg) — 1, (1) implies that v} divides H(2')"'¢g’?. When performing a translation
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Z' = X' — 0 in order to get A(h/;u),v’,us) minimal (where (u},v’,uf) is a r.s.p. of S’), we thus
get an expression h' = Z'7 — ¢*~' Z' + f}, with

£y =, DTe@reo) =P a2y (1wl + ¢ mod H (2 (u), uh”)

for some ¢ € 8§ by (2). So if ordy Ws(1,u}) < e(zo) — 1 = degWs, then v(z') < () — 1 = w(o)
and w(z’) < w(zp). So we are interested in the case where ord, Ws(1,u5) = €(zg) — 1, that is,
Uy = AUy 4 pUp)®0)=1 0 £ X\ € k(zo), p € k(x0), and R’ has r.s.p. (X', u}, v :=ub+ p,uy). By
the previous comments,

10z
ouly

ord, ) (H (z") ) < ordy Ws(1,u5) = e(xg) — 1.

This proves that v(z") < e(z9) — 1 = w(xp). If equality holds, note that
U o= cley, (H(2') " fy) = AV 08+ UL F/ (U, V!, UY)

for some F' € k(2')[U], V', Usle(wy)—1- We then deduce that w'(2’) < 2, therefore Q(z') < Q(zo),
since ordy (H(z')"'¢'?) > 0 and W'(0, V"', U3) & k(z")[V'?, U5"].

We now have to consider the case where R’ has parameters (u% =X/, "= uh,ug = ubh,uz =
uy). If E = div(ujug), then uy and ug play symmetric roles and there is nothing to prove. Other-
wise,

W= XX H () (Ws(uy, )y + upd + iy 0h)

with ¢}, ¢, € S’. As above we see that uf, divides H(z')"'¢'" and the only case to be considered
is when U3 = )\Uf(ro)_l, 0 # X € k(xo); the proof ends like in the first chart.

11.5.5 Definition. If e : X' — Xq is a composition of permissible blowing ups, a point x' €
e Yzo) is said to be near (resp. very near) xo if ¥’ € X,(X') (resp. ' € X,(X') and Q') =

I1.5.6 Theorem. Assume zo € ¥, and w'(z¢) = 3. Let
Xoe Xg =X, g — X, e o>

be the quadratic sequence along u, i.e. X; is the blowing up along the center x;_1 of p in X;_1 for
i > 1. There exists n > 1 such that x,, is not very near x.

Proof. By I1.5.4.2(iii), the only case we have to consider is when div(H (x¢)~!gP) has only one
component, say div(ui). Then, by I1.5.4.2(iv), for ¢ > 1, z; is on the strict transform of div(u;)
and z; is rational over x if x; is very near xo. For each i > 0, there is a map n; : (X, z;) — SpecS;,
where S; is an iterated quadratic transform of S. Let m; : SpecS; — SpecS be the composed map
and F; = m; 1(E)red be the exceptional divisor. Then F; has at most two components as long
as Q(x;) = Q(xp) since w'(xg) = 3. By I1.5.4.2(i), E; has exactly two components: an “old”
component, the strict transform of div(u;) C SpecS, and a “new” component which is exceptional
for SpecS; — SpecS;_1 for i > 1.

So we can choose the r.s.p. (X, u1,us,us) of R such that A(h;uq,us,us; X) is minimal and
ug = 0 is the equation of the exceptional divisor of SpecS; — SpecS;_1 for i > 1. So the equation
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of X; at z; is b = ugiph = X®OF _ X(i)g(")pi1 + @ where ¢ = uy'g. Then u(g®¥) =
w(g) — ip(uz) > 0. Since the value group of p is Archimedean, we have

I1.5.7 Remark. As a consequence of I1.5.6, we lower Q(z) in the ambiguous case w'(zg) = 3
by performing a finite quadratic sequence along the valuation pu.
We assume from now on that w'(zg) < 2.

I1.6 Theorem. If H(xo) # 1, the function w is upper-semicontinuous over ¥,(Xo).

Proof. If g = 0, then w'(x¢) = 2 by definition and w(xg) = ord,(4,)J(f, E). Since J(f, E) is well
defined as a sheaf of ideals on SpecS (II.3.1) and is independent on choices of coordinates, w is
upper-semicontinuous on 3,(Xy). So we have only to deal with the case g # 0.

By I1.4.7, the set W := {x € ¥, | w(x) > 1} is Zariski closed and of dimension at most one.
There only remains to prove the following: if Y C ¥, is a curve, y its generic point, and w(y) > 1,
then w(y) < w(xp). This is implies by the following very useful lemma (where g may or may not
be nonzero).

I1.6.1 Lemma. Assume that H(zg) # 1. Let Y C X, be a curve with generic point y such that
w(y) =2 1. Forn >0, let e, : X411 — X, be the blowing up along some closed point =, € X,
where x,, is on the strict transform Y, of Y.

Then, for n >> 0, Y, is permissible of the first kind at z,, and

w(y) = w(yn) < wlzn) < w(zo),

where y, is the generic point of Y,.

Proof. First note that the condition H(zg) # 1 is preserved by blowing up closed points lying on
the consecutive strict transforms Y, of Y if Y C 3, (see proof of I1.5.3.1).

For each n > 0, there is a map 7, : (X,,z,) — SpecS,, where S,, is an iterated quadratic
transform of S. Let m, : SpecS, — SpecS be the composed map and E,, := 7, ' (E),eq be the
reduced exceptional divisor. Since e, is an isomorphism at y,, we have Y,, C ¥,(X,,) C E,, and
w(yn) = w(y). For n big enough, Y,, is regular at z,, and 7,(Y,) has normal crossing with FE,.
Also note that x,,1 is rational over x,, since Y, is regular at z,, and that F, has at least two
irreducible components. By I1.5.4, it can be assumed that n = 0 without loss of generality.

By IL.2.1, we can choose a r.s.p. (X, u1,us,us) of R such that Y = V(X,uj,us), with
div(ujug) € F and the polyhedra A(h;uy,us,us; X) and A(h;ug, uz; X) are both minimal. We
denote H(zg) = u‘f(l)ug(Z)ug(3), gP = AP H (xo)ub ulul (with a(2) = by = 0 if div(ug) € E), and

H(zo) 'f = Z Aayazas W3 U U5, Aayasas € K(Z0)-
(a1,a2,a3)€EN3
We have
€(y) = min{b; + bz, {a1 + a2 | Jaz € N: Ay asas # 0}}, (1)
and
€(zo) = min{by + ba + b3, {a1 + a2 +az | Aay 4,05 # 0}} (2)
The point 2’ := z; has coordinates (u% =t X', 0t =t uj, 2 =t up,uz =t uz). We have

Y, = V(X' ), ub), with div(ujuy) C Ey. Let ' = X'P — X'g’P~" 4 f’ be the strict transform
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of h. Then A(h';uf,ub, us; X') is minimal, since 2’ is rational over z( (see the argument at the
beginning of the proof of I1.5.4.2(iii)). By I1.3.3, I1.5.4.1 and elementary computations, we have

o = AP H (T, ®)
and
H@)' ' = 30 Auasagty ™ ™y T, (3)

(a1,a2,a3)€EN3

One deduces from (1), (2), (3) and (3’) that e(zg) > e(a’) > €(y), and that e(xg) = e(z’) if and
only if €(xp) = €(y).

Therefore for n >> 0, we get €(x,,) = €(y) = €(y,) and this proves that Y;, is permissible of
the first kind for n >> 0. As before, it can be assumed that n = 0 without loss of generality.
There remains to prove that w(z,) > w(y,). By theorem II.5.4, it can be assumed that Q(z,,) is
constant for n > 0. Since €(z,,) — 1 < w(zy,) < €(z,) and €(y,) — 1 < w(yn) < €(yn), we must prove
that w(z,) = €(x,) — 1 and w(y,) = €(y,) cannot hold at the same time for arbitrarily large n.

The latter is certainly true if E' = div(ujusus), since this implies that F,, has three components
for each n > 0, and therefore €(z,,) = w(x,). So, we now assume that F = div(ujus), and in
particular by = 0 if g # 0. Since €(xg) = €(y), each (a1, as,a3) € N? achieving the minimum in (2)
has a3 = 0; if g # 0 and this minimum is achieved by (b1, b2, b3), then we have b3 = by = 0.

Assume that w(y) = €(y). Since A(h;uy,ug; X) is minimal, we now have

Cle(mo)(H(xO)_l(gp, f)) € k(xo)[Uy, Ug]é(a:o)' (4)

This proves that w(xg) = €(xg) if w'(xg) < 2. Suppose that w’(zg) = 3. Since A(h;u1,us,us; X) is
minimal, we must have v5(g) = 1, so a(1) + €(zo) and a(3) are divisible by p, and

U = C]e(xo)(H(t’Eo)ilf) ¢ k((Eo)Ule(xO)

We expand ¥ = 37, .. UY"W,(Uy), where ig > 0 is such that ¥;, # 0. Then (w -

10, 10, @) € N? is a vertex of A(h;uy,uz,u3; X) and thus ¥;, = )\Uf(xo)_pio with A & k(xo)P (in

particular, k(xo) is infinite). Let u € S be a unit and let

a()te(@g) | a®)
0:=pu, ° ugug? , Z =X —40.
Since k(z0) is infinite, the monomial u‘f(l)ﬁ(%)*lugug(?’) appears with nonzero coefficient in f+6P —
OgP~! for a general value of the residue class i € k(xp). On the other hand, A(h;u,us,u3; Z) =
A(h;uy,uz,uz; X) so that a fortiori A(h;uy,uz; Z) = A(h;uy,ue; X) and this proves that the
polygon A(h;uy,us; Z) is minimal. Therefore

gr — ggr—1
w(y) < ordyy) H (o) ™! (8(f+ ;u2 g )) =e(y) — 1,

and this contradicts the assumption w(y) = €(y). The argument extends to the proof of w(z,) >
w(yn) for all n > 0 and the lemma is proved.

I1.6.2 Remark (not used elsewhere). Theorem II.6 can be extended to the following more general
situation: S is a k-algebra of finite type and dimension three, every point of SpecsS is regular, and
k is differentially finite over the perfect field ky. So we have infinitely many closed points in SpecS
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and in each subvariety Y C Xy = Spec(S[X]/(h)) of positive dimension. The normal crossings
divisor F is chosen as in I and H(x), J(f, E), as well as Q(z) are defined pointwise for x € Xy,
i.e. w.r.t. the local ring S, .

By a well known criterion of Nagata ([Ma] theorem 24.2), theorem II.6 extends to this more
general situation provided we can prove the following: for each integral subscheme Y C ¥,(X) of
positive dimension, there is a nonempty open subset U C Y such that w(z) = w(y) for all x € U,
where y is the generic point of Y. We give the proof when Y is a curve, the proof being somewhat
simpler when Y is a component of Ej (see the argument below when w(y) = 0).

By theorem II.5.4, it can be assumed that n(Y) is regular and has normal crossings with
E. We pick some closed point g € Y as origin such that F, and F,, have the same irreducible
components. By I1.2.2; there exists a system of coordinates (X, uq,us,us) at zg, with div(uy) C
E C div(ujugus), such that Y = V (X, uy,usz), A(h;u1,ue; X) minimal and we can read the d;’s on
this polyhedron (in particular, H(z¢) = H(y) =: u'f(l)u;(Q) with a(2) = 0 if div(uz) € E). Then

aD+by  a()+by \ P a(l) a(2)
. P P P ai, a2
h=X"—X(yy Uy T U Uy E Haia Uy U™,
(a1,a2)EF

where v € S, is invertible, F' is a finite set such that (%, a(2)’$) € A(h;uy,ug; X) for each

(a1,a2) € F, and fi4,q4, € Sy is invertible. Note that, in particular, we have (a;,a2) € F whenever

(%, %) is a vertex of A(h;uq,uz; X) and (aq,az) # (by,b2). It can also be assumed that

Q};/ko is a free module. We fix a basis B of the dual space Dery, (S) containing 8871 and 8872.

Let U be the nonempty open set consisting of those x € Y where

(i) 7y is defined and invertible at z;

(ii) the pa,a,’s are defined and invertible at = for each (ai1,a2) € F (so in particular, f is
defined at x);

(iii) £y and E, have the same irreducible components (thus H(z) = H(y) by IL.2 and J(f, E).
as defined in I1.3 is the stalk at = of one and the same ideal J(f, F)).

(iv) for each vertex w = (m,m), w # wy = (m,m), of A(h;uy,uz; X)
. . . p p . . p p . . .
with integer coordinates, and for each D € B, Djiq, 4, either vanishes at y or is invertible at x.

First note the following consequence of conditions (i) and (ii): if 7 : R — R? is the projection
(21,72, 73) — (21, 22), then A(h;u, uz,v; X) = 7~ (A(h;ur, ug; X)) whenever (X, uq,ug,v) is an
adapted system of coordinates at x.

Also by (ii), a vertex (w,0), w = (a(l):(“ , a(z);‘”), of A(h;uy,us,v; X) is solvable if only if

w # wp, w has integer coordinates and the image of fiq,q, in k() is a p**-power. By (iv), if some
D € B such that Dy, q, is invertible at x is a derivation w.r.t. constants at x, then (w,0) is not
solvable. If there is only one D,, € B such that D, 4,4, is invertible at « and D,, is a derivation
w.r.t. alocal parameter at x, then it can be assumed that D,, = %. In this case, (w, 0) is solvable.
However, after performing a translation Z := X — 6 is order to resolve (w,0), f is changed into
f'=f+0"—0g°"1 and w, = (w, %) is a vertex of A(h;u1,us,v; Z) (remember that w # wyp).
Hence

ord (Do (H(2)prayar ui us?)) = ordy () (Do (H(2)prayar vt us?)).

This proves that there exists X, € 3’; such that A(h;u1,ug,v; X,;) is minimal, h = XP— X, gP~ 1+ f,
and

n(x)

ordn(i)J(fm, E,) = ordn(y),](f, E,)

whenever x € U. Therefore w(x) < w(y) and the inequality can possibly be strict only if w'(x) = 3.
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In this last case, one proceeds as in the end of the proof of lemma II1.6.1: we must have
a(D)te(@) 4
e(x) = €(y) and there exists a coordinate change of the form Z, := X, — 0, 0 :== pu; *

wu € S, invertible, such that A(h;uy,uz,v; X;) = A(h;uy,ug,v; Z,). We then have

_ afa: — afl’
w(y) < ord,(y) (H(x) 1%) < ord (g (H(z) 18U2

U2,

)=¢€(z) —1=w(x)

as required.
We assume that w'(z¢) < 2 from this point on.
ITI Nonpermissible blowing ups.

In certain situations (see chapter 3, section II below), we will perform some blowing ups of a
particular type which are not permissible: blowing ups of prime ideals I C S such that V(I) has
normal crossing with E (blowing up the base SpecS).

If mo : Z — SpecS is such a blowing up, and 2’ € 7, ' ((2¢)), there is an induced map

m: X' :=SpecR — SpecR,

where S" := Oy ./, R := S'[X], and 2’ := (mg, X). We have a projection " : SpecR’ — SpecS’
and a normal crossings divisor E' := m, 1(E)red which satisfies the requirements in I. Also note
that H(xo) divides H(z') in S’, so H(z") # 1 if H(zg) # 1.

Then the invariants w(z’) and Q(z’) are defined as in I1.4 and we point out that I1.4.7 remains
valid for the germ (X', 2’). We also keep on using the terminology of “near” and “very near” in
definition II.5.5 whenever e : X’ — X is a composition of permissible and nonpermissible
blowing ups of the above type and z’ € e~*(xg).
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CHAPTER 2: a few easy cases.

In this section, we consider some cases where our main invariant Q(z) = (w(x),w’'(x)), w(z) > 1
(chapter 1, definition I1.4) can be decreased by permissible blowing ups (chapter 1, definition
I1.5.1). Section I of this chapter contains resolution when w’(z) = 1. Section II contains some
cases when w'(x) = 2, which mainly rely on the directrix and its associated invariant 7(z) (chapter
1, definition I1.4).

From now on, x will denote the center of the valuation p in some blowing up X of X obtained
by a composition of permissible or of nonpermissible blowing ups of the type described in chapter
1, III. In particular, the local equation of X at x is of the form h = X? — X¢gP~ ! + f, ord,h = p
and H(x), Q(x) are always defined.

I Resolution of the case w'(z) = 1.

By chapter I, I1.5.6, the uniformization problem is reduced to the case w’(z) < 2. As usual,
we suppose that the r.s.p. (u1,u2,uz) of S and X € R are such that £ = div(u; ---u;) and the
polyhedron A(h;uy,usz, us; X) is minimal. If w’(z) = 1, then by chapter 1, definition I1.4, we have
g # 0 and

ord, ) (H(z) ' g?) = w(z) = ().

I.1 Theorem. Assume that x € ¥,, w'(x) = 1 and div(H(z)"'gP) has at least two irreducible
components. Let

be the quadratic sequence along i, i.e. X; is the blowing up along the center x;_1 of p in X;_1 for
i > 1. There exists n > 1 such that x,, & Xp,(Xy,) or Q(zy,) < Q(x).

Proof. By chapter 1 I1.5.4.2(i), at most one point 2’ in X; is very near x = zo. If 2/ = x; is
very near x, div(H(z) !gP) has exactly two irreducible components, say H(z) 1g? = ~vPuj'u$?,
ay,as > 0, 7 invertible, and 2’ € X7 has r.s.p. (X' := %,u’l = Z—;,ué = Z—g,ug := u3). We have
H(2')™g"" = ~Puy™ up™ = ug"H(x) " g".

Hence p(H(z")"'g'?) = n(H(x)"*g?) — pu(us), where p is the given valuation. As the group
of values of y is Archimedean, we have

provided z,, € £,(X,,) and Q(x,,) = Q(z), which concludes the proof.

I.2. If W'(x) = 1, it can furthermore be assumed that H(z) lg? = vpui(x) by I.1. Let m(x) be the
number of irreducible components of E. By chapter 1 I1.5.4.2(i), if e : X’ — X is a permissible
blowing up of the first kind and 2’ € e~!(z) is very near x, then 2’ is on the strict transform of
div(uy). Therefore it can be assumed that m(z) > 2, i.e. div(ujug) C E, after blowing up once
along x. Let us denote:

H(x)=: uf(l)u;@)ug(?’)7 a(3) =0if £ = div(ujuz);

gP =: 'ypuzfﬁlug&ug%, ~ invertible, 8; = 0 if div(u;) € Fo;

H(@) ™ f = Yocicew " ¢i. d0 € S and ¢; € k(x)[[u, us]], 1 < i < e(x).
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1.2.1 Definition. With notations as above, let us denote
Aj = inf {Ord 1% <i < e(w)}, j=2,3;

B:=in f{M L 1<i<e(x)}, C:=B—Ay— A3 >0;
3 := inf {Ordu3(¢z/u2 2 mod(uz)) 1

< i < €(x)}, where ord,, denotes the natural valuation of the
discrete valuation ring k(x )[[ug]]
v:=1+4+|C| (resp. v:=sup{l, [B]}) if £ = div(uiugus) (resp. E = div(ujuz)).

Obviously, these definitions may depend on (u1, uz, us3), but not on X, since A(h;uq, ug, us; X)
is minimal and A;, B and C (resp. () are computed by evaluating the minimum of a linear function
on some (linear) projection of this polyhedron. When there is a risk of confusion, we will make
explicit this dependence on (uq,ug,us) by writing A;(uq, ug,us), etc... We also use the notation
Aj(x), A;j(z'), etc... when dealing with a blowing up e : X’ — X and 2’/ € e”!(z). In this case,
we always compute invariants w.r.t. B := (e 71 E)eq-

Finally note that B(x) > 1, since ord,,)f > €(z), and that all of these invariants are finite
(i.e. ¢; # 0 for some i, 1 <1i < e(x)) by definition of H(z), since w(z) > 1.

1.2.2 Theorem. Assume that the following condition holds:
(*)z€X,, w(z)=1, H(x) 1g? = yPu] @) and m(z) = 2.
Let e : X' — X be the blowing up at © and x' € X' be very near x. Then x’' also satisfies

(*) and there exists a r.s.p. (Z,v1,vq,v3) at &' such that A(h';v1,v9,v3; Z) is minimal and the
following holds:

(i) y(v1,v2,v3) < y(u1, ug, us);

(i) if m(x) = m(z') =2, then ﬁ(vl,vg,vg) < ﬂ(ul,ug,u;),)

(i5i) if ' is in the chart with origin (5(2, wLoug, 1) then As(vi,va,v3) = B(ui, u2,u3) — 1 and

B(v1,v2,v3) < 14 | B(ur, ug,us)].

If moreover ' is distinct from the origin of the chart, we also have

B(v1,v2,v3) < 14 |C(ur, uz,us3);

() if (x' is not rational over x and y(uy,us,us) = 2), then y(vi,va,v3) < vy(ur,uz,us), except
possibly if (m(x) =2 and B(u1,usz,u3) = 2) in which case B(v1,v2,v3) < 2;
X UL U2

(v) if o = (=, 2 22 wg) is the point at infinity, then As(vi,ve,v3) = Aa(uy,uz,us) and

u3 ’ u3 ’LL3
B(v1,v2,v3) = B(ur, ug, uz) + Az (uq.uz,us) — 1.

If moreover (m(x) = 2 and y(u1,u2,u3) = 2), then vy(vy,va,v3) < Yy(u1,us,us) except possibly if
(B(ui,ug,u3) =2 and C(vy,va,v3) =1).

Proof. For 1 < i < e(x), we let ®; = in, ¢; € k(z)[Us, Us] and write ®; = UL P U$ @, with U,
not dividing ¥;, j = 2,3. By definition, we have deg®; > iB(z) and a,(j ) > iAj(z),j=2,3. If L
is the linear form on R* given by

1 T2 + X3 X
L(xl,l‘g,xg,X): < + ) +—,
e(x) + a(1) + 22 te® B(z) p
then _
ingh = X7 - XGr 4+ upVogPus® N i@, (1)

ord, ¢;=1B(x)
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where G :=in, g.

By chapter 1, I1.5.4.2, any 2’ very near x maps to the strict transform of div(u;). We first
look at the chart with origin (X' := %,u/l = b uh = ug,ug i= 32). We have B = div(ujujug).
By chapter 1, I1.5.4.1, we have

(H(SL‘/)) — (u/la(l)uép(é(z)*l)uéa(:g))

and (H(a')"g"") = (7).
1.2.2.1 If o’ = (X', u], ub, ujy) is the origin of the chart, then the polyhedron A(u, Ph; ), ub, uf; X')
remains minimal. Computing in these coordinates, it is easily seen that

As(a') = B(z) = 1, fa') < C(2) + Ag(a) < B(x), C(a') < Cla),

and these inequalities give (i),(ii) and (iii) (note that in this case, the hypotheses of (iv) and (v)
do not occur).

1.2.2.2 If u} is invertible at a/, let P € k(x)[usz,us] be irreducible, homogeneous and unitary
in ug such that (X', u},u,v") is a system of coordinates at z’, where v’ := P(1,u%). We have
E’ = div(vjub) in this case and take H(x') := u’la(l)uép(‘s(m)_l). If B(x) > 1 and L' is the linear
form on R* given by

z! X'
! / / N 4 2
L{zy, 25,73, X') = p(()=1) <x1+B(>+’

then

iLI}(uz_ph) _ X’p—X’G/p_l+U{a(l)U£p(§(w)_l)uga(3) Z U{6($)—iU£i(B(w)—1)uéa7:(3)‘1,1_(1’ug)’
ord, ¢;=1B(x)

where G’ :=in, ¢'.

Let i := sup{i | ord,¢; = iB(x)} > 1. Any translation Z’ := X’ — #’ we have to make in
order to get the polyhedron A(uy”h;uy,us,v'; Z') minimal will verify ord,; 6’ > é(z) — 1 and

0/17
ord, (

L Gmen mod(uz) > a(l) +e(@) —do.
2

The latter inequality is strict if a(1) + e(z) — 79 #Z 0 modp. Since ord,, ¢¥ = a(1) + ¢(z) = 0 modp,
a(l) + e(x) —ip #Z 0 modp is equivalent to ig Z 0 modp. We consider two cases:

Case 1: ig Z 0 modp. The above translation preserves the term
H(x/)uéa(?’)u/lE(ﬁ)—iouéio(B(z)—l)ugaio (3)\Iji0 (1, ué)
in uy "h. Therefore As(2') = B(z) — 1 < B(z) + C(x) — 1 and

, ord, U, (1,u}) C(z)
B') < i S (@) : k(@)

This gives (i)(ii)(iii)(iv), the exceptional case in (iv) not occurring in this case.
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Case 2: ig = 0 mpdp. The possible translation we have to make on X’ will at most add to

H (2" Yuly“ @ ) 0 0B =1 raioB) g, (1 44) some pth-power of the form
AP — ufla(l)+€(x)—iou/2io(3(w)—1)+p(5(w)—1)A/(v/)p’
since ig > 0. Then U;io (2)+a(2)U§i°(3)+a(3)\Pio(Ug,U3) is not a pt"-power because it induces an

edge (or vertex) of A(h;uq,us,us; X) by (1), and we apply theorem I1.5.3.2(i) of chapter 1. This
gives

a; a it \Ilz
€ := ord,, (ug 0 ®)F (B)Wio(l,ug) + A/(v’)p> < [k:(a:’e)gﬁ +1, (2)
which implies As(z') = B(z) — 1 and
, degWy,
ioB(uy, us,v") S e < {MJ + 1. (3)
By definition 1.2.1, we get
degW;, <ioC(u1,u2,u3) < iof(u1, uz, us). (4)
First assume that e < [%J in (2). Then (3) is strengthened to
) degW;
i0B(uy, uy,v") < \‘MJ 5

and then (4) implies (i), (ii), (iii) and (iv).
Up to the end of the proof of case 2, we assume that e = L%J + 1 in (2). Then the
integer e in (2) is not divisible by p by I1.5.3.2(ii) of chapter 1. Therefore

e deg¥;
By, o <1+H<1+{,0J. 5
(v, uz, V') io iolk(z!) : k(x)] 5)
Comparing with (4), this completes the proof of (iii).
If m(xz) = 3, then (i) is a consequence of (iii) and (iv) is a direct consequence of (4) and (5).
If m(z) = 2, we have a(3) = 0 and ipAs(x) < a;,(3). We now apply theorem II1.5.3.2(iii)
of chapter 1 to U§i0(2)+a(2)F(U2,U3), where F(Us,Us) := U;i0(3)\11i0(U2,U3). We get (note that
io =2 p > 2)
iOB(u,bu/Qv ’U/) <ex deg\:[lio + iy (3> (6)
By definition I.2.1, we actually have the following refinement of (4):

3

deg¥;, + Z (aio (7) — t0Aj(x)) = ioC(ur, uz, uz) < io(B(u1, uz,uz) — Az(z)).
j=2

Comparison with (6) gives B(uf, ub,v") < B(u1,us2,us) and this proves (ii), hence (i). We finally
prove (iv): by (4) and (5), we have

deg¥,, J <14 {ﬁ(ul,uz,uk’s)

io[k(a') : k(z)] MJ < [B(u, uz, us)],

Bl upyv') < 1+ {
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since [k(z') : k(z)] > 2 and y(u1,ug,us) = [B(ur,uz,us)] = 2. If Bu1, us, ug) > 2, the right-hand
side inequality is strict and (iv) is proved. If B(uq,us, usz) = y(uy, ub,v') = 2, then [k( Noik(x)]) =2
and B(uf,uh,v') <1+ + - <2 by (3) (remark: this last case does actually occur when p = 2).

1.2.2.3 If 2/ is the pomt with parameters (=2, %L %2 43 the polyhedron A(u3 ph w o u2 u?,, ff

u37 ug’ ’LL3 ) ug
is minimal. We have E' = div(ujubuf) and it is easﬂy seen that As(x 3 =

As(a) + Ag(w) + C(x) — 1, Ba’) = B(x) + Ao(x) — 1, C(a’') < C(a) and
C(a') < Bla) — Ag(x) — C(a). (7)

By symmetry, (i) has already been proved if m(x) = 3. So assume that m(z) = 2, and let us prove
(i) and (v). Since C(2’) < C(x), (7) implies

_ B(w) ~ Aale) _ Bla).
2 2

and this concludes the proof.

We now begin the first two steps in the definition of our secondary invariant x(z). The function
 is a multiform function which is defined recursively, and takes values in the set {0,1,2,3,4,5}.
The statement “k(x) < ¢” means “some value of k(z) is not greater than i”. The statement
“k(x) > 14" is the set-theoretic complement of “k(z) < i”.

1.2.3 Definition. Let z € ¥,(X). We say that k(x) = 0 if the following algorithm is finite.

1. Let X' — X be the blowing up of X along x and x' be the center of p in X'. If 2’ ¢ ¥,(X’), or
if Q') < Q(x) then STOP. Otherwise, go to 2;

2. Replace (X, x) with (X',2") and go to 1.

Note that theorem II.5.4 of chapter 1 implies that Q(z’) = Q(x) whenever the algorithm
passes through step 2.

1.2.4 Proposition. With notations and hypotheses of 1.2.1 and 1.2.2, if (Az(x) < 1 and f(x) < 1),
then k(x) = 0.
Proof. Assume that 2’ in step 1 of the above algorithm is very near z.

By I1.2.2(iii), if #’ is in the chart with origin (u%, W ug, 72) then f(2') < 1 and As(z') =
B(z) —1< Az(z) + 5( ) — 1 < As(z).

By 1.2.2(v), if 2/ is the point at infinity (%, o2, ug), then As(2) = As(z) and B(2') =
B(z) + As(z) — 1 < A(a).

In both cases, (Aa(z'), B(z")) < (Az(x),8(x)) for the lexicographical ordering. An induction
ends the proof.

I.2.5 Definition. Let z € ¥,(X). We say that k(z) = 1 if there exist consecutive choices of Y'’s
in step 1 of the following algorithm for which it is finite.

1. Choose Y C ¥,(X) to be permissible at x. Let X' — X be the blowing up of X alongY and x’
be the center of pin X'. If o' ¢ L,(X') or if Q(z") < Q(z), then STOP. Otherwise, go to 2;

2. Replace (X, x) with (X', z") and go to 1.

Note that necessarily 2’ € ¥,(X’) and Q(z') = Q(x) whenever the algorithm passes through
step 2. Also k() = 0 implies k(x) = 1, and in particular x(z) = 1 whenever (Q2(2’) = Q(z) and
k(z') = 0) in step 1. We also point out that Y will not be uniquely determined in general when
step 1 results in a stop. Finally, note that we can achieve a reduction in (ord,h,(z)) for the
lexicographical ordering if x(z) = 1.
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1.2.6 Proposition. With notations and hypotheses of 1.2.1 and 1.2.2, if (m(z) = 2 and f(x) < 1),
or if (m(x) =3 and C(x) =0), then k(x) < 1.
Proof. If Ay(z) < 1and B(x) < 1, then x(x) = 0 by I.2.4. If (As(x) < 1, As(z) < 1 and C(x) =0),
then B(x) = As(z) < 1, so k(x) =0 as well.

Otherwise, it can be assumed that div(ujuz) C F and Az(x) > 1. Let P := (X, u1,u2) C R.
By lemma I.2.6.1 below, Y := V(X, u;,u2) is actually a regular curve on X. Since Az(x) > 1, we
have

Ord(ul,uz)(gpa f) > (1) + E(LE) = Ordulgp Z D,

a
therefore ordph = p (recall that e(x) = w(z) > 0), so Y C ¥,(X). Since As(x) > 1, we have
€(y) = e(z), where y is the generic point of Y, i.e. Y is permissible of the first kind. This gives our
choice of Y in step 1 of the algorithm in I.2.5.

By I1.5.4.2 (i), the only point 2’ in the blowing up X’ of X along Y which may be very
near x has parameters (%, %,Ug,u;g). This is the origin of a chart, there is no translation to

do, and m(z') = m(x). We have As(z') = Asx(z) — 1, As(2’) = As(x), and B(2') = B(z) (resp.
C(z')=C(x) =0) if m(x) =2 (resp. m(x) = 3). An induction on Ay(x) + Az(z) ends the proof.

1.2.6.1 Lemma. Assume that the r.s.p. (uy,us,us) of S and X € R are such that
(i) div(uy) C Eg C E C div(ujusus), and
(i) h € P, where P := (X, u1,u2) C R.

Then there exists X € R such that P = (X, u1, us).
Proof. Pick any Z € R such that (Z,uj,us,us) is a r.s.p. of R. then there exists a series
o(u3) € k(x)[[us]] such that (Z — ¢(us), uy,uz) = (X,u1,us). Let h = ZP — ZgP=! + f5 be the
expansion of h, with fz,g € S. Since h € P, we have

fz +p(us)? — p(ug)g? " € (ul,u2)§.

Since uy divides g by assumption (i), we must have f + o(us)? € (u1,u2)S. But f € S and S is
regular, so ¢(us) € S. Let X := Z — p(us).

1.2.7 Theorem. Assume that x € ¥,(X), W' (z) =1 and H(z) 'gP = fypui(z). Then r(z) < 1.

Proof. Let
Xoe Xg =Xy g X, e -+

be the quadratic sequence along pu, i.e. X,, is the blowing up along the center x,,_; of uin X,,_ for
n > 1. Then (2(x,))n>0 is a non-increasing sequence, and we have x(z) = 0 unless it is constant.
We thus assume that Q(z,) = Q(z) for n > 0. We have m(z,,) > 2 for n > 2.

1.2.7.1 If there exists ny > 0 such that m(z,) = 3 for n > n;, z, is always at the origin of a
chart in the blowing up X,, — X,,_1 and there is no translation to do to minimize polyhedra.
By standard arguments, the ideal ({(;51(7) }1<i<e(z)) gets principal and monomial in wug ,,, us , for
n >> 0, where h(n) :== X(n)? — X(n)g(n)?~t + f(n) is a local equation of X,, at z,, and
A(h(n); ut m, U2,n, usn; X (n)) is minimal, i.e. we have C(x,,) = 0. Therefore x(z) < 1 by I1.2.6.
1.2.7.2 If there exists n; > 0 such that m(x,) = 2 for n > ny, then it can be assumed that n; =0
without loss of generality. Each z,, is on the strict transform of div(u;) and we can choose a r.s.p.
(X, u1,uz,u3) of R such that the exceptional divisor of X,, — X,,_1 is div(uz) for all n > 0,
the strict transform of h being h(n) := % As seen in I.1, or in II.5.6 of chapter 1, we have

% € Ox, 2, u(%) > 0, so




since the value group of p is Archimedean. Therefore x(z) = 0 in this case.

1.2.7.3 None of the above. By 1.2.2(i), there exists ny such that vy(z,) = vy(z,,) for n > ny. By
1.2.2(v), we have y(z,,) < 2. Pick ny > ny such that m(x,,—1) = 3 and m(z,,) = 2. By 1.2.2(iii),

B(x’ru) < 7(35712*1) = ’Y(xnl) <2 (1)

Let ng be the least integer n > ny such that (m(z,—1) = 2 and either x,, is not rational over =, _;
or m(zy,) = 3). By definition of n3, we have m(z,) = 2 for nos < n < ng — 1. Therefore (1) and
I.2.2(iii) imply that

ﬁ(l‘n3*1) < ﬂ(l‘nz) <2
By 1.2.2(iv) or (v), we have v(x,,) = v(xn,) < 1. Going back to (1), we now get the sharper upper
bound (B(z,,) < 1, so k(x) = k(x,,) < 1 by 1.2.6.

We assume that w'(z) = 2 from this point on.

ITI A few cases where x(z) < 1.

In view of theorems 1.1, 1.2.7 and chapter 1 I1.5.6, we may restrict our attention to the case
w'(z) = 2. From now on and up to the end of this article, we thus assume that w'(x) = 2.

All along this section, we suppose that the r.s.p. (uy,us,us) of S and X € R are such that
E C div(ujugus) and the polyhedron A(h;uy, usz, us; X ) is minimal. We gather in here some criteria
to have k(z) < 1 that will be used in the next chapters, as well as some auxiliary lemmas.

I1.1 Proposition. Assume that div(u,) C Eg and H(x)"1f = ulgb—l—’ylu‘;(x)u?,, with ord, ;) (u19) :I
w(z) and v1 invertible. We have k(x) < 1 provided one of the following properties holds:
(i) w(z) =2 and E C div(ujuz);
(i) w(x) = 3;
(117) w(z) = 2, div(uius) C E and cli¢ & k(x).Us;
(iv) w(z) =1 and E = div(ujus).
We first recollect from chapter 1 a lemma which leads to important corollaries.

IL1.1 Lemma. We suppose that w'(z) = 2 and that the r.s.p. (X,u1,us,us) of R is such that
E C div(ujugus) and the polyhedron A(h;uy,us,us; X) is minimal. Let Y be a permissible center
of first kind, and X' — X be the blowing up of X along Y .

If " € X' is very near x, then x' maps to PDir(cle)J(f, E,x)) (resp. PDir(clym)J(f, E))) if
e(x) =w(z) (resp. if e(x) =1+ w(x)).
Proof. When e(z) = w(x), as w'(x) = 2, we have ord, ) (H(x)"'g?) > €(x) and chapter 1
I1.5.4.3(i) gives the conclusion. When e(z) = 1+ w(z), chapter 1 I1.5.4.2(ii), (iii), (iv) or
I1.5.4.3(ii) give the conclusion.

This lemma leads to the next statements. Recall the definition of 7(z) in chapter 1, I1.4.
II.1.2 Corollary. If w(x) = €(z) and 7(x) = 3, then x(x) = 0.
Proof. Here, 7(x) = 3 means that PDir(cl,yJ(f, E,z)) = 9.

We now introduce some remarks and definitions about the directrix.

If e(z) = w(z), we have ord, ) (H(z) '¢g?) > w(x) since w'(z) = 2. More generally, if
ord, ) (H ()" 1g?) > e(x) then cle(y)J (f, E,z) (resp. clyJ(f, E)) does not depend on any choice
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of parameters (X, u1, ug,uz) with E C div(ujugug) and A(h;uq,ug,us; X) minimal if €(z) = w(z)
(resp. €(z) =1+ w(x)), as noticed in chapter 1 I1.3.2(ii).

If e(x) = 1+ w(x) and ord, ) (H(z) '¢?) = €(x), then cl,u)J(f, E) may depend on the
parameters (X, u1, us, uz) with E C div(ujusus) and A(h; ug, us, us; X) minimal. When making a
translation on X, say Z := X — 0 is the new variable, f is changed into fz := f + P — 9gP~ L. If
A(h;uq,uz,us; Z) is minimal, the Newton polyhedron of 6 is a subset of A(h;u1,us,us; X), H(z)
divides 8gP~!, so we have the following congruence of vector spaces:

Clw(m)J(fz, E) = CIW(I)J(f, E) modk(az) [{Ul DU | H(l‘)_lgp}]w(z).

Furthermore, by chapter 1 I1.5.4.2(i), if we blow up z, every point ' very near x maps to the
strict transform of H(z)~!gP. By IL.1.1 above, 2’ maps to Proj(W) where

I(W) = IDir(cly() I (f, B) + ({Us : w; | H(x) ™ g"})),

and W does not depend on any choice of parameters (X, uy,us,us) with E C div(ujugus) and
A(h;uy,uz,us; X) minimal. This leads to the following definitions.

I1.1.3 Definition. Let
VDir(x) := VDir(cle@)J(f, B, 7)) if e(z) = w(z);
VDir(z) := VDir(cly ) J(f, E)+({Ui : u; | H(z)"'gP})) ife(x) = 14w(x) and ord, ) (H () 1g?) =
€(x);
VDir(z) := VDir(cly)J(f, E)) if €(x) = 1+ w(z) and ord, ) (H(z)"'g?) > €(x).

We denote by 7'(x) the codimension of the k(z)-vector space VDir(z) and by IDir(z) the ideal
generated by VDir(x).

The previous considerations give

I1.1.4 Corollary. The vector space VDir(x) and the integer 7'(x) do not depend on choices of
parameters with E C div(ujugug) and A(h;uy, us, us; X) minimal. Furthermore, if 7/(x) = 3, then
k(z) = 0.

Proof of II.1. The assumption on the expansion of f implies that

ordy, o) (H (2) ™" g") > ordy() (H(2) 7' f) = e(2) = w(2). (1)

Moreover, Uy divides cl,)J(f, E,x), so by IL1.1, if e : X’ — X is a permissible blowing up
of the first kind, any a2’ € X’ very near X maps to the strict transform of div(u;). Let Y :=
V (X, u1,uz) C Spec(R/(h)) and y be the generic point of Y.

