open science

RESOLUTION OF SINGULARITIES OF THREEFOLDS IN POSITIVE CHARACTERISTIC II

Vincent Cossart, Olivier Piltant

To cite this version:

Vincent Cossart, Olivier Piltant. RESOLUTION OF SINGULARITIES OF THREEFOLDS IN POSITIVE CHARACTERISTIC II. 2007. hal-00139445v1

HAL Id: hal-00139445
https://hal.science/hal-00139445v1
Preprint submitted on 30 Mar 2007 (v1), last revised 17 Nov 2008 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

RESOLUTION OF SINGULARITIES OF THREEFOLDS IN POSITIVE CHARACTERISTIC II.

Vincent COSSART and Olivier PILTANT
cossart@math.uvsq.fr, piltant@math.uvsq.fr

Laboratoire de Mathématiques LAMA UMR 8100
Université de Versailles
45 avenue des États-Unis
78035 VERSAILLES cedex (France)
Dédié à Baptiste le petit ange.

In this second article, we solve the local uniformization problem for a hypersurface threefold singularity (X_{0}, x_{0}) with equation :

$$
\begin{equation*}
h:=X^{p}-X g^{p-1}+f, \tag{1}
\end{equation*}
$$

where $\left(S, m_{s}\right)$ is a regular local ring of dimension three essentially of finite type over the ground field $k, f, g \in m_{S}$. The ground field k is differentially finite over a perfect field k_{0} of characteristic $p>0$.

We let $R:=S[X]_{\left(X, m_{S}\right)}, \mathfrak{M}=\left(X, m_{S}\right)$, and $k\left(x_{0}\right)=R / \mathfrak{M}$ is a finite field extension of k. We denote by $\left(u_{1}, u_{2}, u_{3}\right)$ a regular system of parameters (r.s.p. for short) of S, so $\mathfrak{M}=\left(X, u_{1}, u_{2}, u_{3}\right)$. We assume all along this text that h is irreducible over $S[X]$, i.e. that f is not of the form $\theta^{p}-\theta g^{p-1}$ for any $\theta \in S$.

If $g \neq 0$, such a singularity is called "Artin-Schreier", if $g=0$, it is called "purely inseparable". We denote by $\Sigma\left(X_{0}\right)$ (resp. $\Sigma_{p}\left(X_{0}\right)$) the singular locus (resp. the locus of multiplicity p) of X_{0}, omitting reference to X_{0} when the context is clear.

By [CP 7.2], we need only consider the case when the residue extension $\frac{R_{\mu}}{M_{\mu}} / k$ of the given valuation μ centered in $\left(X_{0}, x_{0}\right)$ is algebraic and the rank of μ is one. Here, R_{μ} is the valuation ring of μ and \mathfrak{M}_{μ} its maximal ideal. In particular, the group of values of μ is Archimedean and the center y of μ in any model Y of $K\left(X_{0}\right)$ is always a closed point. Note the following consequence of [CP 7.2](2): $\left(X_{0}, x_{0}\right)$ is analytically irreducible. Namely, $\left(X_{0}, x_{0}\right)$ is analytically reduced because S is an excellent ring ([Ma] section 32); any two distinct irreducible factors of h in \widehat{R} induce distinct extensions of $R_{\mu} \cap S$ to $R /(h)$.

From Hironaka's theory of maximal contact [Gi2], and from resolution of singularities in dimension two, it is enough to build some local hypersurface model (X^{\prime}, x^{\prime}) of $K\left(X_{0}\right)$ such that μ is centered in $\left(X^{\prime}, x^{\prime}\right)$ and $x^{\prime} \notin \Sigma_{p}\left(X^{\prime}\right)$. This model will be constructed by a sequence of birational transformations which are either blowing ups of X_{0} along regular centers (chapter 1, II.4.6 and II.5.1) or blowing ups along regular cylinders over the base $\operatorname{Spec} S$ (chapter 1, III).

A complete proof of the existence of such $\left(X^{\prime}, x^{\prime}\right)$ is given in the following four chapters.

CHAPTER 1: invariants and blowing ups.

In this chapter, we define our main invariant $\Omega\left(x_{0}\right) \in \mathbb{N} \times\{1,2,3\}$ in II.4. When $\Omega\left(x_{0}\right)$ is minimal, resolution is easily obtained by some combinatorial blowing up process in II.4.6. Otherwise, some notion of permissible blowing up w.r.t. this invariant is given in II.5.1.

The main results II.5.4 and II. 6 respectively deal with the behavior of $\Omega\left(x_{0}\right)$ by permissible blowing ups and upper-semicontinuity of $\Omega\left(x_{0}\right)$ on $\Sigma_{p}\left(X_{0}\right)$. Before going that far, we introduce techniques of characteristic polyhedra due to Hironaka and differential invariants due to the first author and to his advisor Jean Giraud in section II, after performing some preparation of the singular locus $\Sigma\left(X_{0}\right)$ in section \mathbf{I}. Those nonpermissible blowing ups used in this article are described in III.

I Preparation of the singular locus.

In the Artin-Schreier case $g \neq 0$, we can suppose that g is a monomial, i.e. that there exists a reduced normal crossings divisor $E \subset \operatorname{Spec} S$, such that

$$
\begin{equation*}
g=\gamma \prod_{\operatorname{div}\left(u_{i}\right) \subseteq E} u_{i}^{\beta_{i}}, \tag{1}
\end{equation*}
$$

with $\beta_{i} \geqslant 0$ and $\gamma \in S$ invertible. Indeed, apply [CP] 8.1 with $f_{0}:=g$. The integers $1 \leqslant e \leqslant j \leqslant 3$ are defined by: $E=\operatorname{div}\left(u_{1} \cdots u_{j}\right), \beta_{1} \cdots \beta_{e} \neq 0$ and $\beta_{e+1}=\cdots=\beta_{j}=0$. We let $E_{0}:=$ $\operatorname{div}\left(u_{1} \cdots u_{e}\right)$. Note that $\eta: X_{0} \rightarrow \operatorname{Spec} S$ is étale away from $\eta^{-1} E_{0}$. In particular $\Sigma \subseteq \eta^{-1} E_{0}$.

In the inseparable case $g=0$, let $d f$ be the image of f in $\Omega_{S / k_{0}}^{1}$ (where k is differentially finite over the perfect field k_{0}). We have $d f \neq 0$ since $f \notin S^{p}$ (remember that h is irreducible). We pick $\varphi \in S, \varphi \neq 0$, such that $d f$ does not vanish away from the set $\{\varphi=0\}$. By [CP] 8.1, it can be assumed that $f_{0}:=\varphi$ is a monomial whose support is defined to be $E=\operatorname{div}\left(u_{1} \cdots u_{j}\right)$. We let $\beta_{i}=\infty$ for $1 \leqslant i \leqslant j$ and $E_{0}:=E$ in this case. Like in the Artin-Schreier case, we have $\Sigma \subseteq \eta^{-1} E_{0}$. See II.3.1 for an important consequence of the assumption.

Also note that, if $g=0$, or if $g \neq 0$ and $s \in E_{0}$, the fiber $\operatorname{ring} \operatorname{Spec}\left(k(s) \otimes_{S} R /(h)\right)$ is local, i.e. $\eta^{-1}(s)$ is a single point.

From now on, we suppose that (1) holds if $g \neq 0$, or that E is defined as above if $g=0$ and that (unless stated otherwise) r.s.p.'s $\left(u_{1}, u_{2}, u_{3}\right)$ of S are chosen according to the above convention on E_{0} and E. We then say that $\left(u_{1}, u_{2}, u_{3}\right)$ is adapted to E. We let

$$
\begin{equation*}
f=\prod_{\operatorname{div}\left(u_{i}\right) \subseteq E} u_{i}^{a_{i}} f_{0}, \tag{2}
\end{equation*}
$$

where $f_{0} \in S$ is not divisible by any u_{i} with $\operatorname{div}\left(u_{i}\right) \subseteq E$. Finally, note that since $(f, g) \subseteq m_{S}$, it can also be assumed that $(f, g) \subseteq\left(u_{i}\right)$ for some $i, 1 \leqslant i \leqslant j$.

II The invariant ω.

As said before, we suppose that the center of μ in X_{0} is a closed point, but, to prove some semicontinuity theorems, we have to define our invariants also at all points. In this section, $x \in X_{0}$ is not necessarily the center x_{0} of $\mu: x$ is a point such that $x_{0} \in \overline{\{x\}}$. We always assume that $x_{0} \in \Sigma_{p}$ in this section, but do not necessarily assume that $x \in \Sigma_{p}$.
II. 1 Notations. Let $\left(u_{1}, \ldots, u_{n}\right), n \leqslant 3$ be a r.s.p. of $S_{\eta(x)}$ and E_{x} (resp. $E_{0, x}$) be the stalk of E (resp. E_{0}) at $\eta(x)$. Then $\left(X, u_{1}, \ldots, u_{n}\right)$ is a system of coordinates at x.

The associated polyhedron $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right) \subseteq \mathbb{R}_{\geqslant 0}^{n}$ (projection on the $\left(u_{1}, \ldots, u_{n}\right)$-space of $1 / p$ times the Newton polyhedron of h from the point $(0, \ldots, 0,1)$) can be minimized by a "translation on X ", i.e. by replacing X by $Z:=X+\psi, \psi \in \widehat{S_{\eta(x)}}$ as in [H1]. This translation does not modify g, nor the vanishing locus of $d f \in \Omega_{S / k_{0}}^{1}$ if $g=0$. Also note that $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right) \neq$ \varnothing by definition if $g \neq 0$, and because $S[X] /(h)$ is analytically reduced. For a given system of coordinates $\left(X, u_{1}, \ldots, u_{n}\right)$, we denote

$$
\delta\left(X, u_{1}, \ldots, u_{n}\right):=\inf \left\{x_{1}+\cdots+x_{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in \Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)\right\}<\infty
$$

We also maintain the writing $f=\prod_{\operatorname{div}\left(u_{i}\right) \subseteq E_{x}} u_{i}^{a_{i}} f_{0}$ of $\mathbf{I}(2)$, allowing $f_{0} \in \widehat{S_{\eta(x)}}$ for arbitrary coordinates $\left(X, u_{1}, \ldots, u_{n}\right)$ on $\widehat{S_{\eta(x)}}[X]$.
II.1.1 Definition of δ. Assume that the polyhedron $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is minimal. Then $\delta(x)<$ ∞ is defined by:

$$
\delta(x):=\inf \left\{\operatorname{ord}_{\eta(x)}(g), \frac{\operatorname{ord}_{\eta(x)}(f)}{p}\right\} \in \frac{1}{p} \mathbb{N}
$$

II.1.2 Definition of d_{i}. Assume that the polyhedron $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is minimal. Let $d_{i}(x):=\inf \left\{\beta_{i}, \frac{a_{i}}{p}\right\}$ for $\operatorname{div}\left(u_{i}\right) \subseteq E_{x}$ and $H(x):=\prod_{\operatorname{div}\left(u_{i}\right) \subseteq E_{x}} u_{i}^{p d_{i}(x)} \in S_{\eta(x)}$.

We extend the notation by setting $d_{i}(x)=0$ for $\operatorname{div}\left(u_{i}\right) \nsubseteq E_{x}$. Although all numerical invariants which have been associated with x depend on f, hence on the choice of minimal coordinates, we will see in II. 2 that they usually do not.
II.1.3 Definition. Let k be a field, S_{1} a k-vector space of finite dimension and $S=k\left[S_{1}\right]$ be the symmetric algebra. Let $V:=\operatorname{Spec} S$ and I be a homogeneous ideal of S which defines a cone $C:=\operatorname{Spec}(S / I)$. Let \mathfrak{F} be the following subfunctor of the functor represented by V : for every k-scheme k^{\prime},

$$
\mathfrak{F}\left(k^{\prime}\right)=\left\{v \in V\left(k^{\prime}\right) \mid L_{v}\left(C \times_{k} k^{\prime}\right) \subset C \times_{k} k^{\prime}\right\}
$$

where L_{v} is the translation defined by v, i.e.

$$
L_{v}: V \times_{k} k^{\prime} \longrightarrow V \times_{k} k^{\prime}, L_{v}\left(v^{\prime}\right)=v+v^{\prime}
$$

This functor is represented by a closed group subscheme F / k of V which is also a cone and called the ridge of V. The scheme F has for equations homogeneous additive polynomials with coefficients in k. By a theorem of Hironaka, the ridge is the larger group subscheme of V which leaves C stable by translations. See [Gi1, prop 1.5.4] and [Gi2 1.5].
II.1.4 Definition. With notations as above, the directrix $\operatorname{VDir}(I)$ of C is the smallest k-vector subspace W of S_{1} such that $I=(k[W] \cap I) S$. We also denote $\operatorname{IDir}(I):=\operatorname{VDir}(I) S, \operatorname{PDir}(I):=$ $\operatorname{Proj}(S / \operatorname{IDir}(I))$.

By Hironaka's quoted theorem, the directrix is the smallest k-vector subspace $\operatorname{Dir}(I)$ of S_{1} which generates an ideal containing the ideal of the ridge. If $x \in X_{0}$, we will denote by $C_{h}(x):=$ $\operatorname{Proj}\left(\mathrm{gr}_{m_{x}} S_{x} / \mathrm{in}_{x} h\right)$ the tangent cone of X_{0} at x.
II.1.5 Notation. We denote by $\tau(I)$ the codimension of $\operatorname{VDir}(I)$ in S_{1}.
II. 2 Proposition. The integer $\delta(x)$ does not depend on any choice of coordinates $\left(X, u_{1}, \ldots, u_{n}\right)$ such that $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is minimal.

If $\operatorname{div}\left(u_{1}\right) \subseteq E_{0, x}, d_{1}(x)$ does not depend on any choice of coordinates $\left(X, u_{1}, \ldots, u_{n}\right)$ such that $E_{0, x} \subseteq \operatorname{div}\left(u_{1} \cdots u_{n}\right)$ and $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is minimal. For any such choice of coordinates, the following holds: if $V\left(h, u_{1}\right)=V\left(X, u_{1}\right)$, we have $d_{1}(x)=d_{1}(y)=\delta(y)>0$, where y is the generic point of $V\left(X, u_{1}\right)$; we have $d_{1}(x)=0$ otherwise.

Proof. See [6] for a stronger form of this proposition that will not be needed here. Let us first prove that $\delta(x)$ does not depend on the choice of coordinates minimizing the polyhedron of h. If there exists coordinates $\left(X^{\prime}, u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right)$ such that $\delta\left(X^{\prime}, u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right)>\delta\left(X, u_{1}, \ldots, u_{n}\right)$, then if we write $h=X^{\prime p}-X^{\prime} g^{p-1}+f^{\prime}$, we have $f^{\prime}, g^{p} \in m_{S_{\eta(x)}}^{p \delta\left(X^{\prime}, u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right)}$. So $\delta\left(X^{\prime}, u_{1}, \ldots, u_{n}\right) \geqslant$ $\delta\left(X^{\prime}, u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right)>\delta\left(X, u_{1}, \ldots, u_{n}\right): \Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is not minimal, and this proves the first part of the proposition.

Note that the finite map $V\left(h, u_{1}\right) \rightarrow \operatorname{div}\left(u_{1}\right)$ is either an isomorphism or purely inseparable of degree p whenever $\operatorname{div}\left(u_{1}\right) \subseteq E_{0}$.

If $0<d_{1}(x)$, then $\left(h, u_{1}\right)_{\text {red }}=\left(X, u_{1}\right)$. By the lemma below, the value of $d_{1}(x)$ computed in a given system of coordinates such that the polyhedron $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is minimal satisfies $d_{1}(x)=d_{1}(y)=\delta(y)$ where y is the generic point of $V\left(X, u_{1}\right)$ and $\Delta\left(h ; u_{1} ; X\right)=\left[\delta(y),+\infty\left[\subset \mathbb{R}^{+}\right.\right.$ is minimal. But $\delta(y)$ does not depend on the choice of minimal coordinates by the first part of the proposition and the conclusion follows.

If $d_{1}(x)=0$ and if $V\left(h, u_{1}\right) \rightarrow \operatorname{div}\left(u_{1}\right)$ is an isomorphism, then $\left(h, u_{1}\right)_{\text {red }}=\left(X+\psi, u_{1}\right), \psi \in S$. We replace X by $X+\psi$, and get that $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X+\psi\right)$ does not contain $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$, which contradicts the minimality hypothesis. So $d_{1}(x)=0$ is equivalent to: $V\left(h, u_{1}\right) \rightarrow \operatorname{div}\left(u_{1}\right)$ is not an isomorphism (hence purely inseparable of degree p).
II.2.1 Lemma (Semi-continuity of the characteristic polyhedron). Assume that the polyhedron $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is minimal. Let $Y:=V\left(X, u_{1}, \ldots, u_{i}\right) \subset \operatorname{Spec} R$ and y be the generic point of Y for some $i, 1 \leqslant i \leqslant n$. The polyhedron $\Delta\left(h ; u_{1}, \ldots, u_{i} ; X\right)$ is minimal, where h is viewed as an element of $\left(\widehat{S_{\eta(x)}} \otimes_{S_{\eta(x)}} \widehat{S_{\eta(y)}}\right)[X]$. We have the equivalences:
(i) $\inf \left\{x_{1}+\cdots+x_{i} \mid\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Delta\left(h ; u_{1}, u_{2}, \ldots, u_{n} ; X\right)\right\} \geqslant 1 \Leftrightarrow Y \subseteq \Sigma_{p}$;
(ii) $\inf \left\{x_{1}+\cdots+x_{i} \mid\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Delta\left(h ; u_{1}, u_{2}, \ldots, u_{n} ; X\right)\right\}>1 \Leftrightarrow Y \subseteq \Sigma_{p}$ and $\tau\left(I_{Y} S_{\eta(y)}\right)=1$.

Proof. In fact the polyhedron $\Delta\left(h ; u_{1}, \ldots, u_{i} ; X\right)$ is the image of $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ by the projection π on the (x_{1}, \ldots, x_{i})-space, so a vertex $v=\left(x_{1}, \ldots, x_{i}\right)$ of $\Delta\left(h ; u_{1}, \ldots, u_{i} ; X\right)$ is the projection $\pi(w)$ of at least one vertex $w=\left(x_{1}, \ldots, x_{n}\right)$ of $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$.
Let us prove the first assertion. We write

$$
h=X^{p}-X \sum_{x \in \mathcal{E}} \epsilon_{x} u_{1}^{(p-1) x_{1}} \cdots u_{n}^{(p-1) x_{n}}+\sum_{x \in \mathcal{E}} \phi_{x} u_{1}^{p x_{1}} \cdots u_{n}{ }^{p x_{n}},
$$

where
(a) $x=\left(x_{1}, \ldots, x_{n}\right), \mathcal{E} \subset \Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$;
(b) \mathcal{E} is finite and contains all vertices of $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$;
(c) each of ϵ_{x} and ϕ_{x} is either invertible or identically zero in $\widehat{S_{\eta(x)}}$.

Let $v=\left(x_{1}, \ldots, x_{i}\right)$ be a vertex of $\Delta\left(h ; u_{1}, \ldots, u_{i} ; X\right)$ and let us look at

$$
X^{p}-X \sum_{x, \pi(x)=v} \epsilon_{x} u_{1}^{(p-1) x_{1}} \cdots u_{n}^{(p-1) x_{n}}+\sum_{x, \pi(x)=v} \phi_{x} u_{1}{ }^{p x_{1}} \cdots u_{n}{ }^{p x_{n}} .
$$

If $\sum_{x, \pi(x)=v} \epsilon_{x} u_{1}^{(p-1) x_{1}} \cdots u_{n}{ }^{(p-1) x_{n}} \neq 0$, then v is not solvable in $\Delta\left(h ; u_{1}, \ldots, u_{i} ; X\right)$. We claim that if one vertex $w=\left(x_{1}, \ldots, x_{i}, w_{i+1}, \ldots, w_{n}\right)$ with $\pi(w)=v$ is not solvable over $\widehat{S_{\eta(x)}}$,
then v is not solvable in $\Delta\left(h ; u_{1}, \ldots, u_{i} ; X\right)$. Namely, otherwise we have $x_{1}, \ldots, x_{i} \in \mathbb{N}$ and we can find

$$
\psi \in T:=\left(\widehat{S_{\eta(x)}} /\left(u_{1}, \ldots, u_{i}\right) \widehat{S_{\eta(x)}}\right) \otimes_{\left(S_{\eta(x)} /\left(u_{1}, \ldots, u_{i}\right) S_{\eta(x)}\right)} k(y)
$$

such that

$$
\psi^{p} \equiv \sum_{x, \pi(x)=v} \phi_{x} u_{i+1}^{p x_{i+1}} \cdots u_{n}{ }^{p x_{n}} \bmod \left(u_{1}, \ldots, u_{i}\right) \widehat{S_{\eta(x)}} \otimes_{S_{\eta(x)}} \widehat{S_{\eta(y)}}
$$

Since S is regular and excellent, the fiber ring T is an integral domain ([Ma] section 32). Therefore there exists $a \in \widehat{S_{\eta(x)}}, b \in S_{\eta(x)}$ with $a b \notin\left(u_{1}, \ldots, u_{i}\right) \widehat{S_{\eta(x)}}$ such that

$$
b^{p} \sum_{x, \pi(x)=v} \phi_{x} u_{i+1}{ }^{p x_{i+1}} \cdots u_{n}{ }^{p x_{n}} \equiv a^{p} \bmod \left(u_{1}, \ldots, u_{i}\right) \widehat{S_{\eta(x)}}
$$

Since w is a vertex of $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$, we must have

$$
w_{i+1}, \ldots, w_{n} \in \mathbb{N}, \text { and } \phi_{w} \bmod m_{\widehat{S_{\eta(x)}}} \in k(x)^{p}
$$

so w is solvable: a contradiction. The last two equivalences are now straightforward.
At this point, we remark that $d_{i}(x)=0$ whenever $\operatorname{div}\left(u_{i}\right) \nsubseteq E_{0, x}$. Otherwise, $d_{i}(x)$ does not depend on the choice of x such that $\operatorname{div}\left(u_{i}\right) \subseteq E_{0, x}$ and is determined by II.2. From now on, we thus relax the notation by writing d_{i} instead of $d_{i}(x)$.
II.2.2 Proposition. Let $N \in \mathbb{N}, \delta\left(x_{0}\right) \leqslant N<+\infty$ (resp. $N=+\infty$). There exists $X \in R$ (resp. $X \in \widehat{R})$ such that $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$ and
(i) $d_{i}=\inf \left\{x_{i} \mid\left(x_{1}, x_{2}, x_{3}\right) \in \Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)\right\}$ whenever $\operatorname{div}\left(u_{i}\right) \subseteq E$;
(ii) no vertex $v=\left(x_{1}, x_{2}, x_{3}\right)$ of $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ with $x_{1}+x_{2}+x_{3}<N$ is solvable. In particular, $\delta\left(x_{0}\right)=\inf \left\{x_{1}+x_{2}+x_{3} \mid\left(x_{1}, x_{2}, x_{3}\right) \in \Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)\right\}$.

Furthermore, if for some r.s.p. $\left(X^{\prime}, u_{1}, u_{2}, u_{3}\right)$ of $R, Y:=V\left(X^{\prime}, u_{1}, u_{2}\right) \subseteq \eta^{-1} E$ is such that $\eta(Y)=V\left(u_{1}, u_{2}\right)$ has normal crossings with E, we can choose $X \in R$ (resp. $X \in \widehat{R}$) such that moreover $\Delta\left(h ; u_{1}, u_{2} ; X\right)$ is minimal and $Y=V\left(X, u_{1}, u_{2}\right)$.

Proof. We first point out that the formal version $(X \in \widehat{R})$ is a consequence of II.2.1 except when Y has been specified.

We start with some r.s.p. $\left(X^{\prime}, u_{1}, u_{2}, u_{3}\right)$ of R such that $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$ and a writing $h=X^{\prime p}-X^{\prime} g^{p-1}+f \in S[X], f=\prod_{\operatorname{div}\left(u_{i}\right) \subseteq E} u_{i}^{a_{i}} f_{0} \in S$, with a_{i} maximal for each i.
II.2.2.1 Suppose that $d_{1} \neq \inf \left\{x_{1} \mid\left(x_{1}, x_{2}, x_{3}\right) \in \Delta\left(h ; u_{1}, u_{2}, u_{3} ; X^{\prime}\right)\right.$. Then $d_{1}>0$, so that $\operatorname{div}\left(u_{1}\right) \subseteq$ E_{0} and $V\left(h, u_{1}\right)$ is regular by II.2. If $a_{1}=0$, we can choose $\psi \in S$ such that $\left(h, u_{1}\right)_{\text {red }}=\left(X^{\prime}+\psi, u_{1}\right)$ and get $a_{1}>0$ after changing X^{\prime} to $X^{\prime}+\psi$. Note that u_{2} divides ψ if $\operatorname{div}\left(u_{2}\right) \subseteq E_{0}$ and $a_{2}>0$. Also note that if $h \in\left(X^{\prime}, u_{1}, u_{2}\right)$ then $\psi \in\left(X^{\prime}, u_{1}, u_{2}\right) \cap S=\left(u_{1}, u_{2}\right)$. Finally, if $h \in\left(X^{\prime}, u_{2}, u_{3}\right)$ then we can choose $\psi \in\left(u_{2}, u_{3}\right) S$ satisfying $f \equiv \psi^{p} \bmod \left(u_{1}\right)$ and $\left(h, u_{1}\right)_{\text {red }}=\left(X^{\prime}+\psi, u_{1}\right)$. Therefore $V\left(X^{\prime}, u_{2}, u_{3}\right)=V\left(X^{\prime}+\psi, u_{2}, u_{3}\right)$ in this case. In other terms, it can be assumed that $a_{i}>0$ whenever $\operatorname{div}\left(u_{i}\right) \subseteq E_{0}$ and $d_{i}>0$; moreover we still have $Y=V\left(X^{\prime}, u_{1}, u_{2}\right)$ in the new variables if $Y=V\left(X^{\prime}, u_{1}, u_{2}\right)$ has been specified.

The polyhedron $\Delta\left(h ; u_{1} ; X^{\prime}\right)=\left[a_{1} / p,+\infty\left[\subset \mathbb{R}^{+}\right.\right.$is not minimal, so $\delta\left(X^{\prime}, u_{1}\right)=a_{1} / p \in \mathbb{N}$; the initial form of h with respect to the unique vertex $\delta\left(X^{\prime}, u_{1}\right)$ is $X^{\prime p}+U_{1}^{p \delta\left(X^{\prime}, u_{1}\right)} \Psi^{p}$ with $\Psi \in$ $Q F\left(S /\left(u_{1}\right)\right)$. Since $f \in S$, we actually have $\Psi \in S /\left(u_{1}\right)$. Since $\prod_{\operatorname{div}\left(u_{i}\right) \subseteq E_{0}} u_{i}^{a_{i}}$ divides f, we can lift Ψ to $\psi \in S$ in such a way that $\prod_{\operatorname{div}\left(u_{i}\right) \subseteq E_{0}} u_{i}^{a_{i}}, i \neq 1$ divides ψ^{p}. Replacing X^{\prime} with $X^{\prime \prime}:=X^{\prime}+$ $u_{1}{ }^{a_{1} / p} \psi$, we get $\Delta\left(h ; u_{1} ; X^{\prime \prime}\right) \subset \Delta\left(h ; u_{1} ; X^{\prime}\right)$ and $\Delta\left(h ; u_{i} ; X^{\prime \prime}\right) \subseteq \Delta\left(h ; u_{i} ; X^{\prime}\right)$ whenever $\operatorname{div}\left(u_{i}\right) \subseteq$
$E_{0}, i \neq 1$. Moreover we can choose $\psi \in S$ such that $Y=V\left(X^{\prime \prime}, u_{1}, u_{2}\right)$ if $Y=V\left(X^{\prime}, u_{1}, u_{2}\right) \subset \eta^{-1} E$ has been specified, as in the previous paragraph. By induction on $\sum a_{i}$, we achieve an expression $h=X^{\prime p}-X^{\prime} g^{p-1}+f \in S[X]$ with $d_{i}=\inf \left\{x_{i} \mid\left(x_{1}, x_{2}, x_{3}\right) \in \Delta\left(h ; u_{1}, u_{2}, u_{3} ; X^{\prime}\right)\right\}$ whenever $\operatorname{div}\left(u_{i}\right) \subseteq$ E, that is, $\Delta\left(h ; u_{i} ; X^{\prime}\right)$ is minimal whenever $\operatorname{div}\left(u_{i}\right) \subseteq E$ so that (i) holds.
II.2.2.2 Now consider the case where $Y:=V\left(X^{\prime}, u_{1}, u_{2}\right) \subseteq \eta^{-1} E$ has been specified. The polyhedron $\Delta\left(h ; u_{1}, u_{2} ; X^{\prime}\right)$ is the image of $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X^{\prime}\right)$ by the projection π on the space of the $\left(x_{1}, x_{2}\right)$. Suppose that a vertex $v=\left(x_{1}, x_{2}\right)$ of $\Delta\left(h ; u_{1}, u_{2} ; X^{\prime}\right)$ is solvable, i.e. does not belong to the minimal polyhedron. This means that there exist $x_{1}, x_{2} \in \mathbb{N}$ such that the Newton polyhedron of $f-\left(\mu u_{1}^{x_{1}} u_{2}^{x_{2}}\right)^{p}$ is strictly contained in that of f, where $\mu \in S$ is invertible in $S_{\left(u_{1}, u_{2}\right)}$. By the same argument as above, we can ensure $\mu^{p} \in u_{3}^{p d_{3}} S$ in case $\operatorname{div}\left(u_{3}\right) \subseteq E$. After changing X^{\prime} with $X^{\prime}+\mu u_{1}^{x_{1}} u_{2}^{x_{2}}$, we dissolve v without losing (i).

We claim that this algorithm is finite: if not, it would mean that we dissolve an infinite number of vertices with x_{1} or x_{2} minimal, say x_{1}. Since the polyhedron $\Delta\left(h ; u_{i} ; X^{\prime}\right)$ is minimal whenever $\operatorname{div}\left(u_{i}\right) \subseteq E$, we get that $\operatorname{div}\left(u_{1}\right) \nsubseteq E$, and therefore $\operatorname{div}\left(u_{2}\right) \subseteq E$. First suppose that $x_{1}=0$. Necessarily, we have $g=0$, and there exists $\psi \in S$ such that $f \equiv \psi^{p} \bmod u_{1} S$. We can assume as above that $\psi^{p} \in u_{i}^{p d_{i}} S$ whenever $\operatorname{div}\left(u_{i}\right) \subseteq E$. Also we have $\psi \in\left(u_{1}, u_{2}\right) S$, since $f \in\left(u_{1}, u_{2}\right) S$. We then replace X^{\prime} with $X^{\prime}+\psi$ to get $x_{1}>0$ without losing (i). Now, assuming $x_{1}>0$, we have $\left(f, g^{p}\right) \subseteq\left(u_{1}^{p}\right)$, so that $V\left(X^{\prime}, u_{1}\right) \subseteq \Sigma$. Therefore $\operatorname{div}\left(u_{1}\right) \subseteq \eta(\Sigma) \subseteq E$ by definition of E in section I: a contradiction.
II.2.2.3 We suppose that $d_{i}=\inf \left\{x_{i} \mid\left(x_{1}, x_{2}, x_{3}\right) \in \Delta\left(h ; u_{1}, u_{2}, u_{3} ; X^{\prime}\right)\right\}$ whenever $\operatorname{div}\left(u_{i}\right) \subseteq E$ and that $\Delta\left(h ; u_{1}, u_{2} ; X^{\prime}\right)$ is minimal if $V\left(X^{\prime}, u_{1}, u_{2}\right) \subseteq \eta^{-1} E$ has been specified. Then, we start Hironaka's algorithm of vertex dissolution: if there is a vertex $v=\left(x_{1}, x_{2}, x_{3}\right)$ of $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X^{\prime}\right)$ which is solvable, there exists $\lambda \in S$ invertible giving a translation on X^{\prime}, say $X=X^{\prime}+\lambda u_{1}^{x_{1}} u_{2}^{x_{2}} u_{3}^{x_{3}}$, with $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right) \subset \Delta\left(h ; u_{1}, u_{2}, u_{3} ; X^{\prime}\right)$ and v is not a vertex of $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$. Note that by projection $\Delta\left(h ; u_{i} ; X\right) \subseteq \Delta\left(h ; u_{i} ; X^{\prime}\right)$ whenever $\operatorname{div}\left(u_{i}\right) \subseteq E$, and $\Delta\left(h ; u_{1}, u_{2} ; X\right) \subseteq \Delta\left(h ; u_{1}, u_{2} ; X^{\prime}\right)$ if $Y=V\left(X^{\prime}, u_{1}, u_{2}\right)$ is specified. Consequently, these projections are still minimal. Furthermore, if $h \in\left(X^{\prime}, u_{1}, u_{2}\right)$, we have $V\left(X, u_{1}, u_{2}\right)=V\left(X^{\prime}, u_{1}, u_{2}\right)$. We will get the algebraic version $(X \in R)$ of (ii) after a finite number of steps. In order to get $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ minimal, we may need infinitely many steps. Then we construct a series $X=X^{\prime}+\sum_{x} \lambda_{x} u_{1}^{x_{1}} u_{2}^{x_{2}} u_{3}^{x_{3}} \in \widehat{R}$ and this proves the formal version of the proposition.
II.2.3 Definition. We call initial face or first face of $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ (not necessarily minimal) the face of equation $x_{1}+x_{2}+x_{3}=\delta\left(X, u_{1}, u_{2}, u_{3}\right)$.
II. 3 Adapted Jacobian ideals. We remind that k_{0} is a perfect subfield of k and that $\Omega_{k / k_{0}}^{1}$ has finite dimension. Then, for any r.s.p. $\left(u_{1}, u_{2}, u_{3}\right)$ of S, a basis $\left(d \lambda_{1}, \ldots, d \lambda_{s}\right)$ of $\Omega_{S / k_{0}}^{1}$ may be chosen so that

$$
\begin{equation*}
u_{1}=\lambda_{1}, u_{2}=\lambda_{2}, u_{3}=\lambda_{3} \tag{1}
\end{equation*}
$$

The derivations $\frac{\partial}{\partial \lambda_{1}}, \ldots, \frac{\partial}{\partial \lambda_{s}}$ are defined by $\frac{\partial \lambda_{j}}{\partial \lambda_{i}}=\delta_{i, j}, 1 \leqslant i, j \leqslant s . \quad$ If (1) is true for $d \lambda_{1}, \ldots, d \lambda_{s}$, we can take

$$
\begin{equation*}
\lambda_{i} \in S, 4 \leqslant i \leqslant s \tag{2}
\end{equation*}
$$

such that S is unramified over $k_{0}\left(\lambda_{4}, \ldots, \lambda_{s}\right)\left[u_{1}, u_{2}, u_{3}\right]$. In this case, the derivations $\frac{\partial}{\partial \lambda_{i}}, 4 \leqslant i \leqslant s$ are so-called "derivations relative to constants".

For $x \in \operatorname{Spec} S$, we extend the definition of H in II.1.2 by writing $H(x)$ for $H(\tilde{x})$, where \tilde{x} is any point of X_{0} such that $\eta(\tilde{x})=x$. If $x \in E_{0}, \tilde{x}$ is uniquely determined as pointed out in \mathbf{I}. On the other hand, $H(x)=1$ if $x \notin E_{0}$.

Let $Y \subseteq E_{0}$ be a regular closed subset of $\operatorname{Spec} S$, having normal crossings with E. We denote $I(Y)=\left(\left\{u_{i}\right\}_{i \in I}\right), I \subseteq\{1,2,3\}$, where $\left(u_{1}, u_{2}, u_{3}\right)$ is adapted to E. We let $I_{E}:=I \cap\{1, \ldots, j\}$ (see I for the definition of j) and $I^{c}:=\{1,2,3\} \backslash I$.

Let us denote $\mathcal{D}:=\left\{D \in \operatorname{Der}_{k_{0}}(S) \mid D\left(I(E)_{\text {red }}\right) \subseteq I(E)_{\text {red }}\right\}$, where $\operatorname{Der}_{k_{0}}(S)=\left(\Omega_{S / k_{0}}^{1}\right)^{\vee}$ denotes the S-module of k_{0}-derivations of S into itself. We let $\mathcal{D}(Y):=\{D \in \mathcal{D} \mid D(I(Y)) \subseteq$ $I(Y)\}$. More generally, for every point (not necessarily closed) $x \in \operatorname{Spec} S$, we let $\mathcal{D}(x):=\{D \in$ $\mathcal{D} \mid D(I(x)) \subseteq I(x)\}$. If $\tilde{x} \in X_{0}$, we also write $\mathcal{D}(\tilde{x})$ for $\mathcal{D}(x)$, where $\eta(\tilde{x})=x$.

It is easy to see that if (1) is true for $d \lambda_{1}, \ldots, d \lambda_{s}$, then

$$
\begin{gather*}
\mathcal{D}=\sum_{1 \leqslant i_{1} \leqslant j} S u_{i_{1}} \frac{\partial}{\partial u_{i_{1}}}+\sum_{j+1 \leqslant i_{2} \leqslant 3} S \frac{\partial}{\partial u_{i_{2}}}+\sum_{4 \leqslant i_{3} \leqslant s} S \frac{\partial}{\partial \lambda_{i_{3}}} \tag{3}\\
\mathcal{D}(Y)=\sum_{1 \leqslant i_{1} \leqslant j} S u_{i_{1}} \frac{\partial}{\partial u_{i_{1}}}+\sum_{i_{2} \in I \backslash I_{E}} I(Y) \frac{\partial}{\partial u_{i_{2}}}+\sum_{i_{3} \in I^{c}} S \frac{\partial}{\partial u_{i_{3}}}+\sum_{4 \leqslant i_{4} \leqslant s} S \frac{\partial}{\partial \lambda_{i_{4}}} . \tag{4}
\end{gather*}
$$

In particular, if $Y=\left\{\eta\left(x_{0}\right)\right\}$,

$$
\begin{equation*}
\mathcal{D}\left(x_{0}\right)=\sum_{1 \leqslant i_{1} \leqslant j} S u_{i_{1}} \frac{\partial}{\partial u_{i_{1}}}+\sum_{j+1 \leqslant i_{2} \leqslant 3}\left(u_{1}, u_{2}, u_{3}\right) \frac{\partial}{\partial u_{i_{2}}}+\sum_{4 \leqslant i_{3} \leqslant s} S \frac{\partial}{\partial \lambda_{i_{3}}} \tag{5}
\end{equation*}
$$

At every point (not necessarily closed) $z \in \operatorname{Spec} S$, we let $\mathcal{J}(f, E)_{z}:=(\mathcal{D} f) S_{z}, \mathcal{J}(f, E, Y)_{z}:=$ $(\mathcal{D}(Y) f) S_{z}$ and $\mathcal{J}(f, E, x)_{z}:=(\mathcal{D}(x) f) S_{z}$. These definitions make $\mathcal{J}(f, E), \quad \mathcal{J}(f, E, Y)$ and $\mathcal{J}(f, E, x)$ into sheaves of ideals on $\operatorname{Spec} S$ and we will usually omit the subscript z when the context is clear. Clearly, $\mathcal{J}(f, E, Y)$ and $\mathcal{J}(f, E, x)$ are subsheaves of $\mathcal{J}(f, E), \mathcal{J}(f, E)_{z}$ and $\mathcal{J}(f, E, Y)_{z}$ (resp. $\mathcal{J}(f, E, x)_{z}$) coincide with S_{z} for $z \notin E$ (resp. $z \notin E \cup\{x\}$). If $f=\prod_{\operatorname{div}\left(u_{i}\right) \subseteq E} u_{i}^{a_{i}} f_{0}$, formula (3) shows that the monomial $\prod_{\operatorname{div}\left(u_{i}\right) \subseteq E} u_{i}^{a_{i}}$ divides $\mathcal{J}(f, E), \mathcal{J}(f, E, x)$ and $\mathcal{J}(f, E, Y)$. We let

$$
J(f, E):=H(x)^{-1} \mathcal{J}(f, E), \quad J(f, E, x):=H(x)^{-1} \mathcal{J}(f, E, x), J(f, E, Y):=H(x)^{-1} \mathcal{J}(f, E, Y)
$$

The above definitions of $\mathcal{J}(f, E)_{z}, \mathcal{J}(f, E, Y)_{z}$ and $\mathcal{J}(f, E, x)_{z}$ also make sense for $f \in \widehat{S_{z}}$. In the special case when the polyhedron $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is minimal, we will use the further notation

$$
\nu(x):=\operatorname{ord}_{x} J(f, E), \alpha(x):=\operatorname{ord}_{x} J(f, E, x), \epsilon(x):=\inf \left\{\operatorname{ord}_{x} J(f, E, x), \operatorname{ord}_{x}\left(H(x)^{-1} g^{p}\right)\right\}
$$

We also write $\mathcal{J}(f, E, \tilde{x}), J(f, E, \tilde{x}), \nu(\tilde{x}), \alpha(\tilde{x}), \epsilon(\tilde{x})$ to mean $\mathcal{J}(f, E, x), J(f, E, x), \nu(x)$, $\alpha(x), \epsilon(x)$ respectively, where $\eta(\tilde{x})=x$.

Note that all of these ideals depend on a choice of the variable X in $S[X]$, since f does. If we make a translation on X, i.e. if we change X to $Z=X-\theta, \theta \in S, f$ is changed into $f_{Z}=f+\theta^{p}-\theta g^{p-1}$. If $g=0$, we have $J(f, E)=J\left(f_{Z}, E\right), J(f, E, x)=J\left(f_{Z}, E, x\right)$ and $J(f, E, Y)=J\left(f_{Z}, E, Y\right)$. In this purely inseparable case, we have:
II.3.1 Lemma. Assume that $g=0$. Then $J(f, E), J(f, E, x)$ and $J(f, E, Y)$ do not depend on any choice of coordinates $\left(X, u_{1}, u_{2}, u_{3}\right)$ on R, even if $\Delta\left(h ; u_{1}, u_{2}, u_{3}\right)$ is not minimal.

Moreover, there exists a closed subset W (resp. W_{x}, W_{Y}) of E of dimension at most one such that $J(f, E)_{z}=S_{z}$ (resp. $\left.J(f, E, x)_{z}=S_{z}, J(f, E, Y)_{z}=S_{z}\right)$ whenever $z \notin W$ (resp. $z \in E \backslash W_{x}$, $\left.z \notin W_{Y}\right)$.

Proof. The first part of the lemma has already been pointed out above. From our conventions in $\mathbf{I}, \mathcal{J}(f, E)_{z}$ and $\mathcal{J}(f, E, Y)_{z}$ coincide with S_{z} for $z \notin E$. In case Y (resp. $\overline{\{x\}}$) is an irreducible component of E, we have $J(f, E, Y)=J(f, E)($ resp. $J(f, E, x)=J(f, E))$.

Therefore to prove the lemma, since $J(f, E)$ and $J(f, E, x)$ (resp. and $J(f, E, Y)$) coincide outside $\overline{\{x\}}$ (resp. Y), it is enough to reach $\operatorname{dimV}(J(f, E)) \leqslant 1$.

If $\operatorname{div}\left(u_{1}\right) \subseteq E$, it can be assumed by II.2.2 that $f=u_{1}^{p d_{1}} f_{0}$, where u_{1} does not divide f_{0}, and either (i) $d_{1} \notin \mathbb{N}$, or (ii) $f_{0} \bmod \left(u_{1}\right) \notin Q F\left(S /\left(u_{1}\right)\right)^{p}$. In case (i), ord $u_{u_{1}}\left(u_{1} \frac{\partial f}{\partial u_{1}}\right)=p d_{1}$, and in case (ii), $\operatorname{ord}_{u_{1}}\left(\frac{\partial f}{\partial \lambda_{i}}\right)=p d_{1}$ for some $i \neq 1$. Therefore u_{1} does not divide $J(f, E)$. This proves that $\operatorname{dimV}(J(f, E)) \leqslant 1$ and the proof is complete.

We now turn to the Artin-Schreier version of II.3.1. The important point now is that $J(f, E)$, $J(f, E, x)$ and $J(f, E, Y)$ do depend on the choice of coordinates $\left(X, u_{1}, u_{2}, u_{3}\right)$ on R, even with $\Delta\left(h ; u_{1}, u_{2}, u_{3}\right)$ minimal. However, the order of these ideals is better behaved. This is made precise in II.3.3 below and leads to the definition of our main invariant in II. 4 below. The Artin-Schreier version of the set W in II.3.1 is defined in II.4.7.
II.3.2 Notations. Let $x \in \Sigma$. Then $\delta(x)>0$ and $R_{x}:=\mathcal{O}_{X, x}=\left(S_{\eta(x)}[X]\right)_{\left(X, u_{1}, \ldots, u_{n}\right)}$. With notations and conventions as in II.1, we define the monomial valuation v_{δ} on R_{x} by: $v_{\delta}(X)=1, v_{\delta}\left(u_{i}\right)=\frac{1}{\delta(x)}, 1 \leqslant i \leqslant n$. In particular, $v_{\delta}(g)=\left(\sum_{\operatorname{div}\left(u_{i}\right) \subseteq E_{0, x}} \beta_{i}\right) / \delta(x)$. When $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is minimal, we define $\operatorname{in}_{\delta} h \in \operatorname{gr}_{v_{\delta}} R_{x}=k(x)\left[X, U_{1}, \ldots, U_{n}\right]$ as follows:

$$
\operatorname{in}_{\delta} h=X^{p}-X \bar{\gamma}^{p-1} \prod_{\operatorname{div}\left(u_{i}\right) \nsubseteq E_{x}} \bar{u}^{(p-1) \beta_{i}} \prod_{\operatorname{div}\left(u_{i}\right) \subseteq E_{x}} U_{i}^{(p-1) \beta_{i}}+\prod_{\operatorname{div}\left(u_{i}\right) \nsubseteq E_{x}}{\overline{u_{i}}}^{p d_{i}} \prod_{\operatorname{div}\left(u_{i}\right) \subseteq E_{x}} U_{i}^{p d_{i}} \Psi
$$

the initial form of h for the valuation v_{δ}. Here, $\bar{\gamma} \in k(x), \bar{\gamma}=0$ if $\operatorname{ord}_{\eta(x)} g>\delta(x)$, and $\Psi \in$ $k(x)\left[X, U_{1}, \ldots, U_{n}\right]_{p \delta(x)-\operatorname{ord}_{\eta(x)} H(x)}$, degrees counted w.r.t. ν_{δ}.

Given $\theta \in S_{\eta(x)}$ and $d=\operatorname{ord}_{\eta(x)} \theta\left(\right.$ resp. $\left.d<\operatorname{ord}_{\eta(x)} \theta\right)$, we denote by $\operatorname{cl}_{d} \theta$ the initial form of θ (resp. zero) in $\operatorname{gr}_{\left(u_{1}, \ldots, u_{n}\right)} S_{\eta(x)}=k(x)\left[U_{1}, \ldots, U_{n}\right]$. Similarly, if $I \subset S_{\eta(x)}$ and $d \leqslant \operatorname{ord}_{\eta(x)} I$, we denote

$$
\operatorname{cl}_{d} I:=\operatorname{Vect}\left(\left\{\mathrm{cl}_{d} \theta\right\}_{\theta \in I}\right)
$$

Consistently with the previous paragraph, when $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is minimal, we usually denote

$$
\Phi:=\operatorname{cl}_{p \delta(x)} f, \Psi:=\operatorname{cl}_{\epsilon(x)}\left(H(x)^{-1} f\right)
$$

II.3.3 Proposition. With hypotheses and notations of II.1, $\epsilon(x)$ does not depend on choices of coordinates $\left(X, u_{1}, \ldots, u_{n}\right)$ such that $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is minimal, and we have

$$
\epsilon(x)=p\left(\delta(x)-\sum_{\operatorname{div}\left(u_{i}\right) \subseteq E_{x}} d_{i}\right)
$$

For $x \in \Sigma$, exactly one of the following three properties holds for all possible r.s.p.'s $\left(X, u_{1}, \ldots, u_{n}\right)$ of $\widehat{R_{x}}$ such that $E_{x} \subseteq \operatorname{div}\left(u_{1} \cdots u_{n}\right)$ and $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ minimal:
(i) we have $v_{\delta}(g)=1$, and either $v_{\delta}(f)>p$ or $\left(v_{\delta}(f)=p\right.$ and $\left.\Phi \in k(x)\left[\left\{U_{i} \mid \operatorname{div}\left(u_{i}\right) \subseteq E\right\}\right]\right)$. In this case, $\epsilon(x)=\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right), \nu(x) \geqslant \epsilon(x)$ and $\operatorname{cl}_{p \delta(x)} f \in k(x)\left[\left\{U_{i} \mid \operatorname{div}\left(u_{i}\right) \subseteq E\right\}\right]$;
(ii) we have $v_{\delta}(g)>1$. In this case, $\nu(x)$ is independent of $\left(X, u_{1}, \ldots, u_{n}\right)$ and $\nu(x) \leqslant \epsilon(x)$. Moreover, $\operatorname{cl}_{\nu(x)} J(f, E)$ (resp. $\operatorname{cl}_{\epsilon(x)} J(f, E, x)$ is independent of $\left(X, u_{1}, \ldots, u_{n}\right)$ if $\nu(x)<\epsilon(x)$ (resp. $\nu(x)=\epsilon(x)$);
(iii) we have $v_{\delta}(g)=1, v_{\delta}(f)=p$ and $\Phi \notin k(x)\left[\left\{U_{i} \mid \operatorname{div}\left(u_{i}\right) \subseteq E\right\}\right]$.

Proof. The equality $\operatorname{ord}_{\eta(x)} H(x)+\epsilon(x)=p \delta(x)$ is clear from the definitions, so $\epsilon(x)$ is an invariant by II.2.

Assume that we are in case (i) for some r.s.p. $\left(X, u_{1}, \ldots, u_{n}\right)$. We emphasize that $v_{\delta}(f)$ and $\operatorname{cl}_{p \delta(x)} f$ are not at all stable under change of X such that $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is minimal. In fact, we can replace X by any $Z:=X-\theta$ such that the Newton polyhedron of θ is a subset of $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ and get $\Delta\left(h ; u_{1}, \ldots, u_{n} ; Z\right)=\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right), f$ being changed into $f_{Z}:=f+\theta^{p}-\theta g^{p-1}$. Let

$$
\Theta:=\mathrm{cl}_{\delta(x)} \theta \in k(x)\left[U_{1}, \ldots, U_{j}\right],
$$

where $E_{x}=\operatorname{div}\left(u_{1} \cdots u_{j}\right)$ by assumption. Then

$$
\Phi_{Z}:=\operatorname{cl}_{p \delta(x)} f_{Z}=\Phi+\Theta^{p}-\Theta G^{p-1}
$$

where $G:=\mathrm{cl}_{\delta(x)} g \in k(x)\left[U_{1}, \ldots, U_{j}\right]$. Note that if $\nu_{\delta}(\theta)>\delta(x)$, then $\Phi_{Z}=\Phi$ but in general $\Phi_{Z} \neq \Phi$.

We now prove (i) and begin with some r.s.p. $\left(X, u_{1}, \ldots, u_{n}\right)$ at x satisfying (i). We perform the following coordinate changes:
(a) $\left(u_{1}, \ldots, u_{n}\right) \mapsto\left(v_{1}, \ldots, v_{n}\right)$, with $E_{x}=\operatorname{div}\left(u_{1} \cdots u_{j}\right)=\operatorname{div}\left(v_{1} \cdots v_{j}\right)$;
(b) $X \mapsto Z:=X-\theta$ such that $\Delta\left(h ; v_{1}, \ldots, v_{n} ; Z\right)$ is minimal.

After the change (a), the expansion of h remaining $h=X^{p}-X g^{p-1}+f$ (with $\delta(x)$ unchanged by II.2), we minimize $\Delta\left(h ; v_{1}, \ldots, v_{n} ; X\right)$ in X by successive translations on X of the form $X_{\mathrm{a}}:=$ $X-\lambda_{\mathbf{a}} v_{1}^{a_{1}} \cdots v_{n}^{a_{n}}$, where $\mathbf{a}:=\left(a_{1}, \ldots, a_{n}\right)$ is a solvable vertex of $\Delta\left(h ; v_{1}, \ldots, v_{n} ; X\right)$. In particular, $\left(\lambda_{\mathbf{a}} v_{1}^{a_{1}} \cdots v_{n}^{a_{n}}\right)^{p}$ is a monomial in the expansion of f, so $a_{j+1}=\cdots=a_{n}=0$ whenever $a_{1}+a_{2}+$ $\cdots+a_{n}=\delta(x)$ by assumption (i). In this case, let $\bar{\lambda}_{\mathbf{a}} \in k(x)$ be the residue of $\lambda_{\mathbf{a}}$ and let $\bar{\lambda}_{\mathbf{a}}:=0$ otherwise. The translation on X changes Φ into

$$
\Phi_{\mathbf{a}}=\Phi+\left(\bar{\lambda}_{\mathbf{a}} V_{1}^{a_{1}} \cdots V_{j}^{a_{j}}\right)^{p}-\bar{\lambda}_{\mathbf{a}} V_{1}^{a_{1}} \cdots V_{j}^{a_{j}} G^{p-1}
$$

where $G \in k(x)\left[V_{1}, \ldots, V_{j}\right]$ is the initial form of g. Therefore $\Phi_{\mathbf{a}} \in k(x)\left[V_{1}, \ldots, V_{j}\right]$ and x is still in case (i) w.r.t. the r.s.p. $\left(X_{\mathbf{a}}, v_{1}, \ldots, v_{n}\right)$. Let $Z:=X-\sum_{\mathbf{a}} \lambda_{\mathbf{a}} v_{1}^{a_{1}} \cdots v_{n}^{a_{n}}$ be obtained by this minimizing process. Now, for any $X^{\prime} \in \widehat{S_{\eta(x)}}[X]$ such that $\left(X^{\prime}, v_{1}, \ldots, v_{n}\right)$ is a r.s.p. of $\widehat{R_{x}}$ and the polyhedron $\Delta\left(h ; v_{1}, \ldots, v_{n} ; X^{\prime}\right)=\Delta\left(h ; v_{1}, \ldots, v_{n} ; Z\right)$ is minimal, we have $X^{\prime}=\gamma^{\prime} Z-\theta, \gamma^{\prime}$ invertible, the Newton polyhedron of θ is a subset of $\Delta\left(h ; v_{1}, \ldots, v_{n} ; Z\right)$, so $\mathrm{cl}_{\delta(x)} \theta \in k(x)\left[V_{1}, \ldots, V_{j}\right]$ and after this new change of variable, x is still in case (i).

Finally by II.3(1), if $\operatorname{cl}_{p \delta(x)} f \in k(x)\left[V_{1}, \ldots, V_{j}\right]$, then

$$
\nu(x)=\operatorname{ord}_{\eta(x)} J(f, E) \geqslant p \delta(x)-\operatorname{ord}_{\eta(x)} H(x)=\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)=\epsilon(x)
$$

In case (ii), we have $\mathrm{in}_{\delta}(h)=X^{p}+\Phi$ with $\Phi \notin\left(k(x)\left[U_{1}, \ldots, U_{n}\right]\right)^{p}$, since $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is minimal. If we change parameters $\left(u_{1}, \ldots, u_{n}\right) \mapsto\left(v_{1}, \ldots, v_{n}\right)$ as in (a) above, then $X \mapsto Z$ as in (b) above to get $\Delta\left(h ; v_{1}, \ldots, v_{n} ; Z\right)$ minimal, the above computations show that the translations on X change Φ into

$$
\Phi_{Z}=\operatorname{cl}_{p \delta(x)} f_{Z}=\Phi+\left(\sum \bar{\lambda}_{\mathbf{a}} V_{1}^{a_{1}} \cdots V_{n}^{a_{n}}\right)^{p}
$$

for certain values of $\bar{\lambda}_{\mathbf{a}} \in k(x)$. For any $X^{\prime} \in \widehat{S_{\eta(x)}}[X]$ such that $\left(X^{\prime}, v_{1}, \ldots, v_{n}\right)$ is a r.s.p. of $\widehat{R_{x}}$ and the polyhedron $\Delta\left(h ; v_{1}, \ldots, v_{n} ; X^{\prime}\right)=\Delta\left(h ; v_{1}, \ldots, v_{n} ; Z\right)$ is minimal, Φ_{Z} gets changed into ${\overline{\gamma^{\prime}}}^{-p}\left(\Phi_{Z}+\Theta^{p}\right)$, where $0 \neq \overline{\gamma^{\prime}} \in k(x)$.

Since $\Phi \notin\left(k(x)\left[U_{1}, \ldots, U_{n}\right]\right)^{p}, \nu(x)=\operatorname{ord}_{\eta(x)} J(f, E)$ is unaffected by all above coordinate changes and is equal to $\epsilon(x)-1$ or $\epsilon(x)$. In the former (resp. latter) case, $\mathrm{cl}_{\nu(x)} J(f, E)$ (resp. $\mathrm{cl}_{\epsilon(x)} J(f, E, x)$ has been multiplied by $\overline{\gamma^{\prime}-p}$ along the above process and this proves (ii).

Since cases (i), (ii) and (iii) are mutually exclusive for any fixed r.s.p. $\left(X, u_{1}, \ldots, u_{n}\right)$ of $\widehat{R_{x}}$, which must belong to one of them, the independence on $\left(X, u_{1}, \ldots, u_{n}\right)$ of (iii) is also proved. We produce two examples showing the possible ambiguity on $\nu(x)$ in case (iii).
II.3.3.1 First example of ambiguous case. We take $E=\operatorname{div}\left(u_{1} u_{2}\right)$ and

$$
h=X^{p}-X\left(u_{1} u_{2}\right)^{2(p-1)}+\sum_{i \neq 0 \bmod (p)} u_{1}^{3 p-i} u_{2}^{i} u_{3}^{p}+\sum_{j \neq 0 \bmod (p)} u_{1}^{4 p-j} u_{2}^{j}
$$

An easy computation shows that $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal and that $\delta\left(x_{0}\right)=4, g=$ $\left(u_{1} u_{2}\right)^{2}, H\left(x_{0}\right)=\left(u_{1} u_{2}\right), \nu\left(x_{0}\right)=4 p-2=\epsilon\left(x_{0}\right)$.

Now we change X into $Z:=X-u_{1}^{2} u_{2} u_{3}$. Then
$h=Z^{p}-Z\left(u_{1} u_{2}\right)^{2(p-1)}+\sum_{i \neq 0 \bmod (p)} u_{1}^{3 p-i} u_{2}^{i} u_{3}^{p}+\sum_{j \neq 0 \bmod (p)} u_{1}^{4 p-j} u_{2}^{j}+u_{1}^{2 p} u_{2}^{p} u_{3}^{p}-u_{1}^{2} u_{2}\left(u_{1} u_{2}\right)^{2(p-1)} u_{3}$.
An easy computation shows that the exponents $(2 p, p, p)$ and $(2 p, 2 p-1,1)$ appearing in $u_{1}^{2 p} u_{2}^{p} u_{3}^{p}-u_{1}^{2} u_{2}\left(u_{1} u_{2}\right)^{2(p-1)} u_{3}$ lie in the interior of the convex hull of the exponents of

$$
\sum_{i \neq 0 \bmod (p)} u_{1}^{3 p-i} u_{2}^{i} u_{3}^{p}+\sum_{j \neq 0 \bmod (p)} u_{1}^{4 p-j} u_{2}^{j}
$$

Therefore $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; Z\right)$ is still minimal. On the other hand, we now have

$$
\operatorname{ord}_{x_{0}}\left(\frac{\partial}{\partial u_{3}}\left(u_{1}^{2} u_{2}\left(u_{1} u_{2}\right)^{2(p-1)} u_{3}\right)\right)=4 p-1
$$

so $\nu\left(x_{0}\right)=4 p-3=\epsilon\left(x_{0}\right)-1$ w.r.t. the r.s.p. $\left(Z, u_{1}, u_{2}, u_{3}\right)$.
II.3.3.2 Second example of ambiguous case. We take $\operatorname{div}\left(u_{1}\right) \subseteq E \subseteq \operatorname{div}\left(u_{1} u_{2}\right), a(1)+\epsilon(x) \equiv$ $0 \bmod p, a(2) \equiv 0 \bmod p$. If $E=\operatorname{div}\left(u_{1}\right)$, we take $a(2)=0$. Let

$$
h=X^{p}-X \gamma^{p-1} u_{1}^{(p-1) \frac{a(1)+\epsilon\left(x_{0}\right)}{p}} u_{2}^{(p-1) \frac{a(2)}{p}}+u_{1}^{a(1)} u_{2}^{a(2)}\left(\sum_{0 \leqslant j \leqslant \frac{\epsilon\left(x_{0}\right)}{p}} \lambda_{j} u_{1}^{\epsilon\left(x_{0}\right)-j p} u_{3}^{j p}+\psi\right)
$$

where $\gamma \in S$ is invertible, $\lambda_{j} \in k\left(x_{0}\right)$ and $\operatorname{ord}_{\eta\left(x_{0}\right)} \psi>\epsilon\left(x_{0}\right)$. Let $j_{0}:=\sup \left\{j \mid \lambda_{j} \neq 0\right\}$. We assume that $\lambda_{j_{0}} \notin k\left(x_{0}\right)^{p}$ and $j_{0}>0$. In particular, $k\left(x_{0}\right)$ is not a perfect field and $\epsilon\left(x_{0}\right) \geqslant p$.

An easy computation shows that $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal, that its initial face is the segment with ends

$$
\begin{equation*}
a=\left(\frac{a(1)+\epsilon\left(x_{0}\right)}{p}, \frac{a(2)}{p}, 0\right), b=\left(\frac{a(1)+\epsilon\left(x_{0}\right)-j_{0}}{p}, \frac{a(2)}{p}, \frac{j_{0}}{p}\right) \tag{1}
\end{equation*}
$$

and that $H\left(x_{0}\right)=u_{1}^{a(1)} u_{2}^{a(2)},\left(H\left(x_{0}\right)^{-1} g^{p}\right)=\left(u_{1}^{\epsilon\left(x_{0}\right)}\right)$ and $\nu\left(x_{0}\right)=\epsilon\left(x_{0}\right)$.
Now we change X into $Z=X-u^{\frac{a(1)+\epsilon\left(x_{0}\right)}{p}-\left(j_{0}-i\right)} u_{2}^{\frac{a(2)}{p}} u_{3}^{j_{0}-i}, i=0$ or 1 defined by $j_{0}-i \not \equiv$ $0 \bmod p$. Then

$$
h=Z^{p}-\gamma^{p-1} Z u_{1}^{(p-1) \frac{(a(1)+\epsilon(x))}{p}} u_{2}^{(p-1) \frac{a(2)}{p}}+f_{Z}
$$

where

$$
f_{Z}=u_{1}^{a(1)} u_{2}^{a(2)}\left(\sum_{0 \leqslant j \leqslant \frac{\epsilon\left(x_{0}\right)}{p}} \lambda_{j} u_{1}^{\epsilon\left(x_{0}\right)-j p} u_{3}^{j p}+u_{1}^{\epsilon\left(x_{0}\right)-p\left(j_{0}-i\right)} u_{3}^{p\left(j_{0}-i\right)}-\gamma^{p-1} u_{1}^{\epsilon\left(x_{0}\right)-\left(j_{0}-i\right)} u_{3}^{j_{0}-i}+\psi\right) .
$$

An easy computation shows that $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; Z\right)=\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal and that $\nu\left(x_{0}\right)=\epsilon\left(x_{0}\right)-1$ w.r.t. the r.s.p. $\left(Z, u_{1}, u_{2}, u_{3}\right)$.
II. 4 Definition (invariants Ω and τ). With hypotheses and notations of II.1, for any (not necessary closed) $x \in \Sigma_{p}$, let $\Omega(x)=\left(\omega(x), \omega^{\prime}(x)\right) \in \mathbb{N} \times\{1,2,3\}$ be defined as follows:

$$
\omega(x):=\inf \left\{\operatorname{ord}_{\eta(x)}\left(J\left(f_{X}, E\right), H(x)^{-1} g^{p}\right)\right\}
$$

the infimum being taken over all possible f_{X} 's corresponding to all possible r.s.p.'s $\left(X, u_{1}, \ldots, u_{n}\right)$ of $\widehat{R_{x}}$ such that $E_{x} \subseteq \operatorname{div}\left(u_{1} \cdots u_{n}\right)$ and $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is minimal. The refinement $\omega^{\prime}(x)$ is given by
$\omega^{\prime}(x)=1$ if $\omega(x)=\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)$,
$\omega^{\prime}(x)=2$ if $\omega(x)<\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)$ and for every such r.s.p., $\operatorname{ord}_{\eta(x)} J\left(f_{X}, E\right)=\omega(x)$.
$\omega^{\prime}(x)=3$ if $\omega(x)<\operatorname{ord}_{x}\left(H(x)^{-1} g^{p}\right)$ and for some such r.s.p., $\operatorname{ord}_{\eta(x)} J\left(f_{X}, E\right)=1+\omega(x)$.
We denote by $\tau(x)$ the natural number:
$\tau(x)=\max \left\{\tau\left(\mathrm{cl}_{\omega(x)}\left(J\left(f_{X}, E, x\right), H(x)^{-1} g^{p}\right)\right)\right\}$ if $\omega(x)=\epsilon(x)$, $\tau(x)=\max \left\{\tau\left(\mathrm{cl}_{\omega(x)} J\left(f_{X}, E\right)\right)\right\}$ if $\omega(x)=\epsilon(x)-1$,
where in both cases, the maximum is also taken over all possible f_{X} 's corresponding to all possible r.s.p.'s computing $\omega(x)$.

With the help and notation of II.3.3, we can now explicit several different cases:
(i) $v_{\delta}(g)=1$, and either $v_{\delta}(f)>p$ or $\left(v_{\delta}(f)=p\right.$ and $\left.\Phi \in k(x)\left[\left\{U_{i} \mid \operatorname{div}\left(u_{i}\right) \subseteq E\right\}\right]\right)$: we have $\Omega(x)=(\epsilon(x), 1)$;
(ii) $v_{\delta}(g)>1$: we have $\Omega(x)=(\nu(x), 2)$;
(iii) $v_{\delta}(g)=1, v_{\delta}(f)=p, \Phi \notin k(x)\left[\left\{U_{i} \mid \operatorname{div}\left(u_{i}\right) \subseteq E\right\}\right]$ and $\operatorname{ord}_{\eta(x)} J(f, E)$ depends on the r.s.p. computing $\omega(x)$: we have $\Omega(x)=(\epsilon(x)-1,3)$;
(iv) $v_{\delta}(g)=1, v_{\delta}(f)=p, \Phi \notin k(x)\left[\left\{U_{i} \mid \operatorname{div}\left(u_{i}\right) \subseteq E\right\}\right]$ and for every r.s.p. computing $\omega(x)$, $\operatorname{ord}_{\eta(x)} J(f, E)=\epsilon(x)$: we have $\Omega(x)=(\epsilon(x), 1)$. In this case,

$$
\Phi \in k(x)\left[\left\{U_{i}, U_{j}^{p} \mid \operatorname{div}\left(u_{i}\right) \subseteq E, \operatorname{div}\left(u_{j}\right) \nsubseteq E\right\}\right] ;
$$

(v) $v_{\delta}(g)=1, v_{\delta}(f)=p, \Phi \notin k(x)\left[\left\{U_{i} \mid \operatorname{div}\left(u_{i}\right) \subseteq E\right\}\right]$ and for every r.s.p. computing $\omega(x)$, $\operatorname{ord}_{\eta(x)} J(f, E)=\epsilon(x)-1$: we have $\Omega(x)=(\epsilon(x)-1,2)$. In this case,

$$
\Phi \notin k(x)\left[\left\{U_{i}, U_{j}^{p} \mid \operatorname{div}\left(u_{i}\right) \subseteq E, \operatorname{div}\left(u_{j}\right) \nsubseteq E\right\}\right]
$$

So in the ambiguous case (iii), we give to $\omega(x)$ the least possible value w.r.t. choices of r.s.p.'s, but keep this ambiguity in mind by setting $\omega^{\prime}(x)=3$ maximal. The philosophy is that the property $v_{\delta}(g)=1$ is helpful for the local uniformization process only in cases (i) and (iv), i.e. $\omega^{\prime}\left(x_{0}\right)=1$.

By II.3.3(i), case (i) above is independent of the r.s.p. such that $E_{x} \subseteq \operatorname{div}\left(u_{1} \cdots u_{n}\right)$ and $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is minimal.

By II.3.3(ii), the definition of $\tau(x)$ in case (ii) above is independent of the r.s.p. such that $E_{x} \subseteq \operatorname{div}\left(u_{1} \cdots u_{n}\right)$ and $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is minimal. On the other hand, in cases (iii)-(v), $\tau(x)$
may depend on the r.s.p. used to compute $\omega(x)$. We will make use of the invariant $\tau(x)$ only in cases (iv) and (v).
II.4.1 Proposition. If $x \in \Sigma_{p}$ and $\overline{\{\eta(x)\}}$ is the intersection of components of E, then $\omega(x)=$ $\epsilon(x)$.
Proof. Since x is the intersection of components of E, we have $J(f, E)=J(f, E, x)$. Therefore if $v_{\delta}(g)=1, x$ belongs to case II.4(i), so $\omega(x)=\epsilon(x)$. If $v_{\delta}(g)>1$, then $\omega(x)=\nu(x)=$ $\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} f\right)=\epsilon(x)$.
II.4.2 Proposition. For any $x \in \Sigma_{p}$, we have $\omega(x) \leqslant \nu(x) \leqslant \alpha(x) \leqslant 1+\nu(x)$ and $\omega(x) \leqslant \epsilon(x)$.

Proof. This follows from the inclusions $\left(m_{\eta(x)} \cap S\right) J(f, E) \subseteq J(f, E, x) \subseteq J(f, E)$ and the definitions, whether $\alpha(x)$ and $\nu(x)$ do or do not depend on the r.s.p. such that $E_{x} \subseteq \operatorname{div}\left(u_{1} \cdots u_{n}\right)$ and $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ is minimal.
II.4.3 Remark. In cases II.4(iii),(iv), we have $\omega(x) \geqslant p$.

Proof. In these cases, $\Phi \notin k(x)\left[\left\{U_{i} \mid \operatorname{div}\left(u_{i}\right) \subseteq E\right\}\right]$. Moreover, there exists a choice of $\left(X, u_{1}, \ldots, u_{n}\right) 】$ with $E_{x} \subseteq \operatorname{div}\left(u_{1} \cdots u_{n}\right)$ and $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ minimal such that for each i, with $\operatorname{div}\left(u_{i}\right) \nsubseteq E$, we have $\operatorname{deg} \frac{\partial \Phi}{\partial U_{i}} \geqslant \operatorname{deg} \Phi$. Therefore $\frac{\partial \Phi}{\partial U_{i}}=0$; these U_{i} 's appear in the expansion of Φ with exponents divisible by p, and at least one of them effectively appears by definition of cases II.4(iii), (iv).
II.4.4. Proposition and Definition. If $x_{0} \in \Sigma_{p}$ and $\omega\left(x_{0}\right)=0$, then $\left(X_{0}, x_{0}\right)$ is said to be a quasi-ordinary singularity. In this case, exactly one of the following properties holds for all possible r.s.p.'s $\left(X, u_{1}, u_{2}, u_{3}\right)$ of \widehat{R} such that $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$ and $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal:
(i) we have $\left(H\left(x_{0}\right)\right)=\left(g^{p}\right)$. In this case, $\delta\left(x_{0}\right)=\operatorname{ord}_{\eta\left(x_{0}\right)} g$ and $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ has only one vertex $\left(d_{1}, d_{2}, d_{3}\right)$;
(ii) we have $\left(g^{p}\right) \subset \mathcal{J}(f, E)=\left(H\left(x_{0}\right)\right)=(f)$. In this case, $\delta\left(x_{0}\right)=\left(\operatorname{ord}_{\eta\left(x_{0}\right)} f\right) / p$ and the polyhedron $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ has only one vertex $\left(d_{1}, d_{2}, d_{3}\right)$;
(iii) we have $\left(f, g^{p}\right) \subset \mathcal{J}(f, E)=\left(H\left(x_{0}\right)\right)$. In this case, $\delta\left(x_{0}\right)=\left(1+\operatorname{ord}_{\eta\left(x_{0}\right)} f\right) / p$ and $v:=$ $H\left(x_{0}\right)^{-1} f$ is a regular parameter of \widehat{S}, transverse to E. If we choose indices $i=1,2$ such that $E \subseteq \operatorname{div}\left(u_{1} u_{2}\right)$ and $\left(u_{1}, u_{2}, v\right)$ is a r.s.p. of \widehat{S}, then $\Delta\left(h ; u_{1}, u_{2}, v ; X\right)$ is minimal. If $g \neq 0$ (resp. $g=0), \Delta\left(h ; u_{1}, u_{2}, v ; X\right)$ has two vertices (resp. one vertex) $\left(d_{1}, d_{2}, \frac{1}{p}\right)$ and $\left(\beta_{1}, \beta_{2}, 0\right)$ (resp. $\left(d_{1}, d_{2}, \frac{1}{p}\right)$).
Proof. The condition $\omega\left(x_{0}\right)=0$ is equivalent to $\left(\mathcal{J}(f, E), g^{p}\right)=\left(H\left(x_{0}\right)\right)$ for all (cf. II.4.3) r.s.p.'s (X, u_{1}, u_{2}, u_{3}) of \widehat{R} such that $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$ and $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal.

If $\left(g^{p}\right)=\left(H\left(x_{0}\right)\right)$, we are in case (i) and all assertions in (i) are clear.
If $\left(g^{p}\right) \subset\left(H\left(x_{0}\right)\right)$, then $\mathcal{J}(f, E)=\left(H\left(x_{0}\right)\right)$. If $(f)=\left(H\left(x_{0}\right)\right)$, we are in case (ii) and all subsequent assertions are clear. Otherwise, $H\left(x_{0}\right)$ divides strictly f and we are in case (iii). Since there is a derivation $D \in \mathcal{D}$ such that $(D f)=\left(H\left(x_{0}\right)\right)$, we can choose a parameter $v, \operatorname{div}(v) \nsubseteq E$, transverse to E, such that $D=\frac{\partial}{\partial v}, E \subseteq \operatorname{div}\left(u_{1} u_{2}\right),\left(X, u_{1}, u_{2}, v\right)$ is a r.s.p. of \widehat{R} and $f=v H\left(x_{0}\right)$. Then f is a monomial and defines the vertex ($d_{1}, d_{2}, \frac{1}{p}$) which is not solvable because the third coordinate is not an integer. If $g=0$, this is the only vertex. If $g \neq 0, g$ defines another vertex $\left(\beta_{1}, \beta_{2}, 0\right)$ which is not solvable by definition.
II.4.5 Proposition. Let $x \in \Sigma_{p}$. Assume that there exists a r.s.p. $\left(X, u_{1}, \ldots, u_{n}\right)$ of R_{x}, with $E_{x} \subseteq \operatorname{div}\left(u_{1} \cdots u_{n}\right)$, such that $h=X^{p}-X g^{p-1}+f \in S_{\eta(x)}[X]$ satisfies $\left(\mathcal{J}(f, E), g^{p}\right)=(H(x))$ and $H(x)$ divides f. Then $\omega(x)=0$.
Proof. Note that we do not have any minimality assumption on $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$.

If $(H(x))=\left(g^{p}\right)$, then $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$ has only one vertex $\left(d_{1}, d_{2}, d_{3}\right)$ which is not solvable by definition, hence minimal. So $\omega(x)=0$ in this case.

Otherwise, $\left(g^{p}\right) \subset(H(x))=\mathcal{J}(f, E)$. Then we may have to do a translation $Z:=X-\theta$ to make $\Delta\left(h ; u_{1}, \ldots, u_{n} ; Z\right)$ minimal. The Newton polyhedron of θ is a subset of $\Delta\left(h ; u_{1}, \ldots, u_{n} ; X\right)$. Since $H(x)$ divides $f, H(x)$ divides θ^{p}. But $H(x)$ strictly divides g^{p}, so that there exists u_{i}, $\operatorname{div}\left(u_{i}\right) \subseteq E_{x}$, such that $u_{i} H(x)$ divides θg^{p-1}. Now after changing X to Z, f being changed into $f_{Z}=f+\theta^{p}-\theta g^{p-1}$, we have $\mathcal{J}\left(f_{Z}, E\right) \equiv \mathcal{J}(f, E) \bmod \left(u_{i} H(x)\right)$ and we get $\mathcal{J}\left(f_{Z}, E\right)=(H(x))$ as required.
II.4.6 Theorem. If $x_{0} \in \Sigma_{p}$ and $\omega\left(x_{0}\right)=0$, the local uniformization problem is solved for $\left(X_{0}, x_{0}\right)$.

Proof. We first pick a r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of R satisfying II. 2.2 with $N>\delta\left(x_{0}\right)+1$. Then $h=X^{p}-X g^{p-1}+f$ and $H\left(x_{0}\right)$ divides f.

If $\left(H\left(x_{0}\right)\right)=\left(g^{p}\right)$, we have $\left(\mathcal{J}(f, E), g^{p}\right)=\left(H\left(x_{0}\right)\right)$. Otherwise, we have $\left(g^{p}\right) \subset\left(H\left(x_{0}\right)\right)$. By II.4.4(ii) and (iii), there exists $Z=X-\theta, \theta \in \widehat{R}$ such that $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; Z\right)$ is minimal, $h=Z^{p}-Z g^{p-1}+f_{Z}$ with $\left(f_{Z}\right)=\left(H\left(x_{0}\right)\right)$ or $\left(f_{Z}=v_{Z} H\left(x_{0}\right), \operatorname{div}\left(v_{Z}\right)\right.$ regular and transverse to $E)$. In the latter case, the vertex $\left(d_{1}, d_{2}, \frac{1}{p}\right)$ is a vertex of $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ by II.2.2.

We thus have either $(f)=\left(f_{Z}\right)=\left(H\left(x_{0}\right)\right)$, in which case $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is already minimal, or $\left(f_{Z}=v_{Z} H\left(x_{0}\right)\right.$ and $f=v H\left(x_{0}\right)$ for some $v \in m_{S}$, $\operatorname{div}(v)$ regular and transverse to $\left.E\right)$. In particular, we always have $\left(\mathcal{J}(f, E), g^{p}\right)=\left(H\left(x_{0}\right)\right)$, although $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is not necessarily minimal.

Assuming $x_{0} \in \Sigma_{p}$ and $\omega\left(x_{0}\right)=0$, we write $H\left(x_{0}\right)=\prod_{i=1}^{3} u_{i}^{a(i)}, a(i)=0$ if $i \geqslant e+1$, and apply the following (globally defined) algorithm:
(i) if $\operatorname{ord}_{\eta\left(x_{0}\right)} H\left(x_{0}\right) \geqslant p$, there exists a nonempty subset $I \subseteq\{1, \ldots, e\}$ such that

$$
Y:=V\left(X,\left\{u_{i}\right\}_{i \in I}\right) \subseteq \Sigma_{p},
$$

i.e. $\sum_{i \in I} a(i) \geqslant p$. We let $\pi: X_{1} \rightarrow X_{0}$ be the blowing up of Y, with $\left(e-|I|, \sum_{i \in I} a(i)\right)$ maximal for the lexicographical ordering;
(ii) if $\operatorname{ord}_{\eta\left(x_{0}\right)} H\left(x_{0}\right)<p$, we have $f=v H\left(x_{0}\right)$ and $\delta\left(x_{0}\right)=1$. We let $X_{1} \rightarrow X_{0}$ be the blowing up of

$$
Y:=V\left(X,\left\{u_{i} \mid a(i)>0\right\}, v\right) .
$$

In both cases, we take E_{1} to be the reduced inverse image of E in X_{1}. If the center x^{\prime} of μ in X_{1} verifies $x^{\prime} \in \Sigma_{p}\left(X_{1}\right)$, we define $H\left(x^{\prime}\right)$ and $\omega\left(x^{\prime}\right)$ w.r.t. E_{1}. We claim that such $x^{\prime} \in \Sigma_{p}\left(X_{1}\right)$ lies on the strict transform of $X=0$, has $\omega\left(x^{\prime}\right)=0$ and $\operatorname{ord}_{\eta\left(x^{\prime}\right)} H\left(x^{\prime}\right)<\operatorname{ord}_{\eta\left(x_{0}\right)} H\left(x_{0}\right)$, where $\eta^{\prime}:\left(X_{1}, x^{\prime}\right) \rightarrow \mathrm{Spec} S^{\prime}$ is induced by π. The theorem will follow by descending induction on $\operatorname{ord}_{\eta\left(x_{0}\right)} H\left(x_{0}\right)=a(1)+a(2)+a(3)$.

Case 1: $\left(H\left(x_{0}\right)\right)=\left(g^{p}\right)$. Then $V\left(X,\left\{u_{i} \mid a(i)>0\right\}\right) \subseteq \Sigma_{p}$, so we are in case (i) above. If $\operatorname{ord}_{\eta\left(x_{0}\right)} g=1$, say $g=\gamma u_{1}, X_{1}$ is the blowing up along $V\left(X, u_{1}\right)$ and is regular. Otherwise, X^{p} is in the ideal of the ridge of h, so $x^{\prime} \in \Sigma_{p}\left(X_{1}\right)$ lies on the strict transform of $X=0$. We change indices so that $Y=V\left(X, u_{1}, \ldots, u_{k}\right)$, where $k \leqslant e$. By symmetry, we need only look at the chart of origin the point with r.s.p. $\left(X^{\prime}=\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, \ldots, u_{k}^{\prime}=\frac{u_{k}}{u_{1}},\left\{u_{i}^{\prime}=u_{i}\right\}_{k+1 \leqslant i \leqslant 3}\right)$. Let $h^{\prime}=u_{1}^{-p} h=X^{\prime p}-$ $X^{\prime} g^{\prime p-1}+f^{\prime}$ be the strict transform of h. Then $g^{\prime p}=u_{1}^{-p} g^{p}=\gamma^{p} u_{1}^{\prime a(1)+\cdots+a(k)-p} u_{2}^{\prime a(2)} u_{3}^{\prime a(3)}$ and, since g^{p} divides $f, g^{\prime p}$ divides f^{\prime}. So $\omega\left(x^{\prime}\right)=0$ by II.4.5. Since $|I|$ is minimal, $a(2)+\cdots+a(k)<p$, so

$$
\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} H\left(x^{\prime}\right) \leqslant a(1)+\cdots+a(k)-p+a(2)+a(3)<a(1)+a(2)+a(3)=\operatorname{ord}_{\eta\left(x_{0}\right)} H\left(x_{0}\right)
$$

as required.
Case 2: $\left(g^{p}\right) \subset\left(H\left(x_{0}\right)\right)=\mathcal{J}(f, E)$ and (i) above holds. We change indices so that $Y=$ $V\left(X, u_{1}, \ldots, u_{k}\right)$ and once more distinguish two cases.

First assume that $\operatorname{ord}_{\eta\left(x_{0}\right)} f=p$. We have $f=\gamma_{1} H\left(x_{0}\right), \gamma_{1}$ invertible, and $Y=V\left(X,\left\{u_{i} \mid\right.\right.$ $a(i)>0\})$. After rearranging indices, it can be assumed that $Y=V\left(X, u_{1}, \ldots, u_{k}\right)$ as above. By symmetry, we need only look at the chart of origin the point with r.s.p. $\left(X^{\prime}=\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, \ldots, u_{k}^{\prime}=\right.$ $\frac{u_{k}}{u_{1}},\left\{u_{i}^{\prime}=u_{i}\right\}_{k+1 \leqslant i \leqslant 3}$) (the remaining point at infinity is not on the strict transform of X_{0}). Let $h^{\prime}=u_{1}^{-p} h=X^{\prime p}-X^{\prime} g^{\prime p-1}+f^{\prime}$ be the strict transform of h, where u_{1}^{\prime} divides $g^{\prime p-1}$. If u_{i}^{\prime} is not invertible at $\eta^{\prime}\left(x^{\prime}\right)$ for some $i, 2 \leqslant i \leqslant k$, we have $0<\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} f^{\prime}<p$; otherwise $u_{2}^{\prime} \cdots u_{k}^{\prime}$ is invertible at $\eta^{\prime}\left(x^{\prime}\right)$. In this case, we have $\frac{\partial f^{\prime}}{\partial u_{2}^{\prime}}$ invertible if $k \geqslant 2$; if $k=1$, then $\bar{\gamma}_{1} \notin k(x)^{p}$ because the vertex $(1,0,0)$ of $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is not solvable and $x^{\prime}=\left(X^{\prime}+\bar{\gamma}_{1}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ is a regular point of X_{1}. Therefore $x^{\prime} \notin \Sigma_{p}\left(X_{1}\right)$ in all cases.

Assume now that $\operatorname{ord}_{\eta\left(x_{0}\right)} f>p$. Then every $x^{\prime} \in \Sigma_{p}\left(X_{1}\right)$ mapping to x_{0} lies on the strict transform of $X=0$. By symmetry, we need only look at the chart of origin the point with r.s.p. $\left(X^{\prime}=\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, \ldots, u_{k}^{\prime}=\frac{u_{k}}{u_{1}},\left\{u_{i}^{\prime}=u_{i}\right\}_{k+1 \leqslant i \leqslant 3}\right)$. Let $h^{\prime}=u_{1}^{-p} h=X^{\prime p}-X^{\prime} g^{\prime p-1}+f^{\prime}$ be the strict transform of h. Note that

$$
u_{1}^{-p} H\left(x_{0}\right)=u_{1}^{\prime a(1)+\cdots+a(k)-p} \prod_{2 \leqslant i \leqslant e}{u_{i}^{\prime a(i)}}^{\prime 2}
$$

divides f^{\prime} and strictly divides $g^{\prime p}$. We claim that

$$
\begin{equation*}
H\left(x^{\prime}\right)=u_{1}^{-p} H\left(x_{0}\right) . \tag{1}
\end{equation*}
$$

If (1) is true, we get $\omega\left(x^{\prime}\right)=0$ by II.4.5, then $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} H\left(x^{\prime}\right)<\operatorname{ord}_{\eta\left(x_{0}\right)} H\left(x_{0}\right)$ as in the previous case when $\left(H\left(x_{0}\right)\right)=\left(g^{p}\right)$. Let us prove (1). Indeed, for every $D \in \mathcal{D}_{1}:=\mathcal{D}\left(E_{1}\right), D f^{\prime}=$: $\lambda_{D} u_{1}^{\prime a(1)+\cdots+a(k)-p} u_{2}^{\prime a(2)} u_{3}^{\prime a(3)}$, with at least one λ_{D} invertible. Furthermore, $u_{1}^{-p} H\left(x_{0}\right)$ strictly divides $g^{\prime p}$, so when performing a translation $Z^{\prime}:=X^{\prime}-\theta$ on X^{\prime} in order to get $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; Z^{\prime}\right)$ minimal (i.e. f^{\prime} is replaced by $f_{Z^{\prime}}^{\prime}=f^{\prime}+\theta^{p}-\theta g^{\prime p-1}$ where the Newton polyhedron of θ is contained in $\left.\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)\right)$, $u_{1}^{-p} H\left(x_{0}\right)$ strictly divides $\theta g^{\prime p-1}$. Therefore we have $D f_{Z^{\prime}}^{\prime}=$ $\lambda_{D, Z^{\prime}} u_{1}^{\prime a(1)+\cdots+a(k)-p} u_{2}^{\prime a(2)}{ }^{\prime}{ }_{3}^{a(3)}$, with at least one $\lambda_{D, Z^{\prime}}$ invertible, and this proves (1).

Case 3: $\left(g^{p}\right) \subset\left(H\left(x_{0}\right)\right)=\mathcal{J}(f, E)$ and (ii) above holds. Then $f=v H\left(x_{0}\right)$ has order p, we blow up $Y=\mathrm{V}\left(X,\left\{u_{i} \mid a(i)>0\right\}, v\right)$ and $H\left(x_{0}\right)$ strictly divides g^{p}. If $\operatorname{ord}_{\eta\left(x_{0}\right)} g=1$, say $g=\gamma u_{1}$, we must have $H\left(x_{0}\right)=u_{1}^{p-1}$ and $x^{\prime} \notin \Sigma_{p}\left(X_{1}\right)$. Otherwise X^{p} is in the ideal of the ridge of h, so every point $x^{\prime} \in \Sigma_{p}\left(X_{1}\right)$ mapping to x_{0} lies on the strict transform of $X=0$. We relabel indices so that $Y=V\left(X, u_{1}, \ldots, u_{k}\right)$ (one of the u_{i} 's being v) and by symmetry, we need only consider the chart of origin the point with r.s.p. $\left(X^{\prime}=\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, \ldots, u_{k}^{\prime}=\frac{u_{k}}{u_{1}},\left\{u_{i}^{\prime}=u_{i}\right\}_{k+1 \leqslant i \leqslant 3}\right)$. Let $h^{\prime}=u_{1}^{-p} h=X^{\prime p}-X^{\prime} g^{\prime p-1}+f^{\prime}$ be the strict transform of h. Then $f^{\prime}=\gamma_{1} u_{2}^{\prime a(2)} u_{3}^{\prime a(3)}$, with γ_{1} invertible. By definition of Y, we had $a(1)>0$, so $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(h^{\prime}\right) \leqslant a(2)+a(3)=p-a(1)<p$ and this proves that $x^{\prime} \notin \Sigma_{p}\left(X_{1}\right)$.
II.4.7 Theorem. The set $W:=\left\{x \in \Sigma_{p} \mid \omega(x) \geqslant 1\right\}$ is Zariski closed and of dimension at most one.

Proof. By II.2.2, there exists a r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of R such that $h=X^{p}-X g^{p-1}+f, H\left(x_{0}\right)$ divides f and $\delta\left(x_{0}\right)=\inf \left\{\operatorname{ord}_{x_{0}} g,\left(\operatorname{ord}_{x_{0}} f\right) / p\right\}$.

First assume that $\omega\left(x_{0}\right)=0$. The r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ then satisfies the assumptions in II.4.5 (see the beginning of the proof of theorem II.4.6), and these assumptions are stable by localizing at any $x \in \Sigma_{p}$. Therefore $W=\varnothing$ in this case.

Assume now that $\omega\left(x_{0}\right) \geqslant 1$. It is sufficient to prove that there exists a Zariski closed subset $Z \subseteq \Sigma_{p}$ of dimension at most one such that $W \subseteq Z$. By II.2.2, and by definition of $H\left(x_{0}\right)$ and \mathcal{D}, the ideals $\left(f, g^{p}\right)$ and $\left(\mathcal{J}(f, E), g^{p}\right)$ coincide, and are equal to $H\left(x_{0}\right)$, when localized at the generic point of any component $\operatorname{div}\left(u_{i}\right) \subseteq E_{0}$. Therefore there exists $Z \subseteq E_{0}$ of dimension at most one such that

$$
\left(\mathcal{J}(f, E), g^{p}\right)_{x}=\left(f, g^{p}\right)_{x}=H\left(x_{0}\right)_{x}
$$

whenever $x \in E_{0} \backslash Z$. By II.4.5, we have $W \subseteq Z$ as required.
II.5 Permissible blowing ups. Theorem II.4.6 settles the easy case of quasi-ordinary singularities, which are dealt with by combinatorial blowing ups in the same way as in characteristic zero. To reduce to quasi-ordinary singularities, we need some notion of permissible blowing up which is well behaved w.r.t. our main invariant $\Omega\left(x_{0}\right)$.
II.5.1 Definition. Assume that $x_{0} \in \Sigma_{p}$ and that $\omega\left(x_{0}\right) \geqslant 1$. A Zariski closed subset $Y \subseteq \Sigma_{p}$, with generic point y, is a permissible blowing up center if Y is regular at $x_{0}, \eta(Y)$ has normal crossing with E, and if one of the following conditions holds:
(i) $\epsilon\left(x_{0}\right)=\epsilon(y)$, (first kind of permissible blowing up), or
(ii) $\nu\left(x_{0}\right)=\epsilon\left(x_{0}\right)-1=\operatorname{ord}_{\eta\left(x_{0}\right)}\left(J(f, E, Y), H\left(x_{0}\right)^{-1} g^{p}\right)=\operatorname{ord}_{\eta(y)}\left(J(f, E, Y), H\left(x_{0}\right)^{-1} g^{p}\right)=\epsilon(y)$, where f is given by some choice of the r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of \widehat{R} such that $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$ and $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal (second kind of permissible blowing up).

The first (resp. second) type of permissible blowing up is studied in II.5.2, II.5.4.2 and II.5.4.3 (resp. II.5.4.4) below.
II.5.1.1 Proposition. Assume that $x_{0} \in \Sigma_{p}$ and that $\omega\left(x_{0}\right) \geqslant 1$. Any permissible center has dimension at most one and is contained in E_{0}. Moreover, $\left\{x_{0}\right\}$ is a permissible center (of the first kind).

Proof. We have $\epsilon(y)=0$ if y is the generic point of a component of E_{0}. If $\overline{\{y\}}$ were permissible, definition II.5.1 would imply $\omega\left(x_{0}\right)=0$. All other statements are obvious.
II.5.2 Theorem. For each permissible center Y of the first kind, there exists a r.s.p. $\left(u_{1}, u_{2}, u_{3}\right)$ of S and $X \in \widehat{R}$ such that $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right), \Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal, $Y=V\left(X,\left\{u_{i}\right\}_{i \in I}\right)$ for some $I \subseteq\{1,2,3\}$, and whose associated f satisfies one of the following conditions:
(i) $\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)=\operatorname{ord}_{\eta\left(x_{0}\right)}\left(J(f, E, Y), H\left(x_{0}\right)^{-1} g^{p}\right)=\operatorname{ord}_{\eta(y)}\left(J(f, E, Y), H\left(x_{0}\right)^{-1} g^{p}\right)=\epsilon(y)$,
(ii) $1+\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)=\operatorname{ord}_{\eta\left(x_{0}\right)}\left(J(f, E, Y), H\left(x_{0}\right)^{-1} g^{p}\right)=\operatorname{ord}_{\eta(y)}\left(J(f, E, Y), H\left(x_{0}\right)^{-1} g^{p}\right)=\epsilon(y)$.

Proof. The statement is trivial if $Y=\left\{x_{0}\right\}$. Otherwise, Y is a curve by II.5.1.1. Since $Y \subseteq \Sigma_{p}$ and $\eta(Y)$ has normal crossing with E, it is of the form $Y=V\left(Z, u_{1}, u_{2}\right)$ for some r.s.p. $\left(Z, u_{1}, u_{2}, u_{3}\right)$ of R such that $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$.

The formal version of III.2.2 implies that there exists a r.s.p. $X \in \widehat{R}$ such that $Y=V\left(X, u_{1}, u_{2}\right)$ and both of $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right), \Delta\left(h ; u_{1}, u_{2} ; X\right)$ minimal. The associated f thus computes $\epsilon\left(x_{0}\right)$ and $\epsilon(y)$ at the same time. The statement now follows easily from formulæII.3(4) and (5) and the definitions.
II.5.2.1 Proposition (H. Hironaka). Assume that $x_{0} \in \Sigma_{p}$ and that $\omega\left(x_{0}\right) \geqslant 1$. Let $e: X_{1} \rightarrow X_{0}$ be a permissible blowing up and $x^{\prime} \in e^{-1}\left(x_{0}\right)$ be the center of μ in X_{1}. Then $\left(X_{1}, x^{\prime}\right)$ has multiplicity at most p.

Proof. Since $Y \subseteq \Sigma_{p}$ and Y is regular at x_{0}, it is a permissible center in Hironaka's sense, and the assertion is classical.
II.5.3 Proposition. Assume that $x_{0} \in \Sigma_{p}$ and that $\omega\left(x_{0}\right) \geqslant 1$. Let $e: X_{1} \rightarrow X_{0}$ be a permissible blowing up with center Y and $x^{\prime} \in e^{-1}\left(x_{0}\right)$ be the center of μ in X_{1}. The following holds:
(i) if $H\left(x_{0}\right) \neq 1$ and $x^{\prime} \in \Sigma_{p}\left(X_{1}\right)$, then x^{\prime} lies on the strict transform of $\{X=0\}$, whenever Y is expressed as $Y=V\left(X,\left\{u_{i}\right\}_{i \in I}\right)$, with $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$ and $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ minimal;
(ii) if $H\left(x_{0}\right) \neq 1$ and $H\left(x^{\prime}\right)=1$, then the local uniformization problem if solved for $\left(X_{0}, x_{0}\right)$.

Proof. Assertion (i) is an easy consequence of [H2, thm. 3, p. 331]: with notations as in loc.cit., if $x^{\prime} \in \Sigma_{p}\left(X_{1}\right)$, then x^{\prime} lies on the projective space $\mathcal{B}_{\mathbf{P}, x^{\prime}} \subseteq e^{-1}\left(x_{0}\right)$ which verifies

$$
\begin{equation*}
\mathcal{B}_{\mathbf{P}, x^{\prime}} \subseteq \operatorname{PDir}\left(\mathrm{in}_{x_{0}} h\right) \tag{1}
\end{equation*}
$$

except if $p=2$ and there exists a r.s.p. $\left(Z, v_{1}, v_{2}, v_{3}\right)$ of R such that

$$
\begin{equation*}
\mathrm{in}_{x_{0}} h=Z^{2}+u V_{1}^{2}+v V_{2}^{2}+u v V_{3}^{2}, \tag{2}
\end{equation*}
$$

where $u, v \in k\left(x_{0}\right)$ and $\left[k\left(x_{0}\right)^{2}(u, v): k\left(x_{0}\right)^{2}\right]=4$. Since $H\left(x_{0}\right) \neq 1$ by assumption, we have

$$
I:=\operatorname{in}_{x_{0}} h=X^{2}+U_{1}\left(\bar{\gamma} X+\lambda_{1} U_{1}+\lambda_{2} U_{2}+\lambda_{3} U_{3}\right),
$$

for some $\lambda_{1}, \lambda_{2}, \lambda_{3} \in k\left(x_{0}\right)$ and $\operatorname{div}\left(u_{1}\right) \subseteq E_{0}$. Since $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal, we have $\mathrm{in}_{x_{0}} h=X^{2}$ if $\delta\left(x_{0}\right)>1$; if $\delta\left(x_{0}\right)=1$, either $\mathrm{in}_{x_{0}} h \in k\left(x_{0}\right)\left[X, U_{1}\right]$ or $\frac{\partial I}{\partial U_{1}} \neq 0$, so (2) does not hold and this proves (i).

We now prove (ii). Since $Y \subseteq \Sigma_{p}$, we have $\delta(y) \geqslant 1$. Let $t=0$ be a local equation of $E^{\prime}:=e^{-1}\left(x_{0}\right)$ at x^{\prime} and $h^{\prime}:=t^{-p} h=X^{\prime p}-g^{\prime p-1} X^{\prime}+f^{\prime}$ be the local equation of X_{1} at x^{\prime}, where $X^{\prime}:=X / t$ by (i).

If $\delta(y)>1$, we have $\left(f^{\prime}, g^{\prime}\right) \subseteq(t)$ so $H\left(x^{\prime}\right) \neq 1$. If $\delta(y)=\delta\left(x_{0}\right)=1$, it can be assumed that $(f, g) \subset\left(u_{1}\right)$ since $H\left(x_{0}\right) \neq 1$, where $\operatorname{div}\left(u_{1}\right) \subseteq E_{0}$. Then $\operatorname{PDir}\left(\mathrm{in}_{x_{0}} h\right) \subseteq V\left(X, U_{1}\right)$ in (1), so u_{1} / t is a regular parameter at x^{\prime} and divides $H\left(x^{\prime}\right)$, hence $H\left(x^{\prime}\right) \neq 1$.

Assume now that $\delta\left(x_{0}\right)>\delta(y)=1$. In particular, Y is a permissible curve. After renumbering variables, it can be assumed that $Y=V\left(X, u_{1}, u_{2}\right), \operatorname{div}\left(u_{1}\right) \subseteq E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$. If $H\left(x_{0}\right) \subseteq\left(u_{3}\right)$ we have $H\left(x^{\prime}\right) \subseteq\left(u_{3}\right)$ as well, so from now on, after possibly renumbering again variables, it can be assumed that $H\left(x_{0}\right)=u_{1}^{a(1)} u_{2}^{a(2)}$ with $a(1)>0$. By II. 2 and II.3.3, this implies

$$
\epsilon\left(x_{0}\right)-\epsilon(y)=p\left(\delta\left(x_{0}\right)-\delta(y)\right)>0,
$$

hence Y is permissible of the second kind. In particular $E \subseteq \operatorname{div}\left(u_{1} u_{3}\right)$ by II.5.1(ii) and we have $a(2)=0$. We get $\epsilon\left(x_{0}\right)=p+1-a(1)$ by II.3.3. Finally by permissibility of the second kind, we actually have $E=\operatorname{div}\left(u_{1}\right)$ and there is an expression

$$
\Phi:=\operatorname{in}_{x_{0}} f=U_{1}^{a(1)}\left(U_{3} \Phi_{3}\left(U_{1}, U_{2}\right)+\Phi_{0}\left(U_{1}, U_{2}\right)\right),
$$

with $0 \neq \Phi_{3} \in k\left(x_{0}\right)\left[U_{1}, U_{2}\right]_{p-a(1)}$ and $\Phi_{0} \in k\left(x_{0}\right)\left[U_{1}, U_{2}\right]_{p+1-a(1)}$.
In computing h^{\prime}, it can be assumed that $t=u_{1}$ is a local equation of $E^{\prime}=\operatorname{div}\left(u_{1}^{\prime}\right)$ at x^{\prime} if $H\left(x^{\prime}\right) \neq 1$. Then x^{\prime} belongs to the chart with origin $\left(X^{\prime}:=X / u_{1}, u_{1}^{\prime}=u_{1}, u_{2}^{\prime}:=u_{2} / u_{1}, u_{3}\right)$. Then

$$
\begin{equation*}
u_{1}^{-p} f=u_{3} \Phi_{3}\left(1, u_{2}^{\prime}\right)+u_{1}^{\prime}\left(\Phi_{0}\left(1, u_{2}^{\prime}\right)+\varphi^{\prime}\right) \tag{3}
\end{equation*}
$$

for some $\varphi^{\prime} \in\left(u_{1}^{\prime}, u_{3}^{2}\right)$. Since $\Phi_{3} \neq 0$, we have $x^{\prime} \notin \Sigma_{p}\left(X_{1}\right)$ unless $a(1)=1$ and $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} \Phi_{3}\left(1, u_{2}^{\prime}\right)=$ $p-1$. Therefore x^{\prime} is rational over x_{0} and after possibly replacing (X, u_{1}, u_{2}, u_{3}) with a r.s.p.
$\left(Z, u_{1}, v_{2}, u_{3}\right)$ such that $\Delta\left(h ; u_{1}, v_{2}, u_{3} ; Z\right)$ is minimal, it can be assumed in (3) that $\Phi_{3}=\lambda U_{2}^{p-1}$ for some $\lambda \neq 0$. Summing up, we get

$$
\begin{equation*}
h^{\prime}=X^{\prime p}-\gamma^{p-1} u_{1}^{\prime b^{\prime}(p-1)} X^{\prime}+\lambda u_{3} u_{2}^{\prime p-1}+u_{1}^{\prime} \phi^{\prime} \tag{4}
\end{equation*}
$$

with $E^{\prime}=\operatorname{div}\left(u_{1}^{\prime}\right), b^{\prime} \geqslant 1$ and $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} \phi^{\prime} \geqslant p-1$, where $x^{\prime}=\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}\right)$ if $x^{\prime} \in \Sigma_{p}\left(X_{1}\right)$. Let $e^{\prime}: X_{2} \rightarrow X_{1}$ be the blowing up of X_{1} along x^{\prime} and $x^{\prime \prime} \in e^{-1}\left(x^{\prime}\right)$ be the center of μ in X_{2}. We consider two cases:

Case 1: $b=1$ or $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} \phi^{\prime}=p-1$. Then $\operatorname{VDir}\left(\operatorname{in}_{x_{0}} h\right)=<X^{\prime}, U_{1}^{\prime}, U_{2}^{\prime}, U_{3}>$, so $\operatorname{PDir}\left(\operatorname{in}_{x_{0}} h\right)=$ \varnothing. Since (2) does not hold, $x^{\prime \prime} \notin \Sigma_{p}\left(X_{2}\right)$ by (1).

