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SAINT VENANT EQUATIONS ON A SURFACE

PHILIPPE G. CIARLET, LILIANA GRATIE, CRISTINEL MARDARE AND MING
SHEN

ABSTRACT. We establish that the linearized change of metric and linearized change
of curvature tensors associated with a displacement field of a surface S immersed in
R3 must satisfy compatibility conditions that may be viewed as the linear version of
the Gauss and Codazzi-Mainardi equations. These compatibility conditions, which
are the analogous in two-dimensional shell theory of the Saint Venant equations in
three-dimensional elasticity, constitute the Saint Venant equations on the surface
S.

We next show that these compatibility conditions are also sufficient, i.e., they
in fact characterize the linearized change of metric and the linearized change of
curvature tensors in the following sense: If two symmetric matrix fields of order
two defined over a simply-connected surface S C R? satisfy the above compatibility
conditions, then they are the linearized change of metric and linearized change of
curvature tensors associated with a displacement field of the surface .S, a field whose
existence is thus established.

The proof provides an explicit algorithm for recovering such a displacement field
from the linearized change of metric and linearized change of curvature tensors.
This algorithm may be viewed as the linear counterpart of the reconstruction of a
surface from its first two fundamental forms.

RESUME. On établit que le tenseur linéarisé de changement de métrique et le
tenseur linéarisé de changement de courbure associés a un champ de déplacements
d’une surface S immergée dans R? doivent satisfaire des conditions de compatibilité
qui peuvent étre vues comme une version linéarisée des équations de Gauss et de
Codazzi-Mainardi. Ces conditions de compatibilité, qui sont I’analogue dans la
théorie bidimensionnelle de coques des équations de Saint Venant de la théorie
tridimensionnelle de 1’élasticité, constituent les équations de Saint Venant sur la
surface S.

On démontre ensuite que ces conditions de compatibilité sont aussi suffisantes,
i.e., elles caractérisent en fait les tenseurs linéarisés de changement de métrique et
de courbure, dans le sens suivant: Si deux champs de matrices symétriques d’ordre
deux satisfont les conditions de compatibilité ci-dessus sur une surface simplement
connexe S de R3, alors ils sont les tenseurs linéarisés de changement de métrique
et de courbure associés a un champ de déplacements de la surface S, champ dont
Iexistence est ainsi établie.

La preuve fournit un algorithme explicit pour la reconstruction d’un tel champ
de déplacements a partir de ses tenseurs linéarisés de changement de métrique
et de courbure. Cet algorithme peut étre vu comme une version linéarisée de la
reconstruction d’une surface a partir de ses deux premieres formes fondamentales.

2000 Mathematics Subject Classification. Primary : 49N10. Secondary : 73K15.
Key words and phrases. Differential Geometry, Shell Theory.
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1. INTRODUCTION

All the notations used, but not defined, in this introduction are defined
in the next sections.

It is a classical result in differential geometry that a surface can be recon-
structed, at least locally, but also globally under an additional assumption
of simple-connectedness, from its first two fundamental forms, provided they
satisfy ad hoc compatibility relations. More specifically, if (aqg) and (bag)
are two symmetric matrix fields of order two defined over a simply-connected
domain w C R?, the first one being of class C? and positive definite at each
point of w and the second one being of class C!, and these matrix fields sat-
isfy together the Gauss and Codazzi-Mainardi equations, then there exists
an immersion 6 : w — R3 of class C? such that

010 A 0,0

000 - 930 = aop and a0 - m

These equations mean that the first two fundamental forms of the surface
S = O(w) are indeed the matrix fields (aqg) and (bag)-

We recall that the Gauss and Codazzi-Mainardi equations are respectively
given by

= bopg in w.

R{/ozar = baTbZ - bocabz? (1)

and
Oobar — Orbae + 1'% bug —T'h byr =0, (2)
where RY, . are the mixed components of the Riemann curvature tensor

associated with the metric (ang), defined by
RV, = 0,T% — 0T +T¢T% —T¢ I

aoT T po Qo PT)

and where I'] 5 are the Christoffel symbols associated with (aqp), defined by

1
;ﬁ = §CLTU(6&&50 + 8ﬁaao' - aﬂ'aa’ﬁ)7

(a™(y)) being the inverse of the matrix (ans3(y)) at each point y € w.
The recovery of the above immersion 8 from the two fundamental forms
(aqp) and (byg) is obtained by solving first the system

Oaag = I'fgas + bapas, 5

aozai’» = _bgaav ( )

where the unknowns are the three vector fields a; € C?(w;R3), then by

solving the system

0,0 = a, in w. (4)

The mapping 8 € C3(w; R3) found in this fashion is the sought immersion.

Note that the system (3) has solutions because the Gauss and Codazzi-

Mainardi equations are satisfied and the system (4) has solutions because
the Christoffel symbols satisfy I'], 5 =1T5a

Our objective here is to establish an infinitesimal version of this result.

More specifically, given a simply-connected domain w C R2, let 6 : w —
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R3 be an immersion of class C3, and let (745) € C*(w;S?) and (pag) €
C!(w;S?) be two symmetric matrix fields (these regularity assumptions will
be substantially weakened later). Then we show that, if these matrix fields
satisfy together the following compatibility conditions, which we shall call
the Saint Venant equations on the surface 6(w),

Yoa|Br + YrBlac — Vra|Bo — VopBlar + R-VaUT’YﬁV - R-Vﬁa‘r’yal/
= bTapaﬁ + boﬁp’ra - baapTﬁ - bTﬁpaav
Poalr — Prajec = bZ(’)/ow\‘r + Yrvla — ’Yra\u) - b-zu-(’}’alda + Yov|a — 70a\u)a

then there exists a vector field n : w — R3 of class C? such that the two
fields (743) and (pag) are respectively the linearized change of metric and
linearized change of curvature tensors associated with the field n, in the
sense that

1 .
Yap = 5(0am - a5 +aq - 9pm) in w,

Pap = (aozﬁn - Fgﬁ&ﬂ?) -ag in w.

The notations 7,4/, and v,4|,+ denote respectively the first and the second
covariant derivative of the field (y,3) (see Section 3), and b} denote the
mixed components of the second fundamental form of the surface 6(w).

The proof of this result furnishes an explicit algorithm for recovering the
vector field n from the matrix fields (v,3) and (pag): one first solves the
System

Aaplo T bacAs — bgoAa = Vopla — Voals
)\a|o' + bg)\oa/ = Poa — bZ’YaVa

where the unknowns are the antisymmetric matrix field (Anp) € C?(w; A?)
and the vector field (\) € C%(w;R?); then one solves the system

Oan = (7046 + )\aﬁ)aﬁ + )\aa3 in w.

