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ABSTRACT
We propose a new algorithm for converting a characteris-
tic set of a prime differential ideal from one ranking into
another. This differential algebra algorithm computes char-
acteristic sets by change of ranking (ordering) for prime ide-
als. It identifies the purely algebraic subproblems which
arise during differential computations and solves them al-
gebraically. There are two improvements w.r.t. other ap-
proaches: formerly unsolved problems could be carried out;
it is conceptually simple. Different variants are implemented.

Keywords
differential algebra. PDE. characteristic sets. change of
rankings. gcd.

1. INTRODUCTION
In this paper, we propose an algorithm which solves the fol-
lowing problem: given a characteristic set C of a prime dif-
ferential ideal a w.r.t some ranking R and another ranking
R 6= R, compute a characteristic set C of a w.r.t. R. The al-
gorithm that we present, called1 PARDI applies for systems
of partial differential polynomial equations. It specializes to
systems of ordinary differential polynomial equations and is
then called2 PODI. It specializes to nondifferential polyno-
mial equations where it is called3 PALGIE.

As far as we know, Ollivier was the first to solve the prob-
lem addressed in this paper. Let’s quote [19, page 95]: “one
can [design] a method for constructing a characteristic set
of a finitely generated prime differential ideal as soon as
one can effectively test membership to this ideal”. An al-

1PARDI is an acronym for Prime pARtial Differential Ideal.
In French, “pardi” is an oldfashioned swearword such as, say,
“egad” in English.
2PODI is an acronym for Prime Ordinary Differential Ideal.
3PALGIE is an acronym for Prime ALGebraic IdEal. How-
ever, since “algie” means “suffering” in French, one might
also understand PALGIE as “polynomial suffering” say.

gorithm is given in SCRATCHPAD in [19, page 97]. In all
approaches, a known characteristic set provides the mem-
bership test algorithm. Such a problem was also considered
in [3]. However, the algorithms presented in [3] compute dif-
ferential polynomials which are not necessarily part of the
desired characteristic set but only help computing it. They
are complementary to PARDI.

The restriction to prime ideals is realistic. Indeed most dif-
ferential systems coming from real problems generate differ-
ential prime ideals. Quite often, nondifferential polynomial
systems in positive dimension either generate prime ideals or
can be decomposed into prime ideals. Assuming that prime
ideals are given by characteristic sets is realistic too. In the
differential case, it happens quite often (e.g. dynamical sys-
tems in nonlinear control theory) that the input equations
already form characteristic sets w.r.t. some rankings. Let
us observe that one can decide primality for any ideal pre-
sented as the set of the polynomials pseudoreduced to zero
by a characteristic set. The algorithm we propose gener-
alizes to ideals which are not necessarily prime. However,
for the reasons explained above and the legibility of the pa-
per, we prefer to restrict ourselves to the prime case. Our
algorithm applies to perform invertible changes of coordi-
nates on the dependent and independent variables. Such
changes realize ring isomorphisms between two differential
rings φ : R → R, and one–to–one correspondences between
the differential ideals of R and the ones of R. However the
image C of a characteristic set C of a is usually not a char-
acteristic set of the ideal a = φa and there is usually no
ranking w.r.t. which a characteristic set of a could be easily
deduced from C. The idea is then to apply PARDI over C but
to test membership in a by performing the inverse changes
of coordinates and testing membership in a using C.

Our approach offers several advantages. It identifies the al-
gebraic subproblems which occur in the differential compu-
tations and solves them by a purely algebraic method. This
improves the control of the coefficients growth and avoids
many useless computations only due to differential consid-
erations. This very important advantage w.r.t. all other
approaches permits us to handle some unsolved problems,
even using a preliminary implementation. The three vari-
ants were implemented: PARDI in MAPLE, PODI in C and
PALGIE in MAPLE, C and Aldor. The application to the
change of variables was implemented in MAPLE. A last con-
tribution is the conceptual simplicity of our algorithm, which
contrats with the high technicity of its implementation. Ev-

38



erybody knows that the common roots of two univariate
polynomials over a field are given by their gcd. Our algo-
rithm applies this very simple idea and replaces any two uni-
variate polynomials by one of their gcd over the fraction field
of some quotient ring which makes much more sense than
speaking of full remainders as in the previous approaches.

2. DEFINITIONS AND NOTATIONS
Let X be an ordered alphabet (possibly infinite). Let R =
K[X] be a polynomial ring where K is a field. Let p ∈ R\K
be a polynomial. The leader of p, denoted ld p, is the great-
est indeterminate x which occurs in p. The polynomial p can
be written as p = ad xd + · · ·+ a1 x+ a0 where d = deg(p, x)
and the polynomials ai are free of x. The polynomial ip = ad

is the initial of p. The rank of p is the monomial xd. The
reductum of p is the polynomial p − ip xd. If xd and ye are
two ranks then xd < ye if x < y or x = y and d < e. The
separant of p is the polynomial sp = ∂p/∂x. Let A ⊂ R \ K
be a set of polynomials. Then IA (resp. SA) denotes the
set of the initials (resp. the separants) of its elements. We
denote HA = IA ∪ SA. The set A is said to be triangular

if its elements have distinct leaders. Let q be a polynomial.
We denote prem(q, p) the pseudoremainder of q by p, both
polynomials being viewed as univariate polynomials in the
leader of p. We denote prem(q, A) “the” pseudoremainder r
of q by all the elements of A i.e. any polynomial r obtained
from q and the elements of A by performing successive pseu-
doreductions and such that prem(r, p) = r for every p ∈ A.
Without further precisions, r is not uniquely defined. Fix
any precise algorithm.