Case 2: $b>1$ and $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} \phi^{\prime}>p-1$. Then $\operatorname{VDir}\left(\operatorname{in}_{x_{0}} h\right)=<X^{\prime}, U_{2}^{\prime}, U_{3}>$, so again by (1), $x^{\prime \prime} \in \Sigma_{p}\left(X_{2}\right)$ only if $x^{\prime \prime}=\left(X^{\prime \prime}=X^{\prime} / u_{1}^{\prime}, u_{1}^{\prime \prime}=u_{1}^{\prime}, u_{2}^{\prime \prime}=u_{2}^{\prime} / u_{1}^{\prime}, u_{3}^{\prime \prime}=u_{3} / u_{1}^{\prime}\right)$. Hence $h^{\prime \prime}:=u_{1}^{\prime \prime-p} h^{\prime}$ satisfies (4) w.r.t. the r.s.p. $\left(X^{\prime \prime}, u_{1}^{\prime \prime}, u_{2}^{\prime \prime}, u_{3}^{\prime \prime}\right)$.

We iterate the above argument. Let

$$
X_{1} \leftarrow X_{2} \leftarrow \cdots X_{n-1} \leftarrow X_{n} \leftarrow \cdots
$$

be the quadratic sequence along μ, i.e. X_{i} is the blowing up along the center x_{i-1} of μ in X_{i-1} for $i \geqslant 2$, where $x_{1}:=x^{\prime}$. Assume that $x_{i} \in \Sigma_{p}\left(X_{i}\right)$ for all $i \geqslant 1$. Then x_{i-1} is in the above case 2 , hence lies on the strict transform Y_{i} in X_{i} of the curve $Y^{\prime}:=V\left(X^{\prime}, u_{2}^{\prime}, u_{3}\right)$. By standard arguments, we have $Y_{i} \subseteq \Sigma_{p}\left(X_{i}\right)$ for $i \gg 0$. But this implies that $\eta^{\prime}\left(Y^{\prime}\right) \subseteq E_{1}$, in contradiction with our conventions in \mathbf{I}. Therefore $x_{i} \notin \Sigma_{p}\left(X_{i}\right)$ for some $i \geqslant 1$ and (ii) is proved.
II.5.3.1 Remark. Theorem II.5.3 plays an essential role in our approach. Namely, we may assume that $H\left(x_{0}\right) \neq 1$ (last line of section \mathbf{I}). This additional assumption will be maintained up to the end of this article.

Let $e: X^{\prime} \rightarrow X_{0}$ be a permissible blowing up. By II.5.3(i) and (ii), in order to reduce the multiplicity of the strict transform $h^{\prime}=t^{-p} h$ of $h=X^{p}-X g^{p-1}+f$ at the center x^{\prime} of μ in $X^{\prime}(t$ being a local equation of the exceptional divisor at x^{\prime}), we may assume that $h^{\prime}=X^{\prime p}-X^{\prime} g^{\prime p-1}+f^{\prime}$ and that $H\left(x^{\prime}\right) \neq 1$ where $X^{\prime}=X / t,\left(f^{\prime}, g^{p}\right)=t^{-p}\left(f, g^{p}\right)$.

However, since our main invariant $\Omega\left(x_{0}\right)$ can be read off $\left(f, g^{p}\right)$ only when $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal, we need to relate some minimal $\Delta\left(h^{\prime} ; v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime} ; Z^{\prime}\right)$ at x^{\prime} to a given minimal polygon $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ at x_{0}. The following elementary result is essential for this purpose.
II.5.3.2 Theorem. Let $F\left(U_{2}, U_{3}\right) \in k\left(x_{0}\right)\left[U_{2}, U_{3}\right]$ be a homogeneous polynomial of degree $i \geqslant 0$, and $a, b \in \mathbb{N}$ be such that $U_{2}^{a} U_{3}^{b} F\left(U_{2}, U_{3}\right) \notin\left(k\left(x_{0}\right)\left[U_{2}, U_{3}\right]\right)^{p}$.

Let $x^{\prime} \in \operatorname{Spec} k\left(x_{0}\right)\left[\frac{U_{3}}{U_{2}}\right]$ be a closed point with ideal $\left(v:=P\left(1, \frac{U_{3}}{U_{2}}\right)\right), P \in k\left(x_{0}\right)\left[U_{2}, U_{3}\right]$ a nonzero homogeneous irreducible polynomial of degree $d:=\left[k\left(x^{\prime}\right): k\left(x_{0}\right)\right]$, unitary in U_{3}.

Let $A \in T^{\prime}:=k\left(x_{0}\right)\left[U_{2}, \frac{U_{3}}{U_{2}}\right]_{\left(U_{2}, v\right)}$ be such that U_{2}^{a+b+i} (resp. $U_{2}^{a+b+i} v^{b}$) divides A^{p} in T^{\prime} if $P \neq U_{3}$ (resp. $P=U_{3}$). There exists an integer $e \geqslant 0$ such that

$$
\begin{equation*}
U_{2}^{a+b+i}\left(\frac{U_{3}}{U_{2}}\right)^{b} F\left(1, \frac{U_{3}}{U_{2}}\right)+A^{p} \equiv U_{2}^{a+b+i}\left(\frac{U_{3}}{U_{2}}\right)^{b} \gamma v^{e} \bmod \left(U_{2}^{a+b+i+1} T^{\prime}\right) \tag{1}
\end{equation*}
$$

with γ invertible in T^{\prime}. We have the following estimates for e :
(i) if $P \neq U_{3}$ (resp. $P=U_{3}$), we have $e \leqslant \frac{i}{d}+1$ (resp. e $\leqslant i$);
(ii) if $P \neq U_{3}$, then $e<p\left(1+\left\lfloor\frac{i}{p d}\right\rfloor\right.$) (equivalently: for every $N \in \mathbb{N}$ such that $\frac{i}{p d}<N$, we have $e<N p)$;
(iii) if $i \geqslant 1$ and $b=0$, then $e \leqslant i$;
(iv) if $i \geqslant 2$ and $b=0$, there exists at most one x^{\prime} as above with $e=i$. If such an x^{\prime} exists, we have $P\left(U_{2}, U_{3}\right)=\lambda U_{2}+U_{3}$ for some $\lambda \in k\left(x_{0}\right)$. In this case, $U_{2}^{-(a-1)} \frac{\partial U_{2}^{a} F}{\partial U_{2}}$ and all $\frac{\partial F}{\partial \lambda_{i}}, 4 \leqslant i \leqslant s$, are multiples of $\left(\lambda U_{2}+U_{3}\right)^{i}$, $\frac{\partial F}{\partial U_{3}}$ is a multiple of $\left(\lambda U_{2}+U_{3}\right)^{i-1}$. In particular, x^{\prime} is rational over x_{0}.

Proof. The existence of some integer $e \geqslant 0$ satisfying (1) is clear from the assumptions. We prove the estimates in (i), (ii), (iii), then prove (iv).

Since $U_{2}^{a} U_{3}^{b} F\left(U_{2}, U_{3}\right) \notin\left(k\left(x_{0}\right)\left[U_{2}, U_{3}\right]\right)^{p}$, there exists a derivation $D \in \operatorname{Der}_{k_{0}}\left(k\left(x_{0}\right)\left[U_{2}, U_{3}\right]\right)$, D preserving degrees of homogeneous polynomials, such that

$$
D\left(U_{2}^{a} U_{3}^{b} F\left(U_{2}, U_{3}\right)\right)=U_{2}^{a} U_{3}^{b} F_{D}\left(U_{2}, U_{3}\right),
$$

with $F_{D} \neq 0$ a homogeneous polynomial of degree i. We pick D in such a way that $\operatorname{ord}_{v} F_{D}\left(1, \frac{U_{3}}{U_{2}}\right)$ is minimal. With conventions as in II. 3 on $\operatorname{Der}_{k_{0}}(k)$, we can take

$$
\begin{equation*}
D \in\left\{U_{2} \frac{\partial}{\partial U_{2}}, U_{3} \frac{\partial}{\partial U_{3}},\left\{\frac{\partial}{\partial \lambda_{i}}\right\}_{4 \leqslant i \leqslant s}\right\} . \tag{2}
\end{equation*}
$$

Since $D\left(\left(U_{2}, U_{3}\right) k\left(x_{0}\right)\left[U_{2}, U_{3}\right]\right) \subseteq\left(U_{2}, U_{3}\right) k\left(x_{0}\right)\left[U_{2}, U_{3}\right]$, we have $D\left(U_{2} T^{\prime}\right) \subseteq U_{2} T^{\prime}$. So in T^{\prime} there exists a derivation $D^{\prime} \in\left\{U_{2} \frac{\partial}{\partial U_{2}}, \frac{\partial}{\partial v},\left\{\frac{\partial}{\partial \lambda_{i}^{\prime}}\right\}_{4 \leqslant i \leqslant s}\right\}$, where $\left(d U_{2}, d v,\left\{d \lambda_{i}^{\prime}\right\}_{4 \leqslant i \leqslant s}\right)$ is a basis of $\Omega_{T^{\prime} / k_{0}}^{1}$, such that

$$
\begin{equation*}
D^{\prime}\left(U_{2}^{a+b+i}\left(\frac{U_{3}}{U_{2}}\right)^{b} F\left(1, \frac{U_{3}}{U_{2}}\right)+A^{p}\right)=u U_{2}^{a+b+i}\left(\frac{U_{3}}{U_{2}}\right)^{b} F_{D}\left(1, \frac{U_{3}}{U_{2}}\right), \tag{3}
\end{equation*}
$$

with $u \in T^{\prime}$ invertible. We consider two cases:
Case 1: $D^{\prime} \in\left\{U_{2} \frac{\partial}{\partial U_{2}},\left\{\frac{\partial}{\partial \lambda_{i}^{\prime}}\right\}_{4 \leqslant i \leqslant s}\right\}$. Then by (3) the integer e in (1) satisfies

$$
e \leqslant \operatorname{ord}_{x^{\prime}} F_{D}\left(1, \frac{U_{3}}{U_{2}}\right) \leqslant \frac{\operatorname{deg} F_{D}}{d}=\frac{i}{d} .
$$

This proves (i), (ii) and (iii) in this first case.
Case 2: (3) is satisfied only by $D^{\prime}=\frac{\partial}{\partial v}$. Then by (3), the integer e in (1) satisfies

$$
\begin{equation*}
e \leqslant 1+\operatorname{ord}_{v} F_{D}\left(1, \frac{U_{3}}{U_{2}}\right) \leqslant 1+\frac{\operatorname{deg} F_{D}}{d}=1+\frac{i}{d}, \tag{4}
\end{equation*}
$$

and this proves (i) if $P \neq U_{3}$. If some inequality is strict, we also get (i) if $P=U_{3}$ as well as (iii) for every P (note the trivial fact that $1+\frac{i}{d} \leqslant i$ whenever $(i, d \geqslant 2)$).

If $P \neq U_{3}$, we have $e \not \equiv 0 \bmod p$, since

$$
D^{\prime}\left(\left(\frac{U_{3}}{U_{2}}\right)^{b} F\left(1, \frac{U_{3}}{U_{2}}\right)+\frac{A^{p}}{U_{2}^{a+b+i}}\right) \equiv \frac{\partial \gamma^{\prime} v^{e}}{\partial v} \bmod U_{2} T^{\prime},
$$

where γ^{\prime} is a unit. Then (ii) follows from (4) and the trivial inequalities

$$
\frac{i}{d}<1+\left\lfloor\frac{i}{d}\right\rfloor \leqslant p\left(1+\left\lfloor\frac{i}{p d}\right\rfloor\right)
$$

for $i \geqslant 0$ and $d \geqslant 1$.

We now assume that $e=1+\frac{i}{d}$. In particular $i \neq 2$ if $d \geqslant 2$. If $d \geqslant 2$ and $i \geqslant 2$, we have $1+\frac{i}{d} \leqslant i$, which proves (iii) when $d \geqslant 2$.

Suppose now that $d=1$. Then $v=\frac{U_{3}}{U_{2}}+\lambda, \lambda \in k\left(x_{0}\right), D^{\prime}=\frac{\partial}{\partial v}=\frac{\partial}{\partial U_{3}}$. The only possibility for the derivation D in (2) is $D=U_{3} \frac{\partial}{\partial U_{3}}$; hence $\lambda \neq 0$ and this proves (i) and (iii) when $P=U_{3}$.

There remains to prove (iii) when $\dot{d}=1$ and $P \neq U_{3}$. Then

$$
D\left(U_{2}^{a} F\left(U_{2}, U_{3}\right)\right)=U_{2}^{a} F_{D}\left(U_{2}, U_{3}\right)=U_{2}^{a} U_{3} G\left(U_{2}, U_{3}\right),
$$

with $G \neq 0$ a homogeneous polynomial of degree $i-1$. In (3), we now have $F_{D}\left(1, \frac{U_{3}}{U_{2}}\right)=(v-$入) $G\left(1, \frac{U_{3}}{U_{2}}\right)$, and therefore get the sharper estimate

$$
e \leqslant 1+\operatorname{ord}_{v} G\left(1, \frac{U_{3}}{U_{2}}\right) \leqslant 1+\operatorname{deg} G=i,
$$

thus contradicting the assumption $e=1+i$.
Let us finally prove (iv), so $i \geqslant 2$. If $d \geqslant 2$, we have the inequality $e \leqslant 1+\frac{i}{d}<i$ except possibly if $d=i=2$. In this last case, $\left(U_{3} \frac{\partial F}{\partial U_{3}}\right)\left(1, \frac{U_{3}}{U_{2}}\right)$ is a unit in T^{\prime}, so that we get $e \leqslant 1$ in this case. We can therefore assume that x^{\prime} is rational over x_{0}. Then $v=\lambda+\frac{U_{3}}{U_{2}}, \lambda \in k\left(x_{0}\right)$. Note that $\left(d U_{2}, d v,\left\{d \lambda_{i}\right\}_{4 \leqslant i \leqslant s}\right)$ is then a basis of $\Omega_{T^{\prime} / k_{0}}^{1}$. We denote by u_{2} the image of U_{2} in T^{\prime} to avoid confusion in what follows

Since

$$
d v=d\left(\frac{U_{3}}{U_{2}}+\lambda\right)=d \frac{U_{3}}{U_{2}}+\sum_{4 \leqslant i \leqslant s} a_{i} d \lambda_{i}, d U_{3}=u_{2} d \frac{U_{3}}{U_{2}}+\frac{U_{3}}{U_{2}} d u_{2},
$$

with $a_{i} \in k\left(x_{0}\right), 4 \leqslant i \leqslant s$, we get the formulæ

$$
\begin{gathered}
u_{2} \frac{\partial \circ f}{\partial u_{2}}=u_{2} \frac{\partial}{\partial U_{2}}+U_{3} \frac{\partial}{\partial U_{3}}, \frac{\partial \circ f}{\partial v}=u_{2} \frac{\partial}{\partial U_{3}}, \\
\frac{\partial \circ f}{\partial \lambda_{i}}=\frac{\partial}{\partial \lambda_{i}}-a_{i} u_{2} \frac{\partial}{\partial U_{3}}
\end{gathered}
$$

in $\operatorname{Der}_{k_{0}}\left(k\left(x_{0}\right)\left[U_{2}, U_{3}\right]\right)$, where $f: k\left(x_{0}\right)\left[U_{2}, U_{3}\right] \rightarrow T^{\prime}$ is the natural map.
Then, if $\lambda \neq 0$, the (weak) transform of

$$
I:=U_{2}^{-a}\left(U_{2} \frac{\partial U_{2}^{a} F\left(U_{2}, U_{3}\right)}{\partial U_{2}}, U_{3} \frac{\partial U_{2}^{a} F\left(U_{2}, U_{3}\right)}{\partial U_{3}},\left\{\frac{\partial U_{2}^{a} F\left(U_{2}, U_{3}\right)}{\partial \lambda_{i}}\right\}_{4 \leqslant i \leqslant s}\right)
$$

is

$$
I^{\prime}:=u_{2}^{-a-i}\left(u_{2} \frac{\partial u_{2}^{a+i} F\left(1, \frac{U_{3}}{U_{2}}\right)}{\partial u_{2}}, \frac{\partial u_{2}^{a+i} F\left(1, \frac{U_{3}}{U_{2}}\right)}{\partial v},\left\{\frac{\partial u_{2}^{a+i} F\left(1, \frac{U_{3}}{U_{2}}\right)}{\partial \lambda_{i}}\right\}_{4 \leqslant i \leqslant s}\right) .
$$

Since we have $e=i$, all of these derivatives in I^{\prime} are multiples of v^{i}, except $u_{2}^{-a-i} \frac{\partial u_{2}^{a+i} F\left(1, \frac{U_{3}}{U_{2}}\right)}{\partial v}$ which is a multiple of v^{i-1}. So in I, the corresponding derivatives are multiples of $\left(\lambda U_{2}+U_{3}\right)^{i}$, except $U_{2}^{-a} U_{3} \frac{\partial U_{2}^{a} F\left(U_{2}, U_{3}\right)}{\partial U_{3}}$ which is a multiple of $U_{3}\left(\lambda U_{2}+U_{3}\right)^{i-1}$.

If $\lambda=0$, we have $a_{i}=0,4 \leqslant i \leqslant s$, in the previous formulæ, and I^{\prime} becomes

$$
I^{\prime}:=u_{2}^{-a-i}\left(u_{2} \frac{\partial u_{2}^{a+i} F\left(1, \frac{U_{3}}{U_{2}}\right)}{\partial u_{2}}, U_{3} \frac{\partial u_{2}^{a+i} F\left(1, \frac{U_{3}}{U_{2}}\right)}{\partial \frac{U_{3}}{U_{2}}},\left\{\frac{\partial u_{2}^{a+i} F\left(1, \frac{U_{3}}{U_{2}}\right)}{\partial \lambda_{i}}\right\}_{4 \leqslant i \leqslant s}\right) .
$$

Since we have $e=i$, all of these derivatives in I^{\prime} are multiples of $\left(\frac{U_{3}}{U_{2}}\right)^{i}$. So in I, all derivatives are multiples of $U_{3}{ }^{i}$.

So if we have equality in (iii), either all the derivatives in I are multiples of U_{3}^{i} and the only possible x^{\prime} has parameter $v=\frac{U_{3}}{U_{2}}$, or they are all multiples of $\left(\lambda U_{2}+U_{3}\right)^{i}$ (except $U_{2}^{-a} U_{3} \frac{\partial U_{2}^{a} F\left(U_{2}, U_{3}\right)}{\partial U_{3}}$ which is a multiple of $U_{3}\left(\lambda U_{2}+U_{3}\right)^{i-1}$), for some $\lambda \in k\left(x_{0}\right)-\{0\}$. Since $i \geqslant 2$ and $U_{2}^{a} F\left(U_{2}, U_{3}\right)$ is not a $p^{t h}$-power, λ is uniquely determined and gives as only possible x^{\prime} the point with parameter $v=\lambda+\frac{U_{3}}{U_{2}}$. We get (iv).

We now come to the main result of this chapter: our main invariant $\left(\operatorname{ord}_{x_{0}} h, \Omega\left(x_{0}\right)\right)$ does not increase above x_{0} when performing a permissible blowing up.
II.5.4 Theorem. Assume that $x_{0} \in \Sigma_{p}, \omega\left(x_{0}\right) \geqslant 1$ and $H\left(x_{0}\right) \neq 1$. Let $e: X_{1} \rightarrow X_{0}$ be the blowing up along a permissible center Y and $x^{\prime} \in e^{-1}\left(x_{0}\right)$ be the center of μ in X_{1}. If $x^{\prime} \in \Sigma_{p}\left(X_{1}\right)$, then $\Omega\left(x^{\prime}\right) \leqslant \Omega\left(x_{0}\right)$, where $\Omega\left(x^{\prime}\right)$ is computed w.r.t. $E^{\prime}:=e^{-1}(E)_{\mathrm{red}}$.

Proof. The proof is long and needs to study all different cases, depending on the kind of permissible blowing up and on the different values of $\operatorname{ord}_{\eta(y)} g^{p}$.

By II.5.2, there exists a r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of \widehat{R} such that $Y=V\left(X,\left\{u_{i}\right\}_{i \in I}\right), E \subseteq$ $\operatorname{div}\left(u_{1} u_{2} u_{3}\right)$, and both of $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ and $\Delta\left(h ;\left\{u_{i}\right\}_{i \in I} ; X\right)$ are minimal. If the blowing up is of the second kind, any r.s.p. satisfying the condition in definition II.5.1 (ii) automatically has these properties. We have $|I|=2$ or 3 by II.5.1.1. Also, $\delta(y) \geqslant 1$ by II.2.1. We keep conventions on indices as in II. 3 as well as the writings $f=\prod_{\operatorname{div}\left(u_{i}\right) \subseteq E} u_{i}^{a_{i}} f_{0}$ of $\mathbf{I I} .1$ and $\Psi=\operatorname{cl}_{\epsilon\left(x_{0}\right)}\left(H\left(x_{0}\right)^{-1} f\right)$ of II. 3 .

By II.5.3(i), $e^{-1}(Y)=\operatorname{div}(t)$, where $t=u_{i}$ for some $i \in I$. Let $h^{\prime}:=t^{-p} h$ be the strict transform of h at x^{\prime} :

$$
\begin{equation*}
h^{\prime}=X^{\prime p}-X^{\prime} t^{(p-1)\left(\left(\sum_{i \in I_{E}}^{\left.\left.\beta_{i}\right)-1\right)}\right.\right.} \tilde{g}^{p-1}+t^{\left(\sum_{i \in I} a_{i}\right)+\alpha(y)-p} \tilde{f}=: X^{\prime p}-X^{\prime} g^{(p-1)}+f^{\prime} \tag{1}
\end{equation*}
$$

where \tilde{f} (resp. \tilde{g}) is the strict transform of f (resp. g), y is the generic point of Y and $X^{\prime}:=X / t$.
Let $u_{j}^{\prime}:=u_{j} / t, j \in I\left(u_{i}^{\prime}=1\right.$ for $\left.j=i\right)$ and $I_{i}:=I \backslash\{i\}$. Then $\left(X^{\prime}, t,\left\{u_{i}^{\prime}\right\}_{i \in I_{i}},\left\{u_{r}\right\}_{r \in I^{c}}\right)$ is a system of coordinates at x^{\prime}. Let $\eta^{\prime}:\left(X_{1}, x^{\prime}\right) \rightarrow S\left[\left\{u_{i}^{\prime}\right\}_{i \in I_{i}}\right]$ be the induced map. We denote $S^{\prime}:=S\left[\left\{u_{i}^{\prime}\right\}_{i \in I_{i}}\right]_{\eta^{\prime}\left(x^{\prime}\right)}$ and $R^{\prime}:=S^{\prime}\left[X^{\prime}\right]_{x^{\prime}}$. If $x^{\prime} \in \Sigma_{p}\left(X_{1}\right), \Omega\left(x^{\prime}\right)$ is thus defined. Note that u_{j}^{\prime} may be a unit for some $j \in I_{i}$. In any case: the polyhedron $\Delta\left(h^{\prime} ; v_{1}, v_{2}, v_{3} ; X^{\prime}\right)$ where $\left(X^{\prime}, v_{1}, v_{2}, v_{3}\right)$ is a r.s.p. of R^{\prime} adapted to $E^{\prime}=e^{-1}(E)_{\mathrm{red}}$ is not in general minimal.

Let us recall the transformation laws given in [5, I.E.1]:

$$
\mathcal{J}\left(f, E^{\prime}\right)_{\eta^{\prime}\left(x^{\prime}\right)}=\mathcal{J}(f, E, Y) S^{\prime}
$$

where Y is the center of the blowing up, the only hypothesis in this formula being that Y is regular, and that $\eta(Y)$ has normal crossings with E. Since we factor out the $p^{t h}$-power t^{p} in h, we get

$$
\begin{equation*}
\mathcal{J}\left(f^{\prime}, E^{\prime}\right)_{\eta^{\prime}\left(x^{\prime}\right)}=t^{-p} \mathcal{J}(f, E, Y) S^{\prime} \tag{2}
\end{equation*}
$$

If the blowing up is of the first kind, then $\Psi \in k\left(x_{0}\right)\left[\left\{U_{i}\right\}_{i \in I}\right]$ and

$$
\begin{equation*}
\tilde{f} \equiv M \Psi\left(\left\{u_{i}^{\prime}\right\}_{i \in I}\right) \bmod M\left(t, u_{r}\right) \tag{3}
\end{equation*}
$$

where $M:=\left(\prod_{i \in I_{E}} u_{i}^{p d_{i}}\right) u_{r}^{p d_{r}}\left(d_{i}\right.$ is defined in II.1.2) and $\{r\}=I^{c}$.

If the blowing up is of the second kind, the definition implies that Y is a curve and $\Psi=$ $\Psi_{0}\left(\left\{U_{i}\right\}_{i \in I}\right)+U_{r} \Psi_{r}\left(\left\{U_{i}\right\}_{i \in I}\right)$, where $\{r\}=I^{c}$ is such that $\operatorname{div}\left(u_{r}\right) \nsubseteq E, \Psi_{r}$ is (nonzero) homogeneous of degree $\epsilon\left(x_{0}\right)-1$ and $\Psi_{0} \in k\left(x_{0}\right)\left[\left\{U_{i}\right\}_{i \in I}\right]_{\epsilon\left(x_{0}\right)}$. We have

$$
\tilde{f} \equiv M u_{r} \Psi_{r}\left(\left\{u_{i}^{\prime}\right\}_{i \in I}\right) \bmod M\left(t, u_{r}^{2}\right)
$$

In this case, it is easily seen that the function $f \in S$ attached to any r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of R satisfying the requirements stated in the beginning of the proof of this theorem produces a Ψ of the above form.

If $\delta(y)>1$, we consider the valuation w of $S^{\prime}\left[X^{\prime}\right]$ centered at $V\left(X^{\prime}, t\right)$ given by: $w\left(X^{\prime}\right)=$ $1, w(t)=\frac{1}{\delta(y)-1}$. As

$$
p \delta(y)=\inf \left\{p \sum_{i \in I_{E}} \beta_{i}, \alpha(y)+\sum_{i \in I} p d_{i}\right\}
$$

we get $w\left(h^{\prime}\right)=w\left(X^{\prime p}\right)=p$, so vertices of the polyhedron $\Delta\left(h^{\prime} ; v_{1}, v_{2}, v_{3} ; X^{\prime}\right)$ where $\left(X^{\prime}, v_{1}, v_{2}, v_{3}\right)$ is a r.s.p. of R^{\prime} adapted to E^{\prime} correspond to monomials with w-value at least p. Thus there is some $Z^{\prime} \in R^{\prime}$ such that $\Delta\left(h^{\prime} ; v_{1}, v_{2}, v_{3} ; Z^{\prime}\right)$ is minimal, where $Z^{\prime}=X^{\prime}-\theta^{\prime}, \theta^{\prime} \in \widehat{S}^{\prime}, w\left(\theta^{\prime}\right) \geqslant 1$. After changing X^{\prime} to Z^{\prime}, the degree zero term in Z^{\prime} of h^{\prime} is:

$$
\begin{equation*}
\phi:=t^{\left(\sum_{i \in I} p d_{i}\right)+\alpha(y)-p} \tilde{f}+\theta^{\prime p}-\theta^{\prime} t^{(p-1)\left(\left(\sum_{i \in I_{E}} \beta_{i}\right)-1\right)} \tilde{g}^{p-1} \tag{4}
\end{equation*}
$$

Formula (4) is also valid when $\delta(y)=1$, where $\theta^{\prime} \in \widehat{S}^{\prime}$ has no weight estimate.
II.5.4.1 Lemma. We have $\left(H\left(x^{\prime}\right)\right)=\left(t^{p(\delta(y)-1)}\left(\prod_{i \in I_{E}} u_{i}^{\prime p d_{i}}\right) u_{r}^{p d_{r}}\right)$.

Proof. Indeed, as the exponents d_{i} are defined by the generic point of the corresponding component of the exceptional divisor (cf. II.2), the only question is to compute the exponent of t in $g^{\prime p}$ and ϕ, the minimum will be the exponent of t in $H\left(x^{\prime}\right)$.

If $\operatorname{ord}_{\eta(y)} g^{p} \leqslant \operatorname{ord}_{\eta(y)} f=\alpha(y)$, then $\epsilon(y)=\operatorname{ord}_{\eta(y)} g^{p}$. Formulæ(1) and (4) and II.3.3 imply that

$$
\begin{aligned}
\operatorname{ord}_{t} g^{\prime p} & =\sum_{i \in I_{E}} p d_{i}+\epsilon(y)-p=p(\delta(y)-1) \\
\operatorname{ord}_{t} \phi & \geqslant \sum_{i \in I_{E}} p d_{i}+\epsilon(y)-p=p(\delta(y)-1)
\end{aligned}
$$

If $\operatorname{ord}_{\eta(y)} g^{p}>\operatorname{ord}_{\eta(y)} f=\alpha(y)$, then $\epsilon(y)=\alpha(y)$. Formula (1) implies that $t^{\left(\sum_{i \in I_{E}} p d_{i}\right)+\epsilon(y)-p}$ divides $\theta^{\prime p}$ in (4) and strictly divides $g^{\prime p}$, so strictly divides $\theta^{\prime} g^{\prime p-1}=\theta^{\prime} t^{(p-1)\left(\left(\sum_{i \in I_{E}} \beta_{i}\right)-1\right)} \tilde{g}^{p-1}$. Therefore

$$
\operatorname{ord}_{t} \phi=\sum_{i \in I_{E}} p d_{i}+\epsilon(y)-p=p(\delta(y)-1)
$$

and this completes the proof.
The theorem is a consequence of the following three lemmas which also classify the equality cases $\Omega\left(x^{\prime}\right)=\Omega\left(x_{0}\right)$. In II.5.4.2 and II.5.4.3, $\left(X, u_{1}, u_{2}, u_{3}\right)$ is any r.s.p. of \widehat{R} such that $Y=$ $V\left(X,\left\{u_{i}\right\}_{i \in I}\right), E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$ and $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal (see comments in the beginning of the proof of this theorem).
II.5.4.2 Lemma. If $v_{\delta}(g)=1, \epsilon\left(x_{0}\right)=\epsilon(y)$ (first kind of permissible blowing-up) and $x^{\prime} \in \Sigma_{p}\left(X_{1}\right)$, then $\Omega\left(x^{\prime}\right) \leqslant \Omega\left(x_{0}\right)$. Moreover, the following holds:
(i) the strict transform of $\operatorname{div}\left(H\left(x_{0}\right)^{-1} g^{p}\right)$ is $\operatorname{div}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)$. We have $\Omega\left(x^{\prime}\right)<\Omega\left(x_{0}\right)$ if x^{\prime} does not map to the strict transform of each component of $\operatorname{div}\left(H\left(x_{0}\right)^{-1} g^{p}\right)$;
(ii) if Y is a curve, there exists at most one x^{\prime} such that $\Omega\left(x^{\prime}\right)=\Omega\left(x_{0}\right)$. Such x^{\prime} satisfies

$$
\left.\eta^{\prime}\left(x^{\prime}\right) \in \operatorname{PDir}_{\operatorname{Dir}}^{\epsilon\left(x_{0}\right)}, J\left(f, E, x_{0}\right)\right)\left(\text { resp. } \eta^{\prime}\left(x^{\prime}\right) \in \operatorname{PDir}\left(\mathrm{cl}_{\omega\left(x_{0}\right)} J(f, E)\right)\right.
$$

if $\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)$ (resp. $1+\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)$), and has $\omega^{\prime}\left(x^{\prime}\right)=\omega^{\prime}\left(x_{0}\right) \leqslant 2$;
(iii) if $Y=\left\{x_{0}\right\}$ and $\operatorname{div}\left(H\left(x_{0}\right)^{-1} g^{p}\right)$ has two components, there exists at most one x^{\prime} such that $\Omega\left(x^{\prime}\right)=\Omega\left(x_{0}\right)$. Such x^{\prime} is the intersection of the exceptional divisor and of the strict transform of $\operatorname{div}\left(H\left(x_{0}\right)^{-1} g^{p}\right)$, and has either $\omega^{\prime}\left(x^{\prime}\right)=\omega^{\prime}\left(x_{0}\right)=2$, or $\left(\omega^{\prime}\left(x_{0}\right)=1\right.$ and x_{0} belongs to case II. $4(i))$;
(iv) if $Y=\left\{x_{0}\right\}$ and $\operatorname{div}\left(H\left(x_{0}\right)^{-1} g^{p}\right)$ has one component, then: if $\omega^{\prime}\left(x_{0}\right)=2$ and $\Omega\left(x^{\prime}\right)=\Omega\left(x_{0}\right)$, $\eta^{\prime}\left(x^{\prime}\right) \in \operatorname{PDir}\left(\mathrm{cl}_{\omega\left(x_{0}\right)} J(f, E)\right)$; if $\omega^{\prime}\left(x_{0}\right)=3$, there exists at most one x^{\prime} with $\Omega\left(x^{\prime}\right)=\Omega\left(x_{0}\right)$, and such x^{\prime} is rational over x_{0}.

Proof of (i). We note that $v_{\delta}(g)=1$ is equivalent to $\operatorname{ord}_{\eta\left(x_{0}\right)}\left(H\left(x_{0}\right)^{-1} g^{p}\right)=\epsilon\left(x_{0}\right)$. By II.5.4.1, $\operatorname{div}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)$ is the strict transform of $\operatorname{div}\left(H(x)^{-1} g^{p}\right)$ since $\epsilon\left(x_{0}\right)=\epsilon(y)$. So for every point x^{\prime} above x_{0} not on the strict transform of all components of $H\left(x_{0}\right)^{-1} g^{p}$, we have

$$
\epsilon\left(x^{\prime}\right) \leqslant \operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)<\operatorname{ord}_{\eta\left(x_{0}\right)}\left(H\left(x_{0}\right)^{-1} g^{p}\right)=\epsilon\left(x_{0}\right)
$$

thus $\omega\left(x^{\prime}\right) \leqslant \epsilon\left(x^{\prime}\right) \leqslant \epsilon\left(x_{0}\right)-1 \leqslant \omega\left(x_{0}\right)$. If $\omega\left(x^{\prime}\right)=\omega\left(x_{0}\right)$, then $\omega\left(x^{\prime}\right)=\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)$, that is $\omega^{\prime}\left(x^{\prime}\right)=1$ by definition II.4, and $\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)-1$, which implies $\omega^{\prime}\left(x_{0}\right) \geqslant 2$ by definition II.4. Hence $\Omega\left(x^{\prime}\right)<\Omega\left(x_{0}\right)$ and this ends the proof of (i).
Proof of (ii). Since Y is a curve and $\epsilon(y)=\epsilon\left(x_{0}\right)=\operatorname{ord}_{\eta\left(x_{0}\right)}\left(H\left(x_{0}\right)^{-1} g^{p}\right), \operatorname{div}\left(H\left(x_{0}\right)^{-1} g^{p}\right)$ has at most two components. We consider two cases:

Case 1: $\operatorname{div}\left(H\left(x_{0}\right)^{-1} g^{p}\right)$ has two reduced components, say is equal to $\operatorname{div}\left(u_{1} u_{2}\right)$. Since $\epsilon\left(x_{0}\right)=$ $\epsilon(y)$, we have $\operatorname{ord}_{\eta\left(x_{0}\right)}\left(H\left(x_{0}\right)^{-1} g^{p}\right)=\epsilon\left(x_{0}\right)=\operatorname{ord}_{\eta(y)}\left(H\left(x_{0}\right)^{-1} g^{p}\right)$, so that $Y=V\left(X, u_{1}, u_{2}\right)$. There is no point x^{\prime} on the strict transform of $\operatorname{div}\left(u_{1} u_{2}\right)$, so by (i), $\Omega\left(x^{\prime}\right)<\Omega\left(x_{0}\right)$.

Case 2: $\operatorname{div}\left(H\left(x_{0}\right)^{-1} g^{p}\right)$ has only one reduced component. After possibly changing indices, we have $\left(H\left(x_{0}\right)^{-1} g^{p}\right)=\left(u_{1}^{\epsilon\left(x_{0}\right)}\right)$ and $Y=V\left(X, u_{1}, u_{2}\right)$. By (i), the only point x^{\prime} to be considered has r.s.p. $\left(\frac{X}{u_{2}}, \frac{u_{1}}{u_{2}}, u_{2}, u_{3}\right)$ in R^{\prime}. The polyhedron $\Delta\left(h^{\prime} ; \frac{u_{1}}{u_{2}}, u_{2}, u_{3} ; \frac{X}{u_{2}}\right)$ is still minimal: if $v^{\prime}=\left(x_{1}, x_{2}, x_{3}\right)$ is a vertex of $\Delta\left(h^{\prime} ; \frac{u_{1}}{u_{2}}, u_{2}, u_{3} ; \frac{X}{u_{2}}\right)$, then $v=\left(x_{1}, x_{2}-x_{1}+1, x_{3}\right)$ is a vertex of $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ and $\operatorname{in}_{v^{\prime}}\left(h^{\prime}\right)=U_{2}^{-p} \operatorname{in}_{v}(h) \in k\left(x^{\prime}\right)\left[\frac{X}{U_{2}}, \frac{U_{1}}{U_{2}}, U_{2}, U_{3}\right]$ is not solvable (note that $k\left(x^{\prime}\right)=k\left(x_{0}\right)$). We have $\Psi \in k\left(x_{0}\right)\left[U_{1}, U_{2}\right]$ in (3), so $H\left(x^{\prime}\right)^{-1} f^{\prime} \equiv \Psi\left(\frac{u_{1}}{u_{2}}, 1\right) \bmod \left(u_{2}, u_{3}\right)$.

If $\Psi \in k\left(x_{0}\right)\left[U_{1}\right]$, we have $\Omega\left(x_{0}\right)=\left(\epsilon\left(x_{0}\right), 1\right)$ by II.4. On the other hand,

$$
\omega\left(x^{\prime}\right) \leqslant \operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)=\epsilon\left(x_{0}\right)=\omega\left(x_{0}\right)
$$

Therefore $\Omega\left(x^{\prime}\right)<\Omega\left(x_{0}\right)$ if inequality is strict. If equality holds, we have by II. $4 \Omega\left(x^{\prime}\right)=$ $\left(\omega\left(x^{\prime}\right), 1\right)=\Omega\left(x_{0}\right)$. Note that $\operatorname{cl}_{\epsilon\left(x_{0}\right)} J\left(f, E, x_{0}\right)=k\left(x_{0}\right) \cdot U_{1}^{\epsilon\left(x_{0}\right)}$, so $\operatorname{IDir}\left(\mathrm{cl}_{\epsilon\left(x_{0}\right)} J\left(f, E, x_{0}\right)\right)=\left(U_{1}\right)$ as required.

If $\Psi \notin k\left(x_{0}\right)\left[U_{1}\right]$, we have

$$
\omega\left(x^{\prime}\right) \leqslant \operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} \Psi\left(\frac{u_{1}}{u_{2}}, 1\right) \leqslant \epsilon\left(x_{0}\right)-1<\epsilon\left(x_{0}\right)=\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)
$$

We have $\Omega\left(x^{\prime}\right)<\Omega\left(x_{0}\right)$ unless $\omega\left(x^{\prime}\right)=\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)-1$. In the latter case, we get $\omega\left(x^{\prime}\right)=\epsilon\left(x^{\prime}\right)$, so $\Omega\left(x^{\prime}\right)=\left(\omega\left(x^{\prime}\right), 2\right)$ by II.4. Since $\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)-1$, we have $\omega^{\prime}\left(x_{0}\right) \geqslant 2$ and this proves that
$\Omega\left(x^{\prime}\right) \leqslant \Omega\left(x_{0}\right)$. Equality holds only if $\Psi=a U_{1}^{\omega\left(x_{0}\right)} U_{2}+b U_{1}^{1+\omega\left(x_{0}\right)}$ for some $0 \neq a \in k\left(x_{0}\right), b \in k\left(x_{0}\right)$. Then $\operatorname{cl}_{\omega\left(x_{0}\right)} J(f, E)=k\left(x_{0}\right) \cdot U_{1}^{\omega\left(x_{0}\right)}$ and $\operatorname{IDir}\left(\operatorname{cl}_{\epsilon\left(x_{0}\right)} J\left(f, E, x_{0}\right)\right)=\left(U_{1}\right)$ as required. This ends the proof of (ii).
Proof of (iii). After possibly changing indices, we have $\left(H\left(x_{0}\right)^{-1} g^{p}\right)=\left(u_{1}^{a} u_{2}^{b}\right), a+b=\epsilon\left(x_{0}\right)$, $a, b>0$. Then, by (i), the only point x^{\prime} we have to consider has coordinates $\left(\frac{X}{u_{3}}, \frac{u_{1}}{u_{3}}, \frac{u_{2}}{u_{3}}, u_{3}\right)$. The polyhedron $\Delta\left(h^{\prime} ; \frac{u_{1}}{u_{3}}, \frac{u_{2}}{u_{3}}, u_{3} ; \frac{X}{u_{3}}\right)$ is still minimal: if $v^{\prime}=\left(x_{1}, x_{2}, x_{3}\right)$ is a vertex of $\Delta\left(h^{\prime} ; \frac{u_{1}}{u_{3}}, \frac{u_{2}}{u_{3}}, u_{3} ; \frac{X}{u_{3}}\right)$ then $v=\left(x_{1}, x_{2}, x_{3}-x_{1}-x_{2}+1\right)$ is a vertex of $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ and $\operatorname{in}_{v^{\prime}}\left(h^{\prime}\right)=U_{3}^{-p} \mathrm{in}_{v}(h) \in$ $k\left(x_{0}\right)\left[\frac{X}{U_{3}}, \frac{U_{1}}{U_{3}}, \frac{U_{2}}{U_{3}}, U_{3}\right]$ is not solvable (note that $k\left(x^{\prime}\right)=k\left(x_{0}\right)$). We have $\Psi \in k\left(x_{0}\right)\left[U_{1}, U_{2}, U_{3}\right]$ in (3) and $H\left(x^{\prime}\right)^{-1} f^{\prime} \equiv \Psi\left(\frac{u_{1}}{u_{3}}, \frac{u_{2}}{u_{3}}, 1\right) \bmod \left(u_{3}\right)$.

If $\Psi \in k\left(x_{0}\right)\left[U_{1}, U_{2}\right]$, we have $\Omega\left(x_{0}\right)=\left(\epsilon\left(x_{0}\right), 1\right)$ and x_{0} belongs to case II.4(i). Then $\omega\left(x^{\prime}\right) \leqslant$ $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)=\epsilon\left(x_{0}\right)$ and we conclude that $\Omega\left(x^{\prime}\right) \leqslant\left(\epsilon\left(x_{0}\right), 1\right)$ as in (ii).

If $\Psi \notin k\left(x_{0}\right)\left[U_{1}, U_{2}\right]$, then

$$
\omega\left(x^{\prime}\right) \leqslant \operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(\Psi\left(\frac{u_{1}}{u_{3}}, \frac{u_{2}}{u_{3}}, 1\right)\right) \leqslant \epsilon\left(x_{0}\right)-1<\epsilon\left(x_{0}\right)=\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right),
$$

and we get $\Omega\left(x^{\prime}\right) \leqslant \Omega\left(x_{0}\right)$ with equality only if $\omega^{\prime}\left(x_{0}\right)=2$ as in the proof of (ii). This concludes the proof of (iii).
Proof of (iv). After possibly changing indices, we have $\left(H\left(x_{0}\right)^{-1} g^{p}\right)=\left(u_{1}^{\epsilon\left(x_{0}\right)}\right)$. By (i), we only have to look at points x^{\prime} on the strict transform of $\operatorname{div}\left(u_{1}\right)$. At such a point, $\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)=\left(\left(\frac{u_{1}}{t}\right)^{\epsilon\left(x_{0}\right)}\right)$, where $t=0$ is an equation of the exceptional divisor. So $\omega\left(x^{\prime}\right) \leqslant \operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)=\epsilon\left(x_{0}\right)$.

If $\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)$, we get $\omega\left(x^{\prime}\right) \leqslant \omega\left(x_{0}\right)$. Equality holds if and only if we have $\omega\left(x^{\prime}\right)=$ $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)$, i.e. $\omega^{\prime}\left(x^{\prime}\right)=1$. This ends the proof of (iv) in the case $\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)$.

Let us now prove (iv) when $\epsilon\left(x_{0}\right)=1+\omega\left(x_{0}\right)$. In this case, we have $\omega^{\prime}\left(x_{0}\right) \geqslant 2, \operatorname{ord}_{\eta\left(x_{0}\right)} g^{p}=$ $\operatorname{ord}_{\eta\left(x_{0}\right)} f$, and $\operatorname{div}\left(u_{1}\right) \subseteq E \subseteq \operatorname{div}\left(u_{1} u_{2}\right)$. First we note that, since $\left(g^{p}\right)=\left(u_{1}^{a(1)} u_{2}^{a(2)} u_{1}^{\epsilon\left(x_{0}\right)}\right)$, where $H\left(x_{0}\right)=u_{1}^{a(1)} u_{2}^{a(2)}\left(a(2)=0\right.$ if $\left.E=\operatorname{div}\left(u_{1}\right)\right)$, we have

$$
\begin{equation*}
a(1)+\epsilon\left(x_{0}\right) \equiv 0 \bmod p, a(2) \equiv 0 \bmod p . \tag{5}
\end{equation*}
$$

In particular, $\delta\left(x_{0}\right)=\frac{a(1)+a(2)+\epsilon\left(x_{0}\right)}{p} \in \mathbb{N}$.
We have $\Psi \in k\left(x_{0}\right)\left[U_{1}, U_{2}, U_{3}\right], \Psi \notin k\left(x_{0}\right)\left[U_{1}, \ldots, U_{j}\right]$ in (3) (j is the number of components of $E)$. We may suppose that U_{3} effectively appears in the expansion of Ψ and expand

$$
\begin{equation*}
\Psi=\sum_{0 \leqslant i \leqslant i_{0}} U_{1}^{\epsilon\left(x_{0}\right)-i} F_{i}\left(U_{2}, U_{3}\right) \tag{6}
\end{equation*}
$$

where $i_{0}:=\sup \left\{i \mid F_{i} \neq 0\right\}$. We have $i_{0}>0$ because $\Psi \notin k\left(x_{0}\right)\left[U_{1}, \ldots, U_{j}\right]$.
Let us look at a point x^{\prime} above x_{0} on the strict transform of $\operatorname{div}\left(u_{1}\right)$, in the chart centered at the point of parameters $\frac{X}{u_{2}}=X^{\prime}, \frac{u_{1}}{u_{2}}=u_{1}^{\prime}, u_{2}=u_{2}^{\prime}, \frac{u_{3}}{u_{2}}=u_{3}^{\prime}$. Then we have

$$
g^{\prime p-1}=\gamma^{p-1} u_{1}^{\prime \frac{p-1}{p}\left(a(1)+\epsilon\left(x_{0}\right)\right)} u_{2}^{\prime(p-1)\left(\delta\left(x_{0}\right)-1\right)}
$$

in (1) above, and

$$
\begin{equation*}
f^{\prime}=u_{1}^{\prime a(1)} u_{2}^{\prime p\left(\delta\left(x_{0}\right)-1\right)}\left(\sum_{0 \leqslant i \leqslant i_{0}} u_{1}^{\prime \epsilon\left(x_{0}\right)-i} F_{i}\left(1, u_{3}^{\prime}\right)+u_{2}^{\prime} \Sigma\right) \tag{7}
\end{equation*}
$$

in (3) above, where $\Sigma \in S^{\prime}$.
When u_{3}^{\prime} is invertible at x^{\prime}, we have to choose an irreducible homogeneous polynomial $P \in$ $k\left(x_{0}\right)\left[U_{2}, U_{3}\right]$, unitary in U_{3} and such that, if we denote $v^{\prime}:=P\left(1, u_{3}^{\prime}\right),\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right)$ is a r.s.p. of R^{\prime}. Then, there is no reason for $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime} ; X^{\prime}\right)$ to be minimal: we have to make a translation $Z^{\prime}:=X^{\prime}-\theta^{\prime}$ to minimize this polyhedron.

To begin with, we compute the vertex w of $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime} ; Z^{\prime}\right)$ with $\left(x_{1}, x_{2}\right)$ minimal for the inverse lexicographical ordering.

As we change X^{\prime} into $Z^{\prime}=X^{\prime}-\theta^{\prime}, f^{\prime}$ is changed into

$$
\phi=f^{\prime}+\theta^{\prime p}-\theta^{\prime} g^{\prime p-1} .
$$

Since the Newton polyhedron of θ^{\prime} is a subset of $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime} ; X^{\prime}\right)$, every $\left(y_{1}, y_{2}, y_{3}\right)$ in this Newton polyhedron verifies (for the inverse lexicographical ordering)

$$
\left(y_{1}, y_{2}\right) \geqslant\left(\frac{a(1)+\epsilon\left(x_{0}\right)-i_{0}}{p}, \delta\left(x_{0}\right)-1\right),
$$

so every $\left(z_{1}, z_{2}, z_{3}\right)$ in the Newton polyhedron of $\theta^{\prime} g^{\prime p-1}$ verifies

$$
\left(z_{1}, z_{2}\right) \geqslant\left(\frac{a(1)+\epsilon\left(x_{0}\right)-i_{0}}{p}+\frac{p-1}{p}\left(a(1)+\epsilon\left(x_{0}\right)\right), p\left(\delta\left(x_{0}\right)-1\right)\right) .
$$

In particular, all terms of order $p\left(\delta\left(x_{0}\right)-1\right)$ in u_{2}^{\prime} in $\theta^{\prime} g^{\prime p-1}$ have order in u_{1}^{\prime} strictly bigger than $a(1)+\epsilon\left(x_{0}\right)-i_{0}$, so the vertex w will be given by

$$
\begin{equation*}
u_{1}^{\prime a(1)} u_{2}^{\prime p\left(\delta\left(x_{0}\right)-1\right)} u_{1}^{\prime \epsilon\left(x_{0}\right)-i_{0}} F_{i_{0}}\left(1, u_{3}^{\prime}\right)+\Theta^{\prime p}, \tag{8}
\end{equation*}
$$

where $\Theta^{\prime} \in S^{\prime}$ is zero or has order exactly $\left(a(1)+\epsilon\left(x_{0}\right)-i_{0}\right) / p$ in u_{1}^{\prime} and $\delta\left(x_{0}\right)-1$ in u_{2}^{\prime}. We now consider two cases:

Case 1: $i_{0} \not \equiv 0 \bmod p$. Then (5) implies that Θ^{\prime} is necessarily zero. So in this case

$$
f^{\prime}=u_{1}^{\prime a(1)+\epsilon\left(x_{0}\right)-i_{0}} u_{2}^{\prime p\left(\delta\left(x_{0}\right)-1\right)}\left(F_{i_{0}}\left(1, u_{3}^{\prime}\right)+\Sigma^{\prime}\right),
$$

for some $\Sigma^{\prime} \in\left(u_{1}^{\prime}, u_{2}^{\prime}\right)$. Case 1 splits into two subcases:
Case 1a: $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} F_{i_{0}}\left(1, u_{3}^{\prime}\right)<i_{0}$. Then $\epsilon\left(x^{\prime}\right) \leqslant \epsilon\left(x_{0}\right)-1=\omega\left(x_{0}\right)$ and we deduce that $\Omega\left(x^{\prime}\right) \leqslant$ $\Omega\left(x_{0}\right)$. Equality holds only if $\omega^{\prime}\left(x_{0}\right)=2, \epsilon\left(x^{\prime}\right)=\omega\left(x^{\prime}\right)=\epsilon\left(x_{0}\right)-1$, and ord ${ }_{\eta^{\prime}\left(x^{\prime}\right)} F_{i_{0}}\left(1, u_{3}^{\prime}\right)=i_{0}-1$. Then $i_{0}-1=: p \alpha, \alpha \in \mathbb{N}$, since $\epsilon\left(x^{\prime}\right)=\omega\left(x^{\prime}\right)$ and we have $F_{i_{0}}\left(U_{2}, U_{3}\right)=P\left(U_{2}, U_{3}\right)^{p \alpha} Q\left(U_{2}, U_{3}\right)$, with $\operatorname{deg} Q=1$. Now,

$$
\begin{equation*}
\epsilon\left(x^{\prime}\right) \leqslant \alpha+\epsilon\left(x_{0}\right)-i_{0}=\epsilon\left(x_{0}\right)-1-\left(i_{0}-1\right)\left(1-\frac{1}{\operatorname{deg} P}\right) . \tag{9}
\end{equation*}
$$

If $\alpha=0$, we have $\mathrm{cl}_{\omega\left(x_{0}\right)} J(f, E)=k\left(x_{0}\right) \cdot U_{1}^{\omega\left(x_{0}\right)}$ as required. If $\alpha>0$, we have $\operatorname{deg} P=1$ by (9), since $\epsilon\left(x^{\prime}\right)=\epsilon\left(x_{0}\right)-1$ and $i_{0}-1>0$. We now choose ($\left.X, u_{1}, u_{2}, v:=P\left(u_{2}, u_{3}\right)\right)$ as r.s.p. of R, where X has been chosen in such a way that the polyhedron $\Delta\left(h ; u_{1}, u_{2}, v ; X\right)$ is minimal. The point x^{\prime} has parameters ($X^{\prime}=\frac{X}{u_{2}}, u_{1}^{\prime}=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}=u_{2}, v^{\prime}=\frac{v}{u_{2}}$) and $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime} ; X^{\prime}\right)$ is thus minimal (see the argument at the beginning of the proof of II.5.4.2(iii)). Since $\epsilon\left(x^{\prime}\right)=\epsilon\left(x_{0}\right)-1$, we get that in (6), Ψ is of the form $\Psi=\Psi_{1}\left(U_{1}, V\right)+U_{1}^{\epsilon\left(x_{0}\right)-i_{0}} U_{2} \Psi_{2}\left(U_{1}, V\right)$ with $\Psi_{2}(0, V) \neq 0$. On the other hand, $\omega\left(x^{\prime}\right)=\epsilon\left(x^{\prime}\right)$, thus $\Psi_{2} \in k\left(x_{0}\right)\left[U_{1}, V^{p}\right]$. Therefore, $E=\operatorname{div}\left(u_{1}\right)$ and

$$
\operatorname{VDir}\left(\mathrm{cl}_{\omega\left(x_{0}\right)} J(f, E)\right)=<U_{1}, V>,
$$

which proves the statement about the directrix.
Case 1b: $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} F_{i_{0}}\left(1, u_{3}^{\prime}\right)=i_{0}$. Then $\left(F_{i_{0}}\left(1, u_{3}^{\prime}\right)\right)=\left(v^{\prime i_{0}}\right), x^{\prime}$ is rational over x_{0} and we have $\epsilon\left(x^{\prime}\right) \leqslant \epsilon\left(x_{0}\right)$. If inequality is strict, we get $\Omega\left(x^{\prime}\right) \leqslant \Omega\left(x_{0}\right)$ as in case 1 a , and the equality case (only if $\left.\omega^{\prime}\left(x_{0}\right)=2\right)$ is dealt with similarly.

If $\epsilon\left(x^{\prime}\right)=\epsilon\left(x_{0}\right)$, with notations as in case 1a, Ψ is of the form $\Psi=U_{1}^{\epsilon\left(x_{0}\right)-i_{0}} \Psi_{1}\left(U_{1}, V\right)$ with $\Psi_{1}(0, V) \neq 0$. Thus

$$
\begin{equation*}
\epsilon\left(x_{0}\right)-1 \leqslant \omega\left(x^{\prime}\right) \leqslant \operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} \frac{\partial f^{\prime}}{\partial v^{\prime}}\right)=\epsilon\left(x_{0}\right)-1=\omega\left(x_{0}\right) \tag{10}
\end{equation*}
$$

and $\operatorname{VDir}\left(\operatorname{cl}_{\omega\left(x_{0}\right)} J(f, E)\right)=<U_{1}, V>$. We claim that $\omega^{\prime}\left(x^{\prime}\right)=2$, which concludes the proof of case 1 b .

To begin with, the vertex $w=\left(\frac{a(1)+\epsilon\left(x_{0}\right)-i_{0}}{p}, \delta\left(x_{0}\right)-1, i_{0} / p\right)$ of $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime} ; X^{\prime}\right)$ is not solvable, since it has two coordinates which are not integers. Furthermore, if we change our r.s.p. $\left(u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right)$ of S^{\prime} to a new r.s.p. adapted to E^{\prime}, the latter is of the form $\left(u_{1}^{\prime \prime}:=\gamma_{1}^{\prime} u_{1}^{\prime}, u_{2}^{\prime \prime}:=\right.$ $\left.\gamma_{2}^{\prime} u_{2}^{\prime}, v^{\prime \prime}:=\gamma^{\prime} v^{\prime}+\varphi\right)$, where $\varphi \in\left(u_{1}^{\prime \prime}, u_{2}^{\prime \prime}\right) S^{\prime}$ and $\gamma_{1}^{\prime} \gamma_{2}^{\prime} \gamma^{\prime} \in S^{\prime}$ is a unit. Then w still appears as a vertex in $\Delta\left(h^{\prime} ; u_{1}^{\prime \prime}, u_{2}^{\prime \prime}, v^{\prime \prime} ; X^{\prime}\right)$ as well as in the minimal polyhedron $\Delta\left(h^{\prime} ; u_{1}^{\prime \prime}, u_{2}^{\prime \prime}, v^{\prime \prime} ; Z^{\prime \prime}\right)$ after performing a translation $Z^{\prime \prime}=X^{\prime}-\theta^{\prime \prime}$. The computation in (10) remains valid with derivatives w.r.t. $\left(u_{1}^{\prime \prime}, u_{2}^{\prime \prime}, v^{\prime \prime}\right)$, so x^{\prime} is in case II.4(v), $\omega^{\prime}\left(x^{\prime}\right)=2$ and the claim is proved.

Case 2: $i_{0} \equiv 0 \bmod p$. Then the series Θ^{\prime} in (8) may be nonzero. Since $i_{0}>0$, we have $i_{0} \geqslant p \geqslant 2$. Note that the terms $H\left(x_{0}\right) u_{1}^{\epsilon\left(x_{0}\right)-i_{0}} F_{i_{0}}\left(u_{2}, u_{3}\right)$ correspond to a face of the minimal polyhedron $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$, so that in particular $U_{2}^{a(2)} F_{i_{0}}\left(U_{2}, U_{3}\right)$ is not a $p^{t h}$-power. We apply I.5.3.2(iii), (iv) to $U_{2}^{a(2)} F_{i_{0}}\left(U_{2}, U_{3}\right)$. Then, in (8), we get

$$
u_{1}^{\prime a(1)} u_{2}^{\prime p\left(\delta\left(x_{0}\right)-1\right)} u_{1}^{\prime \epsilon\left(x_{0}\right)-i_{0}} F_{i_{0}}\left(1, u_{3}^{\prime}\right)+\Theta^{\prime p} \equiv{u_{1}^{\prime a(1)}}_{u_{2}^{\prime}}{ }^{p\left(\delta\left(x_{0}\right)-1\right)} u_{1}^{\prime \epsilon\left(x_{0}\right)-i_{0}}\left(\gamma^{\prime} v^{\prime e}+u_{2}^{\prime} \varphi\right),
$$

with γ^{\prime} invertible, $\varphi \in S^{\prime}$ and $e \leqslant i_{0}$. Then

$$
\begin{equation*}
\epsilon\left(x^{\prime}\right) \leqslant e+\epsilon\left(x_{0}\right)-i_{0} \leqslant \epsilon\left(x_{0}\right) \tag{11}
\end{equation*}
$$

If some inequality is strict (for instance if $e<i_{0}$), we get $\Omega\left(x^{\prime}\right) \leqslant \Omega\left(x_{0}\right)$ as in case 1a, and the equality case (only if $\omega^{\prime}\left(x_{0}\right)=2$) is dealt with similarly.

So from now on, we assume that all inequalities in (11) are equalities. In particular, $\epsilon\left(x_{0}\right)=$ $\epsilon\left(x^{\prime}\right)$. By I.5.3.2(iv), we have $v^{\prime}=\lambda+u_{3}^{\prime} ; \lambda \in k\left(x_{0}\right), U_{2} \frac{\partial F_{i_{0}}}{\partial U_{2}}, \frac{\partial F_{i_{0}}}{\partial \lambda_{i}}, 4 \leqslant i \leqslant s$ are multiples of $\left(\lambda U_{2}+U_{3}\right)^{i_{0}} ; \frac{\partial F_{i_{0}}}{\partial U_{3}}$ is a multiple of $\left(\lambda U_{2}+U_{3}\right)^{i_{0}-1}$ (remember that p divides $\left.a(2)\right)$. Since $i_{0} \equiv 0 \bmod p$, we must have $\frac{\partial F_{i_{0}}}{\partial U_{3}}=0$; since $F_{i_{0}}$ is not a $p^{t h}$-power, one of the other derivatives is nonzero. So

$$
\operatorname{Vect}_{k\left(x_{0}\right)}<U_{2} \frac{\partial F_{i_{0}}}{\partial U_{2}},\left\{\frac{\partial F_{i_{0}}}{\partial \lambda_{i}}\right\}_{4 \leqslant i \leqslant s}>=k\left(x_{0}\right) \cdot\left(\lambda U_{2}+U_{3}\right)^{i_{0}}
$$

Therefore, there exists $0 \neq \mu_{i_{0}} \in k\left(x_{0}\right), \Theta \in k\left(x_{0}\right)\left[U_{2}, U_{3}\right]_{i_{0}}$ such that

$$
F_{i_{0}}\left(U_{2}, U_{3}\right)=\mu_{i_{0}}\left(\lambda U_{2}+U_{3}\right)^{i_{0}}+\Theta^{p}
$$

Since $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal, the monomial $\mu_{i_{0}} u_{1}^{a(1)+\epsilon\left(x_{0}\right)-i_{0}} u_{2}^{a(2)} u_{3}^{i_{0}}$ must define a non solvable vertex w of the initial face of $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$, hence $\mu_{i_{0}} \notin k\left(x_{0}\right)^{p}$.

We now choose $\left(X, u_{1}, u_{2}, v=u_{3}+\lambda u_{2}\right)$ as r.s.p. of R, where X has been chosen in such a way that the polyhedron $\Delta\left(h ; u_{1}, u_{2}, v_{3} ; X\right)$ is minimal. The point x^{\prime} has parameters $\left(X^{\prime}=\frac{X}{u_{2}}, u_{1}^{\prime}=\right.$
$\left.\frac{u_{1}}{u_{2}}, u_{2}^{\prime}=u_{2}, v^{\prime}=\frac{v}{u_{2}}\right)$ and $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime} ; X^{\prime}\right)$ is thus minimal (see the argument at the beginning of the proof of II.5.4.2 (iii)). Since $\epsilon\left(x^{\prime}\right)=\epsilon\left(x_{0}\right)$, we have $F_{i}\left(1, u_{3}^{\prime}\right)=\mu_{i}{v^{\prime}}^{i}, \mu_{i} \in k\left(x_{0}\right)$ in (7) for each $i, 0 \leqslant i \leqslant i_{0}$, so $F_{i}\left(U_{2}, U_{3}\right)=\mu_{i} V^{i}$. This means that the initial face of $\Delta\left(h ; u_{1}, u_{2}, v ; X\right)$ is a segment with ends

$$
\begin{equation*}
a:=\left(\frac{a(1)+\epsilon\left(x_{0}\right)-i_{0}}{p}, \frac{a(2)}{p}, \frac{i_{0}}{p}\right), b:=\left(\frac{a(1)+\epsilon\left(x_{0}\right)}{p}, \frac{a(2)}{p}, 0\right) \tag{12}
\end{equation*}
$$

where a corresponds to the vertex w and b to the monomial $X g^{p-1}$. By (7), this also implies that the face of $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime} ; X^{\prime}\right)$ with minimal second coordinate is the segment with ends

$$
\begin{equation*}
a^{\prime}:=\left(\frac{a(1)+\epsilon\left(x_{0}\right)-i_{0}}{p}, \delta\left(x_{0}\right)-1, \frac{i_{0}}{p}\right), b^{\prime}:=\left(\frac{a(1)+\epsilon\left(x_{0}\right)}{p}, \delta\left(x_{0}\right)-1,0\right) . \tag{13}
\end{equation*}
$$

Suppose we changed X into

$$
Z:=X-\mu u_{1}^{\frac{a(1)+\epsilon\left(x_{0}\right)-i_{0}}{p}+i} u_{2}^{\frac{a(2)}{p}} v^{\frac{i_{0}}{p}-i}
$$

where $i \in\{0,1\}$ is such that $i_{0} / p-i \not \equiv 0 \bmod p$ and $\mu_{\frac{i_{0}}{p}-i}-\mu \bar{\gamma}^{p-1} \neq 0$, where $\bar{\gamma}$ is the image of γ in $k\left(x_{0}\right)$. We would have $\Delta\left(h ; u_{1}, u_{2}, v ; Z\right)=\Delta\left(h ; u_{1}, u_{2}, v ; X\right)$ by construction, and the coefficient of the monomial $u_{1}^{a(1)+\epsilon\left(x_{0}\right)-\frac{i_{0}}{p}+i} u_{2}^{a(2)} v^{\frac{i_{0}}{p}-i}$ in

$$
f+\left(u_{1}^{\frac{a(1)+\epsilon\left(x_{0}\right)-i_{0}}{p}+i} u_{2}^{\frac{a(2)}{p}} v^{\frac{i_{0}}{p}-i}\right)^{p}-u_{1}^{\frac{a(1)+\epsilon\left(x_{0}\right)-i_{0}}{p}+i} u_{2}^{\frac{a(2)}{p}} v^{\frac{i_{0}}{p}-i} g^{p-1}
$$

would be nonzero. This proves that $\operatorname{VDir}\left(\operatorname{cl}_{\omega\left(x_{0}\right)} J(f, E)\right)=<U_{1}, V>$ and, comparing with (7), that $\omega\left(x^{\prime}\right)=\epsilon\left(x_{0}\right)-1=\omega\left(x_{0}\right)$. If $\omega^{\prime}\left(x_{0}\right)=3$ or if $\omega^{\prime}\left(x^{\prime}\right)=2$, we are done.

Fortunately, we cannot have at the same time $\omega^{\prime}\left(x_{0}\right)=2$ and $\omega^{\prime}\left(x^{\prime}\right)=3$. The idea is that, since x^{\prime} is rational over x_{0}, if there are translations over X^{\prime} which drop the order of $J\left(f^{\prime}, E^{\prime}\right)$ by one, there are corresponding translations on X which also drop the order of $J(f, E)$ by one.

More precisely, suppose we have $\Omega\left(x^{\prime}\right)=\left(\omega\left(x_{0}\right), 3\right)$. By definition, there exists a r.s.p. $\left(w_{1}^{\prime}, w_{2}^{\prime}, w^{\prime}\right)$ of S^{\prime}, with $w_{1}^{\prime}=\gamma_{1}^{\prime} u_{1}^{\prime}, w_{2}^{\prime}=\gamma_{2}^{\prime} u_{2}^{\prime}, w_{3}^{\prime}=\nu_{1}^{\prime} u_{1}^{\prime}+\nu_{2}^{\prime} u_{2}^{\prime}+\nu_{3}^{\prime} v, \gamma_{i}^{\prime}, \nu_{j}^{\prime} \in S^{\prime}, \gamma_{1}^{\prime} \gamma_{2}^{\prime} \nu_{3}^{\prime}$ invertible, and $\theta^{\prime} \in \widehat{S^{\prime}}$ such that the following holds: denoting $Z^{\prime}:=X^{\prime}-\theta^{\prime}$, the polyhedron $\Delta\left(h^{\prime} ; w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime} ; Z^{\prime}\right)$ is minimal and the order of $J\left(f^{\prime}+\theta^{\prime p}-\theta^{\prime} g^{\prime p-1}, E^{\prime}\right)$ is $\epsilon\left(x^{\prime}\right)$. Now, by (7), the initial form Φ^{\prime} of f^{\prime}, written in the coordinates $\left(W_{1}^{\prime}, W_{2}^{\prime}, W_{3}^{\prime}\right)$ is of the form

$$
\Phi^{\prime}=\left({\overline{\gamma_{1}^{\prime}}}^{-1} W_{1}^{\prime}\right)^{a(1)}\left({\overline{\gamma_{2}^{\prime}}}^{-1} W_{2}^{\prime}\right)^{p\left(\delta\left(x_{0}\right)-1\right)}\left(\sum_{0 \leqslant i \leqslant i_{0}}\left({\overline{\gamma_{1}^{\prime}}}^{-1} W_{1}^{\prime}\right)^{\epsilon\left(x_{0}\right)-i} \mu_{i}{\overline{\nu_{3}^{\prime}}}^{-i}\left(W_{3}^{\prime}-\frac{\overline{\nu_{1}^{\prime}}}{\overline{\gamma_{1}^{\prime}}} W_{1}^{\prime}\right)^{i}+W_{2}^{\prime} \Sigma\right)
$$

where $\overline{\gamma_{i}^{\prime}}, \overline{\nu_{j}^{\prime}}$ are the images of $\gamma_{i}^{\prime}, \nu_{j}^{\prime}$ in $k\left(x^{\prime}\right)=k\left(x_{0}\right)$. Since the Newton polyhedron of θ^{\prime} is a subset of $\Delta\left(h^{\prime} ; w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime} ; X^{\prime}\right)$, the segment (13), whose ends are not solvable, is still a face of $\Delta\left(h^{\prime} ; w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime} ; Z^{\prime}\right): b^{\prime}$ is not solvable by definition, and we have

$$
\operatorname{in}_{a^{\prime}} f^{\prime}=\mu_{i_{0}}\left(\left({\overline{\gamma_{1}^{\prime}}}^{-1} W_{1}^{\prime}\right)^{\frac{a(1)+\epsilon\left(x_{0}\right)-i_{0}}{p}}\left({\overline{\gamma_{2}^{\prime}}}^{-1} W_{2}^{\prime}\right)^{\delta\left(x_{0}\right)-1}\left(\nu_{3}^{\prime} W_{3}^{\prime}\right)^{\frac{i_{0}}{p}}\right)^{p}
$$

with $\mu_{i_{0}} \notin k\left(x^{\prime}\right)^{p}$, so a^{\prime} is not solvable either.

Since $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} J\left(f^{\prime}+\theta^{\prime p}-g^{\prime p-1} \theta^{\prime}, E^{\prime}\right)=\epsilon\left(x^{\prime}\right), \Phi^{\prime}$ must be of the form

$$
\begin{equation*}
\Phi^{\prime}=W_{1}^{\prime a(1)} W_{2}^{\prime p\left(\delta\left(x_{0}\right)-1\right)}\left(\sum_{0 \leqslant j \leqslant \frac{i_{0}}{p}} \mu_{j p}^{\prime} W_{1}^{\prime \epsilon\left(x_{0}\right)-j p} W_{3}^{\prime j p}+W_{2}^{\prime} \Sigma\left(W_{1}^{\prime}, W_{2}^{\prime}, W_{3}^{\prime p}\right)\right)+\Sigma_{1}^{p}, \tag{14}
\end{equation*}
$$

for some $\mu_{j p}^{\prime} \in k\left(x^{\prime}\right)$ and $\Sigma_{1} \in k\left(x^{\prime}\right)\left[W_{1}^{\prime}, W_{2}^{\prime}, W_{3}^{\prime}\right]$. We pick $\gamma_{i}, \nu_{j}, \in S$ such that $\gamma_{i} \equiv \gamma_{i}^{\prime} \bmod m_{S^{\prime}}$, $\nu_{j} \equiv \mu_{j}^{\prime} \bmod m_{S^{\prime}}$ and let $w_{i}:=\gamma_{i} u_{i}, i=1,2$ and $w_{3}:=\nu_{1} u_{1}+\nu_{2} u_{2}^{2}+\nu_{3} v$. By construction, $\Delta\left(h ; w_{1}, w_{2}, w_{3} ; X\right)$ and $\Delta\left(h ; u_{1}, u_{2}, v ; X\right)$ have the same initial face: the segment (12). The vertex a is given by the monomial $\mu_{i_{0}} \lambda_{1}^{-\left(a(1)+\epsilon\left(x_{0}\right)-i_{0}\right)} \nu_{3}^{-i_{0}} w_{1}^{a(1)+\epsilon\left(x_{0}\right)-i_{0}} w_{2}^{a(2)} w_{3}^{i_{0}}$ and is not solvable, since $\mu_{i_{0}} \notin k\left(x_{0}\right)^{p}$. The vertex b is not solvable either by definition. Consider, if necessary, a change of coordinates $Z:=X-\theta$ making $\Delta\left(h ; w_{1}, w_{2}, w_{3} ; Z\right)$ minimal. Then f becomes $f_{Z}:=f+\theta^{p}-\theta g^{p-1}$ in these new coordinates. Since neither a nor b is solvable, we have $\theta^{p} \in H\left(x_{0}\right) m_{S}^{\epsilon\left(x_{0}\right)+1}$, so that $f \equiv f_{Z} \bmod H\left(x_{0}\right) m_{S}^{\epsilon\left(x_{0}\right)+1}$. Comparing now (7) and (14), the initial form Φ of f (or f_{Z}), written in the variables $\left(W_{1}, W_{2}, W_{3}\right)$ must be

$$
\Phi=W_{1}^{a(1)} W_{2}^{a(2)}\left(\sum_{0 \leqslant j \leqslant \frac{i_{0}}{p}} \mu_{j p}^{\prime} W_{1}{ }^{\epsilon\left(x_{0}\right)-j p} W_{3}^{j p}\right) .
$$

This shows that $\operatorname{ord}_{\eta\left(x_{0}\right)} J\left(f_{Z}, E\right)=\epsilon\left(x_{0}\right)$. Since $\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)-1$ and $\Delta\left(h ; w_{1}, w_{2}, w_{3} ; Z\right)$ is minimal, we have $\omega^{\prime}\left(x_{0}\right)=3$, thus $\Omega\left(x^{\prime}\right)=\Omega\left(x_{0}\right)$.

This concludes the study of the first chart of the blowing up X_{1}. The last point x^{\prime} to look at is the point with coordinates ($\left.\frac{X}{u_{3}}=: X^{\prime}, \frac{u_{1}}{u_{3}}=: u_{1}^{\prime}, \frac{u_{2}}{u_{3}}=: u_{2}^{\prime}, u_{3}=: u_{3}^{\prime}\right)$.

If $E=\operatorname{div}\left(u_{1}\right)$, then u_{2} and u_{3} have symmetric role and by changing indices, we come back to the origin of the chart studied above. Only note that if there was a point $x^{\prime \prime}$ with $\Omega\left(x^{\prime \prime}\right)=\Omega\left(x_{0}\right)$ and $\omega^{\prime}\left(x_{0}\right)=3$ in the first chart, (11) implies that $\epsilon\left(x^{\prime}\right) \leqslant \epsilon\left(x_{0}\right)-i_{0} \leqslant \epsilon\left(x_{0}\right)-p$, so that the uniqueness statement in (iv) is established.

If $\operatorname{div}\left(u_{1} u_{2}\right) \subseteq E$, then, with notations as in (7), we have $h^{\prime}=X^{\prime p}-X^{\prime} g^{\prime p-1}+f^{\prime}$ with

$$
\begin{gathered}
g^{\prime p-1}=\gamma^{p-1} u_{1}^{\prime \frac{p-1}{p}\left(a(1)+\epsilon\left(x_{0}\right)\right)} u_{2}^{\prime \frac{p-1}{p} a(2)} u_{3}^{\prime(p-1)\left(\delta\left(x_{0}\right)-1\right)}, \\
f^{\prime}=u_{1}^{\prime a(1)} u_{2}^{\prime a(2)} u_{3}^{\prime p\left(\delta\left(x_{0}\right)-1\right)}\left(\sum_{i} u_{1}^{\prime \epsilon\left(x_{0}\right)-i} F_{i}\left(u_{2}^{\prime}, 1\right)+u_{3}^{\prime} \Sigma\right),
\end{gathered}
$$

where $\Sigma \in S^{\prime}$. We are at the origin of a chart, so that by the argument in the proof of II.5.4.2(iii), $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal.

If, for all $i, F_{i} \in k\left(x_{0}\right)\left[U_{2}\right]$, we have $\Omega\left(x_{0}\right)=\left(\epsilon\left(x_{0}\right), 1\right)$. Since $E^{\prime}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime}\right)$ in this case, we have $\omega\left(x^{\prime}\right)=\epsilon\left(x^{\prime}\right) \leqslant \operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)=\epsilon\left(x_{0}\right)=\omega\left(x_{0}\right)$. We thus have $\Omega\left(x^{\prime}\right)<\Omega\left(x_{0}\right)$ if $\epsilon\left(x^{\prime}\right)<\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)$, and $\Omega\left(x^{\prime}\right)=\Omega\left(x_{0}\right)$ if $\epsilon\left(x^{\prime}\right)=\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)$.

If, for some $i, F_{i} \notin k\left(x_{0}\right)\left[U_{2}\right]$, then $\epsilon\left(x^{\prime}\right) \leqslant \epsilon\left(x_{0}\right)-1$. We have $\Omega\left(x^{\prime}\right) \leqslant \Omega\left(x_{0}\right)$, with equality only if $\Omega\left(x_{0}\right)=\left(\epsilon\left(x_{0}\right)-1,2\right)$ and Ψ is of the form $\Psi=\Psi_{1}\left(U_{1}, U_{2}\right)+U_{3} \Psi_{2}\left(U_{1}, U_{2}\right)$. Therefore $E=\operatorname{div}\left(u_{1} u_{2}\right)$ and $<U_{1}>\subseteq \operatorname{VDir}\left(\mathrm{cl}_{\omega\left(x_{0}\right)} J(f, E)\right) \subseteq<U_{1}, U_{2}>$ as required. This concludes the proof.
II.5.4.3 Lemma. If $v_{\delta}(g)>1, \epsilon\left(x_{0}\right)=\epsilon(y)$ (first kind of permissible blowing-up) and $x^{\prime} \in \Sigma_{p}\left(X_{1}\right)$, we have $\Omega\left(x^{\prime}\right) \leqslant \Omega\left(x_{0}\right)$. If equality holds, then:
(i) $\eta^{\prime}\left(x^{\prime}\right) \in \operatorname{PDir}\left(\mathrm{cl}_{\epsilon\left(x_{0}\right)} J\left(f, E, x_{0}\right)\right)$ if $\omega\left(x_{0}\right)=\nu\left(x_{0}\right)=\epsilon\left(x_{0}\right)$,
(ii) $\eta^{\prime}\left(x^{\prime}\right) \in \operatorname{PDir}\left(\mathrm{cl}_{\omega\left(x_{0}\right)} J(f, E)\right)$ if $\omega\left(x_{0}\right)=\nu\left(x_{0}\right)=\epsilon\left(x_{0}\right)-1$.

Proof. Since $v_{\delta}(g)>1$, we have $\omega^{\prime}\left(x_{0}\right)=2$ and x_{0} belongs to case II.4(ii). We keep notations as in the beginning of the proof of II.5.4. By II.5.2, we have: either $\operatorname{ord}_{\eta(y)}\left(H\left(x_{0}\right)^{-1} g^{p}\right)>$ $\operatorname{ord}_{\eta(y)}\left(H\left(x_{0}\right)^{-1} f\right)=\epsilon(y)$, and then $g^{\prime p} \in t H\left(x^{\prime}\right) S^{\prime}$ in II.5.4(1), so

$$
\begin{equation*}
\theta^{\prime} t^{(p-1)\left(\left(\sum_{i \in I_{E}} \beta_{i}\right)-1\right)} \tilde{g}^{p-1} \in t H\left(x^{\prime}\right) S^{\prime} \tag{1}
\end{equation*}
$$

in II.5.4 (4); or $\operatorname{ord}_{\eta(y)}\left(H\left(x_{0}\right)^{-1} g^{p}\right)=\operatorname{ord}_{\eta(y)}\left(H\left(x_{0}\right)^{-1} f\right)=\epsilon(y)$, in which case some u_{r} with $1 \leqslant$ $r \leqslant e, r \notin I_{E}$, divides $H\left(x_{0}\right)^{-1} g^{p}$, $\operatorname{since}_{\operatorname{ord}}^{\eta\left(x_{0}\right)}\left(H\left(x_{0}\right)^{-1} g^{p}\right)>\operatorname{ord}_{\eta\left(x_{0}\right)}\left(H\left(x_{0}\right)^{-1} f\right)=\epsilon\left(x_{0}\right)=\epsilon(y)$. In this case, we have

$$
\theta^{\prime} t^{(p-1)\left(\left(\sum_{i \in I_{E}} \beta_{i}\right)-1\right)} \tilde{g}^{p-1} \in u_{r} H\left(x^{\prime}\right) S^{\prime}
$$

in II.5.4(4). In both cases, II.5.4(3) and II.5.4.1 together imply that

$$
\begin{equation*}
\phi \equiv H\left(x^{\prime}\right) \Psi\left(\left\{u_{i}^{\prime}\right\}_{i \in I}\right)+\theta^{\prime p} \bmod H\left(x^{\prime}\right)\left(t, u_{r}\right) S^{\prime} \tag{2}
\end{equation*}
$$

in II.5.4(4). By II.5.4(2) and II.5.4.1, we have

$$
\begin{equation*}
H\left(x^{\prime}\right)^{-1} \mathcal{J}\left(\phi, E^{\prime}\right) \equiv t^{-\epsilon(y)} H\left(x_{0}\right)^{-1} \mathcal{J}\left(H\left(x_{0}\right) \Psi\left(\left\{u_{i}\right\}_{i \in I}\right), E, Y\right) \bmod H\left(x^{\prime}\right)\left(t, u_{r}\right) S^{\prime} \tag{3}
\end{equation*}
$$

if $Y=\left\{x_{0}\right\}($ then $\{r\}=\varnothing)$, or if $\left(Y\right.$ is a curve and $\left.\operatorname{div}\left(u_{r}\right) \subseteq E\right)$. If (Y is a curve and $\left.\operatorname{div}\left(u_{r}\right) \nsubseteq E\right)$, then

$$
H\left(x^{\prime}\right)^{-1} \mathcal{J}\left(\phi, E^{\prime}\right) \equiv\left(t^{-\epsilon(y)} H\left(x_{0}\right)^{-1} \mathcal{J}\left(H\left(x_{0}\right) \Psi\left(\left\{u_{i}\right\}_{i \in I}\right), E, Y\right), H\left(x^{\prime}\right)^{-1} \frac{\partial \phi}{\partial u_{r}}\right) \bmod H\left(x^{\prime}\right)\left(t, u_{r}\right) S^{\prime}
$$

We consider two case:
Case 1: $\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)$. As the blowing up is of the first kind, we have by II.5.2(i)

$$
\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)=\epsilon(y)=\operatorname{ord}_{\eta\left(x_{0}\right)}\left(H\left(x_{0}\right)^{-1} \mathcal{J}\left(H\left(x_{0}\right) \Psi\left(\left\{u_{i}\right\}_{i \in I}\right), E, Y\right)\right)
$$

so $\omega\left(x^{\prime}\right) \leqslant \omega\left(x_{0}\right)$ by (3) or $\left(3^{\prime}\right)$. Furthermore,

$$
\mathrm{cl}_{\epsilon\left(x_{0}\right)}\left(H\left(x_{0}\right)^{-1} \mathcal{J}\left(H\left(x_{0}\right) \Psi\left(\left\{u_{i}\right\}_{i \in I}\right), E, Y\right)=\mathrm{cl}_{\epsilon\left(x_{0}\right)} J\left(f, E, x_{0}\right)=\mathrm{cl}_{\epsilon\left(x_{0}\right)} J(f, E, Y)\right.
$$

so if $\eta^{\prime}\left(x^{\prime}\right) \notin \operatorname{PDir}\left(\operatorname{cl}_{\epsilon\left(x_{0}\right)} J\left(f, E, x_{0}\right)\right)$, we have $\omega\left(x^{\prime}\right)<\omega\left(x_{0}\right)$ as required.
Finally, if we change $\left(t,\left\{u_{i}^{\prime}\right\}_{i \in I_{i}},\left\{u_{i}\right\}_{i \in I^{c}}\right)$ to new variables in S^{\prime}, then minimize the corresponding polyhedron by a translation over $Z^{\prime}, Z^{\prime \prime}:=Z^{\prime}-\theta^{\prime \prime}$, (1) (resp. (1')) implies that

$$
\begin{gathered}
\operatorname{ord}_{t}\left(\theta^{\prime \prime} g^{\prime p-1}\right)>\operatorname{ord}_{t} H\left(x^{\prime}\right) \\
\left(\operatorname{resp} . \operatorname{ord}_{u_{r}}\left(\theta^{\prime \prime} g^{\prime p-1}\right)>\operatorname{ord}_{u_{r}} H\left(x^{\prime}\right)\right)
\end{gathered}
$$

This translation therefore only adds some $p^{t h}$-power to $H\left(x^{\prime}\right) \Psi\left(\left\{u_{i}^{\prime}\right\}_{i \in I}\right)$ modulo $\left(t H\left(x^{\prime}\right)\right)$ (resp. modulo $\left(u_{r} H\left(x^{\prime}\right)\right)$) in (2). So if $\omega\left(x^{\prime}\right)=\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)$, we have

$$
\omega\left(x^{\prime}\right)=\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} \mathcal{J}\left(H\left(x^{\prime}\right) \Psi\left(\left\{u_{i}^{\prime}\right\}_{i \in I}\right), E^{\prime}\right)\right.
$$

independently of coordinate changes at x^{\prime}, so $\omega^{\prime}\left(x^{\prime}\right) \leqslant 2$ and $\Omega\left(x^{\prime}\right) \leqslant \Omega\left(x_{0}\right)$ as required.

Case 2: $\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)-1$. As the blowing up is of the first kind, we have by II.5.2(ii)

$$
\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)-1=\epsilon(y)-1=\operatorname{ord}_{\eta\left(x_{0}\right)}\left(H\left(x_{0}\right)^{-1} \mathcal{J}\left(H\left(x_{0}\right) \Psi\left(\left\{u_{i}\right\}_{i \in I}\right), E, Y\right)\right)-1 .
$$

It is easily seen that

$$
I(Y) J(f, E) \subseteq J(f, E, Y), I(Y) H\left(x_{0}\right)^{-1} \mathcal{J}\left(H\left(x_{0}\right) \Psi, E\right) \subseteq H\left(x_{0}\right)^{-1} \mathcal{J}\left(H\left(x_{0}\right) \Psi, E, Y\right),
$$

so with notations as in II.5.4(2), we have

$$
t^{-\omega\left(x_{0}\right)} J(f, E)=t^{-\epsilon\left(x_{0}\right)} I(Y) J(f, E) \subseteq J\left(f^{\prime}, E^{\prime}\right)
$$

Now (3) or (3') combined with II.5.4(3) imply that

$$
\omega\left(x^{\prime}\right) \leqslant \operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(t^{-\omega\left(x_{0}\right)} H\left(x_{0}\right)^{-1} \mathcal{J}\left(H\left(x_{0}\right) \Psi\left(\left\{u_{i}\right\}_{i \in I}\right), E\right)\right) \leqslant \omega\left(x_{0}\right) .
$$

If $\eta^{\prime}\left(x^{\prime}\right) \notin \operatorname{PDir}\left(\mathrm{cl}_{\omega\left(x_{0}\right)} J(f, E)\right)$, we have $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(t^{-\omega\left(x_{0}\right)} H\left(x_{0}\right)^{-1} \mathcal{J}\left(H\left(x_{0}\right) \Psi\left(\left\{u_{i}\right\}_{i \in I}\right), E\right)\right)<\omega\left(x_{0}\right)$, so $\omega\left(x^{\prime}\right)<\omega\left(x_{0}\right)$. If $\eta^{\prime}\left(x^{\prime}\right) \in \operatorname{PDir}\left(\mathrm{cl}_{\omega\left(x_{0}\right)} J(f, E)\right)$ and $\omega\left(x^{\prime}\right)=\omega\left(x_{0}\right)$, we conclude by the same argument as in case 1 that $\omega^{\prime}\left(x^{\prime}\right) \leqslant 2$, and therefore $\Omega\left(x^{\prime}\right) \leqslant \Omega\left(x_{0}\right)$.
II.5.4.4 Lemma. If Y is a permissible center of second kind at x_{0}, then $\omega^{\prime}\left(x_{0}\right) \geqslant 2$. There exists a r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of R such that $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal and
(i) $\operatorname{div}\left(u_{1}\right) \subseteq E \subseteq \operatorname{div}\left(u_{1} u_{2}\right)$ and $Y=V\left(X, u_{1}, u_{2}\right)$;
(ii) $\Psi=\mathrm{cl}_{\epsilon\left(x_{0}\right)}\left(H\left(x_{0}\right)^{-1} f\right)=U_{3} \Psi_{3}\left(U_{1}, U_{2}\right)+\Psi_{0}\left(U_{1}, U_{2}\right), \Psi_{3} \neq 0, \Psi_{0}, \Psi_{3} \in k\left(x_{0}\right)\left[U_{1}, U_{2}\right]$.

Furthermore, every $x^{\prime} \in \Sigma_{p}\left(X_{1}\right)$ has $\Omega\left(x^{\prime}\right) \leqslant \Omega\left(x_{0}\right)$. If $\Omega\left(x^{\prime}\right)=\Omega\left(x_{0}\right)$, we have $\omega^{\prime}\left(x_{0}\right)=2$, $\Psi_{3}\left(U_{1}, U_{2}\right)$ is the power of a linear form, and $\eta^{\prime}\left(x^{\prime}\right)=\operatorname{PDir}\left(\Psi_{3}\left(U_{1}, U_{2}\right)\right)$. In particular, x^{\prime} is rational over x_{0}.
Proof. By II.5.1.1, Y is a curve. We choose the r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of \widehat{R} in the definition of permissibility of second kind. Then $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal, $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right), \operatorname{div}\left(u_{1}\right) \subseteq E_{0}$ and $Y=V\left(X, u_{1}, u_{2}\right)$; moreover, we have $H\left(x_{0}\right)^{-1} f \in\left(u_{1}, u_{2}\right)^{\epsilon\left(x_{0}\right)-1}$ and $\operatorname{ord}_{\eta(y)} J(f, E, Y)=$ $\epsilon\left(x_{0}\right)-1$, so that there exists an expression of Ψ as in (ii) (see remarks in the beginning of the proof of theorem II.5.4). Note that, still by definition of permissibility of second kind, we have

$$
\operatorname{ord}_{\eta\left(x_{0}\right)} J(f, E, Y)=\epsilon\left(x_{0}\right)-1<\epsilon\left(x_{0}\right) \leqslant \operatorname{ord}_{x_{0}}\left(H\left(x_{0}\right)^{-1}\left(u_{1}, u_{2}\right) \frac{\partial f}{\partial u_{i}}\right)
$$

for $i=1,2,3$. Therefore $H\left(x_{0}\right)^{-1} \frac{\partial f}{\partial u_{3}} \in J(f, E, Y)$, so $\operatorname{div}\left(u_{3}\right) \nsubseteq E$ and this gives (i) and (ii). Also note that

$$
\begin{equation*}
0<\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)-1<\operatorname{ord}_{x_{0}}\left(H\left(x_{0}\right)^{-1} g^{p}\right), \tag{1}
\end{equation*}
$$

which implies that $\omega^{\prime}\left(x_{0}\right) \geqslant 2$.
Let us prove that $\Omega\left(x^{\prime}\right) \leqslant \Omega\left(x_{0}\right)$. If x^{\prime} is in the chart of origin $\left(\frac{X}{u_{1}}=X^{\prime}, u_{1}=u_{1}^{\prime}, \frac{u_{2}}{u_{1}}=u_{2}^{\prime}, u_{3}=\right.$ u_{3}^{\prime}), then

$$
\begin{equation*}
h^{\prime}=X^{\prime p}-X^{\prime} g^{\prime p-1}+u_{1}^{\prime a(1)+a(2)+\omega\left(x_{0}\right)-p} u_{2}^{\prime a(2)}\left(\Psi_{3}\left(1, u_{2}^{\prime}\right) u_{3}^{\prime}+u_{1}^{\prime} \phi_{1}^{\prime}+u_{3}^{\prime 2} \phi_{2}^{\prime}\right) \tag{2}
\end{equation*}
$$

with $\phi_{1}^{\prime}, \phi_{2}^{\prime} \in S^{\prime}$, where $H\left(x_{0}\right)=u_{1}^{a(1)} u_{2}^{a(2)}$. Since $\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)=u_{1}^{\prime-\epsilon(y)}\left(H\left(x_{0}\right)^{-1} g^{p}\right)$ in II.5.4(1) and $\epsilon(y)=\epsilon\left(x_{0}\right)-1$, (1) implies that u_{1}^{\prime} divides $H\left(x^{\prime}\right)^{-1} g^{\prime p}$. When performing a translation
$Z^{\prime}=X^{\prime}-\theta^{\prime}$ in order to get $\Delta\left(h^{\prime} ; u_{1}^{\prime}, v^{\prime}, u_{3}^{\prime}\right)$ minimal (where $\left(u_{1}^{\prime}, v^{\prime}, u_{3}^{\prime}\right)$ is a r.s.p. of S^{\prime}), we thus get an expression $h^{\prime}=Z^{\prime p}-g^{\prime p-1} Z^{\prime}+f_{Z^{\prime}}^{\prime}$ with

$$
f_{Z^{\prime}}^{\prime} \equiv u_{1}^{\prime a(1)+a(2)+\omega\left(x_{0}\right)-p} u_{2}^{\prime a(2)} \Psi_{3}\left(1, u_{2}^{\prime}\right) u_{3}^{\prime}+\phi^{\prime p} \bmod H\left(x^{\prime}\right)\left(u_{1}^{\prime}, u_{3}^{\prime 2}\right)
$$

for some $\phi^{\prime} \in \widehat{S^{\prime}}$ by (2). So if $\operatorname{ord}_{v^{\prime}} \Psi_{3}\left(1, u_{2}^{\prime}\right)<\epsilon\left(x_{0}\right)-1=\operatorname{deg} \Psi_{3}$, then $\nu\left(x^{\prime}\right)<\epsilon\left(x_{0}\right)-1=\omega\left(x_{0}\right)$ and $\omega\left(x^{\prime}\right)<\omega\left(x_{0}\right)$. So we are interested in the case where $\operatorname{ord}_{v^{\prime}} \Psi_{3}\left(1, u_{2}^{\prime}\right)=\epsilon\left(x_{0}\right)-1$, that is, $\Psi_{3}=\lambda\left(U_{2}+\mu U_{1}\right)^{\epsilon\left(x_{0}\right)-1}, 0 \neq \lambda \in k\left(x_{0}\right), \mu \in k\left(x_{0}\right)$, and R^{\prime} has r.s.p. $\left(X^{\prime}, u_{1}^{\prime}, v^{\prime}:=u_{2}^{\prime}+\mu, u_{3}^{\prime}\right)$. By the previous comments,

$$
\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} \frac{\partial f_{Z^{\prime}}^{\prime}}{\partial u_{3}^{\prime}}\right) \leqslant \operatorname{ord}_{v^{\prime}} \Psi_{3}\left(1, u_{2}^{\prime}\right)=\epsilon\left(x_{0}\right)-1 .
$$

This proves that $\nu\left(x^{\prime}\right) \leqslant \epsilon\left(x_{0}\right)-1=\omega\left(x_{0}\right)$. If equality holds, note that

$$
\Psi^{\prime}:=\operatorname{cl}_{\epsilon x_{0}}\left(H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime}\right)=\lambda V^{\prime \epsilon\left(x_{0}\right)-1} U_{3}^{\prime}+U_{1}^{\prime} F^{\prime}\left(U_{1}^{\prime}, V^{\prime}, U_{3}^{\prime}\right)
$$

for some $F^{\prime} \in k\left(x^{\prime}\right)\left[U_{1}^{\prime}, V^{\prime}, U_{3}^{\prime}\right]_{\epsilon\left(x_{0}\right)-1}$. We then deduce that $\omega^{\prime}\left(x^{\prime}\right) \leqslant 2$, therefore $\Omega\left(x^{\prime}\right) \leqslant \Omega\left(x_{0}\right)$, since $\operatorname{ord}_{u_{1}^{\prime}}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)>0$ and $\Psi^{\prime}\left(0, V^{\prime}, U_{3}^{\prime}\right) \notin k\left(x^{\prime}\right)\left[V^{\prime p}, U_{3}^{\prime p}\right]$.

We now have to consider the case where R^{\prime} has parameters $\left(\frac{X}{u_{2}}=X^{\prime}, \frac{u_{1}}{u_{2}}=u_{1}^{\prime}, u_{2}=u_{2}^{\prime}, u_{3}=\right.$ $\left.u_{3}^{\prime}\right)$. If $E=\operatorname{div}\left(u_{1} u_{2}\right)$, then u_{1} and u_{2} play symmetric roles and there is nothing to prove. Otherwise,

$$
h^{\prime}=X^{\prime p}-X^{\prime} g^{\prime p-1}+H\left(x^{\prime}\right)\left(\Psi_{3}\left(u_{1}^{\prime}, 1\right) u_{3}^{\prime}+u_{2}^{\prime} \phi_{1}^{\prime}+u_{3}^{\prime 2} \phi_{2}^{\prime}\right)
$$

with $\phi_{1}^{\prime}, \phi_{2}^{\prime} \in S^{\prime}$. As above we see that u_{2}^{\prime} divides $H\left(x^{\prime}\right)^{-1} g^{\prime p}$ and the only case to be considered is when $\Psi_{3}=\lambda U_{1}^{\epsilon\left(x_{0}\right)-1}, 0 \neq \lambda \in k\left(x_{0}\right)$; the proof ends like in the first chart.
II.5.5 Definition. If e : $X^{\prime} \longrightarrow X_{0}$ is a composition of permissible blowing ups, a point $x^{\prime} \in$ $e^{-1}\left(x_{0}\right)$ is said to be near (resp. very near) x_{0} if $x^{\prime} \in \Sigma_{p}\left(X^{\prime}\right)$ (resp. $x^{\prime} \in \Sigma_{p}\left(X^{\prime}\right)$ and $\Omega\left(x^{\prime}\right)=$ $\left.\Omega\left(x_{0}\right)\right)$.
II.5.6 Theorem. Assume $x_{0} \in \Sigma_{p}$ and $\omega^{\prime}\left(x_{0}\right)=3$. Let

$$
X_{0} \leftarrow X_{1} \leftarrow \cdots X_{n-1} \leftarrow X_{n} \leftarrow \cdots
$$

be the quadratic sequence along μ, i.e. X_{i} is the blowing up along the center x_{i-1} of μ in X_{i-1} for $i \geqslant 1$. There exists $n \geqslant 1$ such that x_{n} is not very near x_{0}.

Proof. By II.5.4.2(iii), the only case we have to consider is when $\operatorname{div}\left(H\left(x_{0}\right)^{-1} g^{p}\right)$ has only one component, say $\operatorname{div}\left(u_{1}\right)$. Then, by II.5.4.2(iv), for $i \geqslant 1, x_{i}$ is on the strict transform of $\operatorname{div}\left(u_{1}\right)$ and x_{i} is rational over x_{0} if x_{i} is very near x_{0}. For each $i \geqslant 0$, there is a map $\eta_{i}:\left(X_{i}, x_{i}\right) \rightarrow \operatorname{Spec} S_{i}$, where S_{i} is an iterated quadratic transform of S. Let $\pi_{i}: \operatorname{Spec} S_{i} \rightarrow \operatorname{Spec} S$ be the composed map and $E_{i}:=\pi_{i}^{-1}(E)_{\text {red }}$ be the exceptional divisor. Then E_{i} has at most two components as long as $\Omega\left(x_{i}\right)=\Omega\left(x_{0}\right)$ since $\omega^{\prime}\left(x_{0}\right)=3$. By II.5.4.2(i), E_{i} has exactly two components: an "old" component, the strict transform of $\operatorname{div}\left(u_{1}\right) \subset \operatorname{Spec} S$, and a "new" component which is exceptional for Spec $S_{i} \rightarrow \operatorname{Spec} S_{i-1}$ for $i \geqslant 1$.

So we can choose the r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of R such that $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal and $u_{2}=0$ is the equation of the exceptional divisor of $\operatorname{Spec} S_{i} \rightarrow \operatorname{Spec} S_{i-1}$ for $i \geqslant 1$. So the equation
of X_{i} at x_{i} is $h^{(i)}=u_{2}^{-i p} h=: X^{(i)^{p}}-X^{(i)} g^{(i)^{p-1}}+f^{(i)}$, where $g^{(i)}=u_{2}^{-i} g$. Then $\mu\left(g^{(i)}\right)=$ $\mu(g)-i \mu\left(u_{2}\right)>0$. Since the value group of μ is Archimedean, we have

$$
i<\frac{\mu(g)}{\mu\left(u_{2}\right)}<\infty
$$

II.5.7 Remark. As a consequence of II.5.6, we lower $\Omega\left(x_{0}\right)$ in the ambiguous case $\omega^{\prime}\left(x_{0}\right)=3$ by performing a finite quadratic sequence along the valuation μ.
II. 6 Theorem. If $H\left(x_{0}\right) \neq 1$, the function ω is upper-semicontinuous over $\Sigma_{p}\left(X_{0}\right)$.

Proof. If $g=0$, then $\omega^{\prime}\left(x_{0}\right)=2$ by definition and $\omega\left(x_{0}\right)=\operatorname{ord}_{\eta\left(x_{0}\right)} J(f, E)$. Since $J(f, E)$ is well defined as a sheaf of ideals on $\operatorname{Spec} S$ (II.3.1) and is independent on choices of coordinates, ω is upper-semicontinuous on $\Sigma_{p}\left(X_{0}\right)$. So we have only to deal with the case $g \neq 0$.

By II.4.7, the set $W:=\left\{x \in \Sigma_{p} \mid \omega(x) \geqslant 1\right\}$ is Zariski closed and of dimension at most one. There only remains to prove the following: if $Y \subseteq \Sigma_{p}$ is a curve, y its generic point, and $\omega(y) \geqslant 1$, then $\omega(y) \leqslant \omega\left(x_{0}\right)$. This is implies by the following very useful lemma (where g may or may not be nonzero).
II.6.1 Lemma. Assume that $H\left(x_{0}\right) \neq 1$. Let $Y \subseteq \Sigma_{p}$ be a curve with generic point y such that $\omega(y) \geqslant 1$. For $n \geqslant 0$, let $e_{n}: X_{n+1} \longrightarrow X_{n}$ be the blowing up along some closed point $x_{n} \in X_{n}$, where x_{n} is on the strict transform Y_{n} of Y.

Then, for $n \gg 0, Y_{n}$ is permissible of the first kind at x_{n} and

$$
\omega(y)=\omega\left(y_{n}\right) \leqslant \omega\left(x_{n}\right) \leqslant \omega\left(x_{0}\right),
$$

where y_{n} is the generic point of Y_{n}.
Proof. First note that the condition $H\left(x_{0}\right) \neq 1$ is preserved by blowing up closed points lying on the consecutive strict transforms Y_{n} of Y if $Y \subseteq \Sigma_{p}$ (see proof of II.5.3.1).

For each $n \geqslant 0$, there is a map $\eta_{n}:\left(X_{n}, x_{n}\right) \rightarrow \operatorname{Spec} S_{n}$, where S_{n} is an iterated quadratic transform of S. Let $\pi_{n}: \operatorname{Spec} S_{n} \rightarrow \operatorname{Spec} S$ be the composed map and $E_{n}:=\pi_{n}^{-1}(E)_{\text {red }}$ be the reduced exceptional divisor. Since e_{n} is an isomorphism at y_{n}, we have $Y_{n} \subseteq \Sigma_{p}\left(X_{n}\right) \subseteq E_{n}$ and $\omega\left(y_{n}\right)=\omega(y)$. For n big enough, Y_{n} is regular at x_{n} and $\eta_{n}\left(Y_{n}\right)$ has normal crossing with E_{n}. Also note that x_{n+1} is rational over x_{n}, since Y_{n} is regular at x_{n}, and that E_{n} has at least two irreducible components. By II.5.4, it can be assumed that $n=0$ without loss of generality.