If div(ujug) C E, then Y = V(X,v1,v2) if (v1,v2,v3) is any r.s.p. of S such that div(v;) =
div(u;) for i = 1,2. Therefore lemma I.2.6.1 applies and Y is a regular curve on X such that n(Y")
has normal crossings with F.

If w(z) = 1, assumption (iv) holds, so E = div(ujuz). Then
Ordn(z)J(fv E, :U) = Ordn(y)J(f> E, Y) =1, Ordn(aﬁ) (H(l‘)ilgp) = Ordn(y) (H(x)ilgp)a
and ord, ) f = ord, () f = ord, ) H(z) + w(z),so Y C ¥,(X) and €(z) = €(y): Y is permissible of
the first kind.

More generally, if div(ujug) C E and Y is permissible of the first kind, Take e : X' — X
to be the blowing up along Y; by II.1.1, the only point which can possibly be very near x is
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= (X' = %,u/l = 4t uh = ug,uz). Then div(ujuy) C E' := (€1E)eq and W 1= uyPh =
X" — X'¢"" ' 4+ f'. where
L )]

We are at the origin of a chart, so A(h/;u), u), uz; X’) is minimal. Hence w(z’) < 1 and w(2’) =0
if (iv) holds, so k(z) = 1.

(JFrom now on, we assume that w(z) > 2. Let H(z) = a(l) a(2) a(3)7 with a(i) = 0 if
div(u;) € E. Let e : X’ — X be the blowing up at z, £’ := (e 1E)red and 2’ € X’ be very near
2. Then 2’ maps to the strict transform of div(u;) (cf. comments in the beginning of the proof of
this proposition). We claim that z’ is on the strict transform of YV if x(z) > 0.

If 2/ is in the chart of 0r1g1n (X' = 2ouy o= b up = ug,uf i= ), then (X', uj,up,0') is
a system of coordinates at z’, where v’ := P(l uf) for some irreducible homogeneous polynomial
P € k(z)[Us, Us], unitary in Us. Let b/ := u;Ph = X'P — X'g/"" + f.

If P+ Us, then B = div(u}ub), H(2') := u},“Du,* @@ =P and we have
- a(3 w(z)—1
H(a') 7 ' = ™ (™06 ). 2)

By (1), ub divides H(z')"1¢g’’. We may have to make a translation Z’ := X’ — 6" on X’ to get the
polyhedron A(h; ul,u2 v'; Z’) minimal.

If ord,, (. (H (')~ tg'") < 2, we get Q(z') < (2,1): &’ is not very near to z, since Q(z) > (2,2).
If ordy (o) (H (2')"g'") = 3, as ord(u; ) (H(2z')~10"") > 1 by (2), we get

- -1 1 2
OI‘d(u/Vu/)(H(x/)flelg/p 1) 23])7_*_7:3_7 22
1 2 p p p
If p does not divide a(1), we have
/ v g 101
ordy (o) (H(2') " uy WV 057 )y _y

/
o)

by (2), since u} is invertible at z’. If p divides a(1), we apply chapter 1, I1.5.3.2(i) to the monomial
ﬁUga(z)er(w)U?fb(?’)+1 (which is not a p*"- power because A(h;uy,us,u3; X) is minimal), where 77

denotes the image of v in k(x). We then get

a(f/ +oP — glg/p_l)

ordn/(w/)(H(x’)_l 0

) =1

for some i, 2 < i < s, with conventions on derivations as in chapter 1 I1.3. Therefore w(2’) <1 <
w(x).
If P =Us, A(h';u},ul,us; X') is minimal and we get

H(@) 7 = wyuly ™DV 4 (3)

Therefore w(z') < ord,(u)(ujuz) = 2. We are done unless possibly if w(z) = w(z’) = 2 (so

div(us) C E), in which case assumption (iii) holds. In particular, we now have E’ = div(ujuju}).
Let then clij¢p =: MUy + v3Us + poUs, A1, po, v € k(z), and (A1,v3) # (0,0) by assumption.

Since w(z') = 2, we have v3 = 0 by (3), so A\; # 0. We claim that 7(z") = 3, whence k(x) = k(z') =0
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by II.1.2. Note that 2’ then satisfies the assumptions of lemma II.1.5 below with p; := 77 and
A2 := 0 for some ug € k(z'), and the conclusion follows.

The last point we have to consider is thus the point z/ = (X' := %,u’l =yl = 22y =
ug), i.e. 2’ is on the strict transform of Y. This is the origin of a chart, so A(uz”h;ul, ub, uf; X')

is minimal. Let b’ := uz’h = X'* — X'g/"~" + f/, where
H(@') 7 f = gy~ ™0 4y,

Let us see that o', (X', uj,uy, uz) verify the hypotheses TI.1(ii) or (iii). This is obvious if
w(z) = 3. If w(z) = w(2’) =2, then ¢ :=clip e< Uy, Us >,

cli(uy”'¢) = (UL, US) ¢ k().Uj

and div(ujub) C E’, so (iii) holds.
Let
X:X()(_Xl HXTL71<_XTL<_

be the quadratic sequence along u, i.e. X,, is the blowing up along the center z,,_1 of p in X, 1
for n > 1. Let h(n) be a local equation of X,,.

By well known results, ord,, h(n) = ord,h for n >> 0, so z,, € ¥,(X,,) if Y € ¥,(X). Since
w(z) > 2, we have Y = V(X uj,uz) C W :={z € X |w(z) >0}, Y C ¥,(X), the strict
transform Y,, of Y in X, is permissible of the first kind at z,, for n >> 0 by chapter 1 I1.6.1. As
noticed in the beginning of the proof, this implies x(x) < 1.

I1.1.5 Lemma. Assume that E = div(ujusus), A(h;uy,u,us; X) is minimal and
U= cly(H(z) ' f) = MUT + p2U1Us + psUyUsz + AoU3 + 11U Us,

with Aapie = 0 and Ay # 0. Then 7(z) = 3.
Proof. For each F'=3%_ . ' Ao a,0,U7 " Ug?Us® € k(x)[Uy, Uz, Uslz, we denote

S(F) = {(al’a2’a3) | >\a1a2a3 7é 0}

Let K C {(%1,72,23) € R3: x1 + 22 +23 = 2} be the convex hull of S(¥). Since F = div(ujuqus),
we have S(F) C K for every F € cloJ(f, E,x); in particular, the monomial U2 and either U2 or
U,U3 appears in no F € clyJ(f, E, z). Furthermore, the monomial U? (resp. UsUs) appears with
nonzero coefficient in some element Gy (resp. G3) of cloJ(f, E,x), since H(x)u? and H (z)ugus
induce vertices of A(h;uq,ug,us; X) which is minimal.

Suppose that 7(z) < 2. Then clo J(f, E,x) C k(z)[V4, V]2, where Vi = Uy 4+ aoUs + a3Us and
Vo = ahUs + a4Us, since U? appears in G1. The rank of the matrix

Qo (O3

af  af
is two, since UsUsz but not U2 appears in Gy. Without loss of generality, it can thus be assumed
that apas = 0. Let {4,j} = {2,3} be such that a; = 0 and a; # 0. Without loss of generality, it
can also be assumed that o) = 1.

Since U2 and either U2 or U;Us appears in no element of clyJ(f, E, x), elementary consider-
ations show that oz;- # 0 and that every F' € cloJ(f, E,z) must be a scalar multiple of one and

95



the same polynomial G := V12 +cViVo + 02V22 for some ¢1,co € k(x). We get the following list of
possible cases:
Case 1: i =3, uo #0, Ao =0, co =0, ¢ = —22;
Case 2: 1 =2, A =0,c0 =0, c1 = —23;
3
Case 3: 1 =2, up =0, c; = =202, co = (%)2
3 3

Case 3 is easily discarded from the assumption pq # 0. We give the proof in case 2, the proof of
case 1 being similar. Let us denote H(x) = ui(l)u;(mug@) and F; := cly(H (x) 1y, gJi), i=1,2,3.
All of these forms should be proportional:
G = U} + c1U Uz + a3U Us + c1a3U2Us;
Fy = a(l)ulUgUg, + (a(l) + 1)(,U,3U1U2 + /,LQUlUg) + (CL(l) + 2))\1U12,
Fg = a(2)()\1U12 + ,M2U1U3) + ((I(Q) + 1)(M3U1U2 + M1U2U3);
F5; = CL(3)()\1U12 + /.L3U1U2) + (0(3) + 1)([1/2U1U3 + ulUQUg).

So the matrix

1 c1 Qs 103

e | @) +2)M (a(l)+Dps (a(l) +Dpz a(l)m
’ a2 (@@ +Dps a@pe (a(2)+1)m
a(3)M a@ps  (a3)+Dpz (a3) +m

must have rank one. The last two rows are not both zero, and are linearly dependent if and only
if (e = p3 = 0 and a(2) = a(3)). But then M has rank two, since ¢; # 0: a contradiction which
proves that 7(z) = 3.

I1.2 Proposition. Assume that E = div(uy) and €(z) = w(zx). If
VDir(z) =< Uz, Us > mod(Uy),

then k(x) = 0.
Proof. We have ord,, ;) (H (z)"g?) > ord, ;) (H(z) "' f) = €(x) = w(x) since w’(z) = 2. Let

F = Clw(x)(H(fL‘)_lf).

Since e(x) = w(z), we have F € k(x)[Uy,US, UY]. If 7(z) = 3, then x(z) = 0 by II.1.2, so we
assume that 7(z) = 2.

We can now pick a r.s.p. (u1,ve,vs) of S, where v; := u; + aju, oy € S invertible, i = 2,3,
and get an expression H(x)™'f = F(uq,vz,v3) + ¢, ord, ;)¢ > €(z) and VDir(z) =< V3, V3 >.
Of course, we may have to do a translation Z := X — 6 on X in order to get A(h;uy,ve,vs;Z)
minimal. Since ord, ) (H(z)"'g?) > w(x), we have

Cle(z)J(f) va) = Cle(z)J(fZ7E7x) € k(x)[vla VZ]w(x)a

where h = ZP — gP~1Z + f.

By I1.1.1, if e : X" — X is the blowing up of z and 2’ € X’ is very near X, then 2/ = (7' :=

Z =g, vh = 2,03 = 2). This is the origin of a chart, so A(h/;u},vy,v3; Z") is minimal,

uy)
E' = (e 'E)eq = div(u}) and we get an expression

H(z')7 f" = F(1,v5, v3) + u}¢').
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If 2" is very near x, we have ord, (¢ > w(x) — 1 and therefore e(z') = w(x). Also note that
orduxl(H(:E’)*lg’p) > w(x), since otherwise Q(z’) < (w(x),1) < Q(z). By construction,

clo@)J(f, E' ') = cly)J(H(x")F(1, 05, v3), E', 2") modUtk(z")[UT, V3, V3]w(z)-1,

hence VDir(2') =< V4, V{ > mod(U;) and 2’ satisfies again the assumptions of II.1 w.r.t. the
r.s.p. (Z',uy,vh,vh).

Let

X=Xge— X1 X, 1 X, -

be the quadratic sequence along p, i.e. X, is the blowing up along the center x,,_; of p in X,,_;
for n > 1. We iterate the previous argument: if #(z) > 0, there exists series w; 1= u; +_ 5 @ijug,
a;; €k(z),1=2,3and Z € R with the following property:
(a) the polyhedron A(h;uy,ws,ws; Z) is minimal;
(b) if z, is very near x, then z, is on the strict transform Y, in X, of Y := V(Z,wq,w3) C
Spec(R/(h)).

As in the proof of proposition II.1, we have z,, € £,(X,,) for n >> 0 unless Y C ¥,(X). But
this is a contradiction, since n(Y') Z E.

I1.3 Proposition. Assume that w(z) > 2, E = div(u1) and H(x)"'f = F(us,uz) + u1¢ with
ordy (z)(u1¢) = w(x) and F € k(x)[uz, us)itw(z). If moreover

VDir(cly o)/ (f, E, ) + cly)J (F, E)) =< Uy, Us, U3 >, (1)

then r(x) < 1.

Proof. We have ord,,, (H(z) 'g?) > ord, ) (H(z)"'f) since €(x) = w(x). In particular, we have
F # 0 by definition of H(z). Moreover, clyg)(u1¢) € k(z)[U1,Us, U], since €(z) = w(z). We
discuss according to the value of 7(x).

I1.3.1 If 7(x) = 3, then x(z) = 0 by II.1.1.

I1.3.2 If 7(x) = 2, as ord,(y)(u1¢) = w(x), Uy divides cl,)J(f, E,x), so Uy € VDir(z). Let
VDir(z) =< Uy, A\Us + pUsz >, A\, € k(z), (A, 1) # (0,0). In particular, cl,,z)—1¢ & k(z)[U1], and
thus w(z) > 1+ p.

By symmetry, it can be assumed that p # 0 and we replace ug by v := uy + §uo. We may
have to do a translation Z := X — 0, 0 € k(z)[[u1, ug, us]] in order to get A(h;uy,v,us; Z) minimal.
Then f is changed to fz := f+ 6P —0gP~1. Asw/(z) =2, E = div(u;) and w(x) = €(z), u; divides
H(x) 1gP~16 and ordn(x)( (x)"1gP710) > w(x), so H(x) 1 fz = F(v,u3) + u1¢z and the vector
space cl, () J (f, £, x) is unchanged. Hypothesis (1) is equivalent to:

_OF OF
<30, ot =& k@IV]

This condition is independent of the choice of the variables (ug,u3); in other terms, it can be
assumed without loss of generality that VDir(x) =< Uy, Us >, hypothesis (1) then reading

F(Us, Us) ¢ K(@)[Ua] + ULk(2)[UL, U], )
Let € X’ — X be the blowing up along x. If 2’ € e~1(x) is very near x, we have 2’ = (X’ :=
X wf =8 = 22 yf = yg) by IL1.1, so B := e~ !(z) = div(uju}). This is the origin of a
chart SO A(h’ ul,u2,u3,X’) is minimal. Let O(Uy,Us) = cly(g)—10. We get
H(z")7 ' = uyF(uj, 1) + ui ¢,
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where ¢ = ®(uy, uy) +usy)’ and @' € k(z)[[uy, ub, uj]]l. We have ord(y, ) (H(z)"'g™" > e(z). If
' is very near x, we get ord, () (u)¢') = w(z’) = w(z) and

w(r) = w(z') = e(@') < 14 ordy, Flus, 1) < 1+ w(z),

where the right-hand side inequality holds because F' ¢ k(x)[Us]. So 2’ is not very near x unless
possibly if ord,; F'(uy,1) > w(z) — 1. We consider two cases:

Case 1: ord, F(uj,1) = w(z). Then H(z) f = 'y’ugu’gw(w) + u)¢’ with +" invertible. Since
w(z) =14 p > 3, we have k(') < 1 by IL.1(ii).

Case 2: ordy, F(uh,1) = w(z) — 1, Then H(z)~'f' = Vb * Y 4wl ¢ with 4/ invertible. If 2/
is very near x, then w(x) — 1 = 0 modp, otherwise

4, 0f'

/
ous

w(z") < ordyy 1 (H(z") ) < w(z).

We have H(x/) = u/la(l)uéa(l)+w(m)fp and

/w(:v)—l.

F' = clyg (H(2") 7 ') = U @(U1, Us) + U{US K (U7, Uy, Us) + 7' UsUs
By the lemma below (with indices 2 and 3 exchanged and ¥ = 0), we get 7(z') = 3 so k(z') = 0.
I1.3.3 Lemma. Assume that w(z) > 2, E = div(ujuz) and the polyhedron A(h;uq,us, us; X) is
minimal. We have T(x) = 3 provided

(i) H(x) = u1*Muy®? | with a(2) = a(1) + 1 modp, and
(i) F = cly)(H(z)~' f) has an expansion

F = U, ®(Uy, Uy, Us) + U2U(Us, Us) + ANURU5* @)1, (

[a—
~—

with ® # 0 and X\ # 0.

Proof. Since F' # 0, we have €(z) = w(z), so ® € k(x)[U,Us, UL, ¥ € k(z)[Us, UY] and w(z) —1 =
0 modp. With notations about derivations as in chapter 1 IL.3, the vector space cle(,)J (f,E,x)is
generated by forms

F; = Uy ®;(Uy, Us, Us) 4 U2W,;(Us, Us) + \UpUs* @71 1 < i < s.

Since A(h;uy,ug,us; X) is minimal, there exists ip, 4, such that A;, # 0, ®;, # 0 by (ii). We have
0 < degy, Fi, = w(z) — 1 < degFi, = w(x), so 7(x) > 2.

If Uy € VDir(z), then U2W;, (Us, Us) + A, UsUs* @~ € IDir(2)*®), so 7(z) = 3. If Uy €
VDir(z), then Uy ®;, (U1, Uy, Us) € IDir(z)*®), so U; € VDir(z). Hence 7(z) = 3 as well in this
case.

Suppose that 7(z) = 2. The previous discussion shows that

VDII‘(IE) =< U := Uy + pUs, V :=Us + 11Uy + 10Uy >,

with pq, po,v1,ve € k(z) and pipe # 0. It can be assumed that 14 = 0 in V' by replacing V' with
V — 2U. Let F' := F(Uy,Uz,V — 12Uz). Then F’ has an expansion as in (1) with A and the
property ® # 0 unchanged. The vector space cl()J(f, E,z) is also unchanged. In other terms, it
can be assumed that VDir(z) =< p1Uy + peUs, Us >, pyus # 0.
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There is an expansion

F=Us" aly + )+ Y. U P E, (U, D),

with F, € k’(ZL‘)[Ul, Ug]ap+1, o€ k‘(ZL‘) Then

Fi=UD7 ((a() + Daly +a(WAD2) + Y USO7 R, 1(U, Uy),
1<a<w(mp}—l

and
Fp = Uy a(2)als + (a(2) + DAD2) + Y U7 P F, (U, Uy).

1<Q<W+)*1

Since VDir(z) =< p1Uy + paUs, Us >, the linear forms Lo := urUy + peUs, Ly := (a(l) +
1)aU; + a(1)A\Us and Ly := a(2)aU; + (a(2) + 1)AUs must be proportional. The linear forms L,
and Lo are linearly dependent if and only if (a(1) 4+ a(2) 4+ 1)a = 0 modp, so 2(a(1) +1)a = 0 modp
by (i). Hence p =2, or a(1) + 1 = 0 modp or a = 0.

If a(1) + 1 = 0 modp, then Ly = AU, is not proportional to Lg since Apqpe # 0.

If p=2and a(1) + 1 # 0 modp, then L; = alU;, so we must have o = 0, since p; g # 0.

If @ =0 and a(l) +1 # 0 modp, then Ly = a(1)\Usz, La = (a(1) + 2)AUs so we must have
p = 2. Then, since the monomial )\u‘f(l)u;(z)ﬂu‘g(w)_l
A(hjug, us, uz; X), we have A € k(x)?. Hence

induces a vertex of the minimal polyhedron

aF wl(x)— w (x)—1—a
Fri= 35 = UL N U T PR A UL Us) € k(2)[Us, jnUs + paUs),

1<a<%

thus contradicting at last the assumption 7(z) = 2. This concludes the proof.

I1.3.4 (end of the proof of I1.3) If 7(x) = 1, as ord,(;)(u1¢) = w(z), we have cl,u)J(f, E,z) =
k:(:v).Uf(w) and VDir(z) = k(z).U;. We thus have

H(aj)_lf = F(u27u3) + )‘ul‘U(r) + Uﬂ/’a

with A € k(z) nonzero and ord, ()% > w(z). Assumption (1) in the proposition is then equivalent

to
. OF OF

Dir(—  —
v 11“(aUQ’aU?,

Let e : X' — X be the blowing up along x. By II.1.1, a point 2’ € e~!(xz) is very near z only if
it maps to the strict transform of div(uy). As ug and uz play symmetric roles, we can assume z’ is in
the chart with origin (X’ := %,u’l = b uh = ug,uy i= ). Then B = (€7 E)req = div(ujub),
H(x’) _ ulla(l)uéa(l)er(x)*P and

):< Us,Usz > . (1)

H(@') ™ ' = wy F(1u) + Xt *

for some ¢ € §'. We pick local coordinates (u},u},v' := P(1,u})) at 2/, with P € k(z)[Us, Us]
irreducible, homogeneous and unitary in Us.
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If P # Us, we may have to perform a translation Z’' := X' — @', 0’ € k(a/)[[u],ub,v']] to
get A(uyPhyu), uly,v'; Z') minimal. Then f’ is changed into f, := f' + 6" —0'¢’""" and get an
expansion

H(@') ™ = s Far (0) + Azy ™+ ity (2)

with Az, ¥, € k(z)[[u}, ub,v']], Fz:(v) € k(2))[[v']]. As u} divides H(z')"1g'", the following
holds:
(a) H(z")uy(Fz (V') — F(1,u%)) € (k(2')[[u), ub,v']])P. In particular,

J(fz,E') = J(H(z ) ubF(1,u}), E') mod(u}).

(0,0) modp.

(b) ordy Fz:(v") > ord, F(1,uf) only if (a(l),w(x) +1) =
= 0 modp and A\ € k(z')P). In this case, since

);
(c) Az is not invertible if and only if (a(1) 4 w(x)
A & k(x)P, P is inseparable, i.e. g; =0.
Note that the conditions on az 1) and w(z) in (b) and (c) are mutually exclusive. By (1), we
have

ordy J(H (2" ) ubF(1,u3), E') < 1+ (w(z) — 1) = w(x). (3)

Assume that 2’ is very near x. By (a), equality holds in (3) and this implies w(z) — 1 <
ord, Fz/(v') < w(z). Moreover, we must have ord,, ) (ujuyiy,) > w(zx) in (2).

Let us first look at the case where (a(1),w(z)+1) # (0,0) modp. By (b), we have ord, Fz/ (v') =
ord, F(1,uf).

Case 1: ordy Fz/(v') = w(z). We have F = P*®)Q, with Q € k(z)[Us, Us] homogeneous.
Counting degrees, we get

w(z)+1=[k@): k(x)w(r)+ degQ.

Since w(zx) > 2 by assumption in the proposition, we must have k(z’) = k(z). The last statement
in (c) then implies that Azs = A is a unit. Then x(2’) < 1 by IL.1. Note that, if w(z) = 2, the
extra assumption in II.1 (iii) holds since

Ui elo(H(2") "1 ) = AU + Ugthy (0,0,0) & k(a').Us

Case 2: ord, Fz/ (v') = w(x) — 1. Since equality holds in (3), we have w(x) — 1 = 0 modp. By
(b), F = P*@=1Q, with Q € k(z)[Us, Us] homogeneous. Counting degrees, we get

w(x)+1=[k@): k(x)](w(z) — 1) + degQ. (4)

Suppose that 2’ is not algebraic over z, i.e. [k(z') : k(x)] > 2. Since w(z) > 2 by assumption
in the proposition, counting degrees in (4) we get:
degQ =0, [k(2') : k(z)] = 2 and w(x) = 3, or
degQ =0, [k(2') : k(z)] = 3 and w(x) = 2, or
deg@ =1, [k(2') : k(x)] = 2 and w(x) = 2.

By (c), Az is a unit unless k(z’)/k(x) is inseparable. Since w(x) —1 = 0 modp, Az is a
unit unless possibly if (p = 2, deg@ = 0, [k(z') : k(x)] = 2 and w(z) = 3). In this case, we have
F = pP?% € k(z) which contradicts (1), since p = 2.

It has thus been proved that Az is a unit in all cases (by (c) if 2’ is rational over x and by the
above argument otherwise). Thus the initial form F” := cl,,)(H(2') ! fz/) has an expansion
yw(z)—1

= UU, U}, V') + NULV
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with ® # 0 (since Az # 0) and ) # 0. By lemma I1.3.3, we have 7(z') = 3, so x(z') < 1 by
I1.1.2.

Finally, if (a(1),w(z) + 1) = (0,0) modp, then Az = A is a unit by (c¢) and we conclude that
k(z") < 1 using II.1 (resp. I1.3.3) as in case 1 (resp. case 2) above.

I1.4 Proposition. Assume that E = div(u1) and H(x)—1f = F(u2,u3) + ui1¢ + ¥, where
ord, () (u1¢) = w(z), F € k(x)[uz,us] is homogeneous of degree 1 4+ w(z) (so F # 0) and ¢ €
(ug,uz)* @2, If moreover
VDiI‘(Clw(gC)J(F, E)) =< Uy, Us >, (1)

then k(z) = 0.
Proof. We have ordy, (H(z)"'gP) > ord, ) (H(z) "' f) and cly ) (u1¢) € k(x)[Uy, Uy, U], since
€(x) = w(z). As ordym)(u1¢) = w(x), Uy divides cl,,)J(f, E,z), so Uy € VDir(z). As F €
K@) 2, 68], oy J(F, E) = k(). 25 £ 0 by (1).

By the Euler identity, (1 + w(z))F = UQ% # 0, whence 1 + w(z) Z 0 modp. We get
F = UyF'(Us,Us), and claim that VDir(F') =< Uy, Uz >. If not, then F' € k(z).(A\oUs + A3Us3)*®)
for some A2, A3 € k(z). Since F’ € k(z)[Us, U], we would have A3 = 0 or w(z) = 0 modp, which
both contradict (1).

Let e : X’ — X be the blowing up along z. By IL.1.1, a point 2’ € X’ is very near z only if

it maps to the strict transform of div(uy).
We first look at the chart with origin (X’ = £ o} = “ 4 = ug,uly = “2). Then E' :=
1 (%) 2 3 u2

u2

(€71 E)eq = div(ujul), H(z') = u}*Puf D@ =P and there is an expression
H(a') 7L = u F(1, ) 4+ ui ®(ul, 1, ) + ! + ™y, (2)

with ¢, ¢ € S P = cly(z)—1¢. We pick local coordinates (uy,us,v" := P(1,u3)) at 2’, with
P € k(z)[Usz, Us] homogeneous, irreducible and unitary in Us.

If P # Us, we may have to perform a translation Z’ := X' — 6, 0’ € k(2')[[u], ub, v']] to get
A(W; ), ub,v'; Z') minimal. Then f' is changed into fz = f' + 6> — ¢/’ and there is an
expansion

H(@') ™ fzr = uyFar () 1, 0 (), o) + sl + "0,

with Fiz: (v) € k(z")[[v']], @z (u, ") € k(z")[[v']][uA]-
As W' (z) = 2, ujub divides H(2')~1g'". Moreover, we have

(a(1),a(1l) + 1+ w(x)) # (0,0) modp (3)
since 1+ w(x) # 0 modp, so the monomial H (z')u} is not a p**-power. Hence
Fz (V') = F(1,u}). (4)
By (2) and (4), we have

—1u/ 8fZ’

Lo,

, OH (2" )uy F(1, us)

H(z') = H(2') ') 5 = a(1)ubF(1,u}) mod (u},u>).
1

Note that

OH (z)F(uz,us)

8’&1 = a(l)u;(U(m)F(u%uS)'

=g H (@)
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Similarly,
-1,/ af zZ'

H(z") b = H(z'") b OH(a)uaF'1, u3) = (a(1) + 1 + w(x))uyF (1, us) mod (uh,uh?),
oul, oul,
and OH (2" )uy F (1, ul
H(IE/)_LLLIQ (CC )UQ ( 7U3) _ (a(l) + 1+(A)(.Z'))'LL2_W($)F('LL2,U3),

/
ous,

since H(m’)_lu’zw = u;w(z)H(m)_l Y oici<s WW and F € k(z)[ug,u}]. By
2 AN 7

(3) and the above computations,

uy T F (s, u5) = wyF(1 ) € (f B ) + (u, u5”). (5)

As F = usF'(ug,us) and VDir(F’) =< Uy, Us >, we have ord, F(1,u}) < w(x) — 1. If 2 is very
near x, we get from (5) that

ord, F(1,u}) = w(z) — 1, (6)

thus €(2') = w(z’) and therefore w(z) — 1 = 0 modp. Necessarily w(z) > p + 1, since U} explicitly
appears in the form F’ € k(z)[Uz, U3y (q)-

As w(z) +1 # 0 modp, we have p > 3. We resume the argument at the beginning of case 2,
end of the proof of proposition I1.3: equation (6) implies that «’ is rational over x unless possibly
if w(z) < 3. But here w(z) > p+1 > 4, since p > 3.

The argument at the beginning of 11.3.2 then shows that, after possibly changing us with
us + Aug, A € S invertible, we may assume that =’ = (%, s, ug, “—z) is the origin of the chart (i.e.
P = Uz with notations as above). Hence A(h';uf, ub, us; X') is already minimal and we turn back
to equation (2): since z’ is very near z, we have

Ordn’(m’)(H(wl)ilf,) = Ord(u’l,ué)(ullq>(ulla 1, ué)) = w(x)

and I1.3.3 gives 7(2') = 3, so k(a’) = 0.
We finally turn to the point at infinity 2’ = (X' = %,u’l =X uh =2 4 =uz). We get

H() ™ = 1)+l (w5, 1) + iy + 7

with ¢, € §’, ® := cly(z)—1¢. This is the origin of a chart, so A(h/;u},u5, u3; X') is minimal.
As F € k(z)[uz, us] and F ¢ k(z)[uz], we have ord(us . (u5F(us, 1)) < 1+ w(z) —p < w(w), so 2’
is not very near z.

I1.5 Proposition. Let (a(1),a(2),a(3)) € N* and H := u?(l)ug@)ug(?’) € k(z)ui,us,us]. Let

(a,w) € N? satisfy 0 < a < w and F € k(z)[ua,u3] be homogeneous of degree a (so F # 0). We
assume that

¥ = Hu$ ™" F(uz, us) & (k(x)[u1, uz, us])”. (1)
With conventions on derivations as in chapter 1 I1.3, we have 7(W') > 2, where
_1, OY
W =< {H )\1 8)\‘)}1<i<8 >C k(x)[u17u27u3]w~
Assume moreover that
Huf™*(F(ug, uz) — Gi(w;)) € (k(z)[u1, uz, ug))” (2)
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for all G; € k(x)[u;] and each i = 2,3. Then 7(W) = 3 except possibly if one of the following
conditions is satisfied: -
(i) a Z 0 modp, a(l) + w —a = 0 modp, a(2)a(3) # 0 modp and a(2) + a(3) +a = p where
a €{0,...,p— 1} denotes the remainder of the division of the integer o by p. In particular p > 3;
(#i) a = 0 modp and

W — cHu{ ™ “(ug + pusz)® € (k(x)[ur, uz, us))?
for some ¢, € k(x) — {0}. In particular, VDir(W) =< uy, ug + pus >.
Proof. Let

811) B
8)\

where F; € k(z)ug,usl,. By (1) and the assumption a > 0, k(x).u; C VDir(W) (inclusion is
necessarily strict), so 7(z) > 2 and the first part of the proposition is proved.

Assume now that 7(W) = 2. Then all F};’s are proportional to some (ug + pus)®, i # 0 by (2).
Let us denote

=:uy " “F;(uz,u3) € W,

Fi = di(UQ + MU3)a, (3)
where d; # 0 for some 7, 1 <7 < s.

I1.5.1 Assume that a = 0 modp. Let ¢ € k(x) be such that deg, (F — c(ug + pu3)®) < a. Since
a = 0 modp, we have

OHc(ug + pus)®uy™*

H1\
O\

= cuy “(ug + pus)®

for some ¢; € k(x). As deg,, (H(z) ) 8H(F_Cg;\2i+“"3)a)) < a, we have ¢; = d; and therefore

Huf™*(F(uz2,uz) — c(uz + puz)®) € (k(x)[u1, ug, us))”,

which proves (ii).
I1.5.2 Assume now that a # 0 modp. Let us denote a(j) € k() the coefficient of u§ in F', j = 2, 3.
By (3), we have a(2)a(3) # 0. Computing the coefficient of u§ in Fy, Fy, F3 for j = 2,3, the
following couples must be proportional:
vy := ((a(1) + w — a)a(2), (a(l) + w — a)a(3)),
vg := ((a(2) + a)a(2),a(2)a(3)), and
vz := (a(3)a(2), (a(3) + a)a(3)).
Since det(v1,v2) = 0 and a # 0 modp, we have a(1) +w —a = 0 modp and we are thus reduced

a(2),,0(3) p

to a question on ugy ug,uz). Since det(vg,v3) = 0, we have

a(2) +a(3) + a = 0 modp. (4)
Suppose a(2) + a = 0 modp. Then a(3) = 0 modp by (4). The Euler identity applied to
US(Z)F(UQ,Ug) gives

oF
F —|—U38 = 0.
u3

On the other hand, we have deg,,, F> < a, so F = 0, and we get 8U =0, so a = degy, F' = 0 modp,
since a(3) # 0: a contradiction. Hence a( ) + a # 0 modp. Mutatis mutandis, a(3) + a #Z 0 modp.
All this, together with (4), leads to a(2)a(3) #Z 0 modp.
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Let a =: ag + a1p + ... + a;up™ be the p-adic expansion of a, a; € {0,...,p — 1}, ag # 0. For
each j e N, 0<j<a,let j=:jo+jip+ ...+ jmp™ be the p-adic expansion of j. As

(X + Y)a — (X 4 Y)ao (XP + Yp)al . (Xpm + Yp"L)am

in Z/p, we have <;L> = <§0> <§1> (am> modp. Then, for each j, 0 < j < a < p, we have
0 1 m

a

a
=1 0 modp.
j <]>?§ p

Let F =: Zogjga 'yju%ugfj. Since a(2) + a #Z 0 modp, we have dy # 0 in Fy = do(ug + pus)®.
Computing explicitly F5, we get

Yi(a(2) + 5) = ds (j) #0

~

whenever 0 < j g

a < p, hence a(2)+7 # 0 modp. We deduce a/(5)+a < p, since a(2)+a # 0 modp.
By (4), a(2) + a(3) + @ =

p.
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CHAPTER 3: Resolution when there is transverseness

In all this chapter, we assume that x € ¥,, Q(z) = (w(z),2) and that the r.s.p. (X, u1,us2,u3)
of R is such that £ C div(ujugus) and the polyhedron A(h;uq,ug,us; X) is minimal.
We naturally define “transverseness” for J(f, E) by the following property:

J(f, E) is transverse < cly)J (f, E) € ({U; | div(u;) C E}). (1)

This is our definition of x(x) = 4 in III.2 below. A slightly more general definition can be given
adjoining to (1) those cases when €(z) = w(x) and

oy (f. E.) € k(@)[{U; | div(u;) € B}, 2)

This is our definition of k(z) = 2 (i) in I.1 below. Under each assumption (1) or (2), we have
E C div(ujug) up to renumbering components of E.

Two main difficulties arise: on the one hand, transverseness as defined above is not preserved
by permissible blowing ups at very near points, and we will have to use those nonpermissible
blowing ups specified in chapter 1, III in resolving the k(xz) = 3 case (section II below); on the
other hand, some easy reductions (corollary I.3 and section III) focus our attention on those cases
where E C div(ujug), J(f, E) = (ug(m)) mod(uy,u2) and 7(x) = 1. These in turn contain two very
different subcases:

k(x) = 2, which contains again two subcases:
Case (*1) or (*2): (H(z)~'f) = (ug(w)) mod(uy,uz2), F = div(uy) or E = div(ujuz), and
Case (*3): (H(x)"12L) = (ug)(m)) mod(uy), E = div(u), w(x) = 0 modp;

8UQ
k(z) =3: (H(x)"1f) = (uéw(x)) mod(uy,uz2), 1 +w(x) #Z 0 modp.
Unfortunately, these assumptions are not stable by blowing up and we still have to introduce

more general definitions of k(z) = 2,3. We recall that, x being a multiform function, one may have
at the same time k(z) € {2,3,4} and k(z) < 1.

I. Resolution of the case s(z) = 2.

I.1 Definition of k(z) = 2. We say that k(z) = 2 if one of the following (mutually exclusive)
conditions is satisfied:

(i) e(z) = w(z), E Cdiv(ujuz), VDir(z) Z< {U; | div(u;) C E} >;
(ii) €(z) = 1+ w(x), B =div(u1) and, for a suitable r.s.p. (u1,us,us) of S with A(h;uq, us, us; X)
minimal,
1 Of
Loy (H (z) '
C w(x)( (J?) 8@62

where ® € k(x)[Us, US] \ k(x)[Us], and Us € VDir(®).

) = ®(Us,Us) + U1 Y (U, Uz, Us),

The reader verifies that this definition includes the two subcases of k(z) = 2 stated above
in the introduction of this chapter, and that s(x) # 2 in the example f = ué((ug + Auz)' @ +
{higher order terms}), A # 0. We first recollect from definition II.1.3 in chapter 2 and related
comments:
I1.1.1 Remarks.
(i) If k(x) = 2 and €(x) = w(x) then: ord, ;) (H(x) 'gP) > w(z); VDir(z) := VDir(cl,)J (f, E, x))
is independent of any choice of parameters with A(h;uy, us, us; X) minimal and E C div(ujusus).
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(]zlz) If k() = 2, e(x) = 1+ w(z) and ord, ) (H(x) ' gP) = e(x) (resp. ord, ) (H(x) 1g?) > e(x)),
then

VDir(z) := VDir(cly@m)J(f, E)) + k(x).Uy (resp. VDir(z) := VDir(cly ) J(f, E)))
is independent of any choice of the parameters satisfying the conditions in 1.1 (ii) above.

I.1.2 Definition. Assume that k(z) = 2. We say that condition (*) holds if there exists a r.s.p.
(uy,us,uz) of S (with A(h;uy,us,us; X) minimal) such that one of the following conditions is
satisfied:

(i) e(x) = w(z), (H(z)™ f) = (ug™) mod(ur, uz);
(ii) e(x) = 1 + w(z) and degy, ® = w(x) in L1 (7).

1.2 Proposition. Assume that k(x) = 2 and condition (*) does not hold. We have k(xz) < 1 or
the following holds:

(i) w(z) > p, 7(x) = 2 and Us € VDir(x) for a suitable choice of parameters (uy,uz,us) satisfying
I.1. Moreover, we have ord, ) (H(x) 'gP) > e(x);

(ii) there is no permissible curve C containing x.

Lete: X' — X be the blowing up along x and x' € e~*(x) be very near x.

(i11) if (E = div(uy) and Uy & VDir(x)), then e(z) = 1 —|—w( ) and VD1r( ) =< UQ,Ug > for a
suitable choice of the parameters satisfying 1.1 (7). We have ©’ = (X' = 2=, v} = uq,ufy = 2, uf =
w2), k(') =2, and either condition (*) holds at z' or VDir(z') =< UQ,U]’ > mod(Ul)

() if (E = div(uiuz) and VDir(z) =< Uz +AU1,Us >, A #0), then 2’ = (X' = -, uj = u1,v5 =
2+ A uy = 2), k(2') =2, and either condition (*) holds at ' or ' is in case (m) above'

(v) if (div(uy) C E C div(ujug) and VDir(x) =< Uy, Us >), then ' = (X' = == v} = ¥ uf), =
uz, uy = %), (') = 2, and either condition (*) holds at z’ or VDir(z") =< U], U3 > mod(UQ)

I.2.1 Proof of (i). If e(x) = 1 + w(x), then w(z) > p by definition I.1 (ii), and w(x) = p implies
degy;, ® = p, i.e. condition (*) holds. If e(x) = w(z) < p, we have

Do = cly@) (H ()" f) & k(=) [{Ui | div(u;) € E}]

by definition I.1 (i), say Us occurs in the expansion of ®y. Since e(z) = w(z), we must have
9%0 — ), s0 degy;, @ = p, i.e. we have w(x) = p and condition (*) holds.

U3

In all cases, we have Us + AUy + AUz € VDir(z) for some A\, Ao € k(z) (after possibly
renaming variables if e(x) = w(x) and E = div(uy)). If e(x) = w(x) (resp. €(x) = 1+ w(x)), then
clo@J(f, E,z) (resp. clyz)J(f, E)) is not generated by an w(z)"-power since condition (*) does
not hold by assumption, so 7(x) > 2. Therefore 7(z) = 2 if xk(x) > 0. Furthermore, if we are
in case I.1(4), we must have VDir(®) =< Uy, Uz > since Uz € VDir(®) but degy, ® < w(z) by
assumption.

If e(x) = w(x), then after replacing ug with v := ug + Aju; + Agug, then picking Z :=

— 6 in order to have A(h;u1,us,v; Z) minimal, we get V € VDir(z). If e(z) = 1 + w(x) and

ordn(m)( (x)"1gP) = e(x), then 7/(z) = 3, so k(z) = 0 by corollary I1.1.4 in chapter 2. Therefore
ord, ) (H(x)"1g”) > e(x) and the end of the proof goes as in the case e(z) = w(x).