The vector field € C3(w;R?) found in this fashion has the desired proper-
ties.

Note that the first system has solutions because (v,3) and (pqp) satisfy
the above Saint Venant equations on a surface and that the second system
has solutions because the matrix fields (7,3) and (pas) are symmetric.

The results obtained in this article may be viewed as infinitesimal versions
of the reconstruction of a surface from its fundamental forms, because the
Saint Venant equations on a surface are the linear part with respect to ¢ of
the Gauss and Codazzi-Mainardi equations associated with the immersion
(60 +en).

Note that in an earlier article, Ciarlet and Gratie [3] already found nec-
essary and sufficient conditions for matrix fields to be linearized change of
metric and change of curvature tensors on a surface, but these remained in
an “abstract” form. Their approach consisted in finding these conditions as
a consequence of the Saint Venant equations on a three-dimensional open
set. In essence, the necessary and sufficient conditions found in this way are
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the Saint Venant equations associated with the Cartesian coordinates of the
matrix field defined in curvilinear coordinates by
(L‘% g T g 1. T
JoB = YaB — T3Pas t+ ?(bapb’o + bﬁpar - 2bab,67m')a

9a3 =933 = 933 = 0,

over the three dimesional set {0(y) + x3a3(y); y € w, x3 € (—¢,¢)}, where
€ > 0 is a small enough real number.

2. NOTATIONS AND OTHER PRELIMINARIES

Latin indices and exponents vary in the set {1,2,3}, Greek indices and
exponents vary in the set {1,2}, and the summation convention with respect
to repeated indices and exponents is systematically used in conjunction with
this rule.

All spaces, matrices, etc., are real. The Kronecker symbols are denoted
55 or §]. The symbols M", A", S, and S” respectively designate the sets of
all square matrices, of all antisymmetric matrices, of all symmetric matrices,
and of all positive-definite symmetric matrices, of order n.

The Euclidean inner product of u,v € R? and the Euclidean norm of
u € R? are respectively denoted by w - v and |u|. The notation (t.g)
designates the matrix in M? with tap as its elements, the first index a being
the row index. The spectral norm of a matrix A € M” is given by

|A| := sup{|Av[; v € R", |[v| < 1}.

Let w be an open subset of R?2. The coordinates of a point y € w are
denoted y,. Partial derivative operators of order m > 1 are denoted

k. okl
By'flayé”

where k = (ko) € N? is a multi-index satisfying |k| := k1 + ko = m. Partial
derivative operators of the first, second, and third order are also denoted
On 1= /0T, Oap := 0%/0ya0ys, and ag, := 0°/0ya0yz0y,.

The space of all continuous functions from a subset X C R? into a normed
space Y is denoted C°(X;Y), or simply C°(X) if Y = R. For any integer
m > 1, the space of all real-valued functions that are m times continuously
differentiable over w is denoted C™(w).

The space C™(w), m > 1, is defined as that consisting of all functions
f € C'(w) that, together with their partial derivatives of order < m, possess
continuous extentions to the closure @ of w. If w is bounded, then the space
C™(w) equipped with the norm

m(g) ‘— aa
Il @) = max (sup |0 1 (x)])

is a Banach space. If Y is a normed vector space, the spaces C™(w;Y") and
C™(w;Y) are similarly defined.
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The Lebesgue and Sobolev spaces LP(w;Y') and W™P(w;Y'), where m > 1
is an integer, p > 1, and Y is a normed vector space, are respectively
equipped with the norms

1/p
1l = { / \f(x)\pdw} ,

1/
£ llwm oy = {/(!f(:c)!p+ > 10 f@))da}
“ |k|<m
We also let LP(w) := LP(w;R), WP (w) := W™P(w;R), and H™(w;Y) =
Wm2(w;Y).

The space W) (w;Y) is the space of all mesurable functions such that

f € W™P(U;Y) for all bounded open subsets U C R? that satisfy U C w.
The space of all indefinitely derivable functions ¢ : w — R with compact
support contained in w is denoted D(w) and the space of all distributions
over w is denoted D’'(w). The closure of D(w) in H™(w) is denoted H{*(w).
Similar definitions hold for the spaces Hj"(w;R™), Hy*(w;S™), etc. The
dual of the space H}"(w) is denoted H ™" (w).
The following technical result will be needed later.

and

Lemma 1. Let Q be an open subset of R?.
a) If f € CY(w) and x € H Y(w), then the mapping
¢ € Hy(w) »<x, fe>€R
belongs to H=(w) and is denoted fx.
b) If f € C2(@) and x € H %(w), then the mapping
p € Hy(w) =< x, fo >R
belongs to H %(w) and is denoted fx.

Proof. We only need to prove the continuity of the mappings defined in the
lemma. If f € C'(w) and x € H~!(w), then there exists a constant C; such
that

| <x, fo > | < Ixlla—1@lfellaw) < Crllxlla—1wlfller@) el a e

for all ¢ € H}(w). This means that fx € H }(w).
Likewise, if f € C?(@) and x € H 2(w), then there exists a constant Cy
such that

| <x, fo > | < Ixlla—2lfellazw) < Collxll a2 1 flle2@) el m2w)

for all ¢ € H2(w). This means that fx € H ?(w).
U

Remark. In other words, this lemma asserts that if f € C'(@) and
X € H Y(w), then the product fy is well defined as an element of H~!(w);
and likewise, if f € C?(@) and x € H~?(w), then the product fy is well
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defined as an element of H 2(w). O

A domain in R? is a bounded and connected open set with a Lipschitz-
continuous boundary, the set w being locally on the same side of its bound-
ary. The definition of such a boundary is the usual one, as found for instance
in Adams [1], Grisvard [5], or Necas [6].

We conclude this section with Poincaré Theorem, which is valid classically
only for continuously differentiable functions, but was generalized in Ciarlet
& Ciarlet, Jr. [2] as follows.

Theorem 1. Let w be a simply-connected domain of R%. Let ho, € H™1(w)
be distributions that satisfy

Opha = Ouhg in H *(w).

Then there exists a function p € L*(w), unique up to an additive constant,
such that

he = Oap in H ' (w).

Obviously, this theorem remains valid if the functions h, are replaced
with matrix fields H, € H~!(w;M?), the solution p being then replaced by
a matrix field P € L?(w;M?). If the matrix fields H,, are anti-symmetric
(resp. symmetric), then the matrix field P is also anti-symmetric (resp.
symmetric).

3. CURVILINEAR COORDINATES ON A SURFACE

A mapping 0 € CH(w;R3) is an immersion if the vectors 9,0(y) are lin-
early independent at all points y € w.