If A is a subset of a ring R then (A) denotes the ideal gener-
ated by A. Let a be an ideal of R. If S = {s1, . . . , st} then
the saturation a : S∞ of a by S is the ideal a : S∞ = {p ∈
R | ∃a1, . . . , at ∈ N s.t. sa1

1 · · · sat

t p ∈ a}.

Reference books for differential algebra are [21] and [12].
We also refer to the MAPLE VR5 and VI diffalg pack-
age and to [5, 6, 20, 10]. A derivation over a ring R is a
map δ : R → R such that δ(a + b) = δa + δb and δ(a b) =
(δa)b + a(δb) for every a, b ∈ R. A differential ring is a
ring endowed with finitely many derivations which commute
pairwise. The commutative monoid generated by the deriva-
tions is denoted by Θ. Its elements are the derivation op-

erators θ = δa1

1 · · · δam
m where the ai are nonnegative integer

numbers. The sum of the exponents ai, called the order of
the operator θ, is denoted by ord θ. The identity operator is
the unique operator with order 0. The other ones are called
proper. If φ = δb1

1 · · · δbm
m then θφ = δa1+b1

1 · · · δam+bm
m . If

ai > bi for each 1 ≤ i ≤ m then θ/φ = δa1−b1
1 · · · δam−bm

m .
A differential ideal a of R is an ideal of R closed under
derivation i.e. such that a ∈ a ⇒ δa ∈ a. Let A be a
nonempty subset of R. We denote [A] the differential ideal
generated by A which is the smallest differential ideal which
contains A.

Let U = {u1, . . . , un} be a set of differential indeterminates.
Derivation operators apply over differential indeterminates
giving derivatives θu. We denote ΘU the set of all the deriva-
tives. Let K be a differential field. The differential ring of
the differential polynomials built over the alphabet ΘU with
coefficients in K is denoted R = K{U}. A ranking is a total
ordering over the set of the derivatives [12, page 75] satisfy-

ing the following axioms
1. δv > v for each derivative v and derivation δ,
2. v > w ⇒ δv > δw for all v, w ∈ ΘU and derivation δ.
Let us fix a ranking. The infinite alphabet ΘU gets ordered.
Consider a polynomial p ∈ R \ K. Then the leader, initial,
. . . of p are well defined. Axioms of rankings imply that
the separant of p is the initial of every proper derivative
of p. Let rankp = vd. A differential polynomial q is said
to be partially reduced w.r.t. p if no proper derivative of v
occurs in q. It is said to be reduced w.r.t. p if it is partially
reduced w.r.t. p and deg(q, v) < d. A set A of differential
polynomials is said to be differentially triangular if it is tri-
angular and if its elements are pairwise partially reduced.
It is said to be autoreduced if its elements are pairwise re-

duced. Autoreduced implies differentially triangular. If A is
a set of differential polynomials and v is a derivative then
Av = {p ∈ ΘA | ld p ≤ v}. Thus Rv denotes the set of the
differential polynomials with leader less than or equal to v.

One distinguishes the partial reduction algorithm, which is
denoted partial rem from the full reduction algorithm, de-
noted full rem. See [12, page 77]. Let q and p be two differ-
ential polynomials. The partial remainder partial rem (q, p)
is the pseudoremainder of q by the (infinite) set of all the
proper derivatives of p. The full remainder full rem (q, p)
is the pseudoremainder of q by the set of all the derivatives
of p (including p). Let A be a set of differential polynomials.
We denote partial rem (q, A) and full rem (q, A) respectively
the partial remainder and the full remainder of q by all the
elements of A. Let v = ld q and A = A ∩ Rv. The partial
remainder q of q by A is partially reduced w.r.t. all the ele-
ments of A and there exists a power product h of elements
of SA such that h q ≡ q mod (Av). The full remainder q
of q by A is reduced w.r.t. all the elements of A and there
exists a power product h of elements of HA such that h q ≡ q

mod (Av).

A pair {p1, p2} of differential polynomials is said to be a
critical pair if the leaders of p1 and p2 are derivatives of
some same differential indeterminate u (say ld p1 = θ1u and
ld p2 = θ2u). Denote θ12 the least common multiple be-
tween θ1 and θ2. One distinguishes the triangular situation

which arises when θ12 6= θ1 and θ12 6= θ2 from the nontrian-

gular one which arises when θ12 = θ2 (say). In the last case,
the critical pair is said to be a reduction critical pair. In the
triangular situation, the ∆–polynomial ∆(p1, p2) is

∆(p1, p2) = s2
θ12

θ1
p1 − s1

θ12

θ2
p2.

In the nontriangular one,

∆(p1, p2) = prem(p2,
θ2

θ1
p1).

If A is a set of differential polynomials then critical pairs(A)
denotes all the critical pairs that can be formed with any two
different elements of A and ∆(A) = {∆(p1, p2) | {p1, p2} ∈
critical pairs(A)}. A critical pair {p1, p2} is said to be solved

by a system A = 0, S 6= 0 of differential polynomial equa-
tions and inequations if there exists a derivative v < θ12u
such that ∆(p1, p2) ∈ (Av) : (S ∩ Rv)∞. Here is a criterion:
if HA ⊂ S and full rem (∆(p1, p2), A) = 0 then the critical
pair {p1, p2} is solved by A = 0, S 6= 0.
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A differential system A = 0, S 6= 0 of a differential polyno-
mial ring R is said to be a regular differential system w.r.t.
a ranking R if (1) A is differentially triangular, (2) S con-
tains the separants of the elements of A and is partially
reduced w.r.t. A, (3) A is coherent4 i.e. every critical pair
in critical pairs(A) is solved by A = 0, S 6= 0.