By II.2.1, we can choose a r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of \widehat{R} such that $Y=V\left(X, u_{1}, u_{2}\right)$, with $\operatorname{div}\left(u_{1} u_{3}\right) \subseteq E$ and the polyhedra $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ and $\Delta\left(h ; u_{1}, u_{2} ; X\right)$ are both minimal. We denote $H\left(x_{0}\right)=u_{1}^{a(1)} u_{2}^{a(2)} u_{3}^{a(3)}, g^{p}=\gamma^{p} H\left(x_{0}\right) u_{1}^{b_{1}} u_{2}^{b_{2}} u_{3}^{b_{3}}\left(\right.$ with $a(2)=b_{2}=0$ if $\left.\operatorname{div}\left(u_{2}\right) \nsubseteq E\right)$, and

$$
H\left(x_{0}\right)^{-1} f=\sum_{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{N}^{3}} \lambda_{a_{1} a_{2} a_{3}} u_{1}^{a_{1}} u_{2}^{a_{2}} u_{3}^{a_{3}}, \lambda_{a_{1} a_{2} a_{3}} \in k\left(x_{0}\right) .
$$

We have

$$
\begin{equation*}
\epsilon(y)=\min \left\{b_{1}+b_{2},\left\{a_{1}+a_{2} \mid \exists a_{3} \in \mathbb{N}: \lambda_{a_{1} a_{2} a_{3}} \neq 0\right\}\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\epsilon\left(x_{0}\right)=\min \left\{b_{1}+b_{2}+b_{3},\left\{a_{1}+a_{2}+a_{3} \mid \lambda_{a_{1}, a_{2}, a_{3}} \neq 0\right\}\right\} . \tag{2}
\end{equation*}
$$

The point $x^{\prime}:=x_{1}$ has coordinates $\left(\frac{X}{u_{3}}=: X^{\prime}, \frac{u_{1}}{u_{3}}=: u_{1}^{\prime}, \frac{u_{2}}{u_{3}}=: u_{2}^{\prime}, u_{3}=: u_{3}^{\prime}\right)$. We have $Y_{1}=V\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}\right)$, with $\operatorname{div}\left(u_{1}^{\prime} u_{3}^{\prime}\right) \subseteq E_{1}$. Let $h^{\prime}=X^{\prime p}-X^{\prime} g^{\prime p-1}+f^{\prime}$ be the strict transform
of h. Then $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal, since x^{\prime} is rational over x_{0} (see the argument at the beginning of the proof of II.5.4.2(iii)). By II.3.3, II.5.4.1 and elementary computations, we have

$$
\begin{equation*}
g^{\prime p}=\gamma^{p} H\left(x^{\prime}\right) u_{1}^{\prime b_{1}} u_{2}^{\prime b_{2}} u_{3}^{\prime b_{1}+b_{2}+b_{3}-\epsilon\left(x_{0}\right)} \tag{3}
\end{equation*}
$$

and

$$
H\left(x^{\prime}\right)^{-1} f^{\prime}=\sum_{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{N}^{3}} \lambda_{a_{1} a_{2} a_{3} u_{1}^{\prime a_{1}} u_{2}^{\prime a_{2}} u_{1}^{\prime a_{1}+a_{2}+a_{3}-\epsilon\left(x_{0}\right)} ~}^{\text {. }}
$$

One deduces from (1), (2), (3) and (3') that $\epsilon\left(x_{0}\right) \geqslant \epsilon\left(x^{\prime}\right) \geqslant \epsilon(y)$, and that $\epsilon\left(x_{0}\right)=\epsilon\left(x^{\prime}\right)$ if and only if $\epsilon\left(x_{0}\right)=\epsilon(y)$.

Therefore for $n \gg 0$, we get $\epsilon\left(x_{n}\right)=\epsilon(y)=\epsilon\left(y_{n}\right)$ and this proves that Y_{n} is permissible of the first kind for $n \gg 0$. As before, it can be assumed that $n=0$ without loss of generality. There remains to prove that $\omega\left(x_{n}\right) \geqslant \omega\left(y_{n}\right)$. By theorem II.5.4, it can be assumed that $\Omega\left(x_{n}\right)$ is constant for $n \geqslant 0$. Since $\epsilon\left(x_{n}\right)-1 \leqslant \omega\left(x_{n}\right) \leqslant \epsilon\left(x_{n}\right)$ and $\epsilon\left(y_{n}\right)-1 \leqslant \omega\left(y_{n}\right) \leqslant \epsilon\left(y_{n}\right)$, we must prove that $\omega\left(x_{n}\right)=\epsilon\left(x_{n}\right)-1$ and $\omega\left(y_{n}\right)=\epsilon\left(y_{n}\right)$ cannot hold at the same time for arbitrarily large n.

The latter is certainly true if $E=\operatorname{div}\left(u_{1} u_{2} u_{3}\right)$, since this implies that E_{n} has three components for each $n \geqslant 0$, and therefore $\epsilon\left(x_{n}\right)=\omega\left(x_{n}\right)$. So, we now assume that $E=\operatorname{div}\left(u_{1} u_{3}\right)$, and in particular $b_{2}=0$ if $g \neq 0$. Since $\epsilon\left(x_{0}\right)=\epsilon(y)$, each $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{N}^{3}$ achieving the minimum in (2) has $a_{3}=0$; if $g \neq 0$ and this minimum is achieved by $\left(b_{1}, b_{2}, b_{3}\right)$, then we have $b_{3}=b_{2}=0$.

Assume that $\omega(y)=\epsilon(y)$. Since $\Delta\left(h ; u_{1}, u_{2} ; X\right)$ is minimal, we now have

$$
\begin{equation*}
\operatorname{cl}_{\epsilon\left(x_{0}\right)}\left(H\left(x_{0}\right)^{-1}\left(g^{p}, f\right)\right) \in k\left(x_{0}\right)\left[U_{1}, U_{2}^{p}\right]_{\epsilon\left(x_{0}\right)} \tag{4}
\end{equation*}
$$

This proves that $\omega\left(x_{0}\right)=\epsilon\left(x_{0}\right)$ if $\omega^{\prime}\left(x_{0}\right) \leqslant 2$. Suppose that $\omega^{\prime}\left(x_{0}\right)=3$. Since $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal, we must have $\nu_{\delta}(g)=1$, so $a(1)+\epsilon\left(x_{0}\right)$ and $a(3)$ are divisible by p, and

$$
\Psi=\operatorname{cl}_{\epsilon\left(x_{0}\right)}\left(H\left(x_{0}\right)^{-1} f\right) \notin k\left(x_{0}\right) \cdot U_{1}^{\epsilon\left(x_{0}\right)}
$$

We expand $\Psi=\sum_{0 \leqslant i \leqslant i_{0}} U_{2}^{p i} \Psi_{i}\left(U_{1}\right)$, where $i_{0}>0$ is such that $\Psi_{i_{0}} \neq 0$. Then $\left(\frac{a(1)+\epsilon\left(x_{0}\right)}{p}-\right.$ $\left.i_{0}, i_{0}, \frac{a(3)}{p}\right) \in \mathbb{N}^{3}$ is a vertex of $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ and thus $\Psi_{i_{0}}=\lambda U_{1}^{\epsilon\left(x_{0}\right)-p i_{0}}$ with $\lambda \notin k\left(x_{0}\right)^{p}$ (in particular, $k\left(x_{0}\right)$ is infinite). Let $\mu \in S$ be a unit and let

$$
\theta:=\mu u_{1}^{\frac{a(1)+\epsilon\left(x_{0}\right)}{p}-1} u_{2} u_{3}^{\frac{a(3)}{p}}, Z:=X-\theta
$$

Since $k\left(x_{0}\right)$ is infinite, the monomial $u_{1}^{a(1)+\epsilon\left(x_{0}\right)-1} u_{2} u_{3}^{a(3)}$ appears with nonzero coefficient in $f+\theta^{p}-$ θg^{p-1} for a general value of the residue class $\bar{\mu} \in k\left(x_{0}\right)$. On the other hand, $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; Z\right)=$ $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ so that a fortiori $\Delta\left(h ; u_{1}, u_{2} ; Z\right)=\Delta\left(h ; u_{1}, u_{2} ; X\right)$ and this proves that the polygon $\Delta\left(h ; u_{1}, u_{2} ; Z\right)$ is minimal. Therefore

$$
\omega(y) \leqslant \operatorname{ord}_{\eta(y)} H\left(x_{0}\right)^{-1}\left(\frac{\partial\left(f+\theta^{p}-\theta g^{p-1}\right)}{\partial u_{2}}\right)=\epsilon(y)-1
$$

and this contradicts the assumption $\omega(y)=\epsilon(y)$. The argument extends to the proof of $\omega\left(x_{n}\right) \geqslant$ $\omega\left(y_{n}\right)$ for all $n \geqslant 0$ and the lemma is proved.
II.6.2 Remark (not used elsewhere). Theorem II. 6 can be extended to the following more general situation: S is a k-algebra of finite type and dimension three, every point of Spec S is regular, and k is differentially finite over the perfect field k_{0}. So we have infinitely many closed points in Spec S
and in each subvariety $Y \subseteq X_{0}=\operatorname{Spec}(S[X] /(h))$ of positive dimension. The normal crossings divisor E is chosen as in \mathbf{I} and $H(x), \mathcal{J}(f, E)_{x}$ as well as $\Omega(x)$ are defined pointwise for $x \in X_{0}$, i.e. w.r.t. the local ring S_{x}.

By a well known criterion of Nagata ([Ma] theorem 24.2), theorem II. 6 extends to this more general situation provided we can prove the following: for each integral subscheme $Y \subseteq \Sigma_{p}\left(X_{0}\right)$ of positive dimension, there is a nonempty open subset $U \subseteq Y$ such that $\omega(x)=\omega(y)$ for all $x \in U$, where y is the generic point of Y. We give the proof when Y is a curve, the proof being somewhat simpler when Y is a component of E_{0} (see the argument below when $\omega(y)=0$).

By theorem II.5.4, it can be assumed that $\eta(Y)$ is regular and has normal crossings with E. We pick some closed point $x_{0} \in Y$ as origin such that E_{y} and $E_{x_{0}}$ have the same irreducible components. By II.2.2, there exists a system of coordinates $\left(X, u_{1}, u_{2}, u_{3}\right)$ at x_{0}, with $\operatorname{div}\left(u_{1}\right) \subseteq$ $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$, such that $Y=V\left(X, u_{1}, u_{2}\right), \Delta\left(h ; u_{1}, u_{2} ; X\right)$ minimal and we can read the d_{i} 's on this polyhedron (in particular, $H\left(x_{0}\right)=H(y)=: u_{1}^{a(1)} u_{2}^{a(2)}$ with $a(2)=0$ if $\left.\operatorname{div}\left(u_{2}\right) \nsubseteq E\right)$. Then

$$
h=X^{p}-X\left(\gamma u_{1}^{\frac{a(1)+b_{1}}{p}} u_{2}^{\frac{a(2)+b_{2}}{p}}\right)^{p-1}+u_{1}^{a(1)} u_{2}^{a(2)} \sum_{\left(a_{1}, a_{2}\right) \in F} \mu_{a_{1} a_{2}} u_{1}^{a_{1}} u_{2}^{a_{2}}
$$

where $\gamma \in S_{y}$ is invertible, F is a finite set such that $\left(\frac{a(1)+a_{1}}{p}, \frac{a(2)+a_{2}}{p}\right) \in \Delta\left(h ; u_{1}, u_{2} ; X\right)$ for each $\left(a_{1}, a_{2}\right) \in F$, and $\mu_{a_{1} a_{2}} \in S_{y}$ is invertible. Note that, in particular, we have $\left(a_{1}, a_{2}\right) \in F$ whenever $\left(\frac{a(1)+a_{1}}{p}, \frac{a(2)+a_{2}}{p}\right)$ is a vertex of $\Delta\left(h ; u_{1}, u_{2} ; X\right)$ and $\left(a_{1}, a_{2}\right) \neq\left(b_{1}, b_{2}\right)$. It can also be assumed that $\Omega_{S / k_{0}}^{1}$ is a free module. We fix a basis \mathcal{B} of the dual space $\operatorname{Der}_{k_{0}}(S)$ containing $\frac{\partial}{\partial u_{1}}$ and $\frac{\partial}{\partial u_{2}}$.

Let U be the nonempty open set consisting of those $x \in Y$ where
(i) γ is defined and invertible at x;
(ii) the $\mu_{a_{1} a_{2}}$'s are defined and invertible at x for each $\left(a_{1}, a_{2}\right) \in F$ (so in particular, f is defined at x);
(iii) E_{y} and E_{x} have the same irreducible components (thus $H(x)=H(y)$ by II. 2 and $\mathcal{J}(f, E)_{x}$ as defined in II. 3 is the stalk at x of one and the same ideal $\mathcal{J}(f, E)$).
(iv) for each vertex $w=\left(\frac{a(1)+a_{1}}{p}, \frac{a(2)+a_{2}}{p}\right), w \neq w_{0}:=\left(\frac{a(1)+b_{1}}{p}, \frac{a(2)+b_{2}}{p}\right)$, of $\Delta\left(h ; u_{1}, u_{2} ; X\right)$ with integer coordinates, and for each $D \in \mathcal{B}, D \mu_{a_{1} a_{2}}$ either vanishes at y or is invertible at x.

First note the following consequence of conditions (i) and (ii): if $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is the projection $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{2}\right)$, then $\Delta\left(h ; u_{1}, u_{2}, v ; X\right)=\pi^{-1}\left(\Delta\left(h ; u_{1}, u_{2} ; X\right)\right)$ whenever $\left(X, u_{1}, u_{2}, v\right)$ is an adapted system of coordinates at x.

Also by (ii), a vertex $(w, 0), w=\left(\frac{a(1)+a_{1}}{p}, \frac{a(2)+a_{2}}{p}\right)$, of $\Delta\left(h ; u_{1}, u_{2}, v ; X\right)$ is solvable if only if $w \neq w_{0}, w$ has integer coordinates and the image of $\mu_{a_{1} a_{2}}$ in $k(x)$ is a $p^{t h}$-power. By (iv), if some $D \in \mathcal{B}$ such that $D \mu_{a_{1} a_{2}}$ is invertible at x is a derivation w.r.t. constants at x, then $(w, 0)$ is not solvable. If there is only one $D_{w} \in \mathcal{B}$ such that $D_{w} \mu_{a_{1} a_{2}}$ is invertible at x and D_{w} is a derivation w.r.t. a local parameter at x, then it can be assumed that $D_{w}=\frac{\partial}{\partial v}$. In this case, $(w, 0)$ is solvable. However, after performing a translation $Z:=X-\theta$ is order to resolve $(w, 0), f$ is changed into $f^{\prime}=f+\theta^{p}-\theta g^{p-1}$ and $w_{x}:=\left(w, \frac{1}{p}\right)$ is a vertex of $\Delta\left(h ; u_{1}, u_{2}, v ; Z\right)$ (remember that $\left.w \neq w_{0}\right)$. Hence

$$
\operatorname{ord}_{\eta(x)}\left(D_{w}\left(H(x) \mu_{a_{1} a_{2}} u_{1}^{a_{1}} u_{2}^{a_{2}}\right)\right)=\operatorname{ord}_{\eta(y)}\left(D_{w}\left(H(x) \mu_{a_{1} a_{2}} u_{1}^{a_{1}} u_{2}^{a_{2}}\right)\right)
$$

This proves that there exists $X_{x} \in \widehat{S_{x}}$ such that $\Delta\left(h ; u_{1}, u_{2}, v ; X_{x}\right)$ is minimal, $h=X_{x}^{p}-X_{x} g^{p-1}+f_{x}$ and

$$
\operatorname{ord}_{\eta(x)} J\left(f_{x}, E_{x}\right)=\operatorname{ord}_{\eta(y)} J\left(f, E_{y}\right)
$$

whenever $x \in U$. Therefore $\omega(x) \leqslant \omega(y)$ and the inequality can possibly be strict only if $\omega^{\prime}(x)=3$.

In this last case, one proceeds as in the end of the proof of lemma II.6.1: we must have $\epsilon(x)=\epsilon(y)$ and there exists a coordinate change of the form $Z_{x}:=X_{x}-\theta, \theta:=\mu u^{\frac{a(1)+\epsilon(x)}{p}-1} u_{2}$, $\mu \in S_{x}$ invertible, such that $\Delta\left(h ; u_{1}, u_{2}, v ; X_{x}\right)=\Delta\left(h ; u_{1}, u_{2}, v ; Z_{x}\right)$. We then have

$$
\omega(y) \leqslant \operatorname{ord}_{\eta(y)}\left(H(x)^{-1} \frac{\partial f_{x}}{\partial u_{2}}\right) \leqslant \operatorname{ord}_{\eta(x)}\left(H(x)^{-1} \frac{\partial f_{x}}{\partial u_{2}}\right)=\epsilon(x)-1=\omega(x)
$$

as required.

III Nonpermissible blowing ups.

In certain situations (see chapter 3, section II below), we will perform some blowing ups of a particular type which are not permissible: blowing ups of prime ideals $I \subset S$ such that $V(I)$ has normal crossing with E (blowing up the base $\operatorname{Spec} S$).

If $\pi_{0}: Z \rightarrow \operatorname{Spec} S$ is such a blowing up, and $z^{\prime} \in \pi_{0}^{-1}\left(\eta\left(x_{0}\right)\right)$, there is an induced map

$$
\pi: X^{\prime}:=\operatorname{Spec} R^{\prime} \rightarrow \operatorname{Spec} R
$$

where $S^{\prime}:=\mathcal{O}_{Z, z^{\prime}}, R^{\prime}:=S^{\prime}[X]_{x^{\prime}}$ and $x^{\prime}:=\left(m_{S^{\prime}}, X\right)$. We have a projection $\eta^{\prime}: \operatorname{Spec} R^{\prime} \rightarrow \operatorname{Spec} S^{\prime}$ and a normal crossings divisor $E^{\prime}:=\pi_{0}^{-1}(E)_{\text {red }}$ which satisfies the requirements in \mathbf{I}. Also note that $H\left(x_{0}\right)$ divides $H\left(x^{\prime}\right)$ in S^{\prime}, so $H\left(x^{\prime}\right) \neq 1$ if $H\left(x_{0}\right) \neq 1$.

Then the invariants $\omega\left(x^{\prime}\right)$ and $\Omega\left(x^{\prime}\right)$ are defined as in II. 4 and we point out that II.4.7 remains valid for the germ $\left(X^{\prime}, x^{\prime}\right)$. We also keep on using the terminology of "near" and "very near" in definition II.5.5 whenever $e: X^{\prime} \longrightarrow X_{0}$ is a composition of permissible and nonpermissible blowing ups of the above type and $x^{\prime} \in e^{-1}\left(x_{0}\right)$.

CHAPTER 2: a few easy cases.

In this section, we consider some cases where our main invariant $\Omega(x)=\left(\omega(x), \omega^{\prime}(x)\right), \omega(x) \geqslant 1$ (chapter 1, definition II.4) can be decreased by permissible blowing ups (chapter 1, definition II.5.1). Section I of this chapter contains resolution when $\omega^{\prime}(x)=1$. Section II contains some cases when $\omega^{\prime}(x)=2$, which mainly rely on the directrix and its associated invariant $\tau(x)$ (chapter 1, definition II.4).

From now on, x will denote the center of the valuation μ in some blowing up X of X_{0} obtained by a composition of permissible or of nonpermissible blowing ups of the type described in chapter 1, III. In particular, the local equation of X at x is of the form $h=X^{p}-X g^{p-1}+f, \operatorname{ord}_{x} h=p$ and $H(x), \Omega(x)$ are always defined.

I Resolution of the case $\omega^{\prime}(x)=1$.

By chapter I, II.5.6, the uniformization problem is reduced to the case $\omega^{\prime}(x) \leqslant 2$. As usual, we suppose that the r.s.p. $\left(u_{1}, u_{2}, u_{3}\right)$ of S and $X \in \widehat{R}$ are such that $E=\operatorname{div}\left(u_{1} \cdots u_{j}\right)$ and the polyhedron $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal. If $\omega^{\prime}(x)=1$, then by chapter 1 , definition II. 4 , we have $g \neq 0$ and

$$
\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)=\omega(x)=\epsilon(x)
$$

I. 1 Theorem. Assume that $x \in \Sigma_{p}, \omega^{\prime}(x)=1$ and $\operatorname{div}\left(H(x)^{-1} g^{p}\right)$ has at least two irreducible components. Let

$$
X_{0} \leftarrow X_{1} \leftarrow \cdots \leftarrow X_{n-1} \leftarrow X_{n} \leftarrow \cdots
$$

be the quadratic sequence along μ, i.e. X_{i} is the blowing up along the center x_{i-1} of μ in X_{i-1} for $i \geqslant 1$. There exists $n \geqslant 1$ such that $x_{n} \notin \Sigma_{p}\left(X_{n}\right)$ or $\Omega\left(x_{n}\right)<\Omega(x)$.
Proof. By chapter 1 II.5.4.2(i), at most one point x^{\prime} in X_{1} is very near $x=x_{0}$. If $x^{\prime}=x_{1}$ is very near $x, \operatorname{div}\left(H(x)^{-1} g^{p}\right)$ has exactly two irreducible components, say $H(x)^{-1} g^{p}=\gamma^{p} u_{1}^{a_{1}} u_{2}^{a_{2}}$, $a_{1}, a_{2}>0, \gamma$ invertible, and $x^{\prime} \in X_{1}$ has r.s.p. $\left(X^{\prime}:=\frac{X}{u_{3}}, u_{1}^{\prime}:=\frac{u_{1}}{u_{3}}, u_{2}^{\prime}:=\frac{u_{2}}{u_{3}}, u_{3}^{\prime}:=u_{3}\right)$. We have

$$
H\left(x^{\prime}\right)^{-1} g^{\prime p}=\gamma^{p} u_{1}^{\prime a_{1}} u_{2}^{\prime a_{2}}=u_{3}^{-p} H(x)^{-1} g^{p}
$$

Hence $\mu\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)=\mu\left(H(x)^{-1} g^{p}\right)-p \mu\left(u_{3}\right)$, where μ is the given valuation. As the group of values of μ is Archimedean, we have

$$
n<\frac{\mu(g)}{\mu\left(u_{3}\right)}<\infty
$$

provided $x_{n} \in \Sigma_{p}\left(X_{n}\right)$ and $\Omega\left(x_{n}\right)=\Omega(x)$, which concludes the proof.
I.2. If $\omega^{\prime}(x)=1$, it can furthermore be assumed that $H(x)^{-1} g^{p}=\gamma^{p} u_{1}^{\epsilon(x)}$ by I.1. Let $m(x)$ be the number of irreducible components of E. By chapter 1 II.5.4.2(i), if $e: X^{\prime} \rightarrow X$ is a permissible blowing up of the first kind and $x^{\prime} \in e^{-1}(x)$ is very near x, then x^{\prime} is on the strict transform of $\operatorname{div}\left(u_{1}\right)$. Therefore it can be assumed that $m(x) \geqslant 2$, i.e. $\operatorname{div}\left(u_{1} u_{2}\right) \subseteq E$, after blowing up once along x. Let us denote:
$H(x)=: u_{1}^{a(1)} u_{2}^{a(2)} u_{3}^{a(3)}, a(3)=0$ if $E=\operatorname{div}\left(u_{1} u_{2}\right) ;$
$g^{p}=: \gamma^{p} u_{1}^{p \beta_{1}} u_{2}^{p \beta_{2}} u_{3}^{p \beta_{3}}, \gamma$ invertible, $\beta_{i}=0$ if $\operatorname{div}\left(u_{i}\right) \nsubseteq E_{0} ;$
$H(x)^{-1} f=: \sum_{0 \leqslant i \leqslant \epsilon(x)} u_{1}^{\epsilon(x)-i} \phi_{i}, \phi_{0} \in \widehat{S}$ and $\phi_{i} \in k(x)\left[\left[u_{2}, u_{3}\right]\right], 1 \leqslant i \leqslant \epsilon(x)$.
I.2.1 Definition. With notations as above, let us denote
$A_{j}:=\inf \left\{\frac{\operatorname{ord}_{u_{j}} \phi_{i}}{i}, 1 \leqslant i \leqslant \epsilon(x)\right\}, j=2,3 ;$
$B:=\inf \left\{\frac{\operatorname{ord}\left(u_{2}, u_{3}\right) \phi_{i}}{i}, 1 \leqslant i \leqslant \epsilon(x)\right\}, C:=B-A_{2}-A_{3} \geqslant 0$;
$\beta:=\inf \left\{\frac{\operatorname{ord}_{u_{3}}\left(\phi_{i} / u_{2}^{i A_{2}} \bmod \left(u_{2}\right)\right)}{i}, 1 \leqslant i \leqslant \epsilon(x)\right\}$, where $\operatorname{ord}_{u_{3}}$ denotes the natural valuation of the discrete valuation ring $k(x)\left[\left[u_{3}\right]\right]$;
$\gamma:=1+\lfloor C\rfloor($ resp. $\gamma:=\sup \{1,\lceil\beta\rceil\})$ if $E=\operatorname{div}\left(u_{1} u_{2} u_{3}\right)$ (resp. $E=\operatorname{div}\left(u_{1} u_{2}\right)$).
Obviously, these definitions may depend on $\left(u_{1}, u_{2}, u_{3}\right)$, but not on X, since $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal and A_{j}, B and C (resp. β) are computed by evaluating the minimum of a linear function on some (linear) projection of this polyhedron. When there is a risk of confusion, we will make explicit this dependence on $\left(u_{1}, u_{2}, u_{3}\right)$ by writing $A_{j}\left(u_{1}, u_{2}, u_{3}\right)$, etc... We also use the notation $A_{j}(x), A_{j}\left(x^{\prime}\right)$, etc... when dealing with a blowing up $e: X^{\prime} \rightarrow X$ and $x^{\prime} \in e^{-1}(x)$. In this case, we always compute invariants w.r.t. $E^{\prime}:=\left(e^{-1} E\right)_{\text {red }}$.

Finally note that $B(x) \geqslant 1$, since $\operatorname{ord}_{\eta(x)} f \geqslant \epsilon(x)$, and that all of these invariants are finite (i.e. $\phi_{i} \neq 0$ for some $i, 1 \leqslant i \leqslant \epsilon(x)$) by definition of $H(x)$, since $\omega(x) \geqslant 1$.

I.2.2 Theorem. Assume that the following condition holds:

$\left(^{*}\right) x \in \Sigma_{p}, \omega^{\prime}(x)=1, H(x)^{-1} g^{p}=\gamma^{p} u_{1}^{\epsilon(x)}$ and $m(x) \geqslant 2$.
Let $e: X^{\prime} \rightarrow X$ be the blowing up at x and $x^{\prime} \in X^{\prime}$ be very near x. Then x^{\prime} also satisfies $\left(^{*}\right)$ and there exists a r.s.p. $\left(Z, v_{1}, v_{2}, v_{3}\right)$ at x^{\prime} such that $\Delta\left(h^{\prime} ; v_{1}, v_{2}, v_{3} ; Z\right)$ is minimal and the following holds:
(i) $\gamma\left(v_{1}, v_{2}, v_{3}\right) \leqslant \gamma\left(u_{1}, u_{2}, u_{3}\right)$;
(ii) if $m(x)=m\left(x^{\prime}\right)=2$, then $\beta\left(v_{1}, v_{2}, v_{3}\right) \leqslant \beta\left(u_{1}, u_{2}, u_{3}\right)$;
(iii) if x^{\prime} is in the chart with origin $\left(\frac{X}{u_{2}}, \frac{u_{1}}{u_{2}}, u_{2}, \frac{u_{3}}{u_{2}}\right)$ then $A_{2}\left(v_{1}, v_{2}, v_{3}\right)=B\left(u_{1}, u_{2}, u_{3}\right)-1$ and

$$
\beta\left(v_{1}, v_{2}, v_{3}\right)<1+\left\lfloor\beta\left(u_{1}, u_{2}, u_{3}\right)\right\rfloor .
$$

If moreover x^{\prime} is distinct from the origin of the chart, we also have

$$
\beta\left(v_{1}, v_{2}, v_{3}\right)<1+\left\lfloor C\left(u_{1}, u_{2}, u_{3}\right)\right\rfloor ;
$$

(iv) if (x^{\prime} is not rational over x and $\gamma\left(u_{1}, u_{2}, u_{3}\right) \geqslant 2$), then $\gamma\left(v_{1}, v_{2}, v_{3}\right)<\gamma\left(u_{1}, u_{2}, u_{3}\right)$, except possibly if $\left(m(x)=2\right.$ and $\beta\left(u_{1}, u_{2}, u_{3}\right)=2$) in which case $\beta\left(v_{1}, v_{2}, v_{3}\right)<2$;
(v) if $x^{\prime}=\left(\frac{X}{u_{3}}, \frac{u_{1}}{u_{3}}, \frac{u_{2}}{u_{3}}, u_{3}\right)$ is the point at infinity, then $A_{2}\left(v_{1}, v_{2}, v_{3}\right)=A_{2}\left(u_{1}, u_{2}, u_{3}\right)$ and

$$
\beta\left(v_{1}, v_{2}, v_{3}\right)=\beta\left(u_{1}, u_{2}, u_{3}\right)+A_{2}\left(u_{1} \cdot u_{2}, u_{3}\right)-1 .
$$

If moreover $\left(m(x)=2\right.$ and $\left.\gamma\left(u_{1}, u_{2}, u_{3}\right) \geqslant 2\right)$, then $\gamma\left(v_{1}, v_{2}, v_{3}\right)<\gamma\left(u_{1}, u_{2}, u_{3}\right)$ except possibly if $\left(\beta\left(u_{1}, u_{2}, u_{3}\right)=2\right.$ and $\left.C\left(v_{1}, v_{2}, v_{3}\right)=1\right)$.
Proof. For $1 \leqslant i \leqslant \epsilon(x)$, we let $\Phi_{i}:=\operatorname{in}_{x} \phi_{i} \in k(x)\left[U_{2}, U_{3}\right]$ and write $\Phi_{i}=: U_{2}^{a_{i}(2)} U_{3}^{a_{i}(3)} \Psi_{i}$ with U_{j} not dividing $\Psi_{i}, j=2,3$. By definition, we have $\operatorname{deg} \Phi_{i} \geqslant i B(x)$ and $a_{i}(j) \geqslant i A_{j}(x), j=2,3$. If L is the linear form on \mathbb{R}^{4} given by

$$
L\left(x_{1}, x_{2}, x_{3}, X\right)=\frac{1}{\epsilon(x)+a(1)+\frac{a(2)+a(3)}{B(x)}}\left(x_{1}+\frac{x_{2}+x_{3}}{B(x)}\right)+\frac{X}{p},
$$

then

$$
\begin{equation*}
\operatorname{in}_{L} h=X^{p}-X G^{p-1}+U_{1}^{a(1)} U_{2}^{a(2)} U_{3}^{a(3)} \sum_{\operatorname{ord}_{x} \phi_{i}=i B(x)} U_{1}^{\epsilon(x)-i} \Phi_{i}, \tag{1}
\end{equation*}
$$

where $G:=\mathrm{in}_{x} g$.
By chapter 1, II.5.4.2, any x^{\prime} very near x maps to the strict transform of $\operatorname{div}\left(u_{1}\right)$. We first look at the chart with origin $\left(X^{\prime}:=\frac{X}{u_{2}}, u_{1}^{\prime}:=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}:=u_{2}, u_{3}^{\prime}:=\frac{u_{3}}{u_{2}}\right)$. We have $E^{\prime}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime}\right)$. By chapter 1, II.5.4.1, we have

$$
\left(H\left(x^{\prime}\right)\right)=\left(u_{1}^{\prime a(1)} u_{2}^{\prime p(\delta(x)-1)} u_{3}^{\prime a(3)}\right)
$$

and $\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)=\left(u_{1}^{\prime \epsilon(x)}\right)$.
I.2.2.1 If $x^{\prime}=\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ is the origin of the chart, then the polyhedron $\Delta\left(u_{2}^{-p} h ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ remains minimal. Computing in these coordinates, it is easily seen that

$$
A_{2}\left(x^{\prime}\right)=B(x)-1, \beta\left(x^{\prime}\right) \leqslant C(x)+A_{3}(x) \leqslant \beta(x), \quad C\left(x^{\prime}\right) \leqslant C(x),
$$

and these inequalities give (i),(ii) and (iii) (note that in this case, the hypotheses of (iv) and (v) do not occur).
I.2.2.2 If u_{3}^{\prime} is invertible at x^{\prime}, let $P \in k(x)\left[u_{2}, u_{3}\right]$ be irreducible, homogeneous and unitary in u_{3} such that $\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right)$ is a system of coordinates at x^{\prime}, where $v^{\prime}:=P\left(1, u_{3}^{\prime}\right)$. We have $E^{\prime}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right)$ in this case and take $H\left(x^{\prime}\right):=u_{1}^{\prime a(1)} u_{2}^{\prime p(\delta(x)-1)}$. If $B(x)>1$ and L^{\prime} is the linear form on \mathbb{R}^{4} given by

$$
L\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, X^{\prime}\right)=\frac{1}{\epsilon(x)+a(1)+\frac{p(\delta(x)-1)}{B(x)-1}}\left(x_{1}^{\prime}+\frac{x_{2}^{\prime}}{B(x)-1}\right)+\frac{X^{\prime}}{p},
$$

then
$\operatorname{in}_{L^{\prime}}\left(u_{2}^{-p} h\right)=X^{\prime p}-X^{\prime} G^{\prime p-1}+U_{1}^{\prime a(1)} U_{2}^{\prime p(\delta(x)-1)} u_{3}^{\prime a(3)} \sum_{\operatorname{ord}_{x} \phi_{i}=i B(x)} U_{1}^{\prime \epsilon(x)-i} U_{2}^{\prime i(B(x)-1)} u_{3}^{\prime a_{i}(3)} \Psi_{i}\left(1, u_{3}^{\prime}\right)$,
where $G^{\prime}:=\operatorname{in}_{x^{\prime}} g^{\prime}$.
Let $i_{0}:=\sup \left\{i \mid \operatorname{ord}_{x} \phi_{i}=i B(x)\right\} \geqslant 1$. Any translation $Z^{\prime}:=X^{\prime}-\theta^{\prime}$ we have to make in order to get the polyhedron $\Delta\left(u_{2}^{-p} h ; u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime} ; Z^{\prime}\right)$ minimal will verify $\operatorname{ord}_{u_{2}^{\prime}} \theta^{\prime} \geqslant \delta(x)-1$ and

$$
\operatorname{ord}_{u_{1}^{\prime}}\left(\frac{\theta^{\prime p}}{u_{2}^{\prime p(\delta(x)-1)}} \bmod \left(u_{2}^{\prime}\right)\right) \geqslant a(1)+\epsilon(x)-i_{0} .
$$

The latter inequality is strict if $a(1)+\epsilon(x)-i_{0} \not \equiv 0 \bmod p$. Since $\operatorname{ord}_{u_{1}} g^{p}=a(1)+\epsilon(x) \equiv 0 \bmod p$, $a(1)+\epsilon(x)-i_{0} \not \equiv 0 \bmod p$ is equivalent to $i_{0} \not \equiv 0 \bmod p$. We consider two cases:

Case 1: $i_{0} \not \equiv 0 \bmod p$. The above translation preserves the term

$$
H\left(x^{\prime}\right) u_{3}^{\prime a(3)} u_{1}^{\prime \epsilon(x)-i_{0}} u_{2}^{\prime} i_{0(B(x)-1)}^{\prime} u_{3}^{a_{i_{0}}(3)} \Psi_{i_{0}}\left(1, u_{3}^{\prime}\right)
$$

in $u_{2}^{-p} h$. Therefore $A_{2}\left(x^{\prime}\right)=B(x)-1 \leqslant \beta(x)+C(x)-1$ and

$$
\beta\left(x^{\prime}\right) \leqslant \frac{\operatorname{ord}_{v^{\prime}} \Psi_{i_{0}}\left(1, u_{3}^{\prime}\right)}{i_{0}} \leqslant \frac{C(x)}{\left[k\left(x^{\prime}\right): k(x)\right]} \leqslant \frac{\beta(x)}{\left[k\left(x^{\prime}\right): k(x)\right]} .
$$

This gives (i)(ii)(iii)(iv), the exceptional case in (iv) not occurring in this case.

Case 2: $i_{0} \equiv 0 \bmod p$. The possible translation we have to make on X^{\prime} will at most add to $H\left(x^{\prime}\right) u_{3}^{\prime a(3)} u_{1}^{\prime \epsilon(x)-i_{0}} u_{2}^{\prime i_{0}(B(x)-1)} u_{3}^{\prime a_{i_{0}}(3)} \Psi_{i_{0}}\left(1, u_{3}^{\prime}\right)$ some $p^{t h}$-power of the form

$$
A^{p}:={u_{1}^{\prime}}^{a(1)+\epsilon(x)-i_{0}} u_{2}^{\prime i_{0}(B(x)-1)+p(\delta(x)-1)} A^{\prime}\left(v^{\prime}\right)^{p},
$$

since $i_{0}>0$. Then $U_{2}^{a_{i_{0}}(2)+a(2)} U_{3}^{a_{i_{0}}(3)+a(3)} \Psi_{i_{0}}\left(U_{2}, U_{3}\right)$ is not a $p^{t h}$-power because it induces an edge (or vertex) of $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ by (1), and we apply theorem II.5.3.2(i) of chapter 1. This gives

$$
\begin{equation*}
e:=\operatorname{ord}_{v^{\prime}}\left(u_{3}^{\prime a_{i_{0}}(3)+a(3)} \Psi_{i_{0}}\left(1, u_{3}^{\prime}\right)+A^{\prime}\left(v^{\prime}\right)^{p}\right) \leqslant \frac{\operatorname{deg} \Psi_{i_{0}}}{\left[k\left(x^{\prime}\right): k(x)\right]}+1 \tag{2}
\end{equation*}
$$

which implies $A_{2}\left(x^{\prime}\right)=B(x)-1$ and

$$
\begin{equation*}
i_{0} \beta\left(u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right) \leqslant e \leqslant\left\lfloor\frac{\operatorname{deg} \Psi_{i_{0}}}{\left[k\left(x^{\prime}\right): k(x)\right]}\right\rfloor+1 \tag{3}
\end{equation*}
$$

By definition I.2.1, we get

$$
\begin{equation*}
\operatorname{deg} \Psi_{i_{0}} \leqslant i_{0} C\left(u_{1}, u_{2}, u_{3}\right) \leqslant i_{0} \beta\left(u_{1}, u_{2}, u_{3}\right) \tag{4}
\end{equation*}
$$

First assume that $e \leqslant\left\lfloor\frac{\operatorname{deg} \Psi_{i_{0}}}{\left[k\left(x^{\prime}\right): k(x)\right\rfloor}\right\rfloor$ in (2). Then (3) is strengthened to

$$
i_{0} \beta\left(u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right) \leqslant\left\lfloor\frac{\operatorname{deg} \Psi_{i_{0}}}{\left[k\left(x^{\prime}\right): k(x)\right]}\right\rfloor
$$

and then (4) implies (i), (ii), (iii) and (iv).
Up to the end of the proof of case 2, we assume that $e=\left\lfloor\frac{\operatorname{deg} \Psi_{i_{0}}}{\left[k\left(x^{\prime}\right): k(x)\right]}\right\rfloor+1$ in (2). Then the integer e in (2) is not divisible by p by II.5.3.2(ii) of chapter 1. Therefore

$$
\begin{equation*}
\beta\left(u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right)<1+\left\lfloor\frac{e}{i_{0}}\right\rfloor \leqslant 1+\left\lfloor\frac{\operatorname{deg} \Psi_{i_{0}}}{i_{0}\left[k\left(x^{\prime}\right): k(x)\right]}\right\rfloor . \tag{5}
\end{equation*}
$$

Comparing with (4), this completes the proof of (iii).
If $m(x)=3$, then (i) is a consequence of (iii) and (iv) is a direct consequence of (4) and (5).
If $m(x)=2$, we have $a(3)=0$ and $i_{0} A_{3}(x) \leqslant a_{i_{0}}(3)$. We now apply theorem II.5.3.2(iii) of chapter 1 to $U_{2}^{a_{i_{0}}(2)+a(2)} F\left(U_{2}, U_{3}\right)$, where $F\left(U_{2}, U_{3}\right):=U_{3}^{a_{i_{0}}(3)} \Psi_{i_{0}}\left(U_{2}, U_{3}\right)$. We get (note that $i_{0} \geqslant p \geqslant 2$)

$$
\begin{equation*}
i_{0} \beta\left(u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right) \leqslant e \leqslant \operatorname{deg} \Psi_{i_{0}}+a_{i_{0}}(3) \tag{6}
\end{equation*}
$$

By definition I.2.1, we actually have the following refinement of (4):

$$
\operatorname{deg} \Psi_{i_{0}}+\sum_{j=2}^{3}\left(a_{i_{0}}(j)-i_{0} A_{j}(x)\right)=i_{0} C\left(u_{1}, u_{2}, u_{3}\right) \leqslant i_{0}\left(\beta\left(u_{1}, u_{2}, u_{3}\right)-A_{3}(x)\right)
$$

Comparison with (6) gives $\beta\left(u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right) \leqslant \beta\left(u_{1}, u_{2}, u_{3}\right)$ and this proves (ii), hence (i). We finally prove (iv): by (4) and (5), we have

$$
\beta\left(u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right)<1+\left\lfloor\frac{\operatorname{deg} \Psi_{i_{0}}}{i_{0}\left[k\left(x^{\prime}\right): k(x)\right]}\right\rfloor \leqslant 1+\left\lfloor\frac{\beta\left(u_{1}, u_{2}, u_{3}\right)}{\left[k\left(x^{\prime}\right): k(x)\right]}\right\rfloor \leqslant\left\lceil\beta\left(u_{1}, u_{2}, u_{3}\right)\right\rceil
$$

since $\left[k\left(x^{\prime}\right): k(x)\right] \geqslant 2$ and $\gamma\left(u_{1}, u_{2}, u_{3}\right)=\left\lceil\beta\left(u_{1}, u_{2}, u_{3}\right)\right\rceil \geqslant 2$. If $\beta\left(u_{1}, u_{2}, u_{3}\right)>2$, the right-hand side inequality is strict and (iv) is proved. If $\beta\left(u_{1}, u_{2}, u_{3}\right)=\gamma\left(u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right)=2$, then $\left[k\left(x^{\prime}\right): k(x)\right]=2$ and $\beta\left(u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right) \leqslant 1+\frac{1}{i_{0}}<2$ by (3) (remark: this last case does actually occur when $p=2$).
I.2.2.3 If x^{\prime} is the point with parameters $\left(\frac{X}{u_{3}}, \frac{u_{1}}{u_{3}}, \frac{u_{2}}{u_{3}}, u_{3}\right)$, the polyhedron $\Delta\left(u_{3}^{-p} h ; \frac{u_{1}}{u_{3}}, \frac{u_{2}}{u_{3}}, u_{3} ; \frac{X}{u_{3}}\right)$ is minimal. We have $E^{\prime}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime}\right)$ and it is easily seen that $A_{2}\left(x^{\prime}\right)=A_{2}(x), A_{3}\left(x^{\prime}\right) \stackrel{=}{=}$ $A_{2}(x)+A_{3}(x)+C(x)-1, \beta\left(x^{\prime}\right)=\beta(x)+A_{2}(x)-1, C\left(x^{\prime}\right) \leqslant C(x)$ and

$$
\begin{equation*}
C\left(x^{\prime}\right) \leqslant \beta(x)-A_{3}(x)-C(x) \tag{7}
\end{equation*}
$$

By symmetry, (i) has already been proved if $m(x)=3$. So assume that $m(x)=2$, and let us prove (i) and (v). Since $C\left(x^{\prime}\right) \leqslant C(x)$, (7) implies

$$
C\left(x^{\prime}\right) \leqslant \frac{\beta(x)-A_{3}(x)}{2} \leqslant \frac{\beta(x)}{2}
$$

and this concludes the proof.
We now begin the first two steps in the definition of our secondary invariant $\kappa(x)$. The function κ is a multiform function which is defined recursively, and takes values in the set $\{0,1,2,3,4,5\}$. The statement " $\kappa(x) \leqslant i$ " means "some value of $\kappa(x)$ is not greater than i ". The statement " $\kappa(x)>i$ " is the set-theoretic complement of " $\kappa(x) \leqslant i$ ".
I.2.3 Definition. Let $x \in \Sigma_{p}(X)$. We say that $\kappa(x)=0$ if the following algorithm is finite.

1. Let $X^{\prime} \rightarrow X$ be the blowing up of X along x and x^{\prime} be the center of μ in X^{\prime}. If $x^{\prime} \notin \Sigma_{p}\left(X^{\prime}\right)$, or if $\Omega\left(x^{\prime}\right)<\Omega(x)$ then STOP. Otherwise, go to 2;
2. Replace (X, x) with $\left(X^{\prime}, x^{\prime}\right)$ and go to 1 .

Note that theorem II.5.4 of chapter 1 implies that $\Omega\left(x^{\prime}\right)=\Omega(x)$ whenever the algorithm passes through step 2.
I.2.4 Proposition. With notations and hypotheses of I.2.1 and I.2.2, if $\left(A_{2}(x)<1\right.$ and $\left.\beta(x)<1\right)$, then $\kappa(x)=0$.
Proof. Assume that x^{\prime} in step 1 of the above algorithm is very near x.
By I.2.2(iii), if x^{\prime} is in the chart with origin $\left(\frac{X}{u_{2}}, \frac{u_{1}}{u_{2}}, u_{2}, \frac{u_{3}}{u_{2}}\right)$ then $\beta\left(x^{\prime}\right)<1$ and $A_{2}\left(x^{\prime}\right)=$ $B(x)-1 \leqslant A_{2}(x)+\beta(x)-1<A_{2}(x)$.

By I.2.2(v), if x^{\prime} is the point at infinity $\left(\frac{X}{u_{3}}, \frac{u_{1}}{u_{3}}, \frac{u_{2}}{u_{3}}, u_{3}\right)$, then $A_{2}\left(x^{\prime}\right)=A_{2}(x)$ and $\beta\left(x^{\prime}\right)=$ $\beta(x)+A_{2}(x)-1<\beta(x)$.

In both cases, $\left(A_{2}\left(x^{\prime}\right), \beta\left(x^{\prime}\right)\right)<\left(A_{2}(x), \beta(x)\right)$ for the lexicographical ordering. An induction ends the proof.
I.2.5 Definition. Let $x \in \Sigma_{p}(X)$. We say that $\kappa(x)=1$ if there exist consecutive choices of Y 's in step 1 of the following algorithm for which it is finite.

1. Choose $Y \subseteq \Sigma_{p}(X)$ to be permissible at x. Let $X^{\prime} \rightarrow X$ be the blowing up of X along Y and x^{\prime} be the center of μ in X^{\prime}. If $x^{\prime} \notin \Sigma_{p}\left(X^{\prime}\right)$ or if $\Omega\left(x^{\prime}\right)<\Omega(x)$, then STOP. Otherwise, go to 2;
2. Replace (X, x) with $\left(X^{\prime}, x^{\prime}\right)$ and go to 1.

Note that necessarily $x^{\prime} \in \Sigma_{p}\left(X^{\prime}\right)$ and $\Omega\left(x^{\prime}\right)=\Omega(x)$ whenever the algorithm passes through step 2. Also $\kappa(x)=0$ implies $\kappa(x)=1$, and in particular $\kappa(x)=1$ whenever $\left(\Omega\left(x^{\prime}\right)=\Omega(x)\right.$ and $\kappa\left(x^{\prime}\right)=0$) in step 1 . We also point out that Y will not be uniquely determined in general when step 1 results in a stop. Finally, note that we can achieve a reduction in $\left(\operatorname{ord}_{x} h, \Omega(x)\right)$ for the lexicographical ordering if $\kappa(x)=1$.
I.2.6 Proposition. With notations and hypotheses of I.2.1 and I.2.2, if $(m(x)=2$ and $\beta(x)<1)$, or if ($m(x)=3$ and $C(x)=0$), then $\kappa(x) \leqslant 1$.
Proof. If $A_{2}(x)<1$ and $\beta(x)<1$, then $\kappa(x)=0$ by I.2.4. If $\left(A_{2}(x)<1, A_{3}(x)<1\right.$ and $\left.C(x)=0\right)$, then $\beta(x)=A_{3}(x)<1$, so $\kappa(x)=0$ as well.

Otherwise, it can be assumed that $\operatorname{div}\left(u_{1} u_{2}\right) \subseteq E$ and $A_{2}(x) \geqslant 1$. Let $\mathcal{P}:=\left(X, u_{1}, u_{2}\right) \subset \widehat{R}$. By lemma I.2.6.1 below, $Y:=V\left(X, u_{1}, u_{2}\right)$ is actually a regular curve on X. Since $A_{2}(x) \geqslant 1$, we have

$$
\operatorname{ord}_{\left(u_{1}, u_{2}\right)}\left(g^{p}, f\right) \geqslant a(1)+\epsilon(x)=\operatorname{ord}_{u_{1}} g^{p} \geqslant p,
$$

therefore $\operatorname{ord}_{\mathcal{P}} h=p$ (recall that $\epsilon(x)=\omega(x)>0$), so $Y \subseteq \Sigma_{p}(X)$. Since $A_{2}(x) \geqslant 1$, we have $\epsilon(y)=\epsilon(x)$, where y is the generic point of Y, i.e. Y is permissible of the first kind. This gives our choice of Y in step 1 of the algorithm in I.2.5.

By II.5.4.2 (i), the only point x^{\prime} in the blowing up X^{\prime} of X along Y which may be very near x has parameters $\left(\frac{X}{u_{2}}, \frac{u_{1}}{u_{2}}, u_{2}, u_{3}\right)$. This is the origin of a chart, there is no translation to do, and $m\left(x^{\prime}\right)=m(x)$. We have $A_{2}\left(x^{\prime}\right)=A_{2}(x)-1, A_{3}\left(x^{\prime}\right)=A_{3}(x)$, and $\beta\left(x^{\prime}\right)=\beta(x)$ (resp. $C\left(x^{\prime}\right)=C(x)=0$) if $m(x)=2$ (resp. $m(x)=3$). An induction on $A_{2}(x)+A_{3}(x)$ ends the proof.
I.2.6.1 Lemma. Assume that the r.s.p. $\left(u_{1}, u_{2}, u_{3}\right)$ of S and $\widehat{X} \in \widehat{R}$ are such that
(i) $\operatorname{div}\left(u_{1}\right) \subseteq E_{0} \subseteq E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$, and
(ii) $h \in \mathcal{P}$, where $\mathcal{P}:=\left(\widehat{X}, u_{1}, u_{2}\right) \subset \widehat{R}$.

Then there exists $X \in R$ such that $\mathcal{P}=\left(X, u_{1}, u_{2}\right)$.
Proof. Pick any $Z \in R$ such that $\left(Z, u_{1}, u_{2}, u_{3}\right)$ is a r.s.p. of R. then there exists a series $\varphi\left(u_{3}\right) \in k(x)\left[\left[u_{3}\right]\right]$ such that $\left(Z-\varphi\left(u_{3}\right), u_{1}, u_{2}\right)=\left(\widehat{X}, u_{1}, u_{2}\right)$. Let $h=Z^{p}-Z g^{p-1}+f_{Z}$ be the expansion of h, with $f_{Z}, g \in S$. Since $h \in \mathcal{P}$, we have

$$
f_{Z}+\varphi\left(u_{3}\right)^{p}-\varphi\left(u_{3}\right) g^{p-1} \in\left(u_{1}, u_{2}\right) \widehat{S} .
$$

Since u_{1} divides g by assumption (i), we must have $f+\varphi\left(u_{3}\right)^{p} \in\left(u_{1}, u_{2}\right) \widehat{S}$. But $f \in S$ and S is regular, so $\varphi\left(u_{3}\right) \in S$. Let $X:=Z-\varphi\left(u_{3}\right)$.
I.2.7 Theorem. Assume that $x \in \Sigma_{p}(X), \omega^{\prime}(x)=1$ and $H(x)^{-1} g^{p}=\gamma^{p} u_{1}^{\epsilon(x)}$. Then $\kappa(x) \leqslant 1$.

Proof. Let

$$
X_{0} \leftarrow X_{1} \leftarrow \cdots X_{n-1} \leftarrow X_{n} \leftarrow \cdots
$$

be the quadratic sequence along μ, i.e. X_{n} is the blowing up along the center x_{n-1} of μ in X_{n-1} for $n \geqslant 1$. Then $\left(\Omega\left(x_{n}\right)\right)_{n \geqslant 0}$ is a non-increasing sequence, and we have $\kappa(x)=0$ unless it is constant. We thus assume that $\Omega\left(x_{n}\right)=\Omega(x)$ for $n \geqslant 0$. We have $m\left(x_{n}\right) \geqslant 2$ for $n \geqslant 2$.
I.2.7.1 If there exists $n_{1} \geqslant 0$ such that $m\left(x_{n}\right)=3$ for $n \geqslant n_{1}, x_{n}$ is always at the origin of a chart in the blowing up $X_{n} \longrightarrow X_{n-1}$ and there is no translation to do to minimize polyhedra. By standard arguments, the ideal $\left(\left\{\phi_{i}^{\frac{\epsilon(x)!}{2}}\right\}_{1 \leqslant i \leqslant \epsilon(x)}\right)$ gets principal and monomial in $u_{2, n}, u_{3, n}$ for $n \gg 0$, where $h(n):==X(n)^{p}-X(n) g(n)^{p-1}+f(n)$ is a local equation of X_{n} at x_{n} and $\Delta\left(h(n) ; u_{1, n}, u_{2, n}, u_{3, n} ; X(n)\right)$ is minimal, i.e. we have $C\left(x_{n}\right)=0$. Therefore $\kappa(x) \leqslant 1$ by I.2.6.
I.2.7.2 If there exists $n_{1} \geqslant 0$ such that $m\left(x_{n}\right)=2$ for $n \geqslant n_{1}$, then it can be assumed that $n_{1}=0$ without loss of generality. Each x_{n} is on the strict transform of $\operatorname{div}\left(u_{1}\right)$ and we can choose a r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of \widehat{R} such that the exceptional divisor of $X_{n} \longrightarrow X_{n-1}$ is $\operatorname{div}\left(u_{2}\right)$ for all $n \geqslant 0$, the strict transform of h being $h(n):=\frac{h}{u_{2}^{\rho n}}$. As seen in I.1, or in II.5.6 of chapter 1, we have $\frac{g}{u_{2}^{n}} \in \mathcal{O}_{X_{n}, x_{n}}, \mu\left(\frac{g}{u_{2}^{n}}\right)>0$, so

$$
n<\frac{\mu(g)}{\mu\left(u_{2}\right)}<\infty
$$

since the value group of μ is Archimedean. Therefore $\kappa(x)=0$ in this case.
I.2.7.3 None of the above. By I.2.2(i), there exists n_{1} such that $\gamma\left(x_{n}\right)=\gamma\left(x_{n_{1}}\right)$ for $n \geqslant n_{1}$. By I.2.2(v), we have $\gamma\left(x_{n_{1}}\right) \leqslant 2$. Pick $n_{2}>n_{1}$ such that $m\left(x_{n_{2}-1}\right)=3$ and $m\left(x_{n_{2}}\right)=2$. By I.2.2(iii),

$$
\begin{equation*}
\beta\left(x_{n_{2}}\right)<\gamma\left(x_{n_{2}-1}\right)=\gamma\left(x_{n_{1}}\right) \leqslant 2 . \tag{1}
\end{equation*}
$$

Let n_{3} be the least integer $n>n_{2}$ such that ($m\left(x_{n-1}\right)=2$ and either x_{n} is not rational over x_{n-1} or $m\left(x_{n}\right)=3$). By definition of n_{3}, we have $m\left(x_{n}\right)=2$ for $n_{2} \leqslant n \leqslant n_{3}-1$. Therefore (1) and I.2.2(iii) imply that

$$
\beta\left(x_{n_{3}-1}\right) \leqslant \beta\left(x_{n_{2}}\right)<2 .
$$

By I.2.2(iv) or (v), we have $\gamma\left(x_{n_{3}}\right)=\gamma\left(x_{n_{1}}\right) \leqslant 1$. Going back to (1), we now get the sharper upper bound $\beta\left(x_{n_{2}}\right)<1$, so $\kappa(x)=\kappa\left(x_{n_{2}}\right) \leqslant 1$ by I.2.6.

II A few cases where $\kappa(x) \leqslant 1$.

In view of theorems I.1, I.2.7 and chapter 1 II.5.6, we may restrict our attention to the case $\omega^{\prime}(x)=2$. From now on and up to the end of this article, we thus assume that $\omega^{\prime}(x)=2$.

All along this section, we suppose that the r.s.p. $\left(u_{1}, u_{2}, u_{3}\right)$ of \widehat{S} and $X \in \widehat{R}$ are such that $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$ and the polyhedron $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal. We gather in here some criteria to have $\kappa(x) \leqslant 1$ that will be used in the next chapters, as well as some auxiliary lemmas.
II. 1 Proposition. Assume that $\operatorname{div}\left(u_{1}\right) \subseteq E_{0}$ and $H(x)^{-1} f=u_{1} \phi+\gamma_{1} u_{2}^{\omega(x)} u_{3}$, with $\operatorname{ord}_{\eta(x)}\left(u_{1} \phi\right)=$ $\omega(x)$ and γ_{1} invertible. We have $\kappa(x) \leqslant 1$ provided one of the following properties holds:
(i) $\omega(x) \geqslant 2$ and $E \subseteq \operatorname{div}\left(u_{1} u_{2}\right)$;
(ii) $\omega(x) \geqslant 3$;
(iii) $\omega(x)=2, \operatorname{div}\left(u_{1} u_{3}\right) \subseteq E$ and $\mathrm{cl}_{1} \phi \notin k(x) \cdot U_{3}$;
(iv) $\omega(x)=1$ and $E=\operatorname{div}\left(u_{1} u_{2}\right)$.

We first recollect from chapter 1 a lemma which leads to important corollaries.
II.1.1 Lemma. We suppose that $\omega^{\prime}(x)=2$ and that the r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of \widehat{R} is such that $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$ and the polyhedron $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal. Let Y be a permissible center of first kind, and $X^{\prime} \rightarrow X$ be the blowing up of X along Y.

If $x^{\prime} \in X^{\prime}$ is very near x, then x^{\prime} maps to $\operatorname{PDir}_{\left(\mathrm{cl}_{\epsilon(x)} J(f, E, x)\right)}\left(\right.$ resp. $\left.\operatorname{PDir}\left(\mathrm{cl}_{\omega(x)} J(f, E)\right)\right)$ if $\epsilon(x)=\omega(x)$ (resp. if $\epsilon(x)=1+\omega(x)$).

Proof. When $\epsilon(x)=\omega(x)$, as $\omega^{\prime}(x)=2$, we have $\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)>\epsilon(x)$ and chapter 1
II.5.4.3(i) gives the conclusion. When $\epsilon(x)=1+\omega(x)$, chapter 1 II.5.4.2(ii), (iii), (iv) or
II.5.4.3(ii) give the conclusion.

This lemma leads to the next statements. Recall the definition of $\tau(x)$ in chapter 1, II.4.
II.1.2 Corollary. If $\omega(x)=\epsilon(x)$ and $\tau(x)=3$, then $\kappa(x)=0$.

Proof. Here, $\tau(x)=3$ means that $\operatorname{PDir}\left(\operatorname{cl}_{\epsilon(x)} J(f, E, x)\right)=\varnothing$.
We now introduce some remarks and definitions about the directrix.
If $\epsilon(x)=\omega(x)$, we have $\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)>\omega(x)$ since $\omega^{\prime}(x)=2$. More generally, if $\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)>\epsilon(x)$ then $\mathrm{cl}_{\epsilon(x)} J(f, E, x)\left(\right.$ resp. cl $\left.{ }_{\omega(x)} J(f, E)\right)$ does not depend on any choice of parameters $\left(X, u_{1}, u_{2}, u_{3}\right)$ with $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$ and $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ minimal if $\epsilon(x)=\omega(x)$ (resp. $\epsilon(x)=1+\omega(x))$, as noticed in chapter 1 II.3.2(ii).

If $\epsilon(x)=1+\omega(x)$ and $\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)=\epsilon(x)$, then $\operatorname{cl}_{\omega(x)} J(f, E)$ may depend on the parameters $\left(X, u_{1}, u_{2}, u_{3}\right)$ with $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$ and $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ minimal. When making a translation on X, say $Z:=X-\theta$ is the new variable, f is changed into $f_{Z}:=f+\theta^{p}-\theta g^{p-1}$. If $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; Z\right)$ is minimal, the Newton polyhedron of θ is a subset of $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right), H(x)$ divides θg^{p-1}, so we have the following congruence of vector spaces:

$$
\mathrm{cl}_{\omega(x)} J\left(f_{Z}, E\right) \equiv \operatorname{cl}_{\omega(x)} J(f, E) \bmod k(x)\left[\left\{U_{i}: u_{i} \mid H(x)^{-1} g^{p}\right\}\right]_{\omega(x)}
$$

Furthermore, by chapter 1 II.5.4.2(i), if we blow up x, every point x^{\prime} very near x maps to the strict transform of $H(x)^{-1} g^{p}$. By II.1.1 above, x^{\prime} maps to $\operatorname{Proj}(W)$ where

$$
I(W)=\operatorname{IDir}\left(\mathrm{cl}_{\omega(x)} J(f, E)+\left(\left\{U_{i}: u_{i} \mid H(x)^{-1} g^{p}\right\}\right)\right)
$$

and W does not depend on any choice of parameters $\left(X, u_{1}, u_{2}, u_{3}\right)$ with $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$ and $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ minimal. This leads to the following definitions.
II.1.3 Definition. Let

$\operatorname{VDir}(x):=\operatorname{VDir}\left(\operatorname{cl}_{\omega(x)} J(f, E)+\left(\left\{U_{i}: u_{i} \mid H(x)^{-1} g^{p}\right\}\right)\right)$ if $\epsilon(x)=1+\omega(x)$ and $\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)=$ $\epsilon(x)$;
$\operatorname{VDir}(x):=\operatorname{VDir}\left(\mathrm{cl}_{\omega(x)} J(f, E)\right)$ if $\epsilon(x)=1+\omega(x)$ and $\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)>\epsilon(x)$.
We denote by $\tau^{\prime}(x)$ the codimension of the $k(x)$-vector space $\operatorname{VDir}(x)$ and by $\operatorname{IDir}(x)$ the ideal generated by $\operatorname{VDir}(x)$.

The previous considerations give
II.1.4 Corollary. The vector space $\operatorname{VDir}(x)$ and the integer $\tau^{\prime}(x)$ do not depend on choices of parameters with $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$ and $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ minimal. Furthermore, if $\tau^{\prime}(x)=3$, then $\kappa(x)=0$.
Proof of II.1. The assumption on the expansion of f implies that

$$
\begin{equation*}
\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)>\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} f\right)=\epsilon(x)=\omega(x) \tag{1}
\end{equation*}
$$

Moreover, U_{1} divides $\operatorname{cl}_{\omega(x)} J(f, E, x)$, so by II.1.1, if $e: X^{\prime} \rightarrow X$ is a permissible blowing up of the first kind, any $x^{\prime} \in X^{\prime}$ very near X maps to the strict transform of $\operatorname{div}\left(u_{1}\right)$. Let $Y:=$ $V\left(X, u_{1}, u_{2}\right) \subseteq \operatorname{Spec}(\widehat{R} /(h))$ and y be the generic point of Y.

If $\operatorname{div}\left(u_{1} u_{2}\right) \subseteq E$, then $Y=V\left(X, v_{1}, v_{2}\right)$ if $\left(v_{1}, v_{2}, v_{3}\right)$ is any r.s.p. of S such that $\operatorname{div}\left(v_{i}\right)=$ $\operatorname{div}\left(u_{i}\right)$ for $i=1,2$. Therefore lemma I.2.6.1 applies and Y is a regular curve on X such that $\eta(Y)$ has normal crossings with E.

If $\omega(x)=1$, assumption (iv) holds, so $E=\operatorname{div}\left(u_{1} u_{2}\right)$. Then

$$
\operatorname{ord}_{\eta(x)} J(f, E, x)=\operatorname{ord}_{\eta(y)} J(f, E, Y)=1, \operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)=\operatorname{ord}_{\eta(y)}\left(H(x)^{-1} g^{p}\right)
$$

and $\operatorname{ord}_{\eta(x)} f=\operatorname{ord}_{\eta(y)} f=\operatorname{ord}_{\eta(x)} H(x)+\omega(x)$, so $Y \subseteq \Sigma_{p}(X)$ and $\epsilon(x)=\epsilon(y): Y$ is permissible of the first kind.

More generally, if $\operatorname{div}\left(u_{1} u_{2}\right) \subseteq E$ and Y is permissible of the first kind, Take $e: X^{\prime} \rightarrow X$ to be the blowing up along Y; by II.1.1, the only point which can possibly be very near x is $x^{\prime}=\left(X^{\prime}:=\frac{X}{u_{2}}, u_{1}^{\prime}:=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}:=u_{2}, u_{3}\right)$. Then $\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right) \subseteq E^{\prime}:=\left(e^{-1} E\right)_{\text {red }}$ and $h^{\prime}:=u_{2}^{-p} h=$ $X^{\prime p}-X^{\prime} g^{\prime p-1}+f^{\prime}$, where

$$
f^{\prime}=H\left(x^{\prime}\right)\left(u_{1}^{\prime} u_{2}^{\prime-(\omega(x)-1)} \phi+\gamma_{1} u_{3}\right)
$$

We are at the origin of a chart, so $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3} ; X^{\prime}\right)$ is minimal. Hence $\omega\left(x^{\prime}\right) \leqslant 1$ and $\omega\left(x^{\prime}\right)=0$ if (iv) holds, so $\kappa(x)=1$.
¿From now on, we assume that $\omega(x) \geqslant 2$. Let $H(x)=u_{1}^{a(1)} u_{2}^{a(2)} u_{3}^{a(3)}$, with $a(i)=0$ if $\operatorname{div}\left(u_{i}\right) \nsubseteq E$. Let $e: X^{\prime} \rightarrow X$ be the blowing up at $x, E^{\prime}:=\left(e^{-1} E\right)_{\text {red }}$ and $x^{\prime} \in X^{\prime}$ be very near x. Then x^{\prime} maps to the strict transform of $\operatorname{div}\left(u_{1}\right)(c f$. comments in the beginning of the proof of this proposition). We claim that x^{\prime} is on the strict transform of Y if $\kappa\left(x^{\prime}\right)>0$.

If x^{\prime} is in the chart of origin $\left(X^{\prime}:=\frac{X}{u_{2}}, u_{1}^{\prime}:=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}:=u_{2}, u_{3}^{\prime}:=\frac{u_{3}}{u_{2}}\right.$), then $\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right)$ is a system of coordinates at x^{\prime}, where $v^{\prime}:=P\left(1, u_{3}^{\prime}\right)$ for some irreducible homogeneous polynomial $P \in k(x)\left[U_{2}, U_{3}\right]$, unitary in U_{3}. Let $h^{\prime}:=u_{2}^{-p} h=X^{\prime p}-X^{\prime} g^{\prime p-1}+f^{\prime}$.

If $P \neq U_{3}$, then $E^{\prime}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right), H\left(x^{\prime}\right):={u_{1}^{\prime}}^{a(1)} u_{2}^{\prime a(2)+\omega(x)-p}$, and we have

$$
\begin{equation*}
H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{3}^{\prime a(3)}\left(u_{1}^{\prime} u_{2}^{\prime-(\omega(x)-1)} \phi+\gamma_{1} u_{2}^{\prime} u_{3}^{\prime}\right) \tag{2}
\end{equation*}
$$

By (1), u_{2}^{\prime} divides $H\left(x^{\prime}\right)^{-1} g^{\prime p}$. We may have to make a translation $Z^{\prime}:=X^{\prime}-\theta^{\prime}$ on X^{\prime} to get the polyhedron $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime} ; Z^{\prime}\right)$ minimal.

If ord $\eta_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right) \leqslant 2$, we get $\Omega\left(x^{\prime}\right) \leqslant(2,1): x^{\prime}$ is not very near to x, since $\Omega(x) \geqslant(2,2)$.
If $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right) \geqslant 3$, as ord $\operatorname{or}_{\left(u_{1}^{\prime}, u_{2}^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} \theta^{\prime p}\right) \geqslant 1$ by (2), we get

$$
\operatorname{ord}_{\left(u_{1}^{\prime}, u_{2}^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} \theta^{\prime} g^{\prime p-1}\right) \geqslant 3 \frac{p-1}{p}+\frac{1}{p}=3-\frac{2}{p} \geqslant 2 .
$$

If p does not divide $a(1)$, we have

$$
\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} u_{1}^{\prime} \frac{\partial\left(f^{\prime}+\theta^{\prime p}-\theta^{\prime} g^{\prime p-1}\right)}{\partial u_{1}^{\prime}}\right)=1
$$

by (2), since u_{3}^{\prime} is invertible at x^{\prime}. If p divides $a(1)$, we apply chapter $1, \mathbf{I I} .5 .3 .2$ (i) to the monomial $\overline{\gamma_{1}} U_{2}^{a(2)+\omega(x)} U_{3}^{a(3)+1}$ (which is not a $p^{t h}$ - power because $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal), where $\overline{\gamma_{1}}$ denotes the image of γ_{1} in $k(x)$. We then get

$$
\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} \frac{\partial\left(f^{\prime}+\theta^{\prime p}-\theta^{\prime} g^{\prime p-1}\right)}{\partial \lambda_{i}^{\prime}}\right)=1
$$

for some $i, 2 \leqslant i \leqslant s$, with conventions on derivations as in chapter 1 II.3. Therefore $\omega\left(x^{\prime}\right) \leqslant 1<$ $\omega(x)$.

If $P=U_{3}, \Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal and we get

$$
\begin{equation*}
H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{1}^{\prime} u_{2}^{\prime-(\omega(x)-1)} \phi+\gamma_{1} u_{2}^{\prime} u_{3}^{\prime} . \tag{3}
\end{equation*}
$$

Therefore $\omega\left(x^{\prime}\right) \leqslant \operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(u_{2}^{\prime} u_{3}^{\prime}\right)=2$. We are done unless possibly if $\omega(x)=\omega\left(x^{\prime}\right)=2$ (so $\operatorname{div}\left(u_{3}\right) \subseteq E$), in which case assumption (iii) holds. In particular, we now have $E^{\prime}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime}\right)$.

Let then $\mathrm{cl}_{1} \phi=: \lambda_{1} U_{1}+\nu_{3} U_{2}+\mu_{2} U_{3}, \lambda_{1}, \mu_{2}, \nu_{3} \in k(x)$, and $\left(\lambda_{1}, \nu_{3}\right) \neq(0,0)$ by assumption. Since $\omega\left(x^{\prime}\right)=2$, we have $\nu_{3}=0$ by (3), so $\lambda_{1} \neq 0$. We claim that $\tau\left(x^{\prime}\right)=3$, whence $\kappa(x)=\kappa\left(x^{\prime}\right)=0$ by II.1.2. Note that x^{\prime} then satisfies the assumptions of lemma II.1.5 below with $\mu_{1}:=\overline{\gamma_{1}}$ and $\lambda_{2}:=0$ for some $\mu_{3} \in k\left(x^{\prime}\right)$, and the conclusion follows.

The last point we have to consider is thus the point $x^{\prime}=\left(X^{\prime}:=\frac{X}{u_{3}}, u_{1}^{\prime}:=\frac{u_{1}}{u_{3}}, u_{2}^{\prime}:=\frac{u_{2}}{u_{3}}, u_{3}^{\prime}:=\right.$ u_{3}), i.e. x^{\prime} is on the strict transform of Y. This is the origin of a chart, so $\Delta\left(u_{3}^{-p} h ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal. Let $h^{\prime}:=u_{3}^{-p} h=X^{\prime p}-X^{\prime} g^{\prime p-1}+f^{\prime}$, where

$$
H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{1}^{\prime} u_{3}^{\prime-(\omega(x)-1)} \phi+\gamma_{1} u_{2}^{\prime \omega(x)} u_{3}^{\prime} .
$$

Let us see that $x^{\prime},\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ verify the hypotheses II.1(ii) or (iii). This is obvious if $\omega(x) \geqslant 3$. If $\omega(x)=\omega\left(x^{\prime}\right)=2$, then $\bar{\phi}:=\operatorname{cl}_{1} \phi \in<U_{1}, U_{2}>$,

$$
\mathrm{cl}_{1}\left(u_{3}^{\prime-1} \phi\right)=\bar{\phi}\left(U_{1}^{\prime}, U_{2}^{\prime}\right) \notin k\left(x^{\prime}\right) \cdot U_{3}^{\prime}
$$

and $\operatorname{div}\left(u_{1}^{\prime} u_{3}^{\prime}\right) \subseteq E^{\prime}$, so (iii) holds.
Let

$$
X=X_{0} \leftarrow X_{1} \leftarrow \cdots X_{n-1} \leftarrow X_{n} \leftarrow \cdots
$$

be the quadratic sequence along μ, i.e. X_{n} is the blowing up along the center x_{n-1} of μ in X_{n-1} for $n \geqslant 1$. Let $h(n)$ be a local equation of X_{n}.

By well known results, $\operatorname{ord}_{x_{n}} h(n)=\operatorname{ord}_{y} h$ for $n \gg 0$, so $x_{n} \notin \Sigma_{p}\left(X_{n}\right)$ if $Y \nsubseteq \Sigma_{p}(X)$. Since $\omega(x) \geqslant 2$, we have $Y=V\left(X, u_{1}, u_{2}\right) \subseteq W:=\{z \in X \mid \omega(z)>0\}$. If $Y \subseteq \Sigma_{p}(X)$, the strict transform Y_{n} of Y in X_{n} is permissible of the first kind at x_{n} for $n \gg 0$ by chapter 1 II.6.1. As noticed in the beginning of the proof, this implies $\kappa(x) \leqslant 1$.
II.1.5 Lemma. Assume that $E=\operatorname{div}\left(u_{1} u_{2} u_{3}\right), \Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal and

$$
\Psi:=\operatorname{cl}_{2}\left(H(x)^{-1} f\right)=\lambda_{1} U_{1}^{2}+\mu_{2} U_{1} U_{3}+\mu_{3} U_{1} U_{2}+\lambda_{2} U_{2}^{2}+\mu_{1} U_{2} U_{3}
$$

with $\lambda_{2} \mu_{2}=0$ and $\lambda_{1} \mu_{1} \neq 0$. Then $\tau(x)=3$.
Proof. For each $F=\sum_{a_{1} a_{2} a_{3}} \lambda_{a_{1} a_{2} a_{3}} U_{1}^{a_{1}} U_{2}^{a_{2}} U_{3}^{a_{3}} \in k(x)\left[U_{1}, U_{2}, U_{3}\right]_{2}$, we denote

$$
S(F):=\left\{\left(a_{1}, a_{2}, a_{3}\right) \mid \lambda_{a_{1} a_{2} a_{3}} \neq 0\right\}
$$

Let $K \subset\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}+x_{2}+x_{3}=2\right\}$ be the convex hull of $S(\Psi)$. Since $E=\operatorname{div}\left(u_{1} u_{2} u_{3}\right)$, we have $S(F) \subseteq K$ for every $F \in \operatorname{cl}_{2} J(f, E, x)$; in particular, the monomial U_{3}^{2} and either U_{2}^{2} or $U_{1} U_{3}$ appears in no $F \in \operatorname{cl}_{2} J(f, E, x)$. Furthermore, the monomial U_{1}^{2} (resp. $U_{2} U_{3}$) appears with nonzero coefficient in some element G_{1} (resp. G_{2}) of $\mathrm{cl}_{2} J(f, E, x)$, since $H(x) u_{1}^{2}$ and $H(x) u_{2} u_{3}$ induce vertices of $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ which is minimal.

Suppose that $\tau(x) \leqslant 2$. Then $\operatorname{cl}_{2} J(f, E, x) \subseteq k(x)\left[V_{1}, V_{2}\right]_{2}$, where $V_{1}=U_{1}+\alpha_{2} U_{2}+\alpha_{3} U_{3}$ and $V_{2}=\alpha_{2}^{\prime} U_{2}+\alpha_{3}^{\prime} U_{3}$, since U_{1}^{2} appears in G_{1}. The rank of the matrix

$$
\left(\begin{array}{ll}
\alpha_{2} & \alpha_{3} \\
\alpha_{2}^{\prime} & \alpha_{3}^{\prime}
\end{array}\right)
$$

is two, since $U_{2} U_{3}$ but not U_{3}^{2} appears in G_{2}. Without loss of generality, it can thus be assumed that $\alpha_{2} \alpha_{3}=0$. Let $\{i, j\}=\{2,3\}$ be such that $\alpha_{i}=0$ and $\alpha_{j} \neq 0$. Without loss of generality, it can also be assumed that $\alpha_{i}^{\prime}=1$.

Since U_{3}^{2} and either U_{2}^{2} or $U_{1} U_{3}$ appears in no element of $\mathrm{cl}_{2} J(f, E, x)$, elementary considerations show that $\alpha_{j}^{\prime} \neq 0$ and that every $F \in \operatorname{cl}_{2} J(f, E, x)$ must be a scalar multiple of one and the same polynomial $G:=V_{1}^{2}+c_{1} V_{1} V_{2}+c_{2} V_{2}^{2}$ for some $c_{1}, c_{2} \in k(x)$. We get the following list of possible cases:
Case 1: $i=3, \mu_{2} \neq 0, \lambda_{2}=0, c_{2}=0, c_{1}=-\frac{\alpha_{2}}{\alpha_{2}^{\prime}}$;
Case 2: $i=2, \lambda_{2}=0, c_{2}=0, c_{1}=-\frac{\alpha_{3}}{\alpha_{3}^{\prime}}$;
Case 3: $i=2, \mu_{2}=0, c_{1}=-2 \frac{\alpha_{3}}{\alpha_{3}^{\prime}}, c_{2}=\left(\frac{\alpha_{3}}{\alpha_{3}^{\prime}}\right)^{2}$.
Case 3 is easily discarded from the assumption $\mu_{1} \neq 0$. We give the proof in case 2 , the proof of case 1 being similar. Let us denote $H(x)=u_{1}^{a(1)} u_{2}^{a(2)} u_{3}^{a(3)}$ and $F_{i}:=\operatorname{cl}_{2}\left(H(x)^{-1} u_{i} \frac{\partial f}{\partial u_{i}}\right), i=1,2,3$. All of these forms should be proportional:
$G=U_{1}^{2}+c_{1} U_{1} U_{2}+\alpha_{3} U_{1} U_{3}+c_{1} \alpha_{3} U_{2} U_{3} ;$
$F_{1}=a(1) \mu_{1} U_{2} U_{3}+(a(1)+1)\left(\mu_{3} U_{1} U_{2}+\mu_{2} U_{1} U_{3}\right)+(a(1)+2) \lambda_{1} U_{1}^{2} ;$
$F_{2}=a(2)\left(\lambda_{1} U_{1}^{2}+\mu_{2} U_{1} U_{3}\right)+(a(2)+1)\left(\mu_{3} U_{1} U_{2}+\mu_{1} U_{2} U_{3}\right) ;$
$F_{3}=a(3)\left(\lambda_{1} U_{1}^{2}+\mu_{3} U_{1} U_{2}\right)+(a(3)+1)\left(\mu_{2} U_{1} U_{3}+\mu_{1} U_{2} U_{3}\right)$.
So the matrix

$$
M:=\left(\begin{array}{cccc}
1 & c_{1} & \alpha_{3} & c_{1} \alpha_{3} \\
(a(1)+2) \lambda_{1} & (a(1)+1) \mu_{3} & (a(1)+1) \mu_{2} & a(1) \mu_{1} \\
a(2) \lambda_{1} & (a(2)+1) \mu_{3} & a(2) \mu_{2} & (a(2)+1) \mu_{1} \\
a(3) \lambda_{1} & a(3) \mu_{3} & (a(3)+1) \mu_{2} & (a(3)+1) \mu_{1}
\end{array}\right)
$$

must have rank one. The last two rows are not both zero, and are linearly dependent if and only if $\left(\mu_{2}=\mu_{3}=0\right.$ and $\left.a(2)=a(3)\right)$. But then M has rank two, since $c_{1} \neq 0$: a contradiction which proves that $\tau(x)=3$.
II. 2 Proposition. Assume that $E=\operatorname{div}\left(u_{1}\right)$ and $\epsilon(x)=\omega(x)$. If

$$
\operatorname{VDir}(x) \equiv<U_{2}, U_{3}>\bmod \left(U_{1}\right)
$$

then $\kappa(x)=0$.
Proof. We have $\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)>\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} f\right)=\epsilon(x)=\omega(x)$ since $\omega^{\prime}(x)=2$. Let

$$
F:=\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} f\right)
$$

Since $\epsilon(x)=\omega(x)$, we have $F \in k(x)\left[U_{1}, U_{2}^{p}, U_{3}^{p}\right]$. If $\tau(x)=3$, then $\kappa(x)=0$ by II.1.2, so we assume that $\tau(x)=2$.

We can now pick a r.s.p. $\left(u_{1}, v_{2}, v_{3}\right)$ of S, where $v_{i}:=u_{i}+\alpha_{i} u_{1}, \alpha_{i} \in S$ invertible, $i=2,3$, and get an expression $H(x)^{-1} f=F\left(u_{1}, v_{2}, v_{3}\right)+\phi, \operatorname{ord}_{\eta(x)} \phi>\epsilon(x)$ and $\operatorname{VDir}(x)=<V_{2}, V_{3}>$. Of course, we may have to do a translation $Z:=X-\theta$ on X in order to get $\Delta\left(h ; u_{1}, v_{2}, v_{3} ; Z\right)$ minimal. Since $\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)>\omega(x)$, we have

$$
\mathrm{cl}_{\epsilon(x)} J(f, E, x)=\operatorname{cl}_{\epsilon(x)} J\left(f_{Z}, E, x\right) \in k(x)\left[V_{1}, V_{2}\right]_{\omega(x)}
$$

where $h=Z^{p}-g^{p-1} Z+f_{Z}$.
By II.1.1, if $e: X^{\prime} \rightarrow X$ is the blowing up of x and $x^{\prime} \in X^{\prime}$ is very near X, then $x^{\prime}=\left(Z^{\prime}:=\right.$ $\left.\frac{Z}{u_{1}}, u_{1}^{\prime}:=u_{1}, v_{2}^{\prime}:=\frac{v_{2}}{u_{1}}, v_{3}^{\prime}:=\frac{v_{3}}{u_{1}}\right)$. This is the origin of a chart, so $\Delta\left(h^{\prime} ; u_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime} ; Z^{\prime}\right)$ is minimal, $E^{\prime}:=\left(e^{-1} E\right)_{\mathrm{red}}=\operatorname{div}\left(u_{1}^{\prime}\right)$ and we get an expression

$$
\left.H\left(x^{\prime}\right)^{-1} f^{\prime}=F\left(1, v_{2}^{\prime}, v_{3}^{\prime}\right)+u_{1}^{\prime} \phi^{\prime}\right)
$$

If x^{\prime} is very near x, we have $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} \phi^{\prime} \geqslant \omega(x)-1$ and therefore $\epsilon\left(x^{\prime}\right)=\omega(x)$. Also note that $\operatorname{ord}_{u_{1}^{\prime}}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)>\omega(x)$, since otherwise $\Omega\left(x^{\prime}\right) \leqslant(\omega(x), 1)<\Omega(x)$. By construction,

$$
\operatorname{cl}_{\omega(x)} J\left(f^{\prime}, E^{\prime}, x^{\prime}\right) \equiv \operatorname{cl}_{\omega(x)} J\left(H\left(x^{\prime}\right) F\left(1, v_{2}^{\prime}, v_{3}^{\prime}\right), E^{\prime}, x^{\prime}\right) \bmod U_{1}^{\prime} k\left(x^{\prime}\right)\left[U_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}\right]_{\omega(x)-1}
$$

hence $\operatorname{VDir}\left(x^{\prime}\right) \equiv<V_{2}^{\prime}, V_{3}^{\prime}>\bmod \left(U_{1}^{\prime}\right)$ and x^{\prime} satisfies again the assumptions of II. 1 w.r.t. the r.s.p. $\left(Z^{\prime}, u_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right)$.

Let

$$
X=X_{0} \leftarrow X_{1} \leftarrow \cdots X_{n-1} \leftarrow X_{n} \leftarrow \cdots
$$

be the quadratic sequence along μ, i.e. X_{n} is the blowing up along the center x_{n-1} of μ in X_{n-1} for $n \geqslant 1$. We iterate the previous argument: if $\kappa(x)>0$, there exists series $w_{i}:=u_{i}+\sum_{j \geqslant 1} \alpha_{i j} u_{1}^{j}$, $\alpha_{i j} \in k(x), i=2,3$ and $Z \in \widehat{R}$ with the following property:
(a) the polyhedron $\Delta\left(h ; u_{1}, w_{2}, w_{3} ; Z\right)$ is minimal;
(b) if x_{n} is very near x, then x_{n} is on the strict transform Y_{n} in X_{n} of $Y:=V\left(Z, w_{2}, w_{3}\right) \subseteq$ $\operatorname{Spec}(\widehat{R} /(h))$.

As in the proof of proposition II.1, we have $x_{n} \notin \Sigma_{p}\left(X_{n}\right)$ for $n \gg 0$ unless $Y \subseteq \Sigma_{p}(X)$. But this is a contradiction, since $\eta(Y) \nsubseteq E$.
II. 3 Proposition. Assume that $\omega(x) \geqslant 2, E=\operatorname{div}\left(u_{1}\right)$ and $H(x)^{-1} f=F\left(u_{2}, u_{3}\right)+u_{1} \phi$ with $\operatorname{ord}_{\eta(x)}\left(u_{1} \phi\right)=\omega(x)$ and $F \in k(x)\left[u_{2}, u_{3}\right]_{1+\omega(x)}$. If moreover

$$
\begin{equation*}
\operatorname{VDir}\left(\operatorname{cl}_{\omega(x)} J(f, E, x)+\operatorname{cl}_{\omega(x)} J(F, E)\right)=<U_{1}, U_{2}, U_{3}> \tag{1}
\end{equation*}
$$

then $\kappa(x) \leqslant 1$.
Proof. We have $\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right)>\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} f\right)$ since $\epsilon(x)=\omega(x)$. In particular, we have $F \neq 0$ by definition of $H(x)$. Moreover, $\operatorname{cl}_{\omega(x)}\left(u_{1} \phi\right) \in k(x)\left[U_{1}, U_{2}^{p}, U_{3}^{p}\right]$, since $\epsilon(x)=\omega(x)$. We discuss according to the value of $\tau(x)$.
II.3.1 If $\tau(x)=3$, then $\kappa(x)=0$ by II.1.1.
II.3.2 If $\tau(x)=2$, as $\operatorname{ord}_{\eta(x)}\left(u_{1} \phi\right)=\omega(x), U_{1}$ divides $\operatorname{cl}_{\omega(x)} J(f, E, x)$, so $U_{1} \in \operatorname{VDir}(x)$. Let $\operatorname{VDir}(x)=<U_{1}, \lambda U_{2}+\mu U_{3}>, \lambda, \mu \in k(x),(\lambda, \mu) \neq(0,0)$. In particular, $\operatorname{cl}_{\omega(x)-1} \phi \notin k(x)\left[U_{1}\right]$, and thus $\omega(x) \geqslant 1+p$.

By symmetry, it can be assumed that $\mu \neq 0$ and we replace u_{2} by $v:=u_{2}+\frac{\mu}{\lambda} u_{2}$. We may have to do a translation $Z:=X-\theta, \theta \in k(x)\left[\left[u_{1}, u_{2}, u_{3}\right]\right]$ in order to get $\Delta\left(h ; u_{1}, v, u_{3} ; Z\right)$ minimal. Then f is changed to $f_{Z}:=f+\theta^{p}-\theta g^{p-1}$. As $\omega^{\prime}(x)=2, E=\operatorname{div}\left(u_{1}\right)$ and $\omega(x)=\epsilon(x), u_{1}$ divides $H(x)^{-1} g^{p-1} \theta$ and $\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p-1} \theta\right)>\omega(x)$, so $H(x)^{-1} f_{Z}=F\left(v, u_{3}\right)+u_{1} \phi_{Z}$ and the vector space $\operatorname{cl}_{\omega(x)} J(f, E, x)$ is unchanged. Hypothesis (1) is equivalent to:

$$
<\frac{\partial F}{\partial U_{2}}, \frac{\partial F}{\partial U_{3}}>\nsubseteq k(x)[V]
$$

This condition is independent of the choice of the variables $\left(u_{2}, u_{3}\right)$; in other terms, it can be assumed without loss of generality that $\operatorname{VDir}(x)=<U_{1}, U_{2}>$, hypothesis (1) then reading

$$
\begin{equation*}
F\left(U_{2}, U_{3}\right) \notin k(x)\left[U_{2}\right]+U_{3}^{p} k(x)\left[U_{2}^{p}, U_{3}^{p}\right] \tag{2}
\end{equation*}
$$

Let $e: X^{\prime} \rightarrow X$ be the blowing up along x. If $x^{\prime} \in e^{-1}(x)$ is very near x, we have $x^{\prime}=\left(X^{\prime}:=\right.$ $\left.\frac{X}{u_{3}}, u_{1}^{\prime}:=\frac{u_{1}}{u_{3}}, u_{2}^{\prime}:=\frac{u_{2}}{u_{3}}, u_{3}^{\prime}:=u_{3}\right)$ by II.1.1, so $E^{\prime}:=e^{-1}(x)=\operatorname{div}\left(u_{1}^{\prime} u_{3}^{\prime}\right)$. This is the origin of a chart, so $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal. Let $\Phi\left(U_{1}, U_{2}\right):=\operatorname{cl}_{\omega(x)-1} \phi$. We get

$$
H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{3}^{\prime} F\left(u_{2}^{\prime}, 1\right)+u_{1}^{\prime} \phi^{\prime}
$$

where $\phi^{\prime}=\Phi\left(u_{1}^{\prime}, u_{2}^{\prime}\right)+u_{3}^{\prime} \psi^{\prime}$ and $\psi^{\prime} \in k(x)\left[\left[u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right]\right]$. We have $\operatorname{ord}_{\left(u_{1}^{\prime}, u_{3}^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}>\epsilon(x)\right.$. If x^{\prime} is very near x, we get $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(u_{1}^{\prime} \phi^{\prime}\right)=\omega\left(x^{\prime}\right)=\omega(x)$ and

$$
\omega(x)=\omega\left(x^{\prime}\right)=\epsilon\left(x^{\prime}\right) \leqslant 1+\operatorname{ord}_{u_{2}^{\prime}} F\left(u_{2}^{\prime}, 1\right) \leqslant 1+\omega(x)
$$

where the right-hand side inequality holds because $F \notin k(x)\left[U_{2}\right]$. So x^{\prime} is not very near x unless possibly if $\operatorname{ord}_{u_{2}^{\prime}} F\left(u_{2}^{\prime}, 1\right) \geqslant \omega(x)-1$. We consider two cases:

Case 1: $\operatorname{ord}_{u_{2}^{\prime}} F\left(u_{2}^{\prime}, 1\right)=\omega(x)$. Then $H\left(x^{\prime}\right)^{-1} f^{\prime}=\gamma^{\prime} u_{3}^{\prime} u_{2}^{\prime \omega(x)}+u_{1}^{\prime} \phi^{\prime}$ with γ^{\prime} invertible. Since $\omega(x) \geqslant 1+p \geqslant 3$, we have $\kappa\left(x^{\prime}\right) \leqslant 1$ by II.1(ii).
Case 2: $\operatorname{ord}_{u_{2}^{\prime}} F\left(u_{2}^{\prime}, 1\right)=\omega(x)-1$, Then $H(x)^{-1} f^{\prime}=\gamma^{\prime} u_{3}^{\prime} u_{2}^{\prime \omega(x)-1}+u_{1}^{\prime} \phi^{\prime}$ with γ^{\prime} invertible. If x^{\prime} is very near x, then $\omega(x)-1 \equiv 0 \bmod p$, otherwise

$$
\omega\left(x^{\prime}\right) \leqslant \operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} \frac{\partial f^{\prime}}{\partial u_{2}^{\prime}}\right)<\omega(x)
$$

We have $H\left(x^{\prime}\right)=u_{1}^{\prime a(1)} u_{3}^{\prime a(1)+\omega(x)-p}$ and

$$
F^{\prime}:=\operatorname{cl}_{\omega(x)}\left(H\left(x^{\prime}\right)^{-1} f^{\prime}\right)=U_{1}^{\prime} \Phi\left(U_{1}^{\prime}, U_{2}^{\prime}\right)+U_{1}^{\prime} U_{3}^{\prime} K\left(U_{1}^{\prime}, U_{2}^{\prime}, U_{3}^{\prime}\right)+\overline{\gamma^{\prime}} U_{3}^{\prime} U_{2}^{\prime \omega(x)-1}
$$

By the lemma below (with indices 2 and 3 exchanged and $\Psi=0$), we get $\tau\left(x^{\prime}\right)=3$ so $\kappa\left(x^{\prime}\right)=0$.
II.3.3 Lemma. Assume that $\omega(x) \geqslant 2, E=\operatorname{div}\left(u_{1} u_{2}\right)$ and the polyhedron $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal. We have $\tau(x)=3$ provided
(i) $H(x)=u_{1}{ }^{a(1)} u_{2}{ }^{a(2)}$, with $a(2) \equiv a(1)+1 \bmod p$, and
(ii) $F:=\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} f\right)$ has an expansion

$$
\begin{equation*}
F=U_{1} \Phi\left(U_{1}, U_{2}, U_{3}\right)+U_{2}^{2} \Psi\left(U_{2}, U_{3}\right)+\lambda U_{2} U_{3}^{\omega(x)-1} \tag{1}
\end{equation*}
$$

with $\Phi \neq 0$ and $\lambda \neq 0$.
Proof. Since $F \neq 0$, we have $\epsilon(x)=\omega(x)$, so $\Phi \in k(x)\left[U_{1}, U_{2}, U_{3}^{p}\right], \Psi \in k(x)\left[U_{2}, U_{3}^{p}\right]$ and $\omega(x)-1 \equiv$ $0 \bmod p$. With notations about derivations as in chapter $1 \mathbf{I I} .3$, the vector space $\mathrm{cl}_{\epsilon(x)} J(f, E, x)$ is generated by forms

$$
F_{i}=U_{1} \Phi_{i}\left(U_{1}, U_{2}, U_{3}\right)+U_{2}^{2} \Psi_{i}\left(U_{2}, U_{3}\right)+\lambda_{i} U_{2} U_{3}^{\omega(x)-1}, 1 \leqslant i \leqslant s
$$

Since $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal, there exists i_{0}, i_{1} such that $\lambda_{i_{0}} \neq 0, \Phi_{i_{1}} \neq 0$ by (ii). We have $0<\operatorname{deg}_{U_{3}} F_{i_{0}}=\omega(x)-1<\operatorname{deg} F_{i_{0}}=\omega(x)$, so $\tau(x) \geqslant 2$.

If $U_{1} \in \operatorname{VDir}(x)$, then $U_{2}^{2} \Psi_{i_{0}}\left(U_{2}, U_{3}\right)+\lambda_{i_{0}} U_{2} U_{3}{ }^{\omega(x)-1} \in \operatorname{IDir}(x)^{\omega(x)}$, so $\tau(x)=3$. If $U_{2} \in$ $\operatorname{VDir}(x)$, then $U_{1} \Phi_{i_{1}}\left(U_{1}, U_{2}, U_{3}\right) \in \operatorname{IDir}(x)^{\omega(x)}$, so $U_{1} \in \operatorname{VDir}(x)$. Hence $\tau(x)=3$ as well in this case.

Suppose that $\tau(x)=2$. The previous discussion shows that

$$
\operatorname{VDir}(x)=<U:=\mu_{1} U_{1}+\mu_{2} U_{2}, V:=U_{3}+\nu_{1} U_{1}+\nu_{2} U_{2}>
$$

with $\mu_{1}, \mu_{2}, \nu_{1}, \nu_{2} \in k(x)$ and $\mu_{1} \mu_{2} \neq 0$. It can be assumed that $\nu_{1}=0$ in V by replacing V with $V-\frac{\nu_{1}}{\mu_{1}} U$. Let $F^{\prime}:=F\left(U_{1}, U_{2}, V-\nu_{2} U_{2}\right)$. Then F^{\prime} has an expansion as in (1) with λ and the property $\Phi \neq 0$ unchanged. The vector space $\operatorname{cl}_{\epsilon(x)} J(f, E, x)$ is also unchanged. In other terms, it can be assumed that $\operatorname{VDir}(x)=<\mu_{1} U_{1}+\mu_{2} U_{2}, U_{3}>, \mu_{1} \mu_{2} \neq 0$.

There is an expansion

$$
F=U_{3}^{\omega(x)-1}\left(\alpha U_{1}+\lambda U_{2}\right)+\sum_{1 \leqslant a \leqslant \frac{\omega(x)-1}{p}} U_{3}^{\omega(x)-1-a p} F_{a}\left(U_{1}, U_{2}\right)
$$

with $F_{a} \in k(x)\left[U_{1}, U_{2}\right]_{a p+1}, \alpha \in k(x)$. Then

$$
F_{1}=U_{3}^{\omega(x)-1}\left((a(1)+1) \alpha U_{1}+a(1) \lambda U_{2}\right)+\sum_{1 \leqslant a \leqslant \frac{\omega(x)-1}{p}} U_{3}^{\omega(x)-1-a p} F_{a, 1}\left(U_{1}, U_{2}\right)
$$

and

$$
F_{2}=U_{3}^{\omega(x)-1}\left(a(2) \alpha U_{1}+(a(2)+1) \lambda U_{2}\right)+\sum_{1 \leqslant a \leqslant \frac{\omega(x)-1}{p}} U_{3}^{\omega(x)-1-a p} F_{a, 2}\left(U_{1}, U_{2}\right)
$$

Since VDir $(x)=<\mu_{1} U_{1}+\mu_{2} U_{2}, U_{3}>$, the linear forms $L_{0}:=\mu_{1} U_{1}+\mu_{2} U_{2}, L_{1}:=(a(1)+$ 1) $\alpha U_{1}+a(1) \lambda U_{2}$ and $L_{2}:=a(2) \alpha U_{1}+(a(2)+1) \lambda U_{2}$ must be proportional. The linear forms L_{1} and L_{2} are linearly dependent if and only if $(a(1)+a(2)+1) \alpha \equiv 0 \bmod p$, so $2(a(1)+1) \alpha \equiv 0 \bmod p$ by (i). Hence $p=2$, or $a(1)+1 \equiv 0 \bmod p$ or $\alpha=0$.

If $a(1)+1 \equiv 0 \bmod p$, then $L_{2}=\lambda U_{2}$ is not proportional to L_{0} since $\lambda \mu_{1} \mu_{2} \neq 0$.
If $p=2$ and $a(1)+1 \not \equiv 0 \bmod p$, then $L_{1}=\alpha U_{1}$, so we must have $\alpha=0$, since $\mu_{1} \mu_{2} \neq 0$.
If $\alpha=0$ and $a(1)+1 \not \equiv 0 \bmod p$, then $L_{1}=a(1) \lambda U_{2}, L_{2}=(a(1)+2) \lambda U_{2}$ so we must have $p=2$. Then, since the monomial $\lambda u_{1}^{a(1)} u_{2}^{a(2)+1} u_{3}^{\omega(x)-1}$ induces a vertex of the minimal polyhedron $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$, we have $\lambda \notin k(x)^{2}$. Hence

$$
F_{\lambda}:=\frac{\partial F}{\partial \lambda}=U_{2} U_{3}^{\omega(x)-1}+\sum_{1 \leqslant a \leqslant \frac{\omega(x)-1}{p}} U_{3}^{\omega(x)-1-a p} F_{a, \lambda}\left(U_{1}, U_{2}\right) \notin k(x)\left[U_{3}, \mu_{1} U_{1}+\mu_{2} U_{2}\right],
$$

thus contradicting at last the assumption $\tau(x)=2$. This concludes the proof.
II.3.4 (end of the proof of II.3) If $\tau(x)=1$, as $\operatorname{ord}_{\eta(x)}\left(u_{1} \phi\right)=\omega(x)$, we have $\operatorname{cl}_{\omega(x)} J(f, E, x)=$ $k(x) \cdot U_{1}^{\omega(x)}$ and $\operatorname{VDir}(x)=k(x) \cdot U_{1}$. We thus have

$$
H(x)^{-1} f=F\left(u_{2}, u_{3}\right)+\lambda u_{1}^{\omega(x)}+u_{1} \psi
$$

with $\lambda \in k(x)$ nonzero and $\operatorname{ord}_{\eta(x)} \psi \geqslant \omega(x)$. Assumption (1) in the proposition is then equivalent to

$$
\begin{equation*}
\operatorname{VDir}\left(\frac{\partial F}{\partial U_{2}}, \frac{\partial F}{\partial U_{3}}\right)=<U_{2}, U_{3}> \tag{1}
\end{equation*}
$$

Let $e: X^{\prime} \rightarrow X$ be the blowing up along x. By II.1.1, a point $x^{\prime} \in e^{-1}(x)$ is very near x only if it maps to the strict transform of $\operatorname{div}\left(u_{1}\right)$. As u_{2} and u_{3} play symmetric roles, we can assume x^{\prime} is in the chart with origin $\left(X^{\prime}:=\frac{X}{u_{2}}, u_{1}^{\prime}:=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}:=u_{2}, u_{3}^{\prime}:=\frac{u_{3}}{u_{2}}\right)$. Then $E^{\prime}:=\left(e^{-1} E\right)_{\mathrm{red}}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right)$, $H\left(x^{\prime}\right)={u_{1}^{\prime}}^{a(1)} u_{2}^{a(1)+\omega(x)-p}$ and

$$
H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{2}^{\prime} F\left(1, u_{3}^{\prime}\right)+\lambda u_{1}^{\prime \omega(x)}+u_{1}^{\prime} u_{2}^{\prime} \psi^{\prime}
$$

for some $\psi^{\prime} \in \widehat{S^{\prime}}$. We pick local coordinates $\left(u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}:=P\left(1, u_{3}^{\prime}\right)\right)$ at x^{\prime}, with $P \in k(x)\left[U_{2}, U_{3}\right]$ irreducible, homogeneous and unitary in U_{3}.

If $P \neq U_{3}$, we may have to perform a translation $Z^{\prime}:=X^{\prime}-\theta^{\prime}, \theta^{\prime} \in k\left(x^{\prime}\right)\left[\left[u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right]\right]$ to get $\Delta\left(u_{2}^{-p} h ; u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime} ; Z^{\prime}\right)$ minimal. Then f^{\prime} is changed into $f_{Z^{\prime}}^{\prime}:=f^{\prime}+\theta^{\prime p}-\theta^{\prime} g^{\prime p-1}$ and get an expansion

$$
\begin{equation*}
H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime}=u_{2}^{\prime} F_{Z^{\prime}}\left(v^{\prime}\right)+\lambda_{Z^{\prime}} u_{1}^{\prime \omega(x)}+u_{1}^{\prime} u_{2}^{\prime} \psi_{Z^{\prime}}^{\prime} \tag{2}
\end{equation*}
$$

with $\lambda_{Z^{\prime}}, \psi_{Z^{\prime}}^{\prime} \in k\left(x^{\prime}\right)\left[\left[u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right]\right], F_{Z^{\prime}}(v) \in k\left(x^{\prime}\right)\left[\left[v^{\prime}\right]\right]$. As u_{1}^{\prime} divides $H\left(x^{\prime}\right)^{-1} g^{\prime p}$, the following holds:
(a) $H\left(x^{\prime}\right) u_{2}^{\prime}\left(F_{Z^{\prime}}\left(v^{\prime}\right)-F\left(1, u_{3}^{\prime}\right)\right) \in\left(k\left(x^{\prime}\right)\left[\left[u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right]\right]\right)^{p}$. In particular,

$$
J\left(f_{Z^{\prime}}, E^{\prime}\right) \equiv J\left(H\left(x^{\prime}\right) u_{2}^{\prime} F\left(1, u_{3}^{\prime}\right), E^{\prime}\right) \bmod \left(u_{1}^{\prime}\right)
$$

(b) $\operatorname{ord}_{v^{\prime}} F_{Z^{\prime}}\left(v^{\prime}\right)>\operatorname{ord}_{v^{\prime}} F\left(1, u_{3}^{\prime}\right)$ only if $(a(1), \omega(x)+1) \equiv(0,0) \bmod p$.
(c) $\lambda_{Z^{\prime}}$ is not invertible if and only if $\left(a(1)+\omega(x) \equiv 0 \bmod p\right.$ and $\left.\bar{\lambda} \in k\left(x^{\prime}\right)^{p}\right)$. In this case, since $\bar{\lambda} \notin k(x)^{p}, P$ is inseparable, i.e. $\frac{\partial P}{\partial U_{3}}=0$.

Note that the conditions on $a(1)$ and $\omega(x)$ in (b) and (c) are mutually exclusive. By (1), we have

$$
\begin{equation*}
\operatorname{ord}_{v^{\prime}} J\left(H\left(x^{\prime}\right) u_{2}^{\prime} F\left(1, u_{3}^{\prime}\right), E^{\prime}\right) \leqslant 1+(\omega(x)-1)=\omega(x) . \tag{3}
\end{equation*}
$$

Assume that x^{\prime} is very near x. By (a), equality holds in (3) and this implies $\omega(x)-1 \leqslant$ $\operatorname{ord}_{v^{\prime}} F_{Z^{\prime}}\left(v^{\prime}\right) \leqslant \omega(x)$. Moreover, we must have ord ${\eta^{\prime}\left(x^{\prime}\right)}\left(u_{1}^{\prime} u_{2}^{\prime} \psi_{Z^{\prime}}^{\prime}\right) \geqslant \omega(x)$ in (2).