1.2.2 Proof of (ii). If C is permissible of the first kind (for example if ¢(x) = w(z), ¢f. chapter 1
I1.5.1), we have
cle) (H(2) 71 f) € k(2)[{U € ms\m | C C div(u)}].
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By chapter 1 I1.5.4.3, there is no point very near x on the blowing up of X along C because
7(x) > 2, s0 k(z) = 1.
If C is permissible of the second kind (then e(x) = 14+ w(x), ¢f. chapter 1 I1.5.1), we have
of

clw(m)(H(a:)*la—m) € k(z)[{U € ms\mg | € C div(u)}],

where partial must be w.r.t. ug because ® € k(z)[Us, UY]. Hence
Clezy(H(z) ' f) € k(2)[Ur, Us)14uo(a) + Usk(2)[Us, Uslua)

by definition of permissibility of the second kind, so ® € k(z)[Us]. This proves that condition (*)
holds.

1.2.3 Proof of (iii). It can be assumed that VDir(x) =< Us, U3 > after possibly changing coordi-
nates, the assumption being unchanged. By chapter 2, I1.2, we have x(x) = 0 if €(x) = w(z), so
e(x) =14 w(x).

By chapter 1 11.5.4.3, 2/ = (X' = %,u’l = ui,uy = 32, uz = 2) if 2’ is very near x. We have
E' = (e7'E)rea = div(u}). As we are at the origin of a chart, A(ujPh;u},uh, us; X') is minimal.
Let us denote f = u'f(l)(F(ul,uQ,u;g,) + ¢), where F' € k(z)[u1, uz, us] is homogeneous of degree
1 +w(x), ord, ;¢ > 2+ w(x). Then f' = u‘f(l)Jer(x)_p(F(l,u’g,ug) +u)¢), and we have

min{ord,; ;) F (1, uy, u3), ord,y u (u1¢') = w(z),

since x’ is very near x.

If ord(uy uy) F'(1,up, u3) = w(z), then €(z’) = w(z) = w(z’) and r(z’) = 2. If condition (*)
holds for 2’ neither w.r.t. u5 nor w.r.t. uz, then UsU; divides the nonzero form cl, ) F (1, uh, u3),
so VDir(z2") =< U3, U5 > mod(U7).

If ord,y ) F (1, uy,uz) = 14+ w(x), then F' € k(x)[uz,us] and VDir(z) =< Uz, Us > implies
that VDir(cl,(z)J (F(uy, u3), ') =< Uy, Uz >. Also note that U € VDir(z') if ord, ) (u}¢’) =
w(z), so k(z') < 1 in this case by chapter 2, I1.3. From now on, ord, ) (uij¢’) = 1+ w(x), so
€(z') =1+ w(x). We then have

4, 0f

!/
ouly

Clugon(H(') " 507) = @(U3,U§) + UL (U1, U3, 03)

for some V' € k(z)[Uy,Us, U], so k(a') = 2 and VDir(2') =< U}, U4 > mod(Uj) as required.

1.2.4 Proof of (iv). By definition of k(z) = 2, we have e(z) = w(z). Since VDir(z) =< U +
AUL,Us >, A € k(z)—{0}, 2/ = (X' = 2w, v = 24X\ uh = %) and B’ := (7' E)rea = div(u).
Let us denote f = u‘f(l)ug(z)(F(ul,ug,u;;) + ¢) where F' € k(x)[u1, u2, u3]y(y) and ord, ¢ >
1+ w(z). We have FF =: ) mey U3 F; (U1, Us), where F; € k(z)[Ut, Ua]y(z)—pi- We get

0<i<|

f= @@y yya(2) ST WL - N ule | (1)

0<ig [ 2 |

Let Z' := X' — @' be such that A(h';u}, v}, u; Z') is minimal, and we let f}, = f' + 60" —0'g'"""
as usual. We consider two cases:
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Case 1: a(1) + a(2) + w(x) # 0 modp. The term

e uy" Fi(1,05 = A)

ogig |2 |

in (1) induces unsolvable vertices of A(h';u},vh,us; Z"), so we have w(z') = e(z’) since =’ is very
near x. Since F; # 0 for at least one index ¢ > 1 and condition (*) does not hold, F' is not the power
of a linear form, hence VDir(z') =< V5,U4 > mod(Uj). By II.2 of chapter 2, we have x(z) = 0.

Case 2: a(1) + a(2) + w(z) = 0 modp. We have f,, = f' + 6’V mod(u}), since u} divides
H(z')"1g'". Therefore J(f4,,E') = J(f',E’) mod(u}). Given D € D(x), we denote Fp :=
clo(a) (H(2) ' Df) € k(x)[U1, Uz, Uslu(z). By assumption, we may pick D € D(z) such that Fpp &
k(z)[Uy,Us]. If e*D € D(a'), then

Fp = clyger)(H (@) 71 (€"D) f:) mod(U7) € k(x)[Vy, U5 |\k(x)[V3],

so w(z') = e(x’), k(z') = 2 and T(F/D) = 2 if condition (*) does not hold at z’. Then x(z") = 0 by
chapter 2, I1.2.
Assume now that e*D ¢ D(a’) for each such choice of D. We can pick D € {ulaa—m,uzaa—w}:
since €(x) = w(x), we have F' _o_ = 0, moreover, x’ being rational over x, we have (with notations
u3

as in chapter 1, I1.3)

0 0
e D(z').
e P ,e % € D(z')
We thus get
cly@n (H(z")"H(e"D) f7:) € k(2)[U7, Vy, Us"|\k(2)[U1, V3. (2)

If e(z) = 1 4+ w(x), this proves that x(z’) = 2. Since condition (*) does not hold at z, we have
Fu@ =0 if w(xz) = 0 modp. Therefore

clogen (H(2') ™ (e" D) f,) € Vak(2)[U], V3, U3"], 3)

by (2), which proves that VDir(z') =< V3, U4 > mod(Uj). Hence 2’ is in case (iii) of the proposition
or k(x) = 0.
If e(x) = w(x), we expand

H(z') ™ f = ¢ (vh, ug) +uyd,

where ¢’ € k(x)[[vy, us]] and ord,(,)¢" > 1+w(z’). Since condition (*) does not hold at x, equation
(3) above implies that z’ satisfies the assumptions of chapter 2, I1.4, so x(z) = 0 in this case.
1.2.5 Proof of (v). By I.1 (ii), we have 7(x) = 3 (so k(z) = 0) if e(z) = 1 +w(x). Assume now that
€(z) = w(x). Since VDir(x) =< U;,Us >, we have 2’ = (X' = %,u’l = touy = ug,uy = 32) and
E' := (7' E)eq = div(ujub). We are at the origin of a chart, so A(h;u},uh, us; X’) is minimal.
Note that ¢l (H(2) "' f) € k(z)[Ur, Us), so we get e(2') = w(a’), VDir(z') =< U{,U§ > mod(U3),
and the conclusion follows.

1.3 Corollary. Let X = Xg <« X1 « -+ «— X; « --- be the quadratic sequence along . If for
each i > 1, the center x; of u in X; satisfies (v; € L,(X;), Qx;) = (w(z;),2) and k(z;) = 2), then
k(z) < 1 or condition (*) holds for some i > 1.
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Proof. Otherwise, there exists ig > 0 such that either all x;’s are in case (iii) or are in case (v)
for i > ip by I.2. Without loss of generality, it can be assumed that ig = 0. In case (i), all
z;’s are on the strict transform of a formal curve C := V(X,u3,u3), where X = X + Y Aui and
a; = uj + Y, Ajul for j = 2,3. We have C ¢ E, so z; is a regular point of X; for i >> 0: a
contradiction. In case (v), we have E; = div(us ;u2), where E; is the exceptional divisor at x; and
Uy, = u;iul, SO

since the value group of p is Archimedean: a contradiction.

1.4 Remark. From now on till the end of section I, we may therefore assume that (k(x) =2 and
condition (*) holds at x). In particular, we have w(x) = 0 modp by I.1 and 1.1.2. Namely, by 1.3,
local uniformization in this special case implies local uniformization whenever k(x) = 2.

1.5 Well prepared variables, invariants.

Let m(x) be the number of irreducible components of E at x, where x(z) = 2 and condition
*) holds at z. There are three different cases:
1

)
*2) m(ﬂf)—2 e(r) = w(z ) ~
*3) m(x) = ( ) =1+ w(x). In the following definition, the r.s.p. (u,us2,u3) of S is such that
div(uy) C E div(ujuz). Remember that X € R is such that A(h;uy,usz,us; X) is minimal. We

f=:H(x) Z ug(w)_j(bj,

0<j<w(z)

where ¢; € kf[ur,us]], 1 < j < w(x), ¢po € S. We have ¢ invertible in cases (*1) or (*2), and
(u1, o, us3) is a r.s.p. of S in case (*3).

1.5.1 Preparation of the variables. We now define well-preparedness of variables in cases (*1)
and (*2), then in case (*3). Existence of well prepared variables is proved in 1.6 below.

1.5.1.1 Definition. In cases (*1) or (*2), we say that (X, u1, us,us) is well prepared if the following
conditions are satisfied:

(wp1) A(h;uy,us,us; X) is minimal;

(wp2) no verter w = (wy,wa) of ACH(z)7 (f, gP);u1, uz;u3) is solvable (definition of this polyhe-
dron and of vertex solvability below).

The polygon in (wp2) is defined in this way: given an ideal I C S, let N P(I) C R be its
Newton polyhedron, i.e. NP( ) is the convex hull of {s +R%,}, where s =: (s1, 52, 53) € N° ranges

over all monomials uj'u3*us3® appearing with nonzero coefficient in the expansion of some ¢ € I.

Assume that moreover ord,, (I mod(ui,u2)) = w(z). Then A(I;u1,us;us) is defined to be
1/w(x) times the projection of N P(I) on the first two coordinates plane from the point (0,0, w(x)).
Note: each vertex w of A(I;uq,usz;usz) has coordinates in (w(lw)!N)Q.

It is easily checked that

A(H(z)" (f, ") ur, uz;us) = A(H(x)fl({)\i%hgigs,gp); U1, Ug; Uu3z).
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A vertex w = (w1, wz) € N? of this polygon is then called solvable if there exists A\ € k(x), X # 0,
such that following condition is satisfied:

of

Vi, 1 <i < s, inw(H(m)_l)\iaX

) = a;(Us = AU U52)“ ), a; € k(z), (1)

and if
(wlaw2) 7’5

1
O () 97) 0 (H ) 1 47)) 8
1.5.1.2 Definition. In case (*3), we say that (X, uy,us,us) is well prepared if the following
conditions are satisfied:

(wp1) A(h;uy,us,us; X) is minimal;
(wp2) no “left” vertexr w = (w1, wz) of ACH ()" uy ' (f, gP);u1, uz; u3) is solvable (definition of
this polyhedron, of “left” vertices and of vertex solvability below).
We define NP(uy 'I) as follows for an ideal I C S such that
(a) ordy = ord(y, ) (I mod(u;)) = w(x) + 1, and
(b) ordUS(% mod(uy,us2)) = w(zx) for some ¢ € 1.

The polyhedron N P(u; 1) is the convex hull of

{(0,0,w(x)) +RLH {s +RL,},
where s =: (s1, 52,53) € N x (NU {—1}) x N ranges over all monomials uj'u5*u3* appearing with
nonzero coefficient in the expansion of some u; *¢ € uy 'T with 0 < s3 < w(x) —1 (i.e. we disregard
all monomials with s3 > w(z) distinct from ug(x)). Then A(ug 'I;uy,up;uz) is defined to be
1/w(x) times the projection of N P(I) on the first two coordinates plane from the point (0,0, w(x))
as before, thus allowing vertices with negative second coordinate. If w = (wy,w2) is a vertex of
A(uglf; u1,uz;us), we thus have

wee | J CNU{_;})'

1<i<w(z)

Note that, since ® € k(z)[Usz, U}] in definition I.1 (ii) and condition (*3) holds, (a) and (b)
are verified for I = H(x)~1(f, g?).

In case (*3) a vertex w = (w1, w2) € N x N is then called solvable if there exists A € k(x),
A # 0, such that following conditions are satisfied:

of
OA;

Vi, 1 < i < s, ing (H(z) tuy "N =) = ai(Us — AU UZ2)“@) | ay € k(z), (1)

and

(w1, w2) # (ordu, (H(z)~"g"), —1). (2)

1
w(z)
A “left” vertex is a vertex w such that there exists a linear form L € (R?)Y, L(w;,ws) = mw;+nws,
(m,n € Q1 and m > n) with

{w} = A(H () tuy (£, g7); ur,uzsug) N {v | L(v) =1},
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All other vertices are called “right” vertices. We have

_1U2_1>\i 8H(:v)ug(x)¢o

ing, (H(z) o,

) S UQ_Ik(x)[U% U3h+w(x) (3)
for each “left” vertex w, since €(x) = 1 + w(z) and L(1,0) > L(0,1) for linear forms as in the

definition of “left” vertices. Actually, the left hand side of (5) is a;Us @) for some a; € k(x) if
the “left” vertex w is distinct from (1,0). However for “right” vertices, we emphasize the fol-

lowing fact: we only have inw(H(m)_luglz\i%) € Uy 'k(x)[Uy,Us,Us]. For example, assume

F = cly @ (H(z)"' f) has an expansion

F = U;(x)(aUl + bUs + cUs) + {terms of smaller degree in Us},

with a # 0. Then for any “right” vertex, we have

of
ON;

in,, (H(x)  ug P A=) = (aiﬂ + bi)(ug(x) + {terms of smaller degree in us},
(>

with a; # 0, b; € k(z) for some i,1 < i < s. Fortunately, only left vertices are important w.r.t. the
invariants that we define now. A similar fact occurs when z is in case (*1), although right vertices
are better behaved in this case.

1.5.2 Notations and invariants. We define the resolution invariants in cases (*1) and (*2) (resp.
(*3)) from the polygon A(H (z)~1(f, g");u1,uz;uz) (resp. A(H (z)71(f, gP);u1,uz;us)), once well
prepared coordinates have been chosen.

1.5.2.1 Definition. In cases (*1) and (*2), let us denote
rd,, . —lgp Tdy ; Qi . .
Ay = inf {22 O I 0t (e}, = 1,2

w(x) ’ i

—1,.p r .
B = inf {20 @ 00 0w < < (a)}, Ci= B — Ay — Ay > 0;

w(x) ’

—w(@)A -1 “ A1 % mod(u .
B — inf {o1rdu2(u1 lfj((f)) g? mod(uy)) ?ordug(ul 1i¢z d( 1)), 1<i< w(x)}, where orduz de-

notes the natural valuation of the discrete valuation ring k(x)[[us]].

Note that

Aj =inf {w; : (w1,ws) € A(H(z) ' (f,9°);u1,u25u3)} =0, j=1,2,

B =inf {wy +ws | (wi,wa) € ACH (2) 7' (f,97);u1,uz3us)} > 1,

and that
B =inf {wsy | (A1, wz) € AH(z) " (f, 9");u1,uz;us)} = 0.

We will denote those vertices w = (w1, ws) of A(H(x)71(f, gP);u1,us;u3) with 1 + 29 = B by
(a2, B2) and (a3, B3) with az < as.
We point out that, if = is in case (*1),

g M)
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Before blowing—up

$\beta$

$\beta_29$

$\beta_3!

$A_2$

$B$
$A_1$

1.5.2.2 Definition. In case (*3), let us denote

—lgp or ; .
Ay =inf {80 9D odadi ()}
—1, -1 -1,
B3 — lnf {Ord(ul,uQ)(i{((wii) Uqy gp) ’Ord(ul,uQi)(ug ¢L) , 1 < Z < W(l‘)},
—w(xz)A —1 —1 —iA —1 - mod(u .
/83 — inf {ordu2(u1 1u2w(il)(a:) g mod(ui)) ,ord“2(u1 1ur;, bq d( 1)), 1 <i< w(x)}, where

ord,, denotes the natural valuation of the discrete valuation ring k(x)[[uz]].

G :=inf {Ord'uz(“;w<m)AlH(I)7lgp mod(u1))  ordy, (u;iAl'd)i mod(u1))
w(z) ) 7

, 1 <i<w(x)}.
Note that

Ay =inf {wr: (w1, wz) € AH () tuy ' (f, 97); ur, ugs uz)} > 0,

B3 = inf {w1 +ws | (w1, wz) € AH (x) " uy ' (f,97)5ur, uz;us)} > 1,

and that
B3 = inf {ws | (A1, w2) € A(H(l’)_lugl(fa g");ur,ugsuz)} = —1.

We will denote those vertices w = (wy,ws) of A(H (x)  ug *(f, gP); u1, uz; uz) with z; + x5 =
B3 by (@32, 83,) and (a3s, 335) with @32 < a33. Note that a vertex w = (w1, w2) is a “left” vertex
of A(H (z) " uy ' (f, gP); ur, ug; us) if and only if wy < a3y,

We point out the following implications, if x is in case (*3):

ordy, (H ()" 'g?)
w(z)

A1 (.%’) =

— —1<03(x) <0< fG(z) =0. (1)
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Before blowing up case (*3)

$\beta3$

$\beta3_28

$\beta3_39%

T $B3$

$A_1$ $\alpha3_2$

Obviously, the above definitions may depend on the choice of well prepared coordinates
(X, u1,u2,u3). When there is a risk of confusion, we will make explicit this dependence on
(u1,u2,u3) by writing A;(ui,us,us), etc... We also use the notation A;(z), A;(z'), etc... when
dealing with a blowing up e : X’ — X and 2’ € e~!(z) if x(2’) = 2 and 2’ satisfies condition (*).
In this case, we always compute invariants w.r.t. E' := (€71 E);eq.

1.5.2.3 Definition. Assume that (X, u1,us,us) is well prepared. We denote
v(u1, ug,us) := [B(u1,uz,us)] =0 if x is in case (*1);
v(u1, ug,us) := 14 |C(u1,uz,u3)| =1 if x is in case (*2);
v(u1,ug,us) := 14 | B3(ur,ug,u3)| = 0 if x is in case (*3).
We will also use the notation y(x) = y(u1,ug,us) for short. About existence of well prepared
coordinates, we have:

1.6 Proposition. Assume that x(x) = 2 and condition (*) holds for the r.s.p. (X, u1,us2,us) of R.
There exists 1 € (u1, uz)k(x)[[u1,us]], 0 € S = E(x)[[u1, ug, us]] such that (X —0,uy,u2,v := uz—1)
1s well prepared.

Proof. By assumption, (wpl) holds for (X,uj,u2,us). In cases (*1) and (*2) (resp. (*3)),
suppose there exists a vertex (resp. a left vertex) w = (wy,ws) of A(H(x)71(f, gP);u1,uz;us3)
(resp.  A(H(z) Muy '(f, gP);u1,u0;u3)) which is solvable. By definition of solvability, if L is
a linear form on R3 with coefficients in R~q (resp. and with L(1,0,0) > L(0,1,0)) such that
ing, (H(z)~'f) = ing (H(x)~'f), then in gr; (S) (resp. in gry(u;'S)), we have equality of ideals
(resp. submodules):

ing (H(x) ™ ({5 hicics, 97) = k(@).(Us — AU U2 )= (@)

(resp. inL(H(l“)flugfl({Ai%}lgigmgp)) = k(x).(Us — AU U32) (@),
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1.6.1 We perform the dissolution of w in cases (*1) and (*2) (resp. in case (*3)). Let us denote
Uy 1= Uz — Yy, Yo = Auy uy?. The basis

(dul, dUQ, dU3, d)\4, “on ,dAs)

of Q}g ko 8618 changed to
(dul, dUQ, de, d)\47 N ,d}\s),

so H(z) 2L = H(z)'2L and, for 1 < i < s, H(x)_l)\i% is unchanged modulo the ideal

ous 0V
—-10
(uiug? H(z) ™' 5L,

1.6.2 If L is a linear form as above, we have

of
OA;

inL(H(:C)_l)\Z» ) = ’yZ»quf(z) (resp. inL(H(m)_lugl)\i

So L(w',0) > L(0,0,w(x)) for all vertices w’ of

AH ()7 (f, g7)ur, ugs vy) = A(H(ﬂﬁ)_l({kig{_h@gs,gp); U1, Ui Vo)

(resp. of A(H (x) " uy ' (f, gP); u1,uz;vy)). Let w’ # w be a vertex (resp. a “left” vertex) of
A(H (z) 7 (f, g7); u1, ug; ug) (vesp. of ACH(z) ™ uy ' (f, g7); ua, ug; us)),

and L’ be a linear form on R? with coefficients in R~ (resp. and with L'(1,0,0) > L’(0,1,0)) such
that

inw/(H(:c)_lf) = inL/(H(:U)_lf) (resp. inwr(H(a:)_luz_lf) = inL/(H(a:)_luglf) ).
In particular, we have L'(w,0) > L'(w’,0). By 1.6.1 above,

inwf<H<x>-1<{Ai§{i}lggs,gp» (resp. mwwm—lumg;}l«s,gp» )

is unaffected by the change of differential basis. So w’ is still a vertex of
—1 o) -1, —1 8f )
A(H(x) 7 (f, 9");ur, uz; vy) = A(H (2) " uy ({)‘iﬁ}lgigsag )5 U1, Ui V)

(resp. of A(H (x)  uy *(f, gP); w1, u; vy)).
We may have lost (wpl) in this process, in which case we make a change of variable X,, :=
X — 0y, to get (wpl) anew. This translation necessarily makes not larger the polygon

A(H ()™M (fx,, 9"); ur, ug; vw) (resp. ACH ()" uy ' (fx,,, g7); ur, uz; ve))
which is a projection (resp. the projection of a translate) of A(h;u1,us,vy; Xw), where fx, =

f+ 0P — gP~10,. After iterating (possibly infinitely many times) this vertex dissolution and
minimizing step, one gets a non-increasing sequence of polyhedra of the form

A(H(i’)_lu;l(fj’gp);u17u2;1j]-), .] 2 17
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where h = (X — 0;)? — g»" (X — 0;) + f; and v; = uz — ;. The series ¥; and 6; respectively
converge in k(z)[[urus]] and in S, since (w1 + ws,w;) increases for the lexicographical ordering in
each step 1.6.1.
1.6.3 Proposition. Assume that k(x) = 2 and x is in case (*3) for the r.s.p. (X, u1,us,us)
of R. If w:= (0,1) is a vertez of A(H ()" uy t (f, gP); ur, ug; uz), then w is not solvable. As a
consequence, we have

v=u3z+uig1+ ¢,
with ¢1,¢ € §, ord, ;)¢ > 2 in the dissolution 1.6. Therefore V € VDir(H (z)~ 18{12), where
h=2P—gP~1Z + fz.
Proof. Suppose that w := (0, 1) is a vertex of A(H (z) " uy ' (f, g7); u1, u2; u3). By I.1 (ii), we have
VDir(®) =< Us, Uz >, so w does not satisfy equation (1) in I.5.1.2 and the proposition follows.

1.7 Proposition. Assume that k(z) = 2, condition (*) holds and (X, u,us,us) is well prepared.
We have k(z) < 1 or the following holds:
(i) in cases (*1) and (*2), either Us € VDir(z) or (m(x) = 2, B(xz) = C(x) = 1, and there exists
a r.s.p. (Z,u1,u2,v) such that condition (*2) holds, (Z,u1,us,v) is well prepared, B(uy,usz,v) =
C(uy,uz,v) =1, and we have VDir(z) =< V,Uy 4+ bUy > for some b #0);
(i) in case (*3), either

1 9f

%))a

or (B3(x) =1 and there exists a r.s.p. (Z,u1,us,v) with v = ug mod(uy) such that condition (*3)
holds, (Z,uy,usz,v) is well prepared,

Us € VDir(cly, () (H ()

_10fz
187))5
U2
and the following holds: A(H (x)  usy *(fz,gP);u1, uz;v) and AH (x) " ugy *(f, gP); u1, uz; us) have
the same “left” vertices, one of which is (a32,332), where 0 < a32 < 1 and a3z + £33 = 1 (in
particular B3(uy,u2,v) =1 and B3(uy,us,v) = 83(uy, uz,usz))).
1.7.1 Proof of (i). If we are in cases (*1) or (*2), then

oo (H(@) ) = A0+ 30 U TR0, Ts) = AF,
1<i<w(x)

where X # 0, P; € k(x)[U1,Us);, and P; = 0 if B(z) > 1 or if i # 0 modp. The case B(z) > 11
proved (take v := ug), so assume B(x) = 1. By well-preparedness, we have 7(z) > 2, so 7(x) =
if k(x) > 1.

Assume that Us ¢ VDir(z). Then VDir(xz) =< Us + aU;,U; + bU; >, where a # 0, b € k(x)
and {i,j} = {1,2}. By chapter 2 II.2, we have x(z) = 0 if div(u;) € E, so it can be assumed that
j=1,1=2. We claim that b # 0. Indeed, if b = 0, then for 1 < j < s, we have

of
]aA)

Ve VDir(Clw(I) (H(x)

Clw(x)( ()~ A ,uj(Ug + aUg)w(x) + Z Mji(U;g + aUg)w(I)_iUli.

1<i<w(z)

By equation (1) of I.5.1.1, the vertex (0,1) of A(H(x)7(f,g");u1,uz;u3) is solvable: a contra-
diction, so b # 0. Once again, this implies E' = div(ujus) by chapter 2 IL.2. If C(z) < 1, we have
Ai(x) > 0 or As(x) > 0. Therefore there exists ig € {1,2} such that for each j, 1 < j < s, we have

of

iga) U € Uk@[U1,Ua, Usl, 11 € k(@)

75



so U;, € VDir(x): a contradiction. Hence C(z) = B(xz) = 1. Then we replace us by v := uz + aus
and get VDir(x) =< V,U; +bUs >. Ther.s.p. (Z,uy,uz,v) is obtained after applying the algorithm
I.6. The same argument as above shows that B(x) and C'(z) are unchanged.

1.7.2 Proof of (ii). Assume that Us & VDir(clw(m)(H(a:)_lﬁ)). In definition I.1(ii), we have

8u2
U £ 0 necessarily. If (0,1) is not a vertex of A(H (x) ‘uy ' (f, gP); u1, uz; u3), then ® € k(x)[Us], so
we must have
of

8’11,2

for some a € k(z), a # 0. In particular B3(x) = 1. The vertex (a32,332) (defined at the end
of 1.5.2.2) of the initial face of A(H (z)~ uy *(f, g7); u1, us; us) is unsolvable by definition of well-
preparedness and has 0 < @32 < 1 by assumption. Suppose that a3, = 1. Then

Clw(z) (H(x)_l ) € k(x).[Us + al4]

clo(zy (H (2) ™' f) = plUs(Us + ali)*'™) + P,

where ;1 # 0 and P € k(x)[U1, Us]i4w()- This is impossible, since (1,0) is not solvable.

We have proved that 0 < @33 < 1. Then we replace uz by v := uz+auy, the r.s.p. (Z,u1,us,v)
being obtained after applying the algorithm I.6. We get

1 9fz

V € VDir(clu) (H ()™ 5.2)).

Note that A(H () uy ' (f, g7); ur, uz; ug) and A(H ()~ uy ' (f, g7); ur, ug; v) have the same “left”
vertices.

1.8 Theorem. Assume that k(z) = 2. Then k(z) < 1.

Note that theorem I.8 proves local uniformization when x(x) = 2. By I.3, it can be assumed

that condition (*) holds. By I.6, there exists then a well prepared r.s.p. (X, u,us,us3) of R. We
maintain these assumptions up to the end of this chapter. The proof needs long computations. We
start by an easy lemma.

1.8.1 Lemma. If B(x) =0, then x(z) < 1. In particular, theorem 1.8 holds when v(z) = 0.

Proof. We have e(z) < w(z)(A1(x) + B(x)). So Ai(x) > 1 which implies €(C) = e(x) > p where
C := V(X,u1,u3). By chapter 1 I1.4.7, C is an analytic branch of an algebraic curve on X. On
the other hand, we have

J(f,E,z) = u™) mod(uy) (vesp. J(f, E) = (1) mod(uy))

if €(z) = w(x) (resp. €(x) = 1+ w(z)). Therefore C is the unique analytic curve on E (resp. on
E\div(ug)) in the set

W= {y € 5p(2) [wly) = 1}
if m(x) =1 (resp. if m(x) = 2). Hence C is a regular curve on X.

If e(x) = w(x), i.e. xisin case (*1) or (*2), C is thus permissible of the first kind. By 1.7(i), we
have Uz € VDir(z) since B(z) > C(z). Let e : X’ — X be the blowing up along C. If 2’ € e~ !(z) is
very near z, then 2/ = (X' = %’u/l = u1,uhy = Us,uy = 2), 2’ remains in case (*1) (resp. (*2)) if
x is in case (*1) (resp. (*2)), and (X', u}, uf, u}) remains well prepared at z’ w.r.t. b’ = u;’h. We
thus have (') = 0, A;(2') = A1(z) — 1 and ord,y ) (H(2') "' f') < A1(a")w(z). The conclusion
follows by descending induction on A;(z).
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If (z) = 1 + w(x), i.e. z is in case (*3), then there appears in the expansion of H(x) 1f or

of H(x) 1g? the monomial u w(z)—i zAl(x)

particular, A;(z) > 1, so

with nonzero coefficient for some i, 1 < ¢ < w(z). In

J(f’ E,C) € (ug(m)) + (ula u3)1+w(r)’

i.e. C is permissible of the second kind. Let e : X’ — X be the blowing up along C. We
have VDir(clw(I)(H( 2)" 1 2LY) = k(x).Us, since Ay(z) > 1. If 2/ € e !(x) is very near x, then

8u2
= (X"= 2 u) = up, ubh = ug, u3 = —f) by chapter 1, I1.5.4.4. We consider two cases.
If e(x ) = 1+ w(x), then 2’ remains in case (*3) and (X', u},u),us) remains well prepared.
We have f(z’') =0 and A;(2') = A1 (x) —
If e(2') = w(2’) = w(x), then A;(xz) =2 and there is an expansion

e A ]

where 7/ is a unit and ord,(,)(u}¢’) = w(z). But this in turn implies x(2") < 1 by chapter 2, IT.1
(note that w(z) > p > 2).

We conclude by descending induction on A;(z). The last statement in the lemma follows from
equation (1) in I.5.2.2.

Lemma I.8.1 settles cases (*1) and (*3) when 7(z) = 0. Therefore from now on, we assume
that v(xz) > 1. We now control the behavior of v(z) by blowing up a closed point.

1.8.2 Notations. Assume that k(x) = 2, condition (*1) or (*2) holds and (X, uy,us,us) is well

prepared. Let us denote H(x) = u(ll(l) a(2), 9P = 'ypull’(l)ug(z), v invertible (with a(2) = b(2) = 0 if

x s in case (*1)), and:
H(z) 'f = Z ug(z)_quj,
0<j<w(x)
with ¢o € k(x)[[u1, ug, usl] invertible, ¢; € k(x)[[ur, us]] for 1 < j <w(x). Let ¢p; =: u?j(l)ugj(Z)wj,

where 1 = 0 or; is not divisible by uy, nor by us if x is in case (*2). As usual, we take a;(2) =0
and 1 =0 or 1); is not divisible by uy if x is in case (*1).

1.8.2.1 Definition. For 1 < j < w(x) such that ¢; # 0, we denote ®; := ing¢p; = Ufj(l)Ugj(z)\Ilj
and dj := degW¥; € N. Let Jp:={j, 1 <j<w(x)|B(z) = Or(;%%}
The following lemma is obvious from the definitions.
1.8.2.2 Lemma. We have
dj,

L } < Bale) — As(z) < C(a) < Bla) — An(z).

1.8.2.3 Definition. Let pg be the monomial valuation on S given by

Q(Z Aapeuudug) = inf{c +

abce

( )|>‘abc7é0}

We denote by cl,,, o (z)J the k(z)-vector space in,,J, where J is the ideal
0 _
7= (@ g hese ) + ) )
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By definition of B(x) and well-preparedness, we have dimy,)(cl,, w(@)/) = 1, and for every
A€ k(x),

g wo(ay ] # k(). (Us — AU g2y,

Let e : X’ — X be the blowing up along x. We call “first chart” the chart with origin (X’ =
u%,u’l =u,uy = 2,uy = 2). Let B = (e71(2))rea- We have E' = div(u}) if z is in case (*1),
or B = div(ujub) if z is in case (*2).

1.8.3 Lemma. With hypotheses and notations of 1.8.2 (in particular x is in case (*1) or (*2)).
Assume that the center x’ of p in X' belongs to the first chart. Let d := [k(z') : k(x)]. We have
k(x) < 1 or the following holds:
(a) k(z') = 2 and z' maps to the strict transform of div(ug) except possibly if (m(x) = 2 and
B(r) = Cla) = 1);
(b) if o' = (X', u}, uh, us) is the origin of the chart, then ' is in case (*1) (resp. (*2)) if x is in
case (*1) (resp. (*2)) and we have C(z") < C(z), B(z’) < B(x), A1(2") = B(z) — 1;
(c) if o’ # (X', ul,uh,ub), then &’ is in case (*1) or (*3). Moreover, z’ is in case (*1) if a(1) +
a(2) # 0 modp or if (x is in case (*1) and ' is separable over x);
(d) we have »(z') <~(x);
(e) assume that x' # (X', u},ub, uf).

If (m(z) =2 and B(z) = C(x) = 1), then 5(z') < 2. Equality holds only if p = w(x) = 2, and
there exist well prepared variables (Z',u},u5,v") at &' such that h' = 7% g7 + f%., where

Ty =™ (0 + o' + i), (Dis)

with a(1)’ = 0 mod2 and pyphy € k(z")[[uf,v', uf]] invertible.
If we do not have (m(x) =2 and B(x) = C(x) = 1), then

sy <1+ |47, (1)

B(z") < sup{B(x), }1?} if x is in case (x1), (2)

and all properties below are satisfied:

(i) we have B(z) < Ord(“”“ilﬁg("’)* .
(ZZ) we ha/Ue Al (x/> — B(x) - 1;

(iii) if Jo ¢ pN, then

< —.
d d

Jod

B(a') < sup,es, {da‘ } L Cl) _ B)

If moreover x' is in case (*3), then

jod  Jjo

53(x')<supjoejo{dj 1} Clz) _ Blx)

- T
d ~ d

() if (Jo C pN and B(z) ¢ N), then

ﬁ(l’l) < SUp,. e, {d 1 } < C(.ﬁlf) + 1

~Jo. _
Jod  Jo d P
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If moreover x’ is in case (*3), then

d; C(x)
B3(z") < Sup;, g, {jé?i} < 7

(v) if (Jo C pN, B(x) € N and dimy,)(cl,y w(@)J) = 2), then

d; 1 Cz) 1
z') < sup, {.j°+.}< + -
ﬁ( ) pJOEJO ]Od Jo d p

If moreover x' is in case (*3), then

B3(z") < SUPj, e, { do } < C(x).

Jod d
(vi) if (Jo C pN, B(z) € N and dimy,,)(cl,gw@)J) = 1), let

G = U;(m) + Z U;(x)ijG]’(Ul, U2)

Jo€Jo
be such that cl,, (z)J = k(x).G and define

ordU1 ordU2 Jo

C(G) = B(J:) - inijGJo{ %0 } infjoeJo{

} < C(a).

If 2’ is in case (*1), we have

N CG) 1 / C(G)
ﬂ(m)éT—&-; andﬂ(m)<1+{dJ.

If &’ is in case (*3), then

@) , 1

B3(x") < T and 83(z') <1+ {

C(G)
i)
(vii) if (m(z) =2, a(1) = a(2) modp, C(z) =1 and 2’ is in case (*3)), then:
if p >3, we have 33(z') < 1 and x’ is not rational over x;
if p =2, we have 33(z") < %, and if equality holds, then (a(1) £ 0 mod2, z’ is rational over x
and the monomial o o
ugw(x)*hullhAl(?C )v/§J1+1

appears with nonzero coefficient in the expansion of H(z')~1v’ gvz,/, where 1 < 71 < w(x), j1 =

0 mod4, and (Z',u),v',us) is a suitable well prepared r.s.p. at x');
(viii) if ' is not rational over x, then:

if v(z) = 3, we have y(z') < y(x);

if v(x) = y(2") = 2, then (x is in case (*1), Jo C pN and f(z) = C(x) = 2). If 2’ is in case
(*1), then B(z') < 2. If 2’ is in case (*3), then B3(2') < 1 or (p =2 and B3(2) < 2), in which
case equality holds only if the monomial

. . ’ 3 .
ué“’(w)—hu/llel(ilc ),U/§]1+1
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appears with monzero coefficient in the expansion of H(x’)_lv’%, where 1 < j1 < w(z), j1 =

0 mod4, and (Z',u),v',u) is a suitable well prepared r.s.p. at x';
(iz) if C(x) < 1 orif (B(x) < 2 and ' is not rational over x), then 5(z") < 1.

Proof. We assume all along the proof that z’ is very near z. The last statement in (a) is a
direct consequence of I.7(i). If (m(z) = 2 and B(z) = C(x) = 1), we apply 1.7(i) and replace
(X, u1,u2,u3) with (Z,uy, uz,v). All computations will henceforth be performed with the variables
(Z,u1,uq,v). Note that v(uy,us,v) = y(u1, u2,us) = 2 and that f(uy,uq,v) > 1.

In general, we denote b/ = u; ’h = X'? — X'g’P"' + f the strict transform of h, with

f/ :uzla(l)+a(2)+w(x)*1)u/2&(2) uéw(w)¢o+ Z ugw(ﬂv)*ju/laj(l)Jraj(2)+dj*ju/20j(2)w;

(1)

1<j<w(@)

where v} is the strict transform of ¢;, g'” = () " g)P = AP P TR =Py b2

Assume that 2/ = (X', u},ub,us) is the origin of the chart. Then A(h';uf, ub,ub; X') is
minimal, from which follows that x(z’) = 2, 2/ is in case (*1) (resp. (*2)) if = is in case (*1)
(resp. (*2)) and (X', uj, u, us) is well prepared. Looking at the figure below after blowing up and
comparing with that in 1.5.2.1, the reader sees that

C(2') < fa(z) — A2(z) < B(x) — az(z) — A2(2) < C(2),

and that 8(z") < fa2(z) < B(x), A1(2') = B(x) — 1. This proves (b) and the corresponding part of
(a) and (d).

After blowing up, origin of the first chart

$\beta(x’)=\beta_2(x)$.
N

A 2(x)=A_2(0$....... T
$C(X)$

$A_1(x)=B(x)-1$

We assume from now on that a’ # (X', u),ub,u5) and choose v/ := P(1,u}), where P €
E(x)[u1,us] is irreducible, unitary and of degree d in us such that (X', u},v’,us) is a r.s.p. at a’.
We have £’ = div(u}) and denote S” := (S[uy, us])y (o). We may take H(x") = u’la(lHa(sz(gﬁ)*p
by I1.5.4.1 of chapter 1. The point is that, in general, (X', u},v’, u%) is not well prepared.
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Let M’ be the monomial M’ := v} *(WTe@Fe@)=p, o), @5 "y expression (1), where ¢o

denotes the image of ¢g in k(z’). When making a translation on X', Z' := X' —u}"0', ¢/ € S,

4> all)+a() () p
- p

Case 1: a(1) + a(2) #Z 0 modp. The monomial M’ is preserved by this translation.

in order to get A(R';u},v’,us; Z’) minimal, we consider three cases:

Case 2: a(1) = a(2) = 0 modp and ' separable over z. Then ¢q is not a p**-power in k(z),
therefore neither in k(z’) (recall that w(z) = 0 modp). As ord,,)(H(x) *gP) > e(z), the monomial
M’ is preserved by this translation.

In cases 1 and 2, we get €(z’) < w(x) = €(x). Since 2’ is very near =, we have x(z’) = 2 and
condition (*1) holds at z'.

Case 3: all other cases. In particular, we have a(1) 4+ a(2) = 0 modp. Then
for o= 1+ ("0 — i "0'g"
satisfies

H(a' ) g = (g P oo + 0Py @ 4 3T O @ P! (uh) + 4 (0')P) mod(uh), (2)

1<)

where deg,; ®,; < pj, and ordy1y,; (V)P = ordy @, (uy), 1 < j < w(@).

Let A := ub*® ¢y + ¢'". There exists D' € D' := {D € Derg ,, | D(I(E')) C I(E')} such
that D’)\ is a unit, since J(f’, E’) is the weak transform of J(f, E,z). Hence either (A is a unit
and D' € D'(z')), or (D' = ;2 and D') is a unit).

Case 3a: in the former case, we have w(z') = w(z), k(z') = 2 and ' verifies (*1).