A subset C of a differential ideal a is said to be a character-

istic set of a if C is autoreduced and a contains no nonzero
polynomial reduced w.r.t. C. If C is a characteristic set of a

and HC contains no zero divisor in the quotient ring R/a

then a = [C] : H∞
C and p ∈ a ⇔full rem (p, C) = 0. This is

the case when a is prime.

For algorithmic notations, we use pseudocode notation and
an imperative programming style: we allow functions to
modify some of their arguments. For this purpose, we put
(as in ADA) the keywords in, out and in out in front of the
formal parameters of the functions. The keyword in means
that the formal parameter is readable only ; the keyword out

means that the formal parameter is writable only ; the key-
word in out means that the formal parameter is both read-
able and writable.

In the different algorithms, we often write the test p ∈ a

where p is some differential polynomial. Since a character-
istic set C of a is known, the test can translate as full rem

(p, C) = 0. These full reductions can be very expensive in
practice and can be replaced by more subtle tests using first
some inexpensive criteria (e.g. full reductions after evalu-
ating derivatives which are not derivatives of leaders over
Z/nZ for some prime integer n).

3. THE OLD ALGORITHM
The Rosenfeld–Gröbner algorithm, which is implemented in
the diffalg package of MAPLE VR5, solves the problem
under consideration in this paper. See [6] for proofs and
[4] for the pseudocode of Rosenfeld–Gröbner. In the gen-
eral case, Rosenfeld–Gröbner needs to split the solutions of
the current system which annihilate some differential poly-
nomial p from the solutions which do not annihilate p. The
differential polynomial p is usually the initial or the separant
of some differential polynomial used with Ritt’s reduction.
When the characteristic set C of a (prime) is known, only
one branch needs being considered: the first one if p ∈ a ;
the second one if p /∈ a. The specialized Rosenfeld Gröbner

function is a specialized pseudocode of Rosenfeld–Gröbner.
It handles quadruples 〈A,D, P, S〉 where A is the set of the
differential polynomial equations already processed, D is the
set of the critical pairs to be processed, P is the set of the
differential polynomial equations to be processed, S is the
set of the differential polynomial inequations. Before stat-
ing the loop invariants, we need to give the definition of a
critical pair nearly solved by a quadruple 〈A, D, P, S〉. Two
axioms are enough if the basic complete subfunction is used ;
a third one is necessary if the advanced one is used.

1. every critical pair solved by A ∪ ∆(D) = 0, S 6= 0 is
nearly solved by 〈A, D, P, S〉,

2. every critical pair in D is nearly solved by 〈A, D, P, S〉.

4Same definition as that of Rosenfeld [22] if HA ⊂ S.

Loop invariants

1. a = [A ∪ ∆(D) ∪ P ] : S∞,

2. the set of ranks of A is autoreduced,

3. every critical pair in critical pairs(A) is nearly solved
by 〈A,D, P, S〉 (useful for PDE only),

4. HA ⊂ S.

function specialized Rosenfeld Gröbner(in C,R,R)
begin

〈A, D, P, S〉 := 〈∅, ∅, C, HC〉
(HC is computed w.r.t. R)
(from now on, the ranking R is implicitely used)

while D 6= ∅ or P 6= ∅ do

take and remove a new equation p ∈ P or a
critical pair {p1, p2} ∈ D. In the latter
case let p = ∆(p1, p2)

p := full rem (p,A)
p := old ensure rank(p,C, P, S)
if p 6= 0 then

〈A, D, P, S〉 := complete(〈A, D, P, S〉, p)
fi

od

return specialized regCharacteristic(A,S)
end

At the end of the main loop, 〈A, D, P, S〉 = 〈A, ∅, ∅, S〉 is
such that A is coherent (because of the emptyness of D and
the third loop invariant). The specialized regCharacteristic

function, described in appendix, partially reduces S w.r.t.
A and makes the elements of A pairwise partially reduced.
It thereby gets a regular differential system A = 0, S 6= 0
such that a = [A] : S

∞
and then computes the desired char-

acteristic set C by a purely algebraic method. Remark that
the specialized regCharacteristic function is a specialized ver-
sion of [7, regCharacteristic] but that, in the different versions
of the diffalg package the computation is performed with
different (less efficient) algorithms based on Gröbner bases
computations [6, 10]. The following function simplifies p as
long as its initial or its separant lies in a.

function old ensure rank(in p,C, in out P, S)
begin

while p /∈ K and (ip ∈ a or sp ∈ a) do

if ip ∈ a then

P := P ∪ {ip}
p := reductum(p)

else

P := P ∪ {sp}
S := S ∪ {ip}
p := d p − v sp where vd = rankp

fi

od

return p
end

The following complete function is basic. It enlarges A with
the new equation p and removes from A the equations the
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leader of which is a derivative of the one of p (so that it
preserves the second loop invariant of the calling function).
It enlarges D with the critical pairs between p and the equa-
tions of A. It enlarges S with the initial and the separant
of p. Let us observe that the equations removed from A now
belong to reduction critical pairs whence this function does
not modify the differential ideal, in the sense that

[A ∪ {p} ∪ ∆(D) ∪ P ] : S∞ = [A′ ∪ ∆(D′) ∪ P ′] : S′∞.