Let us first look at the case where $(a(1), \omega(x)+1) \not \equiv(0,0) \bmod p$. By (b), we have ord ${ }_{v^{\prime}} F_{Z^{\prime}}\left(v^{\prime}\right)=$ $\operatorname{ord}_{v^{\prime}} F\left(1, u_{3}^{\prime}\right)$.

Case 1: $\operatorname{ord}_{v^{\prime}} F_{Z^{\prime}}\left(v^{\prime}\right)=\omega(x)$. We have $F=P^{\omega(x)} Q$, with $Q \in k(x)\left[U_{2}, U_{3}\right]$ homogeneous. Counting degrees, we get

$$
\omega(x)+1=\left[k\left(x^{\prime}\right): k(x)\right] \omega(x)+\operatorname{deg} Q .
$$

Since $\omega(x) \geqslant 2$ by assumption in the proposition, we must have $k\left(x^{\prime}\right)=k(x)$. The last statement in (c) then implies that $\lambda_{Z^{\prime}}=\lambda$ is a unit. Then $\kappa\left(x^{\prime}\right) \leqslant 1$ by II.1. Note that, if $\omega(x)=2$, the extra assumption in II. 1 (iii) holds since

$$
U_{1}^{\prime-1} \operatorname{cl}_{2}\left(H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime}\right)=\bar{\lambda} U_{1}^{\prime}+U_{2}^{\prime} \psi_{Z^{\prime}}^{\prime}(0,0,0) \notin k\left(x^{\prime}\right) \cdot U_{2}^{\prime} .
$$

Case 2: $\operatorname{ord}_{v^{\prime}} F_{Z^{\prime}}\left(v^{\prime}\right)=\omega(x)-1$. Since equality holds in (3), we have $\omega(x)-1 \equiv 0 \bmod p$. By (b), $F=P^{\omega(x)-1} Q$, with $Q \in k(x)\left[U_{2}, U_{3}\right]$ homogeneous. Counting degrees, we get

$$
\begin{equation*}
\omega(x)+1=\left[k\left(x^{\prime}\right): k(x)\right](\omega(x)-1)+\operatorname{deg} Q . \tag{4}
\end{equation*}
$$

Suppose that x^{\prime} is not algebraic over x, i.e. $\left[k\left(x^{\prime}\right): k(x)\right] \geqslant 2$. Since $\omega(x) \geqslant 2$ by assumption in the proposition, counting degrees in (4) we get:
$\operatorname{deg} Q=0,\left[k\left(x^{\prime}\right): k(x)\right]=2$ and $\omega(x)=3$, or
$\operatorname{deg} Q=0,\left[k\left(x^{\prime}\right): k(x)\right]=3$ and $\omega(x)=2$, or
$\operatorname{deg} Q=1,\left[k\left(x^{\prime}\right): k(x)\right]=2$ and $\omega(x)=2$.
By (c), $\lambda_{Z^{\prime}}$ is a unit unless $k\left(x^{\prime}\right) / k(x)$ is inseparable. Since $\omega(x)-1 \equiv 0 \bmod p, \lambda_{Z^{\prime}}$ is a unit unless possibly if ($p=2, \operatorname{deg} Q=0,\left[k\left(x^{\prime}\right): k(x)\right]=2$ and $\omega(x)=3$). In this case, we have $F=\mu P^{2}, \mu \in k(x)$ which contradicts (1), since $p=2$.

It has thus been proved that $\lambda_{Z^{\prime}}$ is a unit in all cases (by (c) if x^{\prime} is rational over x and by the above argument otherwise). Thus the initial form $F^{\prime}:=\operatorname{cl}_{\omega(x)}\left(H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}\right)$ has an expansion

$$
F^{\prime}=U_{1}^{\prime} \Phi\left(U_{1}^{\prime}, U_{2}^{\prime}, V^{\prime}\right)+\lambda^{\prime} U_{2}^{\prime} V^{\prime \omega(x)-1}
$$

with $\Phi \neq 0$ (since $\overline{\lambda_{Z^{\prime}}} \neq 0$) and $\lambda^{\prime} \neq 0$. By lemma II.3.3, we have $\tau\left(x^{\prime}\right)=3$, so $\kappa\left(x^{\prime}\right) \leqslant 1$ by

II.1.2.

Finally, if $(a(1), \omega(x)+1) \equiv(0,0) \bmod p$, then $\lambda_{Z^{\prime}}=\lambda$ is a unit by (c) and we conclude that $\kappa\left(x^{\prime}\right) \leqslant 1$ using II. 1 (resp. II.3.3) as in case 1 (resp. case 2) above.
II. 4 Proposition. Assume that $E=\operatorname{div}\left(u_{1}\right)$ and $H(x)-1 f=F\left(u_{2}, u_{3}\right)+u_{1} \phi+\psi$, where $\operatorname{ord}_{\eta(x)}\left(u_{1} \phi\right)=\omega(x), F \in k(x)\left[u_{2}, u_{3}^{p}\right]$ is homogeneous of degree $1+\omega(x)($ so $F \neq 0)$ and $\psi \in$ $\left(u_{2}, u_{3}\right)^{\omega(x)+2}$. If moreover

$$
\begin{equation*}
\operatorname{VDir}\left(\mathrm{cl}_{\omega(x)} J(F, E)\right)=<U_{2}, U_{3}>, \tag{1}
\end{equation*}
$$

then $\kappa(x)=0$.

Proof. We have $\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right)>\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} f\right)$ and $\operatorname{cl}_{\omega(x)}\left(u_{1} \phi\right) \in k(x)\left[U_{1}, U_{2}^{p}, U_{3}^{p}\right]$, since $\epsilon(x)=\omega(x)$. As $\operatorname{ord}_{\eta(x)}\left(u_{1} \phi\right)=\omega(x), U_{1}$ divides $\mathrm{cl}_{\omega(x)} J(f, E, x)$, so $U_{1} \in \operatorname{VDir}(x)$. As $F \in$ $k(x)\left[u_{2}, u_{3}^{p}\right], \operatorname{cl}_{\omega(x)} J(F, E)=k(x) \cdot \frac{\partial F}{\partial U_{2}} \neq 0$ by (1).

By the Euler identity, $(1+\omega(x)) F=U_{2} \frac{\partial F}{\partial U_{2}} \neq 0$, whence $1+\omega(x) \not \equiv 0 \bmod p$. We get $F=U_{2} F^{\prime}\left(U_{2}, U_{3}\right)$, and claim that $\operatorname{VDir}\left(F^{\prime}\right)=<U_{2}, U_{3}>$. If not, then $F^{\prime} \in k(x) \cdot\left(\lambda_{2} U_{2}+\lambda_{3} U_{3}\right)^{\omega(x)}$ for some $\lambda_{2}, \lambda_{3} \in k(x)$. Since $F^{\prime} \in k(x)\left[U_{2}, U_{3}^{p}\right]$, we would have $\lambda_{3}=0$ or $\omega(x) \equiv 0 \bmod p$, which both contradict (1).

Let $e: X^{\prime} \rightarrow X$ be the blowing up along x. By II.1.1, a point $x^{\prime} \in X^{\prime}$ is very near x only if it maps to the strict transform of $\operatorname{div}\left(u_{1}\right)$.

We first look at the chart with origin $\left(X^{\prime}=\frac{X}{u_{2}}, u_{1}^{\prime}=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}=u_{2}, u_{3}^{\prime}=\frac{u_{3}}{u_{2}}\right)$. Then $E^{\prime}:=$ $\left(e^{-1} E\right)_{\mathrm{red}}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right), H\left(x^{\prime}\right)=u_{1}^{\prime a(1)} u_{2}^{\prime a(1)+\omega(x)-p}$ and there is an expression

$$
\begin{equation*}
H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{2}^{\prime} F\left(1, u_{3}^{\prime}\right)+u_{1}^{\prime} \Phi\left(u_{1}^{\prime}, 1, u_{3}^{\prime}\right)+u_{1}^{\prime} u_{2}^{\prime} \phi^{\prime}+u_{2}^{\prime 2} \psi^{\prime} \tag{2}
\end{equation*}
$$

with $\phi^{\prime}, \psi^{\prime} \in \widehat{S^{\prime}}, \Phi:=\operatorname{cl}_{\omega(x)-1} \phi$. We pick local coordinates $\left(u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}:=P\left(1, u_{3}^{\prime}\right)\right)$ at x^{\prime}, with $P \in k(x)\left[U_{2}, U_{3}\right]$ homogeneous, irreducible and unitary in U_{3}.

If $P \neq U_{3}$, we may have to perform a translation $Z^{\prime}:=X^{\prime}-\theta^{\prime}, \theta^{\prime} \in k\left(x^{\prime}\right)\left[\left[u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right]\right]$ to get $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime} ; Z^{\prime}\right)$ minimal. Then f^{\prime} is changed into $f_{Z^{\prime}}:=f^{\prime}+\theta^{\prime p}-\theta^{\prime} g^{\prime p-1}$ and there is an expansion

$$
H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}=u_{2}^{\prime} F_{Z^{\prime}}\left(v^{\prime}\right)+u_{1}^{\prime} \Phi_{Z^{\prime}}\left(u_{1}^{\prime}, v^{\prime}\right)+u_{1}^{\prime} u_{2}^{\prime} \phi_{Z^{\prime}}^{\prime}+u_{2}^{\prime 2} \psi_{Z^{\prime}}^{\prime}
$$

with $F_{Z^{\prime}}(v) \in k\left(x^{\prime}\right)\left[\left[v^{\prime}\right]\right], \Phi_{Z^{\prime}}\left(u_{1}^{\prime}, v^{\prime}\right) \in k\left(x^{\prime}\right)\left[\left[v^{\prime}\right]\right]\left[u_{1}^{\prime}\right]$.
As $\omega^{\prime}(x)=2, u_{1}^{\prime} u_{2}^{\prime}$ divides $H\left(x^{\prime}\right)^{-1} g^{\prime p}$. Moreover, we have

$$
\begin{equation*}
(a(1), a(1)+1+\omega(x)) \not \equiv(0,0) \bmod p \tag{3}
\end{equation*}
$$

since $1+\omega(x) \not \equiv 0 \bmod p$, so the monomial $H\left(x^{\prime}\right) u_{2}^{\prime}$ is not a $p^{t h}$-power. Hence

$$
\begin{equation*}
F_{Z^{\prime}}\left(v^{\prime}\right)=F\left(1, u_{3}^{\prime}\right) \tag{4}
\end{equation*}
$$

By (2) and (4), we have

$$
H\left(x^{\prime}\right)^{-1} u_{1}^{\prime} \frac{\partial f_{Z^{\prime}}}{\partial u_{1}^{\prime}} \equiv H\left(x^{\prime}\right)^{-1} u_{1}^{\prime} \frac{\partial H\left(x^{\prime}\right) u_{2}^{\prime} F\left(1, u_{3}^{\prime}\right)}{\partial u_{1}^{\prime}} \equiv a(1) u_{2}^{\prime} F\left(1, u_{3}^{\prime}\right) \bmod \left(u_{1}^{\prime}, u_{2}^{\prime 2}\right)
$$

Note that

$$
H\left(x^{\prime}\right)^{-1} u_{1}^{\prime} \frac{\partial H\left(x^{\prime}\right) u_{2}^{\prime} F\left(1, u_{3}^{\prime}\right)}{\partial u_{1}^{\prime}}=u_{2}^{-\omega(x)} H(x)^{-1} u_{1} \frac{\partial H(x) F\left(u_{2}, u_{3}\right)}{\partial u_{1}}=a(1) u_{2}^{-\omega(x)} F\left(u_{2}, u_{3}\right)
$$

Similarly,

$$
H\left(x^{\prime}\right)^{-1} u_{2}^{\prime} \frac{\partial f_{Z^{\prime}}}{\partial u_{2}^{\prime}} \equiv H\left(x^{\prime}\right)^{-1} u_{2}^{\prime} \frac{\partial H\left(x^{\prime}\right) u_{2}^{\prime} F\left(1, u_{3}^{\prime}\right)}{\partial u_{2}^{\prime}} \equiv(a(1)+1+\omega(x)) u_{2}^{\prime} F\left(1, u_{3}^{\prime}\right) \bmod \left(u_{1}^{\prime}, u_{2}^{\prime 2}\right)
$$

and

$$
H\left(x^{\prime}\right)^{-1} u_{2}^{\prime} \frac{\partial H\left(x^{\prime}\right) u_{2}^{\prime} F\left(1, u_{3}^{\prime}\right)}{\partial u_{2}^{\prime}}=(a(1)+1+\omega(x)) u_{2}^{-\omega(x)} F\left(u_{2}, u_{3}\right)
$$

since $H\left(x^{\prime}\right)^{-1} u_{2}^{\prime} \frac{\partial H\left(x^{\prime}\right) u_{2}^{\prime} F\left(1, u_{3}^{\prime}\right)}{\partial u_{2}^{\prime}}=u_{2}^{-\omega(x)} H(x)^{-1} \sum_{1 \leqslant i \leqslant 3} u_{i} \frac{\partial H(x) F\left(u_{2}, u_{3}\right)}{\partial u_{i}}$ and $F \in k(x)\left[u_{2}, u_{3}^{p}\right]$. By (3) and the above computations,

$$
\begin{equation*}
u_{2}^{-\omega(x)} F\left(u_{2}, u_{3}\right)=u_{2}^{\prime} F\left(1, u_{3}^{\prime}\right) \in J\left(f^{\prime}, E^{\prime}, x^{\prime}\right)+\left(u_{1}^{\prime}, u_{2}^{\prime 2}\right) \tag{5}
\end{equation*}
$$

As $F=u_{2} F^{\prime}\left(u_{2}, u_{3}\right)$ and $\operatorname{VDir}\left(F^{\prime}\right)=<U_{2}, U_{3}>$, we have $\operatorname{ord}_{v^{\prime}} F\left(1, u_{3}^{\prime}\right) \leqslant \omega(x)-1$. If x^{\prime} is very near x, we get from (5) that

$$
\begin{equation*}
\operatorname{ord}_{v^{\prime}} F\left(1, u_{3}^{\prime}\right)=\omega(x)-1 \tag{6}
\end{equation*}
$$

thus $\epsilon\left(x^{\prime}\right)=\omega\left(x^{\prime}\right)$ and therefore $\omega(x)-1 \equiv 0 \bmod p$. Necessarily $\omega(x) \geqslant p+1$, since U_{3}^{p} explicitly appears in the form $F^{\prime} \in k(x)\left[U_{2}, U_{3}\right]_{\omega(x)}$.

As $\omega(x)+1 \not \equiv 0 \bmod p$, we have $p \geqslant 3$. We resume the argument at the beginning of case 2 , end of the proof of proposition II.3: equation (6) implies that x^{\prime} is rational over x unless possibly if $\omega(x) \leqslant 3$. But here $\omega(x) \geqslant p+1 \geqslant 4$, since $p \geqslant 3$.

The argument at the beginning of II.3.2 then shows that, after possibly changing u_{3} with $u_{3}+\lambda u_{2}, \lambda \in S$ invertible, we may assume that $x^{\prime}=\left(\frac{X}{u_{2}}, \frac{u_{1}}{u_{2}}, u_{2}, \frac{u_{3}}{u_{2}}\right)$ is the origin of the chart (i.e. $P=U_{3}$ with notations as above). Hence $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is already minimal and we turn back to equation (2): since x^{\prime} is very near x, we have

$$
\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} f^{\prime}\right)=\operatorname{ord}_{\left(u_{1}^{\prime}, u_{3}^{\prime}\right)}\left(u_{1}^{\prime} \Phi\left(u_{1}^{\prime}, 1, u_{3}^{\prime}\right)\right)=\omega(x)
$$

and II.3.3 gives $\tau\left(x^{\prime}\right)=3$, so $\kappa\left(x^{\prime}\right)=0$.
We finally turn to the point at infinity $x^{\prime}=\left(X^{\prime}=\frac{X}{u_{3}}, u_{1}^{\prime}=\frac{X}{u_{3}}, u_{2}^{\prime}=\frac{u_{2}}{u_{3}}, u_{3}^{\prime}=u_{3}\right)$. We get

$$
H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{3}^{\prime} F\left(u_{2}^{\prime}, 1\right)+u_{1}^{\prime} \Phi\left(u_{1}^{\prime}, u_{2}^{\prime}, 1\right)+u_{1}^{\prime} u_{3}^{\prime} \phi^{\prime}+u_{3}^{\prime 2} \psi^{\prime}
$$

with $\phi^{\prime}, \psi^{\prime} \in \widehat{S^{\prime}}, \Phi:=\operatorname{cl}_{\omega(x)-1} \phi$. This is the origin of a chart, so $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal. As $F \in k(x)\left[u_{2}, u_{3}^{p}\right]$ and $F \notin k(x)\left[u_{2}\right]$, we have $\operatorname{ord}_{\left(u_{2}^{\prime}, u_{3}^{\prime}\right)}\left(u_{3}^{\prime} F\left(u_{2}^{\prime}, 1\right)\right) \leqslant 1+\omega(x)-p<\omega(x)$, so x^{\prime} is not very near x.
II. 5 Proposition. Let $(a(1), a(2), a(3)) \in \mathbb{N}^{3}$ and $H:=u_{1}^{a(1)} u_{2}^{a(2)} u_{3}^{a(3)} \in k(x)\left[u_{1}, u_{2}, u_{3}\right]$. Let $(a, \omega) \in \mathbb{N}^{2}$ satisfy $0<a<\omega$ and $F \in k(x)\left[u_{2}, u_{3}\right]$ be homogeneous of degree a (so $F \neq 0$). We assume that

$$
\begin{equation*}
\psi:=H u_{1}^{\omega-a} F\left(u_{2}, u_{3}\right) \notin\left(k(x)\left[u_{1}, u_{2}, u_{3}\right]\right)^{p} . \tag{1}
\end{equation*}
$$

With conventions on derivations as in chapter 1 II.3, we have $\tau(W) \geqslant 2$, where

$$
\left.W:=<\left\{H^{-1} \lambda_{i} \frac{\partial \psi}{\partial \lambda_{i}}\right)\right\}_{1 \leqslant i \leqslant s}>\subseteq k(x)\left[u_{1}, u_{2}, u_{3}\right]_{\omega} .
$$

Assume moreover that

$$
\begin{equation*}
H u_{1}^{\omega-a}\left(F\left(u_{2}, u_{3}\right)-G_{i}\left(u_{i}\right)\right) \notin\left(k(x)\left[u_{1}, u_{2}, u_{3}\right]\right)^{p} \tag{2}
\end{equation*}
$$

for all $G_{i} \in k(x)\left[u_{i}\right]$ and each $i=2,3$. Then $\tau(W)=3$ except possibly if one of the following conditions is satisfied:
(i) $a \not \equiv 0 \bmod p, a(1)+\omega-a \equiv 0 \bmod p, a(2) a(3) \not \equiv 0 \bmod p$ and $\widehat{a(2)}+\widehat{a(3)}+\widehat{a}=p$ where $\widehat{\alpha} \in\{0, \ldots, p-1\}$ denotes the remainder of the division of the integer α by p. In particular $p \geqslant 3$; (ii) $a \equiv 0 \bmod p$ and

$$
\psi-c H u_{1}^{\omega-a}\left(u_{2}+\mu u_{3}\right)^{a} \in\left(k(x)\left[u_{1}, u_{2}, u_{3}\right]\right)^{p}
$$

for some $c, \mu \in k(x)-\{0\}$. In particular, $\operatorname{VDir}(W)=<u_{1}, u_{2}+\mu u_{3}>$.
Proof. Let

$$
H^{-1} \lambda_{i} \frac{\partial \psi}{\partial \lambda_{i}}=: u_{1}^{\omega-a} F_{i}\left(u_{2}, u_{3}\right) \in W
$$

where $F_{i} \in k(x)\left[u_{2}, u_{3}\right]_{a}$. By (1) and the assumption $a>0, k(x) \cdot u_{1} \subset \operatorname{VDir}(W)$ (inclusion is necessarily strict), so $\tau(x) \geqslant 2$ and the first part of the proposition is proved.

Assume now that $\tau(W)=2$. Then all F_{i} 's are proportional to some $\left(u_{2}+\mu u_{3}\right)^{a}, \mu \neq 0$ by (2). Let us denote

$$
\begin{equation*}
F_{i}=: d_{i}\left(u_{2}+\mu u_{3}\right)^{a} \tag{3}
\end{equation*}
$$

where $d_{i} \neq 0$ for some $i, 1 \leqslant i \leqslant s$.
II.5.1 Assume that $a \equiv 0 \bmod p$. Let $c \in k(x)$ be such that $\operatorname{deg}_{u_{2}}\left(F-c\left(u_{2}+\mu u_{3}\right)^{a}\right)<a$. Since $a \equiv 0 \bmod p$, we have

$$
H^{-1} \lambda_{i} \frac{\partial H c\left(u_{2}+\mu u_{3}\right)^{a} u_{1}^{\omega-a}}{\partial \lambda_{i}}=: c_{i} u_{1}^{\omega-a}\left(u_{2}+\mu u_{3}\right)^{a}
$$

$$
H u_{1}^{\omega-a}\left(F\left(u_{2}, u_{3}\right)-c\left(u_{2}+\mu u_{3}\right)^{a}\right) \in\left(k(x)\left[u_{1}, u_{2}, u_{3}\right]\right)^{p}
$$

which proves (ii).
II.5.2 Assume now that $a \not \equiv 0 \bmod p$. Let us denote $\alpha(j) \in k(x)$ the coefficient of u_{j}^{a} in $F, j=2,3$. By (3), we have $\alpha(2) \alpha(3) \neq 0$. Computing the coefficient of u_{j}^{a} in F_{1}, F_{2}, F_{3} for $j=2$, 3 , the following couples must be proportional:
$v_{1}:=((a(1)+\omega-a) \alpha(2),(a(1)+\omega-a) \alpha(3))$,
$v_{2}:=((a(2)+a) \alpha(2), a(2) \alpha(3))$, and
$v_{3}:=(a(3) \alpha(2),(a(3)+a) \alpha(3))$.
Since $\operatorname{det}\left(v_{1}, v_{2}\right)=0$ and $a \not \equiv 0 \bmod p$, we have $a(1)+\omega-a \equiv 0 \bmod p$ and we are thus reduced to a question on $u_{2}^{a(2)} u_{3}^{a(3)} F\left(u_{2}, u_{3}\right)$. Since $\operatorname{det}\left(v_{2}, v_{3}\right)=0$, we have

$$
\begin{equation*}
a(2)+a(3)+a \equiv 0 \bmod p \tag{4}
\end{equation*}
$$

Suppose $a(2)+a \equiv 0 \bmod p$. Then $a(3) \equiv 0 \bmod p$ by (4). The Euler identity applied to $u_{2}^{a(2)} F\left(u_{2}, u_{3}\right)$ gives

$$
F_{2}+u_{3} \frac{\partial F}{\partial u_{3}}=0
$$

On the other hand, we have $\operatorname{deg}_{u_{2}} F_{2}<a$, so $F_{2}=0$, and we get $\frac{\partial F}{\partial U_{3}}=0$, so $a=\operatorname{deg}_{U_{3}} F \equiv 0 \bmod p$, since $\alpha(3) \neq 0$: a contradiction. Hence $a(2)+a \not \equiv 0 \bmod p$. Mutatis mutandis, $a(3)+a \not \equiv 0 \bmod p$. All this, together with (4), leads to $a(2) a(3) \not \equiv 0 \bmod p$.

Let $a=: a_{0}+a_{1} p+\ldots+a_{m} p^{m}$ be the p-adic expansion of $a, a_{i} \in\{0, \ldots, p-1\}, a_{0} \neq 0$. For each $j \in \mathbb{N}, 0 \leqslant j \leqslant a$, let $j=: j_{0}+j_{1} p+\ldots+j_{m} p^{m}$ be the p-adic expansion of j. As

$$
(X+Y)^{a}=(X+Y)^{a_{0}}\left(X^{p}+Y^{p}\right)^{a_{1}} \cdots\left(X^{p^{m}}+Y^{p^{m}}\right)^{a_{m}}
$$

in \mathbb{Z} / p, we have $\binom{a}{j} \equiv\binom{a_{0}}{j_{0}}\binom{a_{1}}{j_{1}} \cdots\binom{a_{m}}{j_{m}} \bmod p$. Then, for each $j, 0 \leqslant j \leqslant \widehat{a}<p$, we have $\binom{a}{j} \equiv\binom{\widehat{a}}{j} \not \equiv 0 \bmod p$.

Let $F=: \sum_{0 \leqslant j \leqslant a} \gamma_{j} u_{2}^{j} u_{3}^{a-j}$. Since $a(2)+a \not \equiv 0 \bmod p$, we have $d_{2} \neq 0$ in $F_{2}=d_{2}\left(u_{2}+\mu u_{3}\right)^{a}$. Computing explicitly F_{2}, we get

$$
\gamma_{j}(a(2)+j)=d_{2}\binom{a}{j} \neq 0
$$

whenever $0 \leqslant j \leqslant \widehat{a}<p$, hence $a(2)+j \not \equiv 0 \bmod p$. We deduce $\widehat{a(2)}+\widehat{a}<p$, since $a(2)+a \not \equiv 0 \bmod p$. By (4), $\widehat{a(2)}+\widehat{a(3)}+\widehat{a}=p$.

CHAPTER 3: Resolution when there is transverseness

In all this chapter, we assume that $x \in \Sigma_{p}, \Omega(x)=(\omega(x), 2)$ and that the r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of \widehat{R} is such that $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$ and the polyhedron $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal.

We naturally define "transverseness" for $J(f, E)$ by the following property:

$$
\begin{equation*}
J(f, E) \text { is transverse } \Leftrightarrow \operatorname{cl}_{\omega(x)} J(f, E) \nsubseteq\left(\left\{U_{i} \mid \operatorname{div}\left(u_{i}\right) \subseteq E\right\}\right) . \tag{1}
\end{equation*}
$$

This is our definition of $\kappa(x)=4$ in III. 2 below. A slightly more general definition can be given adjoining to (1) those cases when $\epsilon(x)=\omega(x)$ and

$$
\begin{equation*}
\mathrm{cl}_{\omega(x)} J(f, E, x) \nsubseteq k(x)\left[\left\{U_{i} \mid \operatorname{div}\left(u_{i}\right) \subseteq E\right\}\right] . \tag{2}
\end{equation*}
$$

This is our definition of $\kappa(x)=2$ (i) in $\mathbf{I} .1$ below. Under each assumption (1) or (2), we have $E \subseteq \operatorname{div}\left(u_{1} u_{2}\right)$ up to renumbering components of E.

Two main difficulties arise: on the one hand, transverseness as defined above is not preserved by permissible blowing ups at very near points, and we will have to use those nonpermissible blowing ups specified in chapter 1, III in resolving the $\kappa(x)=3$ case (section II below); on the other hand, some easy reductions (corollary I. 3 and section III) focus our attention on those cases where $E \subseteq \operatorname{div}\left(u_{1} u_{2}\right), J(f, E) \equiv\left(u_{3}^{\omega(x)}\right) \bmod \left(u_{1}, u_{2}\right)$ and $\tau(x)=1$. These in turn contain two very different subcases:
$\kappa(x)=2$, which contains again two subcases:
Case ($\left.{ }^{*} 1\right)$ or $\left({ }^{*} 2\right):\left(H(x)^{-1} f\right) \equiv\left(u_{3}^{\omega(x)}\right) \bmod \left(u_{1}, u_{2}\right), E=\operatorname{div}\left(u_{1}\right)$ or $E=\operatorname{div}\left(u_{1} u_{2}\right)$, and
Case $\left({ }^{*} 3\right):\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right) \equiv\left(u_{3}^{\omega(x)}\right) \bmod \left(u_{1}\right), E=\operatorname{div}\left(u_{1}\right), \omega(x) \equiv 0 \bmod p ;$
$\kappa(x)=3:\left(H(x)^{-1} f\right) \equiv\left(u_{3}^{1+\omega(x)}\right) \bmod \left(u_{1}, u_{2}\right), 1+\omega(x) \not \equiv 0 \bmod p$.
Unfortunately, these assumptions are not stable by blowing up and we still have to introduce more general definitions of $\kappa(x)=2,3$. We recall that, κ being a multiform function, one may have at the same time $\kappa(x) \in\{2,3,4\}$ and $\kappa(x) \leqslant 1$.

I. Resolution of the case $\kappa(x)=2$.

I. 1 Definition of $\kappa(x)=2$. We say that $\kappa(x)=2$ if one of the following (mutually exclusive) conditions is satisfied:
(i) $\epsilon(x)=\omega(x), E \subseteq \operatorname{div}\left(u_{1} u_{2}\right), \operatorname{VDir}(x) \nsubseteq<\left\{U_{i} \mid \operatorname{div}\left(u_{i}\right) \subseteq E\right\}>$;
(ii) $\epsilon(x)=1+\omega(x), E=\operatorname{div}\left(u_{1}\right)$ and, for a suitable r.s.p. $\left(u_{1}, u_{2}, u_{3}\right)$ of \widehat{S} with $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ minimal,

$$
\mathrm{cl}_{\omega(x)}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right)=\Phi\left(U_{2}, U_{3}\right)+U_{1} \Psi\left(U_{1}, U_{2}, U_{3}\right),
$$

where $\Phi \in k(x)\left[U_{2}, U_{3}^{p}\right] \backslash k(x)\left[U_{2}\right]$, and $U_{3} \in \operatorname{VDir}(\Phi)$.
The reader verifies that this definition includes the two subcases of $\kappa(x)=2$ stated above in the introduction of this chapter, and that $\kappa(x) \neq 2$ in the example $f=u_{1}^{a}\left(\left(u_{2}+\lambda u_{3}\right)^{1+\omega(x)}+\right.$ $\{$ higher order terms $\}$), $\lambda \neq 0$. We first recollect from definition II.1.3 in chapter 2 and related comments:

I.1.1 Remarks.

(i) If $\kappa(x)=2$ and $\epsilon(x)=\omega(x)$ then: $\left.\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)>\omega(x) ; \operatorname{Vir}(x):=\operatorname{VDir}^{\left(\operatorname{cl}_{\omega(x)}\right.} J(f, E, x)\right)$ is independent of any choice of parameters with $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ minimal and $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$.
(ii) If $\kappa(x)=2, \epsilon(x)=1+\omega(x)$ and $\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)=\epsilon(x)\left(\operatorname{resp} \cdot \operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)>\epsilon(x)\right)$, then

$$
\operatorname{VDir}(x):=\operatorname{VDir}\left(\operatorname{cl}_{\omega(x)} J(f, E)\right)+k(x) \cdot U_{1}\left(\operatorname{resp} . \operatorname{Vir}(x):=\operatorname{VDir}\left(\operatorname{cl}_{\omega(x)} J(f, E)\right)\right)
$$

is independent of any choice of the parameters satisfying the conditions in $\mathbf{I} \mathbf{1}$ (ii) above.
I.1.2 Definition. Assume that $\kappa(x)=2$. We say that condition $\left({ }^{*}\right)$ holds if there exists a r.s.p. $\left(u_{1}, u_{2}, u_{3}\right)$ of \widehat{S} (with $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ minimal) such that one of the following conditions is satisfied:
(i) $\epsilon(x)=\omega(x),\left(H(x)^{-1} f\right) \equiv\left(u_{3}^{\omega(x)}\right) \bmod \left(u_{1}, u_{2}\right)$;
(ii) $\epsilon(x)=1+\omega(x)$ and $\operatorname{deg}_{U_{3}} \Phi=\omega(x)$ in $\mathbf{I} .1$ (ii).
I. 2 Proposition. Assume that $\kappa(x)=2$ and condition $\left({ }^{*}\right)$ does not hold. We have $\kappa(x) \leqslant 1$ or the following holds:
(i) $\omega(x)>p, \tau(x)=2$ and $U_{3} \in \operatorname{VDir}(x)$ for a suitable choice of parameters $\left(u_{1}, u_{2}, u_{3}\right)$ satisfying
I.1. Moreover, we have $\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)>\epsilon(x)$;
(ii) there is no permissible curve \mathcal{C} containing x.

Let $e: X^{\prime} \rightarrow X$ be the blowing up along x and $x^{\prime} \in e^{-1}(x)$ be very near x.
(iii) if $\left(E=\operatorname{div}\left(u_{1}\right)\right.$ and $U_{1} \notin \operatorname{VDir}(x)$), then $\epsilon(x)=1+\omega(x)$ and $\operatorname{VDir}(x)=<U_{2}, U_{3}>$ for a suitable choice of the parameters satisfying $\mathbf{I} .1$ (ii). We have $x^{\prime}=\left(X^{\prime}=\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, u_{2}^{\prime}=\frac{u_{2}}{u_{1}}, u_{3}^{\prime}=\right.$ $\left.\frac{u_{3}}{u_{1}}\right), \kappa\left(x^{\prime}\right)=2$, and either condition $\left(^{*}\right)$ holds at x^{\prime} or $\operatorname{VDir}\left(x^{\prime}\right) \equiv<U_{2}^{\prime}, U_{3}^{\prime}>\bmod \left(U_{1}^{\prime}\right)$;
(iv) if $\left(E=\operatorname{div}\left(u_{1} u_{2}\right)\right.$ and $\left.\operatorname{VDir}(x)=<U_{2}+\lambda U_{1}, U_{3}>, \lambda \neq 0\right)$, then $x^{\prime}=\left(X^{\prime}=\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, v_{2}^{\prime}=\right.$ $\left.\frac{u_{2}}{u_{1}}+\lambda, u_{3}^{\prime}=\frac{u_{3}}{u_{1}}\right), \kappa\left(x^{\prime}\right)=2$, and either condition $\left(^{*}\right)$ holds at x^{\prime} or x^{\prime} is in case (iii) above;
(v) if $\left(\operatorname{div}\left(u_{1}\right) \subseteq E \subseteq \operatorname{div}\left(u_{1} u_{2}\right)\right.$ and $\left.\operatorname{VDir}(x)=<U_{1}, U_{3}>\right)$, then $x^{\prime}=\left(X^{\prime}=\frac{X}{u_{2}}, u_{1}^{\prime}=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}=\right.$ $\left.u_{2}, u_{3}^{\prime}=\frac{u_{3}}{u_{1}}\right), \kappa\left(x^{\prime}\right)=2$, and either condition $\left(^{*}\right)$ holds at x^{\prime} or $\operatorname{VDir}\left(x^{\prime}\right) \equiv<U_{1}^{\prime}, U_{3}^{\prime}>\bmod \left(U_{2}^{\prime}\right)$.
I.2.1 Proof of (i). If $\epsilon(x)=1+\omega(x)$, then $\omega(x) \geqslant p$ by definition I. 1 (ii), and $\omega(x)=p$ implies $\operatorname{deg}_{U_{3}} \Phi=p$, i.e. condition $\left({ }^{*}\right)$ holds. If $\epsilon(x)=\omega(x) \leqslant p$, we have

$$
\Phi_{0}:=\mathrm{cl}_{\omega(x)}\left(H(x)^{-1} f\right) \notin k(x)\left[\left\{U_{i} \mid \operatorname{div}\left(u_{i}\right) \subseteq E\right\}\right]
$$

by definition $\mathbf{I} .1$ (i), say U_{3} occurs in the expansion of Φ_{0}. Since $\epsilon(x)=\omega(x)$, we must have $\frac{\partial \Phi_{0}}{\partial U_{3}}=0$, so $\operatorname{deg}_{U_{3}} \Phi_{0} \geqslant p$, i.e. we have $\omega(x)=p$ and condition $\left(^{*}\right)$ holds.

In all cases, we have $U_{3}+\lambda_{1} U_{1}+\lambda_{2} U_{2} \in \operatorname{VDir}(x)$ for some $\lambda_{1}, \lambda_{2} \in k(x)$ (after possibly renaming variables if $\epsilon(x)=\omega(x)$ and $E=\operatorname{div}\left(u_{1}\right)$). If $\epsilon(x)=\omega(x)$ (resp. $\epsilon(x)=1+\omega(x)$), then $\mathrm{cl}_{\omega(x)} J(f, E, x)$ (resp. $\mathrm{cl}_{\omega(x)} J(f, E)$) is not generated by an $\omega(x)^{t h}$-power since condition (*) does not hold by assumption, so $\tau(x) \geqslant 2$. Therefore $\tau(x)=2$ if $\kappa(x)>0$. Furthermore, if we are in case I.1(ii), we must have $\operatorname{VDir}(\Phi)=<U_{2}, U_{3}>$ since $U_{3} \in \operatorname{VDir}(\Phi)$ but $\operatorname{deg}_{U_{3}} \Phi<\omega(x)$ by assumption.

If $\epsilon(x)=\omega(x)$, then after replacing u_{3} with $v:=u_{3}+\lambda_{1} u_{1}+\lambda_{2} u_{2}$, then picking $Z:=$ $X-\theta$ in order to have $\Delta\left(h ; u_{1}, u_{2}, v ; Z\right)$ minimal, we get $V \in \operatorname{VDir}(x)$. If $\epsilon(x)=1+\omega(x)$ and $\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)=\epsilon(x)$, then $\tau^{\prime}(x)=3$, so $\kappa(x)=0$ by corollary II.1.4 in chapter 2 . Therefore $\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)>\epsilon(x)$ and the end of the proof goes as in the case $\epsilon(x)=\omega(x)$.
I.2.2 Proof of (ii). If \mathcal{C} is permissible of the first kind (for example if $\epsilon(x)=\omega(x)$, cf. chapter 1 II.5.1), we have

$$
\operatorname{cl}_{\epsilon(x)}\left(H(x)^{-1} f\right) \in k(x)\left[\left\{U \in m_{S} \backslash m_{S}^{2} \mid \mathcal{C} \subseteq \operatorname{div}(u)\right\}\right] .
$$

By chapter 1 II.5.4.3, there is no point very near x on the blowing up of X along \mathcal{C} because $\tau(x) \geqslant 2$, so $\kappa(x)=1$.

If \mathcal{C} is permissible of the second kind (then $\epsilon(x)=1+\omega(x)$, cf. chapter 1 II.5.1), we have

$$
\mathrm{cl}_{\omega(x)}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right) \in k(x)\left[\left\{U \in m_{S} \backslash m_{S}^{2} \mid \mathcal{C} \subseteq \operatorname{div}(u)\right\}\right]
$$

where partial must be w.r.t. u_{2} because $\Phi \in k(x)\left[U_{2}, U_{3}^{p}\right]$. Hence

$$
\mathrm{cl}_{\epsilon(x)}\left(H(x)^{-1} f\right) \in k(x)\left[U_{1}, U_{3}\right]_{1+\omega(x)}+U_{2} k(x)\left[U_{1}, U_{3}\right]_{\omega(x)}
$$

by definition of permissibility of the second kind, so $\Phi \in k(x)\left[U_{3}\right]$. This proves that condition $\left({ }^{*}\right)$ holds.
I.2.3 Proof of (iii). It can be assumed that $\operatorname{VDir}(x)=<U_{2}, U_{3}>$ after possibly changing coordinates, the assumption being unchanged. By chapter 2, II.2, we have $\kappa(x)=0$ if $\epsilon(x)=\omega(x)$, so $\epsilon(x)=1+\omega(x)$.

By chapter 1 II.5.4.3, $x^{\prime}=\left(X^{\prime}=\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, u_{2}^{\prime}=\frac{u_{2}}{u_{1}}, u_{3}^{\prime}=\frac{u_{3}}{u_{1}}\right)$ if x^{\prime} is very near x. We have $E^{\prime}:=\left(e^{-1} E\right)_{\mathrm{red}}=\operatorname{div}\left(u_{1}^{\prime}\right)$. As we are at the origin of a chart, $\Delta\left(u_{1}^{-p} h ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal. Let us denote $f=u_{1}^{a(1)}\left(F\left(u_{1}, u_{2}, u_{3}\right)+\phi\right)$, where $F \in k(x)\left[u_{1}, u_{2}, u_{3}\right]$ is homogeneous of degree $1+\omega(x), \operatorname{ord}_{\eta(x)} \phi \geqslant 2+\omega(x)$. Then $f^{\prime}=u_{1}^{a(1)+1+\omega(x)-p}\left(F\left(1, u_{2}^{\prime}, u_{3}^{\prime}\right)+u_{1}^{\prime} \phi^{\prime}\right)$, and we have

$$
\min \left\{\operatorname{ord}_{\left(u_{2}^{\prime}, u_{3}^{\prime}\right)} F\left(1, u_{2}^{\prime}, u_{3}^{\prime}\right), \operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(u_{1}^{\prime} \phi^{\prime}\right) \geqslant \omega(x)\right.
$$

since x^{\prime} is very near x.
If $\operatorname{ord}_{\left(u_{2}^{\prime}, u_{3}^{\prime}\right)} F\left(1, u_{2}^{\prime}, u_{3}^{\prime}\right)=\omega(x)$, then $\epsilon\left(x^{\prime}\right)=\omega(x)=\omega\left(x^{\prime}\right)$ and $\kappa\left(x^{\prime}\right)=2$. If condition $\left(^{*}\right)$ holds for x^{\prime} neither w.r.t. u_{2}^{\prime} nor w.r.t. u_{3}^{\prime}, then $U_{2}^{\prime} U_{3}^{\prime}$ divides the nonzero form $\mathrm{cl}_{\omega(x)} F\left(1, u_{2}^{\prime}, u_{3}^{\prime}\right)$, so $\operatorname{VDir}\left(x^{\prime}\right) \equiv<U_{2}^{\prime}, U_{3}^{\prime}>\bmod \left(U_{1}^{\prime}\right)$.

If $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} F\left(1, u_{2}^{\prime}, u_{3}^{\prime}\right)=1+\omega(x)$, then $F \in k(x)\left[u_{2}, u_{3}\right]$ and $\operatorname{VDir}(x)=<U_{2}, U_{3}>$ implies that $\operatorname{VDir}\left(\operatorname{cl}_{\omega(x)} J\left(F\left(u_{2}^{\prime}, u_{3}^{\prime}\right), E^{\prime}\right)\right)=<U_{2}^{\prime}, U_{3}^{\prime}>$. Also note that $U_{1}^{\prime} \in \operatorname{VDir}\left(x^{\prime}\right)$ if $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(u_{1}^{\prime} \phi^{\prime}\right)=$ $\omega(x)$, so $\kappa\left(x^{\prime}\right) \leqslant 1$ in this case by chapter 2, II.3. From now on, $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(u_{1}^{\prime} \phi^{\prime}\right) \geqslant 1+\omega(x)$, so $\epsilon\left(x^{\prime}\right)=1+\omega(x)$. We then have

$$
\operatorname{cl}_{\epsilon\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} \frac{\partial f^{\prime}}{\partial u_{2}^{\prime}}\right)=\Phi\left(U_{2}^{\prime}, U_{3}^{\prime}\right)+U_{1}^{\prime} \Psi^{\prime}\left(U_{1}^{\prime}, U_{2}^{\prime}, U_{3}^{\prime}\right)
$$

for some $\Psi^{\prime} \in k(x)\left[U_{1}^{\prime}, U_{2}^{\prime}, U_{3}^{\prime}\right]$, so $\kappa\left(x^{\prime}\right)=2$ and $\operatorname{VDir}\left(x^{\prime}\right) \equiv<U_{2}^{\prime}, U_{3}^{\prime}>\bmod \left(U_{1}^{\prime}\right)$ as required.
I.2.4 Proof of (iv). By definition of $\kappa(x)=2$, we have $\epsilon(x)=\omega(x)$. Since $\operatorname{VDir}(x)=<U_{2}+$ $\lambda U_{1}, U_{3}>, \lambda \in k(x)-\{0\}, x^{\prime}=\left(X^{\prime}=\frac{X}{u_{1}}, u_{1}^{\prime}, v_{2}^{\prime}=\frac{u_{2}}{u_{1}}+\lambda, u_{3}^{\prime}=\frac{u_{3}}{u_{1}}\right)$ and $E^{\prime}:=\left(e^{-1} E\right)_{\mathrm{red}}=\operatorname{div}\left(u_{1}^{\prime}\right)$. Let us denote $f=u_{1}^{a(1)} u_{2}^{a(2)}\left(F\left(u_{1}, u_{2}, u_{3}\right)+\phi\right)$ where $F \in k(x)\left[u_{1}, u_{2}, u_{3}\right]_{\omega(x)}$ and $\operatorname{ord}_{\eta(x)} \phi \geqslant$ $1+\omega(x)$. We have $F=: \sum_{0 \leqslant i \leqslant\left\lfloor\frac{\omega(x)}{p}\right\rfloor} U_{3}^{p i} F_{i}\left(U_{1}, U_{2}\right)$, where $F_{i} \in k(x)\left[U_{1}, U_{2}\right]_{\omega(x)-p i}$. We get

$$
\begin{equation*}
f^{\prime}=u_{1}^{\prime a(1)+a(2)+\omega(x)-p}\left(v_{2}^{\prime}-\lambda\right)^{a(2)}\left(\sum_{0 \leqslant i \leqslant\left\lfloor\frac{\omega(x)}{p}\right\rfloor} u_{3}^{\prime p i} F_{i}\left(1, v_{2}^{\prime}-\lambda\right)+u_{1}^{\prime} \phi^{\prime}\right) . \tag{1}
\end{equation*}
$$

Let $Z^{\prime}:=X^{\prime}-\theta^{\prime}$ be such that $\Delta\left(h^{\prime} ; u_{1}^{\prime}, v_{2}^{\prime}, u_{3}^{\prime} ; Z^{\prime}\right)$ is minimal, and we let $f_{Z^{\prime}}^{\prime}=f^{\prime}+\theta^{\prime p}-\theta^{\prime} g^{\prime p-1}$ as usual. We consider two cases:

Case 1: $a(1)+a(2)+\omega(x) \not \equiv 0 \bmod p$. The term

$$
{u_{1}^{\prime}}^{a(1)+a(2)+\omega(x)-p}\left(v_{2}^{\prime}-\lambda\right)^{a(2)} \sum_{0 \leqslant i \leqslant\left\lfloor\frac{\omega(x)}{p}\right\rfloor} u_{3}^{\prime p i} F_{i}\left(1, v_{2}^{\prime}-\lambda\right)
$$

in (1) induces unsolvable vertices of $\Delta\left(h^{\prime} ; u_{1}^{\prime}, v_{2}^{\prime}, u_{3}^{\prime} ; Z^{\prime}\right)$, so we have $\omega\left(x^{\prime}\right)=\epsilon\left(x^{\prime}\right)$ since x^{\prime} is very near x. Since $F_{i} \neq 0$ for at least one index $i \geqslant 1$ and condition $\left({ }^{*}\right)$ does not hold, F is not the power of a linear form, hence $\operatorname{VDir}\left(x^{\prime}\right) \equiv<V_{2}^{\prime}, U_{3}^{\prime}>\bmod \left(U_{1}^{\prime}\right)$. By II. 2 of chapter 2, we have $\kappa(x)=0$.

Case 2: $a(1)+a(2)+\omega(x) \equiv 0 \bmod p$. We have $f_{Z^{\prime}}^{\prime} \equiv f^{\prime}+\theta^{\prime p} \bmod \left(u_{1}^{\prime}\right)$, since u_{1}^{\prime} divides $H\left(x^{\prime}\right)^{-1} g^{\prime p}$. Therefore $J\left(f_{Z^{\prime}}^{\prime}, E^{\prime}\right) \equiv J\left(f^{\prime}, E^{\prime}\right) \bmod \left(u_{1}^{\prime}\right)$. Given $D \in \mathcal{D}(x)$, we denote $F_{D}:=$ $\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} D f\right) \in k(x)\left[U_{1}, U_{2}, U_{3}\right]_{\omega(x)}$. By assumption, we may pick $D \in \mathcal{D}(x)$ such that $F_{D} \notin$ $k(x)\left[U_{1}, U_{2}\right]$. If $e^{*} D \in \mathcal{D}\left(x^{\prime}\right)$, then

$$
\bar{F}_{D}^{\prime}:=\operatorname{cl}_{\omega\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1}\left(e^{*} D\right) f_{Z^{\prime}}^{\prime}\right) \bmod \left(U_{1}^{\prime}\right) \in k(x)\left[V_{2}^{\prime}, U_{3}^{\prime p}\right] \backslash k(x)\left[V_{2}^{\prime}\right],
$$

so $\omega\left(x^{\prime}\right)=\epsilon\left(x^{\prime}\right), \kappa\left(x^{\prime}\right)=2$ and $\tau\left(\bar{F}_{D}^{\prime}\right)=2$ if condition $\left(^{*}\right)$ does not hold at x^{\prime}. Then $\kappa\left(x^{\prime}\right)=0$ by chapter 2, II.2.

Assume now that $e^{*} D \notin \mathcal{D}\left(x^{\prime}\right)$ for each such choice of D. We can pick $D \in\left\{u_{1} \frac{\partial}{\partial u_{1}}, u_{2} \frac{\partial}{\partial u_{2}}\right\}$: since $\epsilon(x)=\omega(x)$, we have $F_{\frac{\partial}{\partial u_{3}}}=0$, moreover, x^{\prime} being rational over x, we have (with notations as in chapter 1, II.3)

$$
e^{*} \frac{\partial}{\partial \lambda_{4}}, \ldots, e^{*} \frac{\partial}{\partial \lambda_{s}} \in \mathcal{D}\left(x^{\prime}\right) .
$$

We thus get

$$
\begin{equation*}
\mathrm{cl}_{\omega\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1}\left(e^{*} D\right) f_{Z^{\prime}}^{\prime}\right) \in k(x)\left[U_{1}^{\prime}, V_{2}^{\prime}, U_{3}^{\prime p}\right] \backslash k(x)\left[U_{1}^{\prime}, V_{2}^{\prime}\right] . \tag{2}
\end{equation*}
$$

If $\epsilon(x)=1+\omega(x)$, this proves that $\kappa\left(x^{\prime}\right)=2$. Since condition $\left(^{*}\right)$ does not hold at x, we have $F_{\frac{\omega(x)}{p}}=0$ if $\omega(x) \equiv 0 \bmod p$. Therefore

$$
\begin{equation*}
\mathrm{cl}_{\omega\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1}\left(e^{*} D\right) f_{Z^{\prime}}^{\prime}\right) \in V_{2}^{\prime} k(x)\left[U_{1}^{\prime}, V_{2}^{\prime}, U_{3}^{\prime p}\right], \tag{3}
\end{equation*}
$$

by (2), which proves that $\operatorname{VDir}\left(x^{\prime}\right) \equiv<V_{2}^{\prime}, U_{3}^{\prime}>\bmod \left(U_{1}^{\prime}\right)$. Hence x^{\prime} is in case (iii) of the proposition or $\kappa(x)=0$.

If $\epsilon(x)=\omega(x)$, we expand

$$
H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime}=\phi^{\prime}\left(v_{2}^{\prime}, u_{3}^{\prime}\right)+u_{1}^{\prime} \psi^{\prime},
$$

where $\phi^{\prime} \in k(x)\left[\left[v_{2}^{\prime}, u_{3}^{\prime}\right]\right]$ and $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} \phi^{\prime} \geqslant 1+\omega\left(x^{\prime}\right)$. Since condition (*) does not hold at x, equation (3) above implies that x^{\prime} satisfies the assumptions of chapter 2, II.4, so $\kappa(x)=0$ in this case.
I.2.5 Proof of (v). By I. 1 (ii), we have $\tau(x)=3$ (so $\kappa(x)=0$) if $\epsilon(x)=1+\omega(x)$. Assume now that $\epsilon(x)=\omega(x)$. Since $\operatorname{VDir}(x)=<U_{1}, U_{3}>$, we have $x^{\prime}=\left(X^{\prime}=\frac{X}{u_{2}}, u_{1}^{\prime}=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}=u_{2}, u_{3}^{\prime}=\frac{u_{3}}{u_{2}}\right)$ and $E^{\prime}:=\left(e^{-1} E\right)_{\mathrm{red}}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right)$. We are at the origin of a chart, so $\Delta\left(h ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal. Note that $\mathrm{cl}_{\omega(x)}\left(H(x)^{-1} f\right) \in k(x)\left[U_{1}, U_{3}\right]$, so we get $\epsilon\left(x^{\prime}\right)=\omega\left(x^{\prime}\right), \operatorname{VDir}\left(x^{\prime}\right) \equiv<U_{1}^{\prime}, U_{3}^{\prime}>\bmod \left(U_{2}^{\prime}\right)$, and the conclusion follows.
I. 3 Corollary. Let $X=X_{0} \leftarrow X_{1} \leftarrow \cdots \leftarrow X_{i} \leftarrow \cdots$ be the quadratic sequence along μ. If for each $i \geqslant 1$, the center x_{i} of μ in X_{i} satisfies $\left(x_{i} \in \Sigma_{p}\left(X_{i}\right), \Omega\left(x_{i}\right)=\left(\omega\left(x_{i}\right), 2\right)\right.$ and $\left.\kappa\left(x_{i}\right)=2\right)$, then $\kappa(x) \leqslant 1$ or condition (${ }^{*}$) holds for some $i \geqslant 1$.

Proof. Otherwise, there exists $i_{0} \geqslant 0$ such that either all x_{i} 's are in case (iii) or are in case (v) for $i \geqslant i_{0}$ by I.2. Without loss of generality, it can be assumed that $i_{0}=0$. In case (iii), all x_{i} 's are on the strict transform of a formal curve $\mathcal{C}:=V\left(\widehat{X}, \widehat{u_{2}}, \widehat{u_{3}}\right)$, where $\widehat{X}=X+\sum \lambda_{i} u_{1}^{i}$ and $\widehat{u_{j}}=u_{j}+\sum \lambda_{i j} u_{1}^{i}$ for $j=2,3$. We have $\mathcal{C} \not \subset E$, so x_{i} is a regular point of X_{i} for $i \gg 0$: a contradiction. In case (v), we have $E_{i}=\operatorname{div}\left(u_{1, i} u_{2}\right)$, where E_{i} is the exceptional divisor at x_{i} and $u_{1, i}=u_{2}^{-i} u_{1}$, so

$$
i<\frac{\mu\left(u_{1}\right)}{\mu\left(u_{2}\right)}<\infty,
$$

since the value group of μ is Archimedean: a contradiction.
I. 4 Remark. From now on till the end of section I, we may therefore assume that $(\kappa(x)=2$ and condition $\left(^{*}\right)$ holds at x). In particular, we have $\omega(x) \equiv 0 \bmod p$ by I. 1 and I.1.2. Namely, by I.3, local uniformization in this special case implies local uniformization whenever $\kappa(x)=2$.

I. 5 Well prepared variables, invariants.

Let $m(x)$ be the number of irreducible components of E at x, where $\kappa(x)=2$ and condition $\left.{ }^{*}\right)$ holds at x. There are three different cases:
(*1) $m(x)=1, \epsilon(x)=\omega(x)$;
(*2) $m(x)=2, \epsilon(x)=\omega(x)$;
$\left({ }^{*} 3\right) m(x)=1, \epsilon(x)=1+\omega(x)$. In the following definition, the r.s.p. $\left(u_{1}, u_{2}, u_{3}\right)$ of \widehat{S} is such that $\operatorname{div}\left(u_{1}\right) \subseteq E \subseteq \operatorname{div}\left(u_{1} u_{2}\right)$. Remember that $X \in \widehat{R}$ is such that $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal. We expand

$$
f=: H(x) \sum_{0 \leqslant j \leqslant \omega(x)} u_{3}^{\omega(x)-j} \phi_{j},
$$

where $\phi_{j} \in k\left[\left[u_{1}, u_{2}\right]\right], 1 \leqslant j \leqslant \omega(x), \phi_{0} \in \widehat{S}$. We have ϕ_{0} invertible in cases ($\left.{ }^{*} 1\right)$ or (*2), and $\left(u_{1}, \phi_{0}, u_{3}\right)$ is a r.s.p. of \widehat{S} in case ($\left.{ }^{*} 3\right)$.
I.5.1 Preparation of the variables. We now define well-preparedness of variables in cases (*1) and $\left({ }^{*} 2\right)$, then in case $\left({ }^{*} 3\right)$. Existence of well prepared variables is proved in I. $\mathbf{6}$ below.
I.5.1.1 Definition. In cases ($\left.{ }^{*} 1\right)$ or (${ }^{* 2}$), we say that (X, u_{1}, u_{2}, u_{3}) is well prepared if the following conditions are satisfied:
(wp1) $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal;
(wp2) no vertex $w=\left(w_{1}, w_{2}\right)$ of $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$ is solvable (definition of this polyhedron and of vertex solvability below).

The polygon in (wp2) is defined in this way: given an ideal $I \subseteq \widehat{S}$, let $N P(I) \subset \mathbb{R}_{\geqslant 0}^{3}$ be its Newton polyhedron, i.e. $N P(I)$ is the convex hull of $\left\{\mathbf{s}+\mathbb{R}_{\geqslant 0}^{3}\right\}$, where $\mathbf{s}=:\left(s_{1}, s_{2}, s_{3}\right) \in \mathbb{N}^{3}$ ranges over all monomials $u_{1}^{s_{1}} u_{2}^{s_{2}} u_{3}^{s_{3}}$ appearing with nonzero coefficient in the expansion of some $\phi \in I$.

Assume that moreover $\operatorname{ord}_{u_{3}}\left(I \bmod \left(u_{1}, u_{2}\right)\right)=\omega(x)$. Then $\Delta\left(I ; u_{1}, u_{2} ; u_{3}\right)$ is defined to be $1 / \omega(x)$ times the projection of $N P(I)$ on the first two coordinates plane from the point $(0,0, \omega(x))$. Note: each vertex w of $\Delta\left(I ; u_{1}, u_{2} ; u_{3}\right)$ has coordinates in $\left(\frac{1}{\omega(x)!} \mathbb{N}\right)^{2}$.

It is easily checked that

$$
\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)=\Delta\left(H(x)^{-1}\left(\left\{\lambda_{i} \frac{\partial f}{\partial \lambda_{i}}\right\}_{1 \leqslant i \leqslant s}, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right) .
$$

A vertex $w=\left(w_{1}, w_{2}\right) \in \mathbb{N}^{2}$ of this polygon is then called solvable if there exists $\lambda \in k(x), \lambda \neq 0$, such that following condition is satisfied:

$$
\begin{equation*}
\forall i, 1 \leqslant i \leqslant s, \operatorname{in}_{w}\left(H(x)^{-1} \lambda_{i} \frac{\partial f}{\partial \lambda_{i}}\right)=a_{i}\left(U_{3}-\lambda U_{1}^{w_{1}} U_{2}^{w_{2}}\right)^{\omega(x)}, a_{i} \in k(x) \tag{1}
\end{equation*}
$$

and if

$$
\begin{equation*}
\left(w_{1}, w_{2}\right) \neq \frac{1}{\omega(x)}\left(\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right), \operatorname{ord}_{u_{2}}\left(H(x)^{-1} g^{p}\right)\right) \tag{2}
\end{equation*}
$$

I.5.1.2 Definition. In case (*3), we say that $\left(X, u_{1}, u_{2}, u_{3}\right)$ is well prepared if the following conditions are satisfied:
(wp1) $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal;
(wp2) no "left" vertex $w=\left(w_{1}, w_{2}\right)$ of $\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$ is solvable (definition of this polyhedron, of "left" vertices and of vertex solvability below).

We define $N P\left(u_{2}^{-1} I\right)$ as follows for an ideal $I \subseteq \widehat{S}$ such that
(a) $\operatorname{ord}_{x} I=\operatorname{ord}_{\left(u_{2}, u_{3}\right)}\left(I \bmod \left(u_{1}\right)\right)=\omega(x)+1$, and
(b) $\operatorname{ord}_{u_{3}}\left(\frac{\partial \phi}{\partial u_{2}} \bmod \left(u_{1}, u_{2}\right)\right)=\omega(x)$ for some $\phi \in I$.

The polyhedron $N P\left(u_{2}^{-1} I\right)$ is the convex hull of

$$
\left\{(0,0, \omega(x))+\mathbb{R}_{\geqslant 0}^{3}\right\} \bigcup\left\{\mathbf{s}+\mathbb{R}_{\geqslant 0}^{3}\right\},
$$

where s $=:\left(s_{1}, s_{2}, s_{3}\right) \in \mathbb{N} \times(\mathbb{N} \cup\{-1\}) \times \mathbb{N}$ ranges over all monomials $u_{1}^{s_{1}} u_{2}^{s_{2}} u_{3}^{s_{3}}$ appearing with nonzero coefficient in the expansion of some $u_{2}^{-1} \phi \in u_{2}^{-1} I$ with $0 \leqslant s_{3} \leqslant \omega(x)-1$ (i.e. we disregard all monomials with $s_{3} \geqslant \omega(x)$ distinct from $\left.u_{3}^{\omega(x)}\right)$. Then $\Delta\left(u_{2}^{-1} I ; u_{1}, u_{2} ; u_{3}\right)$ is defined to be $1 / \omega(x)$ times the projection of $N P(I)$ on the first two coordinates plane from the point $(0,0, \omega(x))$ as before, thus allowing vertices with negative second coordinate. If $w=\left(w_{1}, w_{2}\right)$ is a vertex of $\Delta\left(u_{2}^{-1} I ; u_{1}, u_{2} ; u_{3}\right)$, we thus have

$$
w_{2} \in \bigcup_{1 \leqslant i \leqslant \omega(x)}\left(\frac{1}{i} \mathbb{N} \cup\left\{-\frac{1}{i}\right\}\right)
$$

Note that, since $\Phi \in k(x)\left[U_{2}, U_{3}^{p}\right]$ in definition $\mathbf{I} .1$ (ii) and condition (*3) holds, (a) and (b) are verified for $I=H(x)^{-1}\left(f, g^{p}\right)$.

In case $\left({ }^{*} 3\right)$ a vertex $w=\left(w_{1}, w_{2}\right) \in \mathbb{N} \times \mathbb{N}$ is then called solvable if there exists $\lambda \in k(x)$, $\lambda \neq 0$, such that following conditions are satisfied:

$$
\begin{equation*}
\forall i, 1 \leqslant i \leqslant s, \operatorname{in}_{w}\left(H(x)^{-1} u_{2}^{-1} \lambda_{i} \frac{\partial f}{\partial \lambda_{i}}\right)=a_{i}\left(U_{3}-\lambda U_{1}^{w_{1}} U_{2}^{w_{2}}\right)^{\omega(x)}, a_{i} \in k(x) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(w_{1}, w_{2}\right) \neq \frac{1}{\omega(x)}\left(\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right),-1\right) \tag{2}
\end{equation*}
$$

A "left" vertex is a vertex w such that there exists a linear form $L \in\left(\mathbb{R}^{2}\right)^{\vee}, L\left(w_{1}, w_{2}\right)=m w_{1}+n w_{2}$, ($m, n \in \mathbb{Q}_{+}$and $m>n$) with

$$
\{w\}=\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right) \cap\{v \mid L(v)=1\}
$$

All other vertices are called "right" vertices. We have

$$
\begin{equation*}
\operatorname{in}_{w}\left(H(x)^{-1} u_{2}^{-1} \lambda_{i} \frac{\partial H(x) u_{3}^{\omega(x)} \phi_{0}}{\partial \lambda_{i}}\right) \in U_{2}^{-1} k(x)\left[U_{2}, U_{3}\right]_{1+\omega(x)} \tag{3}
\end{equation*}
$$

for each "left" vertex w, since $\epsilon(x)=1+\omega(x)$ and $L(1,0)>L(0,1)$ for linear forms as in the definition of "left" vertices. Actually, the left hand side of (5) is $a_{i} U_{3}^{\omega(x)}$ for some $a_{i} \in k(x)$ if the "left" vertex w is distinct from $(1,0)$. However for "right" vertices, we emphasize the following fact: we only have $\mathrm{in}_{w}\left(H(x)^{-1} u_{2}^{-1} \lambda_{i} \frac{\partial f}{\partial \lambda_{i}}\right) \in U_{2}^{-1} k(x)\left[U_{1}, U_{2}, U_{3}\right]$. For example, assume $F:=\operatorname{cl}_{1+\omega(x)}\left(H(x)^{-1} f\right)$ has an expansion

$$
F=U_{3}^{\omega(x)}\left(a U_{1}+b U_{2}+c U_{3}\right)+\left\{\text { terms of smaller degree in } U_{3}\right\},
$$

with $a \neq 0$. Then for any "right" vertex, we have

$$
\mathrm{in}_{w}\left(H(x)^{-1} u_{2}^{-1} \lambda_{i} \frac{\partial f}{\partial \lambda_{i}}\right)=\left(a_{i} \frac{u_{1}}{u_{2}}+b_{i}\right)\left(u_{3}^{\omega(x)}+\left\{\text { terms of smaller degree in } u_{3}\right\},\right.
$$

with $a_{i} \neq 0, b_{i} \in k(x)$ for some $i, 1 \leqslant i \leqslant s$. Fortunately, only left vertices are important w.r.t. the invariants that we define now. A similar fact occurs when x is in case (${ }^{*} 1$), although right vertices are better behaved in this case.
I.5.2 Notations and invariants. We define the resolution invariants in cases (*1) and (*2) (resp. $\left({ }^{*} 3\right)$) from the polygon $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$ (resp. $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$), once well prepared coordinates have been chosen.
I.5.2.1 Definition. In cases (${ }^{*} 1$) and (${ }^{*}$) , let us denote
$A_{j}:=\inf \left\{\frac{\operatorname{ord}_{u_{j}}\left(H(x)^{-1} g^{p}\right)}{\omega(x)}, \frac{\operatorname{ord}_{u_{j}} \phi_{i}}{i}, 1 \leqslant i \leqslant \omega(x)\right\}, j=1,2$;
$B=\inf \left\{\frac{\operatorname{ord}_{\left(u_{1}, u_{2}\right)}\left(H(x)^{-1} g^{p}\right)}{\omega(x)}, \frac{\operatorname{ord}_{\left(u_{1}, u_{2}\right)} \phi_{i}}{i}, 1 \leqslant i \leqslant \omega(x)\right\}, C:=B-A_{1}-A_{2} \geqslant 0 ;$
$\beta:=\inf \left\{\frac{\operatorname{ord}_{u_{2}}\left(u_{1}^{-\omega(x) A_{1}} H(x)^{-1} g^{p} \bmod \left(u_{1}\right)\right)}{\omega(x)}, \frac{\operatorname{ord}_{u_{2}}\left(u_{1}^{-i A_{1}} \phi_{i} \bmod \left(u_{1}\right)\right)}{i}, 1 \leqslant i \leqslant \omega(x)\right\}$, where $\operatorname{ord}_{u_{2}}$ denotes the natural valuation of the discrete valuation ring $k(x)\left[\left[u_{2}\right]\right]$.

Note that

$$
\begin{gathered}
A_{j}=\inf \left\{w_{j}:\left(w_{1}, w_{2}\right) \in \Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)\right\} \geqslant 0, j=1,2, \\
B=\inf \left\{w_{1}+w_{2} \mid\left(w_{1}, w_{2}\right) \in \Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)\right\} \geqslant 1,
\end{gathered}
$$

and that

$$
\beta=\inf \left\{w_{2} \mid\left(A_{1}, w_{2}\right) \in \Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)\right\} \geqslant 0 .
$$

We will denote those vertices $w=\left(w_{1}, w_{2}\right)$ of $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$ with $x_{1}+x_{2}=B$ by $\left(\alpha_{2}, \beta_{2}\right)$ and $\left(\alpha_{3}, \beta_{3}\right)$ with $\alpha_{2} \leqslant \alpha_{3}$.

We point out that, if x is in case (${ }^{*} 1$),

$$
A_{1}=\frac{\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right)}{\omega(x)} \Longrightarrow \beta=0 .
$$

I.5.2.2 Definition. In case (*3), let us denote
$A_{1}=\inf \left\{\frac{\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right)}{\omega(x)}, \frac{\operatorname{ord}_{u_{1}} \phi_{i}}{i}, 1 \leqslant i \leqslant \omega(x)\right\}$;
$B 3=\inf \left\{\frac{\operatorname{ord}_{\left(u_{1}, u_{2}\right)}\left(H(x)^{-1} u_{2}^{-1} g^{p}\right)}{\omega(x)}, \frac{\operatorname{ord}_{\left(u_{1}, u_{2}\right)}\left(u_{2}^{-1} \phi_{i}\right)}{i}, 1 \leqslant i \leqslant \omega(x)\right\} ;$
$\beta 3:=\inf \left\{\frac{\operatorname{ord}_{u_{2}}\left(u_{1}^{-\omega(x) A_{1}} u_{2}^{-1} H(x)^{-1} g^{p} \bmod \left(u_{1}\right)\right)}{\omega(x)}, \frac{\operatorname{ord}_{u_{2}}\left(u_{1}^{-i A_{1}} u_{2}^{-1} \phi_{i} \bmod \left(u_{1}\right)\right)}{i}, 1 \leqslant i \leqslant \omega(x)\right\}$, where $\operatorname{ord}_{u_{2}}$ denotes the natural valuation of the discrete valuation ring $k(x)\left[\left[u_{2}\right]\right]$.
$\beta:=\inf \left\{\frac{\operatorname{ord}_{u_{2}}\left(u_{1}^{-\omega(x) A_{1}} H(x)^{-1} g^{p} \bmod \left(u_{1}\right)\right)}{\omega(x)}, \frac{\operatorname{ord}_{u_{2}}\left(u_{1}^{-i A_{1}} \phi_{i} \bmod \left(u_{1}\right)\right)}{i}, 1 \leqslant i \leqslant \omega(x)\right\}$.
Note that

$$
\begin{gathered}
A_{1}=\inf \left\{w_{1}:\left(w_{1}, w_{2}\right) \in \Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)\right\} \geqslant 0, \\
B 3=\inf \left\{w_{1}+w_{2} \mid\left(w_{1}, w_{2}\right) \in \Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)\right\} \geqslant 1,
\end{gathered}
$$

and that

$$
\beta 3=\inf \left\{w_{2} \mid\left(A_{1}, w_{2}\right) \in \Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)\right\} \geqslant-1 .
$$

We will denote those vertices $w=\left(w_{1}, w_{2}\right)$ of $\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$ with $x_{1}+x_{2}=$ $B 3$ by $\left(\alpha 3_{2}, \beta 3_{2}\right)$ and $\left(\alpha 3_{3}, \beta 3_{3}\right)$ with $\alpha 3_{2} \leqslant \alpha 3_{3}$. Note that a vertex $w=\left(w_{1}, w_{2}\right)$ is a "left" vertex of $\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$ if and only if $w_{1} \leqslant \alpha 3_{2}$.

We point out the following implications, if x is in case $\left({ }^{*} 3\right)$:

$$
\begin{equation*}
A_{1}(x)=\frac{\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right)}{\omega(x)} \Longrightarrow-1 \leqslant \beta 3(x)<0 \Leftrightarrow \beta(x)=0 \tag{1}
\end{equation*}
$$

Obviously, the above definitions may depend on the choice of well prepared coordinates $\left(X, u_{1}, u_{2}, u_{3}\right)$. When there is a risk of confusion, we will make explicit this dependence on (u_{1}, u_{2}, u_{3}) by writing $A_{j}\left(u_{1}, u_{2}, u_{3}\right)$, etc... We also use the notation $A_{j}(x), A_{j}\left(x^{\prime}\right)$, etc... when dealing with a blowing up $e: X^{\prime} \rightarrow X$ and $x^{\prime} \in e^{-1}(x)$ if $\kappa\left(x^{\prime}\right)=2$ and x^{\prime} satisfies condition (*). In this case, we always compute invariants w.r.t. $E^{\prime}:=\left(e^{-1} E\right)_{\mathrm{red}}$.
I.5.2.3 Definition. Assume that $\left(X, u_{1}, u_{2}, u_{3}\right)$ is well prepared. We denote
$\gamma\left(u_{1}, u_{2}, u_{3}\right):=\left\lceil\beta\left(u_{1}, u_{2}, u_{3}\right)\right\rceil \geqslant 0$ if x is in case (${ }^{*} 1$);
$\gamma\left(u_{1}, u_{2}, u_{3}\right):=1+\left\lfloor C\left(u_{1}, u_{2}, u_{3}\right)\right\rfloor \geqslant 1$ if x is in case (*2);
$\gamma\left(u_{1}, u_{2}, u_{3}\right):=1+\left\lfloor\beta 3\left(u_{1}, u_{2}, u_{3}\right)\right\rfloor \geqslant 0$ if x is in case (*3).
We will also use the notation $\gamma(x)=\gamma\left(u_{1}, u_{2}, u_{3}\right)$ for short. About existence of well prepared coordinates, we have:
I. 6 Proposition. Assume that $\kappa(x)=2$ and condition (${ }^{*}$) holds for the r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of \widehat{R}. There exists $\psi \in\left(u_{1}, u_{2}\right) k(x)\left[\left[u_{1}, u_{2}\right]\right], \theta \in \widehat{S}=k(x)\left[\left[u_{1}, u_{2}, u_{3}\right]\right]$ such that $\left(X-\theta, u_{1}, u_{2}, v:=u_{3}-\psi\right)$ is well prepared.
Proof. By assumption, (wp1) holds for $\left(X, u_{1}, u_{2}, u_{3}\right)$. In cases $\left({ }^{*} 1\right)$ and (*2) (resp. (*3)), suppose there exists a vertex (resp. a left vertex) $w=\left(w_{1}, w_{2}\right)$ of $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$ (resp. $\left.\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)\right)$ which is solvable. By definition of solvability, if L is a linear form on \mathbb{R}^{3} with coefficients in $\mathbb{R}_{>0}$ (resp. and with $L(1,0,0)>L(0,1,0)$) such that $\operatorname{in}_{w}\left(H(x)^{-1} f\right)=\operatorname{in}_{L}\left(H(x)^{-1} f\right)$, then in $\operatorname{gr}_{L}(S)$ (resp. in $\operatorname{gr}_{L}\left(u_{2}^{-1} S\right)$), we have equality of ideals (resp. submodules):
$\operatorname{in}_{L}\left(H(x)^{-1}\left(\left\{\lambda_{i} \frac{\partial f}{\partial \lambda_{i}}\right\}_{1 \leqslant i \leqslant s}, g^{p}\right)\right)=k(x) \cdot\left(U_{3}-\lambda U_{1}^{w_{1}} U_{2}^{w_{2}}\right)^{\omega(x)}$
$\left(\right.$ resp. $\left.\operatorname{in}_{L}\left(H(x)^{-1} u_{2}^{-1}\left(\left\{\lambda_{i} \frac{\partial f}{\partial \lambda_{i}}\right\}_{1 \leqslant i \leqslant s}, g^{p}\right)\right)=k(x) .\left(U_{3}-\lambda U_{1}^{w_{1}} U_{2}^{w_{2}}\right)^{\omega(x)}\right)$.
I.6.1 We perform the dissolution of w in cases $\left({ }^{*} 1\right)$ and $\left({ }^{*} 2\right)$ (resp. in case $\left({ }^{*} 3\right)$). Let us denote $v_{w}:=u_{3}-\psi_{w}, \psi_{w}:=\lambda u_{1}^{w_{1}} u_{2}^{w_{2}}$. The basis

$$
\left(d u_{1}, d u_{2}, d u_{3}, d \lambda_{4}, \ldots, d \lambda_{s}\right)
$$

of $\Omega_{S / k_{0}}^{1}$ gets changed to

$$
\left(d u_{1}, d u_{2}, d v_{w}, d \lambda_{4}, \ldots, d \lambda_{s}\right)
$$

so $H(x)^{-1} \frac{\partial f}{\partial u_{3}}=H(x)^{-1} \frac{\partial f}{\partial v_{w}}$ and, for $1 \leqslant i \leqslant s, H(x)^{-1} \lambda_{i} \frac{\partial f}{\partial \lambda_{i}}$ is unchanged modulo the ideal $\left(u_{1}^{w_{1}} u_{2}^{w_{2}} H(x)^{-1} \frac{\partial f}{\partial u_{3}}\right)$.
I.6.2 If L is a linear form as above, we have

$$
\operatorname{in}_{L}\left(H(x)^{-1} \lambda_{i} \frac{\partial f}{\partial \lambda_{i}}\right)=\gamma_{i} V_{w}^{\omega(x)}\left(\operatorname{resp} . \operatorname{in}_{L}\left(H(x)^{-1} u_{2}^{-1} \lambda_{i} \frac{\partial f}{\partial \lambda_{i}}\right)=\gamma_{i} V_{w}^{\omega(x)}\right)
$$

So $L\left(w^{\prime}, 0\right)>L(0,0, \omega(x))$ for all vertices w^{\prime} of

$$
\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; v_{w}\right)=\Delta\left(H(x)^{-1}\left(\left\{\lambda_{i} \frac{\partial f}{\partial \lambda_{i}}\right\}_{1 \leqslant i \leqslant s}, g^{p}\right) ; u_{1}, u_{2} ; v_{w}\right)
$$

(resp. of $\left.\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; v_{w}\right)\right)$. Let $w^{\prime} \neq w$ be a vertex (resp. a "left" vertex) of

$$
\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)\left(\text { resp. of } \Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)\right)
$$

and L^{\prime} be a linear form on \mathbb{R}^{3} with coefficients in $\mathbb{R}_{>0}\left(\right.$ resp. and with $\left.L^{\prime}(1,0,0)>L^{\prime}(0,1,0)\right)$ such that

$$
\operatorname{in}_{w^{\prime}}\left(H(x)^{-1} f\right)=\operatorname{in}_{L^{\prime}}\left(H(x)^{-1} f\right)\left(\text { resp. } \operatorname{in}_{w^{\prime}}\left(H(x)^{-1} u_{2}^{-1} f\right)=\operatorname{in}_{L^{\prime}}\left(H(x)^{-1} u_{2}^{-1} f\right)\right)
$$

In particular, we have $L^{\prime}(w, 0)>L^{\prime}\left(w^{\prime}, 0\right)$. By I.6.1 above,

$$
\operatorname{in}_{w^{\prime}}\left(H(x)^{-1}\left(\left\{\lambda_{i} \frac{\partial f}{\partial \lambda_{i}}\right\}_{1 \leqslant i \leqslant s}, g^{p}\right)\right)\left(\text { resp. } \operatorname{in}_{w^{\prime}}\left(H(x)^{-1} u_{2}^{-1}\left(\left\{\lambda_{i} \frac{\partial f}{\partial \lambda_{i}}\right\}_{1 \leqslant i \leqslant s}, g^{p}\right)\right)\right)
$$

is unaffected by the change of differential basis. So w^{\prime} is still a vertex of

$$
\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; v_{w}\right)=\Delta\left(H(x)^{-1} u_{2}^{-1}\left(\left\{\lambda_{i} \frac{\partial f}{\partial \lambda_{i}}\right\}_{1 \leqslant i \leqslant s}, g^{p}\right) ; u_{1}, u_{2} ; v_{w}\right)
$$

(resp. of $\left.\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; v_{w}\right)\right)$.
We may have lost (wp1) in this process, in which case we make a change of variable $X_{w}:=$ $X-\theta_{w}$, to get (wp1) anew. This translation necessarily makes not larger the polygon

$$
\Delta\left(H(x)^{-1}\left(f_{X_{w}}, g^{p}\right) ; u_{1}, u_{2} ; v_{w}\right)\left(\operatorname{resp} . \Delta\left(H(x)^{-1} u_{2}^{-1}\left(f_{X_{w}}, g^{p}\right) ; u_{1}, u_{2} ; v_{w}\right)\right)
$$

which is a projection (resp. the projection of a translate) of $\Delta\left(h ; u_{1}, u_{2}, v_{w} ; X_{w}\right)$, where $f_{X_{w}}:=$ $f+\theta_{w}^{p}-g^{p-1} \theta_{w}$. After iterating (possibly infinitely many times) this vertex dissolution and minimizing step, one gets a non-increasing sequence of polyhedra of the form

$$
\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f_{j}, g^{p}\right) ; u_{1}, u_{2} ; v_{j}\right), j \geqslant 1
$$

where $h=\left(X-\theta_{j}\right)^{p}-g^{p-1}\left(X-\theta_{j}\right)+f_{j}$ and $v_{j}=u_{3}-\psi_{j}$. The series ψ_{j} and θ_{j} respectively converge in $k(x)\left[\left[u_{1} u_{2}\right]\right]$ and in \widehat{S}, since $\left(w_{1}+w_{2}, w_{1}\right)$ increases for the lexicographical ordering in each step I.6.1.
I.6.3 Proposition. Assume that $\kappa(x)=2$ and x is in case (*3) for the r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of \widehat{R}. If $w:=(0,1)$ is a vertex of $\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$, then w is not solvable. As a consequence, we have

$$
v=u_{3}+u_{1} \phi_{1}+\phi,
$$

with $\phi_{1}, \phi \in \widehat{S}, \operatorname{ord}_{\eta(x)} \phi \geqslant 2$ in the dissolution I.6. Therefore $V \in \operatorname{VDir}\left(H(x)^{-1} \frac{\partial f_{Z}}{\partial u_{2}}\right)$, where $h=Z^{p}-g^{p-1} Z+f_{Z}$.
Proof. Suppose that $w:=(0,1)$ is a vertex of $\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$. By I.1 (ii), we have $\operatorname{VDir}(\Phi)=<U_{3}, U_{2}>$, so w does not satisfy equation (1) in I.5.1.2 and the proposition follows.
I. 7 Proposition. Assume that $\kappa(x)=2$, condition (${ }^{*}$) holds and (X, u_{1}, u_{2}, u_{3}) is well prepared. We have $\kappa(x) \leqslant 1$ or the following holds:
(i) in cases $\left({ }^{*} 1\right)$ and (${ }^{*}$), either $U_{3} \in \operatorname{VDir}(x)$ or $(m(x)=2, B(x)=C(x)=1$, and there exists a r.s.p. $\left(Z, u_{1}, u_{2}, v\right)$ such that condition (*2) holds, $\left(Z, u_{1}, u_{2}, v\right)$ is well prepared, $B\left(u_{1}, u_{2}, v\right)=$ $C\left(u_{1}, u_{2}, v\right)=1$, and we have $\operatorname{VDir}(x)=<V, U_{1}+b U_{2}>$ for some $\left.b \neq 0\right)$;
(ii) in case (*3), either

$$
U_{3} \in \operatorname{VDir}\left(\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right)\right)
$$

or $\left(B 3(x)=1\right.$ and there exists a r.s.p. $\left(Z, u_{1}, u_{2}, v\right)$ with $v \equiv u_{3} \bmod \left(u_{1}\right)$ such that condition (*3) holds, $\left(Z, u_{1}, u_{2}, v\right)$ is well prepared,

$$
V \in \operatorname{VDir}\left(\mathrm{cl}_{\omega(x)}\left(H(x)^{-1} \frac{\partial f_{Z}}{\partial u_{2}}\right)\right)
$$

and the following holds: $\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f_{Z}, g^{p}\right) ; u_{1}, u_{2} ; v\right)$ and $\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$ have the same "left" vertices, one of which is $\left(\alpha 3_{2}, \beta 3_{2}\right)$, where $0 \leqslant \alpha 3_{2}<1$ and $\alpha 3_{2}+\beta 3_{2}=1$ (in particular $B 3\left(u_{1}, u_{2}, v\right)=1$ and $\left.\beta 3\left(u_{1}, u_{2}, v\right)=\beta 3\left(u_{1}, u_{2}, u_{3}\right)\right)$).
I.7.1 Proof of (i). If we are in cases (${ }^{*}$) or (${ }^{*} 2$), then

$$
\mathrm{cl}_{\omega(x)}\left(H(x)^{-1} f\right)=\lambda\left(U_{3}^{\omega(x)}+\sum_{1 \leqslant i \leqslant \omega(x)} U_{3}^{\omega(x)-i} P_{i}\left(U_{1}, U_{2}\right)\right)=: \lambda F,
$$

where $\lambda \neq 0, P_{i} \in k(x)\left[U_{1}, U_{2}\right]_{i}$, and $P_{i}=0$ if $B(x)>1$ or if $i \not \equiv 0 \bmod p$. The case $B(x)>1$ is proved (take $v:=u_{3}$), so assume $B(x)=1$. By well-preparedness, we have $\tau(x) \geqslant 2$, so $\tau(x)=2$ if $\kappa(x)>1$.

Assume that $U_{3} \notin \operatorname{VDir}(x)$. Then $\operatorname{VDir}(x)=<U_{3}+a U_{i}, U_{j}+b U_{i}>$, where $a \neq 0, b \in k(x)$ and $\{i, j\}=\{1,2\}$. By chapter 2 II.2, we have $\kappa(x)=0$ if $\operatorname{div}\left(u_{j}\right) \nsubseteq E$, so it can be assumed that $j=1, i=2$. We claim that $b \neq 0$. Indeed, if $b=0$, then for $1 \leqslant j \leqslant s$, we have

$$
\mathrm{cl}_{\omega(x)}\left(H(x)^{-1} \lambda_{j} \frac{\partial f}{\partial \lambda_{j}}\right)=\mu_{j}\left(U_{3}+a U_{2}\right)^{\omega(x)}+\sum_{1 \leqslant i \leqslant \omega(x)} \mu_{j i}\left(U_{3}+a U_{2}\right)^{\omega(x)-i} U_{1}^{i} .
$$

By equation (1) of I.5.1.1, the vertex $(0,1)$ of $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$ is solvable: a contradiction, so $b \neq 0$. Once again, this implies $E=\operatorname{div}\left(u_{1} u_{2}\right)$ by chapter 2 II.2. If $C(x)<1$, we have $A_{1}(x)>0$ or $A_{2}(x)>0$. Therefore there exists $i_{0} \in\{1,2\}$ such that for each $j, 1 \leqslant j \leqslant s$, we have

$$
\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} \lambda_{j} \frac{\partial f}{\partial \lambda_{j}}\right)-\mu_{j} U_{3}^{\omega(x)} \in U_{i_{0}} k(x)\left[U_{1}, U_{2}, U_{3}\right], \mu_{j} \in k(x),
$$

so $U_{i_{0}} \in \operatorname{VDir}(x)$: a contradiction. Hence $C(x)=B(x)=1$. Then we replace u_{3} by $v:=u_{3}+a u_{2}$ and get $\operatorname{VDir}(x)=<V, U_{1}+b U_{2}>$. The r.s.p. $\left(Z, u_{1}, u_{2}, v\right)$ is obtained after applying the algorithm I.6. The same argument as above shows that $B(x)$ and $C(x)$ are unchanged.
I.7.2 Proof of (ii). Assume that $U_{3} \notin \operatorname{Vir}\left(\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right)\right)$. In definition I.1(ii), we have $\Psi \neq 0$ necessarily. If $(0,1)$ is not a vertex of $\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$, then $\Phi \in k(x)\left[U_{3}\right]$, so we must have

$$
\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right) \in k(x) \cdot\left[U_{3}+a U_{1}\right]
$$

for some $a \in k(x), a \neq 0$. In particular $B 3(x)=1$. The vertex $\left(\alpha 3_{2}, \beta 3_{2}\right)$ (defined at the end of I.5.2.2) of the initial face of $\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$ is unsolvable by definition of wellpreparedness and has $0<\alpha 3_{2} \leqslant 1$ by assumption. Suppose that $\alpha 3_{2}=1$. Then

$$
\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} f\right)=\mu U_{2}\left(U_{3}+a U_{1}\right)^{\omega(x)}+P
$$

where $\mu \neq 0$ and $P \in k(x)\left[U_{1}, U_{3}\right]_{1+\omega(x)}$. This is impossible, since $(1,0)$ is not solvable.
We have proved that $0 \leqslant \alpha 3_{2}<1$. Then we replace u_{3} by $v:=u_{3}+a u_{1}$, the r.s.p. $\left(Z, u_{1}, u_{2}, v\right)$ being obtained after applying the algorithm I.6. We get

$$
V \in \operatorname{VDir}\left(\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} \frac{\partial f_{Z}}{\partial u_{2}}\right)\right)
$$

Note that $\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$ and $\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; v\right)$ have the same "left" vertices.
I. 8 Theorem. Assume that $\kappa(x)=2$. Then $\kappa(x) \leqslant 1$.

Note that theorem I. 8 proves local uniformization when $\kappa(x)=2$. By I.3, it can be assumed that condition $\left(^{*}\right)$ holds. By I.6, there exists then a well prepared r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of \widehat{R}. We maintain these assumptions up to the end of this chapter. The proof needs long computations. We start by an easy lemma.
I.8.1 Lemma. If $\beta(x)=0$, then $\kappa(x) \leqslant 1$. In particular, theorem I. 8 holds when $\gamma(x)=0$.

Proof. We have $\epsilon(x) \leqslant \omega(x)\left(A_{1}(x)+\beta(x)\right)$. So $A_{1}(x) \geqslant 1$ which implies $\epsilon(\mathcal{C})=\epsilon(x) \geqslant p$ where $\mathcal{C}:=V\left(X, u_{1}, u_{3}\right)$. By chapter 1 II.4.7, \mathcal{C} is an analytic branch of an algebraic curve on X. On the other hand, we have

$$
J(f, E, x) \equiv\left(u_{3}^{\omega(x)}\right) \bmod \left(u_{1}\right)\left(\text { resp. } J(f, E) \equiv\left(u_{3}^{\omega(x)}\right) \bmod \left(u_{1}\right)\right)
$$

if $\epsilon(x)=\omega(x)$ (resp. $\epsilon(x)=1+\omega(x)$). Therefore \mathcal{C} is the unique analytic curve on E (resp. on $\left.E \backslash \operatorname{div}\left(u_{2}\right)\right)$ in the set

$$
W:=\left\{y \in \Sigma_{p}(x) \mid \omega(y) \geqslant 1\right\}
$$

if $m(x)=1$ (resp. if $m(x)=2$). Hence \mathcal{C} is a regular curve on X.
If $\epsilon(x)=\omega(x)$, i.e. x is in case $\left({ }^{*} 1\right)$ or $\left({ }^{*} 2\right), \mathcal{C}$ is thus permissible of the first kind. By I.7(i), we have $U_{3} \in \operatorname{VDir}(x)$ since $B(x)>C(x)$. Let $e: X^{\prime} \rightarrow X$ be the blowing up along \mathcal{C}. If $x^{\prime} \in e^{-1}(x)$ is very near x, then $x^{\prime}=\left(X^{\prime}=\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, u_{2}^{\prime}=u_{2}, u_{3}^{\prime}=\frac{u_{3}}{u_{1}}\right.$), x^{\prime} remains in case (*1) (resp. (*2)) if x is in case $\left({ }^{*} 1\right)$ (resp. $\left({ }^{*} 2\right)$), and $\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ remains well prepared at x^{\prime} w.r.t. $h^{\prime}=u_{1}^{-p} h$. We thus have $\beta\left(x^{\prime}\right)=0, A_{1}\left(x^{\prime}\right)=A_{1}(x)-1$ and $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} f^{\prime}\right) \leqslant A_{1}\left(x^{\prime}\right) \omega(x)$. The conclusion follows by descending induction on $A_{1}(x)$.

If $\epsilon(x)=1+\omega(x)$, i.e. x is in case $\left({ }^{*} 3\right)$, then there appears in the expansion of $H(x)^{-1} f$ or of $H(x)^{-1} g^{p}$ the monomial $u_{3}^{\omega(x)-i} u_{1}^{i A_{1}(x)}$ with nonzero coefficient for some $i, 1 \leqslant i \leqslant \omega(x)$. In particular, $A_{1}(x)>1$, so

$$
J(f, E, \mathcal{C}) \in\left(u_{3}^{\omega(x)}\right)+\left(u_{1}, u_{3}\right)^{1+\omega(x)}
$$

i.e. \mathcal{C} is permissible of the second kind. Let $e: X^{\prime} \rightarrow X$ be the blowing up along \mathcal{C}. We have $\operatorname{VDir}\left(\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right)\right)=k(x) . U_{3}$, since $A_{1}(x)>1$. If $x^{\prime} \in e^{-1}(x)$ is very near x, then $x^{\prime}=\left(X^{\prime}=\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, u_{2}^{\prime}=u_{2}, u_{3}^{\prime}=\frac{u_{3}}{u_{1}}\right)$ by chapter 1, II.5.4.4. We consider two cases.

If $\epsilon\left(x^{\prime}\right)=1+\omega(x)$, then x^{\prime} remains in case $\left({ }^{*} 3\right)$ and $\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ remains well prepared. We have $\beta\left(x^{\prime}\right)=0$ and $A_{1}\left(x^{\prime}\right)=A_{1}(x)-1$.

If $\epsilon\left(x^{\prime}\right)=\omega\left(x^{\prime}\right)=\omega(x)$, then $A_{1}(x)=2$ and there is an expansion

$$
f^{\prime}=u_{1}^{\prime a(1)+\omega(x)-p}\left(\gamma^{\prime} u_{2}^{\prime} u_{3}^{\prime \omega(x)}+u_{1}^{\prime} \phi^{\prime}\right)
$$

where γ^{\prime} is a unit and $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(u_{1}^{\prime} \phi^{\prime}\right)=\omega(x)$. But this in turn implies $\kappa\left(x^{\prime}\right) \leqslant 1$ by chapter 2 , II. 1 (note that $\omega(x) \geqslant p \geqslant 2$).

We conclude by descending induction on $A_{1}(x)$. The last statement in the lemma follows from equation (1) in I.5.2.2.

Lemma I.8.1 settles cases ($\left.{ }^{*} 1\right)$ and $\left({ }^{*} 3\right)$ when $\gamma(x)=0$. Therefore from now on, we assume that $\gamma(x) \geqslant 1$. We now control the behavior of $\gamma(x)$ by blowing up a closed point.
I.8.2 Notations. Assume that $\kappa(x)=2$, condition (${ }^{*} 1$) or (${ }^{* 2}$) holds and (X, u_{1}, u_{2}, u_{3}) is well prepared. Let us denote $H(x)=: u_{1}^{a(1)} u_{2}^{a(2)}, g^{p}=: \gamma^{p} u_{1}^{b(1)} u_{2}^{b(2)}, \gamma$ invertible (with $a(2)=b(2)=0$ if x is in case ($\left.{ }^{*} 1\right)$), and:

$$
H(x)^{-1} f=: \sum_{0 \leqslant j \leqslant \omega(x)} u_{3}^{\omega(x)-j} \phi_{j}
$$

with $\phi_{0} \in k(x)\left[\left[u_{1}, u_{2}, u_{3}\right]\right]$ invertible, $\phi_{j} \in k(x)\left[\left[u_{1}, u_{2}\right]\right]$ for $1 \leqslant j \leqslant \omega(x)$. Let $\phi_{j}=: u_{1}^{a_{j}(1)} u_{2}^{a_{j}(2)} \psi_{j}$, where $\psi_{j}=0$ or ψ_{j} is not divisible by u_{1}, nor by u_{2} if x is in case (*2). As usual, we take $a_{j}(2)=0$ and $\psi_{j}=0$ or ψ_{j} is not divisible by u_{1} if x is in case (*1).
I.8.2.1 Definition. For $1 \leqslant j \leqslant \omega(x)$ such that $\phi_{j} \neq 0$, we denote $\Phi_{j}:=\operatorname{in}_{x} \phi_{j}=U_{1}^{a_{j}(1)} U_{2}^{a_{j}(2)} \Psi_{j}$ and $d_{j}:=\operatorname{deg} \Psi_{j} \in \mathbb{N}$. Let $J_{0}:=\left\{j, 1 \leqslant j \leqslant \omega(x) \left\lvert\, B(x)=\frac{\operatorname{ord} \phi_{j}}{j}\right.\right\}$.

The following lemma is obvious from the definitions.
I.8.2.2 Lemma. We have

$$
\sup _{j_{0} \in J_{0}}\left\{\frac{d_{j_{0}}}{j_{0}}\right\} \leqslant \beta_{2}(x)-A_{2}(x) \leqslant C(x) \leqslant \beta(x)-A_{2}(x)
$$

I.8.2.3 Definition. Let μ_{0} be the monomial valuation on \widehat{S} given by

$$
\mu_{0}\left(\sum_{a b c} \lambda_{a b c} u_{1}^{a} u_{2}^{b} u_{3}^{c}\right)=\inf \left\{\left.c+\frac{a+b}{B(x)} \right\rvert\, \lambda_{a b c} \neq 0\right\}
$$

We denote by $\operatorname{cl}_{\mu_{0}, \omega(x)} J$ the $k(x)$-vector space $\operatorname{in}_{\mu_{0}} J$, where J is the ideal

$$
J:=\left(\left\{H(x)^{-1} \lambda_{j} \frac{\partial f}{\partial \lambda_{j}}\right\}_{1 \leqslant j \leqslant s}\right)+\left(H(x)^{-1} g^{p}\right)
$$

By definition of $B(x)$ and well-preparedness, we have $\operatorname{dim}_{k(x)}\left(\operatorname{cl}_{\mu_{0}, \omega(x)} J\right) \geqslant 1$, and for every $\lambda \in k(x)$,

$$
\operatorname{cl}_{\mu_{0}, \omega(x)} J \neq k(x) .\left(U_{3}-\lambda U_{1}^{\alpha_{2}(x)} U_{2}^{\beta_{2}(x)}\right)^{\omega(x)} .
$$

Let $e: X^{\prime} \rightarrow X$ be the blowing up along x. We call "first chart" the chart with origin ($X^{\prime}=$ $\left.\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, u_{2}^{\prime}=\frac{u_{2}}{u_{2}}, u_{3}^{\prime}=\frac{u_{3}}{u_{1}}\right)$. Let $E^{\prime}:=\left(e^{-1}(x)\right)_{\text {red }}$. We have $E^{\prime}=\operatorname{div}\left(u_{1}^{\prime}\right)$ if x is in case ($\left.{ }^{*} 1\right)$, or $E^{\prime}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right)$ if x is in case ($\left.{ }^{*} 2\right)$.
I.8.3 Lemma. With hypotheses and notations of I.8.2 (in particular x is in case (${ }^{(1) \text {) or (}{ }^{*} \text { 2)). }}$ Assume that the center x^{\prime} of μ in X^{\prime} belongs to the first chart. Let $d:=\left[k\left(x^{\prime}\right): k(x)\right]$. We have $\kappa(x) \leqslant 1$ or the following holds:
(a) $\kappa\left(x^{\prime}\right)=2$ and x^{\prime} maps to the strict transform of $\operatorname{div}\left(u_{3}\right)$ except possibly if $(m(x)=2$ and $B(x)=C(x)=1)$;
(b) if $x^{\prime}=\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ is the origin of the chart, then x^{\prime} is in case ($\left.{ }^{*} 1\right)$ (resp. (*2)) if x is in case (${ }^{*} 1$) (resp. (${ }^{* 2}$)) and we have $C\left(x^{\prime}\right) \leqslant C(x), \beta\left(x^{\prime}\right) \leqslant \beta(x), A_{1}\left(x^{\prime}\right)=B(x)-1$;
(c) if $x^{\prime} \neq\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$, then x^{\prime} is in case ($\left.{ }^{*} 1\right)$ or (*3). Moreover, x^{\prime} is in case ($\left.{ }^{*} 1\right)$ if a(1) + $a(2) \not \equiv 0 \bmod p$ or if (x is in case $\left({ }^{*} 1\right)$ and x^{\prime} is separable over $\left.x\right)$;
(d) we have $\gamma\left(x^{\prime}\right) \leqslant \gamma(x)$;
(e) assume that $x^{\prime} \neq\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$.

If $(m(x)=2$ and $B(x)=C(x)=1)$, then $\beta\left(x^{\prime}\right) \leqslant 2$. Equality holds only if $p=\omega(x)=2$, and there exist well prepared variables $\left(Z^{\prime}, u_{1}^{\prime}, u_{3}^{\prime}, v^{\prime}\right)$ at x^{\prime} such that $h^{\prime}=Z^{\prime 2}-g^{\prime} Z^{\prime}+f_{Z^{\prime}}^{\prime}$, where

$$
\begin{equation*}
f_{Z^{\prime}}^{\prime}=u_{1}^{\prime a(1)^{\prime}}\left(\mu_{2}^{\prime} v^{\prime 2}+\mu_{1}^{\prime} v^{\prime} u_{3}^{\prime 2}+u_{1}^{\prime} \varphi^{\prime}\right), \tag{Dis}
\end{equation*}
$$

with $a(1)^{\prime} \equiv 0 \bmod 2$ and $\mu_{1}^{\prime} \mu_{2}^{\prime} \in k\left(x^{\prime}\right)\left[\left[u_{1}^{\prime}, v^{\prime}, u_{3}^{\prime}\right]\right]$ invertible.
If we do not have ($m(x)=2$ and $B(x)=C(x)=1$), then

$$
\begin{gather*}
\beta\left(x^{\prime}\right)<1+\left\lfloor\frac{C(x)}{d}\right\rfloor \tag{1}\\
\beta\left(x^{\prime}\right) \leqslant \sup \left\{\beta(x), \frac{1}{p}\right\} \text { if } x \text { is in case }(* 1) \tag{2}
\end{gather*}
$$

and all properties below are satisfied:
(i) we have $B(x)<\frac{\left.\operatorname{ord}_{\left(u_{1}, u_{2}\right)}\right)\left(H(x)^{-1} g^{p}\right)}{\omega(x)}$;
(ii) we have $A_{1}\left(x^{\prime}\right)=B(x)-1$;
(iii) if $J_{0} \not \subset p \mathbf{N}$, then

$$
\beta\left(x^{\prime}\right) \leqslant \sup _{j_{0} \in J_{0}}\left\{\frac{d_{j_{0}}}{j_{0} d}\right\} \leqslant \frac{C(x)}{d} \leqslant \frac{\beta(x)}{d} .
$$

If moreover x^{\prime} is in case $\left({ }^{*} 3\right)$, then

$$
\beta 3\left(x^{\prime}\right) \leqslant \sup _{j_{0} \in J_{0}}\left\{\frac{d_{j_{0}}}{j_{0} d}-\frac{1}{j_{0}}\right\}<\frac{C(x)}{d} \leqslant \frac{\beta(x)}{d} .
$$

(iv) if ($J_{0} \subset p \mathbf{N}$ and $B(x) \notin \mathbb{N}$), then

$$
\beta\left(x^{\prime}\right) \leqslant \sup _{j_{0} \in J_{0}}\left\{\frac{d_{j_{0}}}{j_{0} d}+\frac{1}{j_{0}}\right\} \leqslant \frac{C(x)}{d}+\frac{1}{p} .
$$

If moreover x^{\prime} is in case (*3), then

$$
\beta 3\left(x^{\prime}\right) \leqslant \sup _{j_{0} \in J_{0}}\left\{\frac{d_{j_{0}}}{j_{0} d}\right\} \leqslant \frac{C(x)}{d} .
$$

(v) if $\left(J_{0} \subset p \mathbf{N}, B(x) \in \mathbb{N}\right.$ and $\left.\operatorname{dim}_{k(x)}\left(\operatorname{cl}_{\mu_{0}, \omega(x)} J\right) \geqslant 2\right)$, then

$$
\beta\left(x^{\prime}\right) \leqslant \sup _{j_{0} \in J_{0}}\left\{\frac{d_{j_{0}}}{j_{0} d}+\frac{1}{j_{0}}\right\} \leqslant \frac{C(x)}{d}+\frac{1}{p}
$$

If moreover x^{\prime} is in case (*3), then

$$
\beta 3\left(x^{\prime}\right) \leqslant \sup _{j_{0} \in J_{0}}\left\{\frac{d_{0}}{j_{0} d}\right\} \leqslant \frac{C(x)}{d}
$$

(vi) if $\left(J_{0} \subset p \mathbf{N}, B(x) \in \mathbb{N}\right.$ and $\left.\operatorname{dim}_{k(x)}\left(\operatorname{cl}_{\mu_{0}, \omega(x)} J\right)=1\right)$, let

$$
G:=U_{3}^{\omega(x)}+\sum_{j_{0} \in J_{0}} U_{3}^{\omega(x)-j} G_{j}\left(U_{1}, U_{2}\right)
$$

be such that $\mathrm{cl}_{\mu_{0}, \omega(x)} J=k(x) \cdot G$ and define

$$
C(G):=B(x)-\inf _{j_{0} \in J_{0}}\left\{\frac{\operatorname{ord}_{U_{1}} G_{j_{0}}}{j_{0}}\right\}-\inf _{j_{0} \in J_{0}}\left\{\frac{\operatorname{ord}_{U_{2}} G_{j_{0}}}{j_{0}}\right\} \leqslant C(x)
$$

If x^{\prime} is in case (${ }^{*} 1$), we have

$$
\beta\left(x^{\prime}\right) \leqslant \frac{C(G)}{d}+\frac{1}{p} \text { and } \beta\left(x^{\prime}\right)<1+\left\lfloor\frac{C(G)}{d}\right\rfloor .
$$

If x^{\prime} is in case (*3), then

$$
\beta 3\left(x^{\prime}\right) \leqslant \frac{C(G)}{d}+\frac{1}{p} \text { and } \beta 3\left(x^{\prime}\right)<1+\left\lfloor\frac{C(G)}{d}\right\rfloor
$$

(vii) if $\left(m(x)=2, a(1) \equiv a(2) \bmod p, C(x)=1\right.$ and x^{\prime} is in case $\left.\left({ }^{*} 3\right)\right)$, then:
if $p \geqslant 3$, we have $\beta 3\left(x^{\prime}\right)<1$ and x^{\prime} is not rational over x;
if $p=2$, we have $\beta 3\left(x^{\prime}\right) \leqslant \frac{3}{2}$, and if equality holds, then $\left(a(1) \not \equiv 0 \bmod 2, x^{\prime}\right.$ is rational over x and the monomial

$$
u_{3}^{\prime \omega(x)-j_{1}} u_{1}^{\prime j_{1} A_{1}\left(x^{\prime}\right)} v^{\prime \frac{3}{2} j_{1}+1}
$$

appears with nonzero coefficient in the expansion of $H\left(x^{\prime}\right)^{-1} v^{\prime} \frac{\partial f_{Z^{\prime}}^{\prime}}{\partial v^{\prime}}$, where $1 \leqslant j_{1} \leqslant \omega(x)$, $j_{1} \equiv$ $0 \bmod 4$, and $\left(Z^{\prime}, u_{1}^{\prime}, v^{\prime}, u_{3}^{\prime}\right)$ is a suitable well prepared r.s.p. at $\left.x^{\prime}\right)$;
(viii) if x^{\prime} is not rational over x, then:
if $\gamma(x) \geqslant 3$, we have $\gamma\left(x^{\prime}\right)<\gamma(x)$;
if $\gamma(x)=\gamma\left(x^{\prime}\right)=2$, then (x is in case (${ }^{*} 1$), $J_{0} \subset p \mathbf{N}$ and $\beta(x)=C(x)=2$). If x^{\prime} is in case $\left({ }^{*} 1\right)$, then $\beta\left(x^{\prime}\right)<2$. If x^{\prime} is in case (*3), then $\beta 3\left(x^{\prime}\right) \leqslant 1$ or $\left(p=2\right.$ and $\left.\beta 3\left(x^{\prime}\right) \leqslant \frac{3}{2}\right)$, in which case equality holds only if the monomial

$$
u_{3}^{\prime \omega(x)-j_{1}} u_{1}^{\prime j_{1} A_{1}\left(x^{\prime}\right)} v^{\prime \frac{3}{2} j_{1}+1}
$$

appears with nonzero coefficient in the expansion of $H\left(x^{\prime}\right)^{-1} v^{\prime} \frac{\partial f_{z^{\prime}}^{\prime}}{\partial v^{\prime}}$, where $1 \leqslant j_{1} \leqslant \omega(x)$, $j_{1} \equiv$ $0 \bmod 4$, and $\left(Z^{\prime}, u_{1}^{\prime}, v^{\prime}, u_{3}^{\prime}\right)$ is a suitable well prepared r.s.p. at x^{\prime};
(ix) if $C(x)<1$ or if $\left(\beta(x)<2\right.$ and x^{\prime} is not rational over $\left.x\right)$, then $\beta\left(x^{\prime}\right)<1$.