Case 3b: in the latter one, we claim that k(z') < 1 or (k(z’) = 2 and 2’ is in case (*1) or (*3)).
To prove the claim, we consider two more subcases:

Case 3ba: assume that @, = 0 for 1 < j < W;I). Then k(2’) = 1 by chapter 2 II.1 if
ord,y (o (H(2') "1 ;) = w(z). Assume now that ord,,(H(z')"'f}) =1+ w(x), so

~10fz _ N w@)
o'~ o S

H(z') mod(u}),
so k(z') = 2 and 2’ is in case (*3).

Case 3bb: assume now that not all @) ’s are zero. Then B(z) = 1 and U; ¢ VDir(z) for
i = 1,2 since 2’ # (X', u},uh,uf), so C(z) = B(x) = 1. Since 2’ is very near x, we have
VDir(z) =< Us,bU; + Uy >, b # 0 and v' = b+ u}. Moreover, m(xz) = 2 and a(2) #Z 0 modp since
we are dealing with case 3. By chapter 2 I1.5(ii) (with variables u; and ugz exchanged), this implies
that

wy" @5 () = s (0 = B)" P ol ()P,
wia)
P

If pp;b¥2) & k(z)P for some j, then €(2’) = w(z) and k(z') = 2. By chapter 2 IL.2, we have

k(z) = 0 unless Mw(x)ba@) ¢ k(x)? and 1,6 € k(x)P for pj # w(z), in which case (2) leads to

for some p,; € k() and ¢;,;(v") € k(z')[[']] for each j, 1 < j <

H() "V =) (v’)v’ugw(m) + Z . (1}’)715“)(95)_]'v”ﬂjJr1 + u;(z)(v’)v’w(m) mod (u}),
1<
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with py (v') ], ) (v") invertible and p,; (v") invertible or zero for 1 < j < % — 1. Hence k(z') = 2

and 2’ is in case (*1). Since p}(0) # 0 and w(x) = 0 modp, there exists a vertex

w = (0,wz) € A(H (") (f7,9™)sui, usi ')

which is not solvable, so Aj(x’) = 0. We have 3(z') = w‘&()’“ﬂll (resp. B(z') =1+ ﬁ) if gy, (V') is

zero for each j, 1 < j < % — 1 (resp. if jo = inf{j, 1 < j < % — 1| p,;(v") invertible}). So

B(x') < w?’;le < 2, with 8(z') =2 only if p = w(z) = 2 and

H(z) "' fly = pho'ul” + pho' mod(u)).

This is the special case announced in the statement of (e), where “Dis” stands for “Disaster”
(change of directrix).

If ijba(2) c k’(fﬂ)p for each j7 1 < ] < %, note that

0
Cluo’w(m)J = Clw(x)J(f, E, I) = Clw(x)(H(x)_lul 81{1) = /C(J,‘)G,

the first equality since B(z) = 1, so jg = ord,(,) (definition I.8.2.3). Therefore we get
J(f',E") = (G(1,v" — b,us)) mod(u)).

Explicitly, we have (up to multiplication by a constant)

Z ijuéuJ(m)—mv/pJ’ (3)

G(1,v" —b,uy) = mug“(‘” +
1<)

where 11, = ¢g. Now, (2) leads to

H(a') ™ = i (0™ 7 g (0™ g,
INAL

with 1 (v') invertible, u’ .(v') invertible or zero if 1 < j < “2 and ¢’ € S, so we get by
Ml Mp] D
identification with (3)
(H(z") "L fL) = (WG, 0" — byub)) mod(u), (v, uf)*@+2). (4)

Now note that, since (X, uy,us,us3) is well prepared, G is not a scalar multiple of an w(z)!-

power.

If ord, (z)(uy¢") = 1 +w(x), then k(z') = 2 and 2’ is in case (*3). By (3) and (4), (0,1) is an
unsolvable vertex of A(H(z/)~ '~ (fh.,g'"):u}, v';ub), since G is not an w(x)™-power. We get
A;(z") =0 and B3(2') = 1.

If ord,; ) (uy¢") = w(z), it is easily seen along the following lines that x(z') = 0: we have
U; € VDir(z'); by (3) and (4), every =’ near z’ has

(") <1+ w(@) - 1=w(),
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since G is not a scalar multiple of an w(x)!"-power; equality holds implies w(z”) = e(z) — 1 < w(x),
so x” is not very near z’.

This concludes the proof of the claim, hence of (¢) and of the remaining part of (a).
We now prove I.8.3 in the special case B(x) = 1.
Assume first that (m(z) = 2 and B(z) = C(z) = 1). In the above case 1, we have x(z') =0

by chapter 2, I1.2. In case 3, we are already done by the above computations except in case 3a.
We argue along the lines and notations of the proof in case 3bb above: if y,; b*2) & k(z)P for some

j, 1< < %, then A;(z’) = 0 and VDir(z') =< U4, V' > mod(U7) so k(z’) = 0 by chapter 2,
I1.2; if 11,;6%®) € k()P for each j, 1 < j < wgf), then A;(z') =0 and

1
Y =1+inf{— £ 0 2.
ﬂ(x) +1n {p] ‘:upj # }<

Assume now that B(z) = 1 and either C(z) < 1 or m(x) = 1. Since o’ # (X', u}, ub, uf) and
we are in the first chart, it can be assumed as well that < Us,bU; + Uy >C VDir(z), b # 0. If
m(z) =1, we have k(z) = 0 by chapter 2, IL.2. If m(z) = 2, then U; € VDir(x) for some i € {1,2}
because C(x) = 1 (see argument at the end of 1.7.1), so 7(x) = 3 and x(x) = 0.

All statements have been proved for B(x) = 1, so we assume that B(z) > 1 from now on.

Before proving (d), (e) and statements (i)-(ix), recall that a;(1) + a;(2) +d; — j > j(B(z) —1)
in (1), with equality if and only if j € Jy (definition 1.8.2.1). As the well preparation will replace
A(H(z")7H(f, g'"); uy,v';ufy) by a smaller polyhedron, we get

Ai(z") > B(x) — 1.

1.8.3.1 Proof of (i). If b(1)+b(2) —(a(1)+a(2)) = w(z)B(z), then A;(2’) = B(x)—1 and (A;(z'),0)
is a vertex of A(H (z")~1(f’,¢'");u},v';u}) which is not solvable by definition, so 3(z’) = 0. We
have k(z') < 1 by 1.8.1.

1.8.3.2 Preliminary remarks and proof of (ii). Let p; be the monomial valuation on S defined by

1(2 )\abcullav’bugc) = min{c +

abc

a
W ’ )\abc 7é 0}

Note that pi (H(2')~1f") = w(x). In the well preparation algorithm at a’, we replace uj by
w = uy —uy’s, s € k(a)[[u},v]], a > B(x) -1, (1)

and X’ by

7' =X —u 0’ 0 ed, a,)a(1)+a(2)+w(x)—p'
p

The Newton polyhedron of ug“/e’ is a subset of A(h/;u),ub, us; X'), so

p (H(2') + w(x)
. :

pa (uy” ) >

Let

F o= u/2@(2) %Uéw(x) + Z U?/)w(w)*joU{jo(B(w)*l)u/Qaj(2)clo¢} (3)
jo€Jo
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be the initial form of H(2')~!f’ in the graded algebra GM(SA’) k(x )[[ NUL, UL of 8" war.t. pa,

where cly denotes residue w.r.t. puq, i.e. the image in S’/ ul,ub) ~ k(z')[[v']]. Note that F’ is the
weak transform of

Ula(l)UQ“(Q)in#O Z u}f(m)*jqﬁj —. Ula(l)Uga@)F

0<j<w(z)

(see definition I.8.2.3 for the definition of ).

Substitution (1) changes F’ by an automorphism Uj — W' + A(v )U’B(x) LN e k()]
(with A = 0 if B(x) ¢ N), while substitution (2) only changes it by some H (x )_1@,;77 © € G, (5)
by (1)

Therefore we have uq(J') = w(x) and

ing,, J =< (ing, H(z)) " .(ing, H(2)).clyg wi@)J >, (4)

where J' := J(U{a(l)+a(2)+w(m)_pF’, E’). By well-preparedness, the right hand side is not generated
by an w(zx)*"-power, so the left hand side is not generated by W@, letting o=+ u," )P —

u’lalﬁ’g’p_l, there exists a vertex v/ = (B(z) — 1,v5) in A(H (z") ' (f4,, ¢'"); v}, v';w’). This proves

that A;(2') = B(x) — 1, so (ii) holds.

We now proceed to prove (d) and (e) in each of cases (iii)-(vi). Note that (d) is a trivial
consequence of equations (1) and (2) in (e) if 2’ is in case (*1) and of (iii)-(vi) if (z is in case (*2)
and z’ is in case (*3)). So (d) only needs to be proved when (z is in case (*1) and z’ is in case
(*3)). By (c), we may then assume furthermore that 2’ is inseparable over x.
1.8.3.3 Proof in case (iii). Let j; := inf{jo € Jo|jo # 0 modp}. The comments below equation (3)
in 1.8.3.2 show that the monomial

Hx' )uéa@) raj, (D)+aj, (2)+d;, jlu/2ajl(2) 1 w(z)— Jl\Ijh(l uh)

in f’ is preserved by the well preparation algorithm at 2/, so G(z') < % and 33(z) < ;% — 5 if x’

is in case (*3). The conclusion of (iii) follows from this fact and lemma I.8.2.2. The corresponding
parts of (d) and (e) are trivial consequences of (iii) (note the trivial fact

Vd > 2, Vy > 0, 1+[§J < Iy, (1)

where equality holds only if 0 <y < 1l orif d =y = 2).

1.8.3.4 Proof in case (iv). Equation (1) and subsequent comments in I.8.3.2 imply that the

monomial
H' )u,a(z) ,am(1)+a30(2)+d10—]0u/2a]0(2) w(z)— ]O‘Ifjo(l uh)

in f’ is preserved by the translation w’ = u4 — u}“s’ for each jo € Jy, since B(z) ¢ N. Let
i = inf{jo € Jo[Uy VTR DU TS 01,05 ¢ (k) U1, Ual)P).

Since A(h;uy,ug,us; X ) is minimal, j; exists. By equation (2) and subsequent comments in 1.8.3.2,
the translation Z' = X’ —u}® ¢’ plugs into f, a term of the form

H(a" Y@ "D F g (1,u) + A5, (o)),
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with Aj, (v') € k(2')[[v']]. We apply I1.5.3.2(i) of chapter 1 to the above form and get:

a a; d
ord,y (uy™* N, (1) + A5, () < 1. (1)
This implies B(a') < P4 + L. If 2/ is in case (*3), #3(2') < 4. From this and 1.8.2.2, (iv) is

established.
We now prove (e). By I1.5.3.2(ii) of chapter 1, we have

a a; d'l
ordy (wy™ @ D (1) + Ay, (o)) < p(1 + MJ )

Therefore the right hand side in (1) above is not in pN if equality holds in (1). Since j; = 0 modp,
we have

B(z') <

ordyy (uy™ 1 W (1) + Ay, () _ VJ |
J1 J1d
If E = div(u1), then a(2) = aj, (2) = 0 by definition, so I1.5.3.2(iii) of chapter 1 now yields

jl/B(x/) < Ordv/(qjjl (17 ul2) + Ajl (U,)p) < degq/jl < ]lﬁ(x) (2)

provided degW;, > 1. If deg¥;, = 0, then j;5(z") < 1. This concludes the proof of (e).

To prove (d), we may assume (last paragraph before 1.8.3.3) that (z is in case (*1), 2’ is in
case (*3) and d > 2). So y(z') <1+ L@J < v(z) by lemma 1.8.2.2 and 1.8.3.3(1).
1.8.3.5 Proof of (v). Since dimy,z)(cl,g,w(2)/) = 2, there exists 0 # G € ¢l w(2)J of the form

G = Z U;(w)*jOU{Ijo(l)U;io(Q)Gjo (Ul,UQ),
Jjo€Jo

with G, homogeneous of degree dj,. Let

G = U{—W(I)G _ Z U?/)W(I)—J'oU{jO(B(I)—l)UIQGjO (2)Gj0(1, ).
Jo€Jo

By 1.8.3.2(4), we have G’ € in,,, J'.

Let ji := inf{jo € Jo|Gj, # 0}. Then U?’,w(x)_hU{Jl(B(x)_l)uéa'“(2)Gj1(1,u’2) is preserved by
any translation on uj or on X’ in the well preparation algorithm at z’. In general, we can only
insure that

VG €ing,, J(fy, E' 2,
SO
i
d
+ ]’il’ B3(z') < ;%l if 2/ is in case (*3), so (v) is established.

Now note that equality holds in (1) only if the monomial ug“(” ~Iy 18N appears with

nonzero coefficient in the expansion of H(z')~! 6af 2L, Since j; € pN, this implies that 3(z") & N.

The first statement in (e) follows easily from this remark. For the proof of the second part of (e)

J18(x") < +1 (1)
djl

and we get B(z) < it
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and of (d), z is now in case (*1). We get the same upper bound as in 1.8.3.4(2) from which the
conclusion follows.

1.8.3.6 Proof of (vi). Write

G — U;(x) + Z Ug(x)_joUlajO(1)U5j0(2)G;'0(U1,UQ),
Jjo€Jo

with G’ € k(x)[U1, Uala,, - Let j1 := inf{jo € Jo|G’, # 0}. We denote w(z) = p*l where [ is prime
to p.
If j; = p® and Uﬁpa(l)nga(g)G;a € (k(2)[U1, Us])P", say Ufpa(l)U;pa(Q)Gzlpa =: K(Uy, Us)P",
we replace ug by w := ugz + l_z’%K(ul,ug), SO
w(x w(x)—j0 a;(l) ‘1}(2)
G =W 4 Y wel oy 0y, 0 TGl (U, Uy).
Jo€Jo

Since A(H(x)™!f;u1,u2;u3) has no solvable vertex by well-preparedness, its initial side is un-
changed by the above translation. Therefore not all G ’s are zero and we have

degG}'0 < JoC(Q). (1)

Note that we do not mean that h is well prepared for (X, u1, us, w), only that the derivative G is
unchanged by further translations Z := X —0 in order to get A(f;u1, us, w; Z) minimal. We assume
from now on that the above preparation has been performed and denote j; := inf{jo|G’, # 0} > p“.

If no preparation has been performed, we let w = us, j; = j1 = p in what follows.

Let w' := ;=. By 1.8.3.2(4), we have

 Of of ,of | of

/ ’_ /s n—1 Y5
(a')-G' = i, I = iy () (0 gy 0 505 A 30)), @

where G' = U]{iUJ(w)in#OG(Ul,UQ,W/). By (2) above, either G’ € in,, J(f',E',2") or < G' >=
in,, (H(z' )_1%). Note that G’ is unchanged by any translation on X’ in the well-preparation
algorithm at 2/, since G’ is (the initial form of) some derivative of f.

Assume that 2’ is in case (*1). Then G’ € in,,, J(f’, E’,2’) and we consider two cases:

Case 1: j; # p®. The vertex of first coordinate A;(z') of A(H(z")~1f";u),v';w’) is not
solvable: any translation on w’ in the well preparation algorithm is of the form w’ — w’ —u}“s’ with

Y . _ ’_/ 2
a > A;(2), so preserves the monomial W) JlU{]l(B(r) l)u’;h( )G;’i (1,ub) in in,, (H(z') 7L f7).
We get
d;

1

d

, C(G
gji(d)’

718" <
from which (vi) follows.

Case 2: ji = p®. The translation on w’ in the well-preparation algorithm produces some term
of the form

@

WGP e PG (1) + o ()
in H(z')"f,,. Let &’ < a be the largest integer such that Ufpa(l)Ug”a@)G;a € (k(x)[Uy, Ug])pa/.
By I1.5.3.2(i) of chapter 1 applied to the form (Uf”a(l)U;”a (2)G;a)r'7, we get

Qo (o3 “ ’ 1
PA) < o (g™ O (1) + ¢/ 0)") < O g o )

N
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Furthermore, by I1.5.3.2(ii) of chapter 1,

ond (1" PG (1,05) 4 /() <1+ | S,

and this completes the proof of (vi) when 2’ is in case (*1).

Assume that 2’ is in case (*3). Then G’ € in,, (H(2')~! ?95:) The proof runs along the same

lines as above, with 3(z') replaced by 83(z’). The worst upper bound we can get is

dpo o 1
o < (0% ).
e < (0) + )

pB3(a’) <

The remaining statements are proved along the same lines as in 1.8.3.4 or 1.8.3.5.
1.8.3.7 Proof of (vii). We include this statement here to deal with some extra difficulty when p = 2
(see I.11.1 below). If 2’ is not rational over z, i.e. d > 2, the result follows from (iii)-(vi). From
now on, z’ is rational over x. We have
1= TG 90" ),

with ¢’ € k(x)[[uy, uz, ug]][ub, us]. If 2a(1) # 0 modp or if g & k(x)? (for example if a(1) =
0 modp), then 2’ in is in case (*1). So we have p = 2, a(1) # 0 mod2 and ¢q € k(x)?.

In cases (iii)-(v) above, we get 53(z’) < 1. In case (vi), we get £3(z') < 1+
notations as in the end of the proof of (vi), #3(z') = 2 implies that the monomial

1 _ 3 :

[N aA / « 3 !
qu(w) P ullp 1(w)v/p B3(z")

. o . _, 0f
appears with nonzero coefficient in the expansion of H(z") 1%

1.8.3.8 Proof of (viii). Assume that y(z) > 2 and d > 2. By (e) and (iii)-(vi), v(z') < v(z) except
possibly if (d = 2, v(x) = 2, B(z) = C(xz) = 2 and z is in case (*1)). In this case, we only get
B(a’) < 2if 2’ is in case (*1). If 2’ is in case (*3), then we only get 33(2’) < 1+ % < 2. Equality
implies p = 2, the end of the proof of 1.8.3.6 giving the required statement.

1.8.3.9 Proof of (ix). This follows from (e).

. Necessarily, j; = 0 mod4.

We now deal with when x is in case (*3).

1.8.4 Notations. Assume that k(z) = 2, z is in case (*3) and (X, u1, u2, us) is well prepared. We
denote: ‘
H(e) luy'f = 30 g7,
0<j<w(x)

with g == uaPoy € (u1,u2,us), ¥, = ugp; € k(x)[[u1,us]] for 1 < j <w(z) and g:f;’ invertible. We
let aj(1) := ordy, ¥; = jAi(x) for 1 < j <w(x).

1.8.5 Lemma. With assumptions and notations of 1.8.4, assume furthermore that B3(x) < A1 (z).
Then k(x) < 1.

Proof. We argue by induction on [A;(z)]. If A;(x) < 1, then we have A;(z) = B3(x) = 1,
since ordn(m)(ung(x)*lf) = w(x). Hence for any value of A;(z) > 1, L.7(ii) yields Us €
cly (o) (H (2) "1 21,

8ug
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The first step of the induction [A;(z)] = 1 is performed in (i) of the next lemma for 1 <
Aq(z) < 2 (which yields k(x) = 1, since 1 < B3(z') = B3(z) — 1 if k(x) > 1) and in (i) of the
next lemma for A;(z) = 1. The induction step is performed in (i) of the next lemma, and thus
completes the proof.

1.8.6 Lemma. With assumptions and notations of 1.8.4, assume furthermore that Ay(z) > 1. The
curve C = V(X,uy,us) is permissible of the second kind. Let e : X' — X be the blowing up along
C. There is at most one point ¥’ € e~ (x) very near x, with r.s.p. (u%, U1, Ug, Z—i’) Moreover,
(i) if A1(x) > 1, then k(z) < 1 or the following holds: k(x') =2, x’ is in case (*3), and we have
Aq(2") = A1(z) — 1, B3(2') = B3(x) — 1 and 3(z) = B3(x);
(i) if A1(z) = B3(x) =1 or if (A1(z) =1 and 83(z) < 1— ﬁ), then k(z) < 1.
Proof. Since A;(x) > 1, we have €(C) = w(z) > 0. Since A;(x) > 0, uy divides H(z) 'g? and
J(f,E) = (ug’(z)) mod(u1) so C = {y € n7Y(E) | w(y) > 0}. By I1.4.7 of chapter 1, C is a curve
on X. Therefore C is permissible of the second kind by chapter 1, I1.5.1(ii).

By I1.5.4.4 of chapter 1, we have (z) < 1 unless ¥ := cl(,)(H(x) "1 f) is of the form

U = ALUS™ + P(UL, Us) (1)

with A € k(x), P € k(z)[U1, Us]c(s), since Us € VDir(z) (comments in the proof of I.8.5).

Let 2/ = (X' := %,u’l = U, ug,uf = 2) € e !(z) and assume that 2’ is very near z.
We have E' := ¢~ 1(E) = div(«}) and H(z') = u,*PT® =P This is the origin of a chart, so
A(f";uy, ug, us, X') is minimal (where f' = u; 7P f). We get

H() ' fr= 30 ™ (), (2)

0<j<w(x)

with usdg € (uf, u2), usd; € (uh) 4@ k(z)[[uf, us]] for 1 < j < w(z) and %u‘:” invertible.

First assume that B3(z) < 2 (in particular 1 < A;(z) < 2). If A1(z) = W, then

Q(z') < (w(x),1): a contradiction, since 2’ is very near x. By (2), there appears in H(z')~! f’ some
term of the form u4*™ ™ ugw) ™I ¢; (u}, us), where 1 < j < w(x) and either ord(y up)uy ¢ =
J(B3(z) — 1)) or (A1(xz) =1 and ordy,u} 7 ¢;(0,u2) = jB3(x) <1 — ﬁ)

In the former case, note that w(z) — j + 01rd(u/17u2‘)u/1 ¢; < w(x), since B3(z) < 2. Since &’ is
very near x, we have €(z') = w(x) and ordy u,yuy '¢5 = j — 1,50 2 — B3(z) = % If Aj(z) =1,
we must have j = 1 and ord,, (w, " (uz¢py) mod(u})) = 1: a contradiction by (1). Hence A;(z) > 1
and u} 7 ¢;(uf, u2) € (u}), so k(x) < 1 by chapter 2, IL.1. ‘

In the latter case, note that w(z) — j + j03(z) < w(x) — ﬁ < w(z) by assumption. Since a’
is very near x, we have e¢(z’) = w(z) and j < w(xz) whenever ord,,¢(0,uz) = j33(x). So there is
an expression

o (HE@) ) = S wU YUy £ ULP (U], Uz, Us),
1<
with p; € k(z) and p; # 0 for some j. Hence VDir(z') =< Uy, U3 > mod(U]) and k(z') < 1 by
I1.2 of chapter 2.

Assume now that B3(z) > 2 (in particular A;(z) > 1). Then €(z’) = 1 +w(z) and it is easily
seen from (2) that 2’ is in case (*3). Moreover, (X', u}, us, us) remains well prepared since we are
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at the origin of a chart. We get A;(z’) = A1(x) — 1, B3(2') = B3(z) — 1 and 33(z') = 83(z). This
concludes the proof.

We now turn to the general case B3(x) > A;(x). With assumptions and notations of 1.8.4,
we define the analogues of 1.8.2 when z is in case (*3).

1.8.6.1 Definition. Let Jy := {j,1 < j < w(z) | B3(x) = Orcjli} For jo € Jy, we denote
Q) = ing¢,, = U{”O(l)Ugl\Pjo and dj, = deg¥;, —1 € NU{—1}. We also denote ¥, :=
ing (u2go) € k(z)[Ur, Uz, Usls.

The definition of Jy and dj, for jo € Jy is motivated by the following obvious fact, where only
preparation of “left” vertices is needed (definition I.5.1.2):

1.8.6.2 Lemma. We have

supjoGJo {C‘Z;OO} < ﬂ32($) < B3(«T) - Al(x) < 53(‘/E)7

and
1+ djo

Jo

s e0, { 0L < 50) <0 (0),

1.8.6.3 Definition. Let ug be the monomial valuation on u2_1§ given by

a+b
B3(x)

MU(Z )\abcu(llugug) = inf{c + | Aabe F 0}

abc

We denote by cl w(z)J the k(x)-vector space Uz_linuo J, where J is the ideal

J = <{H(l')_1)\j88){;}1<j<5> + (H(z)"'g").

By definition B3(z) and well-preparedness, we have dimy,)(cl,, w(@)J) = 1, and for every
A € k(x), we have

g @) 7 k(). (Us = AUF# Oyl

Let e : X’ — X be the blowing up along z. We call “first chart” the chart with origin (X’ =
%,u’l = ui,uy = 2,uy = ). Let B/ := (e71(2))rea = div(uj). For 2’ € e~ 1(x) in the first
chart, we pick P(u1,us) homogeneous of degree d > 1, irreducible and unitary in us such that

v' = P(1,u3) € myy (s as usual.

1.8.7 Lemma. With hypotheses and notations of 1.8.4 (in particular x is in case (*3)), assume
that the center x’ of u belongs to the first chart. Let d := [k(x') : k(x)]. We have k(z) < 1 or the
following holds:

(a) k(z") <2 and x’ satisfies condition (*1) or (*3);

(b) if B3(x) = 1, then B3(x) > 1 — Gy and x' is rational over x. We have Ai(z') = 0 and
v(z") < sup{y(z),2}. If (v(x) =1 and y(2') = 2), then a’ is in case (*1) and either B(z') < 2, or
(p = w(z) =2 and x’ satisfies equation (Dis) in 1.8.3(e));

(b’) if B3(x) > 1, then the point =’ maps to the strict transform of div(us) (in particular,
(X' uy, v uf) is a r.s.p. at 2') and A;(z") = B3(z) — 1.
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(c) B3(a) < Smlla)tat)t,

From now on, we assume that either B3(x) > 1 or (B3(z) = 1 and ' is in case (*3)). The
following holds:
(d) we have y(z') < (x);

More precisely, the following holds:
(i) if Jo & pN, then

1+d;
/6(3:/) < SupjoEJo{ jodjo }7

and

d.
B3(x") < StuoeJo{jO%

if ¥’ is in case (*3);

(i) if Jo C pN, then B(z') < = or

1
P

o 1 1+d;,
ﬂ(!l?) glnf{ﬁ(dx)_‘_pasupjoEJO { jOJ }}

(111) if (Jo C pN and z' is in case (*3)), then 33(x') < % or

d; 1
53(0") < supyeg, { 2 | and 3(07) < 204 1

() if ¥’ is not rational over x, then:

if v(z) > 2, we have y(z') < v(x);

if v(z) = (') = 2, we have: if @' is in case (*1), then B(z') < 3; if 2’ is in case (*3), then
(p=2 and B3(z') < 3);
(v) if (v(z) = B(x) =1, 2’ is not rational over x and x’ is in case (*3)), then B(z') < 1.

Proof. We assume all along the proof that z’ is very near z. If x(z) > 1, 2’ maps to the strict
transform of div(ugs) unless possibly if B3(z) = 1 by 1.7(ii). In this case, without loss of generality,
it can be assumed that (uy,us,us3) is the r.s.p. (uy,us,v) given in L.7(ii), since B3(uy,uz,v) =
1, B3(u1,u2,v) = B3(u1,u2,us) and the vertex (a3z2(x),332(x)) is unaffected by this coordinate
change.

1.8.7.1 We first prove the theorem when B3(z) = 1. In particular, Us € VDir(clw(w)(H(x)_lg—qi))
by the previous comments. Note that cases 1 and 2 below are unaffected by the above coordinate
change. Also note that w(z') = 1 < w(x) if ord,, (H(z)"1g?) = w(x) + 1, so (c) holds.

Case 1: VDir(clw(z)(H(x)_laa—qi)) =< Us,Uy > mod(U;y). We have 7(z) = 2, since 2’ is
very near z. Then (0, 1) is an unsolvable vertex of A(H (x) " us *(f, gP); u1, uz;us), so A;(z) = 0,
B3(x) =1 and (z) = 2. After possibly changing us to us + auy, a € k(x) and picking again well
prepared coordinates, it can be assumed that

L of

VDiI‘(Clw(m) (H(x) 871,2

)) =< U27 U3 >7
all assumptions remaining unchanged. Since x is in case (*3) and VDir(z) =< Us,Us >, we have
cliyu(e) (H (2) 7 f) € Uk(2)[U3, U5 @ Usk(2)[U3, U3 @ Urk(x)[UT, U3, US]. (1)

90



: /s ! __ 1 X ! /! __ U2 /! __ us /R / /. /
Since 2’ is very near z, we have 2’ = (X' = - u} = u1,uy = 32, uy = 1), so A(h';uf, uy, uj; X')
is minimal. We get

H(z) ' f = ugw(z)‘llo(l,ué,ug) + Z (@)= ]U\Iljo(l uh) mod(u}), (2)

Jo€Jo
with notations as in 1.8.6.1. Note that w(z’) < e(2’) < w(x) — p unless we have
Cll_,_w(gg)(H(l')_lf) = UQFQ(U;J, Ug) + U3F3(U§, Ug) + UlFl(Ug, Ug), (3)

which we assume from now on. Remember that by assumption, we have VDir(Fy(US,UY)) =<
Usa,Us >. Finally, we have x(z') = 0 by II.2 of chapter 2 if

(U R (UR,UD), B, x)) = 2.

This yields to the following subcases:

Case la: Fy = 0. If e(2') = w(x), then k(z’') < 1 by (2) and IL.3 of chapter 2. Otherwise,
we have e(z') = 1 + w(x), so ' is again in case (*3). Note that (0,1) is an unsolvable vertex of
AH(2) " b, (f, g"); i, ubs ufy) by 1.6.3, so we have Aj(z) = 0, 83(2') = 1, v(z') = 2 and
(ii),(iii) hold.

Case 1b: Fy #0. Then €(2’) = w(x). Let k(z).W := VDir(J(Uf(l)—HFl(Uf, Ur), E,x)), so
F(U3,U5) = pW =) + F{(V,W)", (4)

where W is picked in such a way that < V,W >=< U,,Us >. Note that u # 0, and that
w & k(z)P (resp. F{ = 0) if a(l) +1 = 0 modp (resp. a(l) + 1 # 0 modp). Let F(Us,Us) :=
Us Fo(UY, UY) + Us F5(UY, UY). We expand

F(U,Us) = py W) gV 4 N~ v W= — F/(V,W).

p—1gj<w(z)

Since VDlr(gg , gg) VDlr(%f, , gfv) =< V,W >, there exists jo = p — 1 such that u,, # 0.
Equation (2) then reads

H(z) 7 f = F'(v,w) + pw*® + F (v, w)? mod(u}),

where p and FY are defined in (4). In particular, 2’ is in case (*1). After picking well prepared CoOr-
dinates (Z/,u},v" := v, w’) at 2/, the vertex (0,1+ ]10) of the polygon A(H (z')~Y(f!, ¢'");ul, v';w")
is not solvable. Therefore 3(z") < 2, so y(x') < 2.

Case 2: VDir(clw(x)(H(:n)_lg—L)) =< Us,U; >. The only possible very near point has r.s.p.
(%, o uz, 2) which does not belong to the first chart.

Case 3: VDir(clw(z)(H(x)_l%)) = k(x).Us. By L7(ii), A(H(x)  usy ' (f, g°); u1, ug; uz) has
an unsolvable vertex of the form (a32,332), where 0 < @32 < 1 and a32 + (332 = 1. Note that we
now have

cli () (H (2) 71 f) € Usk(2)[U5] @ Usk(x)[U3, U5 @ Uik ()[Ur, US, Us).

First assume that a32 = 0. This implies that VDir(z) =< Us,Us > mod(U;), A:1(z) = 0,
B3(x) =1 and (z) = 2. After possibly changing us to us + auy, a € k(x) and picking again well
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prepared coordinates, it can be assumed that VDir(z) =< Us, Uz >, all assumptions remaining
unchanged. Since z’ is very near z, we have z/ = (X' = %,u’l = up,uh = z—f,ug = g—i‘), SO
A(R;uy, uh, uh; X') is minimal. The proof now runs parallel to that of case 1; to begin with, we
have

cli (@) (H(2) 71 f) = U2 Fo(UY) + Us F3(US, UY) + U F (U5, UY),

since 2’ is very near x. Now, we split case 3 into case 3a (Fy = 0) and case 3b (F; # 0), and have
the same conclusion as in cases la and 1b.

Assume now that o35 > 0. We now have
i o) (H(z) 7' f) € Usk(2)[UY] & Usk(2)[US] & Urk(2)[Us, UY, Us)].

Since z’ is very near x and belongs to the first chart, we have U; ¢ VDir(z). Therefore

i pu(e) (H(2) 1) = polnU5 " 4 U ™ 4 N~ U0, (US, UB),

o< <)

where F,(;)_p; (U3, UL) & k(x)[US] for some j > 0, since B3(z) = 1 and a3 < 1. Moreover,

we have either a(1) + 1 # 0 modp or F,,;)_p;(U3,U5) & (k(x)[Usz, Us])P for some j > 0, since
A(h;uq,ug,us; X) is minimal.

Note that VDir(x) = k(x).Us. By chapter 1, I1.5.3.2(iv), «’ is rational over z since it is

very near x. After possibly changing us to us + auy, a € k(x) and picking again well prepared

ug

coordinates, it can be assumed that 2’ = (X' = £ ] = uy,uh = “2 uf = “3), all assumptions
ul Ul U1

remaining unchanged. In particular, A(h'; uf, ub, u5; X') is minimal. We finally get
(o) (H (@) 7 f) = palUUs ™ + s Ut 4 UL (0 (UF,UD),

where po # 0, F)(U3,UY) & k(x)[U§] and either a(1) +1 # 0 modp or F, (U3, UL) &
(k(z)[Ua,Us])P. This proves in particular that e(z’) = w(z). We have x(z’) = 0 by chapter 2,
I1.2 if

(SO Fo) (U3, US), B, ) = 2.

Assume finally that VDir(J(Uf(l)HFl(Ug, UY), E, x)) has dimension one, i.e.
Fioey (U3, US) =: Uz + AU3)“'") + F{(Us, Us)?,

where p # 0 and p & k(z)P (resp. F{ = 0) if a(1) + 1 = 0 modp (resp. a(l) + 1 # 0 modp).
In particular, (a32(x),332(x)) = (ﬁ,l - ﬁ), so B3(x) > 1 — ﬁ Moreover, this proves
that 2’ is in case (*1). Since ps # 0, after picking well prepared coordinates (Z',uf,uj,v") at
', (0,1 + ﬁ) is a vertex of the polygon A(H (x')~1(f’,g'");u},us;v") and is not solvable.
Therefore A;(z') =0, B(z’) <1+ ﬁ and y(z') < 2.

In all cases, we have y(z’) < 2. Suppose that (y(x) = 1 and (z’) = 2). The above analysis
shows that we are in the situation of the previous paragraph, with 43(z) = 1 — ﬁ, and the
conclusion follows. Otherwise, we may assume that z’ is in case (*3) (cases la and 3a above) and

(ii) holds, so all statements have been proved when B3(z) = 1.
1.8.7.2 From now on, we assume that B3(x) > 1. We have

Mgy (H(@) L) = (iU + paUs + pUs) U5 ™,
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with ug # 0. In particular VDir(z) = k(x).Us and the first part of (b’) is proved.

1.8.7.3 Proof of (c). Assume that (a) and the second part of (b’) have been proved. If (H(z) 1gP) =
(up) '+ @B3(@) then r(z) < 1or (A;(x'),0) (resp. (Ai(z), —ﬁ)) is a vertex of A(H (z/)71(f/, ¢'"); uy,v'; ug)l
(resp. of A(H(z/)" '~ (f', ¢'P);ul,v';uh)) if 2 is in case (¥1) (resp. in case (*¥3)) and is not solv-

able by definition. By I.8.1 (resp. 1.8.5), we get x(z) < 1.

1.8.7.4 From now on, B3(z) > 1 and ord, ,)(H (z)"'g?) > 1+ B3(z)w(x). According to I.8.4 and

1.8.6.1, let us denote b’ = u; ’h = X' — ¢/~ "X+ f', where

H(@) 7 =g+ 30 a0 T g ), (1)

1<j<w(x)

where ¢ is the strict transform of ¢;, i.e. 1+ d; = ordy, u)¥j, Yo € S with gfﬁl) invertible,
2

H(z') = uf M @T7r anq

77 1 b(1)— P

9" =u g’ ="

1.8.7.5 We first consider the origin =’ = (X', u), ub, u%) of the first chart. Since 2’ is the origin of
a chart, A(h/;u}, uh, us; X') is minimal. In this case, the module

/
M = u’271 Z H(z")™? 8f S'—i— uh 1lLI(x’)_lg’pS’,

8
1<i<s

where S" = S[uj, u3](u/ g uy) is equal to u’l_w(I)M, where

M = uy* Z 3f S TH(x) tgPs.

1<i<s

Since z’ is very near x, we have e(x’) > e(z) — 1. We consider three cases:

Case 1: 9 is invertible (i.e. p1 # 0 in 1.8.7.2). Then €(2’) = €e(x) — 1, k(2') = 2 and 2’
is in the case (*1). Since the vertex (a3z,332) of A(H (x) " uy ' (f, gP);u1,uz;us3) is not solvable
and B3(x) > 1, there exists an unsolvable vertex of A(H (z')~1(fr.,g'");u), ub;w’) of the form
(B3(x) — 1,3"), where

L+dj, _ 1+ joB3(x)

< —2< . ,
Jo Jo

for some jo € Jy and (Z’,u}, ub, w') well prepared at x’. We get A;(z') = B3(z) — 1 and

1+d]

=} < Ba),

Bz") < supjoe s {

by 1.8.6.2.

Case 2: 1)} is not invertible and e(z’) = w(x). Then (u}, ¢, us) is a r.s.p. of §’. After picking
coordinates (Z', uf, ¥, u%) at 2’ such that A(h';u), v, us; Z’) is minimal, we get an expression

H(xl)_lf/ _ Uéw(x)¢6 + ull(b/a
where ord,; .y (u1¢") = w(x), so k(z') < 1 by II.1 of chapter 2.
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Case 3: (') =1+ w(x). Then (u},uh,us) is a r.s.p. of S" and there is an expression
H(a') 7 ' = oty i),

where ord,(,(u1¢") = 1 +w(x). In particular x(2') = 2 and 2’ is in case (*3). After picking well
prepared coordinates (Z’, v}, uh, w’) at 2" as in case 1 above, we get Ay (u), uh, w') = B3(uy, ug, us)—
1 and p
#3(a’) < 22 < B3(x)
Jo

for some jg € Jo. This concludes the proof of 1.8.7 when 2’ is the origin of the first chart.

1.8.7.6 From now on, =’ # (X', u}, u5, uf), i.e. uh is a unit in S’. There remains to prove (a), the
second statement in (b’) and all statements from (d) on. Note that (d) is a direct consequence of
(i), (ii) and (iii) and I.8.6.2. The proof will be parallel to that of I.8.3 (iii)-(vi).

Recall equation (1) in I.8.7.4. Note that

_ w(x w(x)—j j(B3(z)—1
H(@') 7 =™ o+ oy + oy i 0) + 7 g VO w0 (1) i ),
1<j<w ()
(1)

where W (Uy, Us) := V;(Uy, Us) (vesp. W}(Uy,Uz) :=0) if j € Jo (vesp. j & Jo) and 0} € S for
0 < j < w(z). Remember that ps # 0, ¥;(Uy,Us) € k(x)[U1,Us]144;, and j(B3(x) — 1) € N if
j € Jo. Let @ denote the image of u := 1 + poub in k(a').
If w & k(2')P or if (a(1) + 1 # 0 modp and @ # 0), then 2’ is in case (*1) since z’ is very near
x and we have
(@)™ fy = (+ ™™ mod(uf),

where Z' .= X' — 0, fl,, .= f+ 07 — 0'g’"~" and A(W;u), v, uh; Z') is minimal.
If ( € k(«’)P and either a(1) + 1 = 0 modp or i = 0), we have similarly

H(z) ', = ,u’ugw(m)v’ mod(u}),

with ¢/ € S’ invertible and A(h'; ), ', u4; Z') minimal. If €(2’) = w(z), then x(z) < 1 by IL1 of
chapter 2. Otherwise e(z’) = 1 4+ w(x) and 2’ is again in case (*3).
This ends the proof of (a).

1.8.7.7 Proof when Jy ¢ pN. Let j; := inf{j € Jy | 7 Z 0 modp}. Since w(x) — j; Z 0 modp, the
term H (2 )uy® ™ ™, B3 DG (1 44) in f is unaffected by any translation on uj or on X’ in
the well-preparation algorithm I.6.

If ' is in case (*1), we get A;(2') = B3(z) — 1 and f(2') < 1;%1 .

If 2’ is in case (*3), we get Ay (2") = B3(x)—1, B(2’) < % and (3(z") < % - %1 < 6353”).