function complete(in〈A, D, P, S〉, p)
begin

A′ := {p} ∪ {q ∈ A | ld q is not a derivative of ld p}
D′ := D ∪ {{q, p} | q ∈ A and {q, p} is a critical pair}
P ′ := P
S′ := S ∪ {ip, sp}
return 〈A′, D′, P ′, S′〉

end

3.1 The algebraic subproblems
We say that the specialized Rosenfeld Gröbner function en-
counters an “algebraic subproblem” when the differential poly-
nomial p (let’s denote it p = p2) provided to complete has the
same leader as some differential polynomial p1 ∈ A. Let’s
look at complete to see how specialized Rosenfeld Gröbner be-
haves in that case. Assume rankp1 = vd1 and rankp2 = vd2 .
Since p1 ∈ A and p2 is reduced w.r.t. A we have d2 < d1.
The differential polynomial p2 is stored in A, the differen-
tial polynomial p1 is removed from A and the pair {p1, p2} is
stored in D. After a few loops, specialized Rosenfeld Gröbner

extracts the pair {p1, p2} from D and computes ∆(p1, p2).
Since p1 and p2 have the same leader we have

∆(p1, p2) = prem(p1, p2, v).

Denote p3 this pseudoremainder and assume ld p3 = v. Then
rankp3 = vd3 with d3 < d2. Arguing as above we see
that p3 is stored in A, that p2 is removed from A and
that the pair {p2, p3} is stored in D. Let’s summarize:
the specialized Rosenfeld Gröbner function starts computing
a very basic (bad) pseudoremainder sequence when it en-
counters an algebraic subproblem.

p3 = prem(p1, p2, v), p4 = prem(p2, p3, v), . . .

Moreover, at each step i

• many critical pairs between the current pseudoremain-
der pi and the other elements of A are generated (not
only the reduction pair with pi−1),

• the separant of pi (not only the initial) is stored in S.

The points above come from differential considerations. We
shall see they are useless. The analysis done in this section
holds with the advanced version of complete too.

4. THE NEW ALGORITHM
The PARDI algorithm identifies as such the algebraic sub-
problems arising during the differential treatment. It opti-
mizes the computation of the pseudoremainder sequence and
avoids completely the computations due to the pointless dif-
ferential considerations described above. Assume again that

the new differential polynomial p = p2 has the same leader
as some p1 ∈ A. PARDI relies on two key ideas.

First, replacing both p1 and p2 by their “gcd” g in (R−/a−)[v]
where R− = K[w ∈ ΘU | w < v] and a− = a ∩ R−. Actu-
ally g is the “lsr” i.e. the “last nonzero subresultant” of p1

and p2 in (R−/a−)[v]. It is also one of the gcds of p1 and p2

in G[v] where G denotes the field of fractions of R−/a−. For
legibility however, we shall speak of the gcd of p1 and p2 in
(R−/a−)[v] though this is slightly incorrect. We point out
that the differential polynomial g always has positive degree
in v (property (iii) of lsr1).

Second, applying a “master—student” relationship between C
and A: every quantity which is zero in R−/a− (i.e. reduced
to zero by C) but not reduced to zero by A is stored in the
list P of the equations to be processed. Roughly speaking,
when P is empty then the “student” A is able to reproduce
all the computations first performed by the “master” C.

4.1 Computing the gcd (the lsr, sorry)
The key ideas are the following.

1. Starting from a (good) algorithm for computing a pseu-
doremainder sequence. We choose the algorithm of Li-
onel Ducos [9] but the [15] algorithm would fit as well.

2. Verify at each step i that the leading coefficient of the
current subresultant pi is nonzero in R−/a−.

If it is nonzero, just continue the [9] algorithm. Do not
try to normalize this leading coefficient in any sense
(idea explained below).

If it is zero, restart the computation of the pseudore-
mainder sequence between the former subresultant pi−1

and reductum(pi).

3. Do not store in S the separants of the subresultants
but only their initials. Do not generate critical pairs.

The first and the third points show the advantages of the
new algorithm w.r.t. the old one: the growth of the coeffi-
cients is controlled with the efficient way of [9]; the differen-
tial treatments are completely avoided.

Let’s come back to the second point. This is a very simple
but very important idea, already applied in [16], which per-
mits to perform the [9] algorithm in the ring (R−/a−)[v].
The only difficult operation is the exact quotient compu-
tation in R−/a−. By not normalizing at all the leading
coefficients of the subresultants we can perform it as if we
were computing in R−[v], which is easy. For pseudoremain-

der sequence algorithms, the most convenient choice is to

represent the residue classes of the coefficients with repre-

sentatives which make the exact quotient operation easy to

perform. The only precaution to take is to make sure that
the leading coefficient of each subresultant pi is nonzero.
When it is, one theoretically could go on the [9] algorithm
after replacing pi by its reductum but the trick explained
above would not work anymore: exact quotient operations
would become very tricky to perform in R−/a−. Another
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much simpler possibility5 consists in restarting the [9] algo-
rithm over pi−1 and the reductum of pi. This is what we
do. However let us observe that in the context of [17], an
algorithm is given which performs efficiently exact quotients
in the ring R−/a− by normalizing polynomials in the sense
of [14]. The adaptation of that strategy to the general case
does not seem to be efficient in practice [2].

Let’s consider the implementation. The code is a slight mod-
ification of [8] and [16]. Functions Lazard2 and nsr can be
found in [8, Lazard2 and next sousResultant2 functions].

The parameters p and q satisfy the following properties:
they both have the same leader v and belong to a. Their
initials and separants do not belong to a. The parame-
ters A, P and S are components of a quadruple as for
specialized Rosenfeld Gröbner. In particular, the initials of
the elements of A belong to S. Moreover, p and q are par-
tially reduced w.r.t. A. The last nonzero subresultant g
returned by the function satisfies the following property:

(i) the leading coefficient of g w.r.t. v does not lie in a.