Proof. We assume all along the proof that x^{\prime} is very near x. The last statement in (a) is a direct consequence of $\mathbf{I} .7(\mathrm{i})$. If $(m(x)=2$ and $B(x)=C(x)=1)$, we apply I.7(i) and replace $\left(X, u_{1}, u_{2}, u_{3}\right)$ with (Z, u_{1}, u_{2}, v). All computations will henceforth be performed with the variables $\left(Z, u_{1}, u_{2}, v\right)$. Note that $\gamma\left(u_{1}, u_{2}, v\right)=\gamma\left(u_{1}, u_{2}, u_{3}\right)=2$ and that $\beta\left(u_{1}, u_{2}, v\right)>1$.

In general, we denote $h^{\prime}=u_{1}^{-p} h=X^{\prime p}-X^{\prime} g^{\prime p-1}+f^{\prime}$ the strict transform of h, with

$$
\begin{equation*}
f^{\prime}=u_{1}^{\prime a(1)+a(2)+\omega(x)-p} u_{2}^{\prime a(2)}\left(u_{3}^{\prime \omega(x)} \phi_{0}+\sum_{1 \leqslant j \leqslant \omega(x)} u_{3}^{\prime \omega(x)-j} u_{1}^{\prime a_{j}(1)+a_{j}(2)+d_{j}-j} u_{2}^{\prime a_{j}(2)} \psi_{j}^{\prime}\right) \tag{1}
\end{equation*}
$$

Assume that $x^{\prime}=\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ is the origin of the chart. Then $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal, from which follows that $\kappa\left(x^{\prime}\right)=2, x^{\prime}$ is in case (${ }^{*} 1$) (resp. (${ }^{*} 2$)) if x is in case (${ }^{*} 1$) (resp. (*2)) and ($X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}$) is well prepared. Looking at the figure below after blowing up and comparing with that in I.5.2.1, the reader sees that

$$
C\left(x^{\prime}\right) \leqslant \beta_{2}(x)-A_{2}(x) \leqslant B(x)-\alpha_{2}(x)-A_{2}(x) \leqslant C(x),
$$

and that $\beta\left(x^{\prime}\right) \leqslant \beta_{2}(x) \leqslant \beta(x), A_{1}\left(x^{\prime}\right)=B(x)-1$. This proves (b) and the corresponding part of (a) and (d).

After blowing up, origin of the first chart

We assume from now on that $x^{\prime} \neq\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ and choose $v^{\prime}:=P\left(1, u_{2}^{\prime}\right)$, where $P \in$ $k(x)\left[u_{1}, u_{2}\right]$ is irreducible, unitary and of degree d in u_{2} such that ($X^{\prime}, u_{1}^{\prime}, v^{\prime}, u_{3}^{\prime}$) is a r.s.p. at x^{\prime}. We have $E^{\prime}=\operatorname{div}\left(u_{1}^{\prime}\right)$ and denote $S^{\prime}:=\left(S\left[u_{2}^{\prime}, u_{3}^{\prime}\right]\right)_{\eta^{\prime}\left(x^{\prime}\right)}$. We may take $H\left(x^{\prime}\right)=u_{1}^{\prime a(1)+a(2)+\omega(x)-p}$ by II.5.4.1 of chapter 1 . The point is that, in general, $\left(X^{\prime}, u_{1}^{\prime}, v^{\prime}, u_{3}^{\prime}\right)$ is not well prepared.

Let M^{\prime} be the monomial $M^{\prime}:=u_{1}^{\prime a(1)+a(2)+\omega(x)-p} u_{2}^{\prime a(2)} u_{3}^{\prime \omega(x)} \overline{\phi_{0}}$ in expression (1), where $\overline{\phi_{0}}$ denotes the image of ϕ_{0} in $k\left(x^{\prime}\right)$. When making a translation on $X^{\prime}, Z^{\prime}:=X^{\prime}-u_{1}^{\prime a} \theta^{\prime}, \theta^{\prime} \in \widehat{S^{\prime}}$, $a \geqslant \frac{a(1)+a(2)+\omega(x)-p}{p}$ in order to get $\Delta\left(h^{\prime} ; u_{1}^{\prime}, v^{\prime}, u_{3}^{\prime} ; Z^{\prime}\right)$ minimal, we consider three cases:

Case 1: $a(1)+a(2) \not \equiv 0 \bmod p$. The monomial M^{\prime} is preserved by this translation.
Case 2: $a(1) \equiv a(2) \equiv 0 \bmod p$ and x^{\prime} separable over x. Then $\overline{\phi_{0}}$ is not a $p^{t h}$-power in $k(x)$, therefore neither in $k\left(x^{\prime}\right)$ (recall that $\left.\omega(x) \equiv 0 \bmod p\right)$. As $\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)>\epsilon(x)$, the monomial M^{\prime} is preserved by this translation.

In cases 1 and 2 , we get $\epsilon\left(x^{\prime}\right) \leqslant \omega(x)=\epsilon(x)$. Since x^{\prime} is very near x, we have $\kappa\left(x^{\prime}\right)=2$ and condition $\left({ }^{*} 1\right)$ holds at x^{\prime}.

Case 3: all other cases. In particular, we have $a(1)+a(2) \equiv 0 \bmod p$. Then

$$
f_{Z^{\prime}}^{\prime}:=f^{\prime}+\left(u_{1}^{a} \theta^{\prime}\right)^{p}-u_{1}^{\prime a} \theta^{\prime} g^{\prime p-1}
$$

satisfies

$$
\begin{equation*}
H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime} \equiv\left(u_{2}^{\prime a(2)} \phi_{0}+\psi^{\prime p}\right) u_{3}^{\prime \omega(x)}+\sum_{1 \leqslant j \leqslant \frac{\omega(x)}{p}} u_{3}^{\prime \omega(x)-p j}\left(u_{2}^{\prime a(2)} \Phi_{p j}^{\prime}\left(u_{2}^{\prime}\right)+\psi_{p j}^{\prime}\left(v^{\prime}\right)^{p}\right) \bmod \left(u_{1}^{\prime}\right) \tag{2}
\end{equation*}
$$

where $\operatorname{deg}_{u_{2}^{\prime}} \Phi_{p j}^{\prime} \leqslant p j$, and $\operatorname{ord}_{v^{\prime}} \psi_{p j}^{\prime}\left(v^{\prime}\right)^{p} \geqslant \operatorname{ord}_{v^{\prime}} \Phi_{p j}^{\prime}\left(u_{2}^{\prime}\right), 1 \leqslant j \leqslant \omega(x)$.
Let $\lambda^{\prime}:=u_{2}^{\prime a(2)} \phi_{0}+\psi^{\prime p}$. There exists $D^{\prime} \in \mathcal{D}^{\prime}:=\left\{D \in \operatorname{Der}_{S^{\prime} / k_{0}} \mid D\left(I\left(E^{\prime}\right)\right) \subseteq I\left(E^{\prime}\right)\right\}$ such that $D^{\prime} \lambda^{\prime}$ is a unit, since $J\left(f^{\prime}, E^{\prime}\right)$ is the weak transform of $J(f, E, x)$. Hence either (λ^{\prime} is a unit and $\left.D^{\prime} \in \mathcal{D}^{\prime}\left(x^{\prime}\right)\right)$, or $\left(D^{\prime}=\frac{\partial}{\partial v^{\prime}}\right.$ and $D^{\prime} \lambda^{\prime}$ is a unit).

Case 3a: in the former case, we have $\omega\left(x^{\prime}\right)=\omega(x), \kappa\left(x^{\prime}\right)=2$ and x^{\prime} verifies (*1).
Case 3b: in the latter one, we claim that $\kappa\left(x^{\prime}\right) \leqslant 1$ or $\left(\kappa\left(x^{\prime}\right)=2\right.$ and x^{\prime} is in case $\left({ }^{*} 1\right)$ or $\left.\left({ }^{*} 3\right)\right)$. To prove the claim, we consider two more subcases:

Case 3ba: assume that $\Phi_{p j}^{\prime}=0$ for $1 \leqslant j \leqslant \frac{\omega(x)}{p}$. Then $\kappa\left(x^{\prime}\right)=1$ by chapter 2 II. 1 if $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime}\right)=\omega(x)$. Assume now that $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime}\right)=1+\omega(x)$, so

$$
H\left(x^{\prime}\right)^{-1} \frac{\partial f_{Z^{\prime}}^{\prime}}{\partial v^{\prime}} \equiv \frac{\partial \lambda^{\prime}}{\partial v^{\prime}} u_{3}^{\prime \omega(x)} \bmod \left(u_{1}^{\prime}\right)
$$

so $\kappa\left(x^{\prime}\right)=2$ and x^{\prime} is in case $\left({ }^{*} 3\right)$.
Case 3bb: assume now that not all $\Phi_{p j}^{\prime}$'s are zero. Then $B(x)=1$ and $U_{i} \notin \operatorname{VDir}(x)$ for $i=1,2$ since $x^{\prime} \neq\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$, so $C(x)=B(x)=1$. Since x^{\prime} is very near x, we have $\operatorname{VDir}(x)=<U_{3}, b U_{1}+U_{2}>, b \neq 0$ and $v^{\prime}=b+u_{2}^{\prime}$. Moreover, $m(x)=2$ and $a(2) \not \equiv 0 \bmod p$ since we are dealing with case 3 . By chapter 2 II.5(ii) (with variables u_{1} and u_{3} exchanged), this implies that

$$
{u_{2}^{\prime}}^{a(2)} \Phi_{p j}^{\prime}\left(u_{2}^{\prime}\right)=\mu_{p j}\left(v^{\prime}-b\right)^{a(2)} v^{\prime p j}+\varphi_{p j}^{\prime}\left(v^{\prime}\right)^{p}
$$

for some $\mu_{p j} \in k(x)$ and $\varphi_{p j}^{\prime}\left(v^{\prime}\right) \in k\left(x^{\prime}\right)\left[\left[v^{\prime}\right]\right]$ for each $j, 1 \leqslant j \leqslant \frac{\omega(x)}{p}$.
If $\mu_{p j} b^{a(2)} \notin k(x)^{p}$ for some j, then $\epsilon\left(x^{\prime}\right)=\omega(x)$ and $\kappa\left(x^{\prime}\right)=2$. By chapter 2 II.2, we have $\kappa(x)=0$ unless $\mu_{\omega(x)} b^{a(2)} \notin k(x)^{p}$ and $\mu_{p j} b^{a(2)} \in k(x)^{p}$ for $p j \neq \omega(x)$, in which case (2) leads to

$$
H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime} \equiv \mu_{1}^{\prime}\left(v^{\prime}\right) v^{\prime} u_{3}^{\prime \omega(x)}+\sum_{1 \leqslant j \leqslant \frac{\omega(x)}{p}-1} \mu_{p j}^{\prime}\left(v^{\prime}\right) u_{3}^{\prime \omega(x)-j} v^{\prime p j+1}+\mu_{\omega(x)}^{\prime}\left(v^{\prime}\right) v^{\omega(x)} \bmod \left(u_{1}^{\prime}\right)
$$

with $\mu_{1}^{\prime}\left(v^{\prime}\right) \mu_{\omega(x)}^{\prime}\left(v^{\prime}\right)$ invertible and $\mu_{p j}^{\prime}\left(v^{\prime}\right)$ invertible or zero for $1 \leqslant j \leqslant \frac{\omega(x)}{p}-1$. Hence $\kappa\left(x^{\prime}\right)=2$ and x^{\prime} is in case $\left({ }^{*} 1\right)$. Since $\mu_{1}^{\prime}(0) \neq 0$ and $\omega(x) \equiv 0 \bmod p$, there exists a vertex

$$
w:=\left(0, w_{2}\right) \in \Delta\left(H\left(x^{\prime}\right)^{-1}\left(f_{Z^{\prime}}^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{3}^{\prime} ; v^{\prime}\right)
$$

which is not solvable, so $A_{1}\left(x^{\prime}\right)=0$. We have $\beta\left(x^{\prime}\right)=\frac{\omega(x)}{\omega(x)-1}$ (resp. $\left.\beta\left(x^{\prime}\right)=1+\frac{1}{p j_{0}}\right)$ if $\mu_{p j}^{\prime}\left(v^{\prime}\right)$ is zero for each $j, 1 \leqslant j \leqslant \frac{\omega(x)}{p}-1$ (resp. if $j_{0}=\inf \left\{j, \left.1 \leqslant j \leqslant \frac{\omega(x)}{p}-1 \right\rvert\, \mu_{p j}^{\prime}\left(v^{\prime}\right)\right.$ invertible $\}$). So $\beta\left(x^{\prime}\right) \leqslant \frac{\omega(x)}{\omega(x)-1} \leqslant 2$, with $\beta\left(x^{\prime}\right)=2$ only if $p=\omega(x)=2$ and

$$
H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime} \equiv \mu_{1}^{\prime} v^{\prime} u_{3}^{\prime 2}+\mu_{2}^{\prime} v^{\prime 2} \bmod \left(u_{1}^{\prime}\right) .
$$

This is the special case announced in the statement of (e), where "Dis" stands for "Disaster" (change of directrix).

If $\mu_{p j} b^{a(2)} \in k(x)^{p}$ for each $j, 1 \leqslant j \leqslant \frac{\omega(x)}{p}$, note that

$$
\mathrm{cl}_{\mu_{0}, \omega(x)} J=\operatorname{cl}_{\omega(x)} J(f, E, x)=\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} u_{1} \frac{\partial f}{\partial u_{1}}\right)=: k(x) \cdot G
$$

the first equality since $B(x)=1$, so $\mu_{0}=\operatorname{ord}_{\eta(x)}$ (definition I.8.2.3). Therefore we get

$$
J\left(f^{\prime}, E^{\prime}\right) \equiv\left(G\left(1, v^{\prime}-b, u_{3}^{\prime}\right)\right) \bmod \left(u_{1}^{\prime}\right) .
$$

Explicitly, we have (up to multiplication by a constant)

$$
\begin{equation*}
G\left(1, v^{\prime}-b, u_{3}^{\prime}\right)=\mu_{1} u_{3}^{\prime \omega(x)}+\sum_{1 \leqslant j \leqslant \frac{\omega(x)}{p}} \mu_{p j} u_{3}^{\omega(x)-p j} v^{\prime p j} \tag{3}
\end{equation*}
$$

where $\mu_{1}=\overline{\phi_{0}}$. Now, (2) leads to

$$
H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime}=\mu_{1}^{\prime}\left(v^{\prime}\right) v^{\prime} u_{3}^{\prime \omega(x)}+\sum_{1 \leqslant j \leqslant \frac{\omega(x)}{p}} \mu_{p j}^{\prime}\left(v^{\prime}\right) u_{3}^{\prime \omega(x)-p j} v^{\prime p j+1}+u_{1}^{\prime} \varphi^{\prime},
$$

with $\mu_{1}^{\prime}\left(v^{\prime}\right)$ invertible, $\mu_{p j}^{\prime}\left(v^{\prime}\right)$ invertible or zero if $1 \leqslant j \leqslant \frac{\omega(x)}{p}$ and $\varphi^{\prime} \in{\widehat{S^{\prime}}}^{\prime}$, so we get by identification with (3)

$$
\begin{equation*}
\left(H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime}\right) \equiv\left(v^{\prime} G\left(1, v^{\prime}-b, u_{3}^{\prime}\right)\right) \bmod \left(u_{1}^{\prime},\left(v^{\prime}, u_{3}^{\prime}\right)^{\omega(x)+2}\right) . \tag{4}
\end{equation*}
$$

Now note that, since $\left(X, u_{1}, u_{2}, u_{3}\right)$ is well prepared, G is not a scalar multiple of an $\omega(x)^{t h}{ }_{-}$ power.

If $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(u_{1}^{\prime} \varphi^{\prime}\right) \geqslant 1+\omega(x)$, then $\kappa\left(x^{\prime}\right)=2$ and x^{\prime} is in case $\left({ }^{*} 3\right)$. By (3) and (4), $(0,1)$ is an unsolvable vertex of $\Delta\left(H\left(x^{\prime}\right)^{-1} v^{\prime-1}\left(f_{Z^{\prime}}^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, v^{\prime} ; u_{3}^{\prime}\right)$, since G is not an $\omega(x)^{t h}$-power. We get $A_{1}\left(x^{\prime}\right)=0$ and $\beta 3\left(x^{\prime}\right)=1$.

If $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(u_{1}^{\prime} \varphi^{\prime}\right)=\omega(x)$, it is easily seen along the following lines that $\kappa\left(x^{\prime}\right)=0$: we have $U_{1}^{\prime} \in \operatorname{VDir}\left(x^{\prime}\right)$; by (3) and (4), every $x^{\prime \prime}$ near x^{\prime} has

$$
\epsilon\left(x^{\prime \prime}\right) \leqslant 1+\omega(x)-1=\omega(x),
$$

since G is not a scalar multiple of an $\omega(x)^{t h}$-power; equality holds implies $\omega\left(x^{\prime \prime}\right)=\epsilon(x)-1<\omega(x)$, so $x^{\prime \prime}$ is not very near x^{\prime}.

This concludes the proof of the claim, hence of (c) and of the remaining part of (a).
We now prove \mathbf{I}.8.3 in the special case $B(x)=1$.
Assume first that ($m(x)=2$ and $B(x)=C(x)=1$). In the above case 1, we have $\kappa\left(x^{\prime}\right)=0$ by chapter $2, \mathbf{I I}$.2. In case 3 , we are already done by the above computations except in case 3 a. We argue along the lines and notations of the proof in case 3 bb above: if $\mu_{p j} b^{a(2)} \notin k(x)^{p}$ for some $j, 1 \leqslant j \leqslant \frac{\omega(x)}{p}$, then $A_{1}\left(x^{\prime}\right)=0$ and $\operatorname{VDir}\left(x^{\prime}\right) \equiv<U_{3}^{\prime}, V^{\prime}>\bmod \left(U_{1}^{\prime}\right)$ so $\kappa\left(x^{\prime}\right)=0$ by chapter 2, II.2; if $\mu_{p j} b^{a(2)} \in k(x)^{p}$ for each $j, 1 \leqslant j \leqslant \frac{\omega(x)}{p}$, then $A_{1}\left(x^{\prime}\right)=0$ and

$$
\beta\left(x^{\prime}\right)=1+\inf \left\{\left.\frac{1}{p j} \right\rvert\, \mu_{p j} \neq 0\right\}<2 .
$$

Assume now that $B(x)=1$ and either $C(x)<1$ or $m(x)=1$. Since $x^{\prime} \neq\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ and we are in the first chart, it can be assumed as well that $<U_{3}, b U_{1}+U_{2}>\subseteq \operatorname{VDir}(x), b \neq 0$. If $m(x)=1$, we have $\kappa(x)=0$ by chapter 2 , II.2. If $m(x)=2$, then $U_{i} \in \operatorname{VDir}(x)$ for some $i \in\{1,2\}$ because $C(x)=1$ (see argument at the end of I.7.1), so $\tau(x)=3$ and $\kappa(x)=0$.

All statements have been proved for $B(x)=1$, so we assume that $B(x)>1$ from now on.
Before proving (d), (e) and statements (i)-(ix), recall that $a_{j}(1)+a_{j}(2)+d_{j}-j \geqslant j(B(x)-1)$ in (1), with equality if and only if $j \in J_{0}$ (definition \mathbf{I}.8.2.1). As the well preparation will replace $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, v^{\prime} ; u_{3}^{\prime}\right)$ by a smaller polyhedron, we get

$$
A_{1}\left(x^{\prime}\right) \geqslant B(x)-1 .
$$

I.8.3.1 Proof of (i). If $b(1)+b(2)-(a(1)+a(2))=\omega(x) B(x)$, then $A_{1}\left(x^{\prime}\right)=B(x)-1$ and $\left(A_{1}\left(x^{\prime}\right), 0\right)$ is a vertex of $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, v^{\prime} ; u_{3}^{\prime}\right)$ which is not solvable by definition, so $\beta\left(x^{\prime}\right)=0$. We have $\kappa\left(x^{\prime}\right) \leqslant 1$ by I.8.1.
I.8.3.2 Preliminary remarks and proof of (ii). Let μ_{1} be the monomial valuation on $\widehat{S^{\prime}}$ defined by

$$
\mu_{1}\left(\sum_{a b c} \lambda_{a b c} u_{1}^{\prime a}{ }^{\prime}{ }^{b} u_{3}^{\prime}{ }^{c}\right)=\min \left\{\left.c+\frac{a}{B(x)-1} \right\rvert\, \lambda_{a b c} \neq 0\right\} .
$$

Note that $\mu_{1}\left(H\left(x^{\prime}\right)^{-1} f^{\prime}\right)=\omega(x)$. In the well preparation algorithm at x^{\prime}, we replace u_{3}^{\prime} by

$$
\begin{equation*}
w^{\prime}:=u_{3}^{\prime}-u_{1}^{\prime a} s^{\prime}, s^{\prime} \in k\left(x^{\prime}\right)\left[\left[u_{1}^{\prime}, v^{\prime}\right]\right], a \geqslant B(x)-1, \tag{1}
\end{equation*}
$$

and X^{\prime} by

$$
\begin{equation*}
Z^{\prime}:=X^{\prime}-u_{1}^{\prime} a^{\prime} \theta^{\prime}, \theta^{\prime} \in \widehat{S^{\prime}}, a^{\prime} \geqslant \frac{a(1)+a(2)+\omega(x)-p}{p} . \tag{2}
\end{equation*}
$$

The Newton polyhedron of ${u_{1}^{\prime}}^{a^{\prime}} \theta^{\prime}$ is a subset of $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$, so

$$
\mu_{1}\left(u_{1}^{\prime a^{\prime}} \theta^{\prime}\right) \geqslant \frac{\mu_{1}\left(H\left(x^{\prime}\right)\right)+\omega(x)}{p}
$$

Let

$$
\begin{equation*}
F^{\prime}:={u_{2}^{\prime a(2)}}^{a}\left(\overline{\phi_{0}} U_{3}^{\prime \omega(x)}+\sum_{j_{0} \in J_{0}} U_{3}^{\prime \omega(x)-j_{0}} U_{1}^{\prime j_{0}(B(x)-1)} u_{2}^{\prime a_{j}(2)} \operatorname{cl}_{0} \psi_{j}^{\prime}\right) \tag{3}
\end{equation*}
$$

be the initial form of $H\left(x^{\prime}\right)^{-1} f^{\prime}$ in the graded algebra $G_{\mu_{1}}\left(\widehat{S^{\prime}}\right)=k\left(x^{\prime}\right)\left[\left[v^{\prime}\right]\right]\left[U_{1}^{\prime}, U_{3}^{\prime}\right]$ of $\widehat{S^{\prime}}$ w.r.t. μ_{1}, where cl_{0} denotes residue w.r.t. μ_{1}, i.e. the image in $\widehat{S}^{\prime} /\left(u_{1}^{\prime}, u_{3}^{\prime}\right) \simeq k\left(x^{\prime}\right)\left[\left[v^{\prime}\right]\right]$. Note that F^{\prime} is the weak transform of

$$
U_{1}^{a(1)} U_{2}^{a(2)} \operatorname{in}_{\mu_{0}}\left(\sum_{0 \leqslant j \leqslant \omega(x)} u_{3}^{\omega(x)-j} \phi_{j}\right)=: U_{1}^{a(1)} U_{2}^{a(2)} F
$$

(see definition I.8.2.3 for the definition of μ_{0}).
Substitution (1) changes F^{\prime} by an automorphism $U_{3}^{\prime} \mapsto W^{\prime}+\lambda\left(v^{\prime}\right) U_{1}^{\prime B(x)-1}, \lambda \in k\left(x^{\prime}\right)\left[\left[v^{\prime}\right]\right]$ (with $\lambda=0$ if $B(x) \notin \mathbb{N}$), while substitution (2) only changes it by some $H\left(x^{\prime}\right)^{-1} \Theta^{\prime p}, \Theta^{\prime} \in G_{\mu_{1}}\left(\widehat{S}^{\prime}\right)$ by (i).

Therefore we have $\mu_{1}\left(J^{\prime}\right)=\omega(x)$ and

$$
\begin{equation*}
\operatorname{in}_{\mu_{1}} J^{\prime}=<\left(\operatorname{in}_{\mu_{1}} H\left(x^{\prime}\right)\right)^{-1} \cdot\left(\operatorname{in}_{\mu_{0}} H(x)\right) \cdot \operatorname{cl}_{\mu_{0}, \omega(x)} J> \tag{4}
\end{equation*}
$$

where $J^{\prime}:=J\left(U_{1}^{\prime a(1)+a(2)+\omega(x)-p} F^{\prime}, E^{\prime}\right)$. By well-preparedness, the right hand side is not generated by an $\omega(x)^{t h}$-power, so the left hand side is not generated by $W^{\prime \omega(x)}$: letting $f_{Z^{\prime}}^{\prime}:=f^{\prime}+\left(u_{1}^{\prime a^{\prime}} \theta^{\prime}\right)^{p}-$ $u_{1}^{\prime a^{\prime}} \theta^{\prime} g^{\prime p-1}$, there exists a vertex $\mathbf{v}^{\prime}=\left(B(x)-1, v_{2}^{\prime}\right)$ in $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f_{Z^{\prime}}^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, v^{\prime} ; w^{\prime}\right)$. This proves that $A_{1}\left(x^{\prime}\right)=B(x)-1$, so (ii) holds.

We now proceed to prove (d) and (e) in each of cases (iii)-(vi). Note that (d) is a trivial consequence of equations (1) and (2) in (e) if x^{\prime} is in case $\left({ }^{*} 1\right)$ and of (iii)-(vi) if (x is in case $\left({ }^{*} 2\right)$ and x^{\prime} is in case $\left({ }^{*} 3\right)$). So (d) only needs to be proved when $\left(x\right.$ is in case $\left({ }^{*} 1\right)$ and x^{\prime} is in case $(* 3))$. By (c), we may then assume furthermore that x^{\prime} is inseparable over x.
I.8.3.3 Proof in case (iii). Let $j_{1}:=\inf \left\{j_{0} \in J_{0} \mid j_{0} \not \equiv 0 \bmod p\right\}$. The comments below equation (3) in I.8.3.2 show that the monomial

$$
H\left(x^{\prime}\right) u_{2}^{\prime a(2)} u_{1}^{\prime a_{j_{1}}(1)+a_{j_{1}}(2)+d_{j_{1}}-j_{1}} u_{2}^{\prime a_{j_{1}}(2)} u_{3}^{\prime \omega(x)-j_{1}} \Psi_{j_{1}}\left(1, u_{2}^{\prime}\right)
$$

in f^{\prime} is preserved by the well preparation algorithm at x^{\prime}, so $\beta\left(x^{\prime}\right) \leqslant \frac{d_{j_{1}}}{j_{1} d}$ and $\beta 3\left(x^{\prime}\right) \leqslant \frac{d_{j_{1}}}{j_{1} d}-\frac{1}{j_{1}}$ if x^{\prime} is in case $\left({ }^{*} 3\right)$. The conclusion of (iii) follows from this fact and lemma I.8.2.2. The corresponding parts of (d) and (e) are trivial consequences of (iii) (note the trivial fact

$$
\begin{equation*}
\forall d \geqslant 2, \forall y>0,1+\left\lfloor\frac{y}{d}\right\rfloor \leqslant\lceil y\rceil \tag{1}
\end{equation*}
$$

where equality holds only if $0<y \leqslant 1$ or if $d=y=2$).
I.8.3.4 Proof in case (iv). Equation (1) and subsequent comments in I.8.3.2 imply that the monomial

$$
H\left(x^{\prime}\right) u_{2}^{\prime a(2)} u_{1}^{\prime a_{j_{0}}(1)+a_{j_{0}}(2)+d_{j_{0}}-j_{0}} u_{2}^{\prime a_{j_{0}}(2)} u_{3}^{\prime \omega(x)-j_{0}} \Psi_{j_{0}}\left(1, u_{2}^{\prime}\right)
$$

in f^{\prime} is preserved by the translation $w^{\prime}=u_{3}^{\prime}-u_{1}^{\prime}{ }^{a} s^{\prime}$ for each $j_{0} \in J_{0}$, since $B(x) \notin \mathbb{N}$. Let

$$
j_{1}:=\inf \left\{j_{0} \in J_{0} \mid U_{1}^{a(1)+a_{j_{0}}(1)} U_{2}^{a(2)+a_{j_{0}}(2)} \Psi_{j_{0}}\left(U_{1}, U_{2}\right) \notin\left(k(x)\left[U_{1}, U_{2}\right]\right)^{p}\right\}
$$

Since $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal, j_{1} exists. By equation (2) and subsequent comments in I.8.3.2, the translation $Z^{\prime}=X^{\prime}-u_{1}^{\prime a^{\prime}} \theta^{\prime}$ plugs into $f_{Z^{\prime}}^{\prime}$ a term of the form

$$
H\left(x^{\prime}\right) u_{3}^{\prime \omega(x)-j_{1}}\left(u_{2}^{\prime a(2)+a_{j_{1}}(2)} \Psi_{j_{1}}\left(1, u_{2}^{\prime}\right)+A_{j_{1}}\left(v^{\prime}\right)^{p}\right)
$$

with $A_{j_{1}}\left(v^{\prime}\right) \in k\left(x^{\prime}\right)\left[\left[v^{\prime}\right]\right]$. We apply II.5.3.2(i) of chapter 1 to the above form and get:

$$
\begin{equation*}
\operatorname{ord}_{v^{\prime}}\left(u_{2}^{\left.\prime a(2)+a_{j_{1}}(2)\right)} \Psi_{j_{1}}\left(1, u_{2}^{\prime}\right)+A_{j_{1}}\left(v^{\prime}\right)^{p}\right) \leqslant \frac{d_{j_{1}}}{d}+1 \tag{1}
\end{equation*}
$$

This implies $\beta\left(x^{\prime}\right) \leqslant \frac{d_{j_{1}}}{j_{1} d}+\frac{1}{j_{1}}$. If x^{\prime} is in case $\left({ }^{*} 3\right), \beta 3\left(x^{\prime}\right) \leqslant \frac{d_{j_{1}}}{j_{1} d}$. From this and I.8.2.2, (iv) is established.

We now prove (e). By II.5.3.2 (ii) of chapter 1, we have

$$
\operatorname{ord}_{v^{\prime}}\left(u_{2}^{\prime a(2)+a_{j_{1}}(2)} \Psi_{j_{1}}\left(1, u_{2}^{\prime}\right)+A_{j_{1}}\left(v^{\prime}\right)^{p}\right)<p\left(1+\left\lfloor\frac{d_{j_{1}}}{p d}\right\rfloor\right) .
$$

Therefore the right hand side in (1) above is not in $p \mathbb{N}$ if equality holds in (1). Since $j_{1} \equiv 0 \bmod p$, we have

$$
\beta\left(x^{\prime}\right) \leqslant \frac{\operatorname{ord}_{v^{\prime}}\left(u_{2}^{\prime a(2)+a_{j_{1}}(2)} \Psi_{j_{1}}\left(1, u_{2}^{\prime}\right)+A_{j_{1}}\left(v^{\prime}\right)^{p}\right)}{j_{1}}<1+\left\lfloor\frac{d_{j_{1}}}{j_{1} d}\right\rfloor .
$$

If $E=\operatorname{div}\left(u_{1}\right)$, then $a(2)=a_{j_{1}}(2)=0$ by definition, so II.5.3.2(iii) of chapter 1 now yields

$$
\begin{equation*}
j_{1} \beta\left(x^{\prime}\right) \leqslant \operatorname{ord}_{v^{\prime}}\left(\Psi_{j_{1}}\left(1, u_{2}^{\prime}\right)+A_{j_{1}}\left(v^{\prime}\right)^{p}\right) \leqslant \operatorname{deg} \Psi_{j_{1}} \leqslant j_{1} \beta(x) \tag{2}
\end{equation*}
$$

provided $\operatorname{deg} \Psi_{j_{1}} \geqslant 1$. If $\operatorname{deg} \Psi_{j_{1}}=0$, then $j_{1} \beta\left(x^{\prime}\right) \leqslant 1$. This concludes the proof of (e).
To prove (d), we may assume (last paragraph before \mathbf{I}.8.3.3) that $\left(x\right.$ is in case $\left({ }^{*} 1\right), x^{\prime}$ is in case (${ }^{*} 3$) and $d \geqslant 2$). So $\gamma\left(x^{\prime}\right) \leqslant 1+\left\lfloor\frac{\beta(x)}{d}\right\rfloor \leqslant \gamma(x)$ by lemma I.8.2.2 and I.8.3.3(1).
I.8.3.5 Proof of (v). Since $\operatorname{dim}_{k(x)}\left(\operatorname{cl}_{\mu_{0}, \omega(x)} J\right) \geqslant 2$, there exists $0 \neq G \in \operatorname{cl}_{\mu_{0}, \omega(x)} J$ of the form

$$
G=\sum_{j_{0} \in J_{0}} U_{3}^{\omega(x)-j_{0}} U_{1}^{a_{j_{0}}(1)} U_{2}^{a_{j_{0}}(2)} G_{j_{0}}\left(U_{1}, U_{2}\right),
$$

with $G_{j_{0}}$ homogeneous of degree $d_{j_{0}}$. Let

$$
G^{\prime}:=U_{1}^{\prime-\omega(x)} G=\sum_{j_{0} \in J_{0}} U_{3}^{\prime \omega(x)-j_{0}} U_{1}^{\prime j_{0}(B(x)-1)} u_{2}^{\prime} a_{j_{0}}(2) G_{j_{0}}\left(1, u_{2}^{\prime}\right) .
$$

By I.8.3.2(4), we have $G^{\prime} \in \operatorname{in}_{\mu_{1}} J^{\prime}$.
Let $j_{1}:=\inf \left\{j_{0} \in J_{0} \mid G_{j_{0}} \neq 0\right\}$. Then $U_{3}^{\prime \omega(x)-j_{1}} U_{1}^{\prime j_{1}(B(x)-1)}{u_{2}^{\prime}}^{a_{j_{1}}(2)} G_{j_{1}}\left(1, u_{2}^{\prime}\right)$ is preserved by any translation on u_{3}^{\prime} or on X^{\prime} in the well preparation algorithm at x^{\prime}. In general, we can only insure that

$$
v^{\prime} G^{\prime} \in \operatorname{in}_{\mu_{1}} J\left(f_{Z^{\prime}}^{\prime}, E^{\prime}, x^{\prime}\right)
$$

so

$$
\begin{equation*}
j_{1} \beta\left(x^{\prime}\right) \leqslant \frac{d_{j_{1}}}{d}+1 \tag{1}
\end{equation*}
$$

and we get $\beta\left(x^{\prime}\right) \leqslant \frac{d_{j_{1}}}{d j_{1}}+\frac{1}{j_{1}}, \beta 3\left(x^{\prime}\right) \leqslant \frac{d_{j_{1}}}{j_{1} d}$ if x^{\prime} is in case $\left({ }^{*} 3\right)$, so (v) is established.
Now note that equality holds in (1) only if the monomial ${u_{3}^{\prime}}^{\omega(x)-j_{1}} v^{\prime j_{1} \beta\left(x^{\prime}\right)-1}$ appears with nonzero coefficient in the expansion of $H\left(x^{\prime}\right)^{-1} \frac{\partial f_{z^{\prime}}^{\prime}}{\partial v^{\prime}}$. Since $j_{1} \in p \mathbb{N}$, this implies that $\beta\left(x^{\prime}\right) \notin \mathbb{N}$. The first statement in (e) follows easily from this remark. For the proof of the second part of (e)
and of $(\mathrm{d}), x$ is now in case $\left({ }^{*} 1\right)$. We get the same upper bound as in I.8.3.4(2) from which the conclusion follows.
I.8.3.6 Proof of (vi). Write

$$
G=U_{3}^{\omega(x)}+\sum_{j_{0} \in J_{0}} U_{3}^{\omega(x)-j_{0}} U_{1}^{a_{0}(1)} U_{2}^{a_{0}(2)} G_{j_{0}}^{\prime}\left(U_{1}, U_{2}\right)
$$

with $G_{j_{0}}^{\prime} \in k(x)\left[U_{1}, U_{2}\right]_{d_{0}}$. Let $j_{1}:=\inf \left\{j_{0} \in J_{0} \mid G_{j_{0}}^{\prime} \neq 0\right\}$. We denote $\omega(x)=p^{\alpha} l$ where l is prime to p.

If $j_{1}=p^{\alpha}$ and $U_{1}^{a_{p} \alpha(1)} U_{2}^{a_{p^{\alpha}}(2)} G_{p^{\alpha}}^{\prime} \in\left(k(x)\left[U_{1}, U_{2}\right]\right)^{p^{\alpha}}$, say $U_{1}^{a_{p} \alpha(1)} U_{2}^{a_{p} \alpha(2)} G_{p^{\alpha}}^{\prime}=: K\left(U_{1}, U_{2}\right)^{p^{a}}$, we replace u_{3} by $w:=u_{3}+l^{-\frac{1}{p^{\alpha}}} K\left(u_{1}, u_{2}\right)$, so

$$
G=W^{\omega(x)}+\sum_{j_{0} \in J_{0}} W^{\omega(x)-j_{0}} U_{1}^{a_{j_{0}}^{\prime}(1)} U_{2}^{a_{j_{0}}^{\prime}(2)} G_{j_{0}}^{\prime \prime}\left(U_{1}, U_{2}\right)
$$

Since $\Delta\left(H(x)^{-1} f ; u_{1}, u_{2} ; u_{3}\right)$ has no solvable vertex by well-preparedness, its initial side is unchanged by the above translation. Therefore not all $G_{j_{0}}^{\prime \prime}$'s are zero and we have

$$
\begin{equation*}
\operatorname{deg} G_{j_{0}}^{\prime \prime} \leqslant j_{0} C(G) \tag{1}
\end{equation*}
$$

Note that we do not mean that h is well prepared for $\left(X, u_{1}, u_{2}, w\right)$, only that the derivative G is unchanged by further translations $Z:=X-\theta$ in order to get $\Delta\left(f ; u_{1}, u_{2}, w ; Z\right)$ minimal. We assume from now on that the above preparation has been performed and denote $j_{1}^{\prime}:=\inf \left\{j_{0} \mid G_{j_{0}}^{\prime \prime} \neq 0\right\}>p^{\alpha}$.

If no preparation has been performed, we let $w=u_{3}, j_{1}^{\prime}=j_{1} \geqslant p$ in what follows.
Let $w^{\prime}:=\frac{w}{u_{2}}$. By I.8.3.2(4), we have

$$
\begin{equation*}
k\left(x^{\prime}\right) \cdot G^{\prime}=\operatorname{in}_{\mu_{1}} J^{\prime}=\operatorname{in}_{\mu_{1}}\left(H\left(x^{\prime}\right)^{-1}\left(u_{1}^{\prime} \frac{\partial f^{\prime}}{\partial u_{1}^{\prime}}, \frac{\partial f^{\prime}}{\partial v^{\prime}}, w^{\prime} \frac{\partial f^{\prime}}{\partial w^{\prime}}, \lambda_{i} \frac{\partial f^{\prime}}{\partial \lambda_{i}}\right)\right) \tag{2}
\end{equation*}
$$

where $G^{\prime}=U_{1}^{\prime-\omega(x)} \mathrm{in}_{\mu_{0}} G\left(U_{1}, U_{2}, W^{\prime}\right)$. By (2) above, either $G^{\prime} \in \operatorname{in}_{\mu_{1}} J\left(f^{\prime}, E^{\prime}, x^{\prime}\right)$ or $<G^{\prime}>=$ $\operatorname{in}_{\mu_{1}}\left(H\left(x^{\prime}\right)^{-1} \frac{\partial f^{\prime}}{\partial v^{\prime}}\right)$. Note that G^{\prime} is unchanged by any translation on X^{\prime} in the well-preparation algorithm at x^{\prime}, since G^{\prime} is (the initial form of) some derivative of f^{\prime}.

Assume that x^{\prime} is in case $\left({ }^{*} 1\right)$. Then $G^{\prime} \in \operatorname{in}_{\mu_{1}} J\left(f^{\prime}, E^{\prime}, x^{\prime}\right)$ and we consider two cases:
Case 1: $j_{1}^{\prime} \neq p^{\alpha}$. The vertex of first coordinate $A_{1}\left(x^{\prime}\right)$ of $\Delta\left(H\left(x^{\prime}\right)^{-1} f^{\prime} ; u_{1}^{\prime}, v^{\prime} ; w^{\prime}\right)$ is not solvable: any translation on w^{\prime} in the well preparation algorithm is of the form $w^{\prime} \mapsto w^{\prime}-u_{1}^{\prime a} s^{\prime}$ with $a>A_{1}\left(x^{\prime}\right)$, so preserves the monomial $W^{\prime \omega(x)-j_{1}^{\prime}} U_{1}^{\prime j_{1}(B(x)-1)} u_{2}^{\prime} a_{j_{1}^{\prime}}^{\prime}(2) G_{j_{1}^{\prime}}^{\prime \prime}\left(1, u_{2}^{\prime}\right)$ in in $\mu_{\mu_{1}}\left(H\left(x^{\prime}\right)^{-1} f^{\prime}\right)$. We get

$$
j_{1}^{\prime} \beta\left(x^{\prime}\right) \leqslant \frac{d_{j_{1}^{\prime}}}{d} \leqslant j_{1}^{\prime} \frac{C(G)}{d}
$$

from which (vi) follows.
Case 2: $j_{1}^{\prime}=p^{\alpha}$. The translation on w^{\prime} in the well-preparation algorithm produces some term of the form

$$
W^{\prime p^{a}(l-1)} U_{1}^{\prime p^{\alpha}(B(x)-1)}\left(u_{2}^{\prime}{ }^{a_{p \alpha}(2)} G_{p^{\alpha}}^{\prime}\left(1, u_{2}^{\prime}\right)+\varphi^{\prime}\left(v^{\prime}\right)^{p^{\alpha}}\right)
$$

in $H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime}$. Let $\alpha^{\prime}<\alpha$ be the largest integer such that $U_{1}^{a_{p^{\alpha}(1)}} U_{2}^{a_{p} \alpha(2)} G_{p^{\alpha}}^{\prime} \in\left(k(x)\left[U_{1}, U_{2}\right]\right)^{p^{\alpha^{\prime}}}$. By II.5.3.2(i) of chapter 1 applied to the form $\left(U_{1}^{a_{p^{\alpha}}(1)} U_{2}^{a_{p^{\alpha}}(2)} G_{p^{\alpha}}^{\prime}\right)^{\frac{1}{p^{\prime}}}$, we get

$$
p^{\alpha} \beta\left(x^{\prime}\right) \leqslant \operatorname{ord}_{v^{\prime}}\left(u_{2}^{\prime}{ }^{a_{p} \alpha(2)} G_{p^{\alpha}}^{\prime}\left(1, u_{2}^{\prime}\right)+\varphi^{\prime}\left(v^{\prime}\right)^{p^{\alpha}}\right) \leqslant \frac{p^{\alpha} C(G)}{d}+p^{\alpha^{\prime}} \leqslant p^{\alpha}\left(\frac{C(G)}{d}+\frac{1}{p}\right) .
$$

Furthermore, by II.5.3.2(ii) of chapter 1,

$$
\operatorname{ord}_{v^{\prime}}\left(u_{2}^{\prime} a_{p^{\alpha}}(2) G_{p^{\alpha}}^{\prime}\left(1, u_{2}^{\prime}\right)+\varphi^{\prime}\left(v^{\prime}\right)^{p^{\alpha}}\right)<p^{\alpha}\left(1+\left\lfloor\frac{C(x)}{d}\right\rfloor\right)
$$

and this completes the proof of (vi) when x^{\prime} is in case $\left({ }^{*} 1\right)$.
Assume that x^{\prime} is in case $\left({ }^{*} 3\right)$. Then $G^{\prime} \in \operatorname{in}_{\mu_{1}}\left(H\left(x^{\prime}\right)^{-1} \frac{\partial f^{\prime}}{\partial v^{\prime}}\right)$. The proof runs along the same lines as above, with $\beta\left(x^{\prime}\right)$ replaced by $\beta 3\left(x^{\prime}\right)$. The worst upper bound we can get is

$$
p^{\alpha} \beta 3\left(x^{\prime}\right) \leqslant \frac{d_{p^{\alpha}}}{d}+p^{\alpha^{\prime}} \leqslant p^{\alpha}\left(C(G)+\frac{1}{p}\right) .
$$

The remaining statements are proved along the same lines as in I.8.3.4 or I.8.3.5.
I.8.3.7 Proof of (vii). We include this statement here to deal with some extra difficulty when $p=2$ (see I.11.1 below). If x^{\prime} is not rational over x, i.e. $d \geqslant 2$, the result follows from (iii)-(vi). From now on, x^{\prime} is rational over x. We have

$$
f^{\prime}=u_{1}^{\prime a(1)+a(2)+\omega(x)-p} u_{2}^{a(2)}\left(\phi_{0} u_{3}^{\prime \omega(x)}+u_{1}^{\prime} \varphi^{\prime}\right)
$$

with $\varphi^{\prime} \in k(x)\left[\left[u_{1}, u_{2}, u_{3}\right]\right]\left[u_{2}^{\prime}, u_{3}^{\prime}\right]$. If $2 a(1) \not \equiv 0 \bmod p$ or if $\bar{\phi}_{0} \notin k(x)^{p}$ (for example if $a(1) \equiv$ $0 \bmod p)$, then x^{\prime} in is in case $(* 1)$. So we have $p=2, a(1) \not \equiv 0 \bmod 2$ and $\bar{\phi}_{0} \in k(x)^{2}$.

In cases (iii)-(v) above, we get $\beta 3\left(x^{\prime}\right) \leqslant 1$. In case (vi), we get $\beta 3\left(x^{\prime}\right) \leqslant 1+\frac{1}{p}=\frac{3}{2}$. With notations as in the end of the proof of $(\mathrm{vi}), \beta 3\left(x^{\prime}\right)=\frac{3}{2}$ implies that the monomial

$$
u_{3}^{\prime \omega(x)-p^{\alpha}} u_{1}^{\prime p^{\alpha} A_{1}\left(x^{\prime}\right)} v^{\prime p^{\alpha} \beta 3\left(x^{\prime}\right)}
$$

appears with nonzero coefficient in the expansion of $H\left(x^{\prime}\right)^{-1} \frac{\partial f_{Z^{\prime}}^{\prime}}{\partial v^{\prime}}$. Necessarily, $j_{1} \equiv 0 \bmod 4$.
I.8.3.8 Proof of (viii). Assume that $\gamma(x) \geqslant 2$ and $d \geqslant 2$. By (e) and (iii)-(vi), $\gamma\left(x^{\prime}\right)<\gamma(x)$ except possibly if $\left(d=2, \gamma(x)=2, \beta(x)=C(x)=2\right.$ and x is in case $\left.\left({ }^{*} 1\right)\right)$. In this case, we only get $\beta\left(x^{\prime}\right)<2$ if x^{\prime} is in case ($\left.{ }^{*} 1\right)$. If x^{\prime} is in case $\left({ }^{*} 3\right)$, then we only get $\beta 3\left(x^{\prime}\right) \leqslant 1+\frac{1}{p} \leqslant \frac{3}{2}$. Equality implies $p=2$, the end of the proof of I.8.3.6 giving the required statement.
I.8.3.9 Proof of (ix). This follows from (e).

We now deal with when x is in case $\left({ }^{*} 3\right)$.
I.8.4 Notations. Assume that $\kappa(x)=2, x$ is in case (*3) and $\left(X, u_{1}, u_{2}, u_{3}\right)$ is well prepared. We denote:

$$
H(x)^{-1} u_{2}^{-1} f=\sum_{0 \leqslant j \leqslant \omega(x)} u_{3}^{\omega(x)-j} \phi_{j}
$$

with $\psi_{0}:=u_{2} \phi_{0} \in\left(u_{1}, u_{2}, u_{3}\right), \psi_{j}:=u_{2} \phi_{j} \in k(x)\left[\left[u_{1}, u_{2}\right]\right]$ for $1 \leqslant j \leqslant \omega(x)$ and $\frac{\partial \psi_{0}}{\partial u_{2}}$ invertible. We let $a_{j}(1):=\operatorname{ord}_{u_{1}} \psi_{j} \geqslant j A_{1}(x)$ for $1 \leqslant j \leqslant \omega(x)$.
I.8.5 Lemma. With assumptions and notations of I.8.4, assume furthermore that $B 3(x) \leqslant A_{1}(x)$. Then $\kappa(x) \leqslant 1$.
Proof. We argue by induction on $\left\lfloor A_{1}(x)\right\rfloor$. If $A_{1}(x) \leqslant 1$, then we have $A_{1}(x)=B 3(x)=1$, since $\operatorname{ord}_{\eta(x)}\left(u_{2}^{-1} H(x)^{-1} f\right)=\omega(x)$. Hence for any value of $A_{1}(x) \geqslant 1$, I.7(ii) yields $U_{3} \in$ $\mathrm{cl}_{\omega(x)}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right)$.

The first step of the induction $\left\lfloor A_{1}(x)\right\rfloor=1$ is performed in (i) of the next lemma for $1<$ $A_{1}(x)<2$ (which yields $\kappa(x)=1$, since $1 \leqslant B 3\left(x^{\prime}\right)=B 3(x)-1$ if $\kappa(x)>1$) and in (ii) of the next lemma for $A_{1}(x)=1$. The induction step is performed in (i) of the next lemma, and thus completes the proof.
I.8.6 Lemma. With assumptions and notations of I.8.4, assume furthermore that $A_{1}(x) \geqslant 1$. The curve $\mathcal{C}=V\left(X, u_{1}, u_{3}\right)$ is permissible of the second kind. Let $e: X^{\prime} \rightarrow X$ be the blowing up along \mathcal{C}. There is at most one point $x^{\prime} \in e^{-1}(x)$ very near x, with r.s.p. $\left(\frac{X}{u_{1}}, u_{1}, u_{2}, \frac{u_{3}}{u_{1}}\right)$. Moreover,
(i) if $A_{1}(x)>1$, then $\kappa(x) \leqslant 1$ or the following holds: $\kappa\left(x^{\prime}\right)=2, x^{\prime}$ is in case (${ }^{* 3}$), and we have $A_{1}\left(x^{\prime}\right)=A_{1}(x)-1, B 3\left(x^{\prime}\right)=B 3(x)-1$ and $\beta 3\left(x^{\prime}\right)=\beta 3(x)$;
(ii) if $A_{1}(x)=B 3(x)=1$ or if $\left(A_{1}(x)=1\right.$ and $\left.\beta 3(x)<1-\frac{1}{\omega(x)}\right)$, then $\kappa(x) \leqslant 1$.

Proof. Since $A_{1}(x) \geqslant 1$, we have $\epsilon(\mathcal{C})=\omega(x)>0$. Since $A_{1}(x)>0, u_{1}$ divides $H(x)^{-1} g^{p}$ and $J(f, E) \equiv\left(u_{3}^{\omega(x)}\right) \bmod \left(u_{1}\right)$ so $\mathcal{C}=\left\{y \in \eta^{-1}(E) \mid \omega(y)>0\right\}$. By II.4.7 of chapter $1, \mathcal{C}$ is a curve on X. Therefore \mathcal{C} is permissible of the second kind by chapter 1, II.5.1(ii).

By II.5.4.4 of chapter 1 , we have $\kappa(x) \leqslant 1$ unless $\Psi:=\operatorname{cl}_{\epsilon(x)}\left(H(x)^{-1} f\right)$ is of the form

$$
\begin{equation*}
\Psi=\lambda U_{2} U_{3}^{\omega(x)}+P\left(U_{1}, U_{3}\right) \tag{1}
\end{equation*}
$$

with $\lambda \in k(x), P \in k(x)\left[U_{1}, U_{3}\right]_{\epsilon(x)}$, since $U_{3} \in \operatorname{VDir}(x)$ (comments in the proof of I.8.5).
Let $x^{\prime}:=\left(X^{\prime}:=\frac{X}{u_{1}}, u_{1}^{\prime}:=u_{1}, u_{2}, u_{3}^{\prime}:=\frac{u_{3}}{u_{1}}\right) \in e^{-1}(x)$ and assume that x^{\prime} is very near x. We have $E^{\prime}:=e^{-1}(E)=\operatorname{div}\left(u_{1}^{\prime}\right)$ and $H\left(x^{\prime}\right)=u_{1}^{\prime a(1)+\omega(x)-p}$. This is the origin of a chart, so $\Delta\left(f^{\prime} ; u_{1}^{\prime}, u_{2}, u_{3}^{\prime}, X^{\prime}\right)$ is minimal (where $f^{\prime}=u_{1}^{-p} f$). We get

$$
\begin{equation*}
H\left(x^{\prime}\right)^{-1} u_{2}^{-1} f^{\prime}=\sum_{0 \leqslant j \leqslant \omega(x)} u_{3}^{\prime \omega(x)-j} u_{1}^{\prime-j} \phi_{j}\left(u_{1}^{\prime}, u_{2}\right) \tag{2}
\end{equation*}
$$

with $u_{2} \phi_{0} \in\left(u_{1}^{\prime}, u_{2}\right), u_{2} \phi_{j} \in\left(u_{1}^{\prime}\right)^{j A_{1}(x)} k(x)\left[\left[u_{1}^{\prime}, u_{2}\right]\right]$ for $1 \leqslant j \leqslant \omega(x)$ and $\frac{\partial u_{2} \phi_{0}}{\partial u_{2}}$ invertible.
First assume that $B 3(x)<2$ (in particular $1 \leqslant A_{1}(x) \leqslant 2$). If $A_{1}(x)=\frac{\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right)}{\omega(x)}$, then $\Omega\left(x^{\prime}\right) \leqslant(\omega(x), 1)$: a contradiction, since x^{\prime} is very near x. By (2), there appears in $H\left(x^{\prime}\right)^{-1} f^{\prime}$ some term of the form $u_{3}^{\prime \omega(x)-j} u_{2} u_{1}^{\prime-j} \phi_{j}\left(u_{1}^{\prime}, u_{2}\right)$, where $1 \leqslant j \leqslant \omega(x)$ and either $\operatorname{ord}_{\left(u_{1}^{\prime}, u_{2}\right)} u_{1}^{\prime-j} \phi_{j}=$ $j(B 3(x)-1))$ or $\left(A_{1}(x)=1\right.$ and $\left.\operatorname{ord}_{u_{2}} u_{1}^{\prime-j} \phi_{j}\left(0, u_{2}\right)=j \beta 3(x)<1-\frac{1}{\omega(x)}\right)$.

In the former case, note that $\omega(x)-j+\operatorname{ord}_{\left(u_{1}^{\prime}, u_{2}\right)} u_{1}^{\prime-j} \phi_{j}<\omega(x)$, since $B 3(x)<2$. Since x^{\prime} is very near x, we have $\epsilon\left(x^{\prime}\right)=\omega(x)$ and $\operatorname{ord}_{\left(u_{1}^{\prime}, u_{2}\right)} u_{1}^{\prime-j} \phi_{j}=j-1$, so $2-B 3(x)=\frac{1}{j}$. If $A_{1}(x)=1$, we must have $j=1$ and $\operatorname{ord}_{u_{2}}\left(u_{1}^{\prime-1}\left(u_{2} \phi_{1}\right) \bmod \left(u_{1}^{\prime}\right)\right)=1$: a contradiction by (1). Hence $A_{1}(x)>1$ and $u_{1}^{\prime-j} \phi_{j}\left(u_{1}^{\prime}, u_{2}\right) \in\left(u_{1}^{\prime}\right)$, so $\kappa(x) \leqslant 1$ by chapter 2 , II.1.

In the latter case, note that $\omega(x)-j+j \beta 3(x)<\omega(x)-\frac{j}{\omega(x)}<\omega(x)$ by assumption. Since x^{\prime} is very near x, we have $\epsilon\left(x^{\prime}\right)=\omega(x)$ and $j<\omega(x)$ whenever $\operatorname{ord}_{u_{2}} \phi\left(0, u_{2}\right)=j \beta 3(x)$. So there is an expression

$$
\operatorname{cl}_{\omega(x)}\left(H\left(x^{\prime}\right)^{-1} f^{\prime}\right)=\sum_{1 \leqslant j \leqslant \frac{\omega(x)}{p}-1} \mu_{j} U_{3}^{\prime \omega(x)-p j} U_{2}^{p j}+U_{1}^{\prime} P^{\prime}\left(U_{1}^{\prime}, U_{2}, U_{3}\right)
$$

with $\mu_{j} \in k(x)$ and $\mu_{j} \neq 0$ for some j. Hence $\operatorname{VDir}\left(x^{\prime}\right) \equiv<U_{2}, U_{3}^{\prime}>\bmod \left(U_{1}^{\prime}\right)$ and $\kappa\left(x^{\prime}\right) \leqslant 1$ by II. 2 of chapter 2.

Assume now that $B 3(x) \geqslant 2$ (in particular $A_{1}(x)>1$). Then $\epsilon\left(x^{\prime}\right)=1+\omega(x)$ and it is easily seen from (2) that x^{\prime} is in case (*3). Moreover, $\left(X^{\prime}, u_{1}^{\prime}, u_{2}, u_{3}^{\prime}\right)$ remains well prepared since we are
at the origin of a chart. We get $A_{1}\left(x^{\prime}\right)=A_{1}(x)-1, B 3\left(x^{\prime}\right)=B 3(x)-1$ and $\beta 3\left(x^{\prime}\right)=\beta 3(x)$. This concludes the proof.

We now turn to the general case $B 3(x)>A_{1}(x)$. With assumptions and notations of I.8.4, we define the analogues of $\mathbf{I} \mathbf{8 . 2}$ when x is in case $\left({ }^{*} 3\right)$.
I.8.6.1 Definition. Let $J_{0}:=\left\{j, 1 \leqslant j \leqslant \omega(x) \left\lvert\, B 3(x)=\frac{\operatorname{ord\phi _{j}}}{j}\right.\right\}$. For $j_{0} \in J_{0}$, we denote $\Phi_{j_{0}}:=\operatorname{in}_{x} \phi_{j_{0}}=U_{1}^{a_{j_{0}}(1)} U_{2}^{-1} \Psi_{j_{0}}$ and $d_{j_{0}}:=\operatorname{deg} \Psi_{j_{0}}-1 \in \mathbb{N} \cup\{-1\}$. We also denote $\Psi_{0}:=$ $\operatorname{in}_{x}\left(u_{2} \phi_{0}\right) \in k(x)\left[U_{1}, U_{2}, U_{3}\right]_{1}$.

The definition of J_{0} and $d_{j_{0}}$ for $j_{0} \in J_{0}$ is motivated by the following obvious fact, where only preparation of "left" vertices is needed (definition I.5.1.2):
I.8.6.2 Lemma. We have

$$
\sup _{j_{0} \in J_{0}}\left\{\frac{d_{j_{0}}}{j_{0}}\right\} \leqslant \beta 3_{2}(x) \leqslant B 3(x)-A_{1}(x) \leqslant \beta 3(x)
$$

and

$$
\sup _{j_{0} \in J_{0}}\left\{\frac{1+d_{j_{0}}}{j_{0}}\right\} \leqslant \beta(x) \leqslant \gamma(x)
$$

I.8.6.3 Definition. Let μ_{0} be the monomial valuation on $u_{2}^{-1} \widehat{S}$ given by

$$
\mu_{0}\left(\sum_{a b c} \lambda_{a b c} u_{1}^{a} u_{2}^{b} u_{3}^{c}\right)=\inf \left\{\left.c+\frac{a+b}{B 3(x)} \right\rvert\, \lambda_{a b c} \neq 0\right\} .
$$

We denote by $\operatorname{cl}_{\mu_{0}, \omega(x)} J$ the $k(x)$-vector space $U_{2}^{-1} \operatorname{in}_{\mu_{0}} J$, where J is the ideal

$$
J:=\left(\left\{H(x)^{-1} \lambda_{j} \frac{\partial f}{\partial \lambda_{j}}\right\}_{1 \leqslant j \leqslant s}\right)+\left(H(x)^{-1} g^{p}\right)
$$

By definition $B 3(x)$ and well-preparedness, we have $\operatorname{dim}_{k(x)}\left(\operatorname{cl}_{\mu_{0}, \omega(x)} J\right) \geqslant 1$, and for every $\lambda \in k(x)$, we have

$$
\operatorname{cl}_{\mu_{0}, \omega(x)} J \neq k(x) \cdot\left(U_{3}-\lambda U_{1}^{\alpha 3_{2}(x)} U_{2}^{\beta 3_{2}(x)}\right)^{\omega(x)}
$$

Let $e: X^{\prime} \rightarrow X$ be the blowing up along x. We call "first chart" the chart with origin $\left(X^{\prime}=\right.$ $\left.\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, u_{2}^{\prime}=\frac{u_{2}}{u_{1}}, u_{3}^{\prime}=\frac{u_{3}}{u_{1}}\right)$. Let $E^{\prime}:=\left(e^{-1}(x)\right)_{\text {red }}=\operatorname{div}\left(u_{1}^{\prime}\right)$. For $x^{\prime} \in e^{-1}(x)$ in the first chart, we pick $P\left(u_{1}, u_{2}\right)$ homogeneous of degree $d \geqslant 1$, irreducible and unitary in u_{2} such that $v^{\prime}:=P\left(1, u_{2}^{\prime}\right) \in m_{\eta^{\prime}\left(x^{\prime}\right)}$ as usual.
I.8.7 Lemma. With hypotheses and notations of $\mathbf{I} .8 .4$ (in particular x is in case (*3)), assume that the center x^{\prime} of μ belongs to the first chart. Let $d:=\left[k\left(x^{\prime}\right): k(x)\right]$. We have $\kappa(x) \leqslant 1$ or the following holds:
(a) $\kappa\left(x^{\prime}\right) \leqslant 2$ and x^{\prime} satisfies condition (*1) or (*3);
(b) if $B 3(x)=1$, then $\beta 3(x) \geqslant 1-\frac{1}{\omega(x)}$ and x^{\prime} is rational over x. We have $A_{1}\left(x^{\prime}\right)=0$ and $\gamma\left(x^{\prime}\right) \leqslant \sup \{\gamma(x), 2\}$. If $\left(\gamma(x)=1\right.$ and $\left.\gamma\left(x^{\prime}\right)=2\right)$, then x^{\prime} is in case (${ }^{*} 1$) and either $\beta\left(x^{\prime}\right)<2$, or ($p=\omega(x)=2$ and x^{\prime} satisfies equation (Dis) in I.8.3(e));
(b') if $B 3(x)>1$, then the point x^{\prime} maps to the strict transform of $\operatorname{div}\left(u_{3}\right)$ (in particular, $\left(X^{\prime}, u_{1}^{\prime}, v^{\prime}, u_{3}^{\prime}\right)$ is a r.s.p. at $\left.x^{\prime}\right)$ and $A_{1}\left(x^{\prime}\right)=B 3(x)-1$.
(c) $B 3(x)<\frac{\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right)-1}{\omega(x)}$;

From now on, we assume that either $B 3(x)>1$ or $\left(B 3(x)=1\right.$ and x^{\prime} is in case (*3)). The following holds:
(d) we have $\gamma\left(x^{\prime}\right) \leqslant \gamma(x)$;

More precisely, the following holds:
(i) if $J_{0} \not \subset p \mathbb{N}$, then

$$
\beta\left(x^{\prime}\right) \leqslant \sup _{j_{0} \in J_{0}}\left\{\frac{1+d_{j_{0}}}{j_{0} d}\right\}
$$

and

$$
\beta 3\left(x^{\prime}\right) \leqslant \sup _{j_{0} \in J_{0}}\left\{\frac{d_{j_{0}}}{j_{0} d}\right\}
$$

if x^{\prime} is in case (*3);
(ii) if $J_{0} \subset p \mathbb{N}$, then $\beta\left(x^{\prime}\right) \leqslant \frac{1}{p}$ or

$$
\beta\left(x^{\prime}\right) \leqslant \inf \left\{\frac{\beta(x)}{d}+\frac{1}{p}, \sup _{j_{0} \in J_{0}}\left\{\frac{1+d_{j_{0}}}{j_{0}}\right\}\right\}
$$

(iii) if $\left(J_{0} \subset p \mathbb{N}\right.$ and x^{\prime} is in case (*3)), then $\beta 3\left(x^{\prime}\right)<\frac{1}{p}$ or

$$
\beta 3\left(x^{\prime}\right) \leqslant \sup _{j_{0} \in J_{0}}\left\{\frac{d_{j_{0}}}{j_{0}}\right\} \text { and } \beta 3\left(x^{\prime}\right)<\frac{\beta(x)}{d}+\frac{1}{p}
$$

(iv) if x^{\prime} is not rational over x, then:
if $\gamma(x)>2$, we have $\gamma\left(x^{\prime}\right)<\gamma(x)$;
if $\gamma(x)=\gamma\left(x^{\prime}\right)=2$, we have: if x^{\prime} is in case ($\left.{ }^{*} 1\right)$, then $\beta\left(x^{\prime}\right) \leqslant \frac{3}{2}$; if x^{\prime} is in case ($\left.{ }^{*} 3\right)$, then ($p=2$ and $\beta 3\left(x^{\prime}\right)<\frac{3}{2}$);
(v) if $\left(\gamma(x)=\beta(x)=1, x^{\prime}\right.$ is not rational over x and x^{\prime} is in case (*3)), then $\beta\left(x^{\prime}\right)<1$.

Proof. We assume all along the proof that x^{\prime} is very near x. If $\kappa(x)>1, x^{\prime}$ maps to the strict transform of $\operatorname{div}\left(u_{3}\right)$ unless possibly if $B 3(x)=1$ by I.7(ii). In this case, without loss of generality, it can be assumed that $\left(u_{1}, u_{2}, u_{3}\right)$ is the r.s.p. $\left(u_{1}, u_{2}, v\right)$ given in $\mathbf{I . 7}(\mathrm{ii})$, since $B 3\left(u_{1}, u_{2}, v\right)=$ $1, \beta 3\left(u_{1}, u_{2}, v\right)=\beta 3\left(u_{1}, u_{2}, u_{3}\right)$ and the vertex $\left(\alpha 3_{2}(x), \beta 3_{2}(x)\right)$ is unaffected by this coordinate change.
I.8.7.1 We first prove the theorem when $B 3(x)=1$. In particular, $U_{3} \in \operatorname{Vir}\left(\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right)\right)$ by the previous comments. Note that cases 1 and 2 below are unaffected by the above coordinate change. Also note that $\omega\left(x^{\prime}\right)=1<\omega(x)$ if $\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right)=\omega(x)+1$, so (c) holds.

Case 1: $\operatorname{VDir}\left(\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right)\right) \equiv<U_{3}, U_{2}>\bmod \left(U_{1}\right)$. We have $\tau(x)=2$, since x^{\prime} is very near x. Then $(0,1)$ is an unsolvable vertex of $\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$, so $A_{1}(x)=0$, $\beta 3(x)=1$ and $\gamma(x)=2$. After possibly changing u_{2} to $u_{2}+a u_{1}, a \in k(x)$ and picking again well prepared coordinates, it can be assumed that

$$
\operatorname{VDir}\left(\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right)\right)=<U_{2}, U_{3}>
$$

all assumptions remaining unchanged. Since x is in case $(* 3)$ and $\operatorname{VDir}(x)=<U_{2}, U_{3}>$, we have

$$
\begin{equation*}
\operatorname{cl}_{1+\omega(x)}\left(H(x)^{-1} f\right) \in U_{2} k(x)\left[U_{2}^{p}, U_{3}^{p}\right] \oplus U_{3} k(x)\left[U_{2}^{p}, U_{3}^{p}\right] \oplus U_{1} k(x)\left[U_{1}^{p}, U_{2}^{p}, U_{3}^{p}\right] \tag{1}
\end{equation*}
$$

Since x^{\prime} is very near x, we have $x^{\prime}=\left(X^{\prime}=\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, u_{2}^{\prime}=\frac{u_{2}}{u_{1}}, u_{3}^{\prime}=\frac{u_{3}}{u_{1}}\right)$, so $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal. We get

$$
\begin{equation*}
H\left(x^{\prime}\right)^{-1} f^{\prime} \equiv u_{3}^{\prime \omega(x)} \Psi_{0}\left(1, u_{2}^{\prime}, u_{3}^{\prime}\right)+\sum_{j_{0} \in J_{0}} u_{3}^{\prime \omega(x)-j_{0}} \Psi_{j_{0}}\left(1, u_{2}^{\prime}\right) \bmod \left(u_{1}^{\prime}\right) \tag{2}
\end{equation*}
$$

with notations as in I.8.6.1. Note that $\omega\left(x^{\prime}\right) \leqslant \epsilon\left(x^{\prime}\right) \leqslant \omega(x)-p$ unless we have

$$
\begin{equation*}
\operatorname{cl}_{1+\omega(x)}\left(H(x)^{-1} f\right)=U_{2} F_{2}\left(U_{2}^{p}, U_{3}^{p}\right)+U_{3} F_{3}\left(U_{2}^{p}, U_{3}^{p}\right)+U_{1} F_{1}\left(U_{2}^{p}, U_{3}^{p}\right) \tag{3}
\end{equation*}
$$

which we assume from now on. Remember that by assumption, we have $\operatorname{VDir}\left(F_{2}\left(U_{2}^{p}, U_{3}^{p}\right)\right)=<$ $U_{2}, U_{3}>$. Finally, we have $\kappa\left(x^{\prime}\right)=0$ by II. 2 of chapter 2 if

$$
\tau\left(J\left(U_{1}^{a(1)+1} F_{1}\left(U_{2}^{p}, U_{3}^{p}\right), E, x\right)\right)=2
$$

This yields to the following subcases:
Case 1a: $F_{1}=0$. If $\epsilon\left(x^{\prime}\right)=\omega(x)$, then $\kappa\left(x^{\prime}\right) \leqslant 1$ by (2) and II. 3 of chapter 2. Otherwise, we have $\epsilon\left(x^{\prime}\right)=1+\omega(x)$, so x^{\prime} is again in case $(* 3)$. Note that $(0,1)$ is an unsolvable vertex of $\Delta\left(H\left(x^{\prime}\right)^{-1} u_{2}^{\prime-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{2}^{\prime} ; u_{3}^{\prime}\right)$ by I.6.3, so we have $A_{1}\left(x^{\prime}\right)=0, \beta 3\left(x^{\prime}\right)=1, \gamma\left(x^{\prime}\right)=2$ and (ii),(iii) hold.

Case 1b: $F_{1} \neq 0$. Then $\epsilon\left(x^{\prime}\right)=\omega(x)$. Let $k(x) . W:=\operatorname{VDir}\left(J\left(U_{1}^{a(1)+1} F_{1}\left(U_{2}^{p}, U_{3}^{p}\right), E, x\right)\right)$, so

$$
\begin{equation*}
F_{1}\left(U_{2}^{p}, U_{3}^{p}\right)=: \mu W^{\omega(x)}+F_{1}^{\prime}(V, W)^{p} \tag{4}
\end{equation*}
$$

where W is picked in such a way that $<V, W>=<U_{2}, U_{3}>$. Note that $\mu \neq 0$, and that $\mu \notin k(x)^{p}$ (resp. $\left.F_{1}^{\prime}=0\right)$ if $a(1)+1 \equiv 0 \bmod p($ resp. $a(1)+1 \not \equiv 0 \bmod p)$. Let $F\left(U_{2}, U_{3}\right):=$ $U_{2} F_{2}\left(U_{2}^{p}, U_{3}^{p}\right)+U_{3} F_{3}\left(U_{2}^{p}, U_{3}^{p}\right)$. We expand

$$
F\left(U_{2}, U_{3}\right)=\mu_{-1} W^{1+\omega(x)}+\mu_{0} V W^{\omega(x)}+\sum_{p-1 \leqslant j \leqslant \omega(x)} \mu_{j} V^{1+j} W^{\omega(x)-j}=: F^{\prime}(V, W)
$$

Since $\operatorname{VDir}\left(\frac{\partial F}{\partial U_{2}}, \frac{\partial F}{\partial U_{3}}\right)=\operatorname{VDir}\left(\frac{\partial F^{\prime}}{\partial V}, \frac{\partial F^{\prime}}{\partial W}\right)=<V, W>$, there exists $j_{0} \geqslant p-1$ such that $\mu_{j_{0}} \neq 0$. Equation (2) then reads

$$
H\left(x^{\prime}\right)^{-1} f^{\prime} \equiv F^{\prime}(v, w)+\mu w^{\omega(x)}+F_{1}^{\prime}(v, w)^{p} \bmod \left(u_{1}^{\prime}\right)
$$

where μ and F_{1}^{\prime} are defined in (4). In particular, x^{\prime} is in case $\left({ }^{*} 1\right)$. After picking well prepared coordinates $\left(Z^{\prime}, u_{1}^{\prime}, v^{\prime}:=v, w^{\prime}\right)$ at x^{\prime}, the vertex $\left(0,1+\frac{1}{j_{0}}\right)$ of the polygon $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, v^{\prime} ; w^{\prime}\right)$ is not solvable. Therefore $\beta\left(x^{\prime}\right) \leqslant 2$, so $\gamma\left(x^{\prime}\right) \leqslant 2$.

Case 2: $\operatorname{VDir}\left(\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right)\right)=<U_{3}, U_{1}>$. The only possible very near point has r.s.p. $\left(\frac{X}{u_{2}}, \frac{u_{1}}{u_{2}}, u_{2}, \frac{u_{3}}{u_{2}}\right)$ which does not belong to the first chart.

Case 3: $\operatorname{VDir}\left(\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right)\right)=k(x) \cdot U_{3}$. By I.7(ii), $\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$ has an unsolvable vertex of the form $\left(\alpha 3_{2}, \beta 3_{2}\right)$, where $0 \leqslant \alpha 3_{2}<1$ and $\alpha 3_{2}+\beta 3_{2}=1$. Note that we now have

$$
\operatorname{cl}_{1+\omega(x)}\left(H(x)^{-1} f\right) \in U_{2} k(x)\left[U_{3}^{p}\right] \oplus U_{3} k(x)\left[U_{2}^{p}, U_{3}^{p}\right] \oplus U_{1} k(x)\left[U_{1}, U_{2}^{p}, U_{3}\right]
$$

First assume that $\alpha 3_{2}=0$. This implies that $\operatorname{VDir}(x) \equiv<U_{2}, U_{3}>\bmod \left(U_{1}\right), A_{1}(x)=0$, $\beta 3(x)=1$ and $\gamma(x)=2$. After possibly changing u_{2} to $u_{2}+a u_{1}, a \in k(x)$ and picking again well
prepared coordinates, it can be assumed that $\left.\operatorname{VDir}(x)=<U_{3}, U_{2}\right\rangle$, all assumptions remaining unchanged. Since x^{\prime} is very near x, we have $x^{\prime}=\left(X^{\prime}=\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, u_{2}^{\prime}=\frac{u_{2}}{u_{1}}, u_{3}^{\prime}=\frac{u_{3}}{u_{1}}\right)$, so $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal. The proof now runs parallel to that of case $1 ;$ to begin with, we have

$$
\operatorname{cl}_{1+\omega(x)}\left(H(x)^{-1} f\right)=U_{2} F_{2}\left(U_{3}^{p}\right)+U_{3} F_{3}\left(U_{2}^{p}, U_{3}^{p}\right)+U_{1} F_{1}\left(U_{2}^{p}, U_{3}^{p}\right),
$$

since x^{\prime} is very near x. Now, we split case 3 into case $3 \mathrm{a}\left(F_{1}=0\right)$ and case $3 \mathrm{~b}\left(F_{1} \neq 0\right)$, and have the same conclusion as in cases 1 a and 1 b .

Assume now that $\alpha 3_{2}>0$. We now have

$$
\mathrm{cl}_{1+\omega(x)}\left(H(x)^{-1} f\right) \in U_{2} k(x)\left[U_{3}^{p}\right] \oplus U_{3} k(x)\left[U_{3}^{p}\right] \oplus U_{1} k(x)\left[U_{1}, U_{2}^{p}, U_{3}\right] .
$$

Since x^{\prime} is very near x and belongs to the first chart, we have $U_{1} \notin \operatorname{VDir}(x)$. Therefore

$$
\mathrm{cl}_{1+\omega(x)}\left(H(x)^{-1} f\right)=\mu_{2} U_{2} U_{3}^{\omega(x)}+\mu_{3} U_{3}^{1+\omega(x)}+\sum_{0 \leqslant j \leqslant \frac{\omega(x)}{p}} U_{1}^{1+p j} F_{\omega(x)-p j}\left(U_{2}^{p}, U_{3}^{p}\right)
$$

where $F_{\omega(x)-p j}\left(U_{2}^{p}, U_{3}^{p}\right) \notin k(x)\left[U_{3}^{p}\right]$ for some $j \geqslant 0$, since $B 3(x)=1$ and $\alpha 3_{2}<1$. Moreover, we have either $a(1)+1 \not \equiv 0 \bmod p$ or $F_{\omega(x)-p j}\left(U_{2}^{p}, U_{3}^{p}\right) \notin\left(k(x)\left[U_{2}, U_{3}\right]\right)^{p}$ for some $j \geqslant 0$, since $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal.

Note that $\operatorname{VDir}(x)=k(x) . U_{3}$. By chapter 1, II.5.3.2(iv), x^{\prime} is rational over x since it is very near x. After possibly changing u_{2} to $u_{2}+a u_{1}, a \in k(x)$ and picking again well prepared coordinates, it can be assumed that $x^{\prime}=\left(X^{\prime}=\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, u_{2}^{\prime}=\frac{u_{2}}{u_{1}}, u_{3}^{\prime}=\frac{u_{3}}{u_{1}}\right)$, all assumptions remaining unchanged. In particular, $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal. We finally get

$$
\operatorname{cl}_{1+\omega(x)}\left(H(x)^{-1} f\right)=\mu_{2} U_{2} U_{3}^{\omega(x)}+\mu_{3} U_{3}^{1+\omega(x)}+U_{1} F_{\omega(x)}\left(U_{2}^{p}, U_{3}^{p}\right)
$$

where $\mu_{2} \neq 0, F_{\omega(x)}\left(U_{2}^{p}, U_{3}^{p}\right) \notin k(x)\left[U_{3}^{p}\right]$ and either $a(1)+1 \not \equiv 0 \bmod p$ or $F_{\omega(x)}\left(U_{2}^{p}, U_{3}^{p}\right) \notin$ $\left(k(x)\left[U_{2}, U_{3}\right]\right)^{p}$. This proves in particular that $\epsilon\left(x^{\prime}\right)=\omega(x)$. We have $\kappa\left(x^{\prime}\right)=0$ by chapter 2 , II. 2 if

$$
\tau\left(J\left(U_{1}^{a(1)+1} F_{\omega(x)}\left(U_{2}^{p}, U_{3}^{p}\right), E, x\right)\right)=2
$$

Assume finally that $\operatorname{VDir}\left(J\left(U_{1}^{a(1)+1} F_{1}\left(U_{2}^{p}, U_{3}^{p}\right), E, x\right)\right)$ has dimension one, i.e.

$$
F_{\omega(x)}\left(U_{2}^{p}, U_{3}^{p}\right)=: \mu\left(U_{2}+\lambda U_{3}\right)^{\omega(x)}+F_{1}^{\prime}\left(U_{2}, U_{3}\right)^{p},
$$

where $\mu \neq 0$ and $\mu \notin k(x)^{p}$ (resp. $\left.F_{1}^{\prime}=0\right)$ if $a(1)+1 \equiv 0 \bmod p($ resp. $a(1)+1 \not \equiv 0 \bmod p$). In particular, $\left(\alpha 3_{2}(x), \beta 3_{2}(x)\right)=\left(\frac{1}{\omega(x)}, 1-\frac{1}{\omega(x)}\right)$, so $\beta 3(x) \geqslant 1-\frac{1}{\omega(x)}$. Moreover, this proves that x^{\prime} is in case ($\left.{ }^{*} 1\right)$. Since $\mu_{2} \neq 0$, after picking well prepared coordinates ($Z^{\prime}, u_{1}^{\prime}, u_{3}^{\prime}, v^{\prime}$) at $x^{\prime},\left(0,1+\frac{1}{\omega(x)-1}\right)$ is a vertex of the polygon $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{3}^{\prime} ; v^{\prime}\right)$ and is not solvable. Therefore $A_{1}\left(x^{\prime}\right)=0, \beta\left(x^{\prime}\right) \leqslant 1+\frac{1}{\omega(x)-1}$ and $\gamma\left(x^{\prime}\right) \leqslant 2$.

In all cases, we have $\gamma\left(x^{\prime}\right) \leqslant 2$. Suppose that $\left(\gamma(x)=1\right.$ and $\left.\gamma\left(x^{\prime}\right)=2\right)$. The above analysis shows that we are in the situation of the previous paragraph, with $\beta 3(x)=1-\frac{1}{\omega(x)}$, and the conclusion follows. Otherwise, we may assume that x^{\prime} is in case (${ }^{*} 3$) (cases 1a and 3a above) and (ii) holds, so all statements have been proved when $B 3(x)=1$.
I.8.7.2 From now on, we assume that $B 3(x)>1$. We have

$$
\mathrm{cl}_{1+\omega(x)}\left(H(x)^{-1} f\right)=\left(\mu_{1} U_{1}+\mu_{2} U_{2}+\mu_{3} U_{3}\right) U_{3}^{\omega(x)}
$$

with $\mu_{2} \neq 0$. In particular $\operatorname{VDir}(x)=k(x) . U_{3}$ and the first part of $\left(\mathrm{b}^{\prime}\right)$ is proved.
I.8.7.3 Proof of (c). Assume that (a) and the second part of (b') have been proved. If $\left(H(x)^{-1} g^{p}\right)=$ $\left(u_{1}\right)^{1+\omega(x) B 3(x)}$, then $\kappa(x) \leqslant 1$ or $\left(A_{1}\left(x^{\prime}\right), 0\right)\left(\right.$ resp. $\left.\left(A_{1}\left(x^{\prime}\right),-\frac{1}{\omega(x)}\right)\right)$ is a vertex of $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, v^{\prime} ; u_{3}^{\prime}\right)$ (resp. of $\Delta\left(H\left(x^{\prime}\right)^{-1} v^{\prime-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, v^{\prime} ; u_{3}^{\prime}\right)$) if x^{\prime} is in case (${ }^{*} 1$) (resp. in case ($\left.{ }^{*} 3\right)$) and is not solvable by definition. By I.8.1 (resp. I.8.5), we get $\kappa(x) \leqslant 1$.
I.8.7.4 From now on, $B 3(x)>1$ and $\operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)>1+B 3(x) \omega(x)$. According to I.8.4 and I.8.6.1, let us denote $h^{\prime}=u_{1}^{-p} h=X^{\prime p}-g^{p-1} X^{\prime}+f^{\prime}$, where

$$
\begin{equation*}
H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{3}^{\prime \omega(x)} \psi_{0}^{\prime}+\sum_{1 \leqslant j \leqslant \omega(x)} u_{3}^{\prime \omega(x)-j} u_{1}^{\prime a_{j}(1)+d_{j}-j} \psi_{j}^{\prime}\left(u_{1}^{\prime}, u_{2}^{\prime}\right), \tag{1}
\end{equation*}
$$

where ψ_{j}^{\prime} is the strict transform of ψ_{j}, i.e. $1+d_{j}=\operatorname{ord}_{\left(u_{1}, u_{2}\right)} \psi_{j}, \psi_{0}^{\prime} \in S^{\prime}$ with $\frac{\partial \psi_{0}^{\prime}}{\partial u_{2}^{\prime}}$ invertible, $H\left(x^{\prime}\right)={u_{1}^{\prime}}^{\prime a(1)+\omega(x)+1-p}$, and

$$
g^{\prime p}=u_{1}^{-p} g^{p}=\gamma^{p} u_{1}^{\prime b(1)-p} .
$$

I.8.7.5 We first consider the origin $x^{\prime}=\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ of the first chart. Since x^{\prime} is the origin of a chart, $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal. In this case, the module

$$
M^{\prime}:=u_{2}^{\prime-1} \sum_{1 \leqslant i \leqslant s} H\left(x^{\prime}\right)^{-1} \lambda_{i} \frac{\partial f^{\prime}}{\partial \lambda_{i}} S^{\prime}+u_{2}^{\prime-1} H\left(x^{\prime}\right)^{-1} g^{\prime p} S^{\prime},
$$

where $S^{\prime}=S\left[u_{2}^{\prime}, u_{3}^{\prime}\right]_{\left(u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)}$ is equal to $u_{1}^{\prime-\omega(x)} M$, where

$$
M:=u_{2}^{-1} \sum_{1 \leqslant i \leqslant s} H(x)^{-1} \lambda_{i} \frac{\partial f}{\partial \lambda_{i}} S+u_{2}^{-1} H(x)^{-1} g^{p} S
$$

Since x^{\prime} is very near x, we have $\epsilon\left(x^{\prime}\right) \geqslant \epsilon(x)-1$. We consider three cases:
Case 1: ψ_{0}^{\prime} is invertible (i.e. $\mu_{1} \neq 0$ in I.8.7.2). Then $\epsilon\left(x^{\prime}\right)=\epsilon(x)-1, \kappa\left(x^{\prime}\right)=2$ and x^{\prime} is in the case (${ }^{*} 1$). Since the vertex $\left(\alpha 3_{2}, \beta 3_{2}\right)$ of $\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$ is not solvable and $B 3(x)>1$, there exists an unsolvable vertex of $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f_{Z^{\prime}}^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{2}^{\prime} ; w^{\prime}\right)$ of the form $\left(B 3(x)-1, \beta^{\prime}\right)$, where

$$
\beta^{\prime} \leqslant \frac{1+d_{j_{0}}}{j_{0}} \leqslant \frac{1+j_{0} \beta 3_{2}(x)}{j_{0}},
$$

for some $j_{0} \in J_{0}$ and $\left(Z^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, w^{\prime}\right)$ well prepared at x^{\prime}. We get $A_{1}\left(x^{\prime}\right)=B 3(x)-1$ and

$$
\beta\left(x^{\prime}\right) \leqslant \sup _{j_{0} \in J_{0}}\left\{\frac{1+d_{j_{0}}}{j_{0}}\right\} \leqslant \beta(x)
$$

by I.8.6.2.

Case 2: ψ_{0}^{\prime} is not invertible and $\epsilon\left(x^{\prime}\right)=\omega(x)$. Then $\left(u_{1}^{\prime}, \psi_{0}^{\prime}, u_{3}^{\prime}\right)$ is a r.s.p. of S^{\prime}. After picking coordinates $\left(Z^{\prime}, u_{1}^{\prime}, \psi_{0}^{\prime}, u_{3}^{\prime}\right)$ at x^{\prime} such that $\Delta\left(h^{\prime} ; u_{1}^{\prime}, \psi_{0}^{\prime}, u_{3}^{\prime} ; Z^{\prime}\right)$ is minimal, we get an expression

$$
H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{3}^{\prime \omega(x)} \psi_{0}^{\prime}+u_{1}^{\prime} \phi^{\prime}
$$

where $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(u_{1}^{\prime} \phi^{\prime}\right)=\omega(x)$, so $\kappa\left(x^{\prime}\right) \leqslant 1$ by II. 1 of chapter 2 .

Case 3: $\epsilon\left(x^{\prime}\right)=1+\omega(x)$. Then $\left(u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ is a r.s.p. of S^{\prime} and there is an expression

$$
H\left(x^{\prime}\right)^{-1} f^{\prime}=\mu_{2} u_{3}^{\prime \omega(x)} u_{2}^{\prime}+u_{1}^{\prime} \phi^{\prime},
$$

where $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(u_{1}^{\prime} \phi^{\prime}\right)=1+\omega(x)$. In particular $\kappa\left(x^{\prime}\right)=2$ and x^{\prime} is in case (*3). After picking well prepared coordinates $\left(Z^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, w^{\prime}\right)$ at x^{\prime} as in case 1 above, we get $A_{1}\left(u_{1}^{\prime}, u_{2}^{\prime}, w^{\prime}\right)=B 3\left(u_{1}, u_{2}, u_{3}\right)-$ 1 and

$$
\beta 3\left(x^{\prime}\right) \leqslant \frac{d_{j_{0}}}{j_{0}} \leqslant \beta 3(x)
$$

for some $j_{0} \in J_{0}$. This concludes the proof of \mathbf{I}.8.7 when x^{\prime} is the origin of the first chart.
I.8.7.6 From now on, $x^{\prime} \neq\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$, i.e. u_{2}^{\prime} is a unit in S^{\prime}. There remains to prove (a), the second statement in (b') and all statements from (d) on. Note that (d) is a direct consequence of (i), (ii) and (iii) and I.8.6.2. The proof will be parallel to that of I.8.3 (iii)-(vi).

Recall equation (1) in I.8.7.4. Note that

$$
\begin{equation*}
H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{3}^{\prime \omega(x)}\left(\mu_{1}+\mu_{2} u_{2}^{\prime}+\mu_{3} u_{3}^{\prime}+u_{1}^{\prime} \theta_{0}^{\prime}\right)+\sum_{1 \leqslant j \leqslant \omega(x)} u_{3}^{\prime \omega(x)-j} u_{1}^{\prime\lfloor j(B 3(x)-1)\rfloor}\left(\Psi_{j}^{\prime}\left(1, u_{2}^{\prime}\right)+u_{1}^{\prime} \theta_{j}^{\prime}\right), \tag{1}
\end{equation*}
$$

where $\Psi_{j}^{\prime}\left(U_{1}, U_{2}\right):=\Psi_{j}\left(U_{1}, U_{2}\right)\left(\right.$ resp. $\left.\Psi_{j}^{\prime}\left(U_{1}, U_{2}\right):=0\right)$ if $j \in J_{0}$ (resp. $\left.j \notin J_{0}\right)$ and $\theta_{j}^{\prime} \in \widehat{S^{\prime}}$ for $0 \leqslant j \leqslant \omega(x)$. Remember that $\mu_{2} \neq 0, \Psi_{j}\left(U_{1}, U_{2}\right) \in k(x)\left[U_{1}, U_{2}\right]_{1+d_{j}}$ and $j(B 3(x)-1) \in \mathbb{N}$ if $j \in J_{0}$. Let $\bar{\mu}$ denote the image of $\mu:=\mu_{1}+\mu_{2} u_{2}^{\prime}$ in $k\left(x^{\prime}\right)$.
 x and we have

$$
H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime} \equiv\left(\mu+\mu_{3} u_{3}^{\prime}\right) u_{3}^{\prime \omega(x)} \bmod \left(u_{1}^{\prime}\right),
$$

where $Z^{\prime}:=X^{\prime}-\theta^{\prime}, f_{Z^{\prime}}^{\prime}:=f+\theta^{\prime p}-\theta^{\prime} g^{\prime p-1}$ and $\Delta\left(h^{\prime} ; u_{1}^{\prime}, v^{\prime}, u_{3}^{\prime} ; Z^{\prime}\right)$ is minimal.
If ($\bar{\mu} \in k\left(x^{\prime}\right)^{p}$ and either $a(1)+1 \equiv 0 \bmod p$ or $\bar{\mu}=0$), we have similarly

$$
H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime} \equiv \mu^{\prime} u_{3}^{\prime \omega(x)} v^{\prime} \bmod \left(u_{1}^{\prime}\right),
$$

with $\mu^{\prime} \in \widehat{S^{\prime}}$ invertible and $\Delta\left(h^{\prime} ; u_{1}^{\prime}, v^{\prime}, u_{3}^{\prime} ; Z^{\prime}\right)$ minimal. If $\epsilon\left(x^{\prime}\right)=\omega(x)$, then $\kappa(x) \leqslant 1$ by II. 1 of chapter 2. Otherwise $\epsilon\left(x^{\prime}\right)=1+\omega(x)$ and x^{\prime} is again in case ($\left.{ }^{*} 3\right)$.

This ends the proof of (a).
I.8.7.7 Proof when $J_{0} \not \subset p \mathbb{N}$. Let $j_{1}:=\inf \left\{j \in J_{0} \mid j \not \equiv 0 \bmod p\right\}$. Since $\omega(x)-j_{1} \not \equiv 0 \bmod p$, the term $H\left(x^{\prime}\right) u_{3}^{\prime \omega(x)-j_{1}} u_{1}^{\prime j_{1}(B 3(x)-1)} \Psi_{j_{1}}\left(1, u_{2}^{\prime}\right)$ in f^{\prime} is unaffected by any translation on u_{3}^{\prime} or on X^{\prime} in the well-preparation algorithm I.6.

If x^{\prime} is in case (${ }^{*} 1$), we get $A_{1}\left(x^{\prime}\right)=B 3(x)-1$ and $\beta\left(x^{\prime}\right) \leqslant \frac{1+d_{j_{1}}}{j_{1} d}$.
If x^{\prime} is in case $\left({ }^{*} 3\right)$, we get $A_{1}\left(x^{\prime}\right)=B 3(x)-1, \beta\left(x^{\prime}\right) \leqslant \frac{1+d_{j_{1}}}{j_{1} d}$ and $\beta 3\left(x^{\prime}\right) \leqslant \frac{1+d_{j_{1}}}{d j_{1}}-\frac{1}{j_{1}} \leqslant \frac{\beta 3(x)}{d}$.
This completes the proof of (b') and (i) from which all other statements in the theorem easily follow in the case $J_{0} \not \subset p \mathbb{N}$ (with $\gamma\left(x^{\prime}\right)<\gamma(x)$ in (iv)).
I.8.7.8 Proof when $J_{0} \subset p \mathbb{N}$. We prove together (b'), (ii), (iii) and (v). We consider three cases, exactly like in the proof of I.8.3, see I.8.3.4, I.8.3.5 and I.8.3.6.

Case 1: $B 3(x) \notin \mathbb{N}$. The translation $w^{\prime}:=u_{3}^{\prime}-u_{1}^{\prime}{ }^{a} s^{\prime}$ in the well preparation algorithm will affect none of the terms

$$
u_{3}^{\prime \omega(x)-j_{0}} u_{1}^{\prime j_{0}(B 3(x)-1)} \Psi_{j_{0}}\left(1, u_{2}^{\prime}\right)
$$

in $H\left(x^{\prime}\right)^{-1} f^{\prime}$ for $j_{0} \in J_{0}$. The translation $Z^{\prime}=X^{\prime}-u_{1}^{\prime a^{\prime}} \theta^{\prime}$ plugs into $f_{Z^{\prime}}^{\prime}$ some term of the form

$$
H\left(x^{\prime}\right) u_{3}^{\prime \omega(x)-j_{0}} u_{1}^{\prime j_{0}(B 3(x)-1)}\left(\Psi_{j_{0}}\left(1, u_{2}^{\prime}\right)+A_{j_{0}}\left(v^{\prime}\right)^{p}\right)
$$

with $A_{j_{0}}=0$ unless $a(1)+1+j_{0}(B 3(x)-1) \equiv 0 \bmod p$. If $a(1)+1+j_{0}(B 3(x)-1) \equiv 0 \bmod p$ for each $j_{0} \in J_{0}$, then $U_{1}^{a(1)+a_{j_{1}}(1)} \Psi_{j_{1}}\left(U_{1}, U_{2}\right) \notin\left(k(x)\left[U_{1}, U_{2}\right]\right)^{p}$ for at least one index $j_{1} \in J_{0}$, since $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal. By chapter 1, II.5.3.2(i), (ii) we get

$$
\begin{equation*}
\operatorname{ord}_{v^{\prime}}\left(\Psi_{j_{1}}\left(1, u_{2}^{\prime}\right)+A_{j_{1}}\left(v^{\prime}\right)^{p}\right) \leqslant \frac{1+d_{j_{1}}}{d}+1 \tag{1}
\end{equation*}
$$

and $\frac{1+d_{j_{1}}}{d}+1 \notin p \mathbb{N}$ if equality holds. Also note that

$$
\begin{equation*}
\operatorname{ord}_{v^{\prime}}\left(\Psi_{j_{1}}\left(1, u_{2}^{\prime}\right)+A_{j_{1}}\left(v^{\prime}\right)^{p}\right) \leqslant \sup \left\{1+d_{j_{1}}, 1\right\} \tag{2}
\end{equation*}
$$

by chapter 1 , II.5.3.2(iii). This proves that $A_{1}\left(x^{\prime}\right)=B 3(x)-1$ (so (b') holds),

$$
\begin{equation*}
\beta\left(x^{\prime}\right) \leqslant \frac{1+d_{j_{1}}}{d j_{1}}+\frac{1}{j_{1}} \tag{3}
\end{equation*}
$$

and either $\beta\left(x^{\prime}\right) \leqslant \frac{1}{j_{1}} \leqslant \frac{1}{p}$ or

$$
\beta\left(x^{\prime}\right) \leqslant \frac{1+d_{j_{1}}}{j_{1}}
$$

if x^{\prime} is in case $\left({ }^{*} 3\right)$, then

$$
\begin{equation*}
\beta 3\left(x^{\prime}\right) \leqslant \frac{1+d_{j_{1}}}{d j_{1}} \tag{4}
\end{equation*}
$$

and either $\beta 3\left(x^{\prime}\right) \leqslant 0$ or

$$
\beta 3\left(x^{\prime}\right) \leqslant \frac{d_{j_{1}}}{j_{1}}
$$

Using lemma I.8.6.2, this completes the proof of (ii) and (iii) in case 1. Statement (v) follows from (ii) except possibly if $d=p=2$. In this case, we have $\beta\left(x^{\prime}\right)<1$ unless equality holds in (1) above. By $(3), \beta\left(x^{\prime}\right)<1$ except possibly if $j_{1}=2$, so $\frac{1+d_{j_{1}}}{d}+1=2$: a contradiction since $\frac{1+d_{j_{1}}}{d}+1 \notin p \mathbb{N}$ if equality holds in (1).

Case 2: $B 3(x) \in \mathbb{N}$ and $\operatorname{dim}_{k(x)}\left(\operatorname{cl}_{\mu_{0}, \omega(x)} J\right) \geqslant 2$. Recall the definition of the vector space $\mathrm{cl}_{\mu_{0}, \omega(x)} J$ in I.8.6.3. Following the lines of \mathbf{I}.8.3.2, there is a formula

$$
\operatorname{in}_{\mu_{1}} J^{\prime}=<\left(\operatorname{in}_{\mu_{1}} H\left(x^{\prime}\right)\right)^{-1} .\left(\operatorname{in}_{\mu_{0}} H(x)\right) U_{2} \operatorname{cl}_{\mu_{0}, \omega(x)} J
$$

where the valuation μ_{1} on $\widehat{S^{\prime}} \simeq k\left(x^{\prime}\right)\left[\left[u_{1}^{\prime}, v^{\prime}, u_{3}^{\prime}\right]\right]$ is now defined by

$$
\mu_{1}\left(\sum_{a b c} \lambda_{a b c} u_{1}^{\prime a} v^{\prime b} u_{3}^{\prime c}\right)=\min \left\{\left.c+\frac{a}{B 3(x)-1} \right\rvert\, \lambda_{a b c} \neq 0\right\}
$$

and $J^{\prime}:=J\left(U_{1}^{\prime a(1)+1+\omega(x)-p} F^{\prime}, E^{\prime}\right)$, where

$$
F^{\prime}:=\operatorname{in}_{\mu_{1}}\left(H\left(x^{\prime}\right)^{-1} f^{\prime}\right)=U_{3}^{\prime \omega(x)}\left(\mu_{1}+\mu_{2} u_{2}^{\prime}\right)+\sum_{j_{0} \in J_{0}} U_{3}^{\prime \omega(x)-j_{0}} U_{1}^{\prime j_{0}(B 3(x)-1)} \Psi_{j_{0}}\left(1, u_{2}^{\prime}\right)
$$

The proof goes along the same lines as I.8.3.5; following theses lines, we pick $0 \neq G \in \operatorname{cl}_{\mu_{0}, \omega(x)} J$ of the form

$$
G=U_{2}^{-1} \sum_{j_{0} \in J_{0}} U_{3}^{\omega(x)-j_{0}} U_{1}^{a_{j_{0}}(1)} G_{j_{0}}\left(U_{1}, U_{2}\right)
$$

with $G_{j_{0}}$ homogeneous of degree $1+d_{j_{0}}$ and $j_{1}:=\inf \left\{j_{0} \in J_{0} \mid G_{j_{0}} \neq 0\right\}$. We get the same upper bounds (3), (3'), (4) and (4') as in case 1, and the conclusion follows in the same way.