Let w be an open subset of R? and let 8 € C3(w;R3) be an immersion.
Then the image S := (w) is a surface immersed in R3. For each y € w, the
vectors

aa(y) == 0a6(y)
form a basis in the tangent space to the surface 6(w) at the point 6(y). The
tangent vector fields a®, defined by
aq(y)-a’(y) =P for all y € w,
form the dual bases. A unit normal vector to S at 6(y) is defined by

a1 (y) A as(y)
as(y) = a(y) := :
a1 (y) A ag(y)]
Note that at each point 6(y) of S the vectors (a;(y), a2(y),as(y)) form a
basis in R? and that (a'(y),a%(y),a3(y)) form its dual bases. As a conse-
quence, any vector field n : w — R3 can be written as a linear combination
of the vector fields a* as

n=(n- ai)ai.
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The covariant components of the first fundamental form of S are defined

by
aap(y) = aa(y) - ag(y) for all y € w,
and the contravariant components of the same form are defined by
a®(y) = a%(y) -a’(y),

or equivalently, by (a®?(y) = (ay-(y))™" in w.

The covariant components of the second fundamental form of S are de-
fined by

bap(y) = —Oaas(y) - as(y) = Oadg(y) - as(y) for all y € w,
and the mixed components of the same form are defined by
by = —0Oaas(y) -a’(y) = 0aa’ (y) - az(y) for all y € w,

or equivalently, by b7, = a™? bop for all y € w.
The Christoffel symbols on the surface S are defined by

1 .
ap = 5({” (Ontgy + 03ay — Opaep) in w.

Note that the Christoffel symbols verify %3 = I'h,- The regularity assump-
tion on the immersion € implies that the functions a,g and a™ belong to
the space C2(), which in turn implies that Its € Cl(w).

It is well known that the derivatives of the vector fields a; satisfy the
equations of Gauss and Weingarten:

Onag = Fzgay + bagag,
aaa3 = —b(’;al,,
from which a straightforward computation shows that the derivatives of the
vector fields a’ satisfy
Dpa” = —T7 a” +bla’
Dpa® = —by,a”.
These equations, combined with the commutativity of the second derivatives
of the vector field a, (i.e., 9;(0ya,) = 05(0ra,)), imply that
(67'FZ'O¢ + Fgoarﬂy'u - bCfOéb:>aV + (87[70(1 + FgabTM)a?)

= (0,TY +THT%  — brabl)ay + (Osbra + T¥, bsy)as.

T o

These relations are equivalent with the Gauss and Codazzi-Mainardi equa-
tions:

Rior = brably — boab?, (5)
Oobro — Orbgo +TE by —TE br =0, (6)
where
Riyor = 051, — 010, + TR, 0, —T0 7,

are the mixed components of the Riemann curvature tensor associated with
the metric (aqg3)-
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The covariant derivatives of a 1-covariant tensor field (1,) € H'(w;R?)

are defined by
Na|p = aﬂna - Fga"?m
or, equivalently, by (the first term of the right-hand side is defined by the
other terms)
0p(naa®) = najpa” + bgn,a’. (7)

The covariant derivatives of a 2-covariant tensor field (T,5) € L?(w;M?)

are defined by
Toplo = OoTap — UgoTup — TogTow-
Note that each distribution 7,4, is well defined in the space H ~L(w). Since
the matrix fields
a'®al :=a'(al)T

form a basis in the space C?(w; M?) and since

3 3
aT®aﬁ—FgTaO‘®aT—|—b3‘a ®a’ — bla® @ a3,

3 3
Lal ® a’ +bja’ ®a’ —b,ra* ®@a’,

0-(a” @ a”)
05 (a® 3)
d,(a ® a?) —boTa ®a’ —T? a3 ®a” + bad ®a’,

a,(a ® a ) = —byra” ®a’ —byra’@a’
the above definition of the covariant derivatives 7,3, is equivalent with the
relations

0o (Topa® @ a’) = Typ0a” @ a’ 4+ 00T, pa @ a” + VT, 52" @ a.  (8)

Note that these equations are to be understood in the distributional sense,
the functions 7,5 being only in L?(w).

Finally, for all 3-covariant tensor fields (7,3, ) with components in H ! (w),
the covariant derivatives are defined by

TaﬁU\T = aTTaﬁU F T - T ﬂTan FZUTOéﬁ

In view of Lemma 1, these covariant derivatives are in H 2(w).
Note that the Codazzi-Mainardi equations are equivalently expressed in
terms of the covariant derivative in the remarquably simple form

baolr = bar|os
or equivalently, by
by |- = 0710,
where the covariant derivatives b2 |, are defined by

BO |y 1= 0,b% — TP b7 + T2 b,

ToY 1 Tuvo:

The second-order covariant derivatives of a 1-covariant tensor field (7,,) €
H!(w;R?) are defined by the relations

Najor *= 67'77040 - F:a’r/ﬂo— - FZcrna\w
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Note that these relations are well defined in H~!(w). In view of relation (7),
it is then seen that these second-order covariant derivatives are also uniquely

determined by the relations
aw(ﬁaaa) = (770¢|07' + Fganam - bowb(yyny)aa
+ (bgna\a + 5377047 + (bgh + Fga)na)aS-

(9)

To see this, we first infer from relation (7) that
Or0(na@®) = Or(Napa® + bymya®) = O;1410a% — T2, 1010a" + b21g 2
+ (arbznu + bga‘l’nu)a3 - pr,bZ-’r/I/a#a

from which the relations (9) are easily deduced by using the definition of
the covariant derivatives 7)), and 74,7 and of the covariant derivatives

BY|, = 0,b% — T2 by + T%, b2

TO & T O

An important consequence of relation (9), combined with the commu-
tativity of the second-order derivatives of n,a®, is that the second-order
covariant derivatives 7,,, satisfy the property

Najor = barbyy = Najroe — bacby Ny,
which is equivalent with
Nalor = Najre = (barby — bagby )Ny
In view of the Gauss equation (5), this equation is equivalent with
Nalor — Najre = Raer My,

which is the Ricci formula applied to the 1-covariant tensor field (74).
Naturally, the second-order covariant derivatives of (T,3) € L?(w;M?)
are defined by the relations

Taﬁ\UT = 67Toc6|0 - FZaTuma - FZﬁTaWJ - FZJTaﬁhn

It is then easily seen, in view of relation (8), that these second-order covari-
ant derivatives are uniquely determined by the relations

Oro(Taga® @ a%) = (Tagjor + T4y Taply — V4(braTyus + brpTay))a” @ a”