All the subresultants computed from p and q belong to the
ideal (p, q) in the ring (R−/a−)[v]. In other words, they
belong to (p, q) + a− in R−[v] and, since p, q ∈ a

(ii) g ∈ a

(iii) ld g = v (the resultant of p and q belongs to a since
it is one of the subresultants ; it belongs to R− ; it is
thus zero in (R−/a−)[v]).

From (i) and (iii) we see that the initial of g does not lie
in a. Moreover, since the separants of p, q do not lie in a

and since g is a gcd of p, q in G[v] where G denotes the field
of fractions of R−/a−, we see that sg /∈ a.

(iv) the initial and the separant of g do not lie in a.

The lsr1 function records in P all the coefficients which are
zero in R−/a− but not reduced to zero by A. It stores in S
the initials i1, . . . , in = ig (after making sure that they do
not belong to a) of the successive computed subresultants.
Denote j the ideal ((A ∪ P ) ∩ R−) : (S ∩ R−)∞ where the
variables A, P and S are considered at the end of the com-
putation. We claim we have:

(v) (p, q) ⊂ (g) : (i1 · · · in)∞ in (R−/j)[v].

Indeed (p, q) ⊂ (g) : (i1 · · · in)∞ in (R−/a−)[v] (classical
property). It suffices thus to prove that every leading coeffi-
cient which belongs to a− belongs to j. These leading coef-
ficients are either recorded in P by ensure lcoeff1 or reduced
to zero by A. In the former case they belong to (P ∩ R−),
in the latter case they belong to (A ∩ R−) : (S ∩ R−)∞ for

5According to Lionel Ducos himself (we take this opportu-
nity to thank him very much for his comments).

they are partially reduced w.r.t. A and the initials of the
elements of A belong to S. They thus belong to j. This
concludes the proof of the claim. 2

function lsr1(in p, q, C, A, in out P, S)
begin

v := ld p
if deg(p, v) < deg(q, v) then swap p and q fi

found := false
while not found do

δ := deg(p, v) − deg(q, v)
s := iδq
S := S ∪ {−iq}
(p, q) := (q,prem(p,−q))
z := p
rankfall := false
while not found and not rankfall do

q := ensure lcoeff1(q, C, A,P, rankfall)
if q = 0 then

found := true
elif not rankfall then

S := S ∪ {lcoeff(q, v)}
δ := deg(p, v) − deg(q, v)
z := Lazard2(q, lcoeff(q, v), s, δ)

(computes q (iq/s)δ−1)
if deg(z, v) = 0 then

found := true
else

(p, q) := (q, nsr(p, q, z, s))
(computes the next subresultant)

s := iz
fi

fi

od

od

return z
end

One can optimize the following function since deg(p, v) = 0
implies p ∈ a.

function ensure lcoeff1(in p,C, A, in outP, out rankfall)
begin

v := ld p
rankfall := false
while p 6= 0 and lcoeff(p, v) ∈ a do

rankfall := true
if prem(lcoeff(p, v), A) 6= 0 then

P := P ∪ {lcoeff(p, v)}
fi

p := reductum(p)
od

return p
end

4.2 The main function
The PARDI function handles quadruples 〈A,D, P, S〉 in the
same way as specialized Rosenfeld Gröbner and maintains the
same loop invariants. A difference (which simplifies proofs)
with specialized Rosenfeld Gröbner: the elements of every
critical pair generated by PARDI always have different lead-
ers (i.e. there are no “algebraic” critical pairs). The code
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can be simplified when g = q. One could also perform full
remainders instead of partial ones but this would make the
[9] algorithm less efficient.

function PARDI(inC,R,R)
begin

〈A,D, P, S〉 := 〈∅, ∅, C, HC〉
(HC is computed w.r.t. R)
(from now on, the ranking R is implicitely used)

while D 6= ∅ or P 6= ∅ do

take and remove a new equation p ∈ P or a
critical pair {p1, p2} ∈ D. In the latter
case let p = ∆(p1, p2)

p := partial rem (p, A)
p := ensure rank(p, C, A,P )
if p 6= 0 then

if ∃q ∈ A such that ld p = ld q then

g := lsr1(p, q, C, A, P, S)
〈A,D, P, S〉 := complete(〈A \ {q}, D, P, S〉, g)

(replaces p and q by their “gcd”)
else

〈A,D, P, S〉 := complete(〈A, D, P, S〉, p)
fi

fi

od

return specialized regCharacteristic(A,S)
end

The following function simplifies the differential polynomial p
while its initial and its separant lie in a.

function ensure rank(in p, C, A, in out P )
begin

while p /∈ K and (ip ∈ a or sp ∈ a) do

if ip ∈ a then

if prem(ip, A) 6= 0 then P := P ∪ {ip} fi

p := reductum(p)
else

if prem(sp, A) 6= 0 then P := P ∪ {sp} fi

p := d p − v sp where vd = rankp
fi

od

return p
end

4.2.1 Proof of the first invariant
We only give a sketched proof of the most interesting issue:
proving that the differential ideal is not changed when the
algorithm performs the purely algebraic treatment (call to
lsr1). We consider the value of the quadruple 〈A, D, P, S〉
just after lsr1 is run. We claim we have a = [A ∪ {p} ∪
∆(D) ∪ P ] : S∞. This relation held before calling lsr1.
This function enlarges P with elements of a and enlarges S
with elements which do not belong to a (i.e. non zerodivi-
sors elements modulo a for the ideal is prime). This con-
cludes the proof of the claim. 2 The different versions of
the complete function preserve this property for g ∈ a and
ig sg /∈ a (properties (ii) and (iv) of lsr1). At the beginning
of the next loop, the differential ideal under consideration
is b = [(A \ {q}) ∪ ∆(D) ∪ P ∪ {g}] : S∞. We must prove
that a = b. The inclusion b ⊂ a holds since g ∈ a. For the
opposite inclusion a ⊂ b it suffices to prove that the removed

differential polynomials p, q ∈ b. According to property (v)
of lsr1

p, q ∈ (g) : (i1 · · · in)∞ in (R−/j)[v].