Case 3: $B 3(x) \in \mathbb{N}$ and $\operatorname{cl}_{\mu_{0}, \omega(x)} J=: k(x) . G$. We may take $G=\mu_{2}{ }^{-1} \frac{\partial F}{\partial U_{2}}$, where

$$
F:=\operatorname{in}_{\mu_{0}}\left(H(x)^{-1} f\right)=U_{3}^{\omega(x)}\left(\mu_{1} U_{1}+\mu_{2} U_{2}\right)+\sum_{p \leqslant j_{0} \leqslant \omega(x)} U_{3}^{\omega(x)-j_{0}} U_{1}^{a_{j_{0}}(1)} \Psi_{j_{0}}\left(U_{1}, U_{2}\right)
$$

Let $j_{1}:=\inf \left\{j_{0} \in J_{0} \left\lvert\, \frac{\partial \Psi_{j_{0}}}{\partial U_{2}} \neq 0\right.\right\}$. As seen in I.8.3.6, we may suppose that $\mu_{2}^{-1} U_{1}^{a_{j_{1}}(1)} \frac{\partial \Psi_{j_{1}}}{\partial U_{2}}$ is not a $\left(p^{\alpha}\right)^{t h}$-power if $j_{1}=p^{\alpha}$, where $\omega(x)=p^{\alpha} l, l$ prime to p. The argument in I.8.3.6 produces the upper bounds

$$
\begin{equation*}
\beta\left(x^{\prime}\right) \leqslant \frac{1+d_{j_{1}}}{j_{1} d}+\frac{1}{p} \tag{5}
\end{equation*}
$$

with $\left(j_{1}=p^{\alpha}\right.$ and $\left.\frac{1+d_{j_{1}}}{p^{\alpha-1} d}+1 \notin p \mathbb{N}\right)$ if equality holds, and

$$
\beta\left(x^{\prime}\right) \leqslant \sup \left\{\frac{1}{p}, \frac{1+d_{j_{1}}}{j_{1}}\right\}
$$

If x^{\prime} is in case $\left({ }^{*} 3\right)$, we get similarly

$$
\beta 3\left(x^{\prime}\right) \leqslant \frac{1+d_{j_{1}}}{j_{1} d}+\frac{1}{p}-\frac{1}{j_{1}}
$$

and

$$
\beta 3\left(x^{\prime}\right) \leqslant \sup \left\{\frac{1}{p}-\frac{1}{j_{1}}, \frac{d_{j_{1}}}{j_{1}}\right\}
$$

This completes the proof of (ii) and (iii) in case 3. Finally, (v) follows from (ii) except possibly if $d=p=2$. Equation (5) above yields $j_{1}=p^{\alpha}$ and $1+d_{j_{1}}=p^{\alpha}$: a contradiction, since $\frac{1+d_{j_{1}}}{p^{\alpha-1} d}+1=2 \notin p \mathbb{N}$ if equality holds in (5).
I.8.7.9 Proof of (iv). See end of I.8.7.7 when $J_{0} \not \subset p \mathbb{N}$ and thus assume $J_{0} \subset p \mathbb{N}$.

If $\gamma(x) \geqslant 3$, (ii) and I.8.6.2 give

$$
\beta\left(x^{\prime}\right) \leqslant \frac{\gamma(x)}{d}+\frac{1}{p} \leqslant \gamma(x)-1
$$

When x^{\prime} is in case $\left({ }^{*} 3\right)$, we have $\beta 3\left(x^{\prime}\right)<\beta\left(x^{\prime}\right)$ in any case, so (iv) holds if $\gamma(x) \geqslant 3$.
If $\gamma(x)=2$, (ii) yields $\beta\left(x^{\prime}\right) \leqslant \frac{3}{2}$, so $\beta 3\left(x^{\prime}\right)<\frac{3}{2}$ if x^{\prime} is in case $\left.{ }^{*} 3\right)$. In this case, when $d \geqslant 3$ and $p \geqslant 3$, we get $\beta 3\left(x^{\prime}\right)<\beta\left(x^{\prime}\right) \leqslant 1$, let us see the case $d=2$ and $p \geqslant 3$. Then x^{\prime} is separable over x, we will prove that $\beta 3\left(x^{\prime}\right)<\beta\left(x^{\prime}\right) \leqslant 1$, this will end the proof of (iv).

Case 1: $\operatorname{in}_{\mu_{0}}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right)$ is not proportional to an $\omega(x)$-power.

$$
\operatorname{in}_{\mu_{0}}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right)=\overline{\mu_{2}} U_{3}^{\omega(x)}+\sum_{p \leqslant j_{0} \leqslant \omega(x)} U_{3}^{\omega(x)-j_{0}} U_{1}^{a_{j_{0}}(1)} \frac{\partial \Psi_{j_{0}}}{\partial U_{2}}
$$

Let j_{1} be the smallest j_{0} with $\frac{\partial \Psi_{j_{0}}}{\partial U_{2}} \neq 0$, as in I.8.3.6, we may suppose $j_{1} \neq p^{\alpha}$ or $\overline{\mu_{2}}-1 \frac{\partial \Psi_{j_{1}}}{\partial U_{2}}$ not a p^{α}-power. In the first case, we get

$$
\beta 3\left(x^{\prime}\right) \leqslant \beta\left(u_{1}^{-\omega(x)} H(x)^{-1} \frac{\partial f}{\partial u_{2}} ; u_{1}^{\prime}, v^{\prime} ; w^{\prime}\right) \leqslant \frac{d_{j_{1}}}{j_{1} d}<1
$$

where $\beta\left(u_{1}^{-\omega(x)} H(x)^{-1} \frac{\partial f}{\partial u_{2}} ; u_{1}^{\prime}, v^{\prime} ; w^{\prime}\right)$ is the β of the polyhedron $\Delta\left(u_{1}^{-\omega(x)} H(x)^{-1} \frac{\partial f}{\partial u_{2}} ; u_{1}^{\prime}, v^{\prime} ; w^{\prime}\right)$.
In the second case, we get, with the notations of I.8.3.6 Case ${ }_{2}$

$$
p^{\alpha} \beta\left(u_{1}^{-\omega(x)} H(x)^{-1} \frac{\partial f}{\partial u_{2}} ; u_{1}^{\prime}, v^{\prime} ; w^{\prime}\right) \leqslant \operatorname{ord}_{x^{\prime}}\left(\frac{\partial \Psi_{j_{1}}}{\partial U_{2}}\left(1, u_{2}^{\prime}\right)+\varphi^{\prime}\left(v^{\prime}\right)^{p^{\alpha}}\right) \leqslant \frac{d_{j_{1}}}{d}+p^{\alpha^{\prime}}
$$

as $\operatorname{ord}_{x^{\prime}}\left(\frac{\partial \Psi_{j_{1}}}{\partial U_{2}}\left(1, u_{2}^{\prime}\right)+\varphi^{\prime}\left(v^{\prime}\right)^{p^{\alpha}}\right) \in p^{\alpha^{\prime}} \mathbb{N}$ and as

$$
\operatorname{ord}_{x^{\prime}}\left(\frac{\partial \Psi_{j_{1}}}{\partial U_{2}}\left(1, u_{2}^{\prime}\right)+\varphi^{\prime}\left(v^{\prime}\right)^{p^{\alpha}}\right)>\frac{d_{j_{1}}}{d} \Rightarrow \operatorname{ord}_{x^{\prime}}\left(\frac{\partial \Psi_{j_{1}}}{\partial U_{2}}\left(1, u_{2}^{\prime}\right)+\varphi^{\prime}\left(v^{\prime}\right)^{p^{\alpha}}\right) \notin p^{1+\alpha^{\prime}} \mathbb{N}
$$

this leads to:

$$
\beta 3\left(x^{\prime}\right) \leqslant \beta\left(u_{1}^{-\omega(x)} H(x)^{-1} \frac{\partial f}{\partial u_{2}} ; u_{1}^{\prime}, v^{\prime} ; w^{\prime}\right)<1+\left\lfloor\frac{d_{j_{1}}}{j_{1} d}\right\rfloor=1
$$

Case 2: $\operatorname{in}_{\mu_{0}}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right)$ is proportional to an $\omega(x)$-power.
Say $\operatorname{in}_{\mu_{0}}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right)=\overline{\mu_{2}}\left(U_{3}+Q\left(U_{1}, U_{2}\right)\right)^{\omega(x)}$, then we replace u_{3} by $v=u_{3}+Q\left(u_{1}, u_{2}\right)$ and eventually X by $Y=X+\theta$ to get $\Delta\left(h ; u_{1}, u_{2}, v ; Y\right)$ minimal, by the preparation of u_{1}, u_{2}, u_{3}, X, the left vertices of $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$ and $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; v\right)$ are the same and well prepared. So we reach the next case.

Case 3: $\operatorname{in}_{\mu_{0}}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right)=\overline{\mu_{2}} U_{3}^{\omega(x)}$.
Then, in the translation $w^{\prime}=u_{3}^{\prime}-u_{1}^{\prime a} s^{\prime}$, we get $a>B 3(x)-1$. Let j_{1} the smallest j_{0} such that $U_{1}^{a(1)} U_{1}^{a_{j 0}} \Psi_{j_{0}}$ is not a p-power. During the preparation at x^{\prime}, we will only add a p-power K^{p} to $u_{1}^{\prime a(1)+a_{j_{1}}+d_{j_{1}}-j_{1}} \Psi_{j_{1}}\left(1, u_{2}^{\prime}\right)$. When $a(1)+a_{j_{1}}+d_{j_{1}} \neq 0 \bmod p, \beta\left(x^{\prime}\right) \leqslant \frac{1+d_{j_{1}}}{j_{1} d} \leqslant 1$. When $a(1)+a_{j_{1}}+d_{j_{1}}=0 \bmod p$, let us denote

$$
F_{i}:=\frac{\partial \Psi_{j_{1}}\left(U_{1}, U_{2}\right)}{\partial \lambda_{i}}, 4 \leqslant i \leqslant s
$$

The F_{i} are not all 0 . Let us denote $p_{i}:=v_{P\left(U_{1}, U_{2}\right)}\left(F_{i}\right)$. i.e. $F_{i}=P\left(U_{1}, U_{2}\right)^{p_{i}} F_{i}^{\prime}, F_{i}^{\prime}$ prime to P when $F_{i} \neq 0$. Let $q=\inf \left\{p_{i} \mid 4 \leqslant i \leqslant s\right\}$, then $\beta 3\left(x^{\prime}\right) \leqslant \frac{q}{j_{1}}$, as $\operatorname{deg}(P)=2=2, q \leqslant \frac{1+d_{j_{1}}}{d} \leqslant j_{1}$, we get the announced result except if $q=j_{1}$, this means that

$$
F_{i}=\gamma_{i} P\left(U_{1}, U_{2}\right)^{j_{1}}, \gamma_{i} \in k(x), 4 \leqslant i \leqslant s
$$

This implies $\Psi_{j_{1}}\left(U_{1}, U_{2}\right)=\mu P\left(U_{1}, U_{2}\right)^{j_{1}}+G^{p}, \mu \in k(x)-k(x)^{p}$. As $k\left(x^{\prime}\right) / k(x)$ is separable, we get $\operatorname{ord}_{v^{\prime}}\left(\Psi_{j_{1}}\left(1, u_{2}^{\prime}\right)+K^{p}\right) \leqslant j_{1}$ which leads to $\beta\left(x^{\prime}\right) \leqslant 1$.

We now turn to the study and control of the invariants for points x^{\prime} away from the first chart. This is done in I.8.8 (resp. I.8.9) when x is in cases $\left({ }^{*} 1\right)$ and $\left({ }^{*} 2\right)$ (resp. in case $\left({ }^{*} 3\right)$).

When x is in cases $\left({ }^{*} 1\right)$ and $\left({ }^{*} 2\right)$ and $\kappa(x)>1$, we have $U_{3} \in \operatorname{Vir}(x)$ unless we are in the special case specified in I.7(i). But then we have $\tau(x)=2$ and $\operatorname{VDir}(x) \oplus k(x) \cdot U_{1}=<U_{1}, U_{2}, U_{3}>$, so every x^{\prime} which is very near x belongs to the first chart. This proves that if $x^{\prime} \in e^{-1}(x)$ is very
near x and does not belong to the first chart, then $x^{\prime}=\left(X^{\prime}:=\frac{X}{u_{2}}, u_{1}^{\prime}:=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}:=u_{2}, u_{3}^{\prime}:=\frac{u_{3}}{u_{2}}\right)$ and we have $U_{3} \in \operatorname{VDir}(x)$.
I.8.8 Lemma. Assume that x is in case (${ }^{*} 1$) or (${ }^{* 2}$) and the center of μ in X^{\prime} is the point $x^{\prime}=$ $\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ defined above. With hypotheses and notations as in $\mathbf{I} .8 .2$, we have $\kappa(x) \leqslant 1$ or all following statements hold: x^{\prime} is in case (*2), $H\left(x^{\prime}\right)={u_{1}^{\prime}}^{a(1)} u_{2}^{\prime a(1)+a(2)+\omega(x)-p}$ and $\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ is well prepared; $\mathbf{w}_{\mathbf{1}}^{\prime}:=\left(A_{1}\left(x^{\prime}\right), \beta\left(x^{\prime}\right)\right)=\left(A_{1}(x), A_{1}(x)+\beta(x)-1\right)$ and $\mathbf{w}_{\mathbf{2}}^{\prime}:=\left(\alpha_{2}(x), B(x)-1\right)$ is the vertex of smaller second coordinate of $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{2}^{\prime} ; u_{3}^{\prime}\right)$; moreover,
(i) if x is in case $\left({ }^{*} 1\right)$, then $C\left(x^{\prime}\right) \leqslant \frac{\beta(x)}{2}$. Equality holds only if $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{2}^{\prime} ; u_{3}^{\prime}\right)$ has only two vertices: $\mathbf{w}_{\mathbf{1}}^{\prime}$ and $\mathbf{w}_{\mathbf{2}}^{\prime}$, which are the ends of its initial side $x_{1}^{\prime}+x_{2}^{\prime}=B\left(x^{\prime}\right)$;
(ii) if x is in case $\left({ }^{*} 1\right)$ and $\gamma(x) \geqslant 2$, then $\gamma\left(x^{\prime}\right)<\gamma(x)$ except if $\left(\beta(x)=2, C\left(x^{\prime}\right)=1\right.$ and $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{2}^{\prime} ; u_{3}^{\prime}\right)$ has only two vertices: $\left(A_{1}(x), A_{1}(x)+1\right)$ and $\left(A_{1}(x)+1, A_{1}(x)\right)$, which are the ends of its initial side);
(iii) if x is in case (*2), we have $C\left(x^{\prime}\right) \leqslant C(x), \gamma\left(x^{\prime}\right) \leqslant \gamma(x)$.

Proof. We have $E^{\prime}:=\left(e^{-1} E\right)_{\text {red }}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right)$ and $H\left(x^{\prime}\right)=u_{1}^{\prime a(1)} u_{2}^{\prime a(1)+a(2)+\omega(x)-p}$. Let $h^{\prime}:=$ $u_{2}^{-p} h=X^{\prime p}-g^{\prime p-1} X^{\prime}+f^{\prime}$, where

$$
\begin{equation*}
H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{3}^{\prime \omega(x)} \phi_{0}+\sum_{1 \leqslant j \leqslant \omega(x)} u_{3}^{\prime \omega(x)-j} u_{2}^{\prime-j} \phi_{j}\left(u_{1}^{\prime} u_{2}^{\prime}, u_{2}^{\prime}\right) \tag{1}
\end{equation*}
$$

with notations as in I.8.2. Since x^{\prime} is the origin of a chart, $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal, hence $\kappa\left(x^{\prime}\right)=2$ and x^{\prime} is in case $\left({ }^{*} 2\right)$ by (1) if x^{\prime} is very near x. The correspondence between vertices of $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$ and $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{2}^{\prime} ; u_{3}^{\prime}\right)$ is given by

$$
(\alpha, \beta) \mapsto(\alpha, \alpha+\beta-1)
$$

so ($X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}$) remains well prepared. The vertex with smaller first (resp. second) coordinate of $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{2}^{\prime} ; u_{3}^{\prime}\right)$ is therefore $\left(A_{1}(x), \beta(x)+A_{1}(x)-1\right)\left(\operatorname{resp} .\left(\alpha_{2}(x), B(x)-1\right)\right)$. We get

$$
\begin{equation*}
C\left(x^{\prime}\right) \leqslant \inf \left\{\beta(x)+A_{1}(x)-B(x), \alpha_{2}(x)-A_{1}(x)\right\} . \tag{2}
\end{equation*}
$$

All statements before (i) have been proved. This is visualized in the following figure.

Proof of (i). Since $\alpha_{2}(x) \leqslant B(x)$, (2) implies that $C\left(x^{\prime}\right) \leqslant \frac{\beta(x)}{2}$. Equality holds only if $C\left(x^{\prime}\right)=$ $\beta(x)+A_{1}(x)-B(x)=\alpha_{2}(x)-A_{1}(x)$ and this proves (i).

Proof of (ii). By assumption, $\beta(x)>1$, so $1+\left\lfloor\frac{\beta(x)}{2}\right\rfloor \leqslant\lceil\beta(x)\rceil$, and equality holds only if $\beta(x)=2$. The statement follows from (i) and (2), where $B(x)-A_{1}(x)=\alpha_{2}(x)-A_{1}(x)=1$.
Proof of (iii). This is a consequence of I.8.3 (b) by symmetry on u_{1} and u_{2}.

When x is in case $\left({ }^{*} 3\right)$ and $\kappa(x)>1$, we have $U_{3} \in \operatorname{VDir}(x)$ unless we are in the special case specified in I.7(ii). But then we can replace the r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ by $\left(Z, u_{1}, u_{2}, v\right)$ of loc.cit. (where $v \equiv u_{3} \bmod \left(u_{1}\right)$) and get $V \in \operatorname{VDir}(x)$. In other terms, we may assume without loss of generality in the lemma below that, if $x^{\prime} \in e^{-1}(x)$ does not belong to the first chart, then $x^{\prime}=\left(X^{\prime}:=\frac{X}{u_{2}}, u_{1}^{\prime}:=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}:=u_{2}, u_{3}^{\prime}:=\frac{u_{3}}{u_{2}}\right)$ and we have $\left.U_{3} \in \operatorname{VDir}^{\left(\operatorname{cl}_{\omega(x)}\right.}\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right)\right)$.
I.8.9 Lemma. Assume that x is in case (*3) and the center of μ in X^{\prime} is the point $x^{\prime}=$ $\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ defined above. With hypotheses and notations as in I.8.4, we have $\kappa(x) \leqslant 1$ or all following statements hold: x^{\prime} is in case (${ }^{* 2}$), $H\left(x^{\prime}\right)=u_{1}^{\prime a(1)} u_{2}^{\prime a(1)+1+\omega(x)-p}$ and $\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ is well prepared; $\mathbf{w}_{\mathbf{1}}^{\prime}:=\left(A_{1}\left(x^{\prime}\right), \beta\left(x^{\prime}\right)\right)=\left(A_{1}(x), A_{1}(x)+\beta 3(x)-1\right)$ and $\mathbf{w}_{\mathbf{2}}^{\prime}:=\left(\alpha 3_{2}(x), B 3(x)-1\right)$ is the vertex with smaller second coordinate of $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{2}^{\prime} ; u_{3}^{\prime}\right) ; C\left(x^{\prime}\right) \leqslant \beta 3(x)$ and $\gamma\left(x^{\prime}\right) \leqslant \gamma(x)$; moreover,
(i) if $B 3(x)-A_{1}(x) \geqslant 1$ or if $\beta 3(x)=1$, then $\gamma\left(x^{\prime}\right)<\gamma(x)$;
(ii) if $\left(B 3(x)-A_{1}(x)<1\right.$ and $\left.\beta 3(x) \neq 1\right)$, then $\gamma\left(x^{\prime}\right) \leqslant 2$;
(iii) if $\left(B 3(x)-A_{1}(x)<1, \beta 3(x) \neq 1\right.$ and $\gamma(x)=\gamma\left(x^{\prime}\right)=2$), the following holds: either ($x^{\prime \prime}$ is in case $\left({ }^{*} 1\right)$ and $\beta\left(x^{\prime \prime}\right)<2$) or ($x^{\prime \prime}$ is in case (${ }^{* 3}$) and $\beta 3\left(x^{\prime \prime}\right) \leqslant 1$), where $x^{\prime \prime}$ is the center of μ in the blowing up $X^{\prime \prime}$ of X^{\prime} along x^{\prime}.

Proof. We have $E^{\prime}=e^{-1} E=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right)$ and $H\left(x^{\prime}\right)=u_{1}^{\prime a(1)} u_{2}^{\prime a(1)+1+\omega(x)-p}$. Let $h^{\prime}:=u_{2}^{-p} h=$ $X^{\prime p}-g^{\prime p-1} X^{\prime}+f^{\prime}$, where

$$
\begin{equation*}
H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{3}^{\prime \omega(x)} \phi_{0}\left(u_{1}^{\prime} u_{2}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} u_{2}^{\prime}\right)+\sum_{1 \leqslant j \leqslant \omega(x)} u_{3}^{\prime \omega(x)-j} u_{2}^{\prime-j} \phi_{j}\left(u_{1}^{\prime} u_{2}^{\prime}, u_{2}^{\prime}\right) \tag{1}
\end{equation*}
$$

with notations as in I.8.4. Note that $\phi_{0}\left(u_{1}^{\prime} u_{2}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} u_{2}^{\prime}\right) \in \widehat{S}^{\prime}$ is a unit. Since x^{\prime} is the origin of a chart, $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal, hence $\kappa\left(x^{\prime}\right)=2$ if x^{\prime} is very near x and x^{\prime} is in case ($\left.{ }^{*} 2\right)$ by (1).

Vertices of $\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$ and $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{2}^{\prime} ; u_{3}^{\prime}\right)$ are in correspondence now given by $(\alpha, \beta) \mapsto(\alpha, \alpha+\beta-1)$, so $\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ is well prepared (it is only used here that no "left" vertex of the former polygon is solvable). The vertex with smaller first (resp. second) coordinate of $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{2}^{\prime} ; u_{3}^{\prime}\right)$ is therefore $\left(A_{1}(x), \beta 3(x)+A_{1}(x)-1\right)$ (resp. $\left.\left(\alpha 3_{2}(x), B 3(x)-1\right)\right)$. We get

$$
\begin{equation*}
C\left(x^{\prime}\right) \leqslant \inf \left\{\beta 3(x)+A_{1}(x)-B 3(x), \alpha 3_{2}(x)-A_{1}(x)\right\} . \tag{2}
\end{equation*}
$$

We have $\kappa(x) \leqslant 1$ by I.8.5 if $A_{1}(x)-B 3(x) \geqslant 0$, so $C\left(x^{\prime}\right) \leqslant \beta 3(x)$ otherwise by (2), from which $\gamma\left(x^{\prime}\right) \leqslant \gamma(x)$ immediately follows. This proves all statements before (i). For all remaining statements, it can be assumed that $A_{1}(x)-B 3(x)<0$

Before

After

I.8.9.1 Proof of (i). This is an obvious consequence of (2) above.
I.8.9.2 Proof of (ii). We have $0<B 3(x)-A_{1}(x)<1$; in particular, $\alpha 3_{2}(x)-A_{1}(x)<2$ since $\beta 3_{2}(x) \geqslant-1$. By (2) above, this implies $C\left(x^{\prime}\right)<2$, so $\gamma\left(x^{\prime}\right) \leqslant 2$.
I.8.9.3 Proof of (iii). Assume that $\gamma\left(x^{\prime}\right)=2$, i.e. $1 \leqslant C\left(x^{\prime}\right)<2$. In particular we must have $\beta 3_{2}(x)<0$ by the above argument. We discuss according to $x^{\prime \prime}$.

If $x^{\prime \prime}$ does not belong to the first chart, equation (2) in the proof of $\mathbf{I} \mathbf{8 . 8}$ gives

$$
C\left(x^{\prime \prime}\right) \leqslant \beta\left(x^{\prime}\right)-A_{2}\left(x^{\prime}\right)-C\left(x^{\prime}\right)
$$

We have $A_{2}\left(x^{\prime}\right)=A_{1}(x)+\left(B 3(x)-A_{1}(x)-1\right)>A_{1}(x)-1$ and $\beta\left(x^{\prime}\right)=A_{1}(x)+\beta 3(x)-1<A_{1}(x)+1$ (since $\gamma(x)=2$), so $C\left(x^{\prime \prime}\right)<2-C\left(x^{\prime}\right) \leqslant 1$.

Similarly, if $x^{\prime \prime}$ is the origin of the first chart, we have by symmetry on u_{1} and u_{2} :

$$
C\left(x^{\prime \prime}\right) \leqslant \alpha 3_{2}(x)-A_{1}\left(x^{\prime}\right)-C\left(x^{\prime}\right)=\left(B 3(x)-A_{1}(x)\right)-\beta 3_{2}(x)-C\left(x^{\prime}\right)<1
$$

since $\beta 3_{2}(x)>-1$ and $C\left(x^{\prime}\right) \geqslant 1$.
Finally, let $x^{\prime \prime}$ belong to the first chart and be distinct from the origin. First note that $A_{1}\left(x^{\prime}\right)>0$ if $C\left(x^{\prime}\right)=1$, since $C\left(x^{\prime}\right) \leqslant A_{1}\left(x^{\prime}\right)+\beta 3(x)-1$, so $x^{\prime \prime}$ is not the special case specified in I.8.3(e).

By I.8.3(i),$B\left(x^{\prime}\right)<\frac{\operatorname{ord}_{\left(u_{1}^{\prime}, u_{2}^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)}{\omega(x)}$ if $\kappa\left(x^{\prime}\right)>1$. Consistently with I.8.2.1 and (1) above, we denote

$$
J_{0}^{\prime}:=\left\{j, 1 \leqslant j \leqslant \omega(x) \left\lvert\, \frac{\operatorname{ord}_{\left(u_{1}^{\prime}, u_{2}^{\prime}\right)} \phi_{j}^{\prime}}{j}=B\left(x^{\prime}\right)\right.\right\}
$$

where $\phi_{j}^{\prime}:=u_{2}^{\prime-j} \psi_{j}\left(u_{1}^{\prime} u_{2}^{\prime}, u_{2}^{\prime}\right)$, and $\Phi_{j}^{\prime}:=\operatorname{cl}_{j B\left(x^{\prime}\right)} \phi_{j}^{\prime}=U_{1}^{\prime a_{j}^{\prime}(1)} U_{2}^{\prime a_{j}^{\prime}(2)} \Psi_{j}^{\prime}$ for $j \in J_{0}^{\prime}$.

We claim that for all $j \in J_{0}^{\prime}$,

$$
\begin{equation*}
d_{j}^{\prime}:=\operatorname{deg} \Psi_{j}^{\prime} \leqslant j . \tag{1}
\end{equation*}
$$

Namely, if $d_{j}^{\prime}>0$, there exist two monomials $M_{1}:=u_{1}^{a} u_{2}^{b+2 d_{j}^{\prime}}, M_{2}:=u_{1}^{a+d_{j}^{\prime}} u_{2}^{b}$ appearing with nonzero coefficient in the expansion of $\phi_{j}\left(u_{1}, u_{2}\right)$, where $2 a+b+2 d_{j}^{\prime}-j=j B\left(x^{\prime}\right)$. Since $\left(A_{1}(x), A_{1}(x)+\beta 3(x)-1\right)$ is the vertex with smaller first coordinate of $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{2}^{\prime} ; u_{3}^{\prime}\right)$, we have $a \geqslant j A_{1}(x)$ and

$$
2 a+b+2 d_{j}^{\prime}-j \leqslant j\left(2 A_{1}(x)+\beta 3(x)-1\right)
$$

so

$$
\begin{equation*}
b+2 d_{j}^{\prime} \leqslant j \beta 3(x)<2 j . \tag{2}
\end{equation*}
$$

Then $2\left(d_{j}^{\prime}-j\right)<-b$ which proves (1), since $b \geqslant-1$.
We apply I.8.3 to the well-prepared r.s.p. $\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ at x^{\prime}. Since $C\left(x^{\prime}\right)<2$, I.8.3(e) gives $\beta\left(x^{\prime \prime}\right)<2$ if $x^{\prime \prime}$ is in case (${ }^{*} 1$).

Assume from now on that $x^{\prime \prime}$ is in case (*3). By I.8.3(iii)-(vi), we have $\beta 3\left(x^{\prime \prime}\right) \leqslant 1$ unless x^{\prime} is in case $\mathbf{I} .8 .3(\mathrm{vi})$ by (1). If x^{\prime} is in case $\mathbf{I} .8 .3(\mathrm{vi})$, an explicit computation gives

$$
f_{2}^{\prime}:=u_{2}^{\prime-\omega(x)} H(x)^{-1} \frac{\partial f}{\partial u_{2}}=H\left(x^{\prime}\right)^{-1}\left(u_{2}^{\prime} \frac{\partial f^{\prime}}{\partial u_{2}^{\prime}}-u_{1}^{\prime} \frac{\partial f^{\prime}}{\partial u_{1}^{\prime}}-u_{3}^{\prime} \frac{\partial f^{\prime}}{\partial u_{3}^{\prime}}\right)
$$

Since $\mathrm{cl}_{\omega(x)} f_{2}^{\prime} \equiv \frac{\overline{\partial \psi_{0}}}{\partial u_{2}} U_{3}^{\prime \omega(x)} \bmod \left(U_{1}^{\prime}, U_{2}^{\prime}\right)$, we may take $G^{\prime}:=\operatorname{cl}_{\mu_{0}, \omega(x)} f_{2}^{\prime}$ in I.8.3(vi). We claim that $C\left(G^{\prime}\right)<1$, which implies $\gamma\left(x^{\prime \prime}\right)=1$ by I.8.3(vi).

To prove the claim, let $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right), a_{1} \leqslant a_{2}$, be those two vertices of the polygon $\Delta\left(H(x)^{-1} \frac{\partial f}{\partial u_{2}} ; u_{1}, u_{2} ; u_{3}\right)$ (hence $b_{2} \geqslant 0$) whose transforms $\left(a_{1}, a_{1}+b_{1}-1\right)$ and ($a_{2}, a_{2}+b_{2}-1$) give the ends of the initial side $x_{1}^{\prime}+x_{2}^{\prime}=B\left(x^{\prime}\right)$ of $\Delta\left(f_{2}^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime} ; u_{3}^{\prime}\right)$. By definition and with notations as in I.8.3(vi), $C\left(G^{\prime}\right)=a_{2}-a_{1}$. We do similar computations as in the above claim ($d_{j}^{\prime} \leqslant j$) w.r.t. f_{2}^{\prime}. This time, no division by u_{2} occurs in the computation and we get $a_{1} \geqslant A_{1}(x)$, $B\left(x^{\prime}\right)=2 a_{1}+b_{1}-1=2 a_{2}+b_{2}-1 \leqslant 2 A_{1}(x)+\beta 3(x)-1$, so $b_{1} \leqslant \beta 3(x)<2$; this yields $2\left(a_{2}-a_{1}\right)=b_{1}-b_{2}<2$ and $C\left(G^{\prime}\right)=a_{2}-a_{1}<1$.

We now turn to proving that $\kappa(x) \leqslant 1$ in some cases when $\gamma(x)=1$.
I. 9 Theorem. Assume that $\kappa(x)=2$, condition (${ }^{*}$) holds and ($\left.X, u_{1}, u_{2}, u_{3}\right)$ is well prepared. We have $\kappa(x) \leqslant 1$ provided one of the following conditions is satisfied:
(i) x is in case (${ }^{*} 1$) or (${ }^{* 2}$) and $\gamma(x)=1$;
(ii) x is in case (${ }^{* 3)}$ and $\beta 3\left(u_{1}, u_{2}, u_{3}\right)<1-\frac{1}{\omega(x)}$.

Proof. First assume that $A_{1}(x) \geqslant 1$ and let $\mathcal{C}:=V\left(X, u_{1}, u_{3}\right)$. If x is in case $\left({ }^{*} 3\right)$, then \mathcal{C} is permissible of the second kind by I.8.6, which also reduces theorem I. 9 to $0<A_{1}(x)<1, \beta 3(x)$ being unchanged. If x is in case $\left({ }^{*} 1\right)$ or ($\left.{ }^{*} 2\right)$, then similarly \mathcal{C} is permissible of the first kind and we get reduced to $0 \leqslant A_{1}(x)<1, \beta(x)$ being unchanged (see argument in the beginning of the proof of I.8.1).

If $\left(A_{1}(x)=0\right.$ and x is in case $\left.\left({ }^{*} 1\right)\right)$, then $\beta(x)=1$, so we have $\operatorname{VDir}(x) \equiv<U_{2}, U_{3}>\bmod \left(U_{1}\right)$, whence $\kappa(x)=0$ by chapter 2 , II.2. In particular, it can actually be assumed that $0<A_{1}(x)<1$ as in case $(* 3)$. Finally if x is in case ($\left.{ }^{*} 2\right)$, it can be assumed that $0 \leqslant A_{2}(x)<1$ by symmetry on u_{1} and u_{2}. Moreover, $\left(A_{1}(x), A_{2}(x)\right) \neq(0,0)$ since $B(x) \geqslant 1$.

Let

$$
X=: X_{0} \leftarrow X_{1} \leftarrow \cdots X_{n-1} \leftarrow X_{n} \leftarrow \cdots
$$

be the quadratic sequence along μ, i.e. X_{n} is the blowing up along the center x_{n-1} of μ in X_{n-1} for $n \geqslant 0$. First assume that $x_{0}:=x$ satisfies furthermore the following extra two assumptions:
(a) $0 \leqslant A_{1}\left(x_{0}\right)<1$, and
(b) $\beta\left(x_{0}\right)<1$ if x_{0} is in case $\left({ }^{*} 2\right)$.

We prove by induction on $n \geqslant 0$ that $\kappa\left(x_{n}\right) \leqslant 1$ or x_{n} also satisfies the assumptions of $\mathbf{I} .9$, together with (a) and (b). Moreover, the invariant $i_{n}:=\left(A_{1}\left(x_{n}\right), d\left(x_{n}\right)\right)$ satisfies $i_{n} \leqslant i_{n-1}$ for $n \geqslant 1$, where $d\left(x_{n}\right):=\beta\left(x_{n}\right)$ (resp. $d\left(x_{n}\right):=\beta 3\left(x_{n}\right)$) if x is in case $\left(^{*} 1\right.$) or (${ }^{*} 2$) (resp. in case $\left.\left({ }^{*} 3\right)\right)$, and the ordering is lexicographical.

To prove this claim, first note that $\kappa(x) \leqslant 1$, or $\gamma\left(x_{n}\right)=\gamma\left(x_{n-1}\right)=1$ by I.8.1 and I.8.3(d), I.8.8 (resp. and I.8.7(b), (d), I.8.9) if x_{n-1} is in case $\left({ }^{*} 1\right)$ or (${ }^{*} 2$) (resp. in case $\left({ }^{*} 3\right)$). If x_{n} does not belong to the first chart, $\kappa\left(x_{n}\right) \leqslant 1$ or x_{n} is in case $\left({ }^{*} 2\right)$ by I.8.8 or I.8.9 which give

$$
i_{n}=\left(A_{1}\left(x_{n-1}\right), A_{1}\left(x_{n-1}\right)+\beta\left(x_{n-1}\right)-1\right)\left(\text { resp. }=\left(A_{1}\left(x_{n-1}\right), A_{1}\left(x_{n-1}\right)+\beta 3\left(x_{n-1}\right)-1\right)\right)
$$

and the claim is proved (with $i_{n}<i_{n-1}$), since $A_{1}\left(x_{n}\right)<1$. Assume now that x_{n} belongs to the first chart. By I.8.3 (resp. I.8.7), we have
$A_{1}\left(x_{n}\right)=B\left(x_{n-1}\right)-1 \leqslant A_{1}\left(x_{n-1}\right)+\beta\left(x_{n-1}\right)-1\left(\right.$ resp. $\left.=B 3\left(x_{n-1}\right)-1 \leqslant A_{1}\left(x_{n-1}\right)+\beta 3\left(x_{n-1}\right)-1\right)$,
so the claim is proved provided we show that $\beta\left(x_{n}\right)<1$ (resp. $\beta 3\left(x_{n}\right)<1-\frac{1}{\omega(x)}$) if x_{n} is in case $\left({ }^{*} 2\right)$ (resp. in case $\left({ }^{*} 3\right)$). Note that moreover $i_{n}<i_{n-1}$ except if (x_{n} and x_{n-1} are in case $\left({ }^{*} 1\right)$ and $\beta\left(x_{n-1}\right)=\beta\left(x_{n}\right)=1$ and x_{n} is rational over $\left.x_{n-1}\right)$.

The claim follows directly from I.8.3(b) if x_{n} is in case (${ }^{*} 2$). Assume that x_{n} is in case $\left({ }^{*} 3\right)$. We may assume that $B 3\left(x_{n-1}\right)>1$ if x_{n-1} is in case $\left({ }^{*} 3\right)$ by I.8.7(b), in which case the result follows from I.8.7(i), (iii). If x_{n-1} is in case (${ }^{*} 1$) or (${ }^{*} 2$), we have $\beta\left(x_{n}\right)<1$ by I.8.3(e) except possibly if $\left(x_{n-1}\right.$ is in case $\left({ }^{*} 1\right)$ and $\left.\beta\left(x_{n-1}\right)=C\left(x_{n-1}\right)\right)$. By I.8.3(c), x_{n} must then be inseparable over x_{n-1} so I.8.3(e) also yields $\beta\left(x_{n}\right)<1$. By definition of $\beta\left(x_{n}\right)$, there exists some index $j, 1 \leqslant j \leqslant \omega(x)$, such that the monomial $u_{3, n}^{\omega(x)-j} u_{1, n}^{j A_{1}\left(x_{n}\right)} u_{2, n}^{j \beta\left(x_{n}\right)}$ appears with nonzero coefficient in the expansion of $H\left(x_{n}\right)^{-1} f_{n}$, where $\left(X_{n}, u_{1, n}, u_{2, n}, u_{3, n}\right)$ is some r.s.p. at x_{n} which is well prepared. So we have $j \beta\left(x_{n}\right) \leqslant j-1$ and

$$
\begin{equation*}
\beta 3\left(x_{n}\right) \leqslant \frac{j-2}{j}=1-\frac{2}{j}<1-\frac{1}{\omega(x)} \tag{1}
\end{equation*}
$$

and the claim is proved.
Remember that, if $\kappa(x)>1$, then $i_{n}=i_{n-1}$ only if both x_{n-1} and x_{n} are in case (${ }^{*} 1$), $\beta\left(x_{n-1}\right)=\beta\left(x_{n}\right)=1$ and x_{n} is rational over x_{n-1}. If this happens for all $n \geqslant n_{0}$ for some $n_{0} \geqslant 0$, some formal curve $\mathcal{C}^{\prime}=V\left(\widehat{X}_{n_{0}}, \widehat{u}_{2, n_{0}}, \widehat{u}_{3, n_{0}}\right)$ is contained in $\Sigma_{p}\left(X_{n_{0}}\right)$, a contradiction since $\mathcal{C}^{\prime} \not \subset E_{n_{0}}$. Therefore i_{n} eventually drops so that $\kappa(x) \leqslant 1$.

We now turn to the general case, so x is now in case $\left({ }^{*} 2\right)$ and we have $C(x)<1, \beta(x) \geqslant 1$. If x_{n} is in case $\left({ }^{*} 2\right)$ for all $n \geqslant 0$, all points x_{n} are either at the origin of the first chart, or the unique point away from the first chart. By standard arguments, there exists $n_{0} \geqslant 0$ such that $C\left(x_{n_{0}}\right)=0$. Otherwise, there exists a smaller $n_{0} \geqslant 1$ such that $x_{n_{0}-1}$ is in case $\left({ }^{*} 2\right)$ and $x_{n_{0}}$ is either in case $\left({ }^{*} 1\right)$ or in case $\left({ }^{*} 3\right)$. By I.8.3(b), (ix) and I.8.8(iii), we have $\beta\left(x_{n_{0}}\right)<1$ in the latter case. The argument in (1) above shows that $\beta 3\left(x_{n_{0}}\right)<1-\frac{1}{\omega(x)}$ if $x_{n_{0}}$ is in case $\left({ }^{*} 3\right)$, so $x_{n_{0}}$ satisfies the assumption of $\mathbf{I} .9$ in any case.

Summing up, we have $\kappa(x) \leqslant 1$ or the following holds: by blowing up permissible curves (argument at the beginning of the proof of this theorem), there exists a composition of blowing ups of permissible curves $e^{\prime}: X^{\prime} \rightarrow X_{n_{0}}$ such that either (x^{\prime} is in case (${ }^{*} 2$), $C\left(x^{\prime}\right)=0$ and
$\left.0<\max \left\{A_{1}\left(x^{\prime}\right), A_{2}\left(x^{\prime}\right)\right\}<1\right)$ or $\left(x^{\prime}\right.$ is in case $\left({ }^{*} 1\right)$ or $\left({ }^{*} 3\right), 0<A_{1}\left(x^{\prime}\right)<1$ and x^{\prime} satisfies the assumptions of I.9). In the former case, note that $\beta\left(x^{\prime}\right)=A_{2}\left(x^{\prime}\right)<1$. Hence in every case, x^{\prime} verifies (a) and (b) above, so $\kappa(x) \leqslant 1$ and the proof is complete.

We now prove that $\kappa(x) \leqslant 1$ in some special cases when $\left(x\right.$ is in case $\left({ }^{*} 1\right)$ and $\left.\gamma(x)=2\right)$.
I. 10 Theorem. Assume that $\kappa(x)=2, x$ is in case (${ }^{*} 1$) and ($\left.X, u_{1}, u_{2}, u_{3}\right)$ is well prepared. We have $\kappa(x) \leqslant 1$ provided one of the following conditions is satisfied:
(i) $\beta\left(u_{1}, u_{2}, u_{3}\right)<2$;
(ii) x is a "disaster" (as specified in $\mathbf{I} .8 .3(e))$, i.e. $(\omega(x)=p=2$ and

$$
\begin{equation*}
H(x)^{-1} f=\mu_{2} u_{3}^{2}+\mu_{1} u_{3} u_{2}^{2}+u_{1} \varphi \tag{Dis}
\end{equation*}
$$

with $\mu_{1} \mu_{2} \in \widehat{S}$ invertible and $\left.\operatorname{ord}_{\eta(x)} \varphi \geqslant 1\right)$.
Proof of (i). Let $e: X^{\prime} \rightarrow X$ be the blowing up along x and x^{\prime} be the center of μ in X^{\prime}.
If x^{\prime} does not belong to the first chart, then $\kappa(x) \leqslant 1$ by I.8.8(i) and I.9(i).
If x^{\prime} is not rational over x, then $\beta\left(x^{\prime}\right)<1$ by I.8.3(ix), so $\kappa(x) \leqslant 1$ by $\mathbf{I . 9}$ (i) or $\mathbf{I . 9}$ (ii) (using equation (1), proof of I.9, if x^{\prime} is in case $\left.\left({ }^{*} 3\right)\right)$.

If x^{\prime} is rational over x and belongs to the first chart, then x^{\prime} verifies assumption I.10(i) by I.8.3(b), (c) and (e), so we iterate the process. An argument already used several times -e.g. in the proof of $\mathbf{I} .9$ above, right after equation (1)- shows that either $\kappa(x) \leqslant 1$, or there exists some formal curve $\mathcal{C}=V\left(\widehat{X}, \widehat{u}_{2}, \widehat{u}_{3}\right)$ contained in $\Sigma_{p}(X)$, a contradiction since $\mathcal{C} \not \subset E$.
Proof of (ii). We have $A_{1}(x)=0$ and $\beta(x)=2$. By I.7, $U_{3} \in \operatorname{VDir}(x)$. Let $e: X^{\prime} \rightarrow X$ be the blowing up along x and x^{\prime} be the center of μ in X^{\prime}.

If x^{\prime} does not belong to the first chart, then $\omega\left(x^{\prime}\right)=1$ by (Dis), so $\kappa(x)=0$ in this case. In particular, if $\operatorname{ord}_{\eta(x)}\left(u_{1} \varphi\right)=2$, we have $<U_{1}, U_{3}>\subseteq \operatorname{VDir}(x)$, so $\kappa(x)=0$. From now on, we assume that $\operatorname{ord}_{\eta(x)}\left(u_{1} \varphi\right) \geqslant 3$ and x^{\prime} belongs to the first chart.

Suppose that x^{\prime} is not the origin of the first chart. If x^{\prime} is in case $\left({ }^{*} 1\right)$, then x^{\prime} satisfies I.10(i) except possibly if $C(x)=2$ and x^{\prime} is rational over x by I.8.3(e). But $C(x)=B(x)=2$ in this case, so $\operatorname{cl}_{2} \varphi \in k(x)\left[U_{1}, U_{2}\right]_{2}$ and we get $\omega\left(x^{\prime}\right)=1$ from (Dis). If x^{\prime} is in case (${ }^{*} 3$), then x^{\prime} is inseparable over x by I.8.3(c); then I.8.3(e) yields $\beta\left(x^{\prime}\right)<1$ (so $\beta 3\left(x^{\prime}\right)<1-\frac{1}{\omega(x)}$ and $\kappa(x) \leqslant 1$ by I.9(ii)) except possibly if $C(x)=2$ and $d=2$. Hence $\operatorname{cl}_{2} \varphi \in k(x)\left[U_{1}, U_{2}\right]_{2}$ and we also get $\omega\left(x^{\prime}\right)=1$ from (Dis).

From now on, x^{\prime} is the origin of the first chart. In particular, $\left(X^{\prime}:=\frac{X}{u_{1}}, u_{1}^{\prime}:=u_{1}, u_{2}^{\prime}:=\right.$ $\left.\frac{u_{2}}{u_{1}}, u_{3}^{\prime}:=\frac{u_{3}}{u_{1}}\right)$ is well prepared and x^{\prime} is in case $\left({ }^{*} 1\right)$ if it is very near x. We get

$$
f^{\prime}=u_{1}^{\prime a(1)}\left(\mu_{2} u_{3}^{\prime 2}+\mu_{1} u_{1}^{\prime} u_{3}^{\prime} u_{2}^{\prime 2}+u_{1}^{\prime} \Phi^{\prime}\left(u_{2}^{\prime}, u_{3}^{\prime}\right)+u_{1}^{\prime 2} \varphi^{\prime}\right)
$$

where $\Phi^{\prime} \in k(x)\left[u_{2}^{\prime}, u_{3}^{\prime}\right]_{\leqslant 2}$ and $\varphi^{\prime} \in k(x)\left[\left[u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right]\right]$. We have $\omega\left(x^{\prime}\right)=1$ unless $\Phi^{\prime} \in k(x)\left[u_{2}^{\prime}, u_{3}^{\prime}\right]_{2}$, which we assume now. We have $\beta\left(x^{\prime}\right)=1$, so $\kappa(x) \leqslant 1$ by I.9, unless $\Phi^{\prime} \in k(x)\left[u_{3}^{\prime}\right]$, which we also assume from now on. Then the curve $\mathcal{C}^{\prime}:=V\left(X^{\prime}, u_{3}^{\prime}, u_{1}^{\prime}\right)$ is permissible of the first kind and we perform the blowing up $e^{\prime}: X^{\prime \prime} \rightarrow X^{\prime}$ along \mathcal{C}^{\prime}. Let $x^{\prime \prime}$ be the center of μ in $X^{\prime \prime}$. Since $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{2}^{\prime} ; u_{3}^{\prime}\right)$ has no solvable vertex, we have $\operatorname{VDir}\left(x^{\prime}\right)=<U_{1}^{\prime}, U_{3}^{\prime}>$ if φ^{\prime} is a unit, so $\kappa(x) \leqslant 1$ in this case. Otherwise, $\operatorname{VDir}\left(x^{\prime}\right)=k\left(x^{\prime}\right) \cdot U_{3}^{\prime}$, so we need only consider the case when $x^{\prime \prime}$ is the origin of the first chart. If $\omega\left(x^{\prime \prime}\right)=2$, then tracing back to X, we had

$$
\varphi=\Phi^{\prime}\left(u_{3}\right)+u_{3} \Phi_{1}\left(u_{1}, u_{2}, u_{3}\right)+u_{2}^{2} \Phi_{2}\left(u_{1}, u_{2}\right)+\psi
$$

where $\Phi_{1} \in k(x)\left[u_{1}, u_{2}, u_{3}\right]_{3}, \Phi_{1}\left(u_{1}, 0,0\right)=0, \Phi_{2} \in k(x)\left[u_{1}, u_{2}\right]_{1}$ and $\operatorname{ord}_{\eta(x)} \psi \geqslant 4$. Hence

$$
\varphi^{\prime} \equiv u_{2}^{\prime 2} \Phi_{2}\left(1, u_{2}^{\prime}\right) \bmod \left(u_{1}^{\prime}, u_{3}^{\prime} u_{2}^{\prime}, u_{3}^{\prime 2}\right) .
$$

Therefore $x^{\prime \prime}$ is in case $\left({ }^{*} 1\right),\left(X^{\prime \prime}:=\frac{X^{\prime}}{u_{1}^{\prime}}, u_{1}^{\prime \prime}:=u_{1}^{\prime}, u_{2}^{\prime \prime}:=u_{2}^{\prime}, u_{3}^{\prime \prime}:=\frac{u_{3}^{\prime}}{u_{1}^{\prime}}\right)$ is well prepared and $A_{1}\left(x^{\prime \prime}\right)=0$. If $\Phi_{2} \neq 0$, we get $\beta\left(x^{\prime \prime}\right)=1$ or $\beta\left(x^{\prime \prime}\right)=\frac{3}{2}$, so $\kappa\left(x^{\prime \prime}\right) \leqslant 1$ by (i). Finally, if $\Phi_{2}=0, x^{\prime \prime}$ satisfies again the assumptions of (ii).

The conclusion now follows as in the proof of (i): either $\kappa(x) \leqslant 1$, or the curve $\mathcal{C}=V\left(X, u_{2}, u_{3}\right)$ is contained in $\Sigma_{p}(X)$, a contradiction since $\mathcal{C} \not \subset E$.

I. 11 Proof of Theorem I.8.

Let

$$
X=: X_{0} \leftarrow X_{1} \leftarrow \cdots X_{n-1} \leftarrow X_{n} \leftarrow \cdots
$$

be the quadratic sequence along μ, i.e. X_{n} is the blowing up along the center x_{n-1} of μ in X_{n-1} for $n \geqslant 0$. We assume that $\kappa(x)=2, \kappa(x)>1$ and derive a contradiction. By I.8.3, I.8.7, I.8.8 and I.8.9, we have $\gamma\left(x_{n}\right) \leqslant \gamma\left(x_{n-1}\right)$ for each $n \geqslant 1$ unless we are in the special case specified in I.8.7(b): x_{n-1} is in case (${ }^{*} 3$) with $\gamma\left(x_{n-1}\right)=2$, and x_{n} satisfies the assumptions of I.10. By I.10, this is a contradiction since $\kappa\left(x_{n}\right) \leqslant 1$ in this case. Therefore there exists $n_{0} \geqslant 1$ such that $\gamma\left(x_{n}\right)=\gamma\left(x_{n-1}\right)$ for $n \geqslant n_{0}$. Let $\gamma(\mu)$ be this limit value of $\gamma\left(x_{n}\right)$. Without loss of generality, it can be assumed that $n_{0}=0$.

First assume that $\gamma(\mu)=1$. By I.9, we are done unless x_{n} is in case ($* 3$) for all $n \geqslant 0$. Since $\beta 3\left(x_{n}\right)<1$ for each $n \geqslant 0$, we have $\beta\left(x_{n}\right) \leqslant 1$. Moreover, $\beta 3\left(x_{n}\right)<1-\frac{1}{\omega(x)}$ if $\beta\left(x_{n}\right)<1$ (see proof of $\mathbf{I} .9$, equation (1)), so $\kappa(x) \leqslant 1$ by $\mathbf{I} .9$ (ii) unless $\beta\left(x_{n}\right)=1$ for all $n \geqslant 0$. By I.8.7(v), x_{n} is rational over x_{n-1} for all $n \geqslant 1$. Therefore there exists some formal curve $\mathcal{C}=V\left(\widehat{X}, \widehat{u}_{2}, \widehat{u}_{3}\right)$ contained in $\Sigma_{p}(X)$: a contradiction since $\mathcal{C} \not \subset E$.

Assume that $\gamma(\mu) \geqslant 3$. By I.8.8(ii) and I.8.9(i), (ii), x_{n} always belong to the first chart of the blowing up along x_{n-1} provided $m\left(x_{n}\right)=1$ for some $n \geqslant 1$. Then x_{n} is rational over x_{n-1} for all $n \geqslant 1$ by I.8.3(viii) and I.8.7(b), (iv). We conclude as in the case $\gamma(\mu)=1$ unless x_{n} is in case (*2) for all $n \geqslant 0$. By standard arguments, we then get $C\left(x_{n}\right)=0$ for $n \gg 0$, a contradiction, since $\gamma(\mu)=3$.

Assume from now on that $\gamma(\mu)=2$. The argument of the previous paragraph settles the case when x_{n} is in case (${ }^{*} 2$) for all $n \gg 0$, or when (x_{n} is rational over x_{n-1} and $m\left(x_{n}\right)=1$) for all $n \gg 0$. From now on, there exists infinitely many values of $n \geqslant 1$ such that ($m\left(x_{n-1}\right)=1$ and either $m\left(x_{n}\right)=2$ or x_{n} is not rational over $\left.x_{n-1}\right)$.

We first sum up some of the conclusions of I.8.3, I.8.7 and I.10; since $\kappa(x)>1$, the following holds when x_{n} is not rational over x_{n-1} :
(a) x_{n-1} is in case $\left({ }^{*} 1\right)$ with $\beta\left(x_{n-1}\right)=C\left(x_{n-1}\right)=2, x_{n}$ is in case $\left({ }^{*} 3\right)$ and either $\beta 3\left(x_{n}\right)=1$ or ($p=2$ and $\beta 3\left(x_{n}\right) \leqslant \frac{3}{2}$);
(b) x_{n-1} is in case (${ }^{*} 3$), x_{n} is in case $(* 3), p=2$ and $\beta 3\left(x_{n}\right)<\frac{3}{2}$.

The situation we want to reduce to is that in the lemma below. The argument is somewhat more involved when $p=2$, due to the characteristic two version of I.8.3(vii), I.8.7(iv) and (a), (b) above.
I.11.1 Lemma. Assume that $\kappa(x)>1, x$ is in case ($\left.{ }^{*} 1\right)$ with $\beta(x)=2$ and x_{1} is in case (${ }^{*}$ 2). Then $p=2$ and x_{2} satisfies the assumptions of $\mathbf{I} 11.2$ below.

Proof. By I.8.8(ii), we have $\kappa(x) \leqslant 1$ unless x_{1} has $C\left(x_{1}\right)=1$ and x_{2} is in case $\left({ }^{*} 1\right)$ or $\left({ }^{*} 3\right)$. By I.8.3(e), we have $\beta\left(x_{2}\right)<2$ if x_{2} is in case ($\left.{ }^{*} 1\right)$: a contradiction by I.10(i). Note that x_{1} then satisfies all assumptions in I.8.3(vii) from which the conclusion follows.
1.11.2 Lemma. Assume that $\kappa(x)>1$ and x is in case (${ }^{*} 3$) with either $\beta 3(x)<\frac{3}{2}$, or ($p=2$, $\beta 3(x)=\frac{3}{2}$ and the monomial $u_{3}^{\omega(x)-j_{1}} u_{1}^{j_{1} A_{1}(x)} u_{2}^{1+\frac{3}{2} j_{1}}$ appears with nonzero coefficient in the expansion of $H(x)^{-1} u_{2} \frac{\partial f}{\partial u_{2}}$ for some $j_{1}, 1 \leqslant j_{1} \leqslant \omega(x), j_{1} \equiv 0 \bmod 4$, and $\left(X, u_{1}, u_{2}, u_{3}\right)$ is wellprepared).

Let $x^{\prime}:=x_{1}$ be the center of μ in the blowing up $X^{\prime}:=X_{1}$ along x. Exactly one of the following properties holds:
(i) x^{\prime} is in case (${ }^{*}$) with $\beta\left(x^{\prime}\right)=2$ and the monomial $u_{3}^{\prime \omega(x)-1} u_{1}^{\prime A_{1}\left(x_{1}\right)} v^{\prime 2}$ appears with nonzero coefficient in the expansion of $H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime}$, where $\left(Z^{\prime}, u_{1}^{\prime}, v^{\prime}, u_{3}^{\prime}\right)$ is well-prepared at x^{\prime};
(ii) x^{\prime} satisfies again the assumptions of I.11.2; $\beta\left(x^{\prime}\right) \leqslant \beta(x)$ and equality is strict if x^{\prime} is not rational over x.

Proof. Recall the definition of J_{0} in I.8.6.1 and lemma I.8.6.2. Remark that $\beta 3(x) \leqslant \frac{3}{2}$ implies that

$$
\begin{equation*}
\forall j_{0} \in J_{0}, \frac{1+d_{j_{0}}}{j_{0}} \leqslant 2 \tag{1}
\end{equation*}
$$

Note that equality possibly holds only if ($j_{0}=1$ and $\beta 3(x)=1$): if $j_{0} \geqslant 3$, then $\frac{1+d_{j_{0}}}{j_{0}} \leqslant \frac{3}{2}+\frac{1}{3}<2$; if $j_{0}=2$, then $\frac{1+d_{j_{0}}}{j_{0}}=2$ implies $\beta 3(x)=\frac{3}{2}$, so $p=2,1+d_{2}=4$, so the monomial $u_{3}^{\omega(x)-2} u_{1}{ }^{2 A_{1}(x)} u_{2}^{4}$ cannot appear with nonzero coefficient in the expansion of $H(x)^{-1} u_{2} \frac{\partial f}{\partial u_{2}}$, since $p=2$.
I.11.2.1 First assume that x^{\prime} is not rational over x. We have $\gamma\left(x^{\prime}\right) \leqslant 1$ if $J_{0} \not \subset p \mathbb{N}$ by I.8.7(i): a contradiction. If $J_{0} \subset p \mathbb{N}$, we have $\kappa(x) \leqslant 1$ by I.8.7(iv) and $\mathbf{I} .10$ (i) if x^{\prime} is in case (*1): a contradiction.

Suppose finally that $J_{0} \subset p \mathbb{N}$ and x^{\prime} is in case $\left({ }^{*} 3\right)$. Then $\beta\left(x^{\prime}\right) \leqslant \frac{3}{2}$ by I.8.7(ii), so $\beta 3\left(x^{\prime}\right)<\frac{3}{2}$. By I.8.7(ii) and I.8.6.2, we have

$$
\beta\left(x^{\prime}\right)-\beta(x) \leqslant \frac{1}{p}-\frac{\beta(x)}{2}<0
$$

I.11.2.2 Assume that x^{\prime} is in case (${ }^{*} 2$). By I.8.9(i), (iii) and I.10(i), we have $\kappa(x) \leqslant 1$ unless possibly $\left(x^{\prime \prime}\right.$ is in case $\left({ }^{*} 3\right)$ and $\left.\beta 3\left(x^{\prime \prime}\right)=1\right)$, where $x^{\prime \prime}$ is the center of μ in the blowing up $X^{\prime \prime}:=X_{2} \rightarrow X^{\prime}$ of X^{\prime} along x^{\prime}.

This holds only if equality $d_{j}^{\prime}=\operatorname{deg} \Psi_{j}^{\prime}=j$ holds for some $j \in J_{0}^{\prime}$ in I.8.9.3(1). Since $\beta 3(x) \leqslant \frac{3}{2},(2)$ of loc.cit. gives

$$
2\left(d_{j}^{\prime}-j\right) \leqslant 1-\frac{j}{2}
$$

so $d_{j}^{\prime}=j$ implies $j \in\{1,2\}$. Since $1 \leqslant \beta 3(x)<2$, we had

$$
(j, j \beta 3(x)) \in\{(1,1),(2,2),(2,3)\} .
$$

The comments right after (1) above discard the value $(2,3)$ in the above list, so we had $\beta 3(x)=1$:a contradiction by I.8.9 (i), since $\gamma\left(x^{\prime}\right)=\gamma(\mu)=2$.
I.11.2.3 Assume that x^{\prime} is in case (${ }^{*} 1$). By I.8.7(ii), we have $\beta\left(x^{\prime}\right)<2$ (so $\kappa(x) \leqslant 1$ by I.10(i)) unless equality holds in (1) above (so $1 \in J_{0}$) or $B 3(x)=1$. If $B 3(x)=1$, then checking through I.8.7.1, $\beta\left(x^{\prime}\right)=2$ possibly holds only if $p=2$ and either x is in cases 1 b or 3 b with $j_{0}=1$ in
loc.cit. (so x^{\prime} satisfies I.11.2(i) with $A_{1}\left(x^{\prime}\right)=0$), or $\omega(x)=p=2$ (end of I.8.7.1) in which case x^{\prime} also satisfies I.11.2(i) with $A_{1}\left(x^{\prime}\right)=0$ (since $\mu_{2} \neq 0$ in loc.cit.).
I.11.2.4 Assume finally that x^{\prime} is in case (${ }^{*} 3$). By I.8.7(i), (ii), (iii) and I.8.6.2, we have $\beta 3\left(x^{\prime}\right) \leqslant$ $\beta 3(x), \beta\left(x^{\prime}\right) \leqslant \beta(x)$, so (ii) will hold except possibly if $\beta 3\left(x^{\prime}\right)=\beta 3(x)=\frac{3}{2}$.

In this case, $H\left(x^{\prime}\right)^{-1} \frac{\partial f^{\prime}}{\partial u_{2}^{\prime}}$ is the strict transform of $H(x)^{-1} \frac{\partial f}{\partial u_{2}}$ since x^{\prime} is rational over x. Then $\left(A_{1}\left(x^{\prime}\right), \frac{3}{2}\right)$ is a vertex of $\left(\Delta\left(H\left(x^{\prime}\right)^{-1} \frac{\partial f_{Z^{\prime}}^{\prime}}{\partial u_{2}^{\prime}} ; u_{1}^{\prime}, v^{\prime} ; u_{3}^{\prime}\right)\right.$, where $\left(Z^{\prime}, u_{1}^{\prime}, v^{\prime}, u_{3}^{\prime}\right)$ is well-prepared at x^{\prime}, and the monomial $u_{3}^{\prime \omega(x)-j_{1}} u_{1}^{\prime j_{1} A_{1}(x)} u_{2}^{\prime \frac{3}{2} j_{1}}$ appears with nonzero coefficient in the expansion of $H\left(x^{\prime}\right)^{-1} \frac{\partial f_{Z^{\prime}}^{\prime}}{\partial u_{2}^{\prime}}$ for some $j_{1}, 1 \leqslant j_{1} \leqslant \omega(x)$ (see I.8.7.1, I.8.7.8 and I.8.7.9). Necessarily, we have $j_{1} \equiv 0 \bmod 4$, since $p=2$ in this case.
1.11.3 Lemma. Assume that $\kappa(x)>1, x$ is in case (${ }^{*} 1$) with $\beta(x)=2$ and the monomial $u_{3}{ }^{\omega(x)-1} u_{1} A_{1}(x) u_{2}^{2}$ appears with nonzero coefficient in the expansion of $H(x)^{-1} f$, where $\left(X, u_{1}, u_{2}, u_{3}\right)$ is well prepared.

Let $x^{\prime}:=x_{1}$ be the center of μ in the blowing up $X^{\prime}:=X_{1}$ along x. Then x^{\prime} is rational over x and satisfies again the assumptions of I.11.3.

Proof. We have $C(x) \leqslant \beta(x)=2$. With notations as in I.8.2.1, we have $C(x)<2$ or $(C(x)=2$ and $1 \in J_{0}$).

If x^{\prime} is again in case (${ }^{*} 1$), then x^{\prime} satisfies equation (Dis) or $\beta\left(x^{\prime}\right)<2$ whenever $C(x)<2$ by I.8.3(e). Otherwise $1 \in J_{0}$, so $\beta\left(x^{\prime}\right) \leqslant 2$ by I.8.3(iii) and x^{\prime} satisfies again the assumption of the lemma if equality holds (in which case x^{\prime} is rational over x). The conclusion follows from I.10.

If x^{\prime} is in case $\left({ }^{*} 2\right)$, then $\beta(x)=2$ and x^{\prime} satisfies the conclusion of I.8.8(ii). In particular, $C\left(x^{\prime}\right)=1$. Let $x^{\prime \prime}$ be the center of μ in the blowing up $X^{\prime \prime}:=X_{2} \rightarrow X^{\prime}$ of X^{\prime} along x^{\prime}. The conclusion of I.8.8(ii) implies the following: if $x^{\prime \prime}$ is in case $\left({ }^{*} 2\right)$, we have $C\left(x^{\prime \prime}\right)=0$; if $x^{\prime \prime}$ is in case $\left({ }^{*} 1\right)$ or $\left({ }^{*} 3\right)$, then x^{\prime} satisfies the assumption in I.8.3(iii) whose conclusion gives $\gamma\left(x^{\prime \prime}\right)=1$ or $x^{\prime \prime}$ satisfies equation (Dis) (so $\kappa(x) \leqslant 1$ by I.10(ii)). In all cases, this contradicts the assumption $\gamma(\mu)=2$.

If x^{\prime} is in case $\left({ }^{*} 3\right)$, then x^{\prime} is inseparable over x by I.8.3(c). Then $\beta 3\left(x^{\prime}\right)<1$ by I.8.3(iii), once again a contradiction, since $\gamma(\mu)=2$.

We can now conclude the proof of theorem I.8:
I.11.4 Recall equations (a) and (b) above and reminder right before them of the assumption on μ : there exists infinitely many values of $n \geqslant 1$ such that $\left(m\left(x_{n-1}\right)=1\right.$ and either $m\left(x_{n}\right)=2$ or x_{n} is not rational over x_{n-1}).
I.11.4.1 First assume that $m\left(x_{n}\right)=1$ for every $n \geqslant 0$. Pick $n_{2}>0$ such that $x_{n_{2}}$ is not rational over $x_{n_{2}-1}$. By I.8.3(viii) or I.8.7(iv) and $\mathbf{I} .10(\mathrm{i}), x_{n_{2}}$ satisfies the assumptions of I.11.2.
I.11.4.2 Assume that for some $n_{1}>0, x_{n_{1}-1}$ is in case $\left(^{*} 1\right)$ and $x_{n_{1}}$ is in case (*2). Then $\kappa(x) \leqslant 1$ by I.10(i) unless possibly if $\beta\left(x_{n_{1}-1}\right)=2$, i.e. $x_{n_{1}-1}$ satisfies the assumption of I.11.1. The conclusion of \mathbf{I}.11.2 produces some integer $n_{2}:=n_{1}+1$ such that $x_{n_{2}}$ satisfies the assumptions of I.11.2.
I.11.4.3 Assume finally that for some $n_{1}>0, x_{n_{1}-1}$ is in case $\left({ }^{*} 3\right)$ and $x_{n_{1}}$ is in case ($\left.{ }^{*} 2\right)$. By I.8.9(iii) and I.10, we have $\kappa(x) \leqslant 1$ or $x_{n_{2}}$ satisfies the assumptions of I.11.2, where $n_{2}:=n_{1}+1$.
I.11.4.4 If $\kappa(x)>1$, the conclusion of I.11.2 either produces some integer $n_{3}>n_{2}$ such that $x_{n_{3}}$ satisfies the assumptions of I.11.3, or states that x_{n} satisfies the assumptions of I.11.2 for all $n \geqslant n_{2}$.

In the former case, x_{n} satisfies the assumptions of \mathbf{I}.11.3 (in particular x_{n} is in case (*1)) and x_{n+1} is rational over x_{n} for all $n \geqslant n_{3}$: this contradicts the assumption on μ.

In the latter case, we have $\beta\left(x_{n+1}\right) \leqslant \beta\left(x_{n}\right)$ for all $n \geqslant n_{2}$, where equality is strict if x_{n+1} is not rational over x_{n}. The assumption on μ implies the existence of an increasing sequence of integers $\left(n_{i}\right)_{i \geqslant 2}$ such that $\beta\left(x_{n_{i+1}}\right)<\beta\left(x_{n_{i}}\right)$ for all $i \geqslant 2$: a contradiction, since $\beta\left(x_{n_{i}}\right) \in \frac{1}{\omega(x)!} \mathbb{N}$. Therefore we had $\kappa(x) \leqslant 1$ and the proof of $\mathbf{I} .8$ is thus complete.

II Resolution of the case $\kappa(x)=3$.

We will solve this case by a sequence of non-permissible blowing ups.
II. 1 Notations We are interested in the case where for a suitable r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ with $\operatorname{div}\left(u_{1}\right) \subseteq E \subseteq \operatorname{div}\left(u_{1} u_{2}\right), 1+\omega(x) \neq 0 \bmod (p)$ and $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ minimal:

$$
f:=H(x) \sum_{0 \leqslant i \leqslant 1+\omega(x)} u_{3}^{1+\omega(x)-i} \phi_{i}, \phi_{i} \in k\left[\left[u_{1}, u_{2}\right]\right], 1 \leqslant i \leqslant 1+\omega(x), \phi_{0} \in \widehat{S}, \phi_{0} \text { invertible. }
$$

Let us note that we may have $\epsilon(x)=1+\omega(x)$ or $\epsilon(x)=\omega(x)$. We do not assume that u_{1}, u_{2}, u_{3} are in S : we may take them in \widehat{S}. We will always assume that

$$
u_{i} \times \text { invertible } \in S \text { if } \operatorname{div}\left(u_{i}\right) \subseteq E
$$

We choose $v \equiv u_{3} \bmod \left(u_{1}, u_{2}\right), v \in k\left[\left[u_{1}, u_{2}, u_{3}\right]\right]$ such that for all $s=\left(s_{1}, s_{2}\right)$ vertex of $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; v\right)$
$\operatorname{in}_{s}\left(\frac{\partial H(x)^{-1} f}{\partial u_{3}}\right)=\bar{\phi}_{0} v^{\omega(x)}$ or is not a $\omega(x)^{\mathrm{th}}-$ power $\times \bar{\phi}_{0}$, or $H(x)^{-1} g^{p}=u_{1}^{(1+\omega(x)) s_{1}} u_{2}^{(1+\omega(x)) s_{2}}$.
This can be made this way: let s the smallest vertex for the order (||,lex) where (1) fails. Then $\operatorname{in}_{s}\left(\frac{\partial H(x)^{-1} f}{\partial u_{3}}\right)=\bar{\phi}_{0}\left(u_{3}+\lambda u_{1}^{s_{1}} u_{2}^{s_{2}}\right)^{\omega(x)}$, with $\lambda \neq 0 \lambda \in k(x)$ and $H(x)^{-1} g^{p}=u_{1}^{a} u_{2}^{b}$ with $s=$ $\left(s_{1}, s_{2}\right) \notin\left(\frac{a}{1+\omega(x)}, \frac{b}{1+\omega(x)}\right)+\mathbb{Q}_{+}^{2}$. We take $v_{1}=u_{3}+\lambda u_{1}^{s_{1}} u_{2}^{s_{2}}$. This translation on u_{3} does not modify $\operatorname{in}_{s^{\prime}}\left(H(x)^{-1} f\right)$ and $\operatorname{in}_{s^{\prime}}\left(\frac{\partial H(x)^{-1} f}{\partial u_{3}}\right)=\operatorname{in}_{s^{\prime}}\left(\frac{\partial H(x)^{-1} f}{\partial v}\right)$ for $s^{\prime} \neq s$ vertex of $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$. Either s is dissolved, or we get (1) for s. The polyhedra $\Delta\left(h ; u_{1}, u_{2}, v_{1} ; X\right)$ may be not minimal, if not, we make a translation over X, we get a new variable

$$
X_{1}=X+\sum_{1 \leqslant i \leqslant \omega(x),\left(s_{1}^{\prime}, s_{2}^{\prime}\right)>s} \lambda_{i s_{1}^{\prime}, i s_{2}^{\prime}, 1+\omega(x)-i} v^{1+\omega(x)-i} u_{1}^{i s_{1}^{\prime}} u_{2}^{i s_{2}^{\prime}}, \lambda_{i s_{1}^{\prime}, i s_{2}^{\prime}, 1+\omega(x)-i} \in k(x),
$$

and f becomes f_{1}. We have the inclusions $\Delta\left(H(x)^{-1}\left(f_{1}, g^{p}\right) ; u_{1}, u_{2} ; v_{1}\right) \subseteq \Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; v_{1}\right)$ $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; u_{3}\right)$, this translation will not spoil the $\operatorname{in}_{s^{\prime}}\left(H(x)^{-1} f\right)$ for $s^{\prime}<s$, may add a p-power to $\operatorname{in}_{s}\left(H(x)^{-1} f\right)$, so will not spoil $\operatorname{in}_{s}\left(\frac{\partial H(x)^{-1} f}{\partial v}\right)=a V^{\omega(x)}$. Either we get (1) for $\left(u_{1}, u_{2} ; v_{1}\right)$, or we go on with a new vertex strictly greater than s. We will get v and X as limits in \widehat{S} and in $\widehat{S}[X]$. Note that, in an extreme case, it may happen that there is a r.s.p. such that $f=H(x) \gamma v^{1+\omega(x)}$, which implies condition (1). Now, we mimic chapter 2 and we set
$A_{j}=\inf \left\{\frac{\operatorname{ord}_{u_{j}}\left(H(x)^{-1} g^{p}\right)}{1+\omega(x)}, \frac{\operatorname{ord}_{u_{j}}\left(\phi_{i}\right)}{i}, 1 \leqslant i \leqslant 1+\omega(x)\right\}, j=2,3$,
$B=\inf \left\{\frac{\operatorname{ord}_{\left(u_{1}, u_{2}\right)}\left(H(x)^{-1} g^{p}\right)}{1+\omega(x)}, \frac{\operatorname{ord}_{\left(u_{1}, u_{2}\right)}\left(\phi_{i}\right)}{i}, 1 \leqslant i \leqslant 1+\omega(x)\right\}$,
$C:=B-\sum_{j, \operatorname{div}\left(u_{j}\right) \subseteq E} A_{j}$,
$\beta:=\inf \left\{\frac{\operatorname{ord}_{u_{2}}\left(H(x)^{-1} g^{p} \bmod u_{1}^{(1+\omega(x)) A_{1}}\right)}{1+\omega(x)}, \frac{\operatorname{ord}_{u_{2}}\left(\phi_{i} \bmod u_{1}^{i A_{1}}\right)}{i}, 1 \leqslant i \leqslant 1+\omega(x)\right\}$,
with the convention $\operatorname{ord}_{u_{2}}\left(\phi_{i} \bmod u_{1}^{i A_{1}}\right)=+\infty$ if $\frac{\operatorname{ord}_{u_{1}}\left(\phi_{i}\right)}{i}>A_{1}, \operatorname{ord}_{u_{2}}\left(H(x)^{-1} g^{p} \bmod u_{1}^{(1+\omega(x)) A_{1}}\right)=$ $+\infty$ if $\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right)>(1+\omega(x)) A_{1}$. Obviously, C, A_{j}, B and β depend on $\left(u_{1}, u_{2}, u_{3}=v\right)$ verifying (1), if there is no possible confusion, we write C or $C(x)$ instead $C\left(u_{1}, u_{2}, v\right), A_{j}$ or $A_{j}(x)$ instead of $A_{j}\left(u_{1}, u_{2}, v\right), j=1,2$, etc. Let

$$
\gamma\left(u_{1}, u_{2}, v\right)=1+\lfloor C\rfloor \text { if } E=\operatorname{div}\left(u_{1} u_{2}\right)
$$

$$
\begin{aligned}
& \gamma\left(u_{1}, u_{2}, v\right)=\sup (\lceil\beta\rceil, 1) \text { if } E=\operatorname{div}\left(u_{1}\right) . \\
& \text { We note } \gamma(x)=\gamma\left(u_{1}, u_{2}, u_{3}\right) \text { for short. }
\end{aligned}
$$

II.1.1 Definition $W e$ say that $\kappa(x)=3$ if, for a suitable r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ with div $\left(u_{1}\right) \subseteq$ $E \subseteq \operatorname{div}\left(u_{1} u_{2}\right), 1+\omega(x) \neq 0 \bmod (p)$ and $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ minimal:

$$
f:=H(x) \sum_{0 \leqslant i \leqslant 1+\omega(x)} u_{3}^{1+\omega(x)-i} \phi_{i}, \phi_{i} \in k\left[\left[u_{1}, u_{2}\right]\right], 1 \leqslant i \leqslant 1+\omega(x), \phi_{0} \in \widehat{S}, \phi_{0} \text { invertible. }
$$

II.1.2 Proposition. If $\kappa(x)=3$ and $\epsilon(x)=1+\omega(x)$, for any r.s.p. ($X ; u_{1}, u_{2}, v$) with II.1(1) above, then either $V \in \operatorname{IDir}(x)$ or $\tau^{\prime}(x) \geqslant 2$.

If $\tau^{\prime}(x) \geqslant 2$ and $A_{1}>0$, then $V \in \operatorname{IDir}(x)$.
If $\tau^{\prime}(x) \geqslant 2$ and $A_{1}=0$, then, we can change v in $w=v-\left(a u_{1}+b u_{2}\right), a, b \in k(x)$ such that we have II.1(1) for $\left(X ; u_{1}, u_{2}, w\right)$ and $W \in \operatorname{IDir}(x)$. If $\operatorname{ord}_{x}\left(H(x)^{-1} g^{p}\right)=\epsilon(x)$, then $W \in W(x)$ where

$$
W(x)=\operatorname{VDir}(x)+<\left\{U_{i} \mid u_{i} \text { divides } H(x)^{-1} g^{p}\right\}>.
$$

Proof. In that case the ideal of the directrix of $H(x)^{-1} \frac{\partial f}{\partial v}$ is contained in $\operatorname{IDir}(x)$. It contains V if $\operatorname{in}_{x}\left(\frac{\partial H(x)^{-1} f}{\partial v}\right)=\bar{\phi}_{0} V^{\omega(x)}, \gamma$ invertible. If $\operatorname{in}_{x}\left(\frac{\partial H(x)^{-1} f}{\partial v}\right) \neq \bar{\phi}_{0} V^{\omega(x)}$, then $V \in \operatorname{IDir}(x) \bmod \left(U_{1}, U_{2}\right)$, so there exists $w=v-\left(a u_{1}+b u_{2}\right), a, b \in k(x)$ such that $W \in \operatorname{IDir}(x)$. The reader verifies that $\operatorname{in}_{x}\left(\frac{\partial H(x)^{-1} f}{\partial v}\right)=\operatorname{in}_{x}\left(\frac{\partial H(x)^{-1} f}{\partial w}\right)$ and that these initial forms are not $=\bar{\phi}_{0} W^{\omega(x)}$ (else $\mathbf{I I}(1)$ is not true for $\left.\left(X ; u_{1}, u_{2}, v\right)\right): \tau(x) \geqslant 2$. If $\tau^{\prime}(x)=3, \kappa(x)=0$: from now on $\tau(x)=\tau^{\prime}(x)=2$. If $A_{1}>0$ then, $\operatorname{IDir}(x)=V \bmod \left(U_{1}\right)$, if $\tau(x)=2$, then $\operatorname{IDir}(x)=\left(V, U_{1}\right)$.

From now on $A_{1}=0$ and, by symetry, $A_{2}=0$ if $\operatorname{div}\left(u_{2}\right) \subseteq E$. Either $\operatorname{ord}_{x}\left(h(x)^{-1} g^{p}\right)=\epsilon(x)$, then $\left(W, U_{i}\right) \subseteq \operatorname{IDir}(x)+\left(U_{i}\right)$, where u_{i} divides $h(x)^{-1} g^{p}$. As $\tau^{\prime}(x)=2, h(x)^{-1} g^{p}=\gamma u_{i}^{\epsilon(x)}$, as $\operatorname{div}\left(u_{i}\right) \subseteq E$, we make $i=1$. Then if $b \neq 0, s=(0,1)$ is a vertex of $\Delta\left(\frac{\partial H(x)^{-1} f}{\partial v} ; u_{1}, u_{2} ; v\right)$, as $\operatorname{in}_{s}\left(\frac{\partial H(x)^{-1} f}{\partial v}\right)$ is not proportional to an $\omega(x)$-power, $\left(W, U_{2}\right) \subseteq \operatorname{IDir}(x) \bmod U_{1}, \tau^{\prime}(x)=3$: contradiction. So $b=0$, then $V \in \operatorname{IDir}(x)+\left(U_{1}\right)=: W(x)$. Or $\operatorname{ord}_{x}\left(H(x)^{-1} g^{p}\right)>\epsilon(x)$, then we make a translation over X, so that $Y=X-\theta$ and $\Delta\left(h ; u_{1}, u_{2} ; w\right)$ is minimal. Let us denote:

$$
\begin{equation*}
\operatorname{IDir}\left(\operatorname{in}_{x}\left(\frac{\partial H(x)^{-1} f}{\partial w}\right)\right)=\left(W, c U_{1}+d U_{2}\right), c, d \in k(x), \text { not both } 0 . \tag{1}
\end{equation*}
$$

The reader sees that, if $a b \neq 0$, then the polyhedra $\Delta\left(\frac{\partial H(x)^{-1} f}{\partial w} ; u_{1}, u_{2} ; w\right)$ has two non solvable vertices $(1,0)$ and $(0,1)$, so we have $\mathbf{I I . 1 (1) ~ f o r ~}\left(Y ; u_{1}, u_{2}, w\right)$ and $c d \neq 0$. If $a=0, b \neq 0$, the polyhedra $\Delta\left(\frac{\partial H(x)^{-1} f}{\partial w} ; u_{1}, u_{2} ; w\right)$ has $(0,1)$ for unique vertex of its initial side, this vertex is not solvable, to get (1), we have to modify Y and w, but we will not modify in $x_{x}\left(\frac{\partial H(x)^{-1} f}{\partial w}\right)$ nor $\mathrm{in}_{x}(w)$. So we get the assertion.
II.1.3 Definition Let $x \in \Sigma_{p}$ with $\kappa(x)=3$, we say that x is good, if there exists a sequence of permissible blowings-up, $X=X_{0} \leftarrow X_{1} \leftarrow \ldots X_{n}$ such that $\Omega(x(n))<\Omega(x)$ or $(\Omega(x)=\Omega(x(n))$ and $\kappa(x(n))=0,1,2)$.

Indeed, if another value of $\kappa(x)$ is $<3, x$ is good.
II.1.4 Proposition Let a suitable r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of x with $\operatorname{div}\left(u_{1}\right) \subseteq E \subseteq \operatorname{div}\left(u_{1} u_{2}\right)$ and $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ minimal: $f:=H(x)\left(u_{1} u_{2} \phi+\gamma u_{3}^{\omega(x)+1}\right), \gamma$ invertible and $\operatorname{ord}_{x}\left(u_{1} u_{2} \phi\right)=\omega(x)$. Then $\kappa(x)=0$.

Proof. Indeed, $\omega(x)=\operatorname{ord}_{x}\left(u_{1} u_{2} \phi\right) \geqslant 2$. Blow up x, the only possible very near point has for parameters $X^{\prime}=\frac{X}{u_{3}}, u_{1}^{\prime}=\frac{u_{1}}{u_{3}}, u_{3}^{\prime}=\frac{u_{3}}{u_{3}}, u_{3}^{\prime}=u_{3}$. As we are at the origin of a chart, there is no translation to do, $f^{\prime}=H\left(x^{\prime}\right)\left(u_{1}^{\prime} u_{2}^{\prime} \phi^{\prime}+\gamma u_{3}^{\prime}\right): \omega\left(x^{\prime}\right) \leqslant 1<\omega(x)$.
II. 2 Theorem Let $x \in \Sigma_{p}$ with $\kappa(x)=3$ and $\left(X, u_{1}, u_{2}, v\right)$ a r.s.p. veryfying II.1(1),
(i) if $C(x)=0, \epsilon(x)=\omega(x)$ then $\kappa(x) \leqslant 2$,
(ii) if $C(x)=0, A_{1}(x)<1, A_{2}(x)<1$, then $\kappa(x) \leqslant 2$.
II.2.1 Proof of (i): case where $\epsilon(x)=\omega(x)$. Either $A_{1} A_{2}>0$, then by II.1.4, $\kappa(x)=0$. Or (with an eventual permutation on u_{1}, u_{2}) $A_{2}=0: H(x)^{-1} f=\sum_{0 \leqslant i \leqslant 1+\omega(x)} v^{1+\omega(x)-i} \phi_{i}$ with for some $i=i_{0}, 1 \leqslant i_{0} \leqslant 1+\omega(x), \phi_{i_{0}}=\gamma u_{1}^{i_{0} A_{1}}, \gamma$ invertible, $A_{1}<1$: $\operatorname{ord}_{x}\left(u_{1}^{i_{0} A_{1}} u_{3}^{1+\omega(x)-i_{0}}\right) \leqslant \omega(x)$, indeed, there is equality. If $1 \leqslant i_{0}<1+\omega(x)$ or $\operatorname{div}\left(u_{1}\right) \nsubseteq E$, then $\kappa(x) \leqslant 2$. If $i_{0}=1+\omega(x)$, then $A_{1}=1-\frac{1}{1+\omega(x)}, \operatorname{ord}_{u_{1}}\left(\phi_{i}\right) \geqslant i A_{1}=\frac{i \omega(x)}{1+\omega(x)}, 1 \leqslant i<1+\omega(x)$, so $\operatorname{ord}_{u_{1}}\left(\phi_{i}\right) \geqslant i$:

$$
f=H(x)\left(\phi_{0} v^{1+\omega(x)}+\lambda u_{1}^{\omega(x)}+u_{1} \psi\right), \psi \in\left(u_{1}, v\right)^{\omega(x)}, \lambda \text { invertible or } H(x)^{-1} g^{p}=\gamma u_{1}^{\omega(x)}
$$

As $\omega^{\prime}(x)=2, H(x)^{-1} g^{p} \neq \gamma u_{1}^{\omega(x)}$: we have λ invertible. Let $Y=\mathrm{V}\left(X, v, u_{1}\right),\left(u_{1}, v\right)^{\omega(x)} \supset$ $J(f, E)=\left(v^{\omega(x)}\right) \bmod \left(u_{1}\right)$. When $a(1)+\omega(x) \geqslant p, Y=\operatorname{div}\left(u_{1}\right) \cap\{\omega \geqslant \omega(x)\}: Y$ is not a formal curve, Y is permissible. We blow up Y, the point x^{\prime} of parameters $X^{\prime}=\frac{X}{v}, u_{1}^{\prime}=\frac{u_{1}}{v}, u_{2}, v$ is the only point above which may be very near to x, an easy computation show that $1 \geqslant \omega\left(x^{\prime}\right)$, we are done except if $\omega(x)=1$. In this last case, we get $H\left(x^{\prime}\right)^{-1} f^{\prime}=\phi_{0} v^{\prime}+\lambda u_{1}+v^{\prime} \psi^{\prime}, \lambda$ invertible, $H\left(x^{\prime}\right)=$ $u_{1}^{a(1)} u_{2}^{a(2)} v^{1+a(1)-p}$. Then by chapter 2 II.5(i), the $\mathrm{cl}_{a_{1}+a_{2}+1+a(1)+1-p}\left(D\left(u_{1}^{a(1)} u_{2}^{a(2)} v^{1+a(1)-p}(v+\right.\right.$ $\left.\left.\lambda u_{1}\right)\right)$), $D \in \mathcal{D}\left(E^{\prime}\right)$ are not all proportional: U_{1} and V are in the directrix of x^{\prime}. The curve of ideal $\left(X^{\prime}, v^{\prime}, u_{1}\right)$ is permissible, it is the preimage of x, so it is not a formal curve. We blow up this curve: there is no very near point above. If $a(1)+\omega(x)<p$, we claim $\kappa(x) \leqslant 1$, let us first state:
II.2.1.1 Lemma If $H(x)^{-1} f=\phi_{0} u_{3}^{a^{\prime}} u_{2}^{b^{\prime}}+u_{1} \phi$ with $\operatorname{ord}_{x}\left(u_{1} \phi\right)=\omega(x)$, ϕ_{0} invertible, and $a^{\prime}, b^{\prime} \leqslant$ $\omega(x)-1$, then $\kappa(x)=0$.

Proof. Blow up x, any x^{\prime} very near to x is on the strict transform of $\operatorname{div}\left(u_{1}\right), x^{\prime}$ is at the origin of a chart and the pair of exponents $\left(a^{\prime}, b^{\prime}\right)$ becomes $\left(a^{\prime}+b^{\prime}-\omega(x), b^{\prime}\right)$ or $\left(a^{\prime}, a^{\prime}+b^{\prime}-\omega(x)\right)$, an induction on $a^{\prime}+b^{\prime}$ gives the result.
II.2.1.2 Lemma If $a(1)+\omega(x)<p, 1+\omega(x) \neq 0 \bmod (p), \Delta\left(h ; u_{1}, u_{2}, v ; X\right)$ minimal,

$$
H(x)^{-1} f=\phi_{0} v^{1+\omega(x)} u_{2}^{i}+\lambda u_{1}^{\omega(x)}+u_{1} \psi u_{2}^{i}, i \leqslant \omega(x), u_{1} \psi \in\left(u_{1}, v\right)^{1+\omega(x)}
$$

ϕ_{0} invertible, $\operatorname{div}\left(u_{1}\right) \subseteq E$ and $E=\operatorname{div}\left(u_{1} u_{2}\right)$ when $i>0$, then $\kappa(x) \leqslant 1$.
Proof. By induction on $a(2)$. When $i=\omega(x)$, we blow up $\mathrm{V}\left(X, u_{1}, u_{2}\right)=\mathrm{V}\left(u_{1}, u_{2}\right) \cap \omega \geqslant \omega(x)$ which is permissible, the point of parameters $\left(X^{\prime}=\frac{X}{u_{2}}, u_{1}^{\prime}=\frac{u_{1}}{u_{2}}, u_{2}, v\right)$ is the only point which may be very near to x,

$$
H\left(x^{\prime}\right)^{-1} f^{\prime}=\phi_{0} v^{1+\omega(x)} u_{2}^{i-\omega(x)}+\lambda u_{1}^{\prime \omega(x)}+u_{1}^{\prime} \psi u_{2}^{i-\omega(x)}
$$

$H\left(x^{\prime}\right)=u_{1}^{\prime a(1)} u_{2}^{a(2)+a(1)+\omega(x)-p}, a(2)+a(1)+\omega(x)-p<a(2)$: we get the result by induction on $a(2)$.

When $i<\omega(x)$, we blow up x. Every point very near to x is on the strict transform of $\operatorname{div}\left(u_{1}\right)$. In the chart of origin $\left(X^{\prime}=\frac{X}{u_{2}}, u_{1}^{\prime}=\frac{u_{1}}{u_{2}}, u_{2}, v^{\prime}=\frac{v}{u_{2}}\right)$, we get $H\left(x^{\prime}\right)^{-1} f^{\prime}=\phi_{0}{v^{1+\omega}}^{1+(x)} u_{2}^{i+1}+$ $\lambda u_{1}^{\prime \omega(x)}+u_{1}^{\prime} \psi u_{2}^{i-\omega(x)}, H\left(x^{\prime}\right)=u_{1}^{\prime a(1)} u_{2}^{a(2)+a(1)+\omega(x)-p}$.

When $i \leqslant \omega(x)-2$, the origin is the only point possibly very near to $x, a(2)+a(1)+\omega(x)-p<$ $a(2)$: we get the result by induction on $a(2)$.

When $i=\omega(x)-1$, at the origin we are in the case above, so $\kappa\left(x^{\prime}\right) \leqslant 1$, if $v^{\prime}\left(x^{\prime}\right) \neq 0$, let us denote $Y^{\prime}=\mathrm{V}\left(X^{\prime}, u_{1}^{\prime}, u_{2}\right)$, then $H\left(x^{\prime}\right)^{-1} \frac{\partial f^{\prime}}{\partial v^{\prime}}=\gamma^{\prime} u_{2}^{\omega(x)} \bmod \left(u_{1}^{\prime} u_{2}\right)\left(\lambda=\bar{\lambda} \bmod \left(u_{2}\right)\right.$ in $\left.k\left(x^{\prime}\right)\left[\left[u_{1}, u_{2}, u_{3}\right]\right]\right), \gamma^{\prime}$ invertible, as $a(1)+\omega(x) \neq 0 \bmod (p), H\left(x^{\prime}\right)^{-1} \frac{\partial f^{\prime}}{\partial v^{\prime}}=\gamma^{\prime \prime} u_{1}^{\prime \omega(x)} \bmod \left(u_{2}\right)$, so $\operatorname{IDir}\left(J\left(f^{\prime}, E^{\prime}, Y^{\prime}\right)\right)=\left(U_{1}^{\prime}, U_{2}^{\prime}\right), J\left(f^{\prime}, E^{\prime}, Y^{\prime}\right) \subseteq\left(u_{1}^{\prime}, u_{2}\right)^{\omega(x)}$. If we blow up Y^{\prime}, there is no very near point.

The last point we have to study is ($\left.X^{\prime}=\frac{X}{v}, u_{1}^{\prime}=\frac{u_{1}}{v}, u_{2}^{\prime}=\frac{u_{2}}{v}, v\right)$. We get $H\left(x^{\prime}\right)^{-1} f^{\prime}=$ $\phi_{0}{v^{\prime 1+i}}_{u_{2}^{i}}+\lambda u_{1}^{\prime \omega(x)}+u_{1}^{\prime} \psi u_{2}^{i-\omega(x)} v^{\prime+i}$. If $i \leqslant \omega(x)-2, \kappa\left(x^{\prime}\right)=0$ by II.2.1.1, if $i=\omega(x)-1$, we blow up $\mathrm{V}\left(X^{\prime}, u_{1}^{\prime}, v\right)$ and the reader sees that there is no point very near to $x^{\prime}: \kappa\left(x^{\prime}\right)=1$.
II.2.2 Proof of II.2 (ii). By II.2.1, we have just to look at the case where $\epsilon(x)=1+\omega(x)$. In that case or there exists $i_{0}, 1 \leqslant i_{0} \leqslant 1+\omega(x), \phi_{i_{0}}=u_{1}^{i_{0} A_{1}} u_{2}^{i_{0} A_{2}} \times$ invertible and, $u_{1}^{i A_{1}} u_{2}^{i A_{2}}$ divides ϕ_{i} for all $i, 1 \leqslant i \leqslant 1+\omega(x)\left(\right.$ as $A_{i}<1, i=1,2$, we have $2 \leqslant i_{0}$) or $H(x)^{-1} g^{p}=u_{1}^{(1+\omega(x)) A_{1}} u_{2}^{(1+\omega(x)) A_{2}}$ and $u_{1}^{i A_{1}} u_{2}^{i A_{2}}$ divides ϕ_{i} for all $i, 1 \leqslant i \leqslant 1+\omega(x)$. Condition (1) in I. 1 and $\epsilon(x)=1+\omega(x)$ imply that V is in the ideal of the directrix of x. If we blow-up x, the reader will see that only the origins of the two possible charts, i.e. the points of parameters $\frac{X}{u_{1}}, u_{1}, \frac{u_{2}}{u_{1}}, \frac{v}{u_{1}}$ or $\frac{X}{u_{2}}, \frac{u_{1}}{u_{2}}, u_{2}, \frac{v}{u_{2}}$ may be very near to x and that the couple $\left(A_{1}, A_{2}\right)$ becomes $\left(A_{1}+A_{2}-1, A_{2}\right)$ or $\left(A_{1}, A_{1}+A_{2}-1\right)$. An induction on $A_{1}+A_{2}$ and (i) give the result.
II. 3 Theorem Let $x \in \Sigma_{p}$ with $\kappa(x)=3,\left(X, u_{1}, u_{2}, v\right)$ a r.s.p. veryfying II.1(1) and $u_{1} \in S$, $u_{2} \in S$: if we blow-up $\left(u_{1}, u_{2}\right)$ and if x^{\prime} is a point near to x with $\Omega\left(x^{\prime}\right) \geqslant \Omega(x)$, then $\Omega\left(x^{\prime}\right)=\Omega(x)$, $\kappa\left(x^{\prime}\right)=3$ and there exists a regular system of parameters (Z, v_{1}, v_{2}, w) of x^{\prime} verifying (1) such that: (i) $\gamma\left(v_{1}, v_{2}, w\right) \leqslant \gamma\left(u_{1}, u_{2}, v\right)$,
(ii) if x^{\prime} is in the chart with origin $\left(X, u_{1}, u_{2}^{\prime}=\frac{u_{2}}{u_{1}}, v\right.$) (so-called first chart), then $A_{1}\left(x^{\prime}\right)=B$, and, if $m(x)=1, \beta\left(v_{1}, v_{2}, w\right) \leqslant A_{2}\left(u_{1}, u_{2}, u_{3}\right)+C\left(u_{1}, u_{2}, u_{3}\right) \leqslant \beta\left(u_{1}, u_{2}, u_{3}\right)$, if x^{\prime} is not rational over x and $\beta\left(u_{1}, u_{2}, u_{3}\right) \geqslant 1, \beta\left(v_{1}, v_{2}, w\right)<\beta\left(u_{1}, u_{2}, u_{3}\right)$ or x^{\prime} is good, if $u_{2}^{\prime}\left(x^{\prime}\right)=0, C\left(x^{\prime}\right) \leqslant C(x)$,
(iii) if x^{\prime} is the origin of the second chart, $\left(x^{\prime}=\left(X, u_{1}^{\prime}=\frac{u_{1}}{u_{2}}, u_{2}, v\right)\right.$), then $C\left(x^{\prime}\right) \leqslant C(x)$, furthermore, $C\left(x^{\prime}\right) \leqslant \frac{\beta(x)}{2}$ and, if there is equality, $\Delta\left(H(x)^{-1} f+H(x)^{-1} g^{p} ; u_{1}, u_{2} ; v\right)$ has only two vertices $\left(A_{1}(x), \beta(x)\right)$ and $\left(A_{1}(x)+\frac{\beta(x)}{2}, 0\right)$.
(iv) if $m(x)=m\left(x^{\prime}\right)=1$ and $\beta\left(u_{1}, u_{2}, v\right)>0$, then $\beta\left(v_{1}, v_{2}, w\right) \leqslant \beta\left(u_{1}, u_{2}, v\right), A_{1}(x)<A_{1}\left(x^{\prime}\right)$,
(v) if $\gamma(x) \geqslant 2$ and $m(x)=1, m\left(x^{\prime}\right)=2$, then $\gamma\left(x^{\prime}\right)<\gamma(x)$,
(vi) if $\beta(x)<1$ and $m(x)=1, m\left(x^{\prime}\right)=2$, then $C\left(x^{\prime}\right)<\frac{1}{2}$,
(vii) if $0<C(x)<\frac{1}{2}$ and $m(x)=2, m\left(x^{\prime}\right)=1$, then $\beta\left(x^{\prime}\right)<1$.
II.3.1 Notations Let $f:=H(x) \sum_{0 \leqslant i \leqslant 1+\omega(x)} u_{3}^{1+\omega(x)-i} u_{1}^{b_{i}} u_{2}^{c_{i}} f_{i}, f_{i} \in k\left[\left[u_{1}, u_{2}\right]\right], 1 \leqslant i \leqslant 1+\omega(x)$, $f_{0} \in \widehat{S}, f_{0}$ invertible, $a_{0}=b_{0}=0, u_{j}$ does not divide $f_{i} \in k\left[\left[u_{1}, u_{2}\right]\right], j=1,2$ and F_{i} is the initial form of $f_{i}, d_{i}=\operatorname{ord}_{\left(u_{1}, u_{2}\right)}\left(f_{i}\right)$ when $f_{i} \neq 0$.
Proof of (iii).

$$
f^{\prime}=f:=H\left(x^{\prime}\right)\left(\phi_{0} v^{1+\omega(x)}+\sum_{1 \leqslant i \leqslant 1+\omega(x)} v^{1+\omega(x)-i} u_{1}^{\prime b_{i}} u_{2}^{b_{i}+c_{i}+d_{i}}\left(F_{i}\left(u_{1}^{\prime}, 1\right)+u_{2} \psi_{i}\right)\right) .
$$

We are at the origin of a chart, there is no translation to do, etc. As ϕ_{0} is invertible and $1+\omega(x) \neq 0$ $\bmod (p)$, no translation can spoil the initial form of $H\left(x^{\prime}\right) \phi_{0} v^{1+\omega(x)}: \kappa\left(x^{\prime}\right)=3$. The transformations on the polyhedras are now well known, $\beta\left(x^{\prime}\right)=\beta(x)+A_{1}(x), A_{1}\left(x^{\prime}\right)=A_{1}(x), A_{2}\left(x^{\prime}\right)=B(x)$, so

$$
C\left(x^{\prime}\right) \leqslant \alpha_{2}(x)-A_{1}(x) \leqslant C(x)+A_{1}(x)-A_{1}(x)=C(x),
$$

$$
C\left(x^{\prime}\right) \leqslant \beta(x)+A_{1}(x)-B(x)=\beta(x)-\left(B(x)-A_{1}(x)\right), \text { and } C\left(x^{\prime}\right) \leqslant B(x)-A_{1}(x)
$$

So if $B(x)-A_{1}(x) \neq \frac{\beta(x)}{2}$, we get $C\left(x^{\prime}\right)<\frac{\beta(x)}{2}$. In every case, $C\left(x^{\prime}\right) \leqslant \frac{\beta(x)}{2}$. If we have $C\left(x^{\prime}\right)=\frac{\beta(x)}{2}$, then, $B(x)-A_{1}(x)=\frac{\beta(x)}{2}$, as $C\left(x^{\prime}\right) \leqslant \alpha_{2}(x)-A_{1}(x) \leqslant B(x)-A_{1}(x)$, then $\alpha_{2}(x)=B(x)$, as $\alpha_{2}(x)+$ $\beta_{2}(x)=B(x)$, we have $\beta_{2}(x)=0$. So $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; v\right)$ two vertices $\left(A_{1}(x), \beta(x)\right)$ (smallest abscissa) and $\left(A_{1}(x)+\frac{\beta(x)}{2}, 0\right)$ (smallest ordinate) which give in $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f, g^{p}\right) ; u_{1}^{\prime}, u_{2} ; v\right)$ the two vertices $\left(A_{1}(x), \beta(x)+A_{1}(x)\right)$ (smallest abscissa), $\left(A_{1}(x)+\frac{\beta(x)}{2}, A_{1}(x)+\frac{\beta(x)}{2}\right)$ (smallest ordinate). If $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; v\right)$ had another vertex, it would be under the side of ends $\left(A_{1}(x), \beta(x)\right)$ and $\left(A_{1}(x)+\frac{\beta(x)}{2}, 0\right)$, it would give in $\Delta\left(H\left(x^{\prime}\right)^{-1} f+H\left(x^{\prime}\right)^{-1} g^{p} ; u_{1}^{\prime}, u_{2} ; v\right)$ a vertex $\left(x_{1}, x_{2}\right)$ under the side of ends $\left(A_{1}(x), \beta(x)+A_{1}(x)\right),\left(A_{1}(x)+\frac{\beta(x)}{2}, A_{1}(x)+\frac{\beta(x)}{2}\right)$ which have both $2 A_{1}(x)+\beta(x)$ for sum of coordinates: we would get $x_{1}+x_{2}<2 A_{1}(x)+\beta(x), C\left(x^{\prime}\right) \leqslant$ $x_{1}+x_{2}-A_{1}\left(x^{\prime}\right)-A_{2}\left(x^{\prime}\right)<\frac{\beta(x)}{2}$.
II.3.2 First chart The first chart has for origin the point of parameters ($X, u_{1}, u_{2}^{\prime}=\frac{u_{2}}{u_{1}}, v$).

$$
f^{\prime}=f:=H\left(x^{\prime}\right)\left(\phi_{0} v^{1+\omega(x)}+\sum_{1 \leqslant i \leqslant 1+\omega(x)} v^{1+\omega(x)-i} u_{1}^{b_{i}+c_{i}+d_{i}} u_{2}^{\prime c_{i}}\left(F_{i}\left(1, u_{2}^{\prime}\right)+u_{1} \psi_{i}\right)\right)
$$

Either there is some index i_{0} with $\frac{b_{i_{0}}+c_{i_{0}}+d_{i_{0}}}{i_{0}}=B=\inf \frac{b_{i}+c_{i}+d_{i}}{i}$ (case (a)) or $B=\frac{\operatorname{ord}_{u_{1}, u_{2}}\left(H\left(x^{\prime}\right)^{-1} g^{p}\right)}{p}$ (case (b)). When x^{\prime} is the origin of the chart, there is no translation to do, (i)(ii)(iii)(iv)(vi) are clear. When x^{\prime} is not the origin, $u_{2}^{\prime}\left(x^{\prime}\right) \neq 0$, we may have to do some translations on X, v to get (1) in x^{\prime} for the new parameters. In case (a), we take i_{0} minimal. In case (b), nothing happens to $g, \beta\left(x^{\prime}\right) \leqslant \frac{\operatorname{ord}_{u_{2}}\left(H\left(x^{\prime}\right)^{-1} g^{p}\right)}{p} \leqslant \beta(x)$. Furthermore, if $m\left(x^{\prime}\right)=1$, then $\beta\left(x^{\prime}\right)=0=C\left(x^{\prime}\right)$. As the chart we consider contains all the points x^{\prime} above x with $m\left(x^{\prime}\right)=1,(i)(i i)(i i i)(i v)(v i)$ are proven in case (b). In case (a) and not (b), let

$$
I_{0}:=\left\{i_{0} \left\lvert\, \frac{b_{i_{0}}+c_{i_{0}}+d_{i_{0}}}{i_{0}}=B=\inf _{i}\left\{\frac{b_{i}+c_{i}+d_{i}}{i}\right\}\right.\right\}
$$

for every $i_{0} \in I_{0}, 1+\omega(x)-i_{0}=0 \bmod (p)$, to get II.1(1) in x^{\prime}, the eventual translation on v will change v in $v^{\prime}=v+u_{1}^{a} \theta, a>B, \theta \in k\left(x^{\prime}\right)\left[\left[u_{1}^{\prime}, v_{2}\right]\right], v_{2} \in k(x)\left[u_{2}^{\prime}\right]$, this translation will not touch

$$
v^{1+\omega(x)-i_{0}} u_{1}^{b_{i_{0}}+c_{i_{0}}+d_{i_{0}}} F_{i_{0}}\left(1, u_{2}^{\prime}\right) u_{2}^{\prime c_{i_{0}}}
$$

for all i_{0}, the eventual translation on X^{\prime} will add a p-power. But $v^{1+\omega(x)-i_{0}} u_{1}^{b_{i_{0}}} u_{2}^{c_{i}} F_{i_{0}}$ defined the vertices $\left(x_{1}, x_{2}, x_{3}\right)$ of $\Delta\left(h ; u_{1}, u_{2}, v ; X\right)$ with $x_{1}+x_{2}+B x_{3}=B(1+\omega(x))+a(1)+a(2)$ and x_{3} minimal among them, $u_{1}^{a(1)} u_{2}^{a(2)} v^{1+\omega(x)-i_{0}} u_{1}^{b_{i_{0}}} u_{2}^{c_{i}} F_{i_{0}}$ is not a p-power, $A_{1}\left(x^{\prime}\right)=B(x)$, and, by chapter 1, II.5.3.2(iii), $\beta\left(x^{\prime}\right) \leqslant \frac{c_{i_{0}}+d_{i_{0}}}{i_{0}} \leqslant \beta(x)$ and, if x^{\prime} is not the origin,

$$
i_{0} \beta\left(x^{\prime}\right) \leqslant \operatorname{ord}_{x^{\prime}}\left(F_{i_{0}}\left(1, u_{2}^{\prime}\right)+p-\text { power }\right) \leqslant \frac{d_{i_{0}}}{d}+1 \leqslant \frac{C(x)}{d}+\frac{1}{i_{0}}
$$

where d is the degree of the residual extension. When $\beta(x)>1, i_{0} \beta(x)>i_{0}$ which implies $\frac{C(x)}{d} \leqslant \frac{i_{0} \beta(x)}{d}<i_{0} \beta(x)-1: \beta\left(x^{\prime}\right)<\beta(x)$. When $\beta(x)=1$, then $d_{i_{0}} \leqslant i_{0}$, if $d_{i_{0}}=i_{0}$, then, as $i_{0} \neq 0 \bmod (p), \operatorname{ord}_{x}\left(\frac{\partial F_{i_{0}}\left(u_{1}, u_{2}\right)}{\partial u_{2}}\right)=i_{0}-1, \operatorname{ord}_{x^{\prime}}\left(F_{i_{0}}\left(1, u_{2}^{\prime}\right)+p-\operatorname{power}\right) \leqslant \frac{d_{i_{0}}-1}{d}+1$, so $\beta\left(x^{\prime}\right)<1$ or $i_{0}=1$ and $i_{0}=1$ is the only index with $\frac{b_{i_{0}}+c_{i_{0}}+d_{i_{0}}}{i_{0}}=B$. In that last case, I claim that x^{\prime} is good: indeed $\omega(x)=0 \bmod (p)$,

$$
f^{\prime}=u_{1}^{\prime a(1)}\left(\phi_{0}^{\prime} v^{\omega(x)+1}+\phi_{1}^{\prime} v^{\omega(x)} u_{1}^{\prime A_{1}\left(x^{\prime}\right)} v_{2}+\sum_{2 \leqslant j \leqslant \omega(x)+1} v^{\omega(x)+1-j} u_{1}^{\prime a_{j}} \phi_{j}^{\prime}\right.
$$

$\phi_{0}^{\prime} \phi_{1}^{\prime}$ invertible, $\phi_{j}^{\prime} \in k\left(x^{\prime}\right)\left[\left[u_{1}^{\prime}, v_{2}\right]\right], 2 \leqslant j \leqslant \omega(x)+1$ and $a_{j}>j A_{1}\left(x^{\prime}\right)$. Then, if $A_{1}\left(x^{\prime}\right)=0, f^{\prime}=$ ${u_{1}^{\prime a(1)}}^{\omega(x)} w \bmod {u_{1}^{\prime a(1)+1}}^{\omega(}$, where $w=\phi_{0}^{\prime} v+\phi_{1}^{\prime} v_{2}: \kappa\left(x^{\prime}\right) \leqslant 2$, if $A_{1}\left(x^{\prime}\right) \geqslant 1, \mathrm{~V}\left(X, v, u_{1}\right)=\operatorname{div}\left(u_{1}\right) \cap$ $\{\omega>0\}$, we "blow up $\mathrm{V}\left(X, v, u_{1}\right) A_{1}\left(x^{\prime}\right)$ times", the point y of parameters $\left(\frac{X}{u_{1}^{A_{1}\left(x^{\prime}\right)}}, u_{1}, v_{2}, \frac{v}{u_{1}^{A_{1}\left(x^{\prime}\right)}}\right)$ is the only possible very near point and $u_{1}^{\prime a(1)} v^{\omega(x)} w \bmod u_{1}^{\prime}$ is the strict transform of $f^{\prime}: \kappa(y) \leqslant 2$, in every case, x^{\prime} is good.