This completes the proof of (b’) and (i) from which all other statements in the theorem easily
follow in the case Jy ¢ pN (with y(z') < y(z) in (iv)).
1.8.7.8 Proof when Jy C pN. We prove together (b’), (ii), (iii) and (v). We consider three cases,
exactly like in the proof of 1.8.3, see 1.8.3.4, 1.8.3.5 and 1.8.3.6.

Case 1: B3(z) ¢ N. The translation w’ := v} — u}“s’ in the well preparation algorithm will
affect none of the terms

ugw(i)—jou/ljo(33(1)—1)\I/jo (1’ U/Q)
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in H(x')~1f" for jo € Jog. The translation Z' = X’ — u’l“'e’ plugs into f;,, some term of the form
H (o g™ 7700 PO (05 (1, ) 4 Ay, (0))

with A, = 0 unless a(1) + 1+ jo(B3(z) — 1) = 0 modp. If a(1) + 1 + jo(B3(x) — 1) = 0 modp for

each jo € Jo, then Ula(lHajl(l)\Ifjl(Ul,Ug) ¢ (k(x)[Uy,Us))P for at least one index j; € Jp, since
A(h;uy,uz,uz; X) is minimal. By chapter 1, I1.5.3.2(i), (ii) we get

1+d;
ordr (W, (1, 04) + Ay, (o)) < ——2 4 1 M
and % + 1 & pN if equality holds. Also note that
ordy (W, (1, u5) + Aj, (v')F) < sup{l +d;,, 1} (2)

by chapter 1, I1.5.3.2(iii). This proves that A;(z’) = B3(z) — 1 (so (b’) holds),

1+d; 1
) < —2 + —, 3
Bla) € o 0
and either G(z) < jil < % or
14d;
Bla') <~ (3)
J1
if 2/ is in case (*3), then
1+d;
3 .'13/ . J1 4
p3(a) < 1E (@
and either 33(2) < 0 or
B3’y < . (4')
J1

Using lemma 1.8.6.2, this completes the proof of (ii) and (iii) in case 1. Statement (v) follows from

(ii) except possibly if d = p = 2. In this case, we have 5(z’) < 1 unless equality holds in (1) above.
By (3), B(2’) < 1 except possibly if j; = 2, so % + 1 = 2: a contradiction since % +1¢pN
if equality holds in (1).

Case 2: B3(x) € N and dimy,)(cl,, w(@)J) = 2. Recall the definition of the vector space
¢l w(z)/ in 1.8.6.3. Following the lines of 1.8.3.2, there is a formula

ing,, J' =< (ing, H(z)) ™" .(in,, H(2)) Uzl wiz) s
where the valuation y;, on S ~ k(2/)[[u}, v/, u4]] is now defined by

(3 Nttty "o ) = mine +

abc

B3(z) — 1 | Aabe # 0},

and J' = J(U]* WP pr By yhere

. _ w(x w(x)—j jo(B3(x)—1
F o= iy (H(@) 7 ) = U G+ o) + 7 U320 010 P05, (1, ).
Jo€Jo
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The proof goes along the same lines as I.8.3.5; following theses lines, we pick 0 # G € ¢l o (a)/
of the form '
G=U;" Z U;(I)_]OUij(l)GjO(Ul,UQ),
Jo€Jo
with G, homogeneous of degree 1+ d;, and j; := inf{jo € Jo|Gj, # 0}. We get the same upper
bounds (3), (3’), (4) and (4’) as in case 1, and the conclusion follows in the same way.

Case 3: B3(z) € N and cl, (2)J =: k(z).G. We may take G = ugflg—i, where

Fi=ing, (H@) ' f) = U5l + peln) + Y. 5@ ouie W 0, 0y).
p<jo<w(z)

Let j1 := inf{jo € Jo | aa\lllj; # 0}. As seen in 1.8.3.6, we may suppose that u;lUf“(l)aa\PTj; is

not a (p®)"-power if j; = p®, where w(z) = p®l, [ prime to p. The argument in 1.8.3.6 produces
the upper bounds

1+4+d; 1
8 x') < 7]1 + -, )
@) < 5+ o)

;jﬁ{b + 1 ¢ pN) if equality holds, and

with (j; = p®* and

1 1+d;
B(z') < sup{~, %
p J1

.

If 2’ is in case (*3), we get similarly

1+d; 1 1
3(2') < ' J1 L
ﬁ( ) Jid p
and ) 1 d
B3(a') <sup{= — —, -2
p I n

This completes the proof of (ii) and (iii) in case 3. Finally, (v) follows from (ii) except possibly
if d = p = 2. Equation (5) above yields j; = p® and 1+ d;, = p®: a contradiction, since

;jﬁlﬂi + 1 =2 ¢ pN if equality holds in (5).

1.8.7.9 Proof of (iv). See end of 1.8.7.7 when Jy ¢ pN and thus assume Jy C pN.
If v(z) > 3, (ii) and I1.8.6.2 give

slaty < 10 4

pi <v(x) — 1.

K=

When 2’ is in case (*3), we have $3(z’) < f(z’) in any case, so (iv) holds if y(x) > 3.

If v(z) = 2, (ii) yields B(z’) < 3, so 83(2) < 2 if 2’ is in case (*3). In this case, when d > 3
and p > 3, we get 53(2’) < B(z') < 1, let us see the case d = 2 and p > 3. Then 2’ is separable
over x, we will prove that $3(z’) < B(2’) < 1, this will end the proof of (iv).

Case 1: iny, (H(a:)*l%) is not proportional to an w(z)-power.

L of

Ao 1) 6\I]j0
8u2 '

_ (@) w(x)—j
) =mUs " + Z Us U, o,

p<jo<w(z)

in Mo (H(x)
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109

aU not a

Let j;
p-power. In the first case, we get

B3(z") < ﬂ(ul_w(m)H(a:)_l—;u'l,v’;w') < —; <1,

where ﬁ(ul_w(x)H( )~ 1é9uf ;ul,v’;w’) is the 5 of the polyhedron A(ul_w(x)H( )~ 1é9uf suf, v w’).
In the second case, we get, with the notations of 1.8.3.6 Case 2

—w(zx 0 a\1’1 / 1(,. 1\ dll o’
p* By H )~ 8fu ') S ordar (T (L) + ¢ (0)77) < S+

as ord, (8 (1, up) + ¢’ (v ") € p*'N and as

a d 8\11 a /
ordyr (G2 (L) + /() > D = ordyr (2 (L) 4+ ¢/ (0)") N,
this leads to: o J
") < Blur P H(x) T 1+ 28] =1.
53(a') < Al * W H ) S o) < 1452

Case 2: in, (H(z)~ T) is proportional to an w(x)-power.

Say in,, (H(z)™! aau ) = 2(Us + Q(Uy, Uz))*®), then we replace us by v = uz 4+ Q(u1, us) and
eventually X by Y = X + 0 to get A(h;uy,us,v;Y) minimal, by the preparation of uy,us,us, X,
the left vertices of A(H (z)71(f,gP);u1,uz;uz) and A(H (z)71(f, gP);u1, uz;v) are the same and
well prepared. So we reach the next case.

Case 3: in,, (H(z) ' 2L) = 7Uw(x).

o Oug 3

Then, in the translation w’ = uj — u}“s’, we get a > B3(x) — 1. Let j; the smallest jo such
that Uf(l)U1 0, is not a p-power. During the preparation at z’, we will only add a p-power
KP to u," Mg, (1 44). When a(1) 4 aj, + d;, # Omod p, B(z') < 1erd“ 1. When
a(1) + aj, + d;;, = Omod p, let us denote

ov;, (U, Uz)

Fi =
O\

, 4 <1< s,
The F; are not all 0. Let us denote p; := vp, v, (Fi). i.e. Fy = P(Uy,Us)PiFy, F] prime to P

when F; # 0. Let ¢ = inf{p;|4 < i < s}, then 3(z) < j%’ as deg(P)=2=2,¢ < 1+jj1 < j1, we
get the announced result except if ¢ = j1, this means that

Fy = v P(Uy, Up)t, v € k(z), 4<i<s.

This implies W, (U1, Us) = puP(Uy,Us)t + GP, u € k(z) — k(z)P. As k(2')/k(x) is separable, we
get ord, (¥, (1,u5) + KP) < j; which leads to f(z") < 1.

We now turn to the study and control of the invariants for points 2’ away from the first chart.
This is done in I1.8.8 (resp. 1.8.9) when z is in cases (*1) and (*2) (resp. in case (*3)).

When z is in cases (*1) and (*2) and x(z) > 1, we have Us € VDir(x) unless we are in the
special case specified in 1.7(i). But then we have 7(x) = 2 and VDir(x) @ k(z).Uy =< Uy, Us, Us >,
so every z’ which is very near x belongs to the first chart. This proves that if 2’ € e~1(x) is very
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near z and does not belong to the first chart, then 2’ = (X' := = ) = % ufh 1= up,uy 1= 22)
2

and we have Us € VDir(x). "

1.8.8 Lemma. Assume that = is in case (*1) or (*2) and the center of p in X' is the point x’ =
(X', u), uh, uf) defined above. With hypotheses and notations as in 1.8.2, we have k(x) < 1 or all
following statements hold: @' is in case (*2), H(x') = u,* Dy, Te@re@=p on g (X7 ) ul, ul)
is well prepared; wh = (A1(2"), 8(2")) = (A1(x), A1(x) + B(z) — 1) and wh := (az(x), B(z) — 1) is
the vertex of smaller second coordinate of A(H (z")7L(f!, g'"); ul, ub;ub); moreover,

(i) if x is in case (*1), then C(x') < @ Equality holds only if A(H (z")71(f, g'"); v}, ub; ufy) has
only two vertices: Wy and wh, which are the ends of its initial side x| + x = B(2');

(ii) if x is in case (*1) and y(x) = 2, then v(z') < y(z) except if (B(x) = 2, C(z') = 1 and
A(H(2")7H(f, g'"); uly, ubs ufy) has only two vertices: (Ai(x), Ai(z) + 1) and (A1(x) + 1, A1 (z)),
which are the ends of its initial side);

(1) if x is in case (*2), we have C(z') < C(z), v(2') < y(x).

Proof. We have E' := (¢7'E);eq = div(ujub) and H(z') = u’la(l)uéa(1)+a(2)+w(x)_p. Let b/ :=
uyPh = X" — "' X' + f', where

H(@) 7 =™ oo+ Y ub™ D uh T g (ufub, ) (1)

1<j<w(z)
with notations as in 1.8.2. Since z’ is the origin of a chart, A(h'; uf, ub, us; X') is minimal, hence
k(z') = 2 and 2’ is in case (*2) by (1) if 2’ is very near x. The correspondence between vertices of
A(H(x)7Y(f, gP);u1, u;us3) and A(H (z")7L(f', g'"); uy, ub; ub) is given by
(a,8) = (a,a+ 5 —1),

so (X', ul, ub, us) remains well prepared. The vertex with smaller first (resp. second) coordinate
of A(H(z")7L(f!, g'");uy, ub;ub) is therefore (A(z), B(x) + A1(z) — 1) (resp. (az(x), B(x) — 1)).
We get

C(a') < mH{B() + A1 () — B(), an(x) — Ay(2)}. )

All statements before (i) have been proved. This is visualized in the following figure.

After blowing-up

$\beta(x)$ | !

$B(X)-1=A_2(<)$............. ,,,,,, ‘

$A_1$ $\alpha_2(x)$
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Proof of (i). Since as(z) < B(z), (2) implies that C(z’) < ﬁ(;). Equality holds only if C'(2') =
B(x) + Ai(x) — B(xz) = as(z) — A1 () and this proves (i).

Proof of (ii). By assumption, G(z) > 1, so 1+ L’@(;)J < [B(z)], and equality holds only if g(x) = 2.

The statement follows from (i) and (2), where B(z) — A1(z) = as(z) — A1(z) = 1.

Proof of (iii). This is a consequence of I.8.3 (b) by symmetry on u; and us.

When z is in case (*3) and x(z) > 1, we have Us € VDir(x) unless we are in the special case
specified in L1.7(ii). But then we can replace the r.s.p. (X, uy,u2,u3) by (Z,u1,us,v) of loc.cit.
(where v = ug mod(uy)) and get V' € VDir(z). In other terms, we may assume without loss
of generality in the lemma below that, if 2/ € e~!(x) does not belong to the first chart, then

o = (X' =2 uh = = up,uf = %) and we have Us € VDir(cly(q) (H (z) 7' 21)).

1.8.9 Lemma. Assume that x is in case (*3) and the center of p in X' is the point x' =
(X', uy, uh, uf) defined above. With hypotheses and notations as in 1.8.4, we have k(zx) < 1 or
all following statements hold: o' is in case (*2), H(x') = u}“ D, "W gn g (X7 ) uly, uly)
is well prepared; wy = (A1(2'), B(2")) = (A1(x), A1 (z) + B3(x) — 1) and wh := (a32(x), B3(x) — 1)
is the vertex with smaller second coordinate of A(H (x')~(f',g'");ul, ub;ub); C(z') < B3(x) and
~v(x") < y(x); moreover,

(i) if B3(z) — A1(z) = 1 or if 83(z) = 1, then y(z') < y(x);
(i) if (B3(x) — A1(x) <1 and B3(x) # 1), then vy(z') < 2;
(111) if (B3(x) — A1(x) <1, B3(z) # 1 and v(z) = y(a') = 2), the following holds: either (z" is in

case (*1) and B(z") < 2) or (x" is in case (*3) and $3(z") < 1), where z” is the center of p in
the blowing up X" of X’ along x'.

Proof. We have E' = e~ 1E = div(uju}) and H(z') = u}*Puf*OTTE=P Lot p/ = 4;Ph =
X'? — g1 X" 4+ f' where

H(z' )7V = P go(uhuh, uh, uhuy) + > bl T g (uub, uh) (1)
1< <w(@)

with notations as in I.8.4. Note that ¢ (u}ub, u}, ujub) € S’ is a unit. Since 2/ is the origin of a
chart, A(h';uf, ub, us; X') is minimal, hence x(z’) = 2 if 2 is very near x and 2’ is in case (*2) by
(1)

Vertices of A(H (z) " uy ' (f, g7); u1, ug; uz) and A(H (x")~1(f, ¢'F); u}, ub; ufy) are in correspon-
dence now given by (o, 3) — (o, e+ 3 — 1), so (X', u), ub, ub) is well prepared (it is only used here
that no “left” vertex of the former polygon is solvable). The vertex with smaller first (resp. sec-
ond) coordinate of A(H (x')"L(f!,g'");ul, ub;ub) is therefore (Ap(x),33(z) + Ai(x) — 1) (resp.
(a32(x), B3(z) — 1)). We get

C(z") < inf{B3(z) + A1(z) — B3(x),adz(x) — A1 (x)}. (2)
We have k(z) < 1 by I.8.5 if A;(x) — B3(x) > 0, so C(z') < (3(z) otherwise by (2), from

which v(2’) < v(x) immediately follows. This proves all statements before (i). For all remaining
statements, it can be assumed that A;(z) — B3(z) < 0
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Before After

$A_1$ $\alpha3_2(x)$ $A_1$ $\alpha3_2(x)$

1.8.9.1 Proof of (i). This is an obvious consequence of (2) above.
1.8.9.2 Proof of (ii). We have 0 < B3(x) — A1(x) < 1; in particular, a3s(z) — A1(z) < 2 since
B32(z) = —1. By (2) above, this implies C(z") < 2, so y(z’) < 2.
1.8.9.3 Proof of (iii). Assume that y(z') = 2, i.e. 1 < C(2') < 2. In particular we must have

B332(x) < 0 by the above argument. We discuss according to .
If 2" does not belong to the first chart, equation (2) in the proof of I.8.8 gives

C(2") < B(2') — As(a) — C(2).

We have Ay (2') = A1 (x)+(B3(x)—A1(z)—1) > Ai(x)—1and B(z') = A1 (z)+083(x)—1 < Ay (x)+1
(since y(x) =2),s0 C(z") <2—-C(a’) < 1.
Similarly, if 2” is the origin of the first chart, we have by symmetry on u; and us:

C(z") < ads(x) — A1 (2') — C(a') = (B3(z) — A1 (x)) — B32(z) — C(2') < 1,

since 332(z) > —1 and C(z') > 1.

Finally, let 2" belong to the first chart and be distinct from the origin. First note that
Ai(z') > 0if C(a’) =1, since C(2") < A1(2") + B3(x) — 1, so " is not the special case specified in
1.8.3(e).

By 1.8.3(i), B(2') <
we denote

ord, ., ,\(H(z')"1g'?)
(u] ub)

w(zx)

if k(z’) > 1. Consistently with I.8.2.1 and (1) above,

Ol"d(ul1 ,u'2) ¢; B
J

where ¢ = uhy " (uh by, uly), and Pl = clip) @) = U{aé(l)Uéa;‘@)\P; for j € Jj.

Jo={j, 1<j<w(@)| B(a')},
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We claim that for all j € Jj,
’ / .
d; = degW¥; < j. (1)
ey . . o, b+2d] at+d; .

Namely, if d; > 0, there exist two monomials M; := ufuy, °, Mz := uy; ’uy appearing
with nonzero coefficient in the expansion of ¢;(u1,uz), where 2a + b + 2d; — j = jB(2'). Since
(A1 (x), A1 (2)+B3(x)—1) is the vertex with smaller first coordinate of A(H (z")~1(f’, g'P); uf, uh; uj) J}
we have a > jA;(x) and

2a 4 b+ 2d; — j < j(241(x) 4 83(x) — 1),

SO
b+ 2d; < jB3(x) < 2j. (2)

Then 2(d}; — j) < —b which proves (1), since b > —1.

We apply 1.8.3 to the well-prepared r.s.p. (X', uf,ub,u%) at 2/, Since C(2’) < 2, 1.8.3(e)
gives f(z") < 2 if 2" is in case (*1).

Assume from now on that z is in case (*3). By I.8.3(iii)-(vi), we have 83(z”) < 1 unless 2’
is in case 1.8.3(vi) by (1). If 2’ is in case 1.8.3(vi), an explicit computation gives

10 —w(T) —1ﬁ_ n-1 /aifl_ ’aifl_ ’aifl
formwy R = HE) g g~ )

Since cly, () fo = 2o 111@(®) 10 Ui, Uj), we may take G’ :=cl,,, ()[4 in 1.8.3(vi). We claim
(z)J2 3 15 Y2 po.w(z)J2

that C(G') < 1, Whicl?tﬁnplies ~v(2") =1 by 1.8.3(vi).

To prove the claim, let (a1,b1) and (ag,b2), a1 < az, be those two vertices of the polygon
A(H(m)_l%;ul,ug;u;g) (hence by > 0) whose transforms (a1,a; +b; — 1) and (ag,as + by — 1)
give the ends of the initial side 2} + x4, = B(a’) of A(f5;u},u5;us). By definition and with
notations as in I.8.3(vi), C(G’) = as — a;. We do similar computations as in the above claim
(dj < j) wa.t. f;. This time, no division by ua occurs in the computation and we get a; > Ai(z),
B(x') = 2a1 + b1 — 1 = 2a3 + by — 1 < 2A;(x) + B3(x) — 1, so by < [3(x) < 2; this yields
2(@2 — al) =b; — by <2 and C(G/) =a9 —ay < 1.

We now turn to proving that x(z) < 1 in some cases when y(z) = 1.

1.9 Theorem. Assume that k(x) = 2, condition (*) holds and (X, u1,uz,ug) is well prepared. We
have k(x) < 1 provided one of the following conditions is satisfied:

(i) x is in case (*1) or (*2) and v(x) = 1;

(i) x is in case (*3) and B3(u1,uz,uz) <1 — ﬁ
Proof. First assume that A;(z) > 1 and let C := V(X,u1,u3). If z is in case (*3), then C is
permissible of the second kind by I.8.6, which also reduces theorem 1.9 to 0 < A;(x) < 1, 53(x)
being unchanged. If z is in case (*1) or (*2), then similarly C is permissible of the first kind and we
get reduced to 0 < A;(z) < 1, f(x) being unchanged (see argument in the beginning of the proof
of 1.8.1).

If (A1(x) = 0 and z is in case (*1)), then 3(z) = 1, so we have VDir(z) =< Us, Uz > mod(Uy),
whence x(x) = 0 by chapter 2, IL.2. In particular, it can actually be assumed that 0 < A;(z) < 1
as in case (*3). Finally if x is in case (*2), it can be assumed that 0 < As(z) < 1 by symmetry on
up and uy. Moreover, (A;(x), Az2(x)) # (0,0) since B(x) > 1.

Let

X=Xyg«— X1« - X1 X, & ---
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be the quadratic sequence along u, i.e. X, is the blowing up along the center z,,_1 of p in X, 1
for n > 0. First assume that xy := z satisfies furthermore the following extra two assumptions:
(a) 0< Al(l‘o) < 1, and

(b) B(zp) < 1if xg is in case (*2).

We prove by induction on n > 0 that x(x,) < 1 or z, also satisfies the assumptions of 1.9,
together with (a) and (b). Moreover, the invariant i,, := (A1 (x,),d(z,)) satisfies i,, < 4,1 for
n > 1, where d(x,) := B(x,) (resp. d(z,) := p3(x,)) if x is in case (*1) or (*2) (resp. in case
(*3)), and the ordering is lexicographical.

To prove this claim, first note that x(x) < 1, or v(x,) = y(xn—1) = 1 by 1.8.1 and 1.8.3(d),
1.8.8 (resp. and I1.8.7(b), (d), 1.8.9) if x,,_; is in case (*1) or (*2) (resp. in case (*3)). If z,, does
not belong to the first chart, k(z,) < 1 or x,, is in case (*2) by 1.8.8 or 1.8.9 which give

in = (A1(Tn-1), A1(Tn—1) + B(xn-1) = 1) (vesp. = (A1(Tn—1), A1(Tpn-1) + B3(zn-1) — 1))

and the claim is proved (with 4,, < i,,_1), since A;(x,) < 1. Assume now that z, belongs to the
first chart. By 1.8.3 (resp. 1.8.7), we have

Ai(xn) = B(zp-1)—1 < A1(zn-1)+B8(xn-1)—1 (resp. = B3(xn-1)—1 < A1(zp-1)+83(zn-1)—1),
so the claim is proved provided we show that 3(x,) < 1 (resp. £3(x,) < 1 — ﬁ) if z,, is in case
(*2) (resp. in case (*3)). Note that moreover i, < i,_1 except if (x,, and z,_; are in case (*1)
and B(x,—1) = B(zy,) = 1 and x,, is rational over z,,_1).

The claim follows directly from I.8.3(b) if z,, is in case (*2). Assume that xz,, is in case (*3). We
may assume that B3(x,_1) > 1 if x,,_ is in case (*3) by 1.8.7(b), in which case the result follows
from I.8.7(i), (iii). If x,,—1 is in case (*1) or (*2), we have ((z,) < 1 by 1.8.3(e) except possibly if
(xp—1 is in case (*1) and B(zp—1) = C(zp-1)). By 1.8.3(c), z,, must then be inseparable over z,_1
so 1.8.3(e) also yields ((z,) < 1. By definition of 3(x,,), there exists some index j, 1 < j < w(x),
such that the monomial ug}’(s)ﬂ u{ﬁl(w”)ué,ﬂ 75%) appears with nonzero coefficient in the expansion
of H(zy,)™ ! fn, where (X, u1 p, U n, Us,,) is some r.8.p. at x,, which is well prepared. So we have
jB(zn) <j— 1 and

j—2 2 1
<4 2 _1_Z =
B3(xy) < ; 1 ; <1 o) (1)

and the claim is proved.
Remember that, if x(xz) > 1, then ¢, = i,_1 only if both x,_; and z, are in case (*1),
B(xp-1) = PB(x,) = 1 and x, is rational over x,_;. If this happens for all n > ng for some

no > 0, some formal curve C' = V(X,,,, U2 n,, U3 n,) s contained in ¥,(X,,, ), a contradiction since
C' ¢ E,,. Therefore i,, eventually drops so that x(z) < 1.

We now turn to the general case, so x is now in case (*2) and we have C(z) < 1, f(x) > 1. If
Z, is in case (*2) for all n > 0, all points x,, are either at the origin of the first chart, or the unique
point away from the first chart. By standard arguments, there exists ng > 0 such that C(z,,) = 0.
Otherwise, there exists a smaller ng > 1 such that z,,_; is in case (*2) and z,, is either in case
(*1) or in case (*3). By I.8.3(b), (ix) and I1.8.8(iii), we have ((z,,) < 1 in the latter case. The
argument in (1) above shows that 33(z,,) < 1 — ﬁ if @, is in case (*3), so x,, satisfies the
assumption of 1.9 in any case.

Summing up, we have k(z) < 1 or the following holds: by blowing up permissible curves
(argument at the beginning of the proof of this theorem), there exists a composition of blowing
ups of permissible curves ¢ : X’ — X, such that either (z’ is in case (*2), C(z') = 0 and
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0 < max{A;(z'),A2(z')} < 1) or (' is in case (*1) or (*3), 0 < A;(2’) < 1 and 2’ satisfies the
assumptions of 1.9). In the former case, note that 5(z’) = As(2’) < 1. Hence in every case, =’
verifies (a) and (b) above, so k(z) < 1 and the proof is complete.

We now prove that x(z) < 1 in some special cases when (x is in case (*1) and y(z) = 2).

1.10 Theorem. Assume that k(x) = 2, x is in case (*1) and (X, uy,us,us) is well prepared. We
have k(x) < 1 provided one of the following conditions is satisfied:

(Z) 6(u17u27 Ug) < 2;

(ii) x is a “disaster” (as specified in 1.8.3(¢e)), i.e. (w(x)=p =2 and

H(x)" ' f = poui + pausui + w1, (Dis)

with pypo € S invertible and ordy e = 1).

Proof of (i). Let e : X’ — X be the blowing up along = and 2’ be the center of p in X'.

If 2’ does not belong to the first chart, then x(z) < 1 by I.8.8(i) and 1.9(i).

If ' is not rational over z, then 5(z’) < 1 by 1.8.3(ix), so x(x) < 1 by I.9(i) or I.9(ii) (using
equation (1), proof of 1.9, if 2’ is in case (*3)).

If 2’ is rational over z and belongs to the first chart, then 2’ verifies assumption 1.10(i) by
1.8.3(b), (c) and (e), so we iterate the process. An argument already used several times -e.g. in
the proof of 1.9 above, right after equation (1)- shows that either x(z) < 1, or there exists some
formal curve C = V (X, Uy, i) contained in Y, (X), a contradiction since C ¢ E.

Proof of (ii). We have A;(xz) = 0 and f(x) = 2. By L.7, U3 € VDir(z). Let e : X’ — X be the
blowing up along x and z’ be the center of p in X'.

If 2’ does not belong to the first chart, then w(z’) = 1 by (Dis), so x(z) = 0 in this case. In
particular, if ord, ;) (ui1p) = 2, we have < Uy,Us >C VDir(z), so x(x) = 0. From now on, we
assume that ord,,)(u1¢) > 3 and 2’ belongs to the first chart.

Suppose that 2’ is not the origin of the first chart. If 2’ is in case (*1), then 2’ satisfies I.10(i)
except possibly if C'(z) = 2 and 2’ is rational over x by 1.8.3(e). But C(z) = B(z) = 2 in this case,
so clop € k(z)[Uy,Uz]2 and we get w(x’) =1 from (Dis). If 2’ is in case (*3), then 2’ is inseparable
over x by 1.8.3(c); then 1.8.3(e) yields (z') < 1 (so B3(2') < 1 — ﬁ and k(z) < 1 by L.9(ii))
except possibly if C'(z) = 2 and d = 2. Hence clyp € k(x)[Uy, Us]2 and we also get w(z’) = 1 from
(Dis).

From now on, 2’ is the origin of the first chart. In particular, (X' :=

2 U = Z—f) is well prepared and z’ is in case (*1) if it is very near x. We get

[ [
U1 ,ul . — UI,U2 —

= Ulla(l)(ﬂ U3 + ulullugu'; + ul(I) (U27U3) + u’12<p’)

where @' € k(z)[ub, us]<o and ¢’ € k(x)[[u), uh, us]]. We have w(z’) = 1 unless @' € k(z)[ub, usla,

which we assume now. We have (z') = 1, so k(z) < 1 by 1.9, unless ®" € k(z)[u}], which we

also assume from now on. Then the curve C' := V(X' us,u}) is permissible of the first kind and

we perform the blowing up € : X” — X’ along C’. Let z” be the center of p in X”. Since

A(H(z")7YH(f, g'"); vy, uh; ufy) has no solvable vertex, we have VDir(2') =< Uy, U} > if ¢’ is a unit,

so k(z) < 1 in this case. Otherwise, VDir(2') = k(2’).Uj, so we need only consider the case when
" is the origin of the first chart. If w(z”) = 2, then tracing back to X, we had

¥ = (I)/(UB) + uz®y (U1, ug, u3) + qu)z(ul,uz) + 1,

103



where ®1 € k(x)[u1, ug, uss, ®1(u1,0,0) =0, o € k(x)[u1, uz]y and ord, )1 > 4. Hence
o =y @a(1, uh) mod(uf, upuh, uy”).

Therefore z” is in case (*1), (X" := f—,/,u/l’ = uh,ul = ubuf = Z—;‘) is well prepared and
1 1

Ay (") = 0. If @5 # 0, we get 3(z”) =1 or B(z") = 3, so k(z") < 1 by (i). Finally, if &3 =0, 2’

satisfies again the assumptions of (ii).

The conclusion now follows as in the proof of (i): either x(x) < 1, or the curve C = V(X uz, u3)
is contained in ¥,(X), a contradiction since C ¢ E.

1.11 Proof of Theorem I.8.

Let
X=Xyg«— Xy« - X, 1 X, &« -+

be the quadratic sequence along u, i.e. X, is the blowing up along the center x,,_; of p in X,
for n > 0. We assume that x(x) = 2, k(z) > 1 and derive a contradiction. By I1.8.3, 1.8.7, 1.8.8
and 1.8.9, we have y(z,) < v(x,—1) for each n > 1 unless we are in the special case specified in
1.8.7(b): x,,—1 is in case (*3) with y(x,—1) = 2, and z,, satisfies the assumptions of 1.10. By
1.10, this is a contradiction since k(z,) < 1 in this case. Therefore there exists ng > 1 such that
Y(zn) = y(xp-1) for n = ng. Let y(u) be this limit value of v(z,). Without loss of generality, it
can be assumed that ng = 0.

First assume that v(u) = 1. By 1.9, we are done unless z,, is in case (*3) for all n > 0. Since
B3(x,) < 1 for each n > 0, we have ((z,) < 1. Moreover, 33(z,) < 1 — ﬁ if B(z,) < 1 (see
proof of 1.9, equation (1)), so k(x) < 1 by L.9(ii) unless f(z,) = 1 for all n > 0. By L.8.7(v),
T, is rational over x,_1 for all n > 1. Therefore there exists some formal curve C = V()A( , U, U3)
contained in 3, (X): a contradiction since C ¢ E.

Assume that v(p) > 3. By 1.8.8(ii) and 1.8.9(i), (ii), =, always belong to the first chart of
the blowing up along z,,_1 provided m(z,) = 1 for some n > 1. Then z,, is rational over z,,_; for
all n > 1 by 1.8.3(viii) and I.8.7(b), (iv). We conclude as in the case y(u) = 1 unless x,, is in case
(*2) for all n > 0. By standard arguments, we then get C'(z,) = 0 for n >> 0, a contradiction,
since y(p) = 3.

Assume from now on that y(u) = 2. The argument of the previous paragraph settles the case
when z,, is in case (*2) for all n >> 0, or when (z,, is rational over z,,_; and m(z,) = 1) for all
n >> 0. From now on, there exists infinitely many values of n > 1 such that (m(z,—1) = 1 and
either m(z,,) = 2 or x,, is not rational over x,,_1).

We first sum up some of the conclusions of 1.8.3, 1.8.7 and 1.10; since k(z) > 1, the following
holds when x,, is not rational over x,,_1:
(a) xp—1 is in case (*1) with B(z,_1) = C(zn_1) = 2, x, is in case (*3) and either 33(z,) =1 or
(p =2 and B3(z,) < %),

(b) 2,1 is in case (*3), z,, is in case (*3), p = 2 and 33(x,) < 3

5.
The situation we want to reduce to is that in the lemma below. The argument is somewhat

more involved when p = 2, due to the characteristic two version of 1.8.3(vii), I.8.7(iv) and (a), (b)
above.

1.11.1 Lemma. Assume that k(x) > 1, x is in case (*1) with f(x) = 2 and x; is in case (*2).
Then p = 2 and xo satisfies the assumptions of 1.11.2 below.
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Proof. By 1.8.8(ii), we have x(x) < 1 unless z7 has C(z1) = 1 and x5 is in case (*1) or (*3). By
1.8.3(e), we have (z2) < 2 if x5 is in case (*1): a contradiction by I.10(i). Note that z; then
satisfies all assumptions in I.8.3(vii) from which the conclusion follows.

1.11.2 Lemma. Assume that k(z) > 1 and x is in case (*3) with either 33(z) < 3, or (p = 2,

o 3
33(x) = % and the monomial u;g“’(w)*“ulhAl(w)u;rgh appears with nonzero coefficient in the
expansion of H(x)_1u2§—1f2 for some j1, 1 < j1 < w(x), j1 = 0 mod4, and (X, u1,us,usg) is well-
prepared).

Let o’ := x1 be the center of p in the blowing up X' := X along x. Ezactly one of the following

1
properties holds:
(i) ' is in case (*1) with B(z’') = 2 and the monomial ugw(m)_lu’lAl(ml)v’Q appears with nonzero
coefficient in the expansion of H(x')"Lf,,, where (Z',u),v',u}) is well-prepared at z';
1) &' satisfies again the assumptions of 1.11.2; B(z') < B(x) and equality is strict if ' is not
g Y

rational over x.

Proof. Recall the definition of Jy in 1.8.6.1 and lemma I.8.6.2. Remark that 33(z) < % implies
that L d
Vo € Jo, —0 < 9. (1)
Jo

Note that equality possibly holds only if (jo = 1 and 53(x) = 1): if jo > 3, then % < %—l—% < 2;if

Jo = 2, then % = 2 implies 33(z) = 2, s0 p = 2, 1 +dy = 4, so the monomial u;),w(x)_zul%l(z)u%

=3,
cannot appear with nonzero coefficient in the expansion of H (m)_1u2§—f2,

1.11.2.1 First assume that 2’ is not rational over x. We have y(z’) < 1 if Jy ¢ pN by 1.8.7(i):
a contradiction. If Jy C pN, we have x(z) < 1 by I.8.7(iv) and I1.10(i) if z’ is in case (*1): a
contradiction.

Suppose finally that Jo C pN and ' is in case (*3). Then 3(z') < 3 by L.8.7(ii), so 83(2’) < 3.
By I.8.7(ii) and 1.8.6.2, we have

since p = 2.

_B@) .

B(z') — B(z) < 5

"=

1.11.2.2 Assume that 2’ is in case (*2). By 1.8.9(i), (iii) and I.10(i), we have x(x) < 1 unless
possibly (z” is in case (*3) and (3(z”) = 1), where 2’ is the center of x in the blowing up
X" := X9 — X' of X’ along 2’.
This holds only if equality d; = deg¥}; = j holds for some j € Jj in 1.8.9.3(1). Since
B3(z) < 2, (2) of loc.cit. gives
2(d;—j)<1—%,

so dj = j implies j € {1,2}. Since 1 < #3(z) < 2, we had
(4,783(x)) € {(1,1),(2,2),(2,3)}.

The comments right after (1) above discard the value (2, 3) in the above list, so we had $3(z) = 1:a
contradiction by 1.8.9(i), since y(z') = y(u) = 2.

1.11.2.3 Assume that 2’ is in case (*1). By 1.8.7(ii), we have (z') < 2 (so k(z) < 1 by 1.10(i))
unless equality holds in (1) above (so 1 € Jy) or B3(z) = 1. If B3(z) = 1, then checking through
1.8.7.1, B(x’) = 2 possibly holds only if p = 2 and either x is in cases 1b or 3b with jo = 1 in
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loc.cit. (so z’ satisfies 1.11.2(i) with A;(z’) = 0), or w(z) = p = 2 (end of 1.8.7.1) in which case
x’ also satisfies 1.11.2(i) with A;(z’) = 0 (since pg # 0 in loc.cit.).

1.11.2.4 Assume finally that 2’ is in case (*3). By 1.8.7(i), (ii), (iii) and 1.8.6.2, we have 33(z’) <
B3(x), B(z') < B(x), so (ii) will hold except possibly if 33(z’) = 83(z) = 2.

In this case, H(z')~! gi: is the strict transform of H(:c)_laa—lf; since ' is rational over x. Then
2

(A1(2'), 3) is a vertex of (A(H(:U’)’I%{Z suf,v'suf) , where (Z7,uf, v, ub) is well-prepared at 2/,

) i A 3 . . . :
and the monomial ugw(w) ST 1(x)u'22]1 appears with nonzero coefficient in the expansion of

H(x’)*laf—,z' for some ji, 1 < j; < w(z) (see 1.8.7.1, 1.8.7.8 and 1.8.7.9). Necessarily, we have

ou!
1=0 m0d24, since p = 2 in this case.
1.11.3 Lemma. Assume that k(x) > 1, x is in case (*1) with f(x) = 2 and the monomial
uz*®) =1y @) y2 appears with nonzero coefficient in the expansion of H(z) ™' f, where (X, u1, us, us)[]
1s well prepared.
Let ' := x1 be the center of u in the blowing up X' := X1 along x. Then x’ is rational over
x and satisfies again the assumptions of 1.11.3.

Proof. We have C(z) < B(z) = 2. With notations as in 1.8.2.1, we have C(z) < 2 or (C(z) = 2
and 1 € J()).

If 2’ is again in case (*1), then 2’ satisfies equation (Dis) or G(z’) < 2 whenever C(z) < 2 by
1.8.3(e). Otherwise 1 € Jy, so B(z’) < 2 by 1.8.3(iii) and z’ satisfies again the assumption of the
lemma if equality holds (in which case z’ is rational over x). The conclusion follows from 1.10.

If 2/ is in case (*2), then ((z) = 2 and 2’ satisfies the conclusion of 1.8.8(ii). In particular,
C(z") = 1. Let 2” be the center of p in the blowing up X” := X5 — X' of X’ along z/. The
conclusion of 1.8.8(ii) implies the following: if z” is in case (*2), we have C(z”) = 0; if 2" is in
case (*1) or (*3), then 2’ satisfies the assumption in I.8.3(iii) whose conclusion gives y(z”) =1 or
x” satisfies equation (Dis) (so k(z) < 1 by 1.10(ii)). In all cases, this contradicts the assumption
V() =2.

If 2’ is in case (*3), then 2’ is inseparable over z by 1.8.3(c). Then 3(z') < 1 by I.8.3(iii),
once again a contradiction, since y(u) = 2.

We can now conclude the proof of theorem I.8:

I.11.4 Recall equations (a) and (b) above and reminder right before them of the assumption on p:
there exists infinitely many values of n > 1 such that (m(x,,—1) =1 and either m(z,,) = 2 or x,, is
not rational over x,,_1).

1.11.4.1 First assume that m(z,) = 1 for every n > 0. Pick ny > 0 such that z,,, is not rational
over &,,_1. By 1.8.3(viii) or 1.8.7(iv) and I1.10(i), =, satisfies the assumptions of 1.11.2.

1.11.4.2 Assume that for some ny > 0, z,,, 1 is in case (*1) and x,, is in case (*2). Then k(z) < 1
by 1.10(i) unless possibly if B(x,,—1) = 2, i.e. x,,_1 satisfies the assumption of I.11.1. The
conclusion of I.11.2 produces some integer ng := nj + 1 such that z,, satisfies the assumptions of
I.11.2.

1.11.4.3 Assume finally that for some ny > 0, x,,_1 is in case (*3) and z,, is in case (*2). By
1.8.9(iii) and I.10, we have x(x) < 1 or x,,, satisfies the assumptions of 1.11.2, where ny := n; +1.

1.11.4.4 If k(z) > 1, the conclusion of I.11.2 either produces some integer ng > no such that
Zn, satisfies the assumptions of I1.11.3, or states that z,, satisfies the assumptions of 1.11.2 for all
n = ns.