The ideal j ⊂ b for it is generated by polynomials of R− and
the differential polynomials p, q do not belong to that ring.
Therefore

p, q ∈ (g) : (i1 · · · in)∞ in (R−/(b ∩ R−))[v].

Since g ∈ b and i1, . . . , in are recorded in S by lsr1 we have

(g) : (i1 · · · in)∞ ⊂ b

whence p, q ∈ b and a ⊂ b. 2

4.2.2 Termination proof
The rank of A decreases at each loop. This rank cannot
strictly decrease infinitely many times (classical property
[12, proposition 3, page 81] of autoreduced sets). It thus
suffices to prove that this rank cannot be constant infinitely
many times. This situation only arises if PARDI calls lsr1

and if g = q or if all the coefficients of the differential poly-
nomial p (viewed as a univariate polynomial in its leader)
picked from P lie in a. In both cases, the algorithm sup-
presses a differential polynomial of P (i.e. p) and enlarges P
with finitely many (possibly none) differential polynomials
having leader strictly less than that of p. This cannot hap-
pen infinitely many times (classical argument of graph the-
ory6 [13, Satz 6.6] and the fact that [12, page 75] rankings
are well orderings). Thus PARDI stops.

4.2.3 Variant of algorithm
It is interesting in practice to keep A as a regular chain in the
sense [11, 1]. It allows to take an inequation into account as
soon as it arises: either it is regular and A is left unchanged
or it is not and A gets smaller. Let us observe that inequa-
tions need anyway to be kept until the end: this optimization
does not avoid calling specialized regCharacteristic. Thus, in
the worst case, some computation time is lost. However,
memory consumption is the most important issue and this
variant improves it.

5. EXAMPLES
The following system C is a characteristic set w.r.t. the
orderly ranking R

· · · > uxx > uxy > uyy > vx > vy > ux > uy > v > u.

of the prime differential ideal [C] : H∞
C in the ring Q{u, v}

endowed with derivations w.r.t. x and y. Ranks appear on
the left-hand side of the equal signs. The denominators of
the right hand side are the initials of the differential poly-
nomials.

C

8

>

>

<

>

>

:

vxx = ux,
vy = (ux uy + ux uy u)/(4u),
u2

x = 4 u,
u2

y = 2 u.

We are looking for a characteristic set C of the same prime
differential ideal w.r.t. the elimination ranking R

· · · > ux > uy > u > · · · > vxx > vxy > vyy > vx > vy > v.

6Every infinite tree which is locally finite involves a branch
of infinite length.
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In the analysis below, we only give the ranks of the differ-
ential polynomials. On the diagrams, black circles give the
leaders of the elements of A while integers give the degrees of
the elements of A w.r.t. their leaders. Initially, A = D = ∅
and S = {4 u, 2ux, 2uy} contains HC w.r.t. R. We have
P = C. The set of ranks of P (w.r.t. R from now on)
is rankP = {ux, ux, u2

x, u2
y}. The implemented version of

PARDI is a draft version: it picks new equations from P first
and critical pairs from D only if P = ∅ (the list D is not
sorted). It was written in MAPLE VI by the second author.
It slightly differs from the algorithm presented in this paper
for it performs full remainders instead of partial remainders
in the main loop. We chose this variant because it makes
the analysis slightly shorter over that example.

First, an equation with rank ux is picked and removed from P
and stored in A.

u v

d/dy

d/dx d/dx

1

d/dy

Now rankP = {ux, u2
x, u2

y}. A new equation with rank u2
x

is picked and removed from P . After full reduction, its rank
is u. It forms a critical pair with the former equation, which
is withdrawn from A.

u v

d/dy

d/dx d/dx

1

d/dy

Now rankP = {ux, u2
y} and rankD = {{u, ux}}. A new

equation with rank u2
y is picked and removed from P . After

full reduction, its rank is v2
xxy.

u v

d/dy

d/dx d/dx

1

2

d/dy

Now rankP = {ux} and rankD = {{u, ux}}. A new equa-
tion with rank ux is picked and removed from P . After full
reduction, its rank is vxxx. It forms a critical pair with the
former equation.

u v

d/dy

d/dx d/dx

1 1

2

d/dy

Now P is empty and rankD = {{u, ux}, {vxxx, v2
xxy}}. The

first critical pair is picked and removed from D. After full
reduction, the ∆–polynomial has rank vxxy. This is an al-
gebraic subproblem. The situation is very easy for one of
the differential polynomials has degree 1 while the other
has degree 2 and there is basically no gain w.r.t. the old
algorithm here. The gcd (last nonzero subresultant if you
prefer) of these polynomials is the one with degree 1. It
replaces the degree 2 polynomial in A and generates a crit-
ical pair with the differential polynomial with rank vxxx.
At the end of the computation of the gcd, the resultant
of the two polynomials, which has rank v4

xx as a differ-
ential polynomial but which is zero in the quotient ring
(R−/(a ∩ R−))[vxx], was not reduced to zero by A (where
R− = K[w ∈ ΘU | w < vxx w.r.t.R]). It is recorded in P .