If for some $i_{0} \in I_{0}, 1+\omega(x)-i_{0} \neq 0 \bmod (p)$, then an eventual translation on v^{\prime} will spoil

$$
\left.f_{1}^{\prime}:=\sum_{0 \leqslant i \leqslant \omega(x), b_{i}+c_{i}+d_{i}=B(x)}(1+\omega(x)-i) v^{\prime \omega(x)-i} u_{1}^{i A_{1}(x)} F_{i}\left(1, u_{2}^{\prime}\right)\right)
$$

which is the initial part of $H\left(x^{\prime}\right)^{-1} \frac{\partial f^{\prime}}{\partial v^{\prime}}$ with respect to the valuation ν which defines $A_{1}\left(x^{\prime}\right)$, i.e. $\nu\left(v^{\prime a} u_{1}^{b} u_{2}^{\prime c}\right)=a+A_{1}\left(x^{\prime}\right) b$. Then by the usual transformation laws on the Newton polyhedron (see I.8.3.6), $\beta\left(x^{\prime}\right) \leqslant \beta\left(\Delta\left(f_{1}^{\prime} ; u_{1}, u_{2}^{\prime}, v^{\prime}\right)\right) \leqslant \frac{1}{p}+\frac{C_{f_{1}^{\prime}}}{d}$, where d is the degree of the extension of the residual fields of x and x^{\prime}, and, if $B \notin \mathbb{N}, \beta\left(x^{\prime}\right) \leqslant \frac{C_{f_{1}^{\prime}}}{d}$. Furthermore, if x^{\prime} is not rational over x, $\beta\left(\Delta\left(f_{1}^{\prime} ; u_{1}, u_{2}^{\prime}, v^{\prime}\right)\right)<\beta\left(\Delta\left(f_{1} ; u_{1}, u_{2}, v\right)\right) \leqslant \beta(x)$. The reader will use the definition of γ to see that this inequality proves (i)(ii) (iii)(vi) in case (a).
Proof of (vii). When $0<C(x)<\frac{1}{2}$, case (b), $\beta\left(x^{\prime}\right)=0$. When $0<C(x)<\frac{1}{2}$, case (a) and $f_{1}^{\prime} \neq 0$, by the computations above, $\beta\left(x^{\prime}\right) \leqslant \frac{1}{p}+C\left(f_{1}^{\prime}\right)<1$. When $0<C(x)<\frac{1}{2}$, case (a) and $f_{1}^{\prime}=0$, then, by the computations above, we have just to consider the case $1+\omega(x)-i_{0}=0 \bmod (p)$ and then, $\beta\left(x^{\prime}\right)<1$ except if $i_{0}=1$ or 2 . In those cases, $C(x)<\frac{1}{2}$ implies $\psi_{i_{0}}$ invertible, so $i_{0} \beta\left(x^{\prime}\right) \leqslant 1$, if $i_{0}=2, \beta\left(x^{\prime}\right) \leqslant \frac{1}{2}<1$. If $i_{0}=1$, the hypothesis $C(x) \notin \mathbb{N}$ implies that there exists another index $i_{1}, 2 \leqslant i_{1} \leqslant 1+\omega(x)$ with $b_{i_{1}}+c_{i_{1}}+d_{i_{1}}=i_{1} B(x), d_{i_{1}} \leqslant i_{1} C(x)<\frac{i_{1}}{2}$, as $f_{1}^{\prime}=0$, to get the condition II.1(i), the translation on v^{\prime} will be $w=v^{\prime}+u_{1}^{\prime a} \phi$ with $\phi \in \widehat{S^{\prime}}$ and $a \geqslant 1+B(x)$, so will not touch $v^{\prime 1+\omega(x)-i_{1}} u_{1}^{b_{i_{1}}+c_{i_{1}}+d_{i_{1}}} F_{i_{1}}\left(1, u_{2}^{\prime}\right) u^{\prime \prime c_{i_{1}}}$, so $i_{1} \beta\left(x^{\prime}\right) \leqslant 1+d_{i_{1}}<1+\frac{i_{1}}{2} \leqslant 2$, so $\beta\left(x^{\prime}\right)<1$.
II. 4 Theorem Let $x \in \Sigma_{p}$ with $\kappa(x)=3,\left(X, u_{1}, u_{2}, v\right)$ a r.s.p. veryfying II.1(1), $v \in \widehat{S}$ and possibly $u_{2} \in \widehat{S}$ if $\operatorname{div}\left(u_{2}\right) \nsubseteq E$. If $(\beta<1, m(x)=1)$ or $\left(\beta<1, m(x)=2, A_{1}(x)<1\right.$ and $\left.C(x)<\frac{1}{2}\right)$, then x is good.
Proof. When $m(x)=1$, then as $\beta<1$, we suppose $\epsilon(x)=1+\omega(x)$, else $\kappa(x)=2, x$ is good, furthermore $a(1)+1+\omega(x) \geqslant p$: by a sequence of blowing ups centered at (X, u_{1}, v), we reach the case where $A_{1}(x)<1$.

When $A_{1}(X)=0, \beta<1$ gives $\kappa(x) \leqslant 2$.
When $0<A_{1}(X)<1$ and $\omega(x)=\epsilon(x)$, then $f=H(x)\left(v^{1+\omega(x)} \phi_{0}+u_{1} \phi\right), \operatorname{ord}_{x}\left(u_{1} \phi\right)=\omega(x)$. If $\operatorname{in}_{x}\left(u_{1} \phi\right)=\lambda u_{1}^{\omega(x)}, \lambda \in k(x)$, then apply II.2.1.2 with $i=0: \kappa(x) \leqslant 1$. If $\operatorname{in}_{x}\left(u_{1} \phi\right) \neq \lambda u_{1}^{\omega(x)}$, then V or U_{2} appears in the expansion of $\operatorname{in}_{x}\left(u_{1} \phi\right): \kappa(x)=2$ except if $E=\operatorname{div}\left(u_{1} u_{2}\right)$ and $\operatorname{in}_{x}\left(u_{1} \phi\right)=$ $U_{1} F\left(U_{1}, U_{2}\right), F \notin k(x)\left[U_{1}\right]$: then $\omega(x) \geqslant 2$ and $\left(U_{1}, U_{2}\right)=\operatorname{IDir}(x)$. We blow up x, the only possible very near point is x^{\prime} of parameters $\left(X^{\prime}=\frac{X}{v}, u_{1}^{\prime}=\frac{u_{1}}{v}, u_{2}^{\prime}=\frac{u_{2}}{v}, v^{\prime}=v\right), f^{\prime}=H\left(x^{\prime}\right)\left(v^{\prime} \phi_{0}+u_{1}^{\prime} \phi^{\prime}\right)$: $\omega\left(x^{\prime}\right) \leqslant 1<\omega(x), \kappa(x)=0$.

When $0<A_{1}(X)<1$ and $1+\omega(x)=\epsilon(x)$, then we blow up x : by II.1.2 $V \in \operatorname{IDir}(x)$, for the first chart, we get $A_{1}\left(x^{\prime}\right)=B(x)-1 \leqslant \beta(x)+A_{1}(x)-1<A_{1}(x)$, for $\beta\left(x^{\prime}\right)$, when $m(x)=1$, the computations are exactly the same as in II.3(iv). When $m(x)=2$, if $C(x)=0$ by II.2(ii), $\kappa(x) \leqslant 1$, if $C(x) \neq 0$, we blow up x, the computations are exactly the same as in II.3(vii): $\beta\left(x^{\prime}\right)<1+\lfloor C(x)\rfloor=1, A_{1}\left(x^{\prime}\right)=B(x)-1 \leqslant A_{1}(x)+\beta(x)-1<A_{1}(x)$. For the second chart, $A_{1}\left(x^{\prime}\right)=A_{1}(x), \beta\left(x^{\prime}\right)=\beta(x)+A_{1}(x)-1<\beta(x), C\left(x^{\prime}\right) \leqslant \frac{\beta(x)}{2}<\frac{1}{2}$. An induction on $\left(A_{1}(x), \beta(x)\right)$ gives the result.
II. 5 Corollary Let $x \in \Sigma_{p}$ with $\kappa(x)=3,\left(X, u_{1}, u_{2}, v\right)$ a r.s.p. veryfying (1) and $m(x)=1$ and $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; v\right)$ has only two vertices $\left(A_{1}, 1\right)$ and $\left(A_{1}+\frac{1}{2}, 0\right)$, then x is good.

Proof. We make an induction on A_{1}.
II.5.1 If $A_{1} \geqslant 1$, then, $\mathrm{V}\left(X, v, u_{1}\right)=\operatorname{div}\left(u_{1}\right) \cap\{\omega \geqslant 1\}$: its an algebraic curve permissible of first kind. We blow up this curve, as $V \in W(x)$, there is at most one very near point x^{\prime} which has ($X^{\prime}=\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, u_{2}^{\prime}=\frac{u_{2}}{u_{1}}, v^{\prime}=\frac{v}{u_{1}}$) for parameters. Of course, we are at the origin of a chart, there is no translation to do, $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{2}^{\prime} ; v^{\prime}\right)$ is $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; v\right)$ translated horizontally of -1 . Of course, the monomial $H\left(x^{\prime}\right) \phi_{0} v^{1+\omega(x)}$ occurs in the expansion of f^{\prime}, if $\Omega\left(x^{\prime}\right)=\Omega(x)$, then $\kappa\left(x^{\prime}\right)=3$. So we have just to start the induction. From now on, $A_{1}(x)<1$.
II.5.2 $A_{1}(x)<\frac{1}{2}$. As $\left(A_{1}+\frac{1}{2}, 0\right)$ is a vertex, $\epsilon(x)=\omega(x)$, we have $\kappa(x)=2$ except maybe in the case where the monomial in $H(x)^{-1} f$ or $H(x)^{-1} g^{p}$ which defines the vertex $\left(A_{1}+\frac{1}{2}, 0\right)$ is $u_{1}^{(1+\omega(x))\left(A_{1}+\frac{1}{2}\right)}$ and $(1+\omega(x))\left(A_{1}+\frac{1}{2}\right)-(1+\omega(x))=\omega(x), A_{1}+\frac{1}{2}-1=\frac{\omega(x)}{1+\omega(x)}$. In that case, $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{1}, u_{2} ; v\right)$ has two vertices $\left(\frac{\omega(x)-1}{2(1+\omega(x))}, 1\right)$ and $\left(\frac{\omega(x)}{1+\omega(x)}, 0\right)$. So in the expansion of $H(x)^{-1} f$ there is a monomial $v^{1+\omega(x)-i} u_{1}{ }^{i \frac{\omega(x)-1}{2(1+\omega(x))}} u_{2}{ }^{i}$.

Either $\omega(x)=1$, then $\mathrm{V}\left(X, v, u_{1}\right)$ is permissible of first kind, it is $\operatorname{div}\left(u_{1}\right) \cap\{\omega \geqslant 1\}$, we blow it up, $U_{1} \in \operatorname{IDir}(x)$, there is at most one very near point and we get

$$
f^{\prime}=u_{1}^{\prime a(1)} v^{\prime(a(1)+1-p)}\left(\phi_{0} v^{\prime}+\gamma u_{1}^{\prime}\right),
$$

by chapter 2 II.5, $\operatorname{IDir}\left(x^{\prime}\right)=\left(V^{\prime}, u_{1}^{\prime}\right): \kappa\left(x^{\prime}\right)=1$.
Or $\omega(x) \geqslant 2$, then we blow up $x, U_{1} \in \operatorname{IDir}(x)$ and, because of $v^{1+\omega(x)}$, there is at most one very near point x^{\prime} which has for parameters ($X^{\prime}=\frac{X}{u_{2}}, u_{1}^{\prime}=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}=u_{2}, v^{\prime}=\frac{v}{u_{2}}$). We are at the origin of a chart, etc.... the monomial $v^{1+\omega(x)-i} u_{1}^{\prime} \frac{\omega(x)-1}{2(1+\omega(x))} u_{2}^{\prime} \frac{\omega(x)-1}{2(1+\omega(x))}+1$ occurs in the expansion of $H\left(x^{\prime}\right)^{-1} f^{\prime}$. A computation shows that $\frac{\omega(x)-1}{2(1+\omega(x))}+i \frac{\omega(x)-1}{2(1+\omega(x))}+1$ the sum of the exponents of u_{1}^{\prime} and u_{2}^{\prime} is $<i+1$ so is $\leqslant i$.

If $i=1+\omega(x)$, then, $i \frac{\omega(x)-1}{2(1+\omega(x))}+i \frac{\omega(x)-1}{2(1+\omega(x))}+1=\omega(x)$, we have

$$
f^{\prime}=H\left(x^{\prime}\right)\left(\phi_{0} v^{1+\omega(x)} u_{2}^{\prime}+u_{1}^{\prime} \phi\right), E^{\prime}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right)
$$

and $\operatorname{in}_{x^{\prime}}\left(u_{1}^{\prime} \phi\right)$ not colinear to $U_{1}^{\prime \omega(x)}$, if $\kappa\left(x^{\prime}\right)>2$, then $\operatorname{IDir}\left(x^{\prime}\right)=\left(U_{1}^{\prime}, U_{2}^{\prime}\right)$. We remark that, as the exponent $i \frac{\omega(x)-1}{2(1+\omega(x))}=\frac{\omega(x)-1}{2}$ is integer, $\omega(x) \neq 2$, so $\omega(x) \geqslant 3$. We blow up x^{\prime}, the only possible very near point y has for parameters ($Y=\frac{X^{\prime}}{v^{\prime}}, v_{1}=\frac{u_{1}^{\prime}}{v^{\prime}}, v_{2}=\frac{u_{2}^{\prime}}{v^{\prime}}, v_{3}=v^{\prime}$), the monomial $\phi_{0} v^{\prime 1+\omega(x)} u_{2}^{\prime}$ becomes $v_{3} v_{2}$, so $\omega(y) \leqslant 2<\omega(x)$.

Let us see the case $i \leqslant \omega(x)$. If $i \frac{\omega(x)-1}{2(1+\omega(x))}+i \frac{\omega(x)-1}{2(1+\omega(x))}+1$ the sum of the exponents of u_{1}^{\prime} and u_{2}^{\prime} is $<i$, then at worse, $\Omega\left(x^{\prime}\right)=\Omega(x)$ and $\kappa\left(x^{\prime}\right)=2$. If $i \frac{\omega(x)-1}{2(1+\omega(x))}+i \frac{\omega(x)-1}{2(1+\omega(x))}+1=i$, then $i=\frac{\omega(x)+1}{2}$, so $\frac{\omega(x)+1}{2} \in \mathbb{N}$: the exponent $i \frac{\omega(x)-1}{2(1+\omega(x))}=\frac{\omega(x)-1}{4}$ is integer, $\omega(x) \geqslant 5$. We blow up x^{\prime}, as U_{1}^{\prime} is in its directrix and, because of the monomial $\phi_{0} v^{1+\omega(x)} u_{2}^{\prime}$, the only possible very near point y has for parameters $\left(Y=\frac{X^{\prime}}{u_{2}^{\prime}}, v_{1}=\frac{u_{1}^{\prime}}{u_{2}^{\prime}}, v_{2}=u_{2}^{\prime}, w=\frac{v^{\prime}}{u_{2}^{\prime}}\right)$, the monomial $v^{\prime 1+\omega(x)-i} u_{1}^{i \frac{\omega(x)-1}{2(1+\omega(x))}} u_{2}^{\prime i \frac{\omega(x)-1}{2(1+\omega(x))}+1}$ becomes $w^{\frac{1+\omega(x)}{2}} v_{1}^{\frac{\omega(x)-1}{4}} v_{2}$: a quick computation shows that $\omega(x) \geqslant 5$ implies that the sum of the exponents is $\leqslant \omega(x)$, at worse $\Omega(y)=\Omega(x)$ and $\kappa(y)=2$. End of the case $A_{1}<\frac{1}{2}$.
II.5.3 $\frac{1}{2} \leqslant A_{1}<1$. Then $B=A_{1}+C+A_{2} \geqslant 1$, this implies $\epsilon(x)=1+\omega(x)$. By II.1.2(1), $V \in W(x)$. As $\Delta\left(H(x)^{-1} f+H(x)^{-1} g^{p} ; u_{1}, u_{2} ; v\right)$ has only two vertices $\left(A_{1}, 1\right)$ and $\left(A_{1}+\frac{1}{2}, 0\right)$, in the expansion of

$$
H(x)^{-1} f=v^{\omega(x)+1} \phi_{0}+\sum_{1 \leqslant i \leqslant 1+\omega(x)} v^{\omega(x)+1-i} u_{1}^{b_{i}} u_{2}^{c_{i}} \psi_{i}
$$

for some $i=i_{0}, 1 \leqslant i_{0} \leqslant 1+\omega(x)$,

$$
\begin{equation*}
u_{1}^{b_{i_{0}}} u_{2}^{c_{i_{0}}} \psi_{i_{0}}=\left(\gamma^{\prime}+\psi^{\prime}\right) u_{1}^{i_{0} A_{1}+\frac{i_{0}}{2}}, \gamma^{\prime} \text { invertible } \tag{a}
\end{equation*}
$$

with $\psi^{\prime} \in\left(u_{1}, u_{2}\right)$ or

$$
\begin{equation*}
H(x)^{-1} g^{p}=\gamma u_{1}^{(1+\omega(x)) A_{1}+\frac{1+\omega(x)}{2}} \tag{b}
\end{equation*}
$$

We blow up x. As $1+\omega(x) \neq 0 \bmod (p)$, the monomial $H\left(x^{\prime}\right) \phi_{0} v^{1+\omega(x)}$ cannot be destroyed by a translation on $X^{\prime}: \Omega\left(x^{\prime}\right) \leqslant \Omega(x)$, if equality, $\kappa\left(x^{\prime}\right)=3$.
II.5.4 Let us look at the first chart of origin the point ($X^{\prime}=\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, u_{2}^{\prime}=\frac{u_{2}}{u_{1}}, v^{\prime}=\frac{v}{u_{1}}$).

$$
H\left(x^{\prime}\right)^{-1} f^{\prime}=v^{\prime \omega(x)+1} \phi_{0}+\sum_{1 \leqslant i \leqslant 1+\omega(x)} v^{\prime \omega(x)+1-i} u_{1}^{\prime b_{i}+c_{i}+d_{i}-i}\left(\Psi_{i}\left(1, u_{2}^{\prime}\right)+u_{1}^{\prime} \psi_{i}^{\prime}\right)
$$

in case $(\mathrm{b}), \operatorname{ord}_{x^{\prime}}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right)=(1+\omega(x))\left(A_{1}-\frac{1}{2}\right)<\omega(x)$, there is no very near point in this chart.

From now on, we are in case (a). For i with $b_{i}+c_{i}+d_{i}=i B$ (notations of II.3.1), as the initial side of $\Delta\left(H(x)^{-1} f ; u_{1}, u_{2} ; v\right)$ has only $\left(A_{1}+\frac{1}{2}, 0\right)$ for vertex: $c_{i}=0, u_{1}^{b_{i}} \Psi_{i}=\gamma_{i} u_{1}^{i\left(A_{1}+\frac{1}{2}\right)}$, γ_{i} invertible,

$$
\begin{equation*}
v^{\prime \omega(x)+1-i} u_{1}^{\prime b_{i}+c_{i}+d_{i}-i}\left(\Psi_{i}\left(1, u_{2}^{\prime}\right)+u_{1}^{\prime} \psi_{i}^{\prime}\right)=v^{\prime \omega(x)+1-i} u_{1}^{\prime i A_{1}-\frac{i}{2}}\left(\gamma_{i}+u_{1}^{\prime} \psi_{i}^{\prime}\right) \tag{1}
\end{equation*}
$$

As $i\left(A_{1}+\frac{1}{2}\right)$ is an exponent in the expansion of $H(x)^{-1} f$, it is an integer, say N. So $2 A_{1}+1=\frac{2 N}{i}$. As $A_{1}<1,2 A_{1}+1<3$, so $N<\frac{3 i}{2}$. Then, the sum of the exponents

$$
\begin{equation*}
\omega(x)+1-i+i\left(A_{1}-\frac{1}{2}\right)=\omega(x)+1-i+N-i<\omega(x)+1+\frac{3 i}{2}-2 i=\omega(x)+1-\frac{i}{2} \tag{2}
\end{equation*}
$$

If there is some $i>1$ with $b_{i}+c_{i}+d_{i}=i B, \omega(x)+1-i+i\left(A_{1}-\frac{1}{2}\right)<\omega(x)$, in the expansion of f^{\prime} appears the monomial $\gamma H\left(x^{\prime}\right) v^{\prime \omega(x)+1-i} u_{1}^{\prime b}$ of (1), with $b=i A_{1}-\frac{i}{2} \leqslant i-1$. Either this monomial is not spoilt by a translation on X^{\prime} and $\omega\left(x^{\prime}\right)<\omega(x)$ or it becomes $H\left(x^{\prime}\right) v^{\prime \omega(x)+1-i} u_{1}^{\prime b} w$ and, because of $\frac{\partial}{\partial w}, \omega\left(x^{\prime}\right)<\omega(x)$. When $i=1$ is the only index with $b_{i}+c_{i}+d_{i}=i B$, then $A_{1}=\frac{1}{2}$, in the expansion of f^{\prime} appears the monomial $\gamma H\left(x^{\prime}\right) v^{\prime \omega(x)}=u_{1}^{\prime a(1)+\omega(x)+1-p} \gamma{v^{\prime \omega(x)}}^{\circ}$ of (1). Either $\omega(x) \neq 0 \bmod (p)$ or $a(1)+1 \neq 0 \bmod (p)$, then this monomial cannot be spoilt by any translation on X^{\prime}, and $\omega\left(x^{\prime}\right) \leqslant \omega(x)$ if $\omega(x) \neq 0 \bmod (p)$, at worse $\Omega\left(x^{\prime}\right)=\Omega(x)$ and $\kappa\left(x^{\prime}\right)=2$ if $a(1)+1 \neq 0 \bmod (p)$. Or $\omega(x)=0 \bmod (p)$ and $a(1)+1=0 \bmod (p):$ this implies that $\bar{\gamma} \in k(x)$ is not a p-power: if x^{\prime} is rational over x, the monomial cannot be spoilt by any translation on X^{\prime},
 $w \in k(x)\left[u_{2}^{\prime}\right]$ is a parameter at x^{\prime}, then, after translation, as there is no other possibility for i, f^{\prime} becomes

$$
f^{\prime \prime}=H\left(x^{\prime}\right)\left(v^{\prime 1+\omega(x)} \phi_{0}+v^{\prime \omega(x)} w+u_{1}^{\prime} \phi\right)=H\left(x^{\prime}\right)\left(v^{\prime \omega(x)} z+u_{1}^{\prime} \phi\right), z=w+\phi_{0} v
$$

by chapter 2 II.1, we have at worse $\Omega\left(x^{\prime}\right)=\Omega(x)$ and $\kappa\left(x^{\prime}\right)=2$.
II.5.5 $\frac{1}{2} \leqslant A_{1}<1$, origin of the second chart: the point $\left(X^{\prime}=\frac{X}{u_{2}}, u_{1}^{\prime}=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}=u_{2}, v^{\prime}=\right.$
 $\left.H\left(x^{\prime}\right)^{-1} g^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime} ; v^{\prime}\right)$ has only two vertices $\left(A_{1}, A_{1}\right)$ and $\left(A_{1}+\frac{1}{2}, A_{1}-\frac{1}{2}\right)$. As $2 A_{1} \geqslant 1$, we have $\epsilon\left(x^{\prime}\right) \geqslant 1+\omega(x)$. We blow up x^{\prime}. As $A_{1}\left(x^{\prime}\right)=A_{1}(x)>0$, then $V \in \operatorname{IDir}(x)$. Let us look at the first chart of origin $\left(Y=\frac{X^{\prime}}{u_{1}}, v_{1}=u_{1}^{\prime}, v_{2}=\frac{u_{2}^{\prime}}{u_{1}^{\prime}}, w=\frac{v^{\prime}}{u_{1}^{\prime}}\right)$. We call y the point we consider in this chart: y is assumed to be very near to x. If y is the origin, then by the usual transformation laws, $C(y)=0, A_{1}(y)=B\left(x^{\prime}\right)=2 A_{1}(x)-1<1, A_{2}(y)=A_{2}\left(x^{\prime}\right)=0:$ by II.2, $\kappa(y) \leqslant 2$.

From now on, $v_{2}(y) \neq 0$. As $1+\omega(x) \neq 0 \bmod (p)$, the initial form of $H(y) \phi_{0} v^{1+\omega(x)}$ will not be spoilt by any translation on $Y: \kappa(y) \leqslant 3$. In the expansion of

$$
H\left(x^{\prime}\right)^{-1} f^{\prime}=v^{\prime \omega(x)+1} \phi_{0}+\sum_{1 \leqslant i \leqslant 1+\omega(x)} v^{\prime \omega(x)+1-i} u_{1}^{\prime b_{i}^{\prime}} u_{2}^{c_{i}^{\prime}} \psi_{i}^{\prime}, d_{i}^{\prime}=\operatorname{ord}_{x}\left(\psi_{i}^{\prime}\right)
$$

there is a monomial defining the vertex $\left(A_{1}, A_{1}\right)$, so for some $i=i_{1}, 1 \leqslant i_{1} \leqslant 1+\omega(x)$,

$$
\begin{equation*}
u_{1}^{\prime b_{i_{1}}^{\prime}} u_{2}^{\prime c_{i_{1}}^{\prime}} \psi_{i_{1}}^{\prime}=u_{1}^{\prime i_{1} A_{1}} u_{2}^{\prime c_{i_{1}}^{\prime}}\left(\Psi_{i_{1}}^{\prime}\left(u_{1}^{\prime}, u_{2}^{\prime}\right)+\phi\right), \phi \in\left(u_{1}^{\prime}, u_{2}^{\prime}\right)^{d_{i_{1}}^{\prime}+1}, d_{i_{1}}^{\prime}+c_{i_{1}}^{\prime}=i_{1} A_{1} \tag{a}
\end{equation*}
$$

with $\Psi_{i_{1}}^{\prime}$ homogeneous of degree $d_{i_{1}}^{\prime}$ or

$$
\begin{equation*}
H(x)^{-1} g^{p}=\gamma u_{1}^{\prime(1+\omega(x)) A_{1}} u_{2}^{(1+\omega(x)) A_{1}} \tag{b}
\end{equation*}
$$

In case $(\mathrm{b}), H(y)^{-1} g^{\prime \prime p}=\gamma v_{1}^{\left(2 A_{1}-1\right)(1+\omega(x))}$, as $2 A_{1}-1<1, \operatorname{ord}_{y}\left(H(y)^{-1} g^{\prime \prime p}\right) \leqslant \omega(x)$: at worse, $\omega(y)=\omega(x)$ and $\omega^{\prime}(y)=1<\omega^{\prime}(x): y$ is not very near to x.

From now on, we are in case (a).

$$
H(y)^{-1} f^{\prime \prime}=w^{\omega(x)+1} \phi_{0}+\sum_{1 \leqslant i \leqslant 1+\omega(x)} w^{\omega(x)+1-i} v_{1}^{b_{i}^{\prime}+c_{i}^{\prime}+d_{i}^{\prime}-i} u_{2}^{\prime c_{i}^{\prime}}\left(\Psi_{i}^{\prime}\left(1, u_{2}^{\prime}\right)+v_{1} \phi_{i}\right)
$$

for $i=i_{1}, w^{\omega(x)+1-i} v_{1} b_{i}^{\prime}+c_{i}^{\prime}+d_{i}^{\prime}-i u_{2}^{\prime c_{i}^{\prime}} \Psi_{i}^{\prime}\left(1, u_{2}^{\prime}\right)=w^{\omega(x)+1-i_{1}} v_{1}^{i_{1}\left(2 A_{1}-1\right)} u_{2}^{\prime c_{i_{1}}^{\prime}} \Psi_{i_{1}}^{\prime}\left(1, u_{2}^{\prime}\right)$.
Case where $2 A_{1}=1$: $w^{\omega(x)+1-i_{1}} v_{1}^{i_{1}\left(2 A_{1}-1\right)} u_{2}^{\prime c_{i_{1}}^{\prime}} \Psi_{i_{1}}^{\prime}\left(1, u_{2}^{\prime}\right)=w^{\omega(x)+1-i_{1}} u_{2}^{\prime c_{i_{1}}^{\prime}} \Psi_{i_{1}}^{\prime}\left(1, u_{2}^{\prime}\right)$. If $1+$ $\omega(x)-i_{1} \neq 0 \bmod (p)$ or $a(1)+a(1)+\omega(x)+1-p+i_{1} \neq 0 \bmod (p)$, a translation on Y will not spoil $w^{\omega(x)+1-i_{1}} u_{2}^{\prime c_{i_{1}}^{\prime}} \Psi_{i_{1}}^{\prime}\left(1, u_{2}^{\prime}\right), \operatorname{ord}_{y}\left(u_{2}^{\prime} c_{i_{1}}^{\prime} \Psi_{i_{1}}^{\prime}\left(1, u_{2}^{\prime}\right)\right) \leqslant d_{i_{1}}^{\prime}+c_{i_{1}}^{\prime}=\frac{i_{1}}{2}$, so $\epsilon(y) \leqslant 1+\omega(x)-i_{1}+\frac{i_{1}}{2} \leqslant \omega(x)$: at worse, $\Omega(y)=\Omega(x)$ and $\kappa(y)=2$. If $u_{2}^{\prime}\left(x^{\prime}\right)=0$, we are at the origin of a chart: there is no translation to do, we conclude as above. If $1+\omega(x)-i_{1}=0 \bmod (p)$ and $a(1)+a(1)+\omega(x)+1-p+$ $i_{1}=0 \bmod (p)$ and $u_{2}^{\prime}\left(x^{\prime}\right) \neq 0$, a translation on X^{\prime} may add a p-power to $w^{\omega(x)+1-i_{1}} u_{2}^{\prime c_{i_{1}}^{\prime}} \Psi_{i_{1}}^{\prime}\left(1, u_{2}^{\prime}\right)$, by chapter 2 II.5(ii), the $D\left(H\left(x^{\prime}\right) u_{1}^{\prime b_{i_{1}}^{\prime}} u_{2}^{\prime c_{i_{1}}^{\prime}} \Psi_{i_{1}}^{\prime}\right)=D\left(u_{1}^{\prime a(1)} u_{2}^{\prime a(1)+1+\omega(x)-p} u_{1}^{\prime b_{i_{1}}^{\prime}} u_{2}^{\prime c_{i_{1}}^{\prime}} \Psi_{i_{1}}^{\prime}\right), D \in \mathcal{D}$ are not all proportional to $u_{1}^{\prime a(1)} u_{2}^{\prime a(1)+1+\omega(x)-p} u_{1}^{\prime} b_{i_{1}}^{\prime} u_{2}^{\prime c_{i_{1}}^{\prime}} \cdot d_{i_{1}}^{\prime}$ th -power, or $\Psi_{i_{1}}^{\prime}$ is a monomial, so, after an eventual translation, $w^{\omega(x)+1-i_{1}} u_{2}^{\prime c_{i_{1}}^{\prime}} \Psi_{i_{1}}^{\prime}\left(1, u_{2}^{\prime}\right)$ which will become $w^{\omega(x)+1-i_{1}} \gamma^{\prime} v_{2}^{a}$, $a \leqslant$ $d_{i_{1}}^{\prime}+c_{i_{1}}^{\prime}=\frac{i_{1}}{2}, \gamma^{\prime}$ invertible, we conclude as above.

From now on, $\frac{1}{2}<A_{1}$. For our index i_{1}, $\frac{i_{1}}{2}<i_{1} A_{1}=b_{i_{1}}^{\prime} \in \mathbb{N}$, so $i_{1} \geqslant 3$. Furthermore, $1>B-1=2 A_{1}-1>0: B-1 \notin N$, so $w^{\omega(x)+1-i_{1}} v_{1}^{i_{1}\left(2 A_{1}-1\right)} u_{2}^{\prime c_{i_{1}}^{\prime}} \Psi_{i_{1}}^{\prime}\left(1, u_{2}^{\prime}\right)=$ $w^{\omega(x)+1-i_{1}} u_{2}^{\prime c_{i_{1}}^{\prime}} \Psi_{i_{1}}^{\prime}\left(1, u_{2}^{\prime}\right)$ will not be spoilt by an eventual translation on w, after an eventual translation on $Y, w^{\omega(x)+1-i_{1}} u_{2}^{\prime} c_{i_{1}}^{\prime} \Psi_{i_{1}}^{\prime}\left(1, u_{2}^{\prime}\right)$ which will become $w^{\omega(x)+1-i_{1}} \gamma^{\prime} v_{2}^{a}, a \leqslant d_{i_{1}}^{\prime}+c_{i_{1}}^{\prime}+1=\frac{i_{1}}{2}+1$,
γ^{\prime} invertible: $\beta(y) \leqslant \frac{1}{2}+\frac{1}{i_{1}} \leqslant \frac{1}{2}+\frac{1}{3}<1$. By II.4, x is good. Finally, we have to look at the origin of the second chart above x^{\prime}. Then $C(y)=0, A_{1}(y)=A_{1}(x)<1, A_{2}(y)=2 A_{1}(x)-1<1$: by II.2, x is good.
II. 6 Theorem Let $x \in \Sigma_{p}$ with $\kappa(x)=3,\left(X, u_{1}, u_{2}, v\right)$ a r.s.p. veryfying II.1(1), $v \in \widehat{S}$ and possibly $u_{2} \in \widehat{S}$ if $\operatorname{div}\left(u_{2}\right) \nsubseteq E$. If $C(x)=0$, then x is good.

Proof. Let us recall that, by II.2, if $\epsilon(x)=\omega(x)$, or $\left(A_{1}<1\right.$ and $\left.A_{2}<1\right) x$ is good. So, we suppose:

$$
\epsilon(x)=1+\omega(x), A_{1} \geqslant 1 \text { or } A_{2} \geqslant 1
$$

II.6.1 Case $a(1)+1+\omega(x)<p$ and $a(2)+1+\omega(x)<p$. Let us denote $H(x)=u_{1}^{a(1)} u_{2}^{a(2)}$, then $\operatorname{ord}_{x}(H(x) f) \geqslant p$, so $a(1) a(2)>0: E=\operatorname{div}\left(u_{1} u_{2}\right)$. So u_{1} and u_{2} play the same role. As $C(x)=0$, we have $A_{i}>0$ for some $i=1,2$, by II.1.2, $V \in \operatorname{IDir}(x)$. Let us blow up x. in the first chart of $\operatorname{origin}\left(\frac{X}{u_{1}}, u_{1}, \frac{u_{2}}{u_{1}}, \frac{v}{u_{1}}\right)=\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right)$, we get

$$
f^{\prime}={u_{1}^{\prime}}^{a(1)+a(2)+1+\omega(x)-p} u_{1}^{a(2)}\left(v^{\prime 1+\omega(x)} \phi_{0}+\ldots\right)
$$

If $u_{2}^{\prime}\left(x^{\prime}\right) \neq 0$, then $\operatorname{ord}_{x^{\prime}}\left(f^{\prime}\right)<p$. If $u_{2}^{\prime}\left(x^{\prime}\right)=0$, the reader sees that $\kappa\left(x^{\prime}\right) \leqslant 3$, if x^{\prime} is very near to $x, a(1)+a(2)+1+\omega(x)-p<a(2), C\left(x^{\prime}\right)=0$: an induction on $a(1)+a(2)$ gives the result. By symetry, it is the same thing in the second chart.
II.6.2 Case $1+\omega(x) \geqslant p$. If $A_{1} \geqslant 1, \mathrm{~V}\left(X, v, u_{1}\right)$ is permissible of first kind, it is $\operatorname{div}\left(u_{1}\right) \cap\{\omega \geqslant 1\}$: it is not formal, we blow it up, the point x^{\prime} of parameters $\left(\frac{X}{u_{1}}, u_{1}, u_{2}, \frac{v}{u_{1}}\right)$ is the only point which may be very near to x, if it is, then $\kappa\left(x^{\prime}\right)=3, A_{1}\left(x^{\prime}\right)=A_{1}(x)-1, A_{2}\left(x^{\prime}\right)=A_{2}(x), C\left(x^{\prime}\right)=0$, we get the result by induction on A_{1}. If $A_{2} \geqslant 1$ and $\operatorname{div}\left(u_{2}\right) \subseteq E$, mutatis mutandis, it is the same thing. If $A_{2} \geqslant 1$ and $\operatorname{div}\left(u_{2}\right) \nsubseteq E$, then $\epsilon(Y)=\omega(x)$ where $Y=\mathrm{V}\left(X, v, u_{2}\right) \nsubseteq E$: this contradicts the cleaning condition of chapter 1 , this case is impossible.
II.6.3 Case $1+\omega(x)<p$ and there exists $i \in\{1,2\}$ such that $a(i)+\omega(x)+1 \geqslant p$. Then $a(i)>0$, so $\operatorname{div}\left(u_{i}\right) \subseteq E$. We make a descending induction on

$$
\left(\sup \left(A_{i}\right), \sup (a(j)), n\right)
$$

where n is 2 if $\left(A_{1}, a(1)\right)=\left(A_{2}, a(2)\right)\left(=\left(\sup \left(A_{i}\right), \sup (a(j)), n\right)\right)$, else $n=1$.
II.6.3.1 If there exists $i \in\{1,2\}$ such that

$$
\begin{equation*}
a(i)+\omega(x)+1 \geqslant p \text { and } A_{i} \geqslant 1, \tag{1}
\end{equation*}
$$

we blow up $\mathrm{V}\left(X, u_{i}, v\right)$. If both $i=1$ and $i=2$ verifies (1), we choose i with A_{i} maximal. Mutatis mutandis, $i=1$. Then the point x^{\prime} of parameters $\left(\frac{X}{u_{1}}, u_{1}, u_{2}, \frac{v}{u_{1}}\right)=\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right)$ is the only point which may be very near to x. The reader sees that $\kappa\left(x^{\prime}\right) \leqslant 3$, if x^{\prime} is very near to $x, C\left(x^{\prime}\right)=0$, $A_{1}\left(x^{\prime}\right)=A_{1}(x)-1, a(1)\left(x^{\prime}\right)=a(1)(x)+1+\omega(x)-p<a(1):\left(\sup \left(A_{i}\right), \sup (a(j))\right)$ strictly drops, except if $A_{2}(x)=A_{1}(x), a(1)=a(2)$ where n becomes 1 .
II.6.3.2 The remaining case. Then for all $i \in\{1,2\}$ such that $a(i)+\omega(x)+1 \geqslant p, A_{i}<1$ and there exists such an i. So $\operatorname{div}\left(u_{i}\right) \subseteq E$, mutatis mutandis, $i=1$. Then, $A_{2} \geqslant 1$ and $a(2)+\omega(x)+1<p$. I say that

$$
E=\operatorname{div}\left(u_{1} u_{2}\right) .
$$

Suppose $E=\operatorname{div}\left(u_{1}\right)$. If $g=0$, then, as $A_{2} \geqslant 1, \epsilon\left(\mathrm{~V}\left(X, u_{2}, v\right)\right) \geqslant \omega(x)+1,\left(X, u_{2}, v\right) \supset J(f, E)$, this contradicts the cleaning condition of chapter 1 . If $g \neq 0$, then $H(x)^{-1} g^{p}=\gamma u_{1}^{a}, a \in \mathbb{N}$, so $A_{2}=0$ which contradicts $A_{2} \geqslant 1$. We blow up x, let us look at the first chat of origin the point of parameters $\left(\frac{X}{u_{1}}, u_{1}, \frac{u_{2}}{u_{1}}, \frac{v}{u_{1}}\right)=\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right)$. If x^{\prime} is the origin, then the reader sees that (cf. II.3) that $\kappa\left(x^{\prime}\right) \leqslant 3$, if x^{\prime} is very near to $x, C\left(x^{\prime}\right)=0$ and $A_{1}\left(x^{\prime}\right)=A_{1}(x)+A_{2}(x)-1<A_{2}(x)$, $A_{2}\left(x^{\prime}\right)=A_{2}(x), a^{\prime}(1)=a(1)+a(2)+\omega(x)+1-p<a(1), a^{\prime}(2)=a(2):\left(\sup \left(A_{i}\right), \sup (a(j))\right)$ strictly drops. If $u_{2}^{\prime}\left(x^{\prime}\right) \neq 0$ then $m(x)=2$ and $m\left(x^{\prime}\right)=1$, by II.3(vii), II.4, $\kappa\left(x^{\prime}\right) \leqslant 1$. The last point to look at is the point x^{\prime} of parameters $\left(\frac{X}{u_{2}}, \frac{u_{1}}{u_{2}}, u_{2}, \frac{v}{u_{2}}\right)=\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}\right)$. The reader sees that (cf. II.3) that, if x^{\prime} is very near to $x, \kappa\left(x^{\prime}\right) \leqslant 3, C\left(x^{\prime}\right)=0$ and $A_{1}\left(x^{\prime}\right)=A_{1}(x)<A_{2}(x)$, $A_{2}\left(x^{\prime}\right)=A_{1}(x)+A_{2}(x)-1<A_{2}(x):\left(\sup \left(A_{i}\right), \sup (a(j)), n\right)$ strictly drops.

II. 7 End of the story

We make an infinite sequence of blowing-ups $X_{i} \leftarrow X_{i+1}$ of $\left(u_{1}, u_{2}\right)$ for a suitable choice of parameters verifying (1). Let $x_{i} \in X_{i}$, the centers of the valuation μ we are uniformizing. We are going to prove that there exists some i such that $\kappa\left(x_{i}\right) \leqslant 2$ or x_{i} is good. That will end the case $\kappa(x)=3$. By II.3 (i), for $i \gg 0, \gamma\left(x_{i}\right)=\gamma\left(x_{i+n}\right)$, $n>0$. Let us call $\gamma(\mu)$ this value (which depends of μ and of choices among the possible u_{1}, u_{2}).
II.7.1 $m\left(x_{i}\right)=1$ for $i \gg 0$. Either $g \neq 0$. If, for some $i, \beta\left(x_{i}\right)=0$, then $C\left(x_{i}\right)=0$, by II.2, x_{i} is good. If, for all $i, \beta\left(x_{i}\right)>0$, then the sequence $A_{1}\left(x_{i}\right) \in \frac{1}{(1+\omega(x))!} \mathbb{N}$ strictly increases, but, as $g^{p}=u_{1}^{a}$ in x_{i}, and that u_{1} belongs to the choosen parameters of $x_{i+1}, g^{p}=u_{1}^{a}$ in x_{i+1}, but $A_{1}\left(x_{i}\right) \leqslant \operatorname{ord}\left(H\left(x_{i}\right)^{-1} g^{p}\right) \leqslant \frac{a}{1+\omega(x)}$, this is impossible for $i \gg 0$. Or $g=0$. Either for all i there exists $j \geqslant i$ such that x_{j+1} is not rational over x_{j}, then, by II.3.2, we reach the case where $\beta\left(x_{n}\right)<1$ for some n, by II.4, x_{n} is good. Or x_{i+1} is rational over x_{i} for $i \gg 0$. As in the corresponding case of $\kappa(x)=2$, there exists $v=u_{2}+\sum_{i \geqslant 1} \lambda_{i} u_{1}^{i} \in u_{2}+k(x)\left[\left[u_{1}\right]\right]$ such that $x_{n_{0}+i}$ is on the strict transform of v in $X_{n_{0}+i}$: we have $\left(u_{1}, u_{2}\right) \widehat{S_{n_{0}}}=\left(u_{1}, v\right) \widehat{S_{n_{0}}}$. The proof runs along the same lines. So let us choose $\left(X, u_{1}, v, u_{3}\right)$ as r.s.p. of $x_{n_{0}}$, let us make a well preparation: we get $\left(Y, u_{1}, v, w\right)$ as new well prepared r.s.p.. Then, in the sequence of the first line of II.7, we stay on the strict transform of v, the parameters at $x_{n_{0}+i}$ are $\left(Y, u_{1}, \frac{v}{u_{1}^{\tau}}, w\right)$ and as we are at the origin of the first chart in all the blowing ups, $\left(Y, u_{1}, \frac{v}{u_{1}^{i}}, w\right)$ is well prepared, so, for $i \gg 0, C\left(x_{i}\right)=0$, by II.6, x_{i} is good.
II.7.2 $\gamma(\mu) \geqslant 2$. Then, by II.3(i)(v): $m\left(x_{i}\right)=1$ for $i \gg 0$, so some x_{i} is good.
II.7.3 $\gamma(\mu)=1$.
II.7.3 (i) $\gamma(\mu)=1, m\left(x_{i}\right)=1$ for $i \gg 0$. Go to II.7.1. II.7.3 (ii) $\gamma(\mu)=1, m\left(x_{i}\right)=2$ for $i \gg 0$. We are always at the origin of a chart, so, as seen many times, for $i \gg 0, C\left(x_{i}\right)=0$, by II.6, x_{i} is good.
II.7.3 (iii) $\gamma(\mu)=1$, there is some i with $m\left(x_{i}\right)=2$ and $C\left(x_{i}\right)<\frac{1}{2}$. Let $j \in \mathbb{N}$ such that $m\left(x_{i}\right)=m\left(x_{i+1}\right)=\ldots . m\left(x_{i+j}\right)=2, m\left(x_{i+j+1}\right)=1$. Then $\frac{1}{2}>C\left(x_{i}\right) \geqslant C\left(x_{i+1}\right) \geqslant \ldots . \geqslant C\left(x_{i+j}\right)$.
By II.3(vii) and II.4, x_{i+j+1} is good.
II.7.3 (iv) $\gamma(\mu)=1$, there is some i with $m\left(x_{i}\right)=1$ and $\beta\left(x_{i}\right)<1$: by II.4, x_{i} is good.
II.7.3 (v) $\gamma(\mu)=1$, there is some i with $m\left(x_{i}\right)=1$ and $\beta\left(x_{i}\right)=1$. If we are in case II.7.1, we are done. Else let $j \in \mathbb{N}$ such that $m\left(x_{i}\right)=m\left(x_{i+1}\right)=\ldots . . m\left(x_{i+j}\right)=1, m\left(x_{i+j+1}\right)=2$. If there exists $u, 0 \leqslant u \leqslant j, \beta\left(x_{i+u}\right)=0, x_{i+u}$ is good. If not, then $1=\beta\left(x_{i}\right) \geqslant \beta\left(x_{i+1}\right) \geqslant \ldots \geqslant \beta\left(x_{i+j}\right)$. If $1>\beta\left(x_{i+j}\right)$, go to II.4. If $1=\beta\left(x_{i+j}\right)$ and $\Delta\left(H\left(x_{i+j}\right)^{-1} f_{i} ; u_{1}, u_{2} ; v\right)$ has only two vertices $\left(A_{1}, 1\right)$ and ($A_{1}+\frac{1}{2}, A_{1}-\frac{1}{2}$), then by II.5, x_{i+j} is good. If not, then by II. 3 (iii), $C\left(x_{i+j}\right)<\frac{1}{2}$. Go to II.7.3 (iii). The reader should be convinced that all the possible cases have been seen.

III End of transverseness.

We conclude the analysis of those cases of transverseness where $\operatorname{cl}_{\omega(x)} J(f, E)$ is not contained in the ideal $\left(\left\{U_{i} \mid \operatorname{div}\left(u_{i}\right) \subseteq E\right\}\right)$. This is formalized in definition III. 2 below.

Now that the main cases $\kappa(x)=2$ and $\kappa(x)=3$ have been dealt with, reduction to $\kappa(x) \leqslant 3$ (propositions III.5 and III.6) is based on the following lemma which is an extension of proposition II. 1 of chapter 2.
III. 1 Lemma. Assume that $E=\operatorname{div}\left(u_{1} u_{2}\right), \epsilon(x)=\omega(x)$ and $f=H(x)\left(\lambda u_{1}^{\omega(x)}+u_{2} \psi\right)$, where $\lambda \in k(x), \lambda \neq 0$ and $\operatorname{ord}_{u_{3}}\left(\psi \bmod \left(u_{1}, u_{2}\right)\right)=\omega(x)$. There exists a sequence of permissible blowingups,

$$
X=: X_{0} \leftarrow X_{1} \leftarrow \cdots \leftarrow X_{n}
$$

such that either x_{n} is not very near x or $\left(\Omega(x)=\Omega\left(x_{n}\right)\right.$ and $\left.\kappa\left(x_{n}\right) \leqslant 3\right)$, where $x_{n} \in X_{n}$ is the center of μ.
Proof. Note that $\kappa(x)=2$ except possibly if $\operatorname{cl}_{\omega(x)-1} \psi \in k(x)\left[U_{1}, U_{2}\right]$, which we assume from now on. We then have $\operatorname{VDir}(x) \subseteq<U_{1}, U_{2}>, \operatorname{VDir}(x) \neq k(x) . U_{2}$. We have $\kappa(x) \leqslant 1$ if $\omega(x)=1$ by II.1(iv) of chapter 2, so assume that $\omega(x) \geqslant 2$. Let $e: X^{\prime} \rightarrow X$ be the blowing up along x and $x^{\prime} \in e^{-1}(x)$ be very near x.

We first consider the case when $x^{\prime}=x_{0}^{\prime}:=\left(X^{\prime}=\frac{X}{u_{3}}, u_{1}^{\prime}=\frac{u_{1}}{u_{3}}, u_{2}^{\prime}=\frac{u_{2}}{u_{3}}, u_{3}^{\prime}=u_{3}\right)$, so $E^{\prime}:=\left(e^{-1} E\right)_{\text {red }}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime}\right)$. We are at the origin of a chart, so $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal. In the expansion of $H\left(x^{\prime}\right)^{-1} f^{\prime}$, there appears the monomial $u_{2}^{\prime} u_{3}^{\prime}$ with nonzero coefficient. Since x^{\prime} is very near x, we have $\omega(x)=2$ and there is an expression

$$
\Psi^{\prime}:=\operatorname{cl}_{2}\left(H\left(x^{\prime}\right)^{-1} f^{\prime}\right)=\lambda{U_{1}^{\prime}}^{2}+\lambda_{1} U_{1}^{\prime} U_{2}^{\prime}+\lambda_{2}{U_{2}^{\prime}}^{2}+\lambda_{3} U_{2}^{\prime} U_{3}^{\prime}
$$

where $\lambda \lambda_{3} \neq 0$. By lemma II.1.5 in chapter 2 , we have $\tau\left(x^{\prime}\right)=3$, so $\kappa(x)=0$.
We now discuss according to $\operatorname{VDir}(x)$ and consider three cases.
Case 1. If $\operatorname{VDir}(x)=<U_{1}, U_{2}>$, then $x^{\prime}=x_{0}^{\prime}$ since x^{\prime} is very near x, so the proposition holds.
Now if $\operatorname{VDir}(x) \neq<U_{1}, U_{2}>$ and $x^{\prime} \neq x_{0}^{\prime}$, then x^{\prime} is in the chart with origin $\left(X^{\prime}=\frac{X}{u_{2}}, u_{1}^{\prime}=\right.$ $\left.\frac{u_{1}}{u_{2}}, u_{2}^{\prime}=u_{2}, u_{3}^{\prime}=\frac{u_{3}}{u_{2}}\right)$, so $E^{\prime}:=\left(e^{\prime-1} E\right)_{\mathrm{red}}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right)$.

Case 2. If $\operatorname{VDir}(x)=k(x) .\left(U_{1}+\alpha U_{2}\right)$ for some $\alpha \in k(x), \alpha \neq 0$, then $x^{\prime}=\left(X^{\prime}, v^{\prime}:=\right.$ $u_{1}^{\prime}+\alpha, u_{2}^{\prime}, w^{\prime}:=P\left(1, u_{3}^{\prime}\right)$, where $P \in k(x)\left[u_{2}, u_{3}\right]$ is homogeneous and unitary in u_{3}. We have $\operatorname{ord}_{\eta(x)}\left(u_{2} \psi\right)=\omega(x)$ and

$$
\operatorname{cl}_{\omega(x)} J(f, E, x)=k(x) \cdot\left(U_{1}+\alpha U_{2}\right)^{\omega(x)}
$$

by assumption, so $v^{\prime \omega(x)} \in J\left(f^{\prime}, E^{\prime}\right)+\left(u_{2}^{\prime}\right)$. Since $\omega^{\prime}(x)=2$ and x^{\prime} is very near x, after possibly performing a translation $Z^{\prime}:=X^{\prime}-\theta^{\prime}$ in order to get $\Delta\left(h^{\prime} ; v^{\prime}, u_{2}^{\prime}, w^{\prime} ; Z^{\prime}\right)$ minimal, f^{\prime} being changed into $f_{Z^{\prime}}^{\prime}:=f^{\prime}+\theta^{\prime p}-\theta^{\prime} g^{\prime p-1}$, we get

$$
\begin{equation*}
v^{\prime \omega(x)}+u_{2}^{\prime} \varphi^{\prime}=D^{\prime} f_{Z^{\prime}}^{\prime} \in J\left(f^{\prime}, E^{\prime}\right) \tag{1}
\end{equation*}
$$

for some $\varphi^{\prime} \in \widehat{S^{\prime}} \simeq k\left(x^{\prime}\right)\left[\left[v^{\prime}, u_{2}^{\prime}, w^{\prime}\right]\right]$.
If $D^{\prime} f_{Z^{\prime}}^{\prime} \in J\left(f^{\prime}, E^{\prime}, x^{\prime}\right)$, we have $\kappa\left(x^{\prime}\right)=2$. If $\kappa\left(x^{\prime}\right) \neq 3$, it can be assumed that $D^{\prime}=\frac{\partial}{\partial w^{\prime}}$ in (1), we have $\omega(x) \equiv 0 \bmod p$, in which case $\kappa(x)=2$ if $\epsilon\left(x^{\prime}\right)=1+\omega(x)$. Finally, if $\epsilon\left(x^{\prime}\right)=\omega(x)$, then x^{\prime} satisfies the assumptions of chapter 2 II. 1 (w.r.t. the r.s.p. $\left(Z^{\prime}, u_{2}^{\prime}, v^{\prime}, w^{\prime}\right)$), whose conclusion gives $\kappa\left(x^{\prime}\right) \leqslant 1$.

Case 3. If $\operatorname{VDir}(x)=k(x) . U_{1}$, then $x^{\prime}=\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, w^{\prime}:=P\left(1, u_{3}^{\prime}\right)\right)$, where $P \in k(x)\left[u_{2}, u_{3}\right]$ is homogeneous and unitary in u_{3}. Moreover, we have $\operatorname{ord}_{\eta(x)}\left(u_{2} \psi\right)=1+\omega(x)$. Let $u_{2}^{\prime-p} h=$: $X^{\prime p}-X^{\prime} g^{\prime p-1}+f^{\prime}$ and $\Psi:=\operatorname{cl}_{\omega(x)} \psi$. After possibly performing a translation $Z^{\prime}:=X^{\prime}-\theta^{\prime}$ in order to get $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, w^{\prime} ; Z^{\prime}\right)$ minimal, f^{\prime} being changed into $f_{Z^{\prime}}^{\prime}:=f^{\prime}+\theta^{\prime p}-\theta^{\prime} g^{\prime p-1}$, we have an expression of the form

$$
f_{Z^{\prime}}^{\prime}=u_{1}^{\prime a(1)} u_{2}^{\prime a(2)+\omega(x)-p}\left(\lambda^{\prime} u_{1}^{\prime \omega(x)}+u_{2}^{\prime} \psi^{\prime}\right)
$$

where either λ^{\prime} or $\frac{\partial \lambda^{\prime}}{\partial w^{\prime}}$ is a unit and $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(u_{2}^{\prime} \psi^{\prime}\right) \geqslant \omega(x)$, since x^{\prime} is very near x. Note that the form $U_{1}^{a(1)} U_{2}^{a(2)+1} \Psi\left(0, U_{2}, U_{3}\right)$ is not a $p^{t h}$-power, since $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal. We apply theorem II.5.3.2(iii) and (iv) of chapter 1 to the form $U_{2}^{a(2)+1} \Psi\left(0, U_{2}, U_{3}\right)$, which yields

$$
\begin{equation*}
\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(\psi^{\prime} \bmod \left(u_{1}^{\prime}\right)\right) \leqslant \operatorname{deg} \Psi\left(0, U_{2}, U_{3}\right)=\omega(x) \tag{2}
\end{equation*}
$$

with equality only if x^{\prime} is rational over x. Note that $\kappa\left(x^{\prime}\right)=2$ if inequality is strict in (2), since then $\mathrm{cl}_{\omega(x)} f_{Z^{\prime}}^{\prime} \notin k\left(x^{\prime}\right)\left[U_{1}^{\prime}, U_{2}^{\prime}\right]$.

There remains to study the equality case in (2). Since x^{\prime} is rational over x, λ^{\prime} is a unit in this case. After possibly performing a linear change of coordinates $w:=u_{3}+\mu u_{2}$, followed by a translation $Z:=X-\theta$ in order to get $\Delta\left(h ; u_{1}, u_{2}, w ; Z\right)$ minimal, it can be assumed that x^{\prime} is the origin of the chart, the assumptions in the lemma remaining unchanged. Then $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, w^{\prime} ; X^{\prime}\right)$ is minimal and x^{\prime} satisfies the assumption of the lemma, i.e. we can iterate the argument. Let

$$
X_{1}:=\operatorname{Spec}\left(R^{\prime} /\left(h^{\prime}\right)\right) \leftarrow X_{2} \leftarrow \cdots \leftarrow X_{n} \leftarrow \cdots
$$

be the quadratic sequence along μ. Since

$$
\frac{\mu\left(u_{1}\right)}{\mu\left(u_{2}\right)}<\infty
$$

the center x_{n} of μ in X_{n} is either not very near x, or has $\kappa\left(x_{n}\right)=2$, or is in case 1 or 2 above for some $n>0$ and the conclusion follows.
III. 2 Definition. We say that $\kappa(x)=4$ if $\operatorname{cl}_{\omega(x)} J(f, E) \nsubseteq\left(\left\{U_{i} \mid \operatorname{div}\left(u_{i}\right) \subseteq E\right\}\right)$.
III. 3 Definition. Assume that $\kappa(x)=4$. We say that x is good if there exists a sequence of permissible blowing-ups,

$$
X=: X_{0} \leftarrow X_{1} \leftarrow \cdots \leftarrow X_{n}
$$

such that either x_{n} is not very near x or $\left(\Omega(x)=\Omega\left(x_{n}\right)\right.$ and $\left.\kappa\left(x_{n}\right) \leqslant 3\right)$, where $x_{n} \in X_{n}$ is the center of μ.

We do not suppose $\kappa\left(x_{i}\right) \leqslant 4$ for $1 \leqslant i<n$.
III.4 Definition. Assume that $\kappa(x)=4$. We let

$$
\bar{\tau}(x):=\tau\left(\operatorname{cl}_{\omega(x)} J(f, E)+\left(\left\{U_{i} \mid \operatorname{div}\left(u_{i}\right) \subseteq E\right\}\right)\right) \geqslant 2
$$

III. 5 Proposition. Assume that $\kappa(x)=4$ and $\bar{\tau}(x)=2$. Then x is good.

Proof. Since $\bar{\tau}(x)=2$, we have $E=\operatorname{div}\left(u_{1}\right)$. Let $F_{j}:=\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} \frac{\partial f}{\partial u_{j}}\right)$, for $j=2,3$.
III.5.1 If $\epsilon(x)=1+\omega(x)$, then after possibly relabelling $\left(u_{2}, u_{3}\right)$, we may assume that $F_{2} \notin\left(U_{1}\right)$. If $F_{2}\left(0, U_{2}, U_{3}\right) \in k(x)\left[U_{2}\right]$, we have $\kappa(x)=3$. Otherwise, since $\bar{\tau}(x)=2$, we have

$$
F_{2}\left(0, U_{2}, U_{3}\right)=\mu_{2}\left(U_{3}+\alpha U_{2}\right)^{\omega(x)}
$$

for some $\alpha, \mu_{2} \in k(x), \mu_{2} \neq 0$. Once again, $\kappa(x)=3$ if $\alpha \neq 0$, so assume that $\alpha=0$. Since $\bar{\tau}(x)=2$, we have $F_{3}\left(0, U_{2}, U_{3}\right) \in k(x)\left[U_{3}\right]$, whence $\omega(x) \equiv 0 \bmod p$ and this proves that $\kappa(x)=2$.
III.5.2 If $\epsilon(x)=\omega(x)$, we write $f=H(x)\left(\Psi+\psi_{1}\right)$, where $\Psi \in k(x)\left[u_{1}, u_{2}, u_{3}\right]_{\omega(x)}$ and $\operatorname{ord}_{\eta(x)} \psi_{1} \geqslant$ $1+\omega(x)$. Let $\Psi_{1}:=\mathrm{cl}_{1+\omega(x)} \psi_{1}$. We have $\kappa(x) \leqslant 2$ whenever $\mathrm{cl}_{\omega(x)}\left(H(x)^{-1} D f\right) \notin k(x)\left[U_{1}\right]$ for some $D \in \mathcal{D}(x)$. Thus it can be assumed that $\operatorname{VDir}(x)=k(x) \cdot U_{1}$, so $\Psi=\lambda u_{1}^{\omega(x)}$ for some $\lambda \in k(x)$, $\lambda \neq 0$. Since $\bar{\tau}(x)=2$, we have $\kappa(x)=3$ as in III.5.1 except if $F_{2}\left(0, U_{2}, U_{3}\right)=\mu_{2} U_{3}^{\omega(x)}$ for some $\mu_{2} \in k(x), \mu_{2} \neq 0$, and $\omega(x) \equiv 0 \bmod p$, which we assume from now on. Note that the monomial $U_{2} U_{3}^{\omega(x)}$ necessarily appears with nonzero coefficient in the expansion of Ψ_{1}.

Let $e: X^{\prime} \rightarrow X$ be the blowing up along x and $x^{\prime} \in e^{-1}(x)$ be very near x. Since $\operatorname{VDir}(x)=$ $k(x) . U_{1}, x^{\prime}$ maps to the strict transform of $\operatorname{div}\left(u_{1}\right)$.

We first look at the point x^{\prime} with coordinates ($X^{\prime}=\frac{X}{u_{3}}, u_{1}^{\prime}=\frac{u_{1}}{u_{3}}, u_{2}^{\prime}=\frac{u_{2}}{u_{3}}, u_{3}^{\prime}=u_{3}$), so $E^{\prime}:=\left(e^{-1} E\right)_{\mathrm{red}}=\operatorname{div}\left(u_{1}^{\prime} u_{3}^{\prime}\right)$. This is the origin of a chart, so $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal, where $h^{\prime}:=u_{3}^{\prime-p} h=X^{\prime p}-X^{\prime} g^{\prime p-1}+f^{\prime}$. In the expansion of $H\left(x^{\prime}\right)^{-1} f^{\prime}$, there appears the monomial $u_{2}^{\prime} u_{3}^{\prime}$ with nonzero coefficient, so $\omega\left(x^{\prime}\right) \leqslant \operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} \frac{\partial f^{\prime}}{\partial u_{2}^{\prime}}\right)=1<p \leqslant \omega(x)$: a contradiction, since x^{\prime} is very near x.

We now consider the case where x^{\prime} is in the chart with origin $\left(X^{\prime}=\frac{X}{u_{2}}, u_{1}^{\prime}=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}=u_{2}, u_{3}^{\prime}=\right.$ $\left.\frac{u_{3}}{u_{2}}\right)$, so $E^{\prime}:=\left(e^{-1} E\right)_{\text {red }}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right)$. We have

$$
u_{2}^{\prime-\omega(x)+1} H(x)^{-1} \frac{\partial f}{\partial u_{2}} \in J\left(f^{\prime}, E^{\prime}\right),
$$

where $h^{\prime}:=u_{2}^{\prime-p} h=X^{\prime p}-X^{\prime} g^{\prime p-1}+f^{\prime}$.
We pick $P \in k(x)\left[u_{2}, u_{3}\right]$ homogeneous and unitary in u_{3} such that $x^{\prime}=\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}:=\right.$ $\left.P\left(1, u_{3}^{\prime}\right)\right)$. After possibly performing a translation $Z^{\prime}:=X^{\prime}-\theta^{\prime}$ in order to get $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime} ; Z^{\prime}\right)$ minimal, there is an expression $h^{\prime}=Z^{\prime p}-Z^{\prime} g^{\prime p-1}+f_{Z^{\prime}}^{\prime}$ with

$$
u_{2}^{\prime-\omega(x)+1} H(x)^{-1} \frac{\partial f}{\partial u_{2}} \in J\left(f_{Z^{\prime}}^{\prime}, E^{\prime}\right)+\left(u_{1}^{\prime}\right),
$$

since $\operatorname{ord}_{\eta(x)} g^{p}>\operatorname{ord}_{\eta(x)} f$.
If x^{\prime} is not rational over x, we have

$$
\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(u_{2}^{\prime-\omega(x)+1} H(x)^{-1} \frac{\partial f}{\partial u_{2}}\right) \leqslant 1+\frac{\omega(x)}{2},
$$

so $\omega\left(x^{\prime}\right)<\omega(x)$ except possibly if $p=2=\omega(x)$. In this last case, since $\omega\left(x^{\prime}\right)=\omega(x)=2$, there is a derivation $D^{\prime} \in \mathcal{D}^{\prime}$ such that

$$
\mathrm{cl}_{2}\left(H\left(x^{\prime}\right)^{-1} D^{\prime} f_{Z^{\prime}}^{\prime}\right)=\mu U_{2}^{\prime} V^{\prime}+\nu U_{2}^{\prime 2}+U_{1}^{\prime} \Psi^{\prime}
$$

where $\mu, \nu \in k\left(x^{\prime}\right), \mu \neq 0$, and $\Psi^{\prime} \in k\left(x^{\prime}\right)\left[U_{2}^{\prime}, V^{\prime}\right]_{1}$. As $p=2, D^{\prime} \neq \frac{\partial}{\partial v^{\prime}}$ and we thus have $H\left(x^{\prime}\right)^{-1} D^{\prime} f_{Z^{\prime}}^{\prime} \in J\left(f_{Z^{\prime}}^{\prime}, E^{\prime}, x^{\prime}\right)$. So $\omega\left(x^{\prime}\right) \leqslant \operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(H\left(x^{\prime}\right)^{-1} \frac{\partial f^{\prime}}{\partial v^{\prime}}\right)=1$: a contradiction. This proves that x^{\prime} is rational over x.

If x^{\prime} is rational over x, then after changing u_{3} into $v:=u_{3}+\mu u_{2}$ for some $\mu \in k(x)$, followed by a translation on $Z:=X-\theta$ in order to get $\Delta\left(h ; u_{1}, u_{2}, v ; Z\right)$ minimal, it can be assumed that x^{\prime} is the origin of the chart, the assumption in the proposition being unchanged. Then $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal and we have

$$
f^{\prime}=u_{1}^{\prime a(1)} u_{2}^{\prime a(1)+\omega(x)-p}\left(\lambda u_{1}^{\prime \omega(x)}+u_{2}^{\prime} \psi^{\prime}\right)
$$

Since the monomial $U_{2} U_{3}^{\omega(x)}$ appears with nonzero coefficient in the expansion of Ψ_{1}, x^{\prime} satisfies the assumption of lemma III. 1 and the conclusion follows.
III. 6 Proposition. Assume that $\kappa(x)=4$ and $\bar{\tau}(x)=3$. Then x is good.

Proof. If $E=\operatorname{div}\left(u_{1} u_{2}\right)$, then $\kappa(x) \in\{2,3\}$ (resp. $\kappa(x)=3$) if $\epsilon(x)=\omega(x)$ (resp. if $\epsilon(x)=1+\omega(x)$). We assume from now on that $E=\operatorname{div}\left(u_{1}\right)$.
III.6.1 If $\epsilon(x)=\omega(x)$, we write $f=H(x)\left(\Psi+\psi_{1}\right)$, where $\Psi \in k(x)\left[u_{1}, u_{2}, u_{3}\right]_{\omega(x)}$ and $\operatorname{ord}_{\eta(x)} \psi_{1} \geqslant$ $1+\omega(x)$. Let $\Psi_{1}:=\operatorname{cl}_{1+\omega(x)} \psi_{1}=Q\left(U_{2}, U_{3}\right)+U_{1} \Psi_{2}\left(U_{1}, U_{2}, U_{3}\right)$. We have $\kappa(x) \leqslant 2$ unless $\operatorname{VDir}(x)=k(x) \cdot U_{1}$, i.e. $\Psi=\lambda U_{1}^{\omega(x)}$ for some $\lambda \in k(x), \lambda \neq 0$. Since $\bar{\tau}(x)=3$, we have

$$
\begin{equation*}
\operatorname{VDir}\left(\frac{\partial Q}{\partial U_{2}}, \frac{\partial Q}{\partial U_{3}}\right)=<U_{2}, U_{3}> \tag{1}
\end{equation*}
$$

Let $e: X^{\prime} \rightarrow X$ be the blowing up along x and $x^{\prime} \in e^{-1}(x)$ be very near x. Since $\operatorname{VDir}(x)=$ $k(x) . U_{1}, x^{\prime}$ maps to the strict transform of $\operatorname{div}\left(u_{1}\right)$. By symmetry, it can be assumed that x^{\prime} is in the chart with origin $\left(X^{\prime}=\frac{X}{u_{2}}, u_{1}^{\prime}=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}=u_{2}, u_{3}^{\prime}=\frac{u_{3}}{u_{2}}\right)$, so $E^{\prime}:=\left(e^{-1} E\right)_{\text {red }}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right)$. We have

$$
u_{2}^{\prime-\omega(x)+1} H(x)^{-1}\left(\frac{\partial f}{\partial u_{2}}, \frac{\partial f}{\partial u_{3}}\right) \subseteq J\left(f^{\prime}, E^{\prime}\right)
$$

where $h^{\prime}:=u_{2}^{\prime-p} h=X^{\prime p}-X^{\prime} g^{\prime p-1}+f^{\prime}$. We pick $P \in k(x)\left[u_{2}, u_{3}\right]$ homogeneous and unitary in u_{3} such that $x^{\prime}=\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime}:=P\left(1, u_{3}^{\prime}\right)\right)$. After possibly performing a translation $Z^{\prime}:=X^{\prime}-\theta^{\prime}$ in order to get $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, v^{\prime} ; Z^{\prime}\right)$ minimal, we have an expression $h^{\prime}=Z^{\prime p}-Z^{\prime} g^{\prime p-1}+f_{Z^{\prime}}^{\prime}$ with

$$
\begin{equation*}
u_{2}^{\prime-\omega(x)+1} H(x)^{-1}\left(\frac{\partial f}{\partial u_{2}}, \frac{\partial f}{\partial u_{3}}\right) \in J\left(f_{Z^{\prime}}^{\prime}, E^{\prime}\right)+\left(u_{1}^{\prime} u_{2}^{\prime}\right), \tag{2}
\end{equation*}
$$

since $\operatorname{ord}_{\eta(x)} g^{p}>\operatorname{ord}_{\eta(x)} f$. By (1), we have

$$
\begin{equation*}
u_{2}^{\prime-\omega(x)+1} H(x)^{-1}\left(\frac{\partial f}{\partial u_{2}}, \frac{\partial f}{\partial u_{3}}\right) \equiv \gamma^{\prime} u_{2}^{\prime} v^{\omega(x)-1} \bmod u_{2}^{\prime}\left(u_{1}^{\prime}, u_{2}^{\prime}\right), \tag{3}
\end{equation*}
$$

where γ^{\prime} is a unit, since x^{\prime} is very near x.
If $\omega(x)=1,(2)$ and (3) imply that $\left(u_{2}^{\prime}\right) \subseteq J\left(f_{Z^{\prime}}^{\prime}, E^{\prime}\right)$. On the other hand, we have

$$
u_{2}^{\prime-1} J(f, E, x) \equiv\left(u_{1}^{\prime}\right) \bmod \left(u_{2}^{\prime}\right)
$$

Since $H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime} \in\left(u_{1}^{\prime}, u_{2}^{\prime}\right)$, we get

$$
\left(u_{1}^{\prime}, u_{2}^{\prime}\right)=J\left(f_{Z^{\prime}}^{\prime}, E^{\prime}\right)=J\left(f_{Z^{\prime}}^{\prime}, E^{\prime}, Y^{\prime}\right)
$$

where $Y^{\prime}:=V\left(Z^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}\right)$. This property implies in particular that Y^{\prime} is permissible of the first kind since $H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime} \in\left(u_{1}^{\prime}, u_{2}^{\prime}\right)$ and that no point of the blowing up of X^{\prime} along Y^{\prime} is very near x^{\prime}, so x is good by II.5.4.2 (ii) of chapter 1 .

If x^{\prime} is not rational over x, then

$$
\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(u_{2}^{\prime-\omega(x)+1} H(x)^{-1}\left(\frac{\partial f}{\partial u_{2}}, \frac{\partial f}{\partial u_{3}}\right)\right) \leqslant 1+\frac{\omega(x)}{2},
$$

so $\omega\left(x^{\prime}\right)<\omega(x)$ except possibly if $\omega(x)=2$ and $\left[k\left(x^{\prime}\right): k(x)\right]=2$. In this last case, one contradicts the assumption that x^{\prime} is very near x as in the proof of III. 5 if $p=2$. If $p \geqslant 3$, we have $\kappa\left(x^{\prime}\right)=2$ if $\mathrm{cl}_{2}\left(H\left(x^{\prime}\right)^{-1} f_{Z^{\prime}}^{\prime}\right) \notin k\left(x^{\prime}\right)\left[U_{1}^{\prime}, U_{2}^{\prime}\right]$. Otherwise, we have

$$
\operatorname{cl}_{2}\left(H\left(x^{\prime}\right)^{-1} \frac{\partial f_{Z^{\prime}}^{\prime}}{\partial v^{\prime}}\right)=\mu U_{2}^{\prime} V^{\prime}+\nu U_{2}^{\prime 2}+U_{1}^{\prime} \Psi^{\prime}
$$

where $\mu, \nu \in k\left(x^{\prime}\right), \mu \neq 0$, and $\Psi^{\prime} \in k\left(x^{\prime}\right)\left[U_{2}^{\prime}, V^{\prime}\right]_{1}$. Since $p \geqslant 3, k\left(x^{\prime}\right) / k(x)$ is separable, so $\lambda H\left(x^{\prime}\right) u_{1}^{\prime 2} \notin\left(k\left(x^{\prime}\right)\left[\left[u_{1}^{\prime}, u_{2}^{\prime}\right]\right]\right)^{p}$ since $\lambda H(x) u_{1}^{2} \notin\left(k(x)\left[\left[u_{1}, u_{2}\right]\right]\right)^{p}$. Hence x^{\prime} satisfies the assumption of lemma III. 1 and the conclusion follows if x^{\prime} is not rational over x.

Assume now that x^{\prime} is rational over x. After performing a linear change of coordinates on $\left(u_{2}, u_{3}\right)$, followed by a translation $Z:=X-\theta$ in order to get $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; Z\right)$ minimal, it can be assumed that x^{\prime} is the origin of the chart, equation (1) remaining valid. Then $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal and we have

$$
\begin{equation*}
f^{\prime}={u_{1}^{\prime a(1)} u_{2}^{\prime a(1)+\omega(x)-p}\left(\lambda u_{1}^{\prime \omega(x)}+u_{2}^{\prime} \psi^{\prime}\right) . ~ . ~}_{\text {and }} \tag{4}
\end{equation*}
$$

It can be assumed that $\mathrm{cl}_{\omega(x)}\left(u_{2}^{\prime} \psi^{\prime}\right) \in k\left(x^{\prime}\right)\left[U_{1}^{\prime}, U_{2}^{\prime}\right]$, since otherwise $\kappa(x)=2$. By (2) and (3) above, we then have

$$
\begin{equation*}
H\left(x^{\prime}\right)^{-1} \frac{\partial f^{\prime}}{\partial u_{3}^{\prime}} \equiv \gamma^{\prime} u_{2}^{\prime} u_{3}^{\prime \omega(x)-1} \bmod \left(u_{1}^{\prime}, u_{2}^{\prime 2}\right), \tag{5}
\end{equation*}
$$

so in particular $\omega(x) \not \equiv 0 \bmod p$ and x^{\prime} satisfies the assumption of lemma III.1, from which the conclusion follows.
III.6.2 If $\epsilon(x)=1+\omega(x)$, then, after possibly performing a linear change of coordinates on (u_{2}, u_{3}) and a translation $Z=X-\theta$ in order to get $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; Z\right)$ minimal, it can be assumed that $<$ $U_{2}, U_{3}>\subseteq \operatorname{VDir}(x)$, since $\bar{\tau}(x)=3$. We are done if $\tau(x)=3$, so assume that $\operatorname{VDir}(x)=<U_{2}, U_{3}>$.

Let $e: X^{\prime} \rightarrow X$ be the blowing up along x and $x^{\prime} \in e^{-1}(x)$ be very near x. Then x^{\prime} has coordinates ($X^{\prime}=\frac{X}{u_{1}}, u_{1}^{\prime}=u_{1}, u_{2}^{\prime}=\frac{u_{2}}{u_{1}}, u_{3}^{\prime}=\frac{u_{3}}{u_{1}}$) and we have $E^{\prime}:=\left(e^{-1} E\right)_{\text {red }}=\operatorname{div}\left(u_{1}^{\prime}\right)$. This is the origin of a chart, so $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal, where $h^{\prime}:=u_{1}^{\prime-p} h=X^{\prime p}-X^{\prime} g^{\prime p-1}+f^{\prime}$. If $\epsilon\left(x^{\prime}\right)=\omega\left(x^{\prime}\right)$, we are done by III.6.1. Otherwise, we have $\epsilon\left(x^{\prime}\right)=1+\omega\left(x^{\prime}\right)$ and $\bar{\tau}\left(x^{\prime}\right)=3$, so we may iterate. Let

$$
X=X_{0} \leftarrow X_{1} \leftarrow \cdots \leftarrow X_{n} \leftarrow \cdots
$$

be the quadratic sequence along μ. If x is not good, we build up a formal curve $\mathcal{C}:=V\left(\widehat{X}, \widehat{u}_{2}^{\prime}, \widehat{u}_{3}^{\prime}\right)$, $\widehat{X}:=X-\sum_{n \geqslant 1} \lambda_{n} u_{1}^{n}$ and $\widehat{u}_{j}^{\prime}:=u_{j}-\sum_{n \geqslant 1} \mu_{n, j} u_{1}^{n}$ for $j=2,3$ such that the center x_{n} of μ in X_{n} lies on the strict transform of \mathcal{C}. Since $\Sigma(X) \subseteq \eta^{-1} E$ and $\mathcal{C} \not \subset E, x_{n}$ is a regular point of X_{n} for $n \gg 0$: a contradiction.

CHAPTER 4: Resolution when there is tangentness

$\underline{\text { I Case }} \kappa(x)=5$
This case is very closed to $\kappa(x)=2$, the invariants are the same, up to a permutation on the indices of $\left(u_{1}, u_{2}, u_{3}\right)$ and the fact that u_{1} which, for $\kappa(x)=4$, plays the role of u_{3} for $\kappa(x)=2$ may divide $H(x)^{-1} g^{p}$. There is a fantastic simplification: div $\left(u_{1}\right)$ has maximal contact for $\kappa(x)=4$. This assertion will be precised in I.3.
I. 1 Definition of $\kappa(x)=5$. We say that $\kappa(x)=5$ if $\Omega(x)=(\omega(x), 2)$ and $\operatorname{div}\left(u_{1}\right) \subset E$ and there is a derivation $D \in \mathcal{D}$ with $H(x)^{-1} D f \equiv u_{1}^{\omega(x)} \bmod \left(u_{2}, u_{3}\right)$ and, if $D(\mathfrak{M}) \not \subset \mathfrak{M}, \epsilon(x)=1+\omega(x)$.

As usual, assume that $\kappa(x)=5$. We say that x is good if there exists a sequence of permissible blowing-ups,

$$
X=: X_{0} \leftarrow X_{1} \leftarrow \cdots \leftarrow X_{n}
$$

such that either x_{n} is not very near x or $\left(\Omega(x)=\Omega\left(x_{n}\right)\right.$ and $\left.\kappa\left(x_{n}\right) \leqslant 4\right)$, where $x_{n} \in X_{n}$ is the center of μ.

We do not suppose $\kappa\left(x_{i}\right) \leqslant 5$ for $1 \leqslant i<n$.
I. 2 Notations We say that $\left(X, u_{1}, u_{2}, u_{3}\right)$ is prepared if the polyhedra $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal and $u_{i} \in S$ when $\operatorname{div}\left(u_{i}\right) \subset E, E \subset \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$.

There are three different subcases:
case $\left({ }^{*} 1\right): D(\mathfrak{M}) \subset \mathfrak{M}, m(x)=1$ or $m(x)=2$,
case $\left({ }^{*} 2\right): D(\mathfrak{M}) \subset \mathfrak{M}, m(x)=3$,
case $\left({ }^{*} 3\right): D(\mathfrak{M}) \not \subset \mathfrak{M}$.
When $m(x) \leqslant 2($ cases 1,3$)$, we suppose $E \subset \operatorname{div}\left(u_{1} u_{2}\right)$. In all cases, $H(x)^{-1} f=u_{1}^{\omega(x)} \phi_{0} \bmod \left(u_{2}, u_{3}\right)$ with $\phi_{0} \in \widehat{S}$. In the first and second cases, ϕ_{0} is invertible. In case $3, D\left(\phi_{0}\right)$ invertible, we choose the indices so that $E \subset \operatorname{div}\left(u_{1} u_{2}\right): \phi_{0}=\gamma_{1} u_{1}+\gamma_{2} u_{2}+\gamma_{3} u_{3}, \gamma_{i} \in \widehat{S}, i=1,2,3, \gamma_{3}$ invertible and $\operatorname{div}\left(u_{3}\right) \not \subset E$.

We make the following expansion:

$$
H(x)^{-1} f=u_{1}^{\omega(x)} \phi_{0}+\sum_{1 \leqslant i \leqslant \omega(x)} u_{1}^{\omega(x)-i} \phi_{i}\left(u_{2}, u_{3}\right),
$$

where $\phi_{i}\left(u_{2}, u_{3}\right) \in k(x)\left[\left[u_{2}, u_{3}\right]\right], 1 \leqslant i \leqslant \omega(x)$.
We set $H(x)^{-1} g^{p}=\gamma u_{1}^{a} u_{2}^{b} u_{3}^{c}, \phi_{i}=u_{2}^{b(i)} u_{3}^{c(i)} \psi_{i}, 1 \leqslant i \leqslant \omega(x), \psi_{i}\left(u_{2}, u_{3}\right) \in k(x)\left[\left[u_{2}, u_{3}\right]\right]$, $\psi_{i}=0$ or divisible neither by u_{2}, nor by $u_{3}, \gamma=0$ or γ invertible, $d(i)=\operatorname{ord}_{\left(u_{2}, u_{3}\right)}\left(\psi_{i}\right)$. If $\psi_{i}=0$, by convention, $b(i)=c(i)=d(i)=\infty$.
I.2.1 Cases (${ }^{*} 1$) or (${ }^{*} 2$).

As for $\kappa(x)=2$, we set
If $a<\omega(x)$,
$A_{2}=\inf \left\{\frac{b}{\omega(x)-a}, \frac{b(i)}{i}, 1 \leqslant i \leqslant \omega(x)\right\}$,
$A_{3}=\inf \left\{\frac{c}{\omega(x)-a}, \frac{c(i)}{i}, 1 \leqslant i \leqslant \omega(x)\right\}$,
$B=\inf \left\{\frac{\operatorname{ord}_{\left(u_{2}, u_{3}\right)}\left(H(x)^{-1} g^{p}\right)}{\omega(x)-a}, \frac{\operatorname{ord}_{\left(u_{2}, u_{3}\right)}\left(\phi_{i}\right)}{i}, 1 \leqslant i \leqslant \omega(x)\right\}$,
if $A_{2}=\frac{b}{\omega(x)-a}, \beta:=\inf \left\{\frac{c}{\omega(x)-a}, \frac{\operatorname{ord}_{u_{3}}\left(\phi_{i} \bmod u_{2}^{i A_{2}}\right)}{i}, 1 \leqslant i \leqslant \omega(x)\right\}$,
if $A_{2} \neq \frac{b}{\omega(x)-a}, \beta:=\inf \left\{\frac{\operatorname{ord}_{u_{3}}\left(\phi_{i} \bmod u_{2}^{i A_{2}}\right)}{i}, 1 \leqslant i \leqslant \omega(x)\right\}$.
If $a \geqslant \omega(x)$ (for example, if $g=0$),

$$
\begin{aligned}
& A_{2}=\inf \left\{\frac{b(i)}{i}, 1 \leqslant i \leqslant \omega(x)\right\}, A_{3}=\inf \left\{\frac{c(i)}{i}, 1 \leqslant i \leqslant \omega(x)\right\} \\
& B=\inf \left\{\frac{\operatorname{ord}_{\left(u_{2}, u_{3}\right)}\left(\phi_{i}\right)}{i}, 1 \leqslant i \leqslant \omega(x)\right\} \\
& \beta:=\inf \left\{\frac{\left.\operatorname{ord}_{u_{3}\left(\phi_{i} \bmod u_{2}^{i A_{2}}\right)}^{i}, 1 \leqslant i \leqslant \omega(x)\right\}}{i}\right.
\end{aligned}
$$

With the convention $\operatorname{ord}_{u_{3}}\left(\phi_{i}\right) \bmod u_{2}^{i A_{2}}=+\infty$ if $\frac{\operatorname{ord}_{u_{2}}\left(\phi_{i}\right)}{i}>A_{2}$.
In every case $C:=B-A_{2}-A_{3}$.

I.2.2 Case $\left({ }^{*} 3\right)$.

If $a<\omega(x)$,

$$
\begin{aligned}
& \left.A_{2}=\inf \left\{\frac{b}{\omega(x)-a}, \frac{b(i)}{i}, 1 \leqslant i \leqslant \omega(x)\right\}, A 3_{3}=\inf \left\{\frac{-1}{\omega(x)-a}, \frac{c(i)-1}{i}, 1 \leqslant i \leqslant \omega(x)\right\}\right\} \\
& B 3=\inf \left\{\frac{\operatorname{ord}_{\left(u_{2}, u_{3}\right)}\left(H(x)^{-1} g^{p}\right)-1}{\omega(x)-a}, \frac{\operatorname{ord}_{\left(u_{2}, u_{3}\right)}\left(\phi_{i}\right)-1}{i}, 1 \leqslant i \leqslant \omega(x)\right\} \\
& \text { if } A_{2}=\frac{b}{\omega(x)-a}, \beta 3:=\inf \left\{\frac{c-1}{\omega(x)-a}, \frac{\operatorname{ord}_{u_{3}}\left(\phi_{i} \bmod u_{2}^{i A_{2}}\right)-1}{i}, 1 \leqslant i \leqslant \omega(x)\right\} \\
& \text { if } A_{2} \neq \frac{b}{\omega(x)-a}, \beta 3:=\inf \left\{\frac{\left.\operatorname{ord}_{u_{3}\left(\phi_{i} \bmod u_{2}^{i A_{2}}\right)-1}^{i}, 1 \leqslant i \leqslant \omega(x)\right\}}{i}\right.
\end{aligned}
$$

If $a \geqslant \omega(x)$ (for example, if $g=0$),

$$
\begin{aligned}
& A_{2}=\inf \left\{\frac{b(i)}{i}, 1 \leqslant i \leqslant \omega(x)\right\}, A 3_{3}=\inf \left\{\frac{c(i)-1}{i}, 1 \leqslant i \leqslant \omega(x)\right\} \\
& B 3=\inf \left\{\frac{\operatorname{ord}_{\left(u_{2}, u_{3}\right)}\left(\phi_{i}\right)-1}{i}, 1 \leqslant i \leqslant \omega(x)\right\} \\
& \beta 3:=\inf \left\{\frac{\operatorname{ord}_{u_{3}}\left(\phi_{i} \bmod u_{2}^{i A_{2}}\right)-1}{i}, 1 \leqslant i \leqslant \omega(x)\right\}
\end{aligned}
$$

In every case, we call i_{1} or $i_{1}(x)$ the smallest i, $1 \leqslant i \leqslant \omega(x)$, such that the monomial $\lambda_{\omega(x)-i, i A_{1}(x), i \beta 3(x)} u_{1}^{\omega(x)-i} u_{2}^{i A_{1}(x)} u_{3}^{i \beta 3(x)}$ appears in the expansion of $H(x)^{-1} g^{p}$ or of $H(x)^{-1} f$ with $H(x) \lambda_{\omega(x)-i, i A_{1}(x), i \beta 3(x)} u_{1}^{\omega(x)-i} u_{2}^{i A_{1}(x)} u_{3}^{i \beta 3(x)}$ not a p-power, $\lambda_{\omega(x)-i, i A_{1}(x), i \beta 3(x)} \in k(x)-\{0\}$.
I.2.3 In cases $\left({ }^{*} 1\right)\left({ }^{*} 2\right)\left(\right.$ resp. $\left.\left({ }^{*} 3\right)\right)$, the vertices of the side of points $x=\left(x_{2}, x_{3}\right)$ of $\Delta\left(H(x)^{-1}\left(f, g^{p}\right) ; u_{2}, u_{3} ; u_{1}\right)$ (resp. $\Delta\left(H(x)^{-1} u_{2}^{-1}\left(f, g^{p}\right) ; u_{2}, u_{3} ; u_{1}\right)$) of equation $x_{2}+x_{3}=B$ (resp. $x_{2}+x_{3}=B 3$) are denoted $\left(\alpha_{2}, \beta_{2}\right)$ and $\left(\alpha_{3}, \beta_{3}\right), \alpha_{2} \leqslant \alpha_{3}$ (resp. $\left(\alpha 3_{2}, \beta 3_{2}\right)$ and $\left.\left(\alpha 3_{3}, \beta 3_{3}\right), \alpha 3_{2} \leqslant \alpha 3_{3}\right)$.

Obviously, C, A_{j}, i_{0}, B and β depend on the choice of prepared r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$, if there is no possible confusion, we write C or $C(x)$ instead $C\left(u_{1}, u_{2}, v\right), A_{j}$ or $A_{j}(x)$ instead of $A_{j}\left(u_{1}, u_{2}, v\right)$, $j=2,3$, etc.
I.2.4 Let $\gamma\left(u_{1}, u_{2}, u_{3}\right)=\sup (\lceil\beta\rceil, 1)$ in case $\left({ }^{*} 1\right), \gamma\left(u_{1}, u_{2}, u_{3}\right)=1+\lfloor C\rfloor$ in case $\left({ }^{*} 2\right), \gamma\left(u_{1}, u_{2}, u_{3}\right)=$ $1+\lfloor\beta 3\rfloor$ in case $\left({ }^{*} 3\right)$. We note $\gamma(x)=\gamma\left(u_{1}, u_{2}, u_{3}\right)$ for short.
I. 3 Theorem Assume $\kappa(x)=5$ and $\kappa(x)>4$. We blow up the origin, then all x^{\prime} above x with $\kappa\left(x^{\prime}\right) \geqslant 5$ are on the strict transform of $\operatorname{div}\left(u_{1}\right)$.

Furthermore, x is good or,
for all these $x^{\prime}, \kappa\left(x^{\prime}\right)=5$, and we have $\mathbf{I} .2$ for the r.s.p. of x^{\prime}

$$
Y=\left(X / u_{i}\right)+u_{i} \theta, u_{1} / u_{i}, u_{i}, P\left(1, u_{j} / u_{i}\right), \theta \in \widehat{S^{\prime}},\{i, j\}=\{2,3\}, P \in k(x)\left[U_{2}, U_{3}\right]
$$

P homogeneous and irreducible.
Moreover, if x is in case (${ }^{*} 1$) or (${ }^{*}$ 2 $)$ and $(a(1)+\omega(x) \neq 0 \bmod (p)$ or $a(2)+a(3) \neq 0 \bmod$ (p) or (x in case $\left({ }^{*} 1\right)$ and x^{\prime} separable over $\left.x\right)$), then x^{\prime} is in case (${ }^{*} 1$) or (*2).
Proof. Assume x^{\prime} is very near x is not on the strict transform of $\operatorname{div}\left(u_{1}\right)$, then $u_{j}^{-\omega(x)} H(x)^{-1} D f \in$ $J\left(f^{\prime}, E^{\prime}\right) \bmod \left(u_{j}\right), j=1,2,3$, as $i n_{x}\left(H(x)^{-1} D f\right)=U_{1}^{\omega(x)}+\sum_{1 \leqslant i \leqslant \omega(x)} U_{1}^{\omega(x)-i} F_{i}\left(U_{2}, U_{3}\right)$,
$u_{j}^{-\omega(x)} H(x)^{-1} D f=v^{\omega(x)}+\sum_{1 \leqslant i \leqslant \omega(x)} \lambda_{i} v^{\omega(x)-i} w^{i}$ where $X / u_{i}, v, w, u_{i}$ is a r.s.p. at x^{\prime} and v transverse to E^{\prime} : then $\kappa\left(x^{\prime}\right) \leqslant 4$. From now on, x^{\prime} is on the strict transform of $\operatorname{div}\left(u_{1}\right)$.
I.3.1 Case (${ }^{*}$) or (*2).

There is no problem at the origin of each chart. So we look at a point x^{\prime} in the chart of origin $\left(X^{\prime}=X / u_{2}, u_{1}^{\prime}=u_{1} / u_{2}, u_{2}^{\prime}=u_{2}, u_{3}^{\prime}=u_{3} / u_{2}\right), u_{3}^{\prime}\left(x^{\prime}\right) \neq 0$.

After a possible translation on X / u_{2}, we get, with usual notations: $H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{2} \phi+F\left(u_{1}^{\prime}, u_{3}^{\prime}\right)$ and $F\left(u_{1}^{\prime}, u_{3}^{\prime}\right)=\sum_{0 \leqslant i \leqslant \omega(x)} \lambda_{i} u_{1}^{\prime \omega(x)-i} v^{c(i)}$, where $v=P\left(1, u_{3}^{\prime}\right) \in k(x)\left[u_{3}^{\prime}\right], \lambda_{i} \in S^{\prime}, \lambda_{i}$ invertible or $0, \lambda_{0}$ invertible, $c(0)=0$ or 1 and $c(i) \geqslant i$.

When

$$
\begin{equation*}
\operatorname{ord}_{x^{\prime}}\left(u_{2} \phi\right) \geqslant \operatorname{ord}_{x^{\prime}}\left(F\left(u_{1}^{\prime}, u_{3}^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

we get the result. Else, we have

$$
\begin{align*}
a(1)+\omega(x) & =0 \bmod (p), a(2)+a(3)=0 \bmod (p) \tag{2}\\
\operatorname{ord}_{x^{\prime}}\left(u_{2} \phi\right) & =\omega(x), \operatorname{ord}_{x^{\prime}}\left(F\left(u_{1}^{\prime}, u_{3}^{\prime}\right)\right)=1+\omega(x) \tag{3}
\end{align*}
$$

When $\lambda_{i}=0$, for $i>0$, we have $\kappa\left(x^{\prime}\right) \leqslant 1$ by chapter 2 II.1. From now on, we suppose that one $\lambda_{i} \neq 0$, for $i>0$. Then, for some, $c(i)=i+1, a(1)+\omega(x)=0 \bmod (p)$, so $i=0 \bmod (p)$ and $\operatorname{ord}_{x^{\prime}}\left(\frac{\partial F\left(u_{1}^{\prime}, u_{3}^{\prime}\right)}{\partial v}\right)=\omega(x)$, so $\kappa\left(x^{\prime}\right) \leqslant 4$.
I.3.2 Case ($\left.{ }^{*} 3\right)$. After an eventual translation on X / u_{i} which becomes X^{\prime}, we get, with usual notations: $H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{i} \phi+F\left(u_{1}^{\prime}, u_{j}^{\prime}\right)$ and in the expansion of $F\left(u_{1}^{\prime}, u_{j}^{\prime}\right)$ there is the monomial $u_{1}^{\prime \omega(x)}$ or $u_{1}^{\prime \omega(x)} v$ where $v=P\left(1, u_{j}^{\prime}\right)$. We look only at the case $i=2, j=3$, the origin of the second chart is left to the reader. As above, we reach the case

$$
H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{2} \phi+F\left(u_{1}^{\prime}, u_{3}^{\prime}\right), \operatorname{ord}_{x^{\prime}}\left(u_{2} \phi\right)=\omega(x), \operatorname{ord}_{x^{\prime}}(F)=1+\omega(x)
$$

x^{\prime} rational over x. As $E \subset \operatorname{div}\left(u_{1} u_{2}\right)$,

$$
F\left(u_{1}^{\prime}, u_{3}^{\prime}\right)=\sum_{0 \leqslant i \leqslant \omega(x)} \lambda_{i} u_{1}^{\prime \omega(x)-i} v^{i+1}+\lambda^{\prime} u_{1}^{\prime \omega(x)+1}
$$

λ_{0} invertible, $\lambda_{i} \in S^{\prime}, \lambda^{\prime}, \lambda_{i}$ invertible or $=0$, if $\lambda_{i}=0$ for $i>0$, we get $\kappa\left(x^{\prime}\right) \leqslant 1$ by chapter 2 II.1. Else, if some $\lambda_{i} \neq 0$ for $i>0$, we want to prove that we have $\kappa\left(x^{\prime}\right) \leqslant 4$. We suppose $\kappa\left(x^{\prime}\right)>4$, then $\operatorname{in}_{x^{\prime}}\left(u_{2} \phi\right) \in k\left(x^{\prime}\right)\left[U_{1}^{\prime}, U_{2}^{\prime}\right]$.

We look first at the case where $x^{\prime \prime}$ is in the chart of origin $\left(X^{\prime \prime}=X^{\prime} / u_{1}^{\prime}, u_{1}^{\prime \prime}=u_{1}^{\prime}, u_{2}^{\prime \prime}=\right.$ $\left.u_{2}^{\prime} / u_{1}^{\prime}, v^{\prime}=v / u_{1}^{\prime}\right)$.