+()a*@a’+ ()adwa’ + (.)a® @ a’.
(10)
Indeed, relation (8) implies that

Oro(Topa®™ @ a”) = Or(Thg0a" @ a’ + 00T, pa% @ a° + VT, 32" @ a%).
But the terms appearing in the right-hand side of this equation satisfy

0r (Togoa® ® ") = (0:Taglo — T4 Tugie — T Taplo

+ (b9 Tog0)a” ® @ + (BT, g,)a" © a°

)a® ® a’
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and
0, (beTopa° @ @ + b T, 52" @ @) = 0 (braTyup + brpTay)a® @ a”
+ (b6 + b26) Tapa® @ & + (W) Togpr + (b)), + b)) Top)a® ® a°
+ (05 Tagpr + (0, + D400 Tap)a® © .
Hence
Oro (Taﬂaa ® aﬁ) = (Taﬁ\ar + F¢0T05IM - bg(meuﬂ + b‘rﬁTau))aa ®a’
+ (V) Tagle + 03 Tagr + (b)) + T b Top)a® @ a°

T
+ (bgTaﬂ\o + b?Taﬁ\T + ( g|7’ + Fﬁabz)Taﬁ)ag @ aB

+ (022 4+ b0V T 52 @ a3,

Note that the commutativity of the second-order derivatives of T,,ga® ®a’
combined with relation (10) imply that the second-order covariant deriva-
tives of (T,p3) satisfy

Toplor — UobraTyus — bibrpTop = Togire — WboaTyup — VibopTap,
or equivalently

Toplor — Tagire = (Vhbra — Wba)Tyup + (D5brs — Uibop) Toy-

In view of the Gauss equation (5), the last equation is the same as

T,

afloT

- Taﬁlm = R{fwTTMB + R%UTTCX“7

which is the Ricci formula applied to the tensor (Tng).

4. SAINT VENANT EQUATIONS ON A SURFACE

Let w be a bounded open subset of R? and let 8 € C3(w;R?) be an
immersion. The vector fields a; € C?(w; R?) and a’ € C?(w;R3) are defined
as in Section 3.

With every vector field n € H'(w;R?), we associate the linearized change
of metric tensor field, defined by

1
Yap(n) = 5(3an -ag +aq - dsm),

and the linearized change of curvature tensor field, defined by
Pap(M) = (Oapm — T4 g0um) - as.

Note that yas(n) € L*(w) and pas(n) € H~'(w) and that yas(n) = va(n)

and paﬁ(n) = pﬁa(n)'
The next theorem establishes an important property of these tensors,

namely that they satisfy equations (11), which constitute the Saint Venant
equations on a surface.



10 P.G. CIARLET, L. GRATIE, C. MARDARE AND M. SHEN

Theorem 2. The linearized change of metric tensor vo5 = Ya3(n) €
L*(w;S?) and the linearized change of curvature tensor pag := pas(n) €
H~Y(w;S?) associated with a vector field n € H(w;R?) satisfy
Yoo|s + YrBlac — VralBo — Yopblar + Rf’aUT’Y,@V - Rf’ﬁarval/
= bTapaﬁ + bo-ﬁ,OTa - boapfﬂ - bTﬂpaa (11)
Poalr — Prajle = bZ(’Yoth + Yrv|e — '-)/Ta\u) - bZ(VaV\U + Yovia — Vaa\u)

in the distributional sense.

Proof. Given a vector field n € H'(w;R3), let

Y 7= 5 (g +fs) = 5(0um a9 + 20 Om) € (),

1
=3
Aa 1= M3jq = Oam - a3 € L} (w).

1
(77,3|oz - 77a|,3) = 5(00,1’] rag — o 8ﬂn) € L2(w)7

Note that (7,3) and (A4p) are respectively the symmetric and the antisym-
metric parts of the tensor (1,5); in particular then,

)\11 = )\22 =0 and )\12 = —)\21.
The derivatives in the distributional sense of the vector field i are then
expressed in terms of the functions v,3, Aag, and A, by
Oam = (8oz77 : ai)ai = (704[3 + /\aﬁ)aﬁ + )\aag in L2(W; Rg)'

This shows that the derivatives d,n are completely determined by the sym-
metric tensor (7,3) and the antisymmetric tensor (A,g) and the vector (Aq).
In fact, they are determined only by the tensors (v,3) and (pas), because
we now show that (A,3) and (\y) are related to the tensors (v43) and (pag),
by the equations

)‘aﬁ|a + baﬂ)‘ﬁ - bﬁa)\a = YopBla ~ VYoalBs
1% 14 (12)
)‘a|a + bgAav = poa — bgYav-

Note that this system in fact reduces to the following system
A12)0 + D10 A2 — bac A1 = Vo211 — Vo1)25
Aa‘o’ + bZ—)\ay = Poao — bZ%au
which has only three unknowns, namely A1, A2, and Ais.
Using the relation d,a3 = dga,, itself a consequence of the commutativity
of the second-order derivatives of the field 8, we deduce from the definition
of the functions A,z that
205 M08 = OsaM - ag + 0aM - 0583 — Os3M - aq — 03" - Dsaq
= 0a(2708 — 08M - A5) — 08(27Y5a — OaM - 8g) + 0am - Oya3 — OpM - Oyaq
= 2(0aYop — 08Yoa + O0am - Ogas — 0p1M - Oads),
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all equalities being valid in the distributional sense. Combining this last
equality with the relations

Oam - Opa, = F%o(aan -ay) + bﬁa(aa'rl -a3) = P%o('Yow + Aaw) + bgoAa;
9pm - ety =10, (0sm - av) + bac(0pm - a3) = T4 (Vpy + Apw) + bac A,
we next deduce that
5B — ThsAar + Tog sy
= (862705 - Fga’}/ﬁu) - (857@! - FEg’Yav) + bﬁa')‘a - boza'/\ﬁ
= YoBla ~ Yoal8 T 0pora = basAs-
But the first term is equal to the covariant derivative A,g,, since Ag, =
—A,5. Hence the previous equality becomes
AaBlo = Vopla ~ Voalg + OsoAa = bagAs.