In the former case, z,, satisfies the assumptions of 1.11.3 (in particular z,, is in case (*1)) and
Zp+1 18 rational over x,, for all n > ng: this contradicts the assumption on .
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In the latter case, we have B(x,4+1) < B(zy) for all n > ng, where equality is strict if z,41
is not rational over z,. The assumption on p implies the existence of an increasing sequence of
integers (n;);>2 such that 3(x,,,,) < B(xy,) for all i > 2: a contradiction, since 3(z,,) € ﬁN
Therefore we had k(z) < 1 and the proof of 1.8 is thus complete.
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IT Resolution of the case k(z) = 3.

We will solve this case by a sequence of permissible and non-permissible blowing ups.

II.1 Notations We are interested in the case where for a suitable r.s.p. (X, uy,usz,u3) with
div(uq) C E C div(ujusz), 1 +w(z) # 0 mod (p) and A(h;u1, ug, us; X ) minimal:

F=H@) > uy™ 7 ¢ € k(@)[[ur,ua],1 <i <1+ w(x), 60 € S, do invertible

0<i<1+w(z)

or equivalently

div(uy) C F Cdiv(ujuz) and (H(az)_lg—uf3 = (ug(z)) mod (uq,us).

Let us note that we may have e(x) = 14+w(z) or €(z) = w(z). We do not assume that u, us, us
are in S: we may take them in S. We will always assume that

u; X invertible € S if div(u;) C E.

Well preparedness of variables We choose v = ug mod (u1,us3), v € k(x)[[u1, u2, ug]] such that
for all s = (s1,s2) vertex of A(H (x) 7 (f, gP);u1,uz;v)

H -1 _ _
ins(w) = pov* @ or is not a w(z)™ — power x ¢y, or H(z) lg

14+w(x))s 14w(x))s
o b TR (e@)s

(1)

This can be made this way: let s the smallest vertex for the order (| |,lex) where (1) fails. Then
—1 —_
ins(m) = do(uz + M us?)*®) | with A # 0 A\ € k(z) and H(x) '¢g? = ufub with s =

6u3
(s1,82) ¢ (H#(gc), ﬁ@)+(@i' We take v; = ug+Auj*us?. This translation on ug does not modify

ing (H(xz)~1f) and ins/(%) :insz(%) for s’ # s vertex of A(H (x)~1(f, gP); u1, u2; uz).
Either s is dissolved, or we get (1) for s. The polyhedra A(h;uq,us,v1; X) may be not minimal, if
not, we make a translation over X, we get a new variable

_ 14+w(x)—1 isy s
X1 =X+ § )\is’l,isé,1+w(x)fiv (@) Uyq 1u2 27 )\is’l,is’2,1+w(x)fi € k‘(l’),

1<i<w (), (s),85)>s

and f becomes fi. We have the inclusions A(H (z) 71 (f1, gP); u1, u2;v1) € A(H (z) 7 (f, gP); u1, uz;v1) CJj
A(H (z)7Y(f, gP); u1, ug; ug), this translation will not spoil the ing (H(z) "1 f) for s’ < s, may add a

-1
p-power to ing(H (x) ™1 f), so will not spoil ins(%) = aV*®). Either we get (1) for (u1,ug;v1),
or we go on with a new vertex strictly greater than s. We will get v and X as limits in Sandin S [X].
Note that, in an extreme case, it may happen that there is a r.s.p. such that f = H(z)yv't<®),
which implies condition (1). Now, we mimic chapter 2 and we set

dy —lgP dy (@i . .
Aj = inf {2200 ) i<t w(@)), j=2.3,

1 )
B = inf {Ord(mqiigz;;:) g") ’Ord(u1»:2)(¢z) , 1<i< 1—|—w(:v)},

C:=B- Zj7div(uj)§E Aj,
—1 (14w(z))A m iA
B = inf {2 gtmodw, ) ordumed i D) 1 i < 14 w(a)},
with the convention ord,, (¢; mod u**) = 400 if M > Ay, ordy, (H(z)~tgPmod ugHw(w))Al) :I
+o0 if ord,, (H(z)"1g?) > (1 + w(x))A;. Obviously, C, A; , B and 3 depend on (u1,us,u3 = v)
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verifying (1), if there is no possible confusion, we write C' or C(z) instead C(u1,u2,v), A; or A;(z)
instead of A;(uy,us,v), j =1,2, etc. Let

v(u1,u2,v) =1+ |C| if E =div(ujus),

v(u1,uz,v) =sup([F],1) if E =div(uq).

We note y(z) = y(u1, ug, us) for short.

I1.1.1 Definition We say that x(x) = 3 if, for a suitable r.s.p. (X, u1,us,us) with div(u;) C
E Cdiv(uiug), 1 +w(z) # 0 mod (p) and A(h;uy,us,uz; X) minimal:

f:=H(x) Z u?w(m)*iqﬁi, ¢i € k(x)[[ur,uz]],1 <i < 1+w(x),do €8, ¢y invertible.
0<i<14w(z)

or equivalently
div(uy) C E Cdiv(uyug) and (H(m)*laa—d; = (u‘;(m)) mod (uy,us).

I1.1.2 Proposition. If k(z) = 3 and e(x) = 1 + w(z), for any r.s.p. (X;u1,us,v) with I1.1(1)
above, then either V €IDir(zx) or 7' (x) > 2.

If ' (x) > 2 and Ay > 0, then V €lDir(x).

If ' (x) =2 2 and Ay = 0, then, we can change v in w = v — (auy + bus), a,b € k(z) such that
we have IL.1(1) for (X;u1,us,w) and W €IDir(x). If ord,(H(x)"1gP) = e(z), then W € W(x)
where

W (z) = VDir(z)+ < {U;|u; divides H(x) 'g?} > .

Proof. In that case the ideal of the directrix of H (m)_l% is contained in IDir(z). It contains V' if

ing (2@ 1) — G0V invertible. Tf ing, (2221 £ G, V%@ then V €IDir(z) mod (Uy, Ua),
so there exists w = v — (auy + bug), a,b € k(x) such that W €IDir(x). The reader verifies that
—1 —1 —

inm(%) = inx(%) and that these initial forms are not = ¢oW«®) (else II(1) is not
true for (X;uq,u2,v)): 7(x) = 2. If 7/(x) = 3, k(z) = 0: from now on 7(z) = 7/(x) =2. If A; >0
then, IDir(z) =V mod (Uy), if 7(z) = 2, then IDir(z) = (V, Uy).

From now on A; = 0 and, by symetry, Ay = 0 if div(uz) C E. Either ord, (H(z) 'g?) = €(z),
then (W,U;) CIDir(x) + (U;), where u; divides H(z) 'gP. As 7/(z) = 2, H(z) lg? = 'yufm,

~1

as div(u;) € E, we make ¢ = 1. Then if b # 0, s = (0,1) is a vertex of A(%;ul,u%v),
as ins(%) is not proportional to an w(x)-power, (W,Us) CIDir(xz) mod U, 7'(x) = 3:
contradiction. So b = 0, then V €IDir(x) + (U;) =: W(x). Or ord,(H(z) 1g?) > e(x), then we
make a translation over X, so that Y = X — 0 and A(h;uy,ug;w) is minimal. Let us denote:

H -1
IDir(inz(W)) = (W, cUy + dUs), ¢,d € k(x), not both 0. (1)

The reader sees that, if ab # 0, then the polyhedra A(%;ul,uz;w) has two non solvable
vertices (1,0) and (0,1), so we have IL.1(1) for (Y;uy,us,w) and e¢d # 0. If a = 0, b # 0, the

polyhedra A(%; u,ug;w) has (0,1) for unique vertex of its initial side, this vertex is not

solvable, to get (1), we have to modify Y and w, but we will not modify inx(%ﬁ) nor ing (w).

So we get the assertion.

II.1.4 Proposition Let a suitable r.s.p. (X, uy,uz,u3) of x with div(uy) € E Cdiv(ujug) and

A(h;uy, ug, us; X) minimal: f:= H(x)(uiuz2¢ + 'yugj(w)ﬂ), v invertible and ord,(uiuz¢) = w(x).

Then k(x) = 0.
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Proof. Indeed, w(x) =ord, (u1U2¢) 2. Blow up =z, the only possible very near point has for
parameters X' = é up = 2 uy = 3 yy = uz. As we are at the origin of a chart, there is no

translation to do, f H(x )(u1u2q§/ +’yu3) w(z') <1 < w(z).

II.2 Theorem Let x € ¥, with x(x) =3 and (X, u1,uz,v) a r.s.p. veryfying I1.1(1),
(i) if C(x) =0, e(x) = w(x) then k(z) < 1,
(ii) if C(x) =0, A1(z) < 1, Ax(z) < 1, then k(z) < 1.

I1.2.1 Proof of (i): case where €(z) = w(x). Either A;A; > 0, then by IL.1.4, r(z) = 0. Or
(with an eventual permutation on uy,us) Ay = 0: H(x)™1f = 2 0<i<itw(a) v T@) =l with for
some i = ig, 1 < ig < 14 w(x), ¢y, = yu*,  invertible, A; < 1: ordm(uioAluéw(w)_io) < w(z),
indeed, there is equality. If 1 <ip < 1+w(z) or div(uy) € E, then x(x) < 2. If ip = 1 +w(z), then
A =1- 1++(x)’ ordy, (¢;) = iA; = 124:)7(9(69)@)’ 1 <i<1l4w(zx),soordy, (¢;) =i

f=H(x)(po pite@) 4 /\uw(x) +u19), ¥ € (uq, v)‘“(gc) A invertible or H(z) 'g? = ’yuw(z)

As w (3:) = 2 H(x)_lgp + 'yuf(w): we have A invertible. Let Y =V(X,v,u;), (u1,v)*® >

E) = (v*®)) mod (u;). When a(1) + w(z) = p, Y =div(u;) N {w > w(z)}: Y is not a formal
curve, Y is peI‘HlleIble. We blow up Y, the point " of parameters X’ = %, u) = %L, uy, v is the only
point above which may be very near to z, an easy computation show that 1 > w(z’), we are done
except if w(x) = 1. In this last case, we get H(z') "1 f’ = ¢ov’ + Auy +v'¢’, X invertible, H(z') =
u‘f(l)u;(z)vH“(l)_p. Then by chapter 2 I1.5(i), the clal+a2+1+a(1)+1,p(D(u‘f(l)ug(2)vl+a(l)_p(v +
Au1))), D € D(E') are not all proportional: U; and V' are in the directrix of z’. The curve of ideal
(X’,v',uy) is permissible, it is the preimage of z, so it is not a formal curve. We blow up this curve:
there is no very near point above. If a(1) + w(x) < p, we claim k(z) < 1, let us first state:

I1.2.1.1 Lemma If H(z) ' f = ¢poul uf + uy¢ with ord,(u1¢) = w(x), o invertible, and a’,b <
w(z) — 1, then k(z) = 0.

Proof. Blow up z, any a’ very near to x is on the strict transform of div(uy), #’ is at the origin
of a chart and the pair of exponents (a’,b") becomes (a' + V' — w(x),d’) or (a’,a’ + b — w(x)), an
induction on a’ + b gives the result.

I1.2.1.2 Lemma If a(1) +w(z) < p, 1 +w(z) # 0 mod (p), A(h;u1,usz,v; X) minimal,
H(z) L f = gov 7@yl 4 Auf w(®@) +uppuly, i < w(x), w € (ug,v) @)

oo invertible, div(uy) C E and E =div(ujus) when i > 0, then x(x) < 1.

Proof. By induction on a(2). When i = w(x), we blow up V(X,u1,us) =V(ui,u2) Nw > w(z)
which is permissible, the point of parameters (X' = %, uy = Z—;, ug,v) is the only point which may

be very near to x,
H(a@') 7 " = goo™ Oy 0 gy,
H(z') = u’la(l)ug@Ha(le(”fC)*p, a(2) + a(l) + w(z) — p < a(2): we get the result by induction on

a(2).
When i < w(z), we blow up x. Every point very near to x is on the strict transform of div(uy).
In the chart of origin (X' = —2 Jup = Z—;,UQ,U’ = u%), we get H(x')"1f' = qﬁov’Hw(w)ugH +

/\ullw(z) —|—u1¢1u§ w(x)’ H(z') = lla(l)ug(2)+a(1)+W(x)*P.
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When i < w(z) — 2, the origin is the only point possibly very near to x, a(2)+a(l)+w(z)—p <
a(2): we get the result by induction on a(2).

When ¢ = w(z) — 1, at the origin we are in the case above, so k(z’) < 1, if v/(2") # 0,
let us denote Y’ =V (X’ u),us), then H(:U’)’lgi = v’uw(x) mod (ujuz) (A = XA mod (up) in
k(x")[[u1,uz2,us]]), v invertible, as a(1) + w(x) # 0 mod (p), H(z')~ 18f = 'y”u’w(m) mod (ug), so
IDir(J(f', E',Y")) = (U}, Us), J(f',E",Y") C (u},u)*®. If we blow up Y’ there is no very near
point.

The last point we have to study is (X' = £, uf = “ ) = 22 v). We get H(z/)"1f/ =
dov' Tl + )\u/lw(x) + ] wui_w(w) AT S w() — 2, K(x ) =0 by II.2.1.1, if i = w(z) — 1, we
blow up V(X’,u},v) and the reader sees that there is no point very near to z’: x(z’') = 1.

I1.2.2 Proof of I1.2(4i). By I1.2.1, we have just to look at the case where €(x) = 1+ w(x). In that
case or there exists 49, 1 <49 <1 +w( )y Gig = Z“Al ZOAQ xinvertible and, ullAl A2 dQivides ¢; for
alli, 1<i<1l4w(z) (as 4; <1,i=1,2, we have 2 <ig) or H(z) lgP = gHw(I))Al gHw(r))‘%
and uilAluéA2 divides ¢; for all i, 1 < i < 1+ w(x). Condition (1) in I.1 and €(z) = 1 4+ w(x)
imply that V is in the ideal of the directrix of . If we blow-up x, the reader will see that only the
origins of the two possible charts, i.e. the points of parameters % uy, 22, J’l or %, s U2, u% may

be very near to x and that the couple (A1, A3) becomes (A; + Ag —1,A) or (A1, A + Ay —1).
An induction on A; + Az and (i) give the result.

II.3 Theorem Let x € ¥, with k(x) = 3, (X,u1,u2,v) a r.s.p. veryfying IL.1(1) and u; € S,
ug € S:if we blow-up (uy,us) and if ' is a point near to x with Q(z’) > Q(z), then Q(z') = Q(z),
k(") = 3 and there exists a regular system of parameters (Z,v1,va, w) of x’ verifying (1) such that:
(Z') ’7(’01’02’ ) < ’Y(ulvu% );

(i) if 2" is in the chart with origin (X, u1,uy = 3,v) (so-called first chart), then Ai(z') = B, and,
if m(z) =1, B(vy, v, w) < Ax(uq, ug, us) + C(Ul,’LLQ,Ug) < B(ur,uz,us), if ' is not rational over
x and 5(u1,u2,u?,) > 1, B(v1,v2,w) < B(ug,ug,us) or k(z') <1, if uh(z') =0, C(z') < C(z),

(iti) if ' is the origin of the second chart,(x’ = (X, uj = 3, uz,v)), then C(2') < C(z), further-
more, C(z') < @ and, if there is equality, A(H ()~ f+ H (z) ~gP; u1, ug;v) has only two vertices
(A1(2), B(x)) and (A1(z) + 252, 0).

(v) if m(x) =m(z’) =1 and B(u1,usz,v) > 0, then B(vi,ve,w) < Blur,ue,v), A1(x) < A1(2),

(v) if ¥(z) > 2 and m(z) = 1, m(a’) = 2, then A(«') < ’Y( )

(vi) if B(z) <1 and m(z) =1, m(z') =2, then C(2) <

(vii) if 0 < C(z) < & and m(z) =2, m(a’) =1, then B(z )

IL3.1 Notations Let f = H(2) Yociciimmus " §u2 fis fi € k@)[[ur,u0]), 1 < i <

1+w(x), fo € S, fo invertible, ag = by = 0, u; does not divide f; € k(z)[[u1,uz]], 7 = 1,2 and F;
is the initial form of f;, d; =ord(y, u,)(fi) when f; # 0.

Proof of (iii).

w(x w(x)—1 b; i+cCi i
f'=fi= H@) oo™ 4 3 o T Mg e (F (g, 1) + ua)).
1<i<14w(x)

We are at the origin of a chart, there is no translation to do, etc. As ¢y is invertible and 1+w(x) # 0

mod (p), no translation can spoil the initial form of H (z')¢ov' T¥(®): k(2’) = 3. The transformations

on the polyhedras are now well known, 5(z’) = f(x) + Ai(x), A1(2") = Ay (x), Ax(2’) = B(z), so
C(a') < az(x) = Ay (2) < C(2) + Ar(z) — Ay(z) = C(a),
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C(2') < B(x) + Ar(z) — B(z) = B(z) — (B(z) — A1()), and C(2') < B(z) — Ax().
B(x

Soif B(x)—A;(z) # ﬁ(m) We get C(2') < ( ) In every case, C(a') < ’8(;). If we have C'(2) = 5(293),
then, B(z)—A;(z) = () < as(z ) Ay (z) < B(z)—A;(x), then as(x) = B(x), as as(z)+
B2(z) = B(z), we have ﬂg(:z:) =0. So A(H(z)"(f, gP); u1,u2;v) two vertices (A (z), B(x)) (small-
est abscissa) and (Aj(x) + B(;),O) (smallest ordinate) which give in A(H (z")71(f, g?); u}, ua;v)
the two vertices (Aj(z ) B(z) + A1(x)) (smallest abscissa), (A1 (z) + @, Ai(x) + @) (smallest
ordinate). If A(H(z)71(f,g");u1,uz;v) had another vertex, it would be under the side of ends
(A1(x),B(z)) and (A1(x) + B(;),O), it would give in A(H (2')~f + H(2')"1gP; u}, uz;v) a vertex
(21, x2) under the side of ends (A;(x),[(x) + Ai(x)), (A1(z) + ﬁ(;),Al(a:) + @) which have
both 2A;(x) 4+ B(z) for sum of coordinates: we would get 1 + 2 < 2A4;(z) + f(x), C(a’) <
x1+xo — Ay (2') — Ag(2') < @

I1.3.2 First chart The first chart has for origin the point of parameters (X, u1,uy = 2, v).

f/ _ f — H($/)(¢0U1+w(m) + Z 1+w(m) z b +ci+d; /Cl(F (1 U2) +u1¢2))

1<i<14w(x)

. . . .o by teigtds duy g (H(z') ™!
Either there is some index io with Zet¢e*do — p =inflitetdi (case (a)) or B = 24 2 H@) o7)

(case (b)). When 2’ is the origin of the chart, there is no translation to do, (%)(ii)(%ii)(iv)(vi) are
clear. When 2’ is not the origin, u}(z’) # 0, we may have to do some translations on X, v to get
(1) in 2’ for the new parameters. In case (a), we take ip minimal. In case (b), nothing happens
to g, B(z') < w < B(z). Furthermore, if m(z’) = 1, then f(z’) = 0 = C(2’). As the
chart we consider contains all the points ' above x with m(z") = 1, (i) (i) (i) (iv)(vi) are proven
in case (b). In case (a) and not (b), let

bio + Cip + dio

20

b; +c,+d

Iy = {ZO‘ inf; { }}7

for every ig € Iy, 1 +w(z) —ip = 0 mod (p), to get I1.1(1) in 2’, the eventual translation on v will
change v in v/ = v+ uff, a > B, 0 € k(2')[[u}, v2]], v2 € k(z)[ub], this translation will not touch

R A A N RYAWL
7 Y

for all 4o, the eventual translation on X’ will add a p-power. But v!T«(@)—ioy 10 C”)F defined
the vertices (z1, z2,x3) of A(h;uy,usz,v; X) With :L'l + 29 + Bxz = B(1 + w(x)) + a(l) + a( ) and

3 minimal among them, ua(l) 4(2) 1w(@)~ioy, 5° F, is not a p-power, A;(z') = B(z), and, by
chapter 1, I1.5.3.2(iii), (z') < % < B(x) and, if 2/ is not the origin,
d;, C 1
ioB(z") < ordy (Fj,(1,u)) + p — power) < - S +1< ((;) ,
20

where d is the degree of the residual extension. When [(z) > 1, igf(z) > i¢p which implies
o) ¢ wB@) o (x) — 1: B(a’) < B(x). When B(z) = 1, then d;, < g, if dj, = io, then, as
i0 # 0 mod (p), ord, (#) io— 1, ord, (Fj, (1, ub) +p— power) < d’od_l (') <lor

m B. In that last case, I claim that x(z’) < 1:

i9p = 1 and ¢9 = 1 is the only index with
indeed w(z) = 0 mod (p),

= /a(l)(¢/ w(x)+1+¢/ w(z) /Al(z)v2+ Z Uw(x)Jrlfju/lajqﬁ;?
2<¢j<w(z)+1
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¢py invertible, ¢ € k(2")[[u),v2]], 2 < j < w(z) + 1 and a; > jAi(2'). Then, if A;1(z') =0, f' =
u’la(l)v”(“)w mod u’la(l)H, where w = ¢v + Pjva: k(z') < 2,if Ay (2’) > 1, V(X,v,uq) =div(ui)N

{w > 0}, we “blow up V(X,v,u1) A1(2’) times”, the point y of parameters (%, U1, V2, 5y )
Uy Uy

is the only possible very near point and u’la(l)v

in every case, k(z') < 1.
If for some ig € Iy, 1 +w(x) —ip # 0 mod (p), then an eventual translation on v" will spoil

@@y mod w is the strict transform of f': k(y) < 2,

fi= 3 (1 +w(@) — ) WM P E (1, uh))
0<i<w(),b;+ci+d;=B(x)

which is the initial part of H(z’ )_1% » with respect to the valuation v which defines A; ('), ie.

v(v"*ubuh) = a + Ay(2')b. Then by the usual transformation laws on the Newton polyhedron

ol
(see 1.8.3.6), B(x') < B(A(f1;ur,ub,v")) < % + %, where d is the degree of the extension of the

Cy

residual fields of = and 2/, and, if B ¢ N, (') < %. Furthermore, if z’ is not rational over z,
BA(f1;u1, uh,v")) < B(A(f1;u1,u2,v)) < B(x). The reader will use the definition of y to see that
this inequality proves (i)(i1)(iii)(vi) in case (a).

Proof of (vii). When 0 < C(z) < 1, case (b), 8(z') = 0. When 0 < C(z) < 3, case (a) and f{ #0,
by the computations above, §(z') < % + C(f{) < 1. When 0 < C(z) < %, case (a) and f{ = 0,
then, by the computations above, we have just to consider the case 1+ w(x) — ig = 0 mod (p) and
then, 5(z") < 1 except if ip = 1 or 2. In those cases, C'(x) < % implies v;, invertible, so ig3(z') < 1,
if ig = 2, B(2') < % < 1. If i9p = 1, the hypothesis C'(x) ¢ N implies that there exists another
index i1, 2 <41 < 1+ w(z) with b;, +¢;, +d;;, =11 B(x), d;, < ilC(:U)A< 4 as f{ =0, to get the
condition I1.1(i), the translation on v’ will be w = v/ +u}“¢ with ¢ € S" and a > 1+ B(z), so will
not touch U’Hw(x)*“ul{iﬁciﬁrd”Fz»l(1,ué)u/;”, so i108(2') < 1+d;; <144 <2,50 B(z') < 1.

II.4 Theorem Let x € ¥, with x(z) = 3, (X,u1,u2,v) a r.s.p. veryfying I1.1(1), v € S and
possibly us € S if div(ug) € E. If (B <1, m(z) = 1) or (6 < 1, m(z) = 2, Ai1(x) < 1 and
C(z) < 3), then k(x) < 1.

Proof. When m(z) = 1, then as 8 < 1, we suppose €(x) = 1 + w(z), else k(z) = 2, furthermore
a(l) + 1+ w(z) = p: by a sequence of blowing ups centered at (X, uj,v), we reach the case where

When A4;(X) =0, 5 <1 gives r(x) < 2.

When 0 < 4;(X) < 1 and w(z) = e(z), then f = H(x)(v' @) ¢g +u1¢), ord, (u1¢) = w(z). If
ing(ui1¢) = )\u“f(w), A € k(zx), then apply I1.2.1.2 with ¢ = 0: s(x) < 1. If in, (u1¢) # )\u‘f(x), then
V' or U, appears in the expansion of in,(u1¢): k(z) = 2 except if E =div(ujus) and ing(ui¢) =
ULF(Uy,Us), F ¢ k(x)[U1]: then w(x) > 2 and (Uy, Uz) =IDir(z). We blow up z, the only possible
very near point is 2’ of parameters (X' = & u} = % uh = 22 o' =), f/ = H(2')(v'¢o + u}¢'):
w(z') <1 <w(z), k(z) =0.

When 0 < A;(X) < 1 and 1 + w(x) = €(x), then we blow up «: by II.1.2 V €IDir(x), for
the first chart, we get Ay(2') = B(z) — 1 < f(x) + A1(x) — 1 < Ay (x), for B(2’), when m(z) = 1,
the computations are exactly the same as in II.3(iv). When m(z) = 2, if C'(z) = 0 by IL.2(ii),
k(z) < 1, if C(x) # 0, we blow up z, the computations are exactly the same as in II.3(vii):
Ba') <1+ |C(x)] =1, A1(a’) = B(x) — 1 < Ai(z) + B(x) — 1 < Ai(x). For the second chart,
Ay (2') = Ay (2), B(a') = B(z)+ Ay (2) =1 < B(z), C(a') < 2% < 1 An induction on (4, (z), B(x))
gives the result.
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IL.5 Corollary Let x € ¥, with k(x) = 3, (X,u1,u2,v) a r.s.p. veryfying (1) and m(z) =1 and
A(H(z)71(f, g7); u1, ug; v) has only two vertices (Ay,1) and (A; + £,0), then r(z) < 1.

Proof. We make an induction on Aj.

I1.5.1 If A; > 1, then, V(X,v,u1) =div(u;) N {w > 1}: its an algebraic curve perrmsable of first
kind. We blow up this curve, as V' € W (z), there is at most one very near point ' which has
(X' = vy = wi,uy = 20" = ) for parameters. Of course, we are at the origin of a chart,

uq )
there is no translation to do, A(H (') 71(f', g'");ul, uh;v') is A(H (x)71(f, gP); u1, ug; v) translated
horizontally of —1. Of course, the monomial H(m’)qf)w’Hw(x) occurs in the expansion of f’, if
Q(2’) = Q(x), then k(2’) = 3. So we have just to start the induction. From now on, A;(z) < 1.

I1.5.2 A;(z) < 3. As (A, + £,0) is a vertex, e(z) = w(z), we have k(z) = 2 except maybe in

the case where the monomial in H(z)™'f or H(x) g which defines the vertex (4; + 1,0) is

I and (14 w(@) (A + 3) — (L w(@) = wiz), A+ 5 — 1= 20 In that case,

A(H(z)7Y(f, gP);u1, uz;v) has two vertices (%, 1) and (%,O). So in the expansion of
o
H(z)~'f there is a monomial v!T%(®) =iy, 20T 4y,
Either w(z) = 1, then V(X, v, u) is permissible of first kind, it is div(u;) N {w > 1}, we blow
it up, Uy €IDir(x), there is at most one very near point and we get

f = u/la(l)v/(a(l)+1—p)(¢ov/ i ’)’U/l),

by chapter 2 IL.5, IDir(z’) = (V' u}): k(2’) = 1.

Or w(z) > 2, then we blow up z, U; €IDir(z) and, because of v'T%(*) there is at most one

: / . 1 X ! u1 ! /] v
very near point 2’ which has for parameters (X' = =, uj = {1, u5 = uz,v" = ;). We are at the

.. . 1tw(z)—1 /i2ui(w>_l /’L'Quiw)_ +1 . .
origin of a chart, etc.... the monomial v uj 20+w@) g5 20+w@) T occurs in the expansion

of H(z')~1f’. A computation shows that iQ(LUI(ﬁ)J(;)) + ZQ(I(W(@) + 1 the sum of the exponents of

u) and uh is < i+ 1sois < i.

. . ow(xz)— . ow(z)—1
If i =1+ w(x), then, 12(1(+2)(£)) + 22(1(%1(36)) + 1 =w(z), we have
f'=H@) (oo + i), B = div(ujub)

and in, (u}¢) not colinear to U““(x), if k(z') > 2, then IDir(2’) = (U7, Uj). We remark that, as
wle)=1 _ w(@)=

the exponent 22(1+w(m)) = 5

L is integer, w(z) # 2, so w(xz) = 3. We blow up 2/, the only

/

possible very near point y has for parameters (Y = f—,/, vy = U/, , Vg = U, ,v3 = v'), the monomial
oo v’Hw(z) 5, becomes v3v9, 80 w(yY) < 2 < w(x).

Let us see the case i < w(x). If 12882(;)) —|—12(“1(f21($)) +1 the sum of the exponents of v} and u),
is < 7, then at worse, Q(z') = Q(z) and k(2') = 2. Ifz2(“i(fi(;)) —1-12(“1(3}(;)) +1 =1, theni= %,
S % € N: the exponent iz(“i(fia)) = w(ﬂ)_l is integer, w(z) > 5. We blow up z’, as U] is in

1+w(z)

its directrix and, because of the monomial ¢gv uh, the only possible very near point y has for

’

u
parameters (Y = u, T ué7”2 = ub,w =

(=)
u//) the monomial v/* <)~ ’Z2(1+w(f>)u”2<1+w(r>>+1
2
14+w(x) w(m) 1

becomes w— = wv; * wer a quick computation shows that w(z) > 5 implies that the sum of the
exponents is < w(z), at worse Q(y) = Q(x) and £(y) = 2. End of the case 4; < 3.
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I1.5.3 £ < A; < 1. Then B = A; + C + Ay > 1, this implies €(z) = 1 + w(z). By IL.1.2(1),
VeW(z). As A(H(z)" ' f + H(z) 'gP;u1, ug; v) has only two vertices (Ay,1) and (A; + 1,0), in
the expansion of

H(x)_lf _ Uw(:r:)+1¢0 + Z Uw(w)—i—l—iul{iugiwi’

1<i<l4w(z)
for some i =1ig, 1 < ip < 1 +w(z),
ul;lo uy Oy = (Y + Q,Z)’)uzloAl—Ir 2+ invertible (a)
with 9" € (u1,ug) or
wlx 1+w(x)
H(x)flgp :'yu§1+ @) A+ =5 (b)

We blow up z. As 1+ w(zx) # 0 mod (p), the monomial H(z')¢ov't¥(®) cannot be destroyed by a
translation on X': Q(2') < Q(zx), if equality, x(z') = 3.

I1.5.4 Let us look at the first chart of origin the point (X’ = X u} = uy,uf = %20 = 2.

Ul

H(x/)flf/ — U/w(:c)+1¢o + Z U/w(z)—i-l—’iuabi-l-ci-f—di—’L'(\Ili(17u/z) + ’U,iwg),
1<i<14w(x)

in case (b), ord, (H(2')"'¢") = (14 w(z))(41 — 1) < w(z), there is no very near point in this
chart.

From now on, we are in case (a). For ¢ with b; + ¢; + d; = iB (notations of I1.3.1), as the

i 1
initial side of A(H (x)~!f;u1, us;v) has only (A; + %,O) for vertex: ¢; = 0, ul{\lll = %ul(AﬁQ), i
invertible,
o ORI (1 ) ) = 0T TE (g ). (1)

Asi(A; + %) is an exponent in the expansion of H(z)~!f, it is an integer, say N. So 24; +1 = %
As A1 <1,241+1< 3,80 N < % Then, the sum of the exponents

1 3 .

w($)+1—i—|—i(A1—5)zw(x)—i—1—i+N—i<w(Jc)+1—|—5Z—2i:w(m)+1—%. 2)
If there is some i > 1 with b; + ¢; + d; = iB, w(z) + 1 —i 4+ i(4; — 1) < w(x), in the expansion
of f’ appears the monomial P)/H(a:’)v’w(x)ﬂfiu’lb of (1), with b = i4; — & < i — 1. Either this
monomial is not spoilt by a translation on X’ and w(2’) < w(z) or it becomes H(a:/)v’w(x)ﬂﬂu’lbw
and, because of %, w(z') < w(x). When ¢ = 1 is the only index with b; + ¢; + d; = iB, then
A = %, in the expansion of f’ appears the monomial ’)/H(:E,)U,w(z) = u’la(l)+w(r)+1_p7v’w(m) of
(1). Either w(z) # 0 mod (p) or a(1) +1 # 0 mod (p), then this monomial cannot be spoilt by any
translation on X', and w(z’) < w(z) if w(z) # 0 mod (p), at worse Q(z') = Q(x) and k(z’) = 2 if
a(l)+1# 0 mod (p). Or w(x) = 0 mod (p) and a(1l) +1 = 0 mod (p): this implies that ¥ € k(z)
is not a p-power: if 2’ is rational over x, the monomial cannot be spoilt by any translation on X’,
we conclude as above. Or by a translation, this monomial becomes u’la(l)“’(m)“*p vy where
w € k(x)[ub] is a parameter at x’, then, after translation, as there is no other possibility for i, f’
becomes

F = H($/)(U/1+w(x)¢0 + U/w(m)w + u/lgb) _ H(ZL‘/)(’U/UJ(JE)Z + u/1¢)’z = w + Gov,
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by chapter 2 IL.1, we have at worse Q(z') = Q(x) and k(z') = 2.

I1.5.5 £ < A; < 1, origin of the second chart: the point (X' = £ uf = wouy = ug,v =
+>). Then H(a') = W My ? TP By the usual transformatlon laws A(H(z") 7L +

H(z')"'g'";uf, ub; ') has only two vertices (A;, A1) and (A; + 3,41 — 1). As 24; > 1, we have
e(z') > 14+ w(z). We blow up . As Ay (2)) = Ay (x ) > 0, then Vv GIDlr( ). Let us look at the

first chart of origin (Y = - vy = uj,vy = Z, S = u—) We call y the point we consider in this
1

chart: y is assumed to be Very near to x. If y is the orllgln, then by the usual transformation laws,
Cy) =0, A1(y) = B(z') =241(z) — 1 < 1, As(y) = A2(2’) = 0: by I1.2, k(y) < 2.

From now on, va(y) # 0. As 1+ w(z) # 0 mod (p), the initial form of H(y)dev'++*) will not
be spoilt by any translation on Y: x(y) < 3. In the expansion of

H($/)_1f/ — U/w($)+1¢0 + Z /w(m)+1 i /bz /C d/ _ OI‘d (sz) )
1<i<l4w(x)

there is a monomial defining the vertex (Aj, A1), so for some i = i1, 1 <143 < 1+ w(x),

c; 1A cl .
Pruh gl =l (W (), uh) + ¢), @ € (uh,uh) ™t dl +, =iAn, (a)
with ¥} homogeneous of degree d; or

H(x)_lgp _ ’yu'l(l—w(r))Alué(1+w(x))Al. (b)
In case (b), H(y) 1g"" = yo?M " D0T@) 04, —1 < 1, ord, (H(y)"'¢"") < w(z): at worse,
w(y) = w(z) and w'(y) = 1 < w'(z): y is not very near to z.

From now on, we are in case (a).

H(y) ' f = w*@go+ Y w0 iy Wi S (W (1, uh) + v1¢5).
1<i<l4w(z)

for i = i, ww(m)+1—iv1bé—f—c;—&-d;—iuéc; \I];(l, 'LLIQ) — ww(z)+1_i11}1i1(2A1_1)ul26;1 \Ijgl (17 'U,/2>

Case where 24; = 1: w@@+1=ly WCA=Dy %! (1 0h) = wo@F=0y, W) (1,uh). If 1+
w(z)—i1 # 0mod (p) or a(l)+a(l)+w(z)+1—p+is #0 mod (p), a translation on Y will not spoil
w@OF=hy b Wl (1, uh), ord,y, (ub ™ W (1,ub)) < df +¢), = 2, s0e(y) < 1+w(z)—ir+% < w():
at worse, Q(y) = Q(z) and x(y) = 2. If uh(z’) = 0, we are at the origin of a chart: there is no
translation to do, we conclude as above. If 1+w(z)—i; = 0 mod (p) and a(1)+a(1)+w(x)+1—p+
i1 = 0mod (p) and u}(z’) # 0, a translation on X’ may add a p-power to w* @10y, 0 W (1, 1)),
by chapter 2 TL5(ii), the D(H (a/)u; 1 ub™ W) ) = D(u;*Dup®WHH@ =Py by ety ) D eD

. ra(l) 4 a(l)—i—l—i—w(z) —p U b,y ; th
are not all proportional to u} "’ u5 uy rugdy,

-power, or \Ifgl is a monomial, so,
after an eventual translation, w®® 1=y, W} (1,u4) which will become w*®H1=l14/pe g <
d; + ¢ =4, + invertible, we conclude as above. 4

% < A;. For our index i1, 5 < i1A; = b;l € N, so iy > 3. Further-
=24; -1 > 0: B—1 ¢ N, so w@H=hyaCA=Dy P! (1,u)) =
w*@H1=hy %! (1, uh) will not be spoilt by an eventual translation on w, after an eventual trans-

lation on Y, w“’(“’)H*ilu’Qc;l W’ (1,ub) which will become w*(@F1=11~/pe a < d] +c} +1 =2 +1,

From now on,

more, 1 > B —
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v invertible: ((y) < %—i— % <
of the second chart above z’.
I1.2, x is good.

3+ 3 < 1. By IL.4, (x) < 1. Finally, we have to look at the origin
Then C(y) = 0, A1(y) = A1(z) < 1, As2(y) = 2A:(x) — 1 < 1: by

I1.6 Theorem Let x € ¥, with k(z) = 3, (X,u1,u2,v) a r.s.p. verifying IL1(1), v € S and
possibly us € S if div(ug) € E. If C(x) =0, then k(x) < 1.

Proof. Let us recall that, by I1.2, if e(z) = w(x), or (A; < 1 and Ay < 1) k(z) < 1. So, we suppose:

e(x) =14 w(x), Ay > 1or As > 1.

I1.6.1 Case a(1) + 1 + w(z) < p and a(2) + 1 + w(z) < p. Let us denote H(x) = u‘{(”u;(”, then

ord, (H(z)f) = p, so a(l)a(2) > 0: E =div(ujus). So u; and us play the same role. As C(x) =0,

we have A; > 0 for some ¢ = 1,2, by I1.1.2, V €IDir(z). Let us blow up x. in the first chart of
u U

s o X _ [ N
origin (-, u1, 2, ) = (X', uj, uy,v"), we get

= ot OF @ @) @) 1te@) g Ly

If uh(2") # 0, then ord,  (f') < p. If uy(z’) = 0, the reader sees that x(z') < 3, if 2’ is very near to
z, a(l) +a(2) + 1+ w(x) —p < a(2), C(z') = 0: an induction on a(l) + a(2) gives the result. By
symetry, it is the same thing in the second chart.

I1.6.2 Case 1 +w(x) > p. If A; > 1, V(X, v, uy) is permissible of first kind, it is div(u;) N {w > 1}:
it is not formal, we blow it up, the point ' of parameters (%, U1, Us, u%) is the only point which
may be very near to z, if it is, then x(z’) = 3, A1(2’) = A1(x) — 1, Ax(2") = Aa(z), C(2') =0, we
get the result by induction on A;. If As > 1 and div(uz) C E, mutatis mutandis, it is the same
thing. If As > 1 and div(ug) € E, then ¢(Y) = w(z) where Y =V (X,v,u2) € E: this contradicts
the cleaning condition of chapter 1, this case is impossible.