u v

d/dy

d/dx d/dx

1 1

1

d/dy

Now rankP = {v4
xx}, rankD = {{vxxx, v2

xxy}, {vxxx, vxxy}}.
The resultant which has rank v4

xx is picked and removed
from P . Two new critical pairs are generated between this
differential polynomial and two of the differential polynomi-
als in A. These two differential polynomials are withdrawn
from A. Implemented in the advanced version of complete,
the analogue of Buchberger’s second criterion cancels the
two old pairs of D.

u v

d/dy

d/dx d/dx

1

two old critical

pairs are cancelled

4

d/dy

Now P is empty and rankD = {{vxxx, v4
xx}, {vxxy , v4

xx}}.
The first critical pair is picked and removed from D. Af-
ter full reduction, the ∆–polynomial has rank v3

xx. This is
again an algebraic subproblem. The gcd between this dif-
ferential polynomial and the element of A with rank v4

xx

has degree 1 in vxx. It replaces the differential polyno-
mial with rank v4

xx. During its computation no critical
pair was generated and this is a very important gain w.r.t.
specialized Rosenfeld Gröbner. At the end of its computa-
tion, the resultant which has rank v4

xy as a differential poly-
nomial but is zero in the quotient ring, was not reduced to
zero by A. It is recorded in P . No critical pair is generated.
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u v

d/dy

d/dx d/dx

1 1

d/dy

Now rankP = {v4
xy} and rankD = {{vxxy , v4

xx}}. A new
equation with rank v4

xy is picked and removed from P . It is
put in A and generates a new critical pair.

u v

d/dy

d/dx d/dx

1 1

4

d/dy

P is empty and rankD = {{vxx, v4
xy}, {vxxy , v4

xx}}. The
first critical pair is picked and removed from D. After full
reduction by A, the ∆–polynomial has rank v2

xy . This is a
purely algebraic subproblem. The gcd between this differ-
ential polynomial and the element of A with rank v4

xy has
rank vxy. It replaces the degree 4 polynomial in A. It gen-
erates one critical pair. At the end of its computation, the
resultant, which has rank v4

yy is stored in P .

u v

d/dy

d/dx d/dx

1 1

1

d/dy

rankP = {v4
yy} and rankD = {{vxx, vxy}, {vxxy , v4

xx}}.
The resultant is picked and removed from P . It is recorded
in A. By the analogue of Buchberger’s criterion only one new
critical pair is generated (the pair {v4

yy , vxx} is avoided).

u v

d/dy

d/dx d/dx

1 1

1

4

d/dy

P is empty, rankD = {{vxy , v4
yy}, {vxx, vxy}, {vxxy , v4

xx}}.
The three ∆–polynomials are reduced to zero by A. After
specialized regCharacteristic is performed, one gets

C

8

>

>

<

>

>

:

u = v2
yy,

vxx = 2 vyy,
vxy = (v3

yy − vyy)/vy ,
v4

yy = 2 v2
yy + 2 v2

y − 1.

Let us observe specialized Rosenfeld Gröbner could not carry
this example out in the diffalg package in MAPLE VR5 (it
cannot be carried out with diffalg in MAPLE VI because

of a bug). Even if we could, the analysis would have been
much more painful. Indeed, we have presented our example
in terms of gcd and resultant. This makes much more sense
than if we had presented it in terms of full remainders using
Ritt’s reduction.

5.1 Euler’s equations for a perfect fluid
Expressed as differential polynomials, Euler’s equations for
a perfect fluid in two dimensions are

Σ

8

<

:

v1
t + v1v1

x + v2v1
y + px = 0,

v2
t + v1v2

x + v2v2
y + py = 0,

v1
x + v2

y = 0.

There are three differential indeterminates v1, v2 (compo-
nents of the speed) and the pressure p. They depend on
three independent variables x, y (space variables) and the
time t. For some orderly ranking, Rosenfeld–Gröbner gets
with nearly no computation the characteristic set

C

8

>

>

<

>

>

:

pxx = −2 v2
x v1

y − 2 (v2
y)2 − pyy,

v1
t = −v2 v1

y − px + v2
y v1,

v1
x = −v2

y,
v2

t = −v1 v2
x − v2 v2

y − py.

For the elimination ranking (p, v1) ≫ degrevlex(v2) with
t > x > y the implementation of PARDI was able to compute
a characteristic set of the differential prime ideal. This char-
acteristic set cannot be written in this paper (the computer
file is 600 kilobytes large). There are 7 equations involving
more than 50 different derivatives. Intermediate computa-
tions took more than 500 megabytes on the computers of
the UMS MEDICIS (GAGE Laboratory, of the École Poly-
technique). We have

rankC = {px, py, v1, v2
xxxxt, v2

xxxtt, v2
xxytt, v2

xxxyyt}.

The diagram of the differential indeterminate v2 is7

x

y

t

v2

This example could not be previously solved by any other
algorithm. A remaining challenge (given by Pommaret) con-
sists in computing a characteristic set for a ranking elimi-
nating v1 and v2.