We now establish the second equations of (12). Using the definition of
the covariant derivative and the definition of p,g(n), we deduce that
Aalo = Osha — LAy = 05(0am - a3) — 'y, (Om - a3)
= OpaM - @3 + 0am - Opaz — 'L (0, - a3)
= (Opam —I'5a0um) - a3 — by0am - &,

= Poa — bZ(VaV + )\azz)a

which constitutes the desired equations.
Finally, we establish the Saint-Venant equations on a surface as a conse-
quence of the Ricci identities

)‘a,B|ch - )‘a,B|‘ra = AVBR%/QUT + Aaw %/ﬁgq—v
)‘a|<77' - Aoz|7'<7 = )\VRTJQO-T'

First, using the expressions (12) of A,g/, and A,|,, we deduce that the
second-order covariant derivatives Aqgj,r and Ayjor, which belong to the

(13)

space H~2(w), satisfy
Aaflor = VYoBlar — Yoalfr — bacAglr T 08sAajr — bag|rAg + bgojr Aa
= YoBlar — Voalpr — bac(prs — bivsw — b/ Agy)
+ b (Pra — blYar — b7 Aaw) — baolrA8 + bgo|rAa
= YoBlar — Yoalpr T bsoPra — bacPrp + bacbiVsy — basbivaw
+ bacb A — ot Aaw — bagisAg + bgolrAa,
and
Aajor = Poalr — Yo Yav|r = bgAavir — bpjrYar — byjrAar
= Poalr = UoYavir — bo(Yrvja — Yraly — barAv + burda)
= b Yaw — by Aaw-
Using these expressions and the relations

baolr = barlo and b, = b2, and b5b,- = bbye,
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we next deduce from the Ricci identities (13) that

YoBlar — Vool — VrBlac + Yra|Bo + bﬁUpTa - baapTﬁ
- b,@Tonz + bon'pcrﬁ + (baabZ - baTbZ)’yﬁl/ - (bﬂab: - bﬁTbcl;)’yOH/
+ (bagb? — barby) gy — (bgoby — barbl ) Aoy = Mg Ringr + Aaw fjﬁm_,

and
'0‘7047 - pTOé|U - b:;(’)’ocuh' + 'YTV\a - 77a|u)
+ b7y—(7au\a + Yov|a — 7aoz\y) + (bgbom— - b:bao))\y = )\VR‘VO!O'T'

But the terms depending on A,z and A\, appearing in both sides of these
last two relations cancel thanks to the Gauss equation

RY = barb’ — bagh.

This shows that the compatibility conditions (11) are satisfied. O

Remarks. (1) Equation (12) shows that the antisymmetric tensor field
(Aap(n)) and the vector field (Ay(n)) are uniquely determined by the lin-
earized change of metric tensor (7,5(n)) and the linearized change of curva-
ture tensor (pag(M)), respectively up to an antisymmetric matrix field ()\gﬁ)

and a vector field (A\?) that are constant in each connected component of w.

(2) The proof of Theorem 2 shows that the Saint Venant equations on a
surface are nothing but the Ricci equations applied to the tensors (73),) and
(73]a)- To see this, we note that

N3ja = Ao and Ngla = Yap + Aag-
These relations, combined with those of (13), show that

nﬁ\am’ - nﬁ|a7'0' - 704[3|ch + 704[3|7'0' = (775\1/ - fYVﬁ)R{/aO'T + (771/|a - ’Yow)R{ij—?

MlaocT — M3|lare = 77E’»|I/‘Rf/040'7"
But the Ricci identity applied to (y43) shows that
Yaplor — Yaplre = 'YVﬁRI.jam— + ’yal/R{/ﬁo-T-
Hence the Saint Venant equations on a surface hold if and only if

775|aa7’ - 776|a7'a = T’ﬁIVR{/aO'T + 77V|aRl-j,Bcha
773|0¢0’7' - 773|oc7'0 = 773|I/Rf:10'7"
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5. RECOVERY OF A VECTOR FIELD FROM THE LINEARIZED CHANGE OF
METRIC AND CURVATURE TENSORS

Let w be a bounded and open subset of R? and let 8 € C3(w; R3) be an
immersion. We refer to Section 3 for the definitions of all the notions used
below.

We are now in a position to characterize those symmetric matrix fields

(7ap) and (pap) that together satisfy the Saint Venant equations on a surface
(cf. (14)).

Theorem 3. Letw be a simply-connected domain in R? and let 6 € C3(w; R?)
be an immersion. Let there be given two symmetric matriz fields (o) and
(pap) in the space L*(w;S?) that together satisfy:
Yoa|Br + YrBlac — Vra|Bo — VopBlar + R{/aar’)/ﬁ'/ - Rfjﬁar’yal/
= b'rapa,é’ + baﬁp'ra - baapT,B - bTBpO’Oé (14)
Poa|r — Prale = bg(’)/auh + Yrvja — 'Yra\u) - b‘zy—('Yau\o + Yovia — 'Yaa\u)

in the distributional sense.
Then there exists a vector field n € H(w;R3) such that

1 .
YaB = 5(80477 -ag +aq - 5577) m LQ(‘”)?

Pap = (Oapn —T%30m) -a3  in H '(w).

(15)

Proof. The proof, which is detailed below, consists in first finding an anti-
symmetric matrix field (Aog) € L?(w; A%) and a vector field (\,) € L?(w; R?)
that together satisfy the equations

>‘a5|0 + bao')\ﬁ - bﬁO)‘Oz = YoBla — Yoa|B> (16)
)‘a|<7 + bgyy)\au = Poa — bZ’Yau-

in the distributional sense, then finding a vector field n € H'(w;R3) that
satisfies

80177 = (Vaﬂ + )\aﬁ)aﬁ + )\aa?" (17)
The field 1 is then that announced in the statement of the Theorem.
The proof comprises theee steps.

(i) We first show that the Saint Venant equations on a surface imply that
the system (16) has a solution.
Consider any matrix field

A= )pa*® a’ + \,a%®a’ — Aga?’ ® a”,

with coefficients (Aag) € L*(w;A?) and (A\a) € L?(w;R?). Then its deriva-
tives are given in H!(w) by the relations

oA = Dy(Napa® @ a°%) 4 (9,(\aa®)) ® a° + N2 @ (9,a%)
—a’® (0,(\ga”)) — \s(9,a%) ® a”.
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By using the definition of the covariant derivatives as given in formulas (7)
and (8), these formulas become
Os A = Aopjea” @ a® + P, pa% @ a® + b2\ 50’ ® a”
+ (Aajea” + bA.a%) @a® —a®® ()\m(,aﬁ + b2 \za%)
— bopAad® ® a’ + boarga® @ a’.

By rearranging the terms and using the antisymmetry of (A,g), we finally

obtain the following expression:
Oe A = (Aaglo — bopra + borarg)a® ® a”
+ (Aalo + 02Aap)a” @ a® — (Agy + b2 Aga)a® @ a”.

By comparing this formula with the system (16), we deduce that the
latter has a solution if and only if there exists an antisymmetric matrix field
A= \j;a' ®@al (ie., that satisfies A;j + Aj; = 0) such that

80)‘ = (70,8|a - ’7004,3)3'0[ ® aﬁ

— W o 3 — W 3 164 (18)
+ (Poa o Yor)a" ® a (Pos o pr)a” @ a’.