I1.6.3 Case 1 + w(z) < p and there exists i € {1,2} such that a(i) + w(x) +1 > p. Then a(i) > 0,
so div(u;) € E. We make a descending induction on

(sup(4;), sup(a(j)), n)

where n is 2 if (A1, a(1)) = (Az2,a(2)) (= (sup(4;),sup(a(j)),n)), else n = 1.
I1.6.3.1 If there exists ¢ € {1,2} such that

a(i) +w(x)+1>pand A; > 1, (1)

we blow up V(X u;,v). If both ¢ =1 and i = 2 verifies (1), we choose i with A; maximal. Mutatis
mutandis, ¢ = 1. Then the point " of parameters (%, ur, uz, o) = (X', uj, uy,v’) is the only point
which may be very near to x. The reader sees that x(z’) < 3, if 2’ is very near to z, C(z') = 0,
Ai(z') = Ai(z) — 1, a(1)(2') = a(1)(z) + 1 + w(z) —p < a(1): (sup(A4;),sup(a(j))) strictly drops,
except if Ag(x) = Ai(x), a(l) = a(2) where n becomes 1.
I1.6.3.2 The remaining case. Then for all ¢ € {1,2} such that a(i) +w(x)+1 > p, A; < 1 and there
exists such an 4. So div(u;) C E, mutatis mutandis, ¢ = 1. Then, Ay > 1 and a(2) + w(z) + 1 < p.
I say that

E = div(ujus).
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Suppose E = div(uy). If g = 0, then, as Ay > 1, ¢(V(X,u2,v)) = w(x) + 1, (X, uz,v) D J(f, E),
this contradicts the cleaning condition of chapter 1. If g # 0, then H(z) 'g? = yu¢, a € N, so
As = 0 which contradicts A3 > 1. We blow up =z, let us look at the first chat of origin the point
of parameters (f (e 171’ u%) = (X', u},ub,v"). If 2’ is the origin, then the reader sees that (cf.
I1.3) that x(2") < 3, if 2/ is very near to z, C(z') = 0 and A;(2') = A1(z) + Az(z) — 1 < As(x),
Ax(a') = Ax(z), d/(1) = a(l) + a(2) + w(z) +1 —p < a(l), ’(2) = a(2): (sup(A;),sup(a(j)))
strictly drops. If u)(2") # 0 then m(z) = 2 and m(2’) = 1, by I1.3(vii), I1.4, k(2’) < 1. The last
point to look at is the point 2’ of parameters (% u—l ) = (X', u},uh,v"). The reader sees

that (cf. IL.3) that, if 2’ is very near to z, n(m’) < 3, ( 3) =0 and A;(2") = A1(x) < As(x),
As(z') = A1(z) + Ag(x) — 1 < Aa(x): (sup(A4;),sup(a(j)),n) strictly drops.

I1.7 End of the story

We make an infinite sequence of blowing-ups X; < X;y1 of (uy,us) for a suitable choice of
parameters verifying (1). Let x; € X, the centers of the valuation p we are uniformizing. We are
going to prove that there exists some i such that k(z;) < 2. That will end the case x(x) = 3. By
I1.3(i), for i >> 0, y(z;) = Y(«i4n), n > 0. Let us call y(u) this value (which depends of y and of
choices among the possible uy, us).

I1.7.1 m(xz;) = 1 for i >> 0. Either g # 0. If, for some i, 3(z;) = 0, then C(x;) = 0, by II.2,
k(x;) < 1. If, for all 4, B(z;) > 0, then the sequence A;(x;) € WN strictly increases, but,
as g = u{ in x;, and that u; belongs to the choosen parameters of x;4+1, ¢ = u{ in x;41, but
Ai(x;) < ord(H(z;) 1gP) < Truge) this is impossible for i >> 0. Or g = 0. Either for all i
there exists j > ¢ such that x;, is not rational over x;, then, by IL.3.2, we reach the case where
B(x,) < 1 for some n, by II.4, k(x,) < 1. Or z;y; is rational over z; for i >> 0. As in the

corresponding case of r(x) = 2, there exists v =u2 + ;5 A} € ug + k(x)[[u1]] such that @, 4,

is on the strict transform of v in X,,,4,: we have (ul,uQ)E; = (ul,v)gn\o. The proof runs along
the same lines. So let us choose (X, u1,v,us) as r.s.p. of x,,, let us make a well preparation: we
get (Y, uq,v,w) as new well prepared r.s.p.. Then, in the sequence of the first line of I1.7, we stay
on the strict transform of v, the parameters at z,,; are (Y, uq, u%, w) and as we are at the origin

of the first chart in all the blowing ups, (Y, u1, 27, w) is well prepared, so, for i >> 0, C(z;) = 0,
1
by IL.6, k(x;) < 1.

I1.7.2 v(p) > 2. Then, by I1.3(%)(v): m(z;) =1 for i >> 0, x(x;) < 1.

I1.7.3 v(pn) = 1.

I1.7.3 (i) v(u) = 1, m(z;) = 1 for i >> 0. Go to IL.7.1.

I1.7.3 (ii) v(n) = 1, m(z;) = 2 for i >> 0. We are always at the origin of a chart, so, as seen many
times, for i >> 0, C(z;) = 0, by IL.6, x(z;) < 1.

I1.7.3 (iii) v(u) = 1, there is some ¢ with m(z;) = 2 and C(z;) < %

m(z;) = m(zip1) = ..m(ziy;) = 2, m(ziqj41) = 1. Then 3 > C(z;) = C(mig1) = ... = Clzig).
By IL.3(vii) and I1.4, k(x4 ;11) < 1.

I1.7.3 (iv) v(p) = 1, there is some ¢ with m(z;) =1 and B(x;) < 1: by IL.4, rx(x;) < 1.

I1.7.3 (v) v(p) = 1, there is some ¢ with m(x;) = 1 and §(z;) = 1. If we are in case IL.7.1, we
are done. Else let j € N such that m(z;) = m(z;y1) = ...m(zi1;) = 1, m(xiyj41) = 2. If there
exists u, 0 < u < J, B(Titu) =0, £(zi4y) < 1. If not, then 1 = f(z;) > B(xiz1) = ... = Bwiy;). If
1> B(%H) go to II.4. If 1 = B(zit;) and A(H (z45) " fi;u1, ug;v) has only two vertices (A, 1)
and (A1 + 3,4, — 1), then by IL5, k(z;y;) < 1. If not, then by IL3 (iii), C(ziy;) < 3. Go to
11.7.3 (zzz)

118



The reader should be convinced that all the possible cases have been seen.
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IIT End of transverseness.

We conclude the analysis of those cases of transverseness where cl,,;)J(f, ) is not contained
in the ideal ({U; | div(u;) C E'}). This is formalized in definition II1.2 below.
Now that the main cases k(x) = 2 and k(x) = 3 have been dealt with, reduction to k(z) < 3

(propositions ITI.5 and III.6) is based on the following lemma which is an extension of proposition
I1.1 of chapter 2.

II1.1 Lemma. Assume that E = div(ujusz), €(z) = w(x) and f = H(m)()\uf(x) + ug1)), where
A€ k(z), A #0 and ord,, (v mod(ui,us)) = w(x). There exists a sequence of permissible blowing-
ups,

X=X X1 =X,

such that either x,, is not very near x or (QU(z) = Q(z,) and k(z,) < 3), where x,, € X,, is the
center of L.

Proof. Note that x(x) = 2 except possibly if cl,;)—1% € k(x)[U1, Uz], which we assume from now
on. We then have VDir(z) C< U, Us >, VDir(z) # k(x).Us. We have k() < 1 if w(z) =1 by
I1.1(iv) of chapter 2, so assume that w(xz) > 2. Let e : X’ — X be the blowing up along = and
2’ € e~!(z) be very near .

We first consider the case when 2’ = zj = (X' = - uj} = {T,uy = 2,u3 = ug), so
E' = (e E)req = div(ujubuly). We are at the origin of a chart, so A(h/;u}, ub,ub; X') is minimal.
In the expansion of H(z')~!f’, there appears the monomial u)uj with nonzero coefficient. Since
x’ is very near x, we have w(z) = 2 and there is an expression

W= clp(H (') ") = AUT® + MULU; + AolU3” + AsU3U3,

where A3 # 0. By lemma II.1.5 in chapter 2, we have 7(z') = 3, so k(z) = 0.

We now discuss according to VDir(x) and consider three cases.

Case 1. If VDir(x) =< Uy, Uy >, then 2’ = z{, since 2’ is very near z, so the proposition holds.

Now if VDir(z) #< Uy, Uz > and 2’ # (), then 2’ is in the chart with origin (X' = %,u’l =
wouhy = ug,uy = 42), so B = (€ E)rea = div(uju).

Case 2. 1If VDir(z) = k(z).(Uy + aUs) for some a € k(z), a # 0, then 2’ = (X',v :=
uj + o, ub,w’ = P(1,u})), where P € k(x)[uz,us] is homogeneous and unitary in uz. We have
ord, () (u2v) = w(x) and

o) J(f, B, 2) = k(2).(Us + alz)*®)

by assumption, so v'“*) € J(f', E") + (uhy). Since w’(z) = 2 and z’ is very near x, after possibly
performing a translation Z’ := X’ — 6’ in order to get A(h';v’, uy, w’; Z') minimal, f’ being changed
into f, = f'+ 0" —0g""t, we get

o L' = D'fy € J(fE) (1)

for some ¢’ € §" ~ k(z')[[v/, ub, w']].

If D'f},, € J(f',E',2"), we have r(z') = 2. If k(z") # 3, it can be assumed that D’ = 3‘1, in
(1), we have w(x) = 0 modp, in which case k(z) = 2if e(2’) = 1+w(x). Finally, if e(z") = w(z), then
a’ satisfies the assumptions of chapter 2 II.1 (w.r.t. the r.s.p. (Z’,ub,v',w’)), whose conclusion
gives k(z') < 1.
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Case 3. If VDir(z) = k(z).Uy, then 2’ = (X', u},ub,w’ := P(1,u})), where P € k(z)[uz, us)
is homogeneous and unitary in ug. Moreover, we have ord, ) (uz2t)) = 1+ w(x). Let uy "h =:
X'P — X’g’p_1 + f"and ¥ := cl,(;)%. After possibly performing a translation Z’ := X' — 6’ in
order to get A(h';u}, ub,w'; Z') minimal, f’ being changed into f4, := f' + 6" — 0'g’""', we have
an expression of the form

f/Z’ _ ulla(l)ul2a(2)+w(r)—P()\/ullw(I) + ul2¢/)’

where either ' or 32},, is a unit and ord, () (u5y’) > w(x), since 2’ is very near x. Note that the

form Uf(l)Ug(z)H\Il(O, Uy, Us) is not a pt"-power, since A(h;uy,us,u3; X) is minimal. We apply
theorem I1.5.3.2(iii) and (iv) of chapter 1 to the form US(Z)H\II(O, Us, Us), which yields
ord, ) (¢" mod(u})) < deg¥(0,Us, Us) = w(x), (2)
with equality only if 2’ is rational over x. Note that x(z’) = 2 if inequality is strict in (2), since
then Clw(x)f/Z/ ¢ k‘(l‘/)[U{, Ué]
There remains to study the equality case in (2). Since z’ is rational over x, A\’ is a unit in
this case. After possibly performing a linear change of coordinates w := uz + pus, followed by a
translation Z := X — @ in order to get A(h;uy,us, w; Z) minimal, it can be assumed that a’ is the

origin of the chart, the assumptions in the lemma remaining unchanged. Then A(h/; v}, ub, w'; X7)
is minimal and 2’ satisfies the assumption of the lemma, i.e. we can iterate the argument. Let

Xq = Spec(R'/(h’)) — Xg— o= X —

be the quadratic sequence along p. Since

the center x,, of u in X,, is either not very near z, or has k(z,) = 2, or is in case 1 or 2 above for
some n > 0 and the conclusion follows.

IT1.2 Definition. We say that k() = 4 if cly@)J(f, E) € ({Us | div(w;) C E}).

II1.3 Definition. Assume that k(z) = 4. We say that x is good if there exists a sequence of
permissible blowing-ups,
X=Xy X1 =X,

such that either x,, is not very near x or (Q(x) = Q(z,) and k(z,) < 3), where x,, € X,, is the
center of .
We do not suppose x(x;) <4 for 1 <i<n.

ITI1.4 Definition. Assume that k(x) = 4. We let

T(x) := 1(cly@)J(f, E) + ({U; | div(u;) € E})) > 2.

II1.5 Proposition. Assume that k(z) =4 and 7(x) = 2. Then x is good.
Proof. Since 7(x) = 2, we have £ = div(u;). Let F}; := clw(w)(H(x)_lngj), for j =2, 3.

121



IT1.5.1 If €(z) = 1 + w(x), then after possibly relabelling (us,us3), we may assume that Fy & (Uy).
If F5(0,Us,Us) € k(z)[Us], we have k(x) = 3. Otherwise, since 7(z) = 2, we have

F3(0,Uz, Us) = pa(Us + ally)“@

for some a,puy € k(z), o # 0. Once again, k(z) = 3 if a # 0, so assume that & = 0. Since
7(z) = 2, we have F3(0,Us, Us) € k(z)[Us], whence w(z) = 0 modp and this proves that x(x) = 2.
II1.5.2 If €(x) = w(x), we write f = H(z)(¥ +1), where ¥ € k(x)[u1, uz, us)w(z) and ord, ;)1 >
14w(z). Let ¥y := clyt(m)th1. We have k(x) < 2 whenever cly,(,)(H(2)"'Df) & k(x)[U;] for some
D € D(zx). Thus it can be assumed that VDir(xz) = k(z).Uy, so ¥ = )\u;‘}(m) for some A € k(x),
A # 0. Since 7(x) = 2, we have k(z) = 3 as in IIL.5.1 except if F5(0,Us,Us) = ,ugUg‘)(z) for some
wo € k(z), pa # 0, and w(x) = 0 modp, which we assume from now on. Note that the monomial
UUy (@) necessarily appears with nonzero coefficient in the expansion of ¥j.

Let e: X’ — X be the blowing up along x and 2z’ € e~!(x) be very near x. Since VDir(x) =
k(x).Ur, ' maps to the strict transform of div(uq).

We first look at the point 2’ with coordinates (X' = %,u’l = tyuy = 2,uj = ug), so
E' := (e7'E);eq = div(uju}). This is the origin of a chart, so A(h/;u},ub,ub; X’) is minimal,
where b/ = vy "h = X' — X'g" ' 4+ #. In the expansion of H(z")~1f', there appears the

. . . _10f
monomial uyus with nonzero coefficient, so w(x') < ord,y () (H (') 165,2) =1<p<w:a
contradiction, since 2’ is very near x.
We now consider the case where ' is in the chart with origin (X’ = u%, uf = e uh = ug,ufy =

w2),s0 B = (€1E)req = div(ujub). We have

—wl(T — a
O @ e ),
8UQ
where I/ :=u, Ph=X"" — X'g’""" 4 f'.
We pick P € k(z)[uz,us] homogeneous and unitary in ug such that 2’ = (X', uf,ub,v" =
P(1,u})). After possibly performing a translation Z’ := X’ — 6’ in order to get A(h/;u}, ub,v'; Z")
minimal, there is an expression b/ = Z'* — Z'¢’"~" + f},, with

—w(z 10 ’ ’ /
O 1@ 2L g B 4 (),
Bug

since ord,(;)g? > ord, (4 f-

If 2’ is not rational over x, we have

—w(T — a
ordn/(a:/)(u'z ( )+1H($) 181},f2) < 1+ w(2$)7

so w(z') < w(zx) except possibly if p = 2 = w(x). In this last case, since w(z') = w(x) = 2, there is
a derivation D’ € D’ such that

cL(H(z)ID fy) = pULV' + UL + UL,

where p,v € k(z'), u # 0, and V' € k(z))[U5,V']1. As p = 2, D' # -2, and we thus have

ov’
H(z)7'D'f},, € J(f4,,E' 2'). Sow(z') < ordn/(z/)(H(x’)_lgi,) = 1: a contradiction. This proves
that z’ is rational over x.
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If 2’ is rational over z, then after changing us into v := ug+pusg for some p € k(x), followed by a
translation on Z := X —6 in order to get A(h;uy,u2,v; Z) minimal, it can be assumed that z’ is the
origin of the chart, the assumption in the proposition being unchanged. Then A(h';u), u), ufs; X7)
is minimal and we have

f = ulla(l)u/za(l)er(x)*p()\ullw(w) + uh).

Since the monomial UsUs’ (@) appears with nonzero coefficient in the expansion of ¥y, 2’ satisfies
the assumption of lemma III.1 and the conclusion follows.

ITI1.6 Proposition. Assume that k(z) =4 and 7(x) = 3. Then x is good.

Proof. If E = div(ujusg), then k(z) € {2,3} (resp. k(z) = 3) ife(x) = w(z) (resp. if e(z) = 14+w(x)).
We assume from now on that £ = div(uy).

IT1.6.1 If €(x) = w(x), we write f = H(z)(¥ +1), where ¥ € k(x)[u1, uz, us)y(z) and ord, ;)1 =
I +w(x). Let ¥y := cliju@¥1r = Q(U2,Uz) + UiV¥y (U, Uz, Us). We have s(z) < 2 unless
VDir(x) = k(z).Up, i.e. ¥ = )\Uf(x) for some A € k(z), A # 0. Since 7(z) = 3, we have

9Q 9Q

Dir( 22 9
v 11”(aUz’aUg

) =< Uy, Us > . (1)

Let e : X’ — X be the blowing up along z and 2’ € e~!(z) be very near z. Since VDir(z) =
k(x).Uy, ' maps to the strict transform of div(u1). By symmetry, it can be assumed that 2’ is in
the chart with origin (X’ = %,u’l = tup = ug,uy = %), s0 B = (€1 E)req = div(ujub). We
have of of

1 —w(z)+1 -1 I
U H(x —, — ) CJ(f,F),
2 ( ) (auz 8“3) = (f )
where b/ == u}, Ph = X" — X'¢"*"' 4 f'. We pick P € k(z)[uz, us] homogeneous and unitary in us
such that «’ = (X', v}, ub,v' := P(1,u})). After possibly performing a translation Z’ := X’ — 6’ in
order to get A(h';u}, ub,v'; Z') minimal, we have an expression h’' = Z'% — Z'gP 4 f%, with

; —w(x 1,0 9 ! / Ll
Uy ( )HH(w) 1(352’812) € J(fz, E) + (ujuy), (2)

since ord,(;)g” > ord, ) f. By (1), we have

W @) G 2Dy = e modubu u), Q

where +/ is a unit, since 2’ is very near x.

If w(z) =1, (2) and (3) imply that (u5) C J(f7,, E’). On the other hand, we have
ub T I(f, B x) = (1)) mod(ub).
Since H(z")™1 f}, € (u},uh), we get
(ur,up) = J(fz, B) = J(f7, E',Y')
where Y’ := V(Z',u),u}) . This property implies in particular that Y’ is permissible of the first
kind since H(z')~'f,, € (u},u}) and that no point of the blowing up of X’ along Y is very near

x’, so x is good by 1I.5.4.2 (ii) of chapter 1.

123



If 2’ is not rational over z, then

—w(z 4, 0f Of w(x
ord,y () (us ()HH(fU) ! Duy’ Ous < (2)

so w(z') < w(x) except possibly if w(x) = 2 and [k(z') : k(x)] = 2. In this last case, one contradicts
the assumption that 2z’ is very near = as in the proof of IIL.5 if p = 2. If p > 3, we have k(a’) = 2
if clo(H(2')71f%)) & k(2')[U7, Uj]. Otherwise, we have

_10f
ov'’

cly(H (a') ) = uU3V' + 005" + UL,
where p,v € k(z'), p # 0, and V' € k(2')[U},V'];. Since p > 3, k(z')/k(x) is separable, so
MNH (2 u® & (k(a") [}, uh]])? since AH (z)u? & (k(z)[[u1, uz]])P. Hence 2’ satisfies the assumption
of lemma ITI.1 and the conclusion follows if 2’ is not rational over .

Assume now that z’ is rational over z. After performing a linear change of coordinates on
(ug,us), followed by a translation Z := X — 6 in order to get A(h;u1, us,us; Z) minimal, it can be
assumed that 2’ is the origin of the chart, equation (1) remaining valid. Then A(h';u), ub, us; X7)

is minimal and we have
f/ — u/la(l)uéa(l)+w($)*lﬂ()\u/lw(93) 4 ul2¢/) (4)

It can be assumed that cl,(,)(usy’) € k(2')[U, Uy], since otherwise x(x) = 2. By (2) and (3)
above, we then have
L0 _

_ rw(z)—1
= UoU
/ 293
ous
/

H(a') mod (uf, uj”), (5)
so in particular w(x) Z 0 modp and z’ satisfies the assumption of lemma IIL.1, from which the
conclusion follows.

IT1.6.2 If e(x) = 1+w(x), then, after possibly performing a linear change of coordinates on (us, us3)
and a translation Z = X — 6 in order to get A(h;uy,us,us; Z) minimal, it can be assumed that <
Us,Us >C VDir(x), since 7(z) = 3. We are done if 7(z) = 3, so assume that VDir(z) =< U, Us >.

Let e : X’ — X be the blowing up along = and 2’ € e~!(z) be very near x. Then 2’ has

coordinates (X’ = %,u’l =ur,uy = 32, uy = ) and we have £’ := (€71E)req = div(u}). This is
the origin of a chart, so A(R/;u), ub, us; X') is minimal, where b/ := v} "h = X" — X'gP
If e(2’) = w(x’), we are done by III.6.1. Otherwise, we have e¢(2’) = 1 4+ w(z’) and 7(2') = 3, so
we may iterate. Let

X=Xge Xg o em X, e e

be the quadratic sequence along p. If z is not good, we build up a formal curve C := V()A( ,Uh, ),

X =X- Y ons1 At and W= uj — Y, < figjuy for j = 2,3 such that the center z,, of p in X,
lies on the strict transform of C. Since X(X) C 7 'E and C ¢ E, x,, is a regular point of X,, for
n >> 0: a contradiction.
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CHAPTER 4: Resolution when there is tangency

In all this chapter, we assume that € ¥, Q(z) = (w(z),2) and that the r.s.p. (X, u1, ug,us3)
of R is such that E C div(ujusus) and the polyhedron A(h;u1,us, us; X) is minimal.

I Case sk(z) =5

This case is very closed to k(z) = 2, the invariants are the same, up to a permutation on the
indices of (u1, us,us) and the fact that w; which, for k(x) = 4, plays the role of us for k(z) = 2 may
divide H(z)~'gP. There is a fantastic simplification: div(u;) has mazimal contact for r(z) = 5.
This assertion will be precised in I.3.

I.1 Definition of k(z) = 5. We say that k(z) =5 if Q(x) = (w(x),2) and div(u1) C E and there
is a derivation D € D with H(x) " 'Df = u‘f( )mod(u2,u;),) where, if D(ON) ¢ M, e(x) = 1+ w(x).

As usual, assume that k(x) = 5. We say that x is good if there exists a sequence of permissible
blowing-ups,
X::Xo(—X:l(—"‘(—Xn

such that either x,, is not very near x or (QU(x) = Q(z,) and k(z,) < 4), where x,, € X,, is the
center of .
We do not suppose x(x;) <5 for 1 <i<n.

1.2 Notations We say that (X, u1, ug, ug) is prepared if the polyhedra A(h; uy, us, us; X) is minimal
and u; € S when div(u;) C F, E Cdiv(ujugus).

There are three different subcases:
case (*1): D(OM) C M, m(z) =1 or m(x) = 2,
case (*2): D(OM) C M, m(z) = 3,
case (*3): D(IM) ¢ M.

When m(x) < 2 (cases 1,3), we suppose E Cdiv(ujus). In all cases, H(x) 1 f = u‘l"(m)cbg mod (usz, U3)I
with ¢g € S. In the first and second cases, ¢p is invertible. In case 3, D(¢g) invertible, we choose
the indices so that £ Cdiv(ujug): ¢o = y1u1 + Yous + ysus, v; € §, 1 =1,2,3, v3 invertible and
diV(Ug) ¢ E.

We make the following expansion:

H(a)7' f = uf™ g0 + Z uy O (uz, us),

1<i<w(x)

where ¢;(u2, us) € k(z)[[uz, us]], 1 <i < w(z).

We set H(x)™g? = qufubus, ¢ = uyus" s, 1 < i < w(e), diluz,us) € k(a)[[uz, us]),
1; = 0 or divisible neither by us, nor by ug, v = 0 or ~ 1nvert1ble, d(7) = ord(uy,uq) (V). If ¥; =0,
by convention, b(i) = c(i) = d(i) = oo

I.2.1 Cases (*1) or (*2).
As for k(x) = 2, we set

If a <w(z),
Ay = inf {w(m) - ,@ , 1 <i<w(x)},
As = inf {w(x) - ,@ , 1 <i<w(x)},
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—1.p )
= inf {2 (00" o@D 1 < < u(a)},

1A
if Ay — ﬁ; 3 := inf {w(m) . ordu3(¢milod Usy 2)’ 1 <i<w(@)},
1A
if Ap # b=y, fo= inf {20l D) 1 i Cw(a)).
If a > w(z) (for example, if g = 0),
Ay = inf {@ , 1<i<w(z)}, A3 =inf {@ , 1 <i<w(x)},
B:inf{w’ 1<i<
1A
Bi=inf {2dal@med D) < < w(x)).
With the convention ord,, (¢;) mod uéAQ = 400 if M > As.
In every case C':= B — Ay — As.

I.2.2 Case (*3).

If a < w(z),
Ap = inf {w(m) a b(;) , 1<i<w(z)}, A33 = inf {w(z) a) C(i)fl , 1<iSw(@)},
B3 = inf {9020 2aen@OZ0 ) < < w(a)),
1f A2 w(z) _, 53 _1nf{ w(r) a’OI‘d1L3(¢szZ)du 2) 1 1 < <w< )}’

if Ao 7£ m7 (3 := inf {Ordu3(¢zm<;d u2 2)—17 1<i< UJ(ZIZ)}
If a > w(z) (for example, if g = 0),
Ay =inf {2 |1 < <w(@)}, A3 = inf {9971 1 <i<w(a)),
B3 = inf {292 @71 1 i ()},
i A
33 := inf {Ord“?’(@m?d 2 2)_1, 1 <i<w(x)}

In every case, we call iy or i1(z) the smallest i, 1 < i < w(z), such that the monomial
w(@) =t lAl(m) 1’83@) appears in the expansion of H(z) !g” or of H(x)~!f with
H(2) N (2)—i,iA; (2),iB3(z) U1 o) 1,41(1) ui ™) not a p-power, Nos(2)—i,iAq (2),i83(z) € k(x) —{0}.

1.2.3 In cases (*1)(*2) (resp. (*3)), the vertices of the side of points z = (o, x3) of A(H (z)~1(f, gP); u2, uz; u1 )
(resp. A(H (z)  uy ' (f, gP); ua, us;uy)) of equation @y + x3 = B (resp. xo + x3 = B3) are denoted
(a2, B2) and (as, fB3) , as < ag (resp. (@32, 332) and (a3s, 433), @32 < a3s).
Obviously, C, Aj, ig, B and 3 depend on the choice of prepared r.s.p. (X, u1, ug, ug), if there is
no possible confusion, we write C' or C(x) instead C(uy,u2,v), A; or Aj(x) instead of A;(u1,uz,v),
7 =2,3, etc.

)‘w(czz) i,iA1 (), zﬁ3(m)u1

1.2.4 Let y(uy,ug,us) = sup([F],1) in case (*1), v(u1,u2,u3) = 1+[C] in case (*2), v(u1, u2, us) =
1+ |B3] in case (*3). We note () = y(u1, uz, ug) for short.

1.3 Theorem Assume k(x) =5 and k(x) > 4. We blow up the origin, then all &' above x with
k(") = 5 are on the strict transform of div(uy).

Furthermore, x is good or,

for all these x’, k(x') =5, and we have 1.2 for some r.s.p. at &' of the form

(X, = (X/ul) + ui97u1/uivuiaP(lvuj/ui»v 0 e §/7 {17‘7} = {273}7 P e k(x)[U% U3]
P homogeneous and irreducible.
Moreover, if x is in case (*1) or (*2) and (a(1) +w(z) # 0 mod (p) or a(2) + a(3) # 0 mod

(p) or (x in case (*1) and x’ separable over x)), then =’ is in case (*1) or (*2).
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Proof. Assume 2’ is very near z is not on the strict transform of div(uy), then u;w(w)H(x)_lDf €
J(f', ENmod(uy), j =1,2,3, as ing(H(2) ' Df) = Uy + Ty iy Ur' ' Fi(Ua, Us),

u;w(m)H(:U)’lDf = @) 4 Zlgz‘gw(w) v @)=l where X /u;, v, w,u; is a r.s.p. at 2’ and v
transverse to E’: then x(2’) < 4. From now on, 2’ is on the strict transform of div(u).
1.3.1 Case (*1) or (*2).

There is no problem at the origin of each chart. So we look at a point 2’ in the chart of origin
(X" = X/ug, v} = uq/ug, ub = ug, ufy = us/uz), us(z’') # 0.

After a possible translation on X /uz, we get, with usual notations: H(z')™1f’ = uap+F(uy, u})
and F(ul,u3) = 3 ocicow(n) )\iu’lw(x)_zvc(i), where v = P(1,u}) € k(z)[us], A; € S’, A\; invertible or
0, Ao invertible, ¢(0) =0 or 1 and ¢(i) > i.

When
ord, (uz¢) > ord, (F(u},u})), (1)
we get the result. Else, we have
a(1) + w(z) = 0 mod(p), a(2) + a(3) =0 mod(p), (2)
ord, (ugd) = w(x), ord, (F(uf,us)) =1+ w(x). (3)

When \; = 0, for i > 0, we have k(') < 1 by chapter 2 II.1. From now on, we suppose that one
Ai # 0, for i > 0. Then, for some , ¢(i) =i+ 1, a(l) + w(z) = 0 mod(p), so i = 0 mod(p) and
ordm/(W) = w(x), so k(z') < 4.

1.3.2 Case (*3). After an eventual translation on X/u; which becomes X' = X/u; + 0, we get,
with usual notations: H(z')™"f" = u;¢ + F(u},u) and in the expansion of F(uj,u}) there is the

j
monomial u}“™ or u}“®v where v = P(1,u}). We look only at the case i = 2,j = 3, the origin

of the second chart is left to the reader. As above, we reach the case
H(z) 7 = uggp + F(ul, ub), ordy (uz¢) = w(x), ordy (F) = 1+ w(x),
2’ rational over z. As E Cdiv(ujuz),

Flupug) = Y du ™70 4 X

0<i<w(x)

Ao invertible, A; € S’, X', A; invertible or = 0, if A; = 0 for i > 0, we get k(z’) < 1 by chapter 2 IT.1.
Else, if some \; # 0 for ¢ > 0, we want to prove that we have k(z’) < 4. We suppose k(z') > 4,
then ing (uag) € k(2")[U7, Us].

We look first at the case where z” is in the chart of origin (X" = X'/uj,uf = u},uf =
uy/uy, v = v/uy).

As k(2') > 2, as 2” is very near x, ing (ugp) = YUY (), v invertible. We get, after an possible
translation on X" to minimalize the characteristic polyhedra of v} "h':

F ="l (Wl + v uw), v invertible,

ord, (uz¢”) = w(z) when z” is separable over x’ or a # Omodp or b # Omodp.

As 2 is very near to z, ord, (H(z")"1¢"”) > 1 + w(x). When ord,»(H(z") 1 ¢") =1+ w(z),
the reader sees that x(z”) < 1. From now on, ord,~(H(z")"'¢"”) > 1 + w(x), so the possible
translation on X” to minimalize the characteristic polyhedra of v} "k’ just adds p-powers modulo

Mm2te@) to f o= ufTPF. As W # 0, its order is w(z), the extension D of % is in
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D(E"), as u’l’fw(w)H%i’ué) = ufwxinvertible with ¢ < w(dx) where d is the degree of the
residual extension, we get e < 14+c¢ < 1+ %. If all are equal, then inI/(%) is equal,
up to a multiplication by an invertible, to a power of an irreducible homogeneous polynomial of
k(2")[U1, V], as ord, (in, F(u},u%)) < w(x), this implies deg, (in, F'(u},u})) = 1+ w(z): r(z') < 3.
A contradiction. So e < 1+ <
chapter 2, I1.1.

Let us look at the case where x’ is not rational over x, ord,~(us¢”) = w(x) + 1. Then

dm), e < w(z). So when ord,(u2¢”) = w(x), we get k(z”) < 2 by

e <1+ w(dw) and z” very near to x lead to e # Omodp, w(z”) = 1, e = 0 or 1. In both cases
F(uf,uf) = Mujv+ )\/u’lw(z)ﬂmod(u’z), A invertible, by chapter 2, I1.1, k(2") < 1, a contradiction.

At the origin of the other chart, we denote X" = X' /v, v, = u}/v,ve = ub/v,v3 = v, then
when z” is very near to z,

!/
@@ e g B = a7 B )

with ¢ € 8", ord,~ (¢) = w(x) — 1, so V3 €VDir(z"), the reader will see that 7(z”) = 3 and will
end the proof.

Proof of the last assertion. Assume z is in Case (*1) or (*2) and (a(1) + w(x) # 0 mod (p) or
a(2) + a(3) # 0 mod (p) or (x in case (*1) and =’ separable over x)).

The last assertion is clear when z’ is the origin of a chart. Else, z’ is in the chart of origin
(X" = X/ug,u} = uy/ug,uly = ug,uly = uz/uz) and X'(2') = uj(2’) = 0, us(2’) # 0. Then, in f’
appears the monomial

o a(l)u/za(l)+a(2)+a(3)+w(x) —puga(B)

rw(z) _
' —

X dotiy up P x ug “MWug®@ug*®) x gou, @),

¢o invertible. If a(1) + w(x) # 0 mod (p) or a(2) + a(3) # 0 mod (p), this monomial will not be

spoilt by any translation on X', else, ¢g is not a p*"-power in k(z), if = is in case (*1) and 2’ is
separable over z, a(3) = 0, again, no translation will touch this monomial.

1.3.3 Theorem Let us suppose k(x) =5, div(ujuz) C E, x not good and As(z) > 1.

In addition, we suppose Az(x) > 1 or B(x) < 1 if x is in case (*3).

Then V(X,u1,usz) is permissible. We blow it up.

Then the point ' = (%, Z—;,ug,u;g) = (X', ul,ub,uf) is the only point above x which may
be very near to x with k(x') > 5, if it is, then k(x') < 5, if k(x') = 5, then if x is in case (%i),
i=1,2,3, 2" isin case (i), (A2(2), B(z")) = (Az(z)—1, B(x)) and, in case (*3), (Az2(x'), B3(z")) =
(As(e) — 1, 53(x)).

Furthermore, IDir(x) = (Uy).

Proof.

It is clear that V (X, uy,ug) is div(ui)N div(uz) N {h = 0}: it is not formal. So V(X, u1,uz) is
permissible.

We have

H(x)"'f € (u1,ug).
So U; €lDir(x) mod (Us).

If U; ¢IDir(z), then IDir(H(z)"'Df) = (U; + A\Uz2), A\ € k(z) — {0}, for some D € D,
D(M) C M in cases (*1)(*2). We have just to look at the chart where u; generates the exceptional
divisor: u; @ H(z) 1D f = (1 + Aug/ur)*@ mod(uy), (14 Mug/uy)(z') = 0, k(2') < 4.

The remaining case is when U; €IDir(z). The only point 2’ we have to look at has
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for parameters. We are at the origin of a chart, etc. The only difficult case is when z is in case
(*3) and €(z') = w(z) and 2’ very near to x.

Then
in(H(z)" f) = Uy (aly +bUs + cUs) + Y NUYO U3,

x
1<i<w(z)

a,b, e, \; € k(x), ¢ #0,

H(z') 7 =) (eul +uh(ans +0) +ufy Y Ay g,
1<i<w(x)

¢ € (uh,uy), ordy (¢) = w(z). If ¢ € (uh), by chapter 2 I1.1, we are done: this ends the case
Ay > 1. If Ay =1 and f(x) = 1, then in the expansion of ¢, there is the monomial u’w(z) 1%17
1 <i<w(x): sor(x) <2 If Ay =1 and B(z) < 1, then e(2’') < w(z): k(z) =1, a contradiction.

The end of the proof is clear.

I.4 Theorem With hypotheses and notations of 1.2, assume x is in case (*1) or (*2). We blow-up
z and x' is a closed point of the first chart.

If uh(z") = 0, then 2’ is in case (*1) or (*2) and C(2') < C(x), B(2') < B(z), Az(2)) =
B(z) — 1.

From now on, uj(z") # 0, we have

y(2') <v(z), Bla’) < |

(1)

and, if x is in case (*1),

Ba") < B(z) or C(z) = 0. (2)

If &’ is not rational over x and y(x) > 2, then y(z') < v(x), except in the following case:

m(z) < 2, B(z) = 2 where we get f(z') < 2 and, if x’' is in case (*3), 33(z') =1, p = 2,
a(l) +w(xz) =0 mod (p) and i1(x") = 0 mod (p) (notations of 1.2.3).
Proof.

If us(z") = 0, we are at the origin of the chart, there is no translation to do all the assertions
are easy consequences of the transformation laws on the polyhedra. From now on:

dh(a') # 0.

Let us prove (1) and (2). Let o the monomial valuation given by po(ududug) = a + ngr;).

n(H(@) ') =0y go+ > U TULUS Fi(Un, Us), F; € k(2)[Us, Uy, (3)

Ko
1<igw(z)

F; = 0 or F; homogeneous of degree iB(x) — b; — ¢;.
Then, by 1.3, (X', u},ub,v) = (X, % uy, P(%2)) is a 1.s.p. of 2/, with P € k(z)[2].

uz? ug’ U2

in(H() ) =U1"Dgo+ Y oWy POV B (1, 05), F; € k(x)[Us, Us),

M1
1<iw(z)
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is the initial form of H(z')~!f’ with respect to monomial valuation given by 1 (v} u} v¢) =

b
at Ba—1-
If po(H(z)"1gP) = w(x) and ord,, (H(z)"1gP) < w(x), let H(z) tgP = g @) —io g bl 4cto

H(x/)_lg/p _ ,y/ullw(w)*ioulzio(B(w)*l)

Y

~" invertible. Then
(A2(2"), B(2")) = (B(z) — 1,0).

If po(H(x) 1gP) > w(z) or ord,, (H(z) 1g?) < w(z), then we call
Qg = sup{i|u'f(1)ug(2)ug(B)u:}(w)_iugiugiFi & k(z)[u1,u2, ug)’}. (4)

When we may start the minimization of A(h';u),ub, v; X”) with the cleaning of the vertex with p;
minimal and first coordinate minimal, we add a p*"-power to

ufla(l)U/Qa(l)+a(2)+a(3)+w(r)—puéa(3)u/IW(w)—io ugiO(B(m)_l)Fio (1, u})

which becomes

4,90 A FA@ Fa@) F@) —p (@) —io i (B@ D) eio) o nvertible,

with e(ig) <1+ %, d is the degree of the residual extension, e(ip) < deg(F;,) if ¢;, =0,
deg(F. . .
elio) < L8] telio) |y i0BlE) |y (5)
d d
in general. Either §(z') < 6(2.10) and we get all our assertions or ((z') = %00) and, if e(ig) =

w + 1, by the following remark, a(1) + w(z) — io(z’) = 0 mod (p).

Let us remark that, if there exists ¢ such that F; # 0 and a(1) +w(z) — i # 0 mod (p), then

ulla(l)u/2a(1)+a(2)+a(3)+w(x) —puga(?;) u/lw(:c)—iu/Qi(B(:v)—l)J{Ti(17 u:/3>

will not be spoilt by a translation on X’ and we get B(z’) < dcgiisfi) < %.
This gives Ay(z’) = B(x) — 1 and all the assertions in the case where (a(1) + w(z) — ig #
0 mod (p) or a(2) 4+ a(3) +igB(x)0 # 0 mod (p)). The other assertions are clear except may be the
case y(r) = 2 = B(z), = in case (*1). By (5), we get v(z') = 1 when d > 3.
From now on d = 2 = 3(x), a(1) + w(xz) —ip = 0 mod (p), a(2) + icB(z) = 0 mod (p).

c(ig)

Then either %TF“ # 0 it has degree < 2ig—1, so e(ip) < 222 +1 =ig+1, as e(ig) € N, we

get e(ig) < ip, we are done. Or % = 0, there exists D € D(F, z) with D(ug(ZO)FiO) of degree
< 2ig, if D(O) C M, we get e(ig) < 1o, else ' is inseparable over z, p = d = 2, e(ig) < ip + 1
and, in case equality, ig + 1 # 0 mod (2), etc. The reader ends the proof.

Let us remark that, if we blow up x and that C'(z) = 0, A2(z) < 1 and Az(x) < 1, then w(z’) <
w(x). Indeed, in that case, B(x) = Ax(x) + Az(x) < 2, either H(z')"1g? = ’y’u’lw(m)_i“uéiow(ﬂ”)_l)
which has order < w(z) or u}“® 0y BE=L . 4elio) hag order < w(x).

The next corollary is already proven.
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1.4.1 Corollary With hypotheses and notations of 1.2, we blow up x. If x is in case (*1) or (*2)

and if ' is a point in the first chart very near to x with u4(x) # 0,
either po(H(z)"1gP) = w(z) and ord,, (H(x) 1gP) < w(z), then B(x’) =0,
or po(H(x)71gP) > w(x) or ordy, (H(z) 1gP) = w(z), then B(z') < (1 + %), where ig, F; are

defined just above in (3)(4).

1.4.2 Corollary With hypotheses and notations of 1.2, if = is in case (*1) or (*2), if C(xz) =0,
As(x) <1 and As(x) < 1, then x is good.