As $\kappa\left(x^{\prime}\right)>2$, as $x^{\prime \prime}$ is very near $x, \operatorname{in}_{x^{\prime}}\left(u_{2} \phi\right)=\gamma U_{2}^{\omega}(x), \gamma$ invertible. We get, after an possible translation on $X^{\prime \prime}$ to minimalize the characteristic polyhedra of $u_{1}^{\prime-p} h^{\prime}$:

$$
f^{\prime \prime}=u_{1}^{\prime \prime a} u_{2}^{\prime \prime b}\left(u_{2}^{\prime \prime} \phi^{\prime \prime}+\gamma^{\prime} u_{1}^{\prime \prime} w^{e}\right), \gamma^{\prime} \text { invertible }
$$

$\operatorname{ord}_{x^{\prime \prime}}\left(u_{2} \phi^{\prime \prime}\right)=\omega(x)$ when $x^{\prime \prime}$ is separable over x^{\prime} or $a \neq 0 \bmod p$ or $b \neq 0 \bmod p$.
As $x^{\prime \prime}$ is very near to $x, \operatorname{ord}_{x^{\prime \prime}}\left(H\left(x^{\prime \prime}\right)^{-1} g^{\prime \prime}\right) \geqslant 1+\omega(x)$. When $\operatorname{ord}_{x^{\prime \prime}}\left(H\left(x^{\prime \prime}\right)^{-1} g^{\prime \prime}\right)=1+\omega(x)$, the reader sees that $\kappa\left(x^{\prime \prime}\right) \leqslant 1$. From now on, $\operatorname{ord}_{x^{\prime \prime}}\left(H\left(x^{\prime \prime}\right)^{-1} g^{\prime \prime}\right)>1+\omega(x)$, so the possible translation on $X^{\prime \prime}$ to minimalize the characteristic polyhedra of $u_{1}^{\prime-p} h^{\prime}$ just adds p-powers modulo $\mathfrak{M}^{\prime \prime 2+\omega(x)}$ to $f^{\prime}:=u_{1}^{\prime \prime-p} f$. As $\frac{\partial F\left(u_{1}^{\prime}, u_{3}^{\prime}\right)}{\partial v} \neq 0$, its order is $\omega(x)$, the extension D of $\frac{\partial}{\partial v}$ is in $\mathcal{D}\left(E^{\prime \prime}\right)$, as $u_{1}^{\prime \prime-\omega(x)+1} \frac{\partial F\left(u_{1}^{\prime}, u_{3}^{\prime}\right)}{\partial v}=u_{1}^{\prime \prime} w^{c} \times$ invertible with $c \leqslant \frac{\omega(x)}{d}$ where d is the degree of the residual extension, we get $e \leqslant 1+c \leqslant 1+\frac{\omega(x)}{d}$. If all are equal, then $\operatorname{in}_{x^{\prime}}\left(\frac{\partial F\left(u_{1}^{\prime}, u_{3}^{\prime}\right)}{\partial v}\right)$ is equal,
up to a multiplication by an invertible, to a power of an irreducible homogeneous polynomial of $k\left(x^{\prime}\right)\left[U_{1}^{\prime}, V\right]$, as $\operatorname{ord}_{v}\left(\mathrm{in}_{x^{\prime}} F\left(u_{1}^{\prime}, u_{3}^{\prime}\right)\right)<\omega(x)$, this implies $\operatorname{deg}_{v}\left(\mathrm{in}_{x^{\prime}} F\left(u_{1}^{\prime}, u_{3}^{\prime}\right)\right)=1+\omega(x): \kappa\left(x^{\prime}\right) \leqslant 3$. A contradiction. So $e<1+\frac{\omega(x)}{d}, e \leqslant \omega(x)$. So when $\operatorname{ord}_{x^{\prime \prime}}\left(u_{2} \phi^{\prime \prime}\right)=\omega(x)$, we get $\kappa\left(x^{\prime \prime}\right) \leqslant 2$ by chapter 2, II.1.

Let us look at the case where $x^{\prime \prime}$ is not rational over $x, \operatorname{ord}_{x^{\prime \prime}}\left(u_{2} \phi^{\prime \prime}\right)=\omega(x)+1$. Then $e<1+\frac{\omega(x)}{d}$ and $x^{\prime \prime}$ very near to x lead to $e \neq 0 \bmod p, \omega\left(x^{\prime \prime}\right)=1$, $e=0$ or 1 . In both cases $F\left(u_{1}^{\prime}, u_{3}^{\prime}\right)=\lambda u_{1}^{\prime} v+\lambda^{\prime} u_{1}^{\prime \omega(x)+1} \bmod \left(u_{2}^{\prime}\right), \lambda$ invertible, by chapter $2, \mathbf{I I} .1, \kappa\left(x^{\prime}\right) \leqslant 1$, a contradiction.

At the origin of the other chart, we denote $X^{\prime \prime}=X^{\prime} / v, v_{1}=u_{1}^{\prime} / v, v_{2}=u_{2}^{\prime} / v, v_{3}=v$, then when $x^{\prime \prime}$ is very near to x,

$$
v^{-\omega(x)+1} H^{-1} \frac{\partial f^{\prime}}{\partial v}=v_{3} \psi \in J\left(f^{\prime \prime}, E^{\prime}\right)=J\left(f^{\prime \prime}, E^{\prime \prime}, x^{\prime \prime}\right)
$$

with $\psi \in S^{\prime \prime}, \operatorname{ord}_{x^{\prime \prime}}(\psi)=\omega(x)-1$, so $V_{3} \in \operatorname{VDir}\left(x^{\prime \prime}\right)$, the reader will see that $\tau\left(x^{\prime \prime}\right)=3$ and will end the proof.

Proof of the last assertion. Assume x is in Case (${ }^{*} 1$) or (${ }^{* 2}$) and ($a(1)+\omega(x) \neq 0 \bmod (p)$ or $a(2)+a(3) \neq 0 \bmod (p)$ or (x in case (${ }^{*} 1$) and x^{\prime} separable over $\left.x\right)$).

The last assertion is clear when x^{\prime} is the origin of a chart. Else, x^{\prime} is in the chart of origin $\left(X^{\prime}=X / u_{2}, u_{1}^{\prime}=u_{1} / u_{2}, u_{2}^{\prime}=u_{2}, u_{3}^{\prime}=u_{3} / u_{2}\right)$ and $X^{\prime}\left(x^{\prime}\right)=u_{1}^{\prime}\left(x^{\prime}\right)=0, u_{3}^{\prime}\left(x^{\prime}\right) \neq 0$. Then, in f^{\prime} appears the monomial

$$
{u_{1}^{\prime}}^{a(1)}{u_{2}^{\prime}}^{a(1)+a(2)+a(3)+\omega(x)-p} u_{3}^{\prime a(3)} \times \phi_{0} u_{1}^{\prime \omega(x)}=u_{2}{ }^{-p} \times u_{1}{ }^{a(1)} u_{2}^{a(2)} u_{3}{ }^{a(3)} \times \phi_{0} u_{1}{ }^{\omega(x)},
$$

ϕ_{0} invertible. If $a(1)+\omega(x) \neq 0 \bmod (p)$ or $a(2)+a(3) \neq 0 \bmod (p)$, this monomial will not be spoilt by any translation on X^{\prime}, else, $\bar{\phi}_{0}$ is not a $p^{\text {th }}$-power in $k(x)$, if x is in case $\left(^{*} 1\right)$ and x^{\prime} is separable over $x, a(3)=0$, again, no translation will touch this monomial.
I.3.3 Theorem Let us suppose $\kappa(x)=5$, $\operatorname{div}\left(u_{1} u_{2}\right) \subset E, x$ not good and $A_{2}(x) \geqslant 1$, in addition, we suppose $A_{2}(x)>1$ or $\beta(x) \leqslant 1$ if x is in case (${ }^{*} 3$).

Then $V\left(X, u_{1}, u_{2}\right)$ is not formal, is permissible. We blow it up.
Then the point $x^{\prime}=\left(\frac{X}{u_{2}}, \frac{u_{1}}{u_{2}}, u_{2}, u_{3}\right)=\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ is the only point above x which may be very near to x with $\kappa\left(x^{\prime}\right)^{2} \geqslant 5$, if it is, then $\kappa\left(x^{\prime}\right) \leqslant 5$, if $\kappa\left(x^{\prime}\right)=5$, then if x is in case (${ }^{*}$), $i=1,2,3, x^{\prime}$ is in case $\left({ }^{*} i\right),\left(A_{2}\left(x^{\prime}\right), \beta\left(x^{\prime}\right)\right)=\left(A_{2}(x)-1, \beta(x)\right)$ and, in case $\left({ }^{*} 3\right),\left(A_{2}\left(x^{\prime}\right), \beta 3\left(x^{\prime}\right)\right)=$ $\left(A_{2}(x)-1, \beta 3(x)\right)$.

Furthermore, $\operatorname{IDir}(x)=\left(U_{1}\right)$.
Proof.
It is clear that $\mathrm{V}\left(X, u_{1}, u_{2}\right)$ is $\operatorname{div}\left(u_{1}\right) \cap \operatorname{div}\left(u_{2}\right) \cap\{h=0\}$: it is not formal. $\operatorname{So} \mathrm{V}\left(X, u_{1}, u_{2}\right)$ is permissible.

We have

$$
H(x)^{-1} f \in\left(u_{1}, u_{2}\right) .
$$

So $U_{1} \in \operatorname{IDir}(x) \bmod \left(U_{2}\right)$.
If $U_{1} \notin \operatorname{IDir}(x)$, then $\operatorname{IDir}\left(H(x)^{-1} D f\right)=\left(U_{1}+\lambda U_{2}\right), \lambda \in k(x)-\{0\}$, for some $D \in \mathcal{D}$, $D(\mathfrak{M}) \subset \mathfrak{M}$ in cases $\left({ }^{*} 1\right)\left({ }^{*} 2\right)$. We have just to look at the chart where u_{1} generates the exceptional divisor: $u_{1}^{-\omega(x)} H(x)^{-1} D f=\left(1+\lambda u_{2} / u_{1}\right)^{\omega(x)} \bmod \left(u_{1}\right),\left(1+\lambda u_{2} / u_{1}\right)\left(x^{\prime}\right)=0, \kappa\left(x^{\prime}\right) \leqslant 4$.

The remaining case is when $U_{1} \in \operatorname{IDir}(x)$. The only point x^{\prime} we have to look at has

$$
\left(\frac{X}{u_{2}}, \frac{u_{1}}{u_{2}}, u_{2}, u_{3}\right)=\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)
$$

for parameters. We are at the origin of a chart, etc. The only difficult case is when x is in case (*3) and $\epsilon\left(x^{\prime}\right)=\omega(x)$ and x^{\prime} very near to x.

Then

$$
\operatorname{in}_{x}\left(H(x)^{-1} f\right)=U_{1}^{\omega(x)}\left(a U_{1}+b U_{2}+c U_{3}\right)+\sum_{1 \leqslant i \leqslant \omega(x)} \lambda_{i} U_{1}^{\omega(x)-i} U_{2}^{i+1},
$$

$a, b, c, \lambda_{i} \in k(x), c \neq 0$,

$$
H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{1}^{\prime \omega(x)}\left(c u_{3}^{\prime}+u_{2}^{\prime}\left(a u_{1}^{\prime}+b\right)\right)+u_{2}^{\prime} \sum_{1 \leqslant i \leqslant \omega(x)} \lambda_{i} u_{1}^{\prime \omega(x)-i}+\phi,
$$

$\phi \in\left(u_{2}^{\prime}, u_{3}^{\prime}\right), \operatorname{ord}_{x^{\prime}}(\phi)=\omega(x)$. If $\phi \in\left(u_{2}^{\prime}\right)$, by chapter 2 II.1, we are done: this ends the case $A_{2}>1$. If $A_{2}=1$ and $\beta(x)=1$, then in the expansion of ϕ, there is the monomial $u_{1}^{\prime \omega(x)-i} u_{3}^{\prime}{ }^{i}$, $1 \leqslant i \leqslant \omega(x)$: so $\kappa\left(x^{\prime}\right) \leqslant 2$, If $A_{2}=1$ and $\beta(x)<1$, then $\epsilon\left(x^{\prime}\right)<\omega(x): \kappa(x)=1$, a contradiction.

The end of the proof is clear.
I. 4 Theorem With hypotheses and notations of I.2, assume x is in case (${ }^{*} 1$) or (${ }^{* 2}$). We blow-up x and x^{\prime} is a closed point of the first chart.

If $u_{3}^{\prime}\left(x^{\prime}\right)=0$, then x^{\prime} is in case (${ }^{*} 1$) or (${ }^{*}$ 2) and $C\left(x^{\prime}\right) \leqslant C(x), \beta\left(x^{\prime}\right) \leqslant \beta(x), A_{2}\left(x^{\prime}\right)=$ $B(x)-1$.

From now on, $u_{3}^{\prime}\left(x^{\prime}\right) \neq 0$, we have

$$
\begin{equation*}
\gamma\left(x^{\prime}\right) \leqslant \gamma(x), \beta\left(x^{\prime}\right)<\left\lfloor\frac{C(x)}{d}\right\rfloor+1, \tag{1}
\end{equation*}
$$

and, if x is in case (${ }^{*} 1$),

$$
\begin{equation*}
\beta\left(x^{\prime}\right) \leqslant \beta(x) \text { or } C(x)=0 . \tag{2}
\end{equation*}
$$

If x^{\prime} is not rational over x and $\gamma(x) \geqslant 2$, then $\gamma\left(x^{\prime}\right)<\gamma(x)$, except in the following case:
$m(x) \leqslant 2, \beta(x)=2$ where we get $\beta\left(x^{\prime}\right)<2$ and, if x^{\prime} is in case ($\left.{ }^{*} 3\right), \beta 3\left(x^{\prime}\right)=1, p=2$, $a(1)+\omega(x)=0 \bmod (p)$ and $i_{1}\left(x^{\prime}\right)=0 \bmod (p)($ notations of I.2.3).
Proof.
If $u_{3}^{\prime}\left(x^{\prime}\right)=0$, we are at the origin of the chart, there is no translation to do all the assertions are easy consequences of the transformation laws on the polyhedra. From now on:

$$
u_{3}^{\prime}\left(x^{\prime}\right) \neq 0
$$

Let us prove (1) and (2). Let μ_{0} the monomial valuation given by $\mu_{0}\left(u_{1}^{a} u_{2}^{b} u_{3}^{c}\right)=a+\frac{b+c}{B(x)}$.

$$
\begin{equation*}
\operatorname{in}_{\mu_{0}}\left(H(x)^{-1} f\right)=U_{1}^{\omega(x)} \bar{\phi}_{0}+\sum_{1 \leqslant i \leqslant \omega(x)} U_{1}^{\omega(x)-i} U_{2}^{b_{i}} U_{3}^{c_{i}} F_{i}\left(U_{2}, U_{3}\right), F_{i} \in k(x)\left[U_{2}, U_{3}\right], \tag{3}
\end{equation*}
$$

$F_{i}=0$ or F_{i} homogeneous of degree $i B(x)-b_{i}-c_{i}$.
Then, by I.3, $\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, v\right)=\left(\frac{X}{u_{2}}, \frac{u_{1}}{u_{2}}, u_{2}, P\left(\frac{u_{3}}{u_{2}}\right)\right)$ is a r.s.p. of x^{\prime}, with $P \in k(x)\left[\frac{u_{3}}{u_{2}}\right]$.

$$
\operatorname{in}_{\mu_{1}}\left(H\left(x^{\prime}\right)^{-1} f^{\prime}\right)=U_{1}^{\prime \omega(x)} \bar{\phi}_{0}+\sum_{1 \leqslant i \leqslant \omega(x)} U_{1}^{\prime \omega(x)-i} U_{2}^{\prime i(B(x)-1)} U_{3}^{\prime c_{i}} F_{i}\left(1, U_{3}^{\prime}\right), F_{i} \in k(x)\left[U_{2}, U_{3}\right],
$$

is the initial form of $H\left(x^{\prime}\right)^{-1} f^{\prime}$ with respect to monomial valuation given by $\mu_{1}\left(u_{1}^{\prime a} u_{2}^{\prime b} v^{c}\right)=$ $a+\frac{b}{B(x)-1}$.

If $\mu_{0}\left(H(x)^{-1} g^{p}\right)=\omega(x)$ and $\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right)<\omega(x)$, let $H(x)^{-1} g^{p}=\gamma u_{1}{ }^{\omega(x)-i_{0}} u_{2}{ }^{b i_{0}} u_{3}{ }^{c i_{0}}$,

$$
H\left(x^{\prime}\right)^{-1} g^{\prime p}=\gamma^{\prime} u_{1}^{\prime \omega(x)-i_{0}} u_{2}^{\prime i_{0}(B(x)-1)}
$$

γ^{\prime} invertible. Then

$$
\left(A_{2}\left(x^{\prime}\right), \beta\left(x^{\prime}\right)\right)=(B(x)-1,0)
$$

If $\mu_{0}\left(H(x)^{-1} g^{p}\right)>\omega(x)$ or $\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right) \leqslant \omega(x)$, then we call

$$
\begin{equation*}
i_{0}=\sup \left\{i \mid u_{1}^{a(1)} u_{2}^{a(2)} u_{3}^{a(3)} u_{1}^{\omega(x)-i} u_{2}^{b_{i}} u_{3}^{c_{i}} F_{i} \notin k(x)\left[u_{1}, u_{2}, u_{3}\right]^{p}\right\} \tag{4}
\end{equation*}
$$

When we may start the minimization of $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, v ; X^{\prime}\right)$ with the cleaning of the vertex with μ_{1} minimal and first coordinate minimal, we add a $p^{\text {th }}$-power to

$$
{u_{1}^{\prime}}^{a(1)} u_{2}^{\prime a(1)+a(2)+a(3)+\omega(x)-p}{u_{3}^{\prime a(3)} u_{1}^{\prime \omega(x)-i_{0}} u_{2}^{\prime i_{0}(B(x)-1)} F_{i_{0}}\left(1, u_{3}^{\prime}\right), ~}^{(1)}
$$

which becomes

$$
{u_{1}^{\prime}}^{a(1)} u_{2}^{\prime a(1)+a(2)+a(3)+\omega(x)-p} u_{1}^{\prime \omega(x)-i_{0}} u_{2}^{\prime i_{0}(B(x)-1)} \gamma_{i_{0}} v^{e\left(i_{0}\right)}, \gamma_{i_{0}} \text { invertible }
$$

with $e\left(i_{0}\right) \leqslant 1+\frac{\operatorname{deg}\left(F_{i_{0}}\right)}{d}, d$ is the degree of the residual extension, $e\left(i_{0}\right) \leqslant \operatorname{deg}\left(F_{i_{0}}\right)$ if $c_{i_{0}}=0$,

$$
\begin{equation*}
e\left(i_{0}\right) \leqslant \frac{\operatorname{deg}\left(F_{i_{0}}\right)+c\left(i_{0}\right)}{d}+1 \leqslant \frac{i_{0} \beta(x)}{d}+1 \tag{5}
\end{equation*}
$$

in general. Either $\beta\left(x^{\prime}\right)<\frac{e\left(i_{0}\right)}{i_{0}}$ and we get all our assertions or $\beta\left(x^{\prime}\right)=\frac{e\left(i_{0}\right)}{i_{0}}$ and, if $e\left(i_{0}\right)=$ $\frac{\operatorname{deg}\left(F_{i_{0}}\right)+c\left(i_{0}\right)}{d}+1$, by the following remark, $a(1)+\omega(x)-i_{0}\left(x^{\prime}\right)=0 \bmod (p)$.

Let us remark that, if there exists i such that $F_{i} \neq 0$ and $a(1)+\omega(x)-i \neq 0 \bmod (p)$, then

$$
{u_{1}^{\prime a(1)}}_{u_{2}^{\prime a(1)+a(2)+a(3)+\omega(x)-p} u_{3}^{\prime a(3)} u_{1}^{\prime \omega(x)-i} u_{2}^{\prime i(B(x)-1)} F_{i}\left(1, u_{3}^{\prime}\right) . ~}^{\text {a }}
$$

will not be spoilt by a translation on X^{\prime} and we get $\beta\left(x^{\prime}\right) \leqslant \frac{\operatorname{deg}\left(F_{i}\right)}{i d} \leqslant \frac{C(x)}{d}$.
This gives $A_{2}\left(x^{\prime}\right)=B(x)-1$ and all the assertions in the case where $\left(a(1)+\omega(x)-i_{0} \neq\right.$ $0 \bmod (p)$ or $\left.a(2)+a(3)+i_{0} B(x) 0 \neq 0 \bmod (p)\right)$. The other assertions are clear except may be the case $\gamma(x)=2=\beta(x), x$ in case (*1). By (5), we get $\gamma\left(x^{\prime}\right)=1$ when $d \geqslant 3$.

From now on $d=2=\beta(x), a(1)+\omega(x)-i_{0}=0 \bmod (p), a(2)+i_{0} B(x)=0 \bmod (p)$.
Then either $\frac{\partial u_{3}^{c\left(i_{0}\right)} F_{i_{0}}}{\partial u_{3}} \neq 0$ it has degree $\leqslant 2 i_{0}-1$, so $e\left(i_{0}\right) \leqslant \frac{2 i_{0}-1}{2}+1=i_{0}+\frac{1}{2}$, as $e\left(i_{0}\right) \in \mathbb{N}$, we get $e\left(i_{0}\right) \leqslant i_{0}$, we are done. Or $\frac{\partial u_{3}^{c\left(i_{0}\right)} F_{i_{0}}}{\partial u_{3}}=0$, there exists $D \in \mathcal{D}(E, x)$ with $D\left(u_{3}^{c\left(i_{0}\right)} F_{i_{0}}\right)$ of degree $\leqslant 2 i_{0}$, if $D\left(\mathfrak{M}^{\prime}\right) \subset \mathfrak{M}^{\prime}$, we get $e\left(i_{0}\right) \leqslant i_{0}$, else x^{\prime} is inseparable over $x, p=d=2, e\left(i_{0}\right) \leqslant i_{0}+1$ and, in case equality, $i_{0}+1 \neq 0 \bmod (2)$, etc. The reader ends the proof.

Let us remark that, if we blow up x and that $C(x)=0, A_{2}(x)<1$ and $A_{3}(x)<1$, then $\omega\left(x^{\prime}\right)<$ $\omega(x)$. Indeed, in that case, $B(x)=A_{2}(x)+A_{3}(x)<2$, either $H\left(x^{\prime}\right)^{-1} g^{\prime p}=\gamma^{\prime} u_{1}^{\prime \omega(x)-i_{0}} u_{2}^{\prime i_{0}(B(x)-1)}$ which has order $<\omega(x)$ or $u_{1}^{\prime \omega(x)-i_{0}} u_{2}^{\prime i_{0}(B(x)-1)} \gamma_{i_{0}} v^{e\left(i_{0}\right)}$ has order $<\omega(x)$.

The next corollary is already proven.
I.4.1 Corollary With hypotheses and notations of I.2, we blow up x. If x is in case (${ }^{*} 1$) or (*2) and if x^{\prime} is a point in the first chart very near to x with $u_{3}^{\prime}(x) \neq 0$,
either $\mu_{0}\left(H(x)^{-1} g^{p}\right)=\omega(x)$ and $\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right)<\omega(x)$, then $\beta\left(x^{\prime}\right)=0$,
or $\mu_{0}\left(H(x)^{-1} g^{p}\right)>\omega(x)$ or $\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right) \geqslant \omega(x)$, then $\beta\left(x^{\prime}\right) \leqslant\left(1+\frac{\operatorname{deg}\left(F_{i_{0}}\right)}{d}\right)$, where i_{0}, F_{i} are defined just above in (3)(4).
I.4.2 Corollary With hypotheses and notations of I.2, if x is in case (${ }^{*} 1$) or (${ }^{*}$ 2), if $C(x)=0$, $A_{2}(x)<1$ and $A_{3}(x)<1$, then x is good.
Proof. We remark that $B(x)=C(x)+A_{2}(x)+A_{3}(x) \geqslant 1$, so $C(x)=0, A_{2}(x)<1$ and $A_{3}(x)<1$ imply $0<A_{2}(x)$ and $0<A_{3}(x)$, so we blow up x, we note that either $\mu_{0}\left(H(x)^{-1} g^{p}\right)=\omega(x)$ and $\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right)<\omega(x)$ or $\operatorname{deg}\left(F_{i_{0}}\right)=0$, we apply the last lines of the proof of I.4: if x^{\prime} is not at the origin of a chart, $\omega\left(x^{\prime}\right)<\omega(x)$, if x^{\prime} is at the origin of a chart, $A_{2}\left(x^{\prime}\right)+A_{3}\left(x^{\prime}\right)<A_{2}(x)+A_{3}(x)$, an induction on $A_{2}(x)+A_{3}(x)$ gives the result.
I. 5 Theorem With hypotheses and notations of I.2, we suppose x is in case (*3) and x is not good. We blow-up x.

Let x^{\prime} be a closed point very near to x in the chart of origin $\left(X^{\prime}=\frac{X}{u_{2}}, u_{1}^{\prime}=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}=u_{2}, u_{3}^{\prime}=\right.$ $\frac{u_{3}}{u_{2}}$) (first chart).
(i) When $u_{3}^{\prime}\left(x^{\prime}\right) \neq 0$ and $\left(a_{1}+\omega(x) \neq 0 \bmod (p)\right.$ or $\left.a(2)+1 \neq 0 \bmod (p)\right), x^{\prime}$ is in case ($\left.{ }^{*} 1\right)$.
(ii) If x^{\prime} is in case ($\left.{ }^{*} 3\right)$, then $\beta 3\left(x^{\prime}\right) \leqslant \beta 3(x)$, the inequality is strict if $1 \leqslant \beta 3(x)$ and x^{\prime} is not rational over x.
(iii) When $\beta 3(x)=1$ and $i_{1}(x)=0 \bmod (p)$, if x^{\prime} is not rational over x, then $\gamma\left(x^{\prime}\right)=1$, if x^{\prime} is rational over x, then $\beta\left(x^{\prime}\right)<2$ and, if x^{\prime} is in case $\left({ }^{*} 3\right)$ and $\gamma\left(x^{\prime}\right)=2$, then $\beta 3\left(x^{\prime}\right)=1$ and $i_{1}\left(x^{\prime}\right)=0 \bmod (p)$. (For the definition of $i_{1}(x)$, see the end of I.2.2.)
(iv) In every case we have

$$
\gamma\left(x^{\prime}\right) \leqslant \gamma(x), \quad A_{2}\left(x^{\prime}\right)=B 3(x)-1
$$

Proof.
We make the blowing up. By I.3, $\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, v\right)=\left(\frac{X}{u_{2}}, \frac{u_{1}}{u_{2}}, u_{2}, P\left(\frac{u_{3}}{u_{2}}\right)\right)$ is a r.s.p. of x^{\prime} on the strict transform of $\operatorname{div}\left(u_{1}\right)$, with $P \in k(x)\left[\frac{u_{3}}{u_{2}}\right]$.

The term

$$
u_{1}^{a(1)} u_{2}^{a(2)} \times u_{1}^{\omega(x)} \phi_{0}=u_{1}^{a(1)} u_{2}^{a(2)} \times u_{1}^{\omega(x)}\left(\gamma_{1} u_{1}+\gamma_{2} u_{2}+\gamma_{3} u_{3}\right)
$$

in the expansion of f gives in f^{\prime} :

$$
{\left.u_{1}^{\prime a(1)} u_{2}^{\prime a(1)+a(2)+\omega(x)+1-p} \times u_{1}^{\prime \omega(x)}\left(\gamma_{1} u_{1}^{\prime}+\gamma_{2}+\gamma_{3} u_{3}^{\prime}\right), ~\right)}^{(1)}
$$

If $u_{3}^{\prime}\left(x^{\prime}\right) \neq 0$, as γ_{3} is invertible, the monomial

$$
u_{1}^{\prime a(1)} u_{2}^{\prime a(1)+a(2)+\omega(x)+1-p} u_{1}^{\prime \omega(x)} \gamma_{3} u_{3}^{\prime}
$$

defines the vertex of $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, v ; X^{\prime}\right)$ with minimal second and third coordinates, if $a(1)+\omega(x) \neq$ $0 \bmod (p)$ or $a(2)+1 \neq 0 \bmod (p)$, this vertex is not solvable, x^{\prime} is in case (*1).

Let μ_{0} the monomial valuation given by $\mu_{0}\left(u_{1}^{a} u_{2}^{b} u_{3}^{c}\right)=a+\frac{b+c}{B 3(x)}$.

$$
\begin{equation*}
\operatorname{in}_{\mu_{0}}\left(H(x)^{-1} u_{3}^{-1} f\right)=U_{1}^{\omega(x)} U_{3}^{-1} \bar{\phi}_{0}+\sum_{1 \leqslant i \leqslant \omega(x)} U_{1}^{\omega(x)-i} U_{2}^{b_{i}} U_{3}^{-1} F_{i}\left(U_{2}, U_{3}\right), F_{i} \in k(x)\left[U_{2}, U_{3}\right] \tag{1}
\end{equation*}
$$

$F_{i}=0$ or F_{i} homogeneous of degree $i B 3(x)-b_{i}+1$.

$$
\operatorname{in}_{\mu_{1}}\left(H\left(x^{\prime}\right)^{-1} f^{\prime}\right)=U_{1}^{\prime \omega(x)} \bar{\phi}_{0}+\sum_{1 \leqslant i \leqslant \omega(x)} U_{1}^{\prime \omega(x)-i}{U_{2}^{\prime \prime}}^{\prime(B 3(x)-1)} F_{i}\left(1, u_{3}^{\prime}\right), F_{i} \in k(x)\left[U_{2}, U_{3}\right]
$$

is the initial form of $H\left(x^{\prime}\right)^{-1} f^{\prime}$ with respect to monomial valuation given by $\mu_{1}\left(u_{1}^{\prime a} u_{2}^{\prime b} v^{c}\right)=$ $a+\frac{b}{B 3(x)-1}$. If $\mu_{0}\left(H(x)^{-1} u_{3}^{\prime-1} g^{p}\right)=\omega(x)$ and $\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right)<\omega(x)$, then

$$
\begin{gather*}
H\left(x^{\prime}\right)^{-1} u_{3}^{\prime-1} g^{\prime p}=\gamma^{\prime} u_{1}^{\prime \omega(x)-i_{0}} u_{3}^{\prime-1} u_{2}^{\prime i_{0}(B 3(x)-1)} \\
\left(A_{2}\left(x^{\prime}\right), \beta\left(x^{\prime}\right)\right)=(B 3(x)-1,0) \tag{2}
\end{gather*}
$$

Furthermore, in the case of the blowing up of x, if $B 3(x)=1$, we get $\epsilon\left(x^{\prime}\right) \leqslant \operatorname{ord}_{x^{\prime}}\left(H\left(x^{\prime}\right)^{-1} g^{\prime p}\right) \leqslant 0$: x^{\prime} is quasi ordinary.

If $\mu_{0}\left(H(x)^{-1} g^{p}\right)>\omega(x)$ or $\operatorname{ord}_{u_{1}}\left(H(x)^{-1} g^{p}\right) \geqslant \omega(x)$, we call $i_{0}=\sup \left\{i \mid H(x) u_{1}^{\omega(x)-i} u_{2}^{b_{i}} F_{i} \neq\right.$ $p^{\text {th }}-$ power $\}$. By computations as above in the proof of I.4, we get $A_{2}\left(x^{\prime}\right)=B 3(x)-1$ and

$$
\begin{equation*}
\beta\left(x^{\prime}\right) \leqslant \frac{\operatorname{deg}\left(F_{i_{0}}\right)}{i_{0}} \tag{3}
\end{equation*}
$$

This gives (iv).
If x^{\prime} is not rational over x, then $\beta\left(x^{\prime}\right) \leqslant \frac{\operatorname{deg}\left(F_{i_{0}}\right)}{i_{0} d}+\frac{1}{i_{0}}$, the inequality is strict when $a(1)+$ $\omega(x)-i_{0} \neq 0 \bmod (p)$ or when $\frac{\operatorname{deg}\left(F_{i_{0}}\right)}{d}+1 \in i_{0} \mathbb{N}$. Either x^{\prime} is in case $\left({ }^{*} 2\right),(2)(3)$ give the result, or x^{\prime} is in case $\left({ }^{*} 3\right)$, by $(3), \beta 3\left(x^{\prime}\right) \leqslant \frac{\operatorname{deg}\left(F_{i_{0}}\right)-1}{i_{0}}$. This proves (ii).

To end the proof of (iii), we have to look at the case $\beta 3=1, i_{1}(x)=0 \bmod (p)$. If $i_{0} \neq$ $i_{1}(x)$, then $\operatorname{deg}\left(F_{i_{0}}\right)+b_{i_{0}}-i_{0} A_{1}<i_{0} \beta 3=i_{0}$, so $\operatorname{deg}\left(F_{i_{0}}\right)<i_{0}$, we get the result. If $i_{0}=$ $i_{1}(x)$, then, $\beta\left(x^{\prime}\right) \leqslant 1+\frac{1}{i_{0}}<2$ and, if x^{\prime} is in case $\left({ }^{*} 3\right), i_{0} \beta 3\left(x^{\prime}\right) \leqslant \operatorname{deg}\left(F_{i_{0}}\right)-1 \leqslant i_{0}$, the inequality is strict if x^{\prime} is not rational over x. Furthermore, the index i_{0} is the smallest i such that the factor of $\lambda u_{1}^{\omega(x)-i} u_{2}^{i A_{1}\left(x^{\prime}\right)} v^{a}, a \in \mathbb{N}, \lambda \in k\left(x^{\prime}\right)$, appears in the expansion $H\left(x^{\prime}\right)^{-1} f^{\prime}$ and $H\left(x^{\prime}\right) \lambda u_{1}^{\omega(x)-i} u_{2}^{i A_{1}\left(x^{\prime}\right)} v^{a}$ is not a p-power, so if $i_{0} \beta 3\left(x^{\prime}\right)=\operatorname{ord}\left(F_{i_{0}}\left(1, u_{3}^{\prime}\right)\right)-1, i_{0}=i_{1}\left(x^{\prime}\right)$.
I.5.1 Proposition With hypotheses and notations of I.2, if x is in case (${ }^{*} 3$) with $\beta 3(x) \leqslant 0$, then, x is good.
Proof. We make an induction on $A_{2}(x)$. If $A_{2}(x)<1$, then the monomial $u_{1}^{\omega(x)-i} u_{2}^{i A_{2}(x)} u_{3}^{i \beta 3(x)+1}$ occurs in the expansion of $H(x)^{-1} f$, its order is $\leqslant \omega(x)-1$: a contradiction.

If $A_{2}(x) \geqslant 1$, then $\mathrm{V}\left(X, u_{1}, u_{2}\right)$ is permissible of second kind, we apply I.3.3: either the point x^{\prime} is not very near to x, either $\kappa\left(x^{\prime}\right) \leqslant 4$ or it is very near to x with case $\left({ }^{*} 3\right)$ and $\left(A_{2}\left(x^{\prime}\right), \beta 3\left(x^{\prime}\right)\right)=$ $\left(A_{2}(x)-1, \beta 3(x)\right)$.
I.5.2 Lemma With hypotheses and notations of $\mathbf{I} .2$, assume x is in case (${ }^{*} 1$) or (${ }^{*}$ 2), we blow up x.

If $x^{\prime}=\left(\frac{X}{u_{3}}, \frac{u_{1}}{u_{3}}, \frac{u_{2}}{u_{3}}, u_{3}\right)$ is very near x, then $\kappa\left(x^{\prime}\right)=5, x^{\prime}$ is in case (*g), $\Delta\left(h^{\prime} ; \frac{u_{1}}{u_{3}}, \frac{u_{2}}{u_{3}}, u_{3} ; \frac{X}{u_{3}}\right)$ is minimal. We have $\left(A_{2}\left(x^{\prime}\right), \beta\left(x^{\prime}\right)\right)=\left(A_{2}(x), A_{2}(x)+\beta(x)-1\right),\left(\alpha_{2}(x), B(x)-1\right)$, is the vertex of smallest ordinate of $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{2}^{\prime} ; u_{3}^{\prime}\right)$. Furthermore
(i) if x is in case $\left({ }^{*} 1\right), C\left(x^{\prime}\right) \leqslant \frac{\beta(x)}{2}$. If there is equality, then $\Delta\left(H\left(x^{\prime}\right)^{-1} f^{\prime}+H\left(x^{\prime}\right)^{-1} g^{\prime p} ; u_{1}^{\prime}, u_{2}^{\prime} ; u_{3}^{\prime}\right)$ has only two vertices $\left.\left(A_{1}(x), \beta(x)+A_{1}(x)-1\right),\left(\alpha_{2}(x), B(x)-1\right),\left(\alpha_{2}(x), B(x)\right)\right)$ which are the ends of its initial side,
(ii) in every case, $C\left(x^{\prime}\right) \leqslant C(x), \gamma\left(x^{\prime}\right) \leqslant \gamma(x)$.

Proof. Recopy I.8.8 in chapter 3.
I.5.3 Lemma With hypotheses and notations of $\mathbf{I} .2$, if x is in case $\left({ }^{*} 3\right)$ and $\kappa(x)>4$, $\operatorname{div}\left(u_{2}\right) \subset E$ and we blow up x. Assume $x^{\prime}=\left(X^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)=\left(\frac{X}{u_{3}}, \frac{u_{1}}{u_{3}}, \frac{u_{2}}{u_{3}}, u_{3}\right)$ if x^{\prime} is very near x, then $\kappa\left(x^{\prime}\right)=5$ x^{\prime} is in case (*2), $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal. We have $\left(A_{2}\left(x^{\prime}\right), \beta\left(x^{\prime}\right)\right)=\left(A_{2}(x), A_{2}(x)+\right.$ $\beta 3(x)-1),\left(\alpha 3_{2}(x), B 3(x)-1\right)$ is the vertex of smallest ordinate of $\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{1}^{\prime}, u_{2}^{\prime} ; u_{3}^{\prime}\right)$,

$$
\left.A_{3}\left(x^{\prime}\right)=B 3(x)-1, C\left(x^{\prime}\right) \leqslant 1+\beta_{3}\left(x^{\prime}\right)\right), \gamma\left(x^{\prime}\right) \leqslant \gamma(x)
$$

with strict inequality when $3 \leqslant \gamma(x)$. Furthermore
(i) if $B 3(x)-A_{2}(x) \geqslant 1$, then $\gamma\left(x^{\prime}\right)<\gamma(x)$,
(ii) if $\beta 3(x)=1, a(1)+\omega(x)=0 \bmod (p)$, then x^{\prime} is good or $\gamma\left(x^{\prime}\right)<\gamma(x)=2$ or $\gamma\left(x^{\prime \prime}\right)=1$, where $x^{\prime \prime}$ is the center of the valuation μ in the blowing up of x^{\prime},
(iii) if $B 3(x)-A_{2}(x)<1$ and $\beta 3(x) \neq 1$ and $\gamma(x)=2$, then the following holds: either $(a(1)+$ $\omega(x) \neq 0 \bmod (p))$, either ($x^{\prime \prime}$ is in case $\left({ }^{*} 1\right)$ and $\beta\left(x^{\prime \prime}\right)<2$) or ($x^{\prime \prime}$ is in case $\left({ }^{*} 3\right)$ and $\left.\beta 3\left(x^{\prime \prime}\right) \leqslant 1\right)$, where $x^{\prime \prime}$ is the center of μ in the blowing up $X^{\prime \prime}$ of X^{\prime} along x^{\prime}.
Proof. We are at the origin of the second chart, there is no translation to do on X^{\prime}, etc. For (i)(ii), we cannot recopy directly chapter 3 I.8.9.1 which uses chapter 3 I.8.5: we have no corresponding proposition. What remains valid (mutatis mutandis) is that the vertex of smallest ordinate of $\Delta\left(\sum_{1 \leqslant i \leqslant s} H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{2}^{\prime}, u_{3}^{\prime} ; u_{1}^{\prime}\right)$ is $\left(\alpha 3_{2}, \alpha 3_{2}+\beta 3_{2}-1\right)$, so $C\left(x^{\prime}\right) \leqslant \alpha 3_{2}-A_{2}(x)$. And, the vertex of smallest abscissa is $\left(A_{2}(x), \beta 3(x)+A_{1}(x)-1\right)$, so

$$
\begin{equation*}
C\left(x^{\prime}\right) \leqslant \beta 3(x)+A_{2}(x)-B 3(x)=\beta 3(x)-\left(B 3(x)-A_{2}(x)\right) \tag{1}
\end{equation*}
$$

This gives the first assertions of the lemma, (i) and also (ii) when $B 3(x)-A_{2}(x)>0$.
Furthermore $C\left(x^{\prime}\right)<1+\left\lfloor\beta 3\left(x^{\prime}\right)\right\rfloor\left(\Rightarrow \gamma\left(x^{\prime}\right) \leqslant \gamma(x)\right)$ if $B 3(x)-A_{2}(x) \geqslant 0$.
As $\alpha 3_{2} \leqslant 1+B 3(x)$,

$$
C\left(x^{\prime}\right) \leqslant \alpha 3_{2}-A_{2}(x) \leqslant 1+B 3(x)-A_{2}(x)
$$

if $B 3(x)-A_{2}(x)<0$ or $\left(B 3(x)-A_{2}(x)=0\right.$ and $\left.\alpha 3_{2}<1+B 3(x)\right)$, we get $C\left(x^{\prime}\right)<1$. So we get $C\left(x^{\prime}\right)<1+\left\lfloor\beta 3\left(x^{\prime}\right)\right\rfloor$ and we get also (ii) when $B 3(x)-A_{2}(x)<0$ or $\left(B 3(x)-A_{2}(x)=0\right.$ and $\left.\alpha 3_{2}<1+B 3(x)\right)$.

To end the proof of (ii), we have to consider the case $C\left(x^{\prime}\right)=1, B 3(x)-A_{2}(x)=0$ and $\alpha 3_{2}=1+B 3(x)$, this means that $\beta 3_{2}=-1$: the monomial of $H(x)^{-1} u_{3}^{-1} f$ or of $H(x)^{-1} u_{3}^{-1} g^{p}$ which defines $\left(\alpha 3_{2}, \beta 3_{2}\right)$ is $u_{1}^{\omega(x)-1} u_{2}^{A_{2}+1} u_{3}^{-1}$. So

$$
A_{2} \in \mathbb{N}, B 3=\alpha 3_{2}+\beta 3_{2} \in \mathbb{N}
$$

$\Delta\left(H\left(x^{\prime}\right)^{-1}\left(f^{\prime}, g^{\prime p}\right) ; u_{2}^{\prime}, u_{3}^{\prime} ; u_{1}^{\prime}\right)$ has only two vertices

$$
\left(A_{2}, 1+A_{2}\right),\left(1+A_{2}, A_{2}\right) \in \mathbb{N}^{2}
$$

and in the expansion of $H\left(x^{\prime}\right)^{-1} f^{\prime}$ or $H\left(x^{\prime}\right)^{-1} g^{\prime p}$ appears the monomial $u_{1}^{\prime \omega(x)-1} u_{2}^{\prime 1+A_{2}} u_{3}^{\prime A_{2}}$. If $m\left(x^{\prime \prime}\right)=2$, if we go back to the proof of $\mathbf{I} .4$, we have, in the first case line above, $i_{0}=1$, so $a(1)+\omega(x)-i_{0} \neq 0 \bmod (p)$, so $\beta\left(x^{\prime \prime}\right) \leqslant C\left(x^{\prime}\right)=1$: this leads to $\gamma\left(x^{\prime \prime}\right)=1$, in the second case, we have $\beta\left(x^{\prime \prime}\right)=0$. If $m\left(x^{\prime \prime}\right)=3$, we get $C\left(x^{\prime \prime}\right)=0$.

For (iii), by the same arguments as in chapter 3 I.8.9.3, we get that if μ_{0} the monomial valuation given by $\mu_{0}\left(u_{1}^{\prime} u_{2}^{\prime b} u_{3}^{c}\right)=a+\frac{b+c}{B\left(x^{\prime}\right)}$.

$$
\begin{equation*}
\operatorname{in}_{\mu_{0}}\left(H\left(x^{\prime}\right)^{-1} f^{\prime}\right)=U_{1}^{\prime \omega(x)} \overline{\gamma_{3}}+\sum_{1 \leqslant i \leqslant \omega(x)} U_{1}^{\prime \omega(x)-i} U_{2}^{\prime b_{i}} U_{3}^{\prime c_{i}} F_{i}\left(U_{2}^{\prime}, U_{3}^{\prime}\right), F_{i} \in k(x)\left[U_{2}^{\prime}, U_{3}^{\prime}\right] \tag{1}
\end{equation*}
$$

$F_{i}=0$ or F_{i} homogeneous of degree $d_{i} \leqslant i$.
If $x^{\prime \prime}$ is the origin of a chart above x^{\prime}, then, recopy chapter 3 I.8.9.3: the proof is made just by looking at polyhedrons. If $x^{\prime \prime}$ is not the origin of the first chart, then, $i \beta\left(x^{\prime \prime}\right) \leqslant d_{i}+1$ or $\beta\left(x^{\prime \prime}\right)=0$ if all the $F_{i}=0$.

So we get $\gamma\left(x^{\prime \prime}\right)=1 \operatorname{if} \inf \left\{\left.\frac{d_{i}}{i} \right\rvert\, H\left(x^{\prime}\right) u_{2}^{\prime b_{i}} u_{3}^{\prime}{ }^{c_{i}} F_{i} \notin k\left(x^{\prime}\right)\left[u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right]^{p}\right\}<1$.
If for all i with $\left.H\left(x^{\prime}\right) u_{2}^{\prime b_{i}} u_{3}^{\prime c_{i}} F_{i} \notin k\left(x^{\prime}\right)\left[u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right]^{p}\right\}, d_{i}=i$, then we get $\beta\left(x^{\prime \prime}\right) \leqslant 1+\frac{1}{i}$, this gives the result except if there is only $F_{1} \neq 0, x^{\prime \prime}$ in case (${ }^{*} 1$) and that $\beta\left(x^{\prime \prime}\right)=i+1=2>d_{1}=1$. This means that $a(1)+\omega(x)-1=0 \bmod (p)$. In particular $a(1)+\omega(x) \neq 0 \bmod (p)$.
I. 6 Theorem Let $x \in \Sigma_{p}$ with $\kappa(x)=5, m(x) \geqslant 2$. Then x is good if one of the following is true:
(i) case (${ }^{*}$) and $\beta(x) \leqslant 1$,
(ii) case (*2) and $\beta(x)<1$,
(iii) case (*3), $\beta 3(x)<1$.

Proof. We have $A_{2}(x)>0$. Indeed $A_{2}(x)=0$ implies that in the expansion of f appears the monomial $u_{1}^{\omega(x)-i} u_{3}^{i \beta(x)}, 1 \leqslant i \leqslant \omega(x)$. This is impossible in case $\left({ }^{*} 2\right)$, in case $\left({ }^{*} 1\right), \kappa(x) \leqslant 2$, there is nothing to prove. In case $(* 3), \beta 3(x)<1$ implies $\beta(x) \leqslant 1$, this contradicts $\epsilon(x)=1+\omega(x)$.
I.6.1 Case $0<A_{2}(x)<1$. We blow up x.

First chart, cases $\left({ }^{*} 1\right)\left({ }^{*} 2\right)$. We get $A_{2}\left(x^{\prime}\right) \leqslant A_{2}(x)+\beta(x)-1 \leqslant A_{2}(x), x^{\prime}$ verifies the hypotheses of $\mathbf{I} .6$ when x^{\prime} is the origin, as $\gamma\left(x^{\prime}\right) \leqslant \gamma(x), x^{\prime}$ verifies the hypotheses of $\mathbf{I} .6$ when x^{\prime} is not the origin.

In case $\left({ }^{*} 3\right)$, if $\kappa\left(x^{\prime}\right)=5$, we can apply I.4, I.5: we get $A_{2}\left(x^{\prime}\right) \leqslant A_{2}(x)+\beta(x)-1<A_{2}(x)$ or $A_{2}\left(x^{\prime}\right)=A_{2}(x)+\beta 3(x)-1<A_{2}(x)$, as $\gamma\left(x^{\prime}\right) \leqslant \gamma(x), x^{\prime}$ verifies the hypotheses of I.6.

Case $0<A_{2}(x)<1$, second chart.
We get $A_{2}\left(x^{\prime}\right)=A_{2}(x)$. Furthermore, $\beta\left(x^{\prime}\right) \leqslant A_{2}(x)+\beta(x)-1<\beta(x)$ in cases $\left({ }^{*} 1\right)\left({ }^{*} 2\right)$, $\beta\left(x^{\prime}\right) \leqslant A_{2}(x)+\beta 3(x)-1<\beta 3(x)$ in cases $\left({ }^{*} 3\right): x^{\prime}$ verifies the hypotheses of I.6.

End of the case $0<A_{2}(x)<1$. Then, we blow up x^{\prime} and we go on if Ω does not strictly drop, etc. We associate to x the couple $\left(A_{2}, \beta\right)$ if x is in case $\left({ }^{*} 1\right)$ or $\left({ }^{*} 2\right),\left(A_{2}, \beta 3\right)$ in case (*3). This couple strictly drops for the lexicographical ordering except maybe if x is in case $\left(^{*} 1\right.$) and $\beta\left(x^{\prime}\right)=1$, which implies x^{\prime} rational over x.

If the sequence of blowing ups is infinite, all the $x(i)$ centers of μ in $X(n)$ are in case (*1) with $\beta(x(n))=1$. All the $x(n+1)$ are rational over $x(n)$, we can choose v, eventually $v \in \widehat{S}$, $v=\sum \lambda_{i} u_{3}^{i} \in k(x)\left[\left[u_{3}\right]\right]$, such that $x(n+1)$ are on the strict transform of a curve $\mathcal{C}=\mathrm{V}\left(X, u_{1}, v\right)$ which is contained in Σ_{p} and which gets permissible for $n \gg 0$. We conclude by the usual argument.
I.6.2 Case $1 \leqslant A_{2}(x)$. We blow up $\mathrm{V}\left(X, u_{1}, u_{2}\right)$, by I.3.3, we get the result by induction on A_{2}.
I. 7 Theorem Let $x \in \Sigma_{p} \kappa(x)=5$, x in case (${ }^{*} 1$) or (*2). If for a r.s.p. (X, u_{1}, u_{2}, u_{3}) verifying the conditions of $\mathbf{I} \mathbf{2}, C(x)=0$ and, possibly $u_{3} \in \widehat{S}$ if $\operatorname{div}\left(u_{3}\right) \not \subset E$, then x is good.
Proof. The case $A_{2}(x)<1$ and $A_{3}(x)<1$, has been made in I.4.2. From now on, $A_{i} \geqslant 1$ for some $i, i=2$ or $i=3$.
I.7.1 Case $a(1)+a(2)+\omega(x)<p$ and $a(1)+a(3)+\omega(x)<p$. Let us denote $H(x)=u_{1}^{a(1)} u_{2}^{a(2)} u_{3}^{a(3)}$, then $\operatorname{ord}_{x}(H(x) f) \geqslant p$, so $a(2) a(3)>0: E=\operatorname{div}\left(u_{1} u_{2} u_{3}\right)$. So u_{2} and u_{3} play the same role. Let
us blow up x. We just look at the first chart. By I.3, a point x^{\prime} very near to x is on the strict transform of $\operatorname{div}\left(u_{1}\right)$. By I.4, $H\left(x^{\prime}\right)=u_{1}^{\prime a(1)} u_{2}^{\prime a(1)+a(2)+a(3)+\omega(x)-p} u_{3}^{\prime a(3)}, \epsilon\left(x^{\prime}\right) \geqslant \omega(x)$ implies $u_{3}^{\prime}\left(x^{\prime}\right)=0, x^{\prime}$ is the origin of the first chart and an induction on $a(2)+a(3)$ gives the result.
I.7.2 Other cases, let us test the blowing up of x.

By I.3, every point x^{\prime} very near to x is on the strict transform of $\operatorname{div}\left(u_{1}\right)$. As $C(x)=0$, if x^{\prime} is not the origin of a chart, we get $\beta\left(x^{\prime}\right) \leqslant 1$, so x^{\prime} is good. If x^{\prime} is the origin of a chart we get $C\left(x^{\prime}\right)=0$. The components of $\omega>0$ at x^{\prime} in the strict transform of $\operatorname{div}\left(u_{1}\right)$ are the strict transforms of those going through x plus, may be a projective line which projects on $\operatorname{Spec}(S)$ on the intersection of the strict transform of $\operatorname{div}\left(u_{1}\right)$ and the new exceptional component. After a finite sequence of blowing ups, we may suppose that, $\operatorname{div}\left(u_{2}\right) \subset E$ and if $\operatorname{div}\left(u_{3}\right) \not \subset E$, there is at most one component of $\{\omega>0\} \cap \operatorname{div}\left(u_{1}\right)$ not contained in $\operatorname{div}\left(u_{2}\right)$.
I.7.3 Case $a(1)+\omega(x) \geqslant p$. Once the condition above obtained, we make an induction on $A_{2}+A_{3}$. If $A_{2} \geqslant 1, \mathrm{~V}\left(X, u_{1}, u_{2}\right)$ is permissible: it is $\mathrm{V}\left(u_{1}, u_{2}\right) \cap\{\omega \geqslant 1\}$, it is not formal and we blow it up. The only possible very near point is x^{\prime}, the point on the strict transform of $\operatorname{div}\left(u_{1}\right)$ and $\left(A_{2}\left(x^{\prime}\right), A_{3}\left(x^{\prime}\right)\right)=\left(A_{2}(x), A_{3}(x)-1\right), C\left(x^{\prime}\right)=0$.

If $A_{2}<1$ and $A_{3} \geqslant 1, \epsilon\left(\mathrm{~V}\left(X, u_{1}, u_{3}\right)\right)=\omega(x), \mathrm{V}\left(X, u_{1}, u_{3}\right)$ is not formal, it is the component of $\{\omega \geqslant 1\} \cap \operatorname{div}\left(u_{1}\right)$ not contained in $\operatorname{div}\left(u_{2}\right)$, we blow it up and we conclude as above.
I.7.4 Case $a(1)+\omega(x)<p$ and there exists $i \in\{2,3\}$ such that $a(i)+\omega(x) \geqslant p$. Then $a(i)>0$: $\operatorname{div}\left(u_{i}\right) \subset E$. We make a descending induction on $\left(\sup \left\{A_{i}, i=2,3\right\}, \sup \{a(j), j=2,3\}\right)$ for $\leqslant l$ lex . I.7.4.1 If there exists $i \in\{2,3\}$ such that

$$
\begin{equation*}
a(i)+\omega(x)+a(1) \geqslant p \text { and } A_{i} \geqslant 1, \tag{1}
\end{equation*}
$$

we blow up $\mathrm{V}\left(X, u_{i}, u_{1}\right)$. If both $i=2$ and $i=3$ verifies (1), we choose i with ($\left.A_{i}, a(i)\right)$ maximal. Mutatis mutandis, $i=2$. Then the point x^{\prime} of parameters ($\frac{X}{u_{2}}, \frac{u_{1}}{u_{2}}, u_{2}, u_{3}$) is the only point which may be very near to x. The reader sees that $\kappa\left(x^{\prime}\right) \leqslant 5$, if x^{\prime} is very near to $x, C\left(x^{\prime}\right)=0$ and $A_{2}\left(x^{\prime}\right)=A_{2}(x)-1, a_{2}\left(x^{\prime}\right)=a(2)+\omega(x)+a(1)-p<a(2):\left(\sup \left(A_{i}\right), \sup (a(j))\right)$ strictly drops except if $\left(A_{2}, a(2)\right)=\left(A_{3}, a(3)\right)$, in that case we blow up $\left(\frac{X}{u_{2}}, \frac{u_{1}}{u_{2}}, u_{3}\right)$ and $\left(\sup \left(A_{i}\right), \sup (a(j))\right)$ strictly drops.
I.7.4.2 The remaining case. There is one $i \in\{2,3\}$ such that $a(i)+\omega(x)+a(1) \geqslant p, A_{i}<1$: so $\operatorname{div}\left(u_{i}\right) \subset E$, mutatis mutandis, $i=2$. Then,

$$
A_{3} \geqslant 1, a(3)+a(1)+\omega(x)<p,\left(\sup \left(A_{i}\right), \sup (a(j))\right)=\left(A_{3}, a(2)\right), a(2)+a(1)+\omega(x) \geqslant p
$$

We blow up x, as seen in I.7.2, we have to look only at the origins of the first and second chart. In the first chart, if x^{\prime} is very near to x, we get $A_{3}\left(x^{\prime}\right)=A_{3}(x), A_{2}\left(x^{\prime}\right)=A_{3}(x)+A_{2}(x)-1<A_{3}(x)$, $a^{\prime}(2)=a(2)+a(3)+\omega(x)+a(1)-p<a(2), a^{\prime}(3)=a(3)<a(2):\left(\sup \left(A_{i}\right), \sup (a(j))\right)$ strictly drops.

In the second chart, if x^{\prime} is very near to x, we get $A_{3}\left(x^{\prime}\right)=A_{3}(x)+A_{2}(x)-1<A_{3}(x), A_{2}\left(x^{\prime}\right)=$ $A_{2}(x)<A_{3}(x),\left(\sup \left(A_{i}\right), \sup (a(j))\right)$ strictly drops.
I. 8 Theorem Let $x \in \Sigma_{p}$ with $\kappa(x)=5, \kappa(x)>4, x$ in case (*3) with $\operatorname{div}\left(u_{2}\right) \subset E$ and $\phi_{0} \in$ $\left(u_{1}, u_{3}\right) \widehat{S}$. If for a r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ verifying the conditions of I.2, $A 3_{3}(x)=\beta 3(x)$, possibly, $u_{3} \in \widehat{S}$, then x is good.
Proof. We see that $A 3_{3}(x)=\beta 3(x)$ implies $B 3(x)=A 3_{3}(x)+A_{2}(x)$, so $A_{2}>0$ or $A 3_{3}>0$.
I.8.1 We blow up x, by I.3, every point x^{\prime} very near to x is on the strict transform of $\operatorname{div}\left(u_{1}\right)$.

As $A 3_{3}(x)=\beta 3(x)$, in the proof of $\mathbf{I} .5, \operatorname{deg}\left(F_{i_{0}}\right)=0$: if x^{\prime} is not the origin of a chart, we get $\beta\left(x^{\prime}\right) \leqslant 1$, so x^{\prime} is good. If x^{\prime} is the origin of the first chart and is very near to x, as $\phi_{0} \in\left(u_{1}, u_{3}\right)$, if $\epsilon\left(x^{\prime}\right)=1+\omega(x), x^{\prime}$ is in case $\left({ }^{*} 3\right), A 3_{3}\left(x^{\prime}\right)=\beta 3\left(x^{\prime}\right)$.

If $\epsilon\left(x^{\prime}\right)=\omega(x), H\left(x^{\prime}\right)^{-1} f^{\prime}=u_{1}^{\prime \omega(x)} \phi_{0}+\psi, \operatorname{ord}_{x^{\prime}}(\psi)=\omega(x)$, as $A 3_{3}(x)=\beta 3(x)$, either u_{2} divides ψ, by chapter 2 II.1, $\kappa\left(x^{\prime}\right) \leqslant 1$ or $\frac{u_{3}}{u_{2}}$ divides ψ, then as $\operatorname{div}\left(\frac{u_{3}}{u_{2}}\right) \not \subset E^{\prime}, \kappa\left(x^{\prime}\right)=2$.

If x^{\prime} is the origin of a the second chart, x^{\prime} is in case ($\left.{ }^{*} 1\right)$ or ($\left.{ }^{*} 2\right)$ and, by I.5.3, $\left(A_{2}\left(x^{\prime}\right), \beta\left(x^{\prime}\right)\right)=$ $\left(A_{2}(x), A_{2}(x)+\beta 3(x)-1\right), A_{3}\left(x^{\prime}\right)=B 3(x)-1=A 3_{3}(x)+A_{2}(x)-1=A_{2}(x)+\beta 3(x)-1=\beta\left(x^{\prime}\right):$ $C\left(x^{\prime}\right)=0$, by I.7, x^{\prime} is good.
I.8.2 So we are only interested in x^{\prime} the origin of the first chart. If x^{\prime} is not in a case of goodness seen above, then x^{\prime} verifies the hypotheses of I.8. We blow it up and we go on... Then we create a sequence of points $x=x_{0} \leftarrow x_{1}=x^{\prime} \leftarrow x_{2} \leftarrow \ldots$ all on the strict transform of $\mathrm{V}\left(X, u_{1}, u_{3}\right)$: by the usual argument, this sequence is finite.

II End of the story

II. 1 Theorem Let $x \in \Sigma_{p}$ with $\kappa(x)=5$, then x is good.

Proof of II. 1 .
We make an infinite sequence of blowing-ups $X_{i} \leftarrow X_{i+1}$ along the centers $x_{i} \in X_{i}$, the centers of the valuation μ, we suppose that x_{i+1} is very near to x_{i} for all $i \leqslant 0$. For $i \geqslant 1, E(i)$ has at least two components.

We are going to prove that there exists some i such that x_{i} is good. That will end the case $\kappa(x)=5$.

As $\gamma\left(x_{i}\right) \geqslant \gamma\left(x_{i+1}\right)$, for $i \gg 0, \gamma\left(x_{i}\right)=\gamma\left(x_{i+n}\right), n>0$. Let us call $\gamma(\mu)$ this value (which depends of μ and of choices among the prepared parameters at each step).
II. $2 m\left(x_{i}\right)=2$ for all $i \gg 0$.

Case where for $n_{0} \gg 0$ all the $x_{n_{0}+i}$ are rational over $x_{n_{0}}$. By I.4, with n_{0} bigger if necessary, we can suppose that they are all in the same case $\left({ }^{*} 1\right)$ or $\left({ }^{*} 3\right)$. By a translation on the indices, we make $n_{0}=0, x=x_{0}$.

So there exists $v=u_{3}+\sum_{a \geqslant 1} \lambda_{a} u_{2}^{a} \in k(x)\left[\left[u_{2}\right]\right]$ such that the projection of the x_{i} over Spec S are all on the strict transform of v, as $\left(u_{2}, u_{3}\right) \widehat{S}=\left(u_{2}, v\right) \widehat{S}$, we replace the couple $\left(u_{2}, u_{3}\right)$ by $\left(u_{2}, v\right)$: all the x_{i} are origins of the first chart, the reader sees that for $i \gg 0$ we reach the hypotheses of I. 7 if they are all in case $\left({ }^{*} 1\right): x_{i}$ is good. If they are all in case $\left({ }^{*} 3\right)$, it means that $\phi_{0} \in\left(u_{1}, v\right) \widehat{S}$ after a while, we reach the hypotheses of I.8: x_{i} is good.

Case where for every i there exists $j \geqslant i$ such that x_{j+1} is not rational over x_{i}.
By I.4, I.5, for some i, we reach one of the four cases:
(i) $\kappa\left(x_{i}\right) \leqslant 4$,
(ii) $\gamma\left(x_{i}\right)=1, m\left(x_{i}\right)=2$: by I.6, x_{i} is good,
(iii) x_{i} in case $\left({ }^{*} 1\right)$ and $\beta\left(x_{i}\right)<2$, then by I.4, I.5.2, for the smallest $j^{\prime} \geqslant i$ such that ($x_{j^{\prime}}$ is not rational over x_{i} or $\left.m\left(x_{j^{\prime}}\right)=3\right), \gamma\left(x_{j^{\prime}}\right)=1$: by $\mathbf{I} .6$, if $m\left(x_{j^{\prime}}\right)=2, x_{j}$ is good, if $m\left(x_{j^{\prime}}\right)=3$, then for the smallest $j \geqslant j^{\prime}$ such that $m\left(x_{j}\right)=2, \gamma\left(x_{j}\right)=1$: by I. $6 x_{j}$ is good,
(iv) x_{i} in case $\left({ }^{*} 3\right)$ and $\beta 3\left(x_{i}\right)=1$ and $i_{1}\left(x_{i}\right)=0 \bmod (p)$, then by I.5, I.5.3, for the smallest $j^{\prime} \geqslant i$ such that ($x_{j^{\prime}}$ is not rational over x_{i} or $m\left(x_{j^{\prime}}\right)=3$), $\gamma\left(x_{j^{\prime}}\right)=1$ or $\gamma\left(x_{j^{\prime}+1}\right)=1$ or $a(1)+\omega(x) \neq 0$ $\bmod (p)$: in the last case, this means for any $n>0, x_{j^{\prime}+n}$ will be in case $\left({ }^{*} 1\right)\left({ }^{*} 2\right)$, by $\mathbf{I} .4$ we will reach (ii), in the other cases, we conclude as above by I.6.
II. $3 m\left(x_{i}\right)=3$ for $i \gg 0$.

We are always at the origin of a chart, so by all the x_{i} are in case ($\left.{ }^{*} 2\right)$, by the usual transformation laws on polyhedrons, for $i \gg 0, C\left(x_{i}\right)=0$, by $\mathbf{I} .7, x_{i}$ is good.
II. 4 For all $n \in \mathbb{N}$, there is some $i \geqslant n$ with $m\left(x_{i}\right)=2$ and $m\left(x_{i+1}\right)=3$, the x_{i} are rational over $x_{0}, 0<i$.
II.4.1 With the hypothesis of II. 4 and with $a(1)+\omega(x) \neq 0 \bmod (p)$.

Then, by I.4, I.5.2, there exists $i>0$ such that x_{i} is in case ($\left.{ }^{*} 2\right)$ and x_{i+j} in case (${ }^{*} 1$) or $\left({ }^{*} 2\right)$, for all $j, 1 \leqslant j$. Furthermore, $\gamma(\mu)=1$. Then, for $j \gg 0$ such that $m\left(x_{i+j}\right)=2$, we have $\beta\left(x_{i+j}\right) \leqslant 1$, by I.6, x_{i+j} is good.
II.4.2 With the hypothesis of II. 4 and $a(1)+\omega(x)=0 \bmod (p)$.

Then $\gamma(\mu) \leqslant 2$. All the x_{i} are rational over $x=x_{0}$ and $\gamma\left(x_{i}\right)=\gamma(\mu), i \geqslant 0$.
If for $i \gg 0$ all the x_{i} are in case $\left({ }^{*} 1\right)$ or ($\left.{ }^{*} 2\right)$, as above we can apply I. 4 and I.5.2, $\gamma(\mu)=1$. Then, for j such that $m\left(x_{i+j}\right)=2$, we have $\beta\left(x_{i+j}\right) \leqslant 1$, by I.6, x_{i+j} is good.

Last case: for all $n \in \mathbb{N}$, there is some $i \geqslant n$ with x_{i} in case (${ }^{*} 3$) and some $j \geqslant n$ with x_{j} in case (${ }^{*} 2$). If $\gamma(\mu)=1$, then by I.6, for $i \gg 0, x_{i}$ is good.
II.4.3 From now on, $\gamma(\mu)=2$.

Let i such that $m\left(x_{i}\right)=2$ and $m\left(x_{i+1}\right)=3$.
Either x_{i} is in case $\left({ }^{*} 1\right)$, as $\gamma\left(x_{i}\right)=\gamma\left(x_{i+1}\right)=\gamma(\mu)=2$, by I.5.2, $\beta\left(x_{i}\right)=2, \Delta\left(H\left(x^{\prime}\right)^{-1} f^{\prime}+\right.$ $\left.H\left(x^{\prime}\right)^{-1} g^{\prime p} ; u_{1}^{\prime}, u_{2}^{\prime} ; u_{3}^{\prime}\right)$ has only two vertices $\left.\left(A_{1}(x), \beta(x)+A_{1}(x)-1\right),\left(\alpha_{2}(x), B(x)-1\right),\left(\alpha_{2}(x), B(x)\right)\right)$ which are the ends of its initial side, where $x=x_{i}, x^{\prime}=x_{i+1}$.

Then $C\left(x_{i+1}\right)=1$, if $m\left(x_{i+2}\right)=3, C\left(x_{i+2}\right)=0$: contradicts $\gamma(\mu)=2$.
So $m\left(x_{i+2}\right)=2$, with the notations of I.4(4), either $a(1)+\omega(x)-i_{0} \neq 0 \bmod (p)$: we get $i_{0} \beta\left(x_{i+2}\right) \leqslant \operatorname{deg}\left(F_{i_{0}}\right) \leqslant i_{0}$: contradicts $\gamma(\mu)=2$. So $a(1)+\omega(x)-i_{0}=0 \bmod (p), i_{0}=0 \bmod (p)$ and $\beta\left(x_{i+2}\right) \leqslant 1+\frac{1}{i_{0}} \leqslant 1+\frac{1}{p}$. If x_{i+2} is in case $\left({ }^{*} 1\right)$, by I.4, all the x_{i+j} with $m\left(x_{i+j}\right)=m\left(x_{i+j-1}\right)=2$, $j \geqslant 3$, are in case (${ }^{*} 1$) with

$$
\beta\left(x_{i+j}\right) \leqslant \beta\left(x_{i+2}\right) \leqslant 1+\frac{1}{p}<2 .
$$

So for the smallest j_{0} such that $m\left(x_{i+j_{0}}\right)=3$, we get $C\left(x_{i+j_{0}}\right)<\frac{\beta\left(x_{i+2}\right)}{2}<1$, this contradicts $\gamma(\mu)=2$.

So x_{i+2} is in case $\left({ }^{*} 3\right)$, we get $i_{0} \beta 3\left(x_{i+2}\right) \leqslant \operatorname{deg}\left(F_{i_{0}}\right) \leqslant i_{0}$, as $\gamma(\mu)=2, \beta 3\left(x_{i+2}\right)=1$, which implies: $a(1)+\omega(x)-i_{0}=0 \bmod (p)$ (end of the proof of $\mathbf{I} .4$, same notations) so $i_{0}=0 \bmod (p)$: x_{i+2} is in case II.2(iv) above.There exists some $j>i+2$ such that x_{j} is in case $\left({ }^{*} 1\right)$ or $m\left(x_{j}\right)=3$, let j_{0} be the smallest. When $x_{j_{0}}$ is in case $\left({ }^{*} 1\right), \beta\left(x_{j_{0}}\right)<2$, then for the smallest $j^{\prime} \geqslant j_{0}$ such that $m\left(x_{j^{\prime}}\right)=3$, we get $\gamma\left(x_{j^{\prime}}\right)=1$: contradiction. When $m\left(x_{j_{0}}\right)=3$, by I.5.3, $\gamma\left(x_{j_{0}}\right)=1$ or $x_{j_{0}}$ is good, etc.: I.5.3(ii)(iii) ends the proof.

III End of the proof.

In this last section, we reduce the local uniformization problem when $\omega^{\prime}(x)=2$ to one of the previously studied cases, i.e. $\kappa(x) \leqslant 5$. We thus assume that $\kappa(x)>5$ all along this chapter. By definition, no value of $\kappa(x)$ is less than or equal to 5 ($c f$. chapter 2 , comments before definition I.2.3). We always assume that the r.s.p. $\left(X, u_{1}, u_{2}, u_{3}\right)$ of \widehat{R} is such that $E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$ and $\Delta\left(h ; u_{1}, u_{2}, u_{3} ; X\right)$ is minimal.
III. 1 Definition. Assume that $\kappa(x)>5$. Let

$$
X=: X_{0} \leftarrow X_{1} \leftarrow \cdots \leftarrow X_{n}
$$

be the quadratic sequence along μ, i.e. X_{i} is the blowing up along the center x_{i-1} of μ in X_{i-1} for $i \geqslant 1$.

We say that x is good, if $x_{n} \notin \Sigma_{p}\left(X_{n}\right)$, or $\Omega\left(x_{n}\right)<\Omega(x)$ or $\left(\Omega\left(x_{n}\right)=\Omega(x)\right.$ and $\left.\kappa\left(x_{n}\right) \leqslant 5\right)$ for some $n \geqslant 1$.

The final theorem of this paper is then:
III. 2 Theorem. Assume that $\kappa(x)>5$. Then x is good.

We first study the possible occurrences for $\operatorname{VDir}(x)$ when $\kappa(x)>5$. Recall the definition of $\operatorname{VDir}(x)$ and $\tau^{\prime}(x)$ in chapter 2, II.1.3 and corollary II.1.4.
III. 3 Lemma. Assume that $\kappa(x)>5$. The following holds:
(i) $\tau(x)=\tau^{\prime}(x)=2$. If $e: X^{\prime} \rightarrow X$ is the blowing up along x, there is thus at most one $x^{\prime} \in e^{-1}(x)$ very near x and x^{\prime} is rational over x;
(ii) if $E=\operatorname{div}\left(u_{1}\right)$, then $\epsilon(x)=1+\omega(x)$ and $U_{1} \in \operatorname{VDir}(x)$.

Proof. If $\tau^{\prime}(x)=3$, then $\kappa(x)=0$ by chapter 2 II.1.4.
If $\tau(x)=1$, then $\operatorname{VDir}(x)=k(x) \cdot\left(\alpha_{1} U_{1}+\alpha_{2} U_{2}+\alpha_{3} U_{3}\right), \alpha_{i} \in k(x)$ for $i=1,2,3$. If there exists i with $\alpha_{i} \neq 0$ and $\operatorname{div}\left(u_{i}\right) \nsubseteq E$, then there is transverseness: $\kappa(x) \in\{2,4\}$; otherwise, there is tangency: $\kappa(x)=5$. This proves (i).

Assume that $E=\operatorname{div}\left(u_{1}\right)$. If $\epsilon(x)=\omega(x)$, let $\Psi:=\operatorname{in}_{x}\left(H(x)^{-1} f\right)$. We have $\kappa(x)=2$ unless $\Psi \in k(x) \cdot U_{1}^{\omega(x)}:$ then $\kappa(x)=5$. If $\epsilon(x)=1+\omega(x)$, We have $\kappa(x)=4$ unless $\operatorname{cl}_{\omega(x)} J(f, E) \subseteq\left(U_{1}\right)$. Then $U_{1} \in \operatorname{VDir}(x)$.
III. 4 Lemma. Assume that $\kappa(x)>5$ and $E=\operatorname{div}\left(u_{1} u_{2}\right)$. If $\operatorname{VDir}(x)=<U_{1}+\lambda U_{2}, U_{3}>, \lambda \neq 0$, then $\epsilon(x)=1+\omega(x)$ and x is good.

Proof. If $\epsilon(x)=\omega(x)$, we have $\kappa(x)=2$ by definition, since $U_{3} \in \operatorname{VDir}(x)$. So $\epsilon(x)=1+\omega(x)$. Let $e: X^{\prime} \rightarrow X$ be the blowing up along x. If $x^{\prime} \in e^{-1}(x)$ is very near x, then x^{\prime} has coordinates $\left(X^{\prime}:=\frac{X}{u_{2}}, v_{1}^{\prime}:=\frac{u_{1}}{u_{2}}+\lambda, u_{2}^{\prime}:=u_{2}, u_{3}^{\prime}:=\frac{u_{3}}{u_{2}}\right)$. Therefore $E^{\prime}:=\left(e^{-1} E\right)_{\text {red }}=\operatorname{div}\left(u_{2}^{\prime}\right)$. By III.3(ii), x is good if $\epsilon\left(x^{\prime}\right)=\omega\left(x^{\prime}\right)$. If $\epsilon\left(x^{\prime}\right)=1+\omega\left(x^{\prime}\right)$, then

$$
u_{2}^{-\omega(x)} J(f, E) \subseteq J\left(f^{\prime}, E^{\prime}\right)
$$

where $h^{\prime}:=u_{2}^{-p} h=X^{\prime p}-X^{\prime} g^{\prime p-1}+f^{\prime}$. We may have to perform a translation $Z^{\prime}:=X^{\prime}-\theta^{\prime}$ in order to get $\Delta\left(h^{\prime} ; v_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; Z^{\prime}\right)$ minimal, f^{\prime} being changed into $f_{Z^{\prime}}^{\prime}:=f^{\prime}+\theta^{\prime p}-\theta^{\prime} g^{\prime p-1}$. Since $\tau^{\prime}(x)=2, \operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)>\epsilon(x)$ and therefore u_{2}^{\prime} divides $H\left(x^{\prime}\right)^{-1} g^{\prime p}$, so we have

$$
J\left(f_{Z^{\prime}}^{\prime}, E^{\prime}\right) \equiv J\left(f^{\prime}, E^{\prime}\right) \bmod \left(u_{2}^{\prime}\right)
$$

This implies $\operatorname{cl}_{\omega(x)} J\left(f_{Z^{\prime}}^{\prime}, E^{\prime}\right) \nsubseteq\left(U_{2}^{\prime}\right)$, so $\kappa\left(x^{\prime}\right)=4$ and x is good.
III. 5 Lemma. Assume that $\kappa(x)>5$ and $\operatorname{div}\left(u_{1}\right) \subseteq E \subseteq \operatorname{div}\left(u_{1} u_{2}\right)$. If $\operatorname{VDir}(x)=<U_{1}, U_{3}>$, then $\epsilon(x)=1+\omega(x)$ and x is good.

Proof. As in III.4, $U_{3} \in \operatorname{VDir}(x)$ and $\kappa(x)>2$ implies $\epsilon(x)=1+\omega(x)$. Let $e: X^{\prime} \rightarrow X$ be the blowing up along x. Since $x^{\prime} \in e^{-1}(x)$ is very near x, x^{\prime} has coordinates $\left(X^{\prime}:=\frac{X}{u_{2}}, u_{1}^{\prime}:=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}:=\right.$ $\left.u_{2}, u_{3}^{\prime}:=\frac{u_{3}}{u_{2}}\right)$. We are at the origin of a chart, the polyhedron $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is thus minimal. Let us denote

$$
H(x)^{-1} f=: P s i\left(u_{1}, u_{2}, u_{3}\right)+\phi
$$

with $H(x)=u_{1}^{a(1)} u_{2}^{a(2)}\left(a(2)=0\right.$ if $\left.E=\operatorname{div}\left(u_{1}\right)\right), \Psi \in k(x)\left[u_{1}, u_{2}, u_{3}\right]$ homogeneous of degree $\epsilon(x)$ and $\operatorname{ord}_{\eta(x)} \phi>\epsilon(x)$. Then $E^{\prime}:=\left(e^{-1} E\right)_{\mathrm{red}}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right), H\left(x^{\prime}\right)=u_{1}^{\prime a(1)} u_{2}^{\prime a(1)+a(2)+\omega(x)+1-p}$, and

$$
H\left(x^{\prime}\right)^{-1} f^{\prime}=\Psi\left(u_{1}^{\prime}, 1, u_{3}^{\prime}\right)+u_{2}^{\prime} \phi^{\prime}
$$

with $\phi^{\prime} \in \widehat{S^{\prime}}$. We consider three cases:

Case 1: $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} \Psi\left(u_{1}^{\prime}, 1, u_{3}^{\prime}\right) \leqslant \omega(x)$. Then equality holds and $\omega\left(x^{\prime}\right)=\epsilon\left(x^{\prime}\right)$. We have $\kappa\left(x^{\prime}\right)=$ 5 if $\mathrm{cl}_{\omega(x)} \Psi\left(u_{1}^{\prime}, 1, u_{3}^{\prime}\right) \in k(x)\left[U_{1}^{\prime}\right]$. Otherwise, $\operatorname{cl}_{\omega(x)} \Psi\left(u_{1}^{\prime}, 1, u_{3}^{\prime}\right) \in k(x)\left[U_{1}^{\prime}, U_{3}^{\prime}\right]$, so $\operatorname{VDir}\left(x^{\prime}\right) \nsubseteq<$ $U_{1}^{\prime}, U_{2}^{\prime}>: \kappa\left(x^{\prime}\right)=2$ and x is good.
¿From now on, we assume that $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} \Psi\left(u_{1}^{\prime}, 1, u_{3}^{\prime}\right)=1+\omega(x)=\epsilon(x)$, i.e. $\Psi \in k(x)\left[U_{1}, U_{3}\right]$. We have $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(u_{2}^{\prime} \phi^{\prime}\right) \geqslant \omega\left(x^{\prime}\right)=\omega(x)$. Moreover, since $\kappa(x) \neq 3$, we actually have

$$
\begin{equation*}
\operatorname{VDir}(x)=\operatorname{VDir}\left(\frac{\partial \Psi}{\partial U_{3}}\right)=<U_{1}, U_{3}> \tag{1}
\end{equation*}
$$

Case 2: $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(u_{2}^{\prime} \phi^{\prime}\right)=\omega(x)$. In particular, we have $\epsilon\left(x^{\prime}\right)=\omega\left(x^{\prime}\right)$. We denote $\operatorname{in}_{x^{\prime}}\left(u_{2}^{\prime} \phi^{\prime}\right)=$ $U_{2}^{\prime} \Phi^{\prime}\left(U_{1}^{\prime}, U_{2}^{\prime}, U_{3}^{\prime}\right)$. If $\Phi^{\prime} \in k(x)\left[U_{2}^{\prime}\right]$, then $\kappa\left(x^{\prime}\right)=5$; if $\Phi^{\prime} \notin k(x)\left[U_{1}^{\prime}, U_{2}^{\prime}\right]$, then $\kappa\left(x^{\prime}\right)=2$. It can thus be assumed that

$$
\begin{equation*}
\Phi^{\prime} \in k(x)\left[U_{1}^{\prime}, U_{2}^{\prime}\right] \backslash k(x)\left[U_{2}^{\prime}\right] \tag{2}
\end{equation*}
$$

Then $\operatorname{VDir}\left(x^{\prime}\right)=<U_{1}^{\prime}, U_{2}^{\prime}>$. Let $e^{\prime}: X^{\prime \prime} \rightarrow X^{\prime}$ be the blowing up along x^{\prime}. Since $x^{\prime \prime} \in$ $E^{\prime \prime}:=\left(e^{\prime-1} E^{\prime}\right)_{\text {red }}$ is very near $x^{\prime}, x^{\prime \prime}$ has coordinates $\left(X^{\prime \prime}:=\frac{X^{\prime}}{u_{3}^{\prime}}, u_{1}^{\prime \prime}:=\frac{u_{1}^{\prime}}{u_{3}^{\prime}}, u_{2}^{\prime \prime}:=\frac{u_{2}^{\prime}}{u_{3}^{\prime}}, u_{3}^{\prime \prime}:=u_{3}^{\prime}\right)$, $E^{\prime \prime}=\operatorname{div}\left(u_{1}^{\prime \prime} u_{2}^{\prime \prime} u_{3}^{\prime \prime}\right)$ and the polyhedron $\Delta\left(h^{\prime \prime} ; u_{1}^{\prime \prime}, u_{2}^{\prime \prime}, u_{3}^{\prime \prime} ; X^{\prime \prime}\right)$ is minimal. Then

$$
H\left(x^{\prime \prime}\right)^{-1} f^{\prime \prime}=u_{3}^{\prime \prime} \Psi\left(u_{1}^{\prime \prime}, 1,1\right)+u_{2}^{\prime \prime} \Phi^{\prime}\left(u_{1}^{\prime \prime}, u_{2}^{\prime \prime}, 1\right)+u_{2}^{\prime \prime} u_{3}^{\prime \prime} \phi^{\prime \prime}
$$

with $\phi^{\prime \prime} \in \widehat{S^{\prime \prime}}$. By $(1), \operatorname{deg}_{U_{3}} \Psi\left(U_{1}, U_{3}\right) \geqslant 2$, so $\operatorname{ord}_{\eta^{\prime \prime}\left(x^{\prime \prime}\right)} \Psi\left(u_{1}^{\prime \prime}, 1,1\right)=1+\omega(x)-\operatorname{deg}_{U_{3}} \Psi\left(U_{1}, U_{3}\right) \leqslant$ $\omega(x)-1$. Since $x^{\prime \prime}$ is very near x, equality holds and we get

$$
u_{3}^{\prime \prime} \Psi\left(u_{1}^{\prime \prime}, 1,1\right)=\gamma^{\prime \prime} u_{3}^{\prime \prime} u_{1}^{\prime \prime \omega(x)-1}
$$

where $\gamma^{\prime \prime} \in \widehat{S^{\prime \prime}}$ is a unit. Then $\epsilon\left(x^{\prime \prime}\right)=\omega(x)$,

$$
\begin{equation*}
\Psi^{\prime \prime}:=\operatorname{cl}_{\omega(x)}\left(H\left(x^{\prime \prime}\right)^{-1} f^{\prime \prime}\right)=\lambda U_{3}^{\prime \prime} U_{1}^{\prime \prime \omega(x)-1}+U_{2}^{\prime \prime} \Phi^{\prime}\left(U_{1}^{\prime \prime}, U_{2}^{\prime \prime}, 1\right)+U_{2}^{\prime \prime} U_{3}^{\prime \prime} \Phi^{\prime \prime}\left(U_{1}^{\prime \prime}, U_{2}^{\prime \prime}, U_{3}^{\prime \prime}\right) \tag{3}
\end{equation*}
$$

where $\lambda \neq 0, H\left(x^{\prime \prime}\right)=u_{1}^{\prime \prime a(1)} u_{2}^{\prime \prime b(2)} u_{3}^{\prime \prime a(1)+b(2)+\omega(x)-p}$ and $b(2):=a(1)+a(2)+\omega(x)+1-p$.
We claim that $\tau\left(x^{\prime \prime}\right)=3$, which implies that $\kappa(x)=\kappa\left(x^{\prime \prime}\right)=0$ by chapter 2 II.1.2, contradicting the assumption $\kappa(x)>5$. To prove the claim, let us denote

$$
\Psi^{\prime \prime}=: \sum_{1 \leqslant j \leqslant \omega(x)} U_{1}^{\prime \prime \omega(x)-j} \Psi_{j}\left(U_{2}^{\prime \prime}, U_{3}^{\prime \prime}\right)
$$

By (3), $\Psi^{\prime \prime} \notin k(x)\left[U_{2}^{\prime \prime}, U_{3}^{\prime \prime}\right]$ and $\operatorname{deg}_{U_{1}^{\prime \prime}} \Psi^{\prime \prime}<\omega(x)=\operatorname{deg} \Psi^{\prime \prime}$, so we have $\tau\left(x^{\prime \prime}\right) \geqslant 2$. If $\tau\left(x^{\prime \prime}\right)=2$, then $\operatorname{VDir}\left(x^{\prime \prime}\right)=<U_{1}^{\prime \prime}+\alpha_{2} U_{2}^{\prime \prime}+\alpha_{3} U_{3}^{\prime \prime}, \beta_{2} U_{2}^{\prime \prime}+\beta_{3} U_{3}^{\prime \prime}>$ for some $\alpha_{i}, \beta_{i} \in k(x), i=2,3$ with $\left(\beta_{2}, \beta_{3}\right) \neq(0,0)$. Note that, since $\Psi_{1} \notin k(x)\left[U_{2}\right]$, we must have $\beta_{3} \neq 0$. Without loss of generality, it can be assumed that $\alpha_{3}=0$ and $\beta_{3}=1$, i.e.

$$
\begin{equation*}
\operatorname{VDir}\left(x^{\prime \prime}\right)=<U_{1}^{\prime \prime}+\alpha_{2} U_{2}^{\prime \prime}, \beta_{2} U_{2}^{\prime \prime}+U_{3}^{\prime \prime}> \tag{4}
\end{equation*}
$$

If $\beta_{2}=0$, then with notations about derivations as in chapter 1 II.3, we have

$$
F_{i}:=H\left(x^{\prime \prime}\right)^{-1} \lambda_{i}^{\prime \prime} \frac{\partial H\left(x^{\prime \prime}\right) u_{2}^{\prime \prime} \Phi^{\prime}\left(u_{1}^{\prime \prime}, u_{2}^{\prime \prime}, 1\right)}{\partial \lambda_{i}^{\prime \prime}} \in k(x) \cdot\left(u_{1}^{\prime \prime}+\alpha_{2} u_{2}^{\prime \prime}\right)^{\omega(x)}
$$

for each $i, 1 \leqslant i \leqslant s$. By (2) and (3), $F_{i_{0}} \neq 0$ for some $i_{0}, 1 \leqslant i_{0} \leqslant s$ and $U_{2}^{\prime \prime}$ divides $F_{i_{0}}$: this contradicts (4). Hence $\beta_{2} \neq 0$.

By (4), we have

$$
\begin{equation*}
H\left(x^{\prime \prime}\right)^{-1} \lambda_{i}^{\prime \prime} \frac{\partial H\left(x^{\prime \prime}\right) u_{1}^{\prime \prime} \omega(x)-1}{} \Psi_{1}\left(u_{2}^{\prime \prime}, u_{3}^{\prime \prime}\right)\left(\in k(x) \cdot u_{1}^{\prime \prime \omega(x)-1}\left(u_{3}^{\prime \prime}+\beta_{2} u_{2}^{\prime \prime}\right)\right. \tag{5}
\end{equation*}
$$

for each $i, 1 \leqslant i \leqslant s$. Since $\lambda \neq 0$, we have $\Psi_{1} \neq 0$. By (5), $\Psi_{1}=\mu_{2} U_{2}^{\prime \prime}+\mu_{3} U_{3}^{\prime \prime}$ with $\mu_{2} \mu_{3} \neq 0$ and we may apply chapter 2 II.5(i) (with $a=1$ and $F=\Psi_{1}$). This yields $a(1)+\omega(x)-1 \equiv 0 \bmod p$, $b(2)(b(2)+1) \not \equiv 0 \bmod p$, and $2(\widehat{b(2)}+1)=p$, where $\widehat{b(2)} \in\{0, \ldots, p-1\}$ denotes the remainder of the division of the integer $b(2)$ by p. The latter condition implies $p=2$, incompatible with $b(2)(b(2)+1) \not \equiv 0 \bmod p:$ a contradiction and the claim is proved.
Case 3: $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)}\left(u_{2}^{\prime} \phi^{\prime}\right)>\omega(x)$. Then $\epsilon\left(x^{\prime}\right)=1+\omega(x)$ and

$$
\frac{\partial \Psi\left(u_{1}^{\prime}, 1, u_{3}^{\prime}\right)}{\partial u_{3}^{\prime}} \in J\left(f^{\prime}, E^{\prime}\right) \bmod \left(u_{2}^{\prime}\right)
$$

By (1), we thus have

$$
\operatorname{VDir}\left(x^{\prime}\right)+k\left(x^{\prime}\right) \cdot U_{2}^{\prime}=<U_{1}^{\prime}, U_{2}^{\prime}, U_{3}^{\prime}>
$$

Since $\kappa(x)>5$, we must have $\tau^{\prime}\left(x^{\prime}\right)=2$, so $\operatorname{VDir}\left(x^{\prime}\right)=<U_{1}^{\prime}+\lambda U_{2}^{\prime}, U_{3}^{\prime}>$ for some $\lambda \in k(x)$, after possibly changing coordinates to $\left(u_{1}^{\prime}, u_{2}^{\prime}, v_{3}^{\prime}:=u_{3}^{\prime}+\alpha_{1} u_{2}^{\prime}\right)$ and letting $Z^{\prime}:=X^{\prime}-\theta^{\prime}$ in order to get $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, v_{3}^{\prime} ; Z^{\prime}\right)$ minimal. If $\lambda \neq 0$, then x is good by III.4. If x is not good, then $\kappa\left(x^{\prime}\right)>5$, $\operatorname{VDir}\left(x^{\prime}\right)=<U_{1}^{\prime}, V_{3}^{\prime}>$ and $E^{\prime}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right)$, so x^{\prime} verifies the hypotheses of III. 5 and we iterate the process.

Let $X=X_{0} \leftarrow X_{1} \leftarrow \cdots X_{n-1} \leftarrow X_{n} \leftarrow \cdots$ be the quadratic sequence along μ. There exists a series $v_{3}=u_{3}+\sum_{j \geqslant 2} \alpha_{j} u_{2}^{j}, \alpha_{j} \in k(x)$, and $Z \in \widehat{R}$ with the following properties:
(a) the polyhedron $\Delta\left(h ; u_{1}, u_{2}, v_{3} ; Z\right)$ is minimal;
(b) if x_{n} is very near x and $\kappa\left(x_{n}\right)>5$, then x_{n} is on the strict transform Y_{n} of $Y:=V\left(Z, u_{1}, v_{3}\right) \subseteq$ $\operatorname{Spec}(\widehat{R} /(h))$ in X_{n}.

As pointed out several times in this paper, (b) implies that $n<\frac{\mu\left(u_{1}\right)}{\mu\left(u_{2}\right)}$: a contradiction, since the value group of μ is Archimedean. Hence x is good.
III.5.1 Corollary. If $\kappa(x)>5$ and either $E=\operatorname{div}\left(u_{1}\right)$ or $\left(E=\operatorname{div}\left(u_{1} u_{2}\right)\right.$ and $\operatorname{VDir}(x) \neq<$ $U_{1}, U_{2}>$), then x is good.

Proof. This follows from III. 3 and III. 5 (resp. III. 4 and III.5) if $E=\operatorname{div}\left(u_{1}\right)$ (resp. $E=$ $\left.\operatorname{div}\left(u_{1} u_{2}\right)\right)$.
III.5.2 Lemma. Assume that $\kappa(x)>5, E=\operatorname{div}\left(u_{1} u_{2}\right)$ and $\operatorname{VDir}(x)=<U_{1}, U_{2}>$. Let $e: X^{\prime} \rightarrow$ X be the blowing up along x and $x^{\prime} \in e^{-1}(x)$ be very near x. Then $\epsilon\left(x^{\prime}\right)=\omega\left(x^{\prime}\right)$.
Proof. Since $\operatorname{VDir}(x)=<U_{1}, U_{2}>, x^{\prime}$ has coordinates $\left(X^{\prime}=\frac{X}{u_{3}}, u_{1}^{\prime}=\frac{u_{1}}{u_{3}}, u_{2}^{\prime}=\frac{u_{2}}{u_{3}}, u_{3}^{\prime}=u_{3}\right)$, so $E^{\prime}:=\left(e^{-1} E\right)_{\mathrm{red}}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime}\right)$. In particular, $\epsilon\left(x^{\prime}\right)=\omega\left(x^{\prime}\right)$.
III.5.3 Remark. Corollary III.5.1 and lemma III.5.2 reduce theorem I. 2 to the case where $\operatorname{div}\left(u_{1} u_{2}\right) \subseteq E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right), \operatorname{VDir}(x) \subseteq<\left\{U_{i} \mid \operatorname{div}\left(u_{i}\right) \subseteq E\right\}>$ and $\epsilon(x)=\omega(x)$. Then theorem III. 2 is a consequence of propositions III.6.2 and III.6.3 below.
III. 6 Definition. Assume that $\kappa(x)>5$, $\operatorname{div}\left(u_{1} u_{2}\right) \subseteq E \subseteq \operatorname{div}\left(u_{1} u_{2} u_{3}\right)$, $\operatorname{VDir}(x) \subseteq<\left\{U_{i} \mid\right.$ $\left.\operatorname{div}\left(u_{i}\right) \subseteq E\right\}>$ and $\epsilon(x)=\omega(x)$. We let $c(x)=2$ if $\operatorname{VDir}(x)=<U_{i_{1}}, U_{i_{2}}>$ for some i_{1}, i_{2} such that $\operatorname{div}\left(u_{i_{1}} u_{i_{2}}\right) \subseteq E$. Otherwise, let $c(x)=3$.
III.6.1 Lemma. Assume that $\kappa(x)>5, E=\operatorname{div}\left(u_{1} u_{2}\right), \operatorname{VDir}(x)=<U_{1}, U_{2}>$ and $\epsilon(x)=\omega(x)$. Then $F_{3}:=\operatorname{cl}_{\omega(x)}\left(H(x)^{-1} \frac{\partial f}{\partial u_{3}}\right) \in k(x)\left[U_{1}, U_{2}\right]$.
Proof. Let $e: X^{\prime} \rightarrow X$ be the blowing up along x. The only point $x^{\prime} \in e^{-1}(x)$ very near x has parameters ($X^{\prime}=\frac{X}{u_{3}}, u_{1}^{\prime}=\frac{u_{1}}{u_{3}}, u_{2}^{\prime}=\frac{u_{2}}{u_{3}}, u_{3}^{\prime}=u_{3}$), so the polyhedron $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal. We have $E^{\prime}:=\left(e^{-1} E\right)_{\mathrm{red}}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime}\right)$, so $J\left(f^{\prime}, E^{\prime}\right)=J\left(f^{\prime}, E^{\prime}, x^{\prime}\right)$ and

$$
f_{3}^{\prime}:=u_{3}^{\prime}\left(u_{3}^{\prime-\omega(x)} H(x)^{-1} \frac{\partial f}{\partial u_{3}}\right) \in J\left(f^{\prime}, E^{\prime}, x^{\prime}\right) .
$$

Since x^{\prime} is very near $x, \operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} f_{3}^{\prime} \geqslant \omega(x)$. We have

$$
f_{3}^{\prime} \equiv u_{3}^{\prime} F_{3}^{\prime}\left(u_{1}^{\prime}, u_{2}^{\prime}, 1\right) \bmod \left(u_{3}^{\prime 2}\right),
$$

with $\operatorname{ord}_{\eta^{\prime}\left(x^{\prime}\right)} F_{3}^{\prime}\left(u_{1}^{\prime}, u_{2}^{\prime}, 1\right) \leqslant \omega(x)-1$ if $F_{3} \notin k(x)\left[U_{1}, U_{2}\right]$. Therefore equality holds and $U_{3}^{\prime} \in$ $\operatorname{VDir}\left(x^{\prime}\right)$.

If $\varphi \in J(f, E, x)$, then $u_{3}^{-\omega(x)} \Phi\left(u_{1}^{\prime}, u_{2}^{\prime}\right) \in J\left(f^{\prime}, E^{\prime}, x^{\prime}\right)+\left(u_{3}^{\prime}\right)$, where $\Phi:=\mathrm{cl}_{\omega(x)} \varphi$. Therefore

$$
<U_{1}^{\prime}, U_{2}^{\prime}, U_{3}^{\prime}>\subseteq k\left(x^{\prime}\right) \cdot U_{3}^{\prime}+\operatorname{VDir}\left(\left\{\Phi\left(U_{1}^{\prime}, U_{2}^{\prime}\right) \mid \varphi \in J(f, E, x)\right\}\right) \subseteq \operatorname{VDir}\left(x^{\prime}\right),
$$

since $\operatorname{VDir}(x)=<U_{1}, U_{2}>$. This implies $\tau\left(x^{\prime}\right)=3$, so $\kappa(x)=\kappa\left(x^{\prime}\right)=0$: a contradiction.
III.6.2 Proposition. Let x be as in definition III.6. If $c(x)=3$, then x is good.

Proof. Necessarily $E=\operatorname{div}\left(u_{1} u_{2} u_{3}\right)$. Let $e: X^{\prime} \rightarrow X$ be the blowing up along x. As $c(x)=3$, the center x^{\prime} of μ in X^{\prime} is not on the strict transform of any two components of E, so $m\left(x^{\prime}\right) \leqslant 2$. By III.5.1, it can be assumed that $m\left(x^{\prime}\right)=2$. After possibly renumbering coordinates, it can be assumed that

$$
\operatorname{VDir}(x)=<U_{1}, U_{3}+\lambda U_{2}>
$$

with $\lambda \neq 0$. Then $x^{\prime}=\left(X^{\prime}:=\frac{X}{u_{2}}, u_{1}^{\prime}:=\frac{u_{1}}{u_{2}}, u_{2}^{\prime}:=u_{2}, v_{3}^{\prime}:=\frac{u_{3}}{u_{2}}+\lambda\right)$ and $E^{\prime}:=\left(e^{-1} E\right)_{\mathrm{red}}=$ $\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right)$.

Let $\varphi \in J(f, E, x)$ be such that $\Phi:=\operatorname{cl}_{\omega(x)} \varphi \notin k(x)\left[U_{1}\right]$. Then $u_{2}^{-\omega(x)} \varphi \in J\left(f^{\prime}, E^{\prime}\right)$ and therefore

$$
\begin{equation*}
\Phi\left(u_{1}^{\prime}, 1, v_{3}^{\prime}-\lambda\right) \in J\left(f_{Z^{\prime}}^{\prime}, E^{\prime}\right)+\left(u_{2}^{\prime}\right) \tag{1}
\end{equation*}
$$

where $Z^{\prime}:=X^{\prime}-\theta^{\prime}, h^{\prime}:=u_{2}^{-p} h=Z^{\prime p}-Z^{\prime} g^{\prime p-1}+f_{Z^{\prime}}^{\prime}$ and $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, v_{3}^{\prime} ; Z^{\prime}\right)$ is minimal (since $\epsilon(x)=\omega(x), \operatorname{ord}_{\eta(x)}\left(H(x)^{-1} g^{p}\right)>\omega(x)$ in here $)$.

If $\epsilon\left(x^{\prime}\right)=1+\omega(x)$, then x^{\prime} (hence x) is good by (1) and III.5.1, since $\Phi \notin k(x)\left[U_{1}\right]$.
If $\epsilon\left(x^{\prime}\right)=\omega(x)$ and x is not good, then $\operatorname{VDir}\left(x^{\prime}\right)=<U_{1}^{\prime}, U_{2}^{\prime}>$ by III.5.1, so

$$
\Phi\left(v_{1}, 1, v_{3}-\lambda\right) \notin J\left(f_{Z^{\prime}}^{\prime}, E^{\prime}, x^{\prime}\right)+\left(u_{2}^{\prime}\right)
$$

Since $E^{\prime}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime}\right),(1)$ implies that

$$
\left(H\left(x^{\prime}\right)^{-1} \frac{\partial f_{Z^{\prime}}^{\prime}}{\partial v_{3}^{\prime}}\right) \equiv\left(\Phi\left(u_{1}^{\prime}, 1, v_{3}^{\prime}-\lambda\right)\right) \bmod \left(u_{1}^{\prime}, u_{2}^{\prime}\right)
$$

a contradiction by III.6.1.
III.6.3 Proposition. Let x be as in definition III.6. If $c(x)=2$, then x is good.

Proof. After possibly renumbering coordinates, it can be assumed that $\operatorname{VDir}(x)=<U_{1}, U_{2}>$. Let $e: X^{\prime} \rightarrow X$ be the blowing up along x. Since the center x^{\prime} of μ in X^{\prime} is very near x, $x^{\prime}=\left(X^{\prime}:=\frac{X}{u_{3}}, u_{1}^{\prime}:=\frac{u_{1}}{u_{3}}, u_{2}^{\prime}:=\frac{u_{2}}{u_{3}}, u_{3}^{\prime}:=u_{3}\right)$. We have $E^{\prime}:=\left(e^{-1} E\right)_{\mathrm{red}}=\operatorname{div}\left(u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime}\right)$ and $\Delta\left(h^{\prime} ; u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime} ; X^{\prime}\right)$ is minimal. Moreover $J\left(f^{\prime}, E^{\prime}, x^{\prime}\right)=u_{3}^{-\omega(x)} J(f, E, x)$, since $m\left(x^{\prime}\right)=3$, so we have $\operatorname{VDir}\left(x^{\prime}\right) \equiv<U_{1}^{\prime}, U_{2}^{\prime}>\bmod \left(U_{3}^{\prime}\right)$. We are done by III.6.2 unless

$$
\operatorname{VDir}\left(x^{\prime}\right)=<U_{1}^{\prime}, U_{2}^{\prime}>
$$

i.e. x^{\prime} satisfies again the assumptions of III. 6.3 with the same numbering of variables if $\kappa\left(x^{\prime}\right)>5$.

Let

$$
X=X_{0} \leftarrow X_{1} \leftarrow \cdots X_{n-1} \leftarrow X_{n} \leftarrow \cdots
$$

be the quadratic sequence along μ. We cannot have $\kappa\left(x_{i}\right)>5$ for $i \geqslant \frac{\mu\left(u_{1}\right)}{\mu\left(u_{3}\right)}$, so x is good and the conclusion follows.
"On n'est jamais, jamais assez fort pour ce calcul" (Comtesse Maxime de la Falaise).

BIBLIOGRAPHY

COSSART Vincent

[1] "Sur le polyèdre caractéristique d'une singularité". Bull. Soc. math. France 103, 1975, 13-19.
[2] "Desingularization of embedded excellent surfaces." Tohoku Math. J.., II. Ser. 33, 1981, 25-33.
[3] "Resolution of surface singularities." Lecture Notes in Mathematics, 1101. Berlin etc.: SpringerVerlag, 1984, 79-98.
[4] "Forme normale d'une fonction sur un k-schéma de dimension 3 and de caractéristique positive." Géométrie algébrique et applications, C. R. 2ieme Conf. int., La Rabida/Espagne 1984, I: Géométrie and calcul algébrique, Trav. Cours 22, 1987, 1-21.
[5] "Sur le polyèdre caractéristique." Thèse d'État. 424 pages. Orsay (1987).
[6] "Polyèdre caractéristique et éclatements combinatoires." Rev. Mat. Iberoam. 5, No.1/2, 1989, 67-95.
[7] "Contact maximal en caractéristique positive and petite multiplicité." Duke Math. J. 63, No.1, 1991, 57-64.
[8] "Modèle projectif régulier et désingularisation." Math. Ann. 293, No.1, 1992, 115-122.
[9] "Désingularisation en dimension 3 et caractéristique p ". Proceedings de La Rabida. Progress in Math. Vol. 134, Birkhauser, 1996, 1-7.
[10] "Uniformisation et désingularisation des surfaces", dédié à O. Zariski (Hauser, Lipman, Oort, Quiros Éd.), Progress in Math., Vol. 181, 239-258 Birkhauser, 2000.

COSSART Vincent, PILTANT Olivier.
[CP] "Resolution of singularities of threefolds in positive characteristic I", preprint.
GIRAUD Jean
[Gi1] "Étude locale des singularités" Cours de 3 ème cycle, Pub. no 26, Univ. d'Orsay 1972.
[Gi2] "Contact maximal en caractéristique positive". Ann. scient. Ec, Norm. Sup. 4 ème série, t.8, 1975, 201-234.

HIRONAKA Heisuke

[H1] "Characteristic polyhedra of singularities", J. Math. Kyoto Univ. 7-3, 1967, 251-293.
[H2] "Additive groups associated with points of a projective space", Ann. of Math., vol. 92, 1970, 327-334.
[H3] "Idealistic exponents of singularity", (J.J. Sylvester symposium, John Hopkins Univ., Baltimore 1976), John Hopkins Univ. Press, 1977, 52-125.
[H4] "Theory of infinitely near singular points", J. Korean Math. Society, 40(5), 2003, 901-920.
MATSUMURA Hideyuki
[M] "Commutative ring theory", Cambridge studies in advanced mathematics 8, 1986, Cambridge Univ. Press.