But Theorem 1 shows that this system has a solution, which necessarily is
antisymmetric, if and only if

0-(0,A) = 05 (0:A) in H_z(w).

So, it remains to compute these second derivatives. We first infer from
(18) that

87’(80A) = aT((’Yaﬁ\a - ’Yoa|ﬁ)aa & aﬂ)
+ 0-((poa — byYar)a®) @ a’—a’® aT((Poﬁ - bZ'YBV)aﬁ)
+ (,Oaa - bgyy'}/au)aa ® aTag - (paﬁ — bgwgy)ﬁfa‘g ® aﬂ.

Once again using the definition of covariant derivatives as given in formulas
(7) and (8), we next obtain that

87(80)‘) - (706|a7’ - 700¢|B7)aa ® aﬁ

+ bg(%ma - Vaa\ﬁ)ag ® aﬁ + bé(706|a - 70a|ﬁ)aa ® a3
+ ((paoz\T - bZ”YOél/h') + (Fﬁap#a - bZ\T’YCW - Fgabzf}/w/))aa ®a
+ 02 (poa — bg%d,)ag ®a’— bé(ﬂoﬂ - bZ’YBz/)ag ® a’

3

- ((pa,@h' - bzryﬁuh) + (Fﬁapuﬁ - bZ|T’7ﬁV - F'LTLUbZIYﬁV))ag ® a’
—brp (Poa — bgYar)a® ® a’ + bra (Paﬁ - bZ’Yﬁu)aa ®a.
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By rearranging the terms and using the antisymmetry of (Ay3), we finally
obtain the following expression for the second-order derivatives of A:

a’r(aa)‘) = (’Vaﬁ\a‘r - '700457‘ - bTﬁ(pJa - bZ’YaV) + bTa(po,B - bZ’Yﬁu))aa ® aﬁ

— (Pogir — Uy Vo — U (Yogla — VYoalp))a® @ a”
+ (Poatr = b5 Yavir + U2 (Yopla — Voajs))a™ © a®
+ (T2 pua — bZ‘T'ym, — Ity )a® @ a’
= (Tspus — bZ|T’YﬁV - FﬁabZVﬂV)ag ®a’.
Taking into account the symmetries 'y, = I'y- and b%|, = b%|,, we deduce
from the above expression of the second-order derivatives of A that
9-(05A) = 05(0-A)
if and only if
VoBlar — Yoalgr = brp(Poa = bgYav) + bra(pos — by ysy)
= Yr8lac — Vralfe — Vop(Pra — VYav) + boalprs — b5v80)
Poalr = bsYavir + 02 (Yasla = Voals) = Prale — UiVavle + U3 (Vegla — Yrals)-

But these are exactly the Saint-Vanant equations on a surface, since the
Gauss equation (5) precisely states that

brgbY — bogh? = RYy ..
(ii) We show that the symmetry of the matriz fields (va3) and (pag) imply

that there exists a solution n € H'(w;R3) to the system (17).
To this end, we need to prove that

95((Yao + Aao)a” + Xad®) = 0a((Vas + Ago)a” + Aga®)
in H~1(w). Since
90 (V8o + Ago)a” + Aga®)
da(Vpo + Ago))a” + (Dadg)a® + (Vo + Ao ) (T3 ,a" + bla®) — by Aga’
Ba(Vpo + Aso) = Tho(Vpu + Agu) — bacAg)a” + (Bas + b3 (V50 + Ago))a’
Voola + Asola + Thg (Vo + Aue) — bacAg)a”
+ Agla + Thghu + 0510 + Ago))a’,

=
= (
= (

and since I‘Zﬁ = Fg .+ it suffices to prove that
V3o + /\,Bcr|a - baUAB = Yao|B + >‘cw|,3 - bﬁa)\ap
)‘B\a + bg(’Yﬂa + )\,80) = )‘a\ﬂ + bg(’YaU + )\aU)-

In view of the expressions (16) of the covariant derivatives of Aog and A4,
these equations reduce to

Ygo|a + Yao|8 — Yaplo — bﬁa)\a = Yao|B + YBola — VBale — baﬁ)\aa
Papf — bg’}/ﬂu + bgf)/ﬂa = PBa — bg'}’au + bg'ﬁwv
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hence to
YaBlo = VBalos
PaB = PBa-

But these equations are clearly satisfied, since the matrix fields (y,3) and
(pap) are symmetric. Hence Poincaré theorem (Theorem 1) shows that there
exists a vector field n € L?(w;R?), unique up to an additive constant vector
field, that satisfies

Do = (Yap + Aap)a® + Apa®.

Since the right-hand side of this system belongs to L?(w;R3), the field n
belongs in fact to the space H'(w;R?).

(iii) We finally show that the symmetry of the matric fields (vo3) and
(pap), together with the antisymmetry of the matriz fields (Aop), imply that
the vector field n does satisfy equations (15).

We first infer from the equation (17) that the functions A,3 and A, are
given in terms of the vector field n by

V8o T+ )\BJ = 3677 *ag,
Ao = oT] - a3.
We then deduce from the first equation and the symmetry of (y,3) and the
antisymmetry of (Ang) that the functions v, satisfy

1 1
YaB = 5(%3 + AaB + VBa + Aga) = 5(%?7 ag+aq - 0gn).

We now compute the functions p,s in terms of the vector field n. We
first infer from the second equation of (16) and from the definition of the
covariant derivatives that

Pap = Mgl + o (Nso + V50)
= 8a()\aao) -ag + bg(/\,gg + ’y,g,,).

Using the above expressions of (Agy +73,) and A, in this equation, we next
deduce that

Pap = 9a((0om - a3)a”) - ag + b3, (9pm - a0)
— Da(O5m - 23) + (9om - 23)(Dad” - a3) + V,(95m - 2.
By using the Gauss equations
Opa” = —I'g,a" + bZa3,
we finally obtain that
Pap = Oapm - ag — by (9m - a,) — I'75(0,m - a3) + b3 (9m - ay)
= (Oapn — Fgﬁacrn) - as.
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Remark. The uniqueness result established in Ciarlet & C. Mardare [4,
Theorem 3] shows that any vector field ) € H'(w;R?) that satisfies

1. L
Yap = 5(0all - ag +aq - J5n) in L*(w; %)

is necessarily of the form
n(y) =n(y) + (a+ b A0O(y)) for almost all y € w,

where a and b are vectors in R3. O

6. THE LINEARIZED GAUSS AND CODAZZI-MAINARDI EQUATIONS

The objective of this Section is to show that the Saint Venant equations
on a surface are nothing but an infinitesimal version of Gauss and Codazzi-
Mainardi equations. These last equations are recalled in the next theorem,
which is a straighforward extension of a well-known result for smooth sur-
faces in Differential Geometry:

Theorem 4. Letw be a domain in R?, let @ € I/Vlg(’:p(w; R3) be an immersion,
and let the matriz fields (aqp) € Wiiép(w;Si) and (bog) € LP (w;S?), p > 2,
be defined by

a3 = aq - ag and by = Oaag - a3 in w, (19)

where
a; Na
a, 1= 0,0 and ag := e
\al A ag‘
Then the functions ang and bag together satisfy the Gauss and Codazzi-

Mainardi equations, viz.,
R =0,V — 0I5, +T8 T, —T8 I = baby — basby,

aoT aTt o aoc™ QT

2
Osbar — Orbae + 1 by —Th bur =0, (20)

in the distributional sense.