Conclusion
We have described a new algorithm for converting a char-
acteristic set of a prime differential ideal from one ranking

7The authors would like to thank Marc Giusti for his help.
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into another. As far as we know, it is the first time that
algebraic subproblems are clearly identified during differen-
tial computations (i.e. before Rosenfeld’s lemma applies).
It is also the first time that advanced practical algorithmic
methods coming from both polynomial algebra (gcd compu-
tation over quotient rings) and differential algebra (analogue
of Buchberger’s criteria) are merged.
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Appendix
The advanced complete function is described in [6]. It ap-
plies an analogue of Buchberger’s second criterion. Pseu-
docode can be found in [4]. The specialized Rosenfeld Gröbner

function is a variant of [7, regCharacteristic]. Parameters sat-
isfy the properties : a = [A] :S∞ and a∩K[N ] = (0) (by [5;
18, Lazard’s lemma]) where N denotes the derivatives which
are not derivatives of any leader of A. The function builds a
characteristic set C of a. In particular, C is a triangular set
satisfying a = [C] : H∞

C
. Here are invariants of all the loops.

1. a = [A ∪ C] : (S ∪ HC)∞

2. rank(A ∪ C) = rankA ; moreover, every leader of A is
greater than every leader of C.

3. C is a regular chain8 in the sense of [11, 1].

At the end of the computation, C is a characteristic set of
(A) : S∞ whence it is a characteristic set9 of [A] : S∞. Ob-
serve that C is not provided to specialized regCharacteristic

as a parameter since it is not necessary in order to choose
the right branch in the splitting tree.

function specialized regCharacteristic(inA, S)
begin

A := A
S := S \ K
C := ∅
while A 6= ∅ do

8A polynomial is said to be regular w.r.t. a triangular set
{p1 < · · · < pn} if it belongs to none of the associated
prime ideals of (p1, . . . , pn) : (ip1

, . . . , ipn
)∞. A triangular

set {p1 < · · · < pn} is said to be a regular chain if n = 1 or
ipℓ

is regular w.r.t. {p1, . . . , pℓ−1} for each 2 ≤ ℓ ≤ n.
9C is necessarily coherent at the end of the computation but
not necessarily during the computation.
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take p ∈ A with minimal leader
while ∃s ∈ S such that ld s ≤ ld p do

S := S \ {s}
regularize(partial rem (s, C), C)

od

A := A \ {p}
C := C ∪ {p}

od

while S 6= ∅ do

take and remove s ∈ S
regularize(partial rem (s, C), C)

od

return C
end

The functions regularize and lsr0 recursively call each other.
They are purely algebraic (i.e. nondifferential) functions
much inspired from [16]. Computations are performed in
“dimension zero”. Both transform the regular chain C as a

regular chain C
′

with the same set of leaders as C and s. t.

(a) (C) : I∞
C

⊂ (C
′

) : I∞
C

′ ⊂ a ;

(b) the prime ideals which are minimal over (C
′

) : I∞
C

′ are

minimal over (C) : I∞
C

.

The parameters of regularize are C and a polynomial p /∈

(C) : I∞
C

. It transforms C into a regular chain C
′

which
satisfies the following property in addition of (a) and (b):

(c) p is regular w.r.t. (C
′

) : I∞
C

′ .

Splittings are avoided in regularize: when deg(g, v) 6= 0, a
“pseudofactorization” of q is discovered i.e. for some non-
negative integer α we have iαg q = g pquo(q, g). Then g is
necessarily the factor to throw away (the one which does not
belong to a). Last, the loop could be optimized by perform-
ing pseudoquotients while the pseudoremainder is zero.

function regularize(in p, in outC)
begin

if p /∈ K then

regularize(ip, C)
if ∃q ∈ C such that ld q = ld p then

q′ := q
C := C \ {q}
g := lsr0(p, q′, C)
while deg(g, ld p) > 0 do

q′ := pquo(q′, g)
g := lsr0(p, q′, C)

od

C := C ∪ {q′}
fi

fi

end

The parameters of lsr0 are two polynomials p, q having the
same leader v and with leading coefficients w.r.t. v which
are regular w.r.t. (C) : I∞

C
. It transforms C into a regular

chain C
′

and returns a polynomial g which satisfies the two
following properties in addition of (a) and (b). Denote j =

(C ∩ R−) : I∞
C∩R−

and j′ = (C
′

∩ R−) : I∞
C

′
∩R−

where R− is
the ring of the polynomials of leaders strictly less than v.

(d) g is the last nonzero subresultant of p and q in (R−/j′)[v]

(e) the leading coefficients i1, . . . , in w.r.t. v of the succes-
sive subresultants computed by lsr0 are regular w.r.t.

(C
′

) : I∞
C

′ . In particular, the polynomial g is itself reg-
ular if it is the resultant of p and q.

function lsr0(in p, q, in out C)
begin

v := ld p
if deg(p, v) < deg(q, v) then swap p and q fi

found := false
while not found do

if deg(q, v) = 0 then

found := true

z := qdeg(p,v)

else

δ := deg(p, v) − deg(q, v)
s := iδq
(p, q) := (q, prem(p,−q))
z := p

fi

rankfall := false
while not found and not rankfall do

q := ensure lcoeff0(q, C, rankfall)
if q = 0 then

found := true
else

regularize(lcoeff(q, v), C)
if not rankfall then

δ := deg(p, v) − deg(q, v)
z := Lazard2(q, lcoeff(q, v), s, δ)
if deg(z, v) = 0 then

found := true
else

(p, q) := (q, nsr(p, q, z, s))
s := iz

fi

fi

fi

od

od

return z
end

function ensure lcoeff0(in p,C, out rankfall)
begin

v := ld p
rankfall := false
while p 6= 0 and lcoeff(p, v) ∈ (C) : I∞

C
do

rankfall := true
p := reductum(p)

od

return p
end

47