Proof. We remark that B(z) = C(z) + Aa(z) + As(z) > 1, s0 C(x) =0, Az(z) < 1 and As(z) < 1
imply 0 < As(z) and 0 < As(x), so we blow up z, we note that either po(H(z) " 'g?) = w(z) and
ord,, (H(z)"1gP) < w(x) or deg(F;,) = 0, we apply the last lines of the proof of I.4: if 2’ is not at
the origin of a chart, w(z’) < w(x), if 2" is at the origin of a chart, As(z") + As(2’) < A2(x)+ As(x),
an induction on As(x) + As(x) gives the result.

1.5 Theorem With hypotheses and notations of 1.2, we suppose x is in case (*3) and x is not
good. We blow-up x.

Let ' be a closed point very near to x in the chart of origin (X' =
w2) (first chart).
(1) When us(x’) # 0 and (a1 + w(z) # 0 mod (p) or a(2) + 1 # 0 mod (p)), =’ is in case (*1).
(i) If «' is in case (*3), then B3(x") < B3(x), the inequality is strict if 1 < $3(x) and x’ is not
rational over x.
(iii) When 3(x) = 1 and i1(x) = 0 mod (p), if ' is not rational over x, then v(z') = 1, if 2’
is rational over x, then B(x') < 2 and, if x’' is in case (*3) and v(z') = 2, then 53(z') = 1 and
i1(2") =0 mod (p). (For the definition of i1(x), see the end of 1.2.2.)
(iv) In every case we have

! uy /I [

p.e
U2 ug’

v(@') < y(x), Az(a) = B3(z) — 1.

Proof.

We make the blowing up. By L.3, (X', u},ub,v) = (%, iug, P(32)) is ars.p. of 2’ on the
strict transform of div(u1), with P € k(z)[2].

The term

ucll(1)u;(2) % u:}(w)% _ utll(l)u;@) % u;}(w) (y1u1 4 y2uz + Yysus)

in the expansion of f gives in f:

o Mg DFARITTImD ) 4 g gl

If us(z") # 0, as 73 is invertible, the monomial

a a a(2)4+w(x)+1— w(x
u/l (1)u/2 (1)+a(2)+tw(z)+ Pu/l ( )Vgug

defines the vertex of A(h'; uf, uh, v; X') with minimal second and third coordinates, if a(1)+w(z) #

0 mod (p) or a(2) + 1 # 0 mod (p), this vertex is not solvable, z’ is in case (*1).

Let 110 the monomial valuation given by jo(ufubu$) = a + Bb;(;).

in(H(z) uz' f) = U0y OU g+ YUY TUSUT F (U2, Us), F; € k(@) [Uz, Us), (1)

Ho .
1<iw(x)
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F; =0 or F; homogeneous of degree iB3(z) — b; + 1.

in(H@) ) ="+ Y 0O POV E (1,4, F € k(2)[Us, Us),

p1
1<i<w(z)

is the initial form of H(x' )*1 f' with respect to monomial valuation given by s (v} ub’v¢) =
a+ %. If juo(H (z) " uf ™ gP) = w(z) and ord,, (H(z)"'¢P) < w(x), then

H(w) 1ug lg/p_,ylullw(m) z()u:/3 lu/2i0(B3(a:)—1)

(A2(2'), B(2")) = (B3(x) — 1,0). (2)
Furthermore, in the case of the blowing up of z, if B3(z) = 1, we get e(z’) <ord,,(H(z')"¢'") < 0:
2’ is quasi ordinary.
If po(H(x)"1gP) > w(z) or ord,, (H(x) 1gP) > w(w), we call ig = sup{i|H (z)u] (@) =iy b o F; #
p'" — power}. By computations as above in the proof of 1.4, we get Ay(z') = B3(x ) -1 and

deg(Fi,
p(a') < BT Q
This gives (iv).

deg(Fig)
0

If 2’ is not rational over z, then B(z’) < + .i the inequality is strict when a(1) +

w(z) —ip # 0 mod (p) or when eg( o) 41 € ioN. Either z’ is in case (*2), (2)(3) give the result,
or ' is in case (*3), by (3), #3(z’) < %0)1. This proves (ii).

To end the proof of (iii), we have to look at the case 3 = 1, i;(x) = 0 mod (p). If ig #
i1(x), then deg(F;,) + blo i0A1 < 983 = ip, so deg(F;,) < ip, we get the result. If iy =
i1(x), then, B(z') < 14 = 10 < 2 and, if 2/ is in case (*3), i9B3(z") <deg(F;,) —1 < ip, the

inequality is strict if 2’ is not rational over z. Furthermore, the index iy is the smallest ¢ such
that the factor of )\uw(r) ’ ZAl(x) v® a € N, \ € k(2'), appears in the expansion H(z')~!f’ and
H(x ))\u‘fm ’ ;Al(m ) is not a p-power, so if i933(x’) =ord(F;, (1,us)) — 1, ig = i1(x’).

1.5.1 Proposition With hypotheses and notations of 1.2, if x is in case (*3) with $3(x) < 0, then,
x 1s good.

Proof. We make an induction on As(z). If As(z) < 1, then the monomial uy w(@) =i ZAZ(I) 153@)“

occurs in the expansion of H(x)™1f, its order is < w(x) — 1: a contradiction.
If Ay(z) > 1, then V(X, uy,us) is permissible of second kind, we apply 1.3.3: either the point
a2’ is not very near to z, either x(z’) < 4 or it is very near to x with case (*3) and (Az(2'), 33(2')) =

(Az(z) — 1, 83(x)).

1.5.2 Lemma With hypotheses and notations of 1.2, assume x is in case (*1) or (*2), we blow up
x.

If 2’ = (%, 2, ug) s very near x, then /{( "Y =5, 2’ is in case (*2), A(K; Z;, 2 us; ii’)
is minimal. We have (Aa(z'), B(2")) = ( 2(x), Ag(x )—i—ﬂ( ) — 1), (a(x), B(z) — 1), is the vertex
of smallest ordinate of A(H (')~ (f', ¢'");uly, ub;ub). Furthermore
(i) if x is in case (*1), C(x') < ﬂ(w) Ifthere is equality, then A(H (z")~1f'+H (2')"1g'"; ul, ub; ufy)
has only two vertices (A1(x), B(x ) + Ai(z) — 1), (aa(z), B(z) — 1), (az(z), B(x))) whzch are the
ends of its initial side,
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(i) in every case, C(z') < C(x), y(z') < v(x).
Proof. Recopy 1.8.8 in chapter 3.

1.5.3 Lemma With hypotheses and notations of 1.2, if x is in case (*3) and k(x) > 4, div(uz) C E

/ / X U u
and we blow up x. Assume x' = (X', uy, uy, uz) = (5, 3%, w2, us) if 2’ is very near x, then r(z') =5

x' s in case (*2), A(h;ul,ub,ul; X)) is minimal. We have (Ax(2'), B(z")) = (Ag( ), Aa(x) +
B3(x) — 1), (a32(z), B3(z) — 1) is the vertex of smallest ordinate of A(H (')~ (f', g'");ul, ub;ub),

As(2') = B3(z) — 1, C(a) <14 f3(2')), v(a) < (),

with strict inequality when 3 < y(z). Furthermore
(1) if B3(z) — Aa(x) > 1, then y(z') < y(x),
(11) if B3(x) =1, a(1) +w(z) = 0 mod (p), then 2’ is good or y(z') < y(z) = 2 or y(z") = 1, where

2" is the center of the valuation p in the blowing up of x’,

(iii) if B3(x) — As(x) < 1 and B3(xz) # 1 and v(x) = 2, then the following holds: either (a( ) +
w(z) # 0 mod (p)), either (z" is in case (*1) and B(x"") < 2) or (' is in case (*3) and $3(z") < 1),
where " is the center of p in the blowing up X" of X' along x’.

Proof. We are at the origin of the second chart, there is no translation to do on X', etc. For (i)(ii),
we cannot recopy directly chapter 3 1.8.9.1 which uses chapter 3 I.8.5: we have no corresponding
proposition. What remains valid (mutatis mutandis) is that the vertex of smallest ordinate of
A(Z1<i<s H(x) 7L, ') ub, ubsufy) is (ad2,a32 + 332 — 1), so C(z') < a3y — Az(x). And, the
vertex of smallest abscissa is (Az(z), 83(z) + A1(z) — 1), so

C(a') < B3(x) + Az(x) — B3(x) = 83(z) — (B3(z) — Ax(x)) (1).

This gives the first assertions of the lemma, (i) and also (ii) when B3(z) — A2(z) > 0.
Furthermore C(2') < 1+ |83(2")] (= v(2') < y(x)) if B3(xz) — Aa(x) > 0.
As a3y < 1+ B3(z),

C(2') < a3y — Az(z) < 1+ B3(z) — As(z),

if B3(xz) — Az(z) < 0 or (B3(z) — A2(x) = 0 and a32 < 1+ B3(x)), we get C(z’) < 1. So we get
C(z") < 1+ |p3(2')] and we get also (ii) when B3(z) — As(x) < 0 or (B3(x) — A2(x) = 0 and
a3z < 1+ B3(x)).

To end the proof of (ii), we have to consider the case C'(x') = 1, B3(ac) As(x) =0 and
a3y = 1+ B3(z), this means that $32 = —1 the monomial of H(x) 'uz'f or of H(z) uz'g?

which defines (@33, 332) is utf(:r) 1 A2+1 <o
Ay €N, B3=a3;+ 332 €N
A(H(x/)il(f/’glp% uh, uh;u)) has only two vertices

(Ag, 1+ Ay), (1 + Ay, Ay) € N?

and in the expansion of H(2')~1f" or H(z')~1¢’" appears the monomial u}“™ "1, 42442 1f

m(z”) = 2, if we go back to the proof of I. 4 we have, in the first case line above, ig = 1, so
a(l) + w(z) —ip # 0 mod (p), so B(z") < C’(x’) = 1: this leads to y(2”") = 1, in the second case,
we have B(z"”) = 0. If m(2”) = 3, we get C(z”) = 0.
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For (iii), by the same arguments as in chapter 3 1.8.9.3, we get that if o the monomial

valuation given by po(u} “ub’ul®) = a + Bb(J;?)

in(H) ) =0 m Y U0 U F(US UL F € k(@)U U, (1)

Ho
1<i<w(z)

F; =0 or F; homogeneous of degree d; < ¢

If 2" is the origin of a chart above z’, then, recopy chapter 3 1.8.9.3: the proof is made just by
looking at polyhedrons. If z” is not the origin of the first chart, then, i8(z"”) < d;+1 or f(z”) =0
if all the F; = 0.

So we get y(z”) =1 if inf{ L\ H (2 yub b Fy & k(2w ul, ub)P} < 1.

If for all i with H(z')u}’ u3C‘F ¢ k(a')[uf, ub, ub]P}, d; = i, then we get B(z”) < 1+ 1, this
gives the result except if there is only Fy # 0, 2” in case (*1) and that B(2”) =i+1=2>d; = 1.
This means that a(1) + w(x) — 1 = 0 mod (p). In particular a(1) + w(x) # 0 mod (p).

1.6 Theorem Let x € ¥, with x(x) =5, m(xz) > 2. Then x is good if one of the following is true:
(i) case (*1) and f(x) < 1

(ii) case (*2) and B(x) < 1

(iii) case (*3), B3(x) < 1

Proof. We have As(x) > 0. Indeed Ay(z) = 0 implies that in the expansion of f appears the
monomial uy w(@) =i Zﬁ(m) , 1 <i <w(z). This is impossible in case (*2), in case (*1), k(z) < 2, there
is nothing to prove. In case (*3) B3(x) < 1 implies B(x) < 1, this contradicts e(z) = 1 + w(z).
I.6.1 Case 0 < Ax(z) < 1. We blow up z.

First chart, cases (*1)(*2). We get Aa(2') < Aa(x)+0(x)—1 < Ag(x), 2’ verifies the hypotheses
of 1.6 when z’ is the origin, as y(z’) < y(z), =’ verifies the hypotheses of 1.6 when z’ is not the
origin.

In case (*3), if k(a’) = 5, we can apply 1.4, L.5: we get Ay(2’) < As(z) + B(x) — 1 < Ay(x) or
Ay(z") = As(z) + 83(x) — 1 < Az(x), as y(a’) < y(x), o’ verifies the hypotheses of 1.6.

Case 0 < Ay(z) < 1, second chart.

We get As(2’) = As(x). Furthermore, 5(z') < As(x) + B(x) — 1 < B(z) in cases (*1)(*2),
B(x') < Az(x) 4+ 83(z) — 1 < B3(x) in cases (*3): z’ verifies the hypotheses of I.6.

End of the case 0 < Ay(z) < 1. Then, we blow up 2’ and we go on if Q does not strictly
drop, etc. We associate to = the couple (Ag, ) if x is in case (*1) or (*2), (A3, 33) in case (*3).
This couple strictly drops for the lexicographical ordering except maybe if x is in case (*1) and
B(x') = 1, which implies 2’ rational over x.

If the sequence of blowing ups is infinite, all the x(i) centers of p in X(n) are in case (*1)
with B(z(n)) = 1. All the z(n + 1) are rational over z(n), we can choose v, eventually v € s,
v =" M\ub € k(x)[[us]], such that z(n + 1) are on the strict transform of a curve C = V(X,uy,v)
which is contained in ¥, and which gets permissible for n >> 0. We conclude by the usual
argument.

1.6.2 Case 1 < Ay(z). We blow up V(X,u1,us), by 1.3.3, we get the result by induction on As.

1.7 Theorem Let x € ¥, k(x) =5, x in case (*1) or (*2). If for a r.s.p. (X,u1,uz,us) verifying
the conditions of 1.2, C(x) = 0 and, possibly uz € S if div(ug) ¢ E, then x is good.

Proof. The case A2(x) < 1 and As(x) < 1, has been made in I.4.2. From now on, A; > 1 for some
i, t=2o0r11=3.

1.7.1 Case a(1l)+a(2) +w(z) < pand a(1)+a(3)+w(z) < p. Let us denote H(x) = u
then ord,(H(z)f) = p, so a(2)a(3) > 0: E =div(ujusug). So us and ug play the same role. Let

a(l) a(2) a(3
(1) a(2), a(3)
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us blow up z. We just look at the first chart. By 1.3, a point 2’ very near to x is on the strict
transform of div(u;). By 1.4, H(z') = u’1a(l)u/za(1)+a(2)+a(3)+w(z)_puga(g), e(z’) > w(z) implies
us(2') =0, 2’ is the origin of the first chart and an induction on a(2) + a(3) gives the result.
1.7.2 Other cases, let us test the blowing up of z.

By 1.3, every point z’ very near to x is on the strict transform of div(ui). As C(x) = 0, if
x' is not the origin of a chart, we get G(z’) < 1, so 2’ is good. If 2’ is the origin of a chart we
get C(2’) = 0. The components of w > 0 at 2’ in the strict transform of div(u;) are the strict
transforms of those going through z plus, may be a projective line which projects on Spec(S) on
the intersection of the strict transform of div(u;) and the new exceptional component. After a
finite sequence of blowing ups, we may suppose that, div(us) C E and if div(us) ¢ E, there is at
most one component of {w > 0}Ndiv(uy) not contained in div(uz).
1.7.3 Case a(1) +w(zx) > p. Once the condition above obtained, we make an induction on Ay + As.
If A» > 1, V(X,u1,uq) is permissible: it is V(uq,uz) N {w > 1}, it is not formal and we blow
it up. The only possible very near point is z’, the point on the strict transform of div(u;) and
(Aa(a'), Ag(a')) = (Aa(x), As(z) — 1), C(a') = 0.

If Ao <1and A3 > 1, ¢(V(X,u1,u3)) = w(x), V(X,u1,us) is not formal, it is the component
of {w > 1}Ndiv(u) not contained in div(uz), we blow it up and we conclude as above.
1.7.4 Case a(1) + w(z) < p and there exists i € {2,3} such that a(i) + w(xz) > p. Then a(i) > 0:
div(u;) C E. We make a descending induction on (sup{4;,: = 2,3},sup{a(j),j = 2,3}) for <jeq.
1.7.4.1 If there exists i € {2,3} such that

a(i) + w(x) +a(l) > pand 4; > 1, (1)

we blow up V(X,u;,up). If both i = 2 and ¢ = 3 verifies (1), we choose ¢ with (A;, a(i)) maximal.
Mutatis mutandis, 7 = 2. Then the point x’ of parameters (u%, L ug, ug) is the only point which
may be very near to x. The reader sees that x(z’) < 5, if 2’ is very near to z, C(2’) = 0 and
As(z') = Aa(z) — 1, az(2’) = a(2) + w(z) + a(l) — p < a(2): (sup(A;),sup(a(j))) strictly drops
except if (Az,a(2)) = (As,a(3)), in that case we blow up (%, it ug) and (sup(A;),sup(a(j)))
strictly drops.

1.7.4.2 The remaining case. There is one ¢ € {2,3} such that a(i) + w(z) + a(l) = p, A; < 1: so

div(u;) C E, mutatis mutandis, i« = 2. Then,
A3 > 1, a(3) +a(l) + w(x) < p, (sup(A;),sup(a(j))) = (As,a(2)), a(2) + a(l) + w(z) > p.

We blow up z, as seen in 1.7.2, we have to look only at the origins of the first and second chart. In
the first chart, if 2’ is very near to x, we get As(z') = As(x), Ax(2') = As(z) + Az(x) — 1 < As(x),
a(2) = a(2) + a3) + w(z) +a(l) — p < a(2), d'(3) = a(3) < a(2): (sup(4;),sup(a(j))) strictly
drops.

In the second chart, if 2’ is very near to x, we get As(z’) = Az(z)+Az(x)—1 < Az(z), Az(2’) =
As(z) < As(x), (sup(A;),sup(a(j))) strictly drops.

1.8 Theorem Let x € ¥, with k(x) = 5, k(x) > 4, x in case (*3) with div(ug) C E and ¢g €
(ur,us)S. If for a r.s.p. (X, u1,us2,us) verifying the conditions of 1.2, A33(x) = (33(x), possibly,

ug € S, then x is good.

Proof. We see that A33(x) = #3(z) implies B3(x) = A33(x) + A2(x), so Ay > 0 or A33 > 0.

1.8.1 We blow up z, by 1.3, every point &’ very near to x is on the strict transform of div(u).
As A33(x) = 83(z), in the proof of 1.5, deg(F;,) = 0: if 2/ is not the origin of a chart, we get

B(x') < 1, so z’ is good. If 2’ is the origin of the first chart and is very near to z, as ¢g € (u1,us3),

if (') =1+ w(x), 2 is in case (*3), A33(z") = B3(z').
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If e(2') = w(x), H@) 1 = u,“@ gy + 1, ordy () = w(z), as A33(z) = B3(x), either us
divides v, by chapter 2 IL.1, k(z’) < 1 or % divides 1), then as d1V(“3) ¢ F' k(z') =2.

If 2/ is the origin of a the second chart, 2’ is in case (*1) or (*2) and by 1.5.3, (A2(2'), 5(2"))
(As(x), As() + B3(x) — 1), As(2’) = B3(x) — 1 = A3s(x) + As(2) — 1 = Aa(w) + 83(z) — 1 = Bz
C(z") =0, by 1.7, 2’ is good.

1.8.2 So we are only interested in 2’ the origin of the first chart. If 2’ is not in a case of goodness
seen above, then 7’ verifies the hypotheses of I.8. We blow it up and we go on... Then we create a
sequence of points x = xg < x1 = 2’ < x5 « ... all on the strict transform of V(X uy,us): by the

usual argument, this sequence is finite.

)

IT End of the case k(z) =5

II.1 Theorem Let x € ¥, with x(x) =5, then x is good.

Proof of I1.1 .

We make an infinite sequence of blowing-ups X; < X; 1 along the centers x; € X;, the centers
of the valuation u, we suppose that x;11 is very near to x; for all i < 0. Fori > 1, E(i) has at
least two components.

We are going to prove that there exists some i such that x; is good. That will end the case
k(x) =5.

As y(z;) = y(xit1), for i >> 0, y(z;) = ¥(Titn), n > 0. Let us call y(u) this value (which
depends of 1 and of choices among the prepared parameters at each step).

I1.2 m(z;) = 2 for all ¢ >> 0.

Case where for ng >> 0 all the z,,,, are rational over z,,,. By I.4, with ng bigger if necessary,
we can suppose that they are all in the same case (*1) or (*3). By a translation on the indices, we
make ng = 0, x = x.

So there exists v = us + Za>1 Aat§ € k(x)[[uz]] such that the projection of the x; over SpecS
are all on the strict transform of v, as (ug, u3)S = (uz,v)S, we replace the couple (ug, us) by (uz,v):
all the z; are origins of the first chart, the reader sees that for i >> 0 we reach the hypotheses of
1.7 if they are all in case (*1): z; is good. If they are all in case (*3), it means that ¢g € (uy,v)S
after a while, we reach the hypotheses of 1.8: z; is good.

Case where for every ¢ there exists j > i such that x;, is not rational over x;.

By 1.4, 1.5, for some ¢, we reach one of the four cases:

(i) k(z;) < 4,

(ii) y(z;) = 1, m(x;) = 2: by 1.6, x; is good,

(iii) z; in case (*1) and f(z;) < 2, then by 1.4, 1.5.2, for the smallest j' > ¢ such that (z; is not
rational over z; or m(z;/) = 3), ( ) =1: by L6, if m(xzj) = 2, x; is good if m(z;/) = 3, then
for the smallest 7 > j’ such that m(xj) =2, v(z;) = 1: by 1.6 z; is good,

(iv) x; in case (*3) and 33(x;) = 1 and i1 (x;) = 0 mod (p), then by I.5, 1.5.3, for the smallest 5/ > ¢
such that (z; is not rational over z; or m(z;/) = 3), y(z;/) =1 or y(zj41) =1 or a(1l) + w(z) #0
mod (p): in the last case, this means for any n > 0, x;/4, will be in case (*1)(*2), by 1.4 we will
reach (ii), in the other cases, we conclude as above by 1.6.

I1.3 m(z;) = 3 for i >> 0.

We are always at the origin of a chart, so by all the z; are in case (*2), by the usual transfor-
mation laws on polyhedrons, for i >> 0, C(x;) =0, by 1.7, x; is good.

Till the end of II, we assume that neither the assumption of II.2, nor II.3 is
satisfied.

136



I1.4 For all n € N, there is some ¢ > n with m(z;) = 2 and m(x;41) = 3, the z; are rational over
o, 0 < 1.
I1.4.1 With the hypothesis of I1.4 and with a(1) + w(z) # 0 mod (p).

Then, by I.4, I.5.2, there exists ¢ > 0 such that z; is in case (*2) and z;4; in case (*1) or
(*2), for all j, 1 < j. Furthermore, v(p) = 1. Then, for j >> 0 such that m(z;;;) = 2, we have
B(zit;) <1, by 1.6, x;4; is good.

I1.4.2 With the hypothesis of I1.4 and a(1) + w(z) = 0 mod (p).

Then ~y(p) < 2. All the z; are rational over x = ¢ and y(z;) = y(n), i = 0.

If for ¢ >> 0 all the z; are in case (*1) or (*2), as above we can apply I.4 and 1.5.2, y(u) = 1.
Then, for j such that m(z;4;) = 2, we have B(z;4;) < 1, by 1.6, x;4; is good.

Last case: for all n € N, there is some ¢ > n with z; in case (*3) and some j > n with z; in
case (*2). If v(u) = 1, then by 1.6, for i >> 0, x; is good.

I1.4.3 From now on, vy(u) = 2.

Let ¢ such that m(z;) = 2 and m(z;41) = 3.

Either z; is in case (*1), as y(x;) = Y(wi11) = v(u) = 2, by 1.5.2, B(z;) = 2, A(H(z") " f' +
H(2")7tg'?; ul, uby; uh) has only two vertices (A1 (z), B(x)+A1(x)—1), (aa(z), B(z)—1), (az(x), B(z)))}
which are the ends of its initial side, where x = z;, ' = z;4;.

Then C(x;41) = 1, if m(x;42) = 3, C(x;42) = 0: contradicts y(u) = 2.

So m(z;4+2) = 2, with the notations of I.4(4), either a(1) + w(z) — ip # 0 mod (p): we get
i0B(xit2) <deg(Fi,) < ig: contradicts v(u) = 2. So a(1)4w(x)—ip = 0 mod (p), i¢p = 0 mod (p) and
B(xiys) < 1—1—% < l—i—%. If ;42 is in case (*1), by 1.4, all the ;1 ; with m(z;1;) = m(xiyj-1) = 2,
j = 3, are in case (*1) with

1
B(xirs) < B(wige) <1+ » <2

So for the smallest jy such that m(z;1;,) = 3, we get C(zi1j,) < @ < 1, this contradicts
V() = 2.

So x4 is in case (*3), we get i033(zi42) <deg(F;,) < ip, as y(u) = 2, B3(zit2) = 1, which
implies: a(1) +w(z) —ip = 0 mod (p) (end of the proof of 1.4, same notations) so ig = 0 mod (p):
Zi42 is in case IL.2(iv) above.There exists some j > i+ 2 such that x; is in case (*1) or m(z;) = 3,
let jo be the smallest. When z, is in case (*1), 3(xj,) < 2, then for the smallest j' > jy such that
m(zj) = 3, we get y(xj) = 1: contradiction. When m(z;,) = 3, by 1.5.3, v(z;,) = 1 or z;, is
good, etc.: 1.5.3(ii)(iii) ends the proof.

IIT End of the proof of the main theorem.

In this last section, we reduce the local uniformization problem when w’(z) = 2 to one of the
previously studied cases, i.e. k(x) < 5.

So k(x) = 6 means “no expansion of h gives k(x) € {2,3,4,5}".

x is said to be good if the quadratic sequence along p makes (1(x), K(z))lex strictly drop.

We always assume that the r.s.p. (X, uy,u2,u3) of R is such that E C div(ujugus) and
A(h;uy,ug,us; X) is minimal.

ITI1.1 Definition. Assume that k(x) > 5. Let
X=Xy X1 =X,

be the quadratic sequence along i, i.e. X; is the blowing up along the center x;_1 of pu in X;_1 for
i>1.
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We say that x is good, if x, & L,(Xn), or Qx,) < Qz) or (Ux,) = Q(z) and k(x,) < 5)
for somen > 1.

The final theorem of this paper is then:
II1.2 Theorem. Assume that k(x) > 5. Then x is good.

We first study the possible occurrences for VDir(x) when x(z) > 5. Recall the definition of
VDir(x) and 7/(x) in chapter 2, I1.1.3 and corollary I1.1.4.

IT1.3 Lemma. Assume that x(x) > 5. The following holds:
(i) 7(z) =7/ (x) = 2. Ife: X' — X is the blowing up along x, there is thus at most one 2’ € e~1(x)
very near x and x' is rational over x;

(i) if E = div(uy), then e(x) = 1 +w(z) and Uy € VDir(x).

Proof. If 7/(z) = 3, then x(x) = 0 by chapter 2 II.1.4.

If 7(x) = 1, then VDir(z) = k(x).(a1Ur + aUs + a3Us), o; € k(x) for ¢ = 1,2,3. If there
exists ¢ with o; # 0 and div(u;) € E, then there is transverseness: x(x) € {2,4}; otherwise, there
is tangency: k(z) = 5. This proves (i).

Assume that E = div(uy). If e(z) = w(z
U e k(m).Ui"(w): then k(z) =5. If e(x) =1+
Then U; € VDir(z).

IT1.4 Lemma. Assume that k(x) > 5 and E = div(ujug). If VDir(x) =< Uy + AU2,Us >, A # 0,
then €(z) =14+ w(x) and x is good.

), let ¥ := in,(H(z)~'f). We have x(x) = 2 unless
w(z), We have x(z) = 4 unless cl ) J(f, E) C (U1).

Proof. If €(z) = w(x), we have k(z) = 2 by definition, since Us € VDir(z). So e(x) = 1+ w(z).
Let e: X’ — X be the blowing up along x. If 2’ € e~!(z) is very near x, then 2’ has coordinates
(X = 2 0] =2 4 X ufy o= g, uf = ). Therefore £ := (€ 1E)req = div(ub). By ITL3(ii), x

U

is good if e(x’) = (,2«)(30’) If e(2') = 1+ w(2’), then
uy "I B) IS,

where B’ = u;Ph = X'P — X'¢’?"' + f'. We may have to perform a translation Z’' := X’ — ¢’ in
order to get A(h';v},ub, ub; Z') minimal, f’ being changed into fr, := f' + 0" — 0'g’"~'. Since
7' (x) = 2, ord, () (H(x)"'g?) > e(z) and therefore ufy divides H(z')"'¢'"", so we have
J(fz, E') = J(f', E') mod(uy).
This implies cl, ) J(f7/, E') € (Usy), so k(z') = 4 and z is good.

II1.5 Lemma. Assume that k(z) > 5 and div(uy) C E C div(ujusz). If VDir(x) =< Uy, Us >,
then e(x) = 14+ w(z) and x is good.

Proof. As in III.4, Us € VDir(z) and x(z) > 2 implies €(z) = 1 + w(x). Let e : X’ — X be the

blowing up along . Since 2’ € e~!(z) is very near x, 2’ has coordinates (X’ := %,u’l =l up =
ug, uy 1= 23). We are at the origin of a chart, the polyhedron A(h'; v}, ub, u%; X’) is thus minimal.

uz
Let us denote

H(w)ilf = ‘I/(Ul,UQ,Ug) + ¢1

with H(z) = u‘f(l)ug@) (a(2) =0if F =div(u1)), ¥ € k(x)[u1, uz, us] homogeneous of degree €(x)
and ord, ;)¢ > €(x). Then E' := (e7'E)yeqa = div(ujub), H(2') = u’la(l)uéa(lHa(QHw(m)H*p, and

H(«")™ = W(u, 1, up) + upe,
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with ¢’ € S’. We consider three cases:
Case 1: ord, ) V(u],1,us) < w(z). Then equality holds and w(z’) = e(z’). We have r(z') =
5 if cly)V(uy, 1,uz) € k(x)[Uj]. Otherwise, cly)V(uj,1,u3) € k(x)[U],Us], so VDir(z") €<
Up,U) >: k(2') = 2 and z is good.

From now on, we assume that ord,,V(u,1,u3) =
We have ord, () (u5¢") > w(2') = w(x). Moreover, since x(x

(1—)1— w(z) = €e(x), i.e. VU € k(z)[Uy,Us].

3, we actually have

VDir(z) = VDir( ov

8U3) =< U;,Us >. (1)

Case 2: ord, () (uy¢’) = w(z). In particular, we have e(z') = w(z’). We denote in,/(upd’) =
U@ (U1, U5, Uj). If @ € k(x)[Us], then k(z') = 5; if & & k(x)[U7, U], then x(a’) = 2. It can thus
be assumed that

@' € k(x)[U1, Us) \ k(2)[Us]- (2)
Then VDir(z') =< Uj,U} >. Let ¢ : X" — X' be the blowing up along z’. Slnce " e
E" := (¢ 'E')yeq is very near 2/, 2’ has coordinates (X" := f—,/,u’l’ = Z—i, 4 = Zz = ub),

= div(ujufuf) and the polyhedron A(h”;uf, vy, u4; X"") is minimal. Then
H(@") 7" = ug 0, 1,1) + ug @' (uf, ug, 1) + ugus¢”,

with ¢” € S”. By (1), degy, ¥(U1,Us) = 2, so ordy ¥ (uf,1,1) = 14 w(x) — degy, ¥(U1, Us) <
w(z) — 1. Since z” is very near z, equality holds and we get

uy U (uf,1,1) =~" gu/{w(x)fl,
where 4/ € §7 is a unit. Then e(z") = w(x),
U = el (H(2") 7 ") = AU U”w(m) L ure' Uy U ) + Uy Ut e Uy, Uy U, (3)

where A #£ 0, H(z") = u’l’“(”ug”(”ug“‘l)*b@”‘”“)"’ and b(2) :=a(l)+a2)+w(z)+1—p
We claim that 7(z”) = 3, which implies that x(z) = x(z”) = 0 by chapter 2 I1.1.2, contra-
dicting the assumption x(x) > 5. To prove the claim, let us denote

V= S U ey, uy).

1< Sw()

By (3), V" & k(x)[U3', Us] and degy» " < w(z) = degV”, so we have 7(2") > 2. If 7(2”) = 2,
then VDir(z") =< Ul + axUY + a3UY, UL + (3U4 > for some oy, 5; € k(x), i = 2,3 with
(B2, B3) # (0,0). Note that, since Uy ¢ k(z)[Us], we must have 33 # 0. Without loss of generality,
it can be assumed that a3 =0 and 63 =1, i.e.

VDir(z") =< U}' + auUY, BoUY + U3 > . (4)
If B2 = 0, then with notations about derivations as in chapter 1 I1.3, we have

OH (2" uy @' (uf,uf, 1)

Fy = H(z")"'\/ Y

€ k(z).(u} + agul)*®
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for each i, 1 < i < s. By (2) and (3), F;, # 0 for some ip, 1 < ip < s and UY divides Fj,: this
contradicts (4). Hence (32 # 0.
By (4), we have
OH (2" nw(@) =1y 0 1 B
]Y(w”)_lAg (I )ul 1(“2)“3) c k(aﬁ_ugwﬁﬂ 1(ug_+_ﬁ2ug) (5)

O/

for each i, 1 < i <'s. Since A # 0, we have ¥y # 0. By (5), U1 = poUY + usUY with pops # 0 and
we may apply chapter 2 I1.5(i) (with a = 1 and F' = ¥y). This yields a(1) + w(z) — 1 = 0 modp,
b(2)(b(2) + 1) # 0 modp, and 2(b(2) + 1) = p, where b(2) € {0,...,p — 1} denotes the remainder
of the division of the integer b(2) by p. The latter condition implies p = 2, incompatible with

b(2)(b(2) + 1) # 0 modp: a contradiction and the claim is proved.
Case 3: ord,y(z)(u5¢") > w(x). Then €(z’') = 1+ w(z) and

U(u), 1, ul
00 L) ¢ 75 ) mod(ul).
ous,

By (1), we thus have
VDir(2') + k(2').Uy =< U, U5, Us > .

Since k(x) > 5, we must have 7/(z') = 2, so VDir(z') =< U] + \US, U5 > for some A € k(z), after
possibly changing coordinates to (u}, u5, v5 := ufj + aqub) and letting Z’ := X’ — 0’ in order to get
A(KW;ul, ub,v5; Z7) minimal. If A # 0, then z is good by ITL.4. If = is not good, then x(z’) > 5,
VDir(z') =< Uy, V4 > and E' = div(uju)), so z’ verifies the hypotheses of II1.5 and we iterate
the process.

Let X = Xg « X1« -+ X,,_1 <« X, < --- be the quadratic sequence along p. There exists
a series vz = ug + Z]}Q ajug, a; € k(x), and Z € R with the following properties:
(a) the polyhedron A(h;u1,us,vs; Z) is minimal;
(b) if x,, is very near x and k(z,) > 5, then x,, is on the strict transform Y,, of Y := V(Z,u;,v3) C
Spec(R/(h)) in X,.

p(ua) .

As pointed out several times in this paper, (b) implies that n < sy’ @ contradiction, since

the value group of p is Archimedean. Hence z is good.

II1.5.1 Corollary. If k(x) > 5 and either E = div(uy) or (E = div(ujus) and VDir(x) #<
Ui,Uy >), then x is good.

Proof. This follows from II1.3 and ITL.5 (resp. III.4 and IIL.5) if £ = div(u;) (resp. E =
div(u1u2)).

IT1.5.2 Lemma. Assume that x(x) > 5, E = div(uiuz) and VDir(z) =< Uy,Us >. Lete: X' —
X be the blowing up along x and ' € e~'(z) be very near . Then e(z') = w(a').

Proof. Since VDir(z) =< Uy, Uz >, 2’ has coordinates (X' = %,u’l = o uy = 32, u3 = us), SO

E':= (67 E)req = div(ujubu}y). In particular, e(z') = w(a’).
I11.5.3 Remark. Corollary II1.5.1 and lemma III.5.2 reduce theorem 1.2 to the case where

div(uyuz) € E C div(ujusus), VDir(x) C< {U; | div(u;) C E} > and €(x) = w(x). Then theorem
IT1.2 is a consequence of propositions I11.6.2 and II1.6.3 below.
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IT1.6 Definition. Assume that k(xz) = 6, div(uiue) € E C div(ujugus), VDir(z) C< {U; |
div(u;) € E} > and e(x) = w(x). We let ¢(x) = 2 if VDir(z) =< Uy, ,U;, > for some iy,is such
that div(u;, u,) C E. Otherwise, let c¢(x) = 3.

IT1.6.1 Lemma. Assume that k(z) = 6, E = div(ujug), VDir(x) =< Uy, Uz > and €(x) = w(z).
Then, Fs := cly() (H(2) 7' 5L € k() [Uy, Ua).

Proof. Let e : X’ — X be the blowing up along x. The only point 2’ € e~!(z) very near x

has parameters (X' = %,u/l = it uy = 2, u3 = ug), so the polyhedron A(R';uy, us, ug; X') is

minimal. We have £’ := (e E),eq = div(u1u2u3), so J(f',E") = J(f',E',2") and

1 Of

i i= (™ H ()7

=) e J(f', E',2').
Since ' is very near x, ord, () f5 > w(z). We have
f5 = uhFy(ui, uh, 1) mod(uj”),

with ord, o F3(u},u5,1) < w(z) — 1 if Fy € k(x)[U1,Us]. Therefore equality holds and Uz €
VDir(a').
If p € J(f, E,x), then ug”‘m)é(ug,ug) e J(f',E',x") 4 (u3), where ® := cl,,(,)p. Therefore

< UL UL UL >C b(&').U4 + VDi({&(U}, U3) | ¢ € J(f, B, 2)}) € VDir(a),
since VDir(z) =< Uy, Uz >. This implies 7(2’) = 3, so k(z) = k(z’) = 0: a contradiction.

IT1.6.2 Proposition. Let x be as in definition II1.6. If c(x) = 3, then x is good.

Proof. Necessarily E = div(ujugus). Let e : X’ — X be the blowing up along x. As ¢(x) = 3,
the center 2’ of p in X’ is not on the strict transform of any two components of E, so m(x’) < 2.
By III.5.1, it can be assumed that m(z’) = 2. After possibly renumbering coordinates, it can be
assumed that

VDir(ac) =< U,Uz + U3 >

with A # 0. Then 2/ = (X' := %,u’l = il uhy i= ug,vy = 32 4+ A) and B = (e E)red =
div(ujub).

Let ¢ € J(f, E,r) be such that ® := cl,)p € k(x)[U1]. Then u;w(x)cp € J(f',E') and

therefore
O(uy, Lvg = A) € J(fz, E') + (u3), (1)
where Z' := X' — @', I :=uyPh = Z'° — Z'¢’"~' + f}, and A(W;u},uh,vh; Z') is minimal (since
e(z) = w(x), ord, ) (H(z) " *g?) > w(z) in here).
If e(z') =1+ w(x), then 2’ (hence x) is good by (1) and II1.5.1, since ¢ & k(z)[U4].
If e(2') = w(z) and z is not good, then VDir(z') =< Uy, US > by IIL.5.1, so

(I)(Ulv 177}3 - )‘) g ‘](f/Z’vE,vl‘,) + (u/2)
Since E' = div(uju}), (1) implies that

~10f7

(1)

) = (@(uy, 1,05 — X)) mod(u), ujh),
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a contradiction by ITI.6.1.

II1.6.3 Proposition. Let x be as in definition I11.6. If c(x) = 2, then x is good.

Proof. After possibly renumbering coordinates, it can be assumed that VDir(z) =< U, U >.
Let e : X’ — X be the blowing up along x. Since the center x’ of p in X’ is very near x,

= (X" = %,u’l = Z—;,ug = Z—i,ug = u3). We have B’ := (e 71E);eq = div(ujubuj) and
A(R;uy, uh, ub; X') is minimal. Moreover J(f', E' ') = ugw(m)J(f, E,x), since m(z') = 3, so we

have VDir(z') =< Uy, U5 > mod(Uj). We are done by IT1.6.2 unless
VDir(z') =< Uy, Uy >,

i.e. 2’ satisfies again the assumptions of IT1.6.3 with the same numbering of variables if k(z") > 5.
Let
X=Xge X1 — X1 X,

p(u1)
p(usz)’

be the quadratic sequence along . We cannot have k(x;) > 5 for i > so x is good and the

conclusion follows.

“On n’est jamais, jamais assez fort pour ce calcul” (Comtesse Maxime de la Falaise).
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