Proof. Since W{éf(w) C C°(w) by the Sobolev imbedding theorem and since
det(aqp) > 0 in w (the matrix (aqg(y)) being positive definite for all y € w
by assumption), the definition of the inverse of a matrix shows that (a™) =
(a6p)~" € WP(w;S2). Hence the Christoffel symbols

loc

1
aB = §aw(8aa50— + 080ao — O050ag)

belong to the space L (w).

Let the vectors fields a/ by defined by a; - a/ = 5{ in w. Then we deduce
from the relations (19) that

Os00p = Osaq - ag +a, - 0ya3.
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These relations, combined with the definition of the Christoffel symbols and
with the relations a” = a"%a,, imply that
g = a™(a, - Oqag) = a’ - Oyag.
Note that relations (19) also imply that
bag = Onag - a’.
Since the vectors a;(y) form a basis in R? for all y € w, we deduce that
daap = Iy par + bopaz in L (w; R3).

Because

3 3
by, = a"%bae = —a"ag - 0pa’ = —a, - Jya°,

and
Dpas - a® = a3 - a3 = %8a(a3 -ag) =0,
we likewise deduce that
deas = —bla, in L (w;R?).

Using now the commutativity of the second-order derivatives of the vector
fields a; in the sense of distributions, we deduce from the above relations
that, for all 7,0, «,

8T(I‘gaag + byaag) = 8U(F£aa5 + braas),
d-(bjag) = 9, (blap)
in the distributional sense. Consequently,
0-T5 a5 + 10, (T ja, + brgag) + Orbsaas — bebsaay,
= &,I‘faag + I‘fa(I‘g‘ﬂau + bopag) + dybraaz — bhbraay,
0-bJag + b3 (I sa, + brgag) = ,b7ag + bl (T 48, + byga)
which can also be written as

(0, K + T8 " — bbya)ay, + (Orbya + T2 b,5)a3

oa” 13

= (9T, + T2 " — bbra)a, + (Dobra + T2 b,5)a3

Ta™ of3
(O b + T b0)ay, + b)brgag = (D04 + T4 ;07)a, + blbspas.

These equations are satisfied if and only if the equations (20), which are the
Gauss and Codazzi-Mainardi equations associated with the two fundamental
forms a,g and by, vanish in w. O

Remarkably, the converse of Theorem 4 is also true :

Theorem 5. Let w be a connected and simply-connected open subset of R?
and let anp € Wl’p(w;Si) and by € WP (w: S2), p > 2, be two matriz fields

loc loc
that satisfy the Gauss and Codazzi-Mainardi equations, namely

R o= 0,T%, — 0,T%, + T2 TY —TET% =bub’ — bagh’,

aoT att po o™ T

Osbar — Orbary + TH by — T by = 0,
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i the distributional sense.

Then there exists an immersion 6 € VVlg’Cp(w; R3) such that

a3 = aq - ag and by = Opag - a3 in w, (21)
where
a, := 0,0 and az := w.
la; A ag|
Proof. See the proof of Theorem 9 in S. Mardare [7]. O

Our final objective is to show that Theorems 2 and 3 are in fact “infinites-
imal” versions of Theorems 4 and 5, respectively. To this end, we will show
that the Saint-Venant equations on a surface coincide with the linearized
Gauss and Codazzi Mainardi equations:

Theorem 6. Let w be an open subset of R? and let 8 € C3(w;R3) be an
immersion. For some p > 2, let there be given symmetric matriz fields
(Vap) € I/Vléép(w; S?) and (pap) € LP (w;S?) such that the matriz fields (aqs+
£Yap) and (bag + €pap) satisfy the Gauss and Codazzi Mainardi equations
for all e > 0 small enough.

Then the linear part with respect to € in the Gauss and Codazzi-Mainardi
equations associated with the matriz fields (ang + €¥ap) and (bag + €pag)

coincide with the Saint-Venant equations on the surface S = 0(w), i.e.,
Yoa|Br + YrBlac — Vra|Bo — Voplar + Rf/am-"}/ﬂv - RT/ﬂO”T"YOCV
= bTapaﬁ + baﬁpra - baaPTﬁ - bTﬁpaa (22)
Poalr = Prajle = bg(7au|7- + Yrvja = 7’r0¢|u) - bi(’}/auw + Yov|a — ’70a|u)'
Proof. It suffices to prove the equality between the linearized Gauss and Co-
dazzi Mainardi equations and the Saint-Venant equations on every compact
subset of w. Hence we may assume in what follows that (v,5) € WP (w;S?)
and (pag) € LP(w;S?).
For all € > 0, define the matrix fields
(aaﬁ(g)) = (aaﬁ) +5(7aﬁ) € Wl’p(w;SQ)a
(baﬁ(g)) = (baﬁ) + 5(pa/3) € Lp(w§ 82)
Since W1P(w) C C%®) by the Sobolev embedding theorem, there exists a
number g9 > 0 such that, for all 0 < € < g, the matrix field (aqns(c)) is
positive definite in @. As in the proof Theorem 4, this implies that a”7(¢) €

WLP(w), where (a°7(€)) = (aas(e)) ! denotes the inverse of the matrix field
(anp(e)). Hence the Christoffel symbols

Paso(€) 1= 5 {Baton(e) + Das (€) — Ooas(e)}
ap(e) = a’(e)lapo(€)

and the mixed components of the second fundamental form, viz.,

b (2) = a™Pbyg(e),
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all belong to the space LP(w). This property implies that the Gauss and
Codazzi-Mainardi equations associated with the two forms (aqg(e)) and
(bap(e)) are well defined in the space of distributions.

Recall that the Gauss equations assert that

Rl (€) = bar ()b (€) — bao (€)Y (e),
or equivalently that
Rpaor(€) = bar(€)bop(€) — bao(€)brp(e), (23)
where the functions
Rior(€) = 05174() — 0:T54(€) + T4 (), () — Toa(e)I7,(e)

are the mixed components of the Riemann curvature tensor associated with
the metric tensor (a,-(¢)) and

Rgagr(e) = apu () Rigor (€)

are the covariant components of the Riemann curvature tensor associated
with the same metric tensor. Likewise, recall that the Codazzi-Mainardi
equations assert that

Oobar(€) = Orbac(e) + TG (€)buo(e) — Tho(€)byur(€) = 0. (24)

Note that the fields (aqg) and (bag) also satisfy the Gauss and Codazzi-
Mainardi equations in w, that is,

Rﬁaar = baTbaﬁ - baobrﬂ)
Oobar — Orbao + 15 bys —Th bur =0,
where
Rﬁaa'r = Gpy (801—‘504 - 87—FZ’O[ + Fﬁartufu - Fgarzlt)
are the covariant components of the Riemann curvature tensor associated
with the metric (aqg).

In order to compute the linear part of the Gauss and Codazzi-Mainardi
equations associated with the fields (ans(e)) and (bag(€)), we proceed by
expanding all the above functions as power series in . We let O(¢?) denote
any function f such that (¢72f) is bounded in a space that will be specified
in each occurence. We then have

aap(€) = anp + 26708 + (’)(az) in Wlu"’(w),
and thus
a’(e) = a7 — 2ea% 5" + O(?) in WP (w).

Consequently,

1
Lopo(e) = Tapo + 5{(%(&50(5) — agy) + 03(aac(€) — Gao) — Os(aap(e) — anp)}
= Faﬁa + 5(80/760 + aﬁ’}/aa - aU’Ya,@) + 0(62) in Lp(w),
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and
n5(e) = (477 = 224774540 + O(*)) (Tapo + £(0aop + IpVoa — DoYap) + O(c?))
= aTUFaﬁa +ea™ (801’706 + 8ﬁ'YUo¢ - 80'704,@) - 25@7@7@¢aworaﬁa + 0(52)
= F;B + ea’™ (8a'Ya,B + 8[3’70'04 - ao")/aﬁ - 2rgﬂ70'p) + 0(52)
=I5+ 20" (Vopla + Voald — Yaplo) + O(e?) in LP(w).
Defining the functions
Haﬂo’ = Yopla + Yool — Yap|o and H;ﬁ = aTUHaﬂU7
we thus obtain the following relations in LP(w):
[ope) =T0g +eHig+ O(e?)
Faﬁg(s) = Faﬁa + EHagg + 0(52).
Using these relations in the definition of RY, . (), we next deduce that
Rf/acm’(g) = R?,OtO'T + 5(80'H7l'/o< - aTHcl;a + F'LTLaHtlflu + HﬁaFZp,
- FgaH’lr//L - HgaFZu) + 0(62)

in the space W~1P(w), hence also in the space H !(w).
Let the covariant derivatives of the tensor fields (HY,), of (H,rq), and of
(a™) be denoted by

H‘fl{a’J = aUHﬂlfa - F'gTH,Za - Flo'LaH:u + FZuHﬁaﬂ
HTCW|U = aO'H’Ta’V - ng-Huou/ - PgaHTuu - ngHTOcua
a™ |y = 00" + ry,a" +Tg,a™.
Then they satisfy the following relation
HY,lo = "M H o + 0" |s Hrap in H Y (w).

Moreover, the definition of the Christoffel symbols associated with the metric
tensor (a,) shows that

1
aTV‘U = d,a™" + i(aﬂpadw + aﬂ/JaSDV)FUWp
TV 1 TO( YV TY (v
=0sa™" + §{a (@®Opagy) + a™ (a® O apy)
(00" + ™) Dptog — Dpiey)}

1

= 0,a™" — §{aw(aaa¢”)a¢,¢ + a7 (0,0 )Dpayy }

=0in w,

which, combined with the previous relation, implies that

H:a|<7 = aV'uHTaMJ in H_l(w)'
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Using this relation in the expression of RY, _(¢) yields the following rela-
tions in H~1(w):

Rlpor(€) = Riyor = e(HYolo — Hiulr) + O(%)
= ea""(Hropo — Hyaplr) + O(e%)
= ea"™(Vurlao + Vualro — Yraluo — Yuolar — Yualor + Yoalur) + O(E2),
and
Rpaor(€) = Rgaor = apy(€) Ripor(€) — agy Riyr
= apy(R0r(€) = Rioor) + (apy(€) — agy) R0 (€)
= €03,0"" (Vur|ao + Vualro — Vraluo = Yuolar — Vualor T Voalur)
+ 2675, Rlpor + O(7).
Combining these relations with the Ricci identity
Vpalroe = Ypalor = Bortva + Riger Yy
we deduce that, on the one hand,
Rpaor(€) = Rgaor
= e(Vgrlas = Vralfe — Vbolar + Voalsr + Biacr Vo — Rierva) + O(?)
in the space H!(w). On the other hand, we have
bar(€)bsp(e) — bao(€)br3(€) = barbeg — bacbrs
+ e(barpop + Parbos — bacpPrg — Pacbrs) + O(e?) in LP(w).
Therefore the linear part of the Gauss equations (23) are the following equa-
tions in H~(w):
Y8rlac = VralBe — Vaolar + Yoalpr T Riaer ¥y — Risorva
= barpos + Parbos — bacpPrg — Pacbrs,

which are exactly the first Saint-Venant equations on a surface (see (22)).
We now compute the linear part of the Codazzi-Mainardi equations (24).
Using the power series expansions of bys(e) and of Fgﬁ(s), we first deduce

that this linear part is given by the following equations in H~!(w):
aUpOzT - 67'an + FngHU - Flotapl” + Hg'rbltc’ - HgabHT =0.

Then, by definition of the covariant derivatives and by definition of the
functions H;ﬂ, these last equations are equivalent with

vo__

Par|c — Poalr + (’71/040 + Vvola + f}/aalu)bg - ('71/047 + Yor|a + ’Y‘ra|l/)bo' 0,

which are exactly the second Saint-Venant equations on a surface (see (22)).
This completes the proof. O

Remark. In Theorem 6, the field (y,3) belongs to the space WP (w;$2), so

loc

as to guarantee that (aqs(e)) € WP (w;S?), which is the minimal regularity

loc
assumption under which the Riemannian curvature tensor Rgaq-(€) is well
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defined in the space of distributions. However, the Saint-Venant equations
(22) can be extended by continuity to matrix fields (7,5) that belong only
to the space L? (w;S?). O
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