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ABSTRACT
In this paper, we give three theoretical and practical con-
tributions for solving polynomial ODE or PDE systems.
The first one is practical: an algorithm which improves the
purely algebraic part of Rosenfeld–Gröbner (the polynomial
ODE or PDE systems simplifier which is the core of the
Maple 5.5 diffalg package). It is a variant of lextriangular

but does not need any Gröbner basis computation. The
second one is theoretical: a characterization of the output
of Rosenfeld–Gröbner and a clarification of the existing re-
lationship between algebraic and differential characteristic
sets. The third one is theoretical as well as practical: an al-
gorithm to compute canonical representatives of differential
polynomials modulo regular differential ideals without any
use of Gröbner bases. This algorithm simplifies the theory
(somehow a “pedagogic” contribution) but permits us also
to perform easily linear algebra over the base field in the
factor differential ring defined by a regular differential ideal.

Keywords: differential algebra, Rosenfeld–Gröbner, canoni-
cal representatives, lextriangular, regular differential ideal,
characteristic sets, characteristic presentations.

1. INTRODUCTION
We make precise in next sections some of the terms used in
this introduction.

Rosenfeld–Gröbner [5, 7, 8] is a simplifier for systems of
polynomial differential equations (ordinary or with partial
derivatives). It solves a theoretical problem of differential
algebra (deciding membership in the radical of finitely gen-
erated differential ideals) and furnishes as a byproduct tools
to solve systems of polynomial ODE and PDE. The situ-
ation is similar to that of the Buchberger algorithm [10],
which solves a theoretical problem of commutative algebra
(deciding membership in polynomial ideals) and furnishes as
a byproduct tools to solve systems of polynomial equations.

It is the heart of the diffalg package which is part of Maple

5.5 standard library.

Technically, given a system Σ of differential polynomials,
Rosenfeld–Gröbner outputs finitely many characteristic pre-
sentations C1, . . . , Ct which are particular cases of triangu-
lar systems. Each characteristic presentation Ci represents
a differential ideal, denoted [Ci] : H

∞
Ci

. The radical
p

[Σ] of
the differential ideal generated by Σ is the intersection

p

[Σ] = [C1] : H∞
C1

∩ · · · ∩ [Ct] : H∞
Ct

.

Roughly speaking, Rosenfeld–Gröbner consists in two steps.

The first step is the differential step which transforms Σ
as finitely many systems A = 0, S 6= 0 of equations and
inequations, called regular differential systems.

p

[Σ] = [A1] : S∞1 ∩ · · · ∩ [At′ ] : S∞t′ .

These systems satisfy the hypotheses of the key Rosenfeld’s
lemma which “reduces differential problems to purely alge-
braic ones”. Each regular differential system A = 0, S 6= 0
represents a regular differential ideal denoted [A] : S∞. Its
set of equations A is triangular but A is not necessary a
characteristic presentation of [A] : S∞.

The second step is the purely algebraic step which transforms
a regular differential system A = 0, S 6= 0 into finitely many
characteristic presentations C1, . . . , Ct′′ satisfying

[A] : S∞ = [C1] : H∞
C1

∩ · · · ∩ [Ct′′ ] : H∞
Ct′′

.

It is applied separately over each regular differential system
produced by the first step.

The fact that computing characteristic presentations from
regular differential systems is a purely zerodimensional alge-
braic problem is only claimed in [8, page 35] with no proofs.
The first complete proofs of that claim are given in [15].

The first result of this paper is an efficient algorithm, called
regCharacteristic which performs the second step without com-
puting any Gröbner basis.

The regCharacteristic algorithm first reduces the problem to
a dimension zero problem1. It puts in the coefficient field all
the derivatives occuring in A and S which are not leaders
of any element of A, giving sets A and S. It then calls the

1As [8, 15] already do.
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subalgorithm satTriangular which computes a set of normal-
ized triangular sets {T1, . . . , Tt} which (nearly immediately)
give the desired characteristic presentations {C1, . . . , Ct}.

The satTriangular subalgorithm is a very close variant of the
lextriangular algorithm [20, page 129, algorithm D5lextrian-

gular] [24] and [25, page 133] which applies the D5 [11] pro-
cess. Let’s quote [20, page 129]: lextriangular is given a
Gröbner basis B of a zero–dimensional ideal of polynomials
in X1, . . . , Xn, sorted by increasing leading monomials for
the lexicographical ordering such that X1 < · · · < Xn and
produces on output a finite family of normalized triangular
sets T1, . . . , Tt such that

V (B) = V (T1) ∪ · · · ∪ V (Tt) (1)

where V (Ti) denotes the set of the common zeroes of the
elements of Ti in the algebraic closure of the base field.

Our implementation of satTriangular is directly inspired from
[24, 25] (we do not claim any algorithmic improvement w.r.t.
these papers): it performs the subresultant algorithm in the
factor ring defined by the already built triangular sets in-
stead of performing it generically and specializing its result
afterwards.

There are however important theoretical differences between
satTriangular and lextriangular: we start from a system of
polynomial equations A = 0, S 6= 0 which is not a Gröbner
basis2 ; more important, we want much stronger properties
for our output than (1) i.e. properties P1 to P5 stated in
section 4. These properties just do not hold for the output
of lextriangular in general and we were led to write complete
proofs.

We have implemented two versions of Rosenfeld–Gröbner
based on regCharacteristic. One in Maple 5.5 and one in
C++. We compare existing methods (which are written in
Maple) with our Maple version.

Let us compare our work with existing methods.

Wang and Li solve the second step in [21] by using the SimSys

[32] algorithm which handles general polynomial systems.
They claim [21, p. 59] that a more specialized algorithm
than SimSys could be applied. Our regCharacteristic is such
an algorithm.

In [8], this second step is solved by computing first a Gröbner
basis of the localized ideal S−1(A). This is expensive, does
not take into account the fact that A is already triangular
and explicits the inverses of the elements of S which are not
needed at all.

Algorithm 7.1 in [15] applies exactly the same principles as
regCharacteristic. The only difference is that it computes
a Gröbner basis of S−1(A) instead of calling satTriangular.
It suffers therefore of the drawbacks mentioned above for
[8]. Note also that [15] is the first to prove completely that
computing characteristic presentations from regular differ-

2This is quite anecdotic for the algorithmic consequences
of the Gianni and Kalkbrener theorem do not apply in our
case.

ential systems is a purely algebraic (zerodimensional) prob-
lem. This was only claimed in [8, page 35].

Observe that testing the invertibility of differential polyno-
mials modulo triangular sets in order to build characteristic
sets was already considered in [23, 9]. The method of these
authors is different from ours, at least because it is based on
Gröbner bases computations [9, page 7] and [23, page 29].

The second result of this paper consists in two theorems (the-
orems 2 and 3) which clarify the relationship between char-
acteristic presentations, characteristic sets and regular dif-
ferential ideals.

Theorem 2 is new in the sense it makes a correspondence
with the recent [2, Theorem 6.1]. Its content is essentially
proved in [9] and [15, lemma 6.1]. Theorem 3 shows that a
characteristic presentation of a regular differential ideal is a
canonical representative among all the characteristic sets of
that ideal.

Our two results above are generalizations close to results of
François Ollivier [27, pages 89–98]. The main difference is
that Ollivier only considers differential prime ideals while we
consider regular differential ideals do not need to be prime.
Ollivier does not reduce the problem to a zero dimensional
problem and does not apply the more recent optimizations
in [24, 25]. The conditions [27, Théorème 2, page 94 and
Définition 10, page 96] Ollivier imposes to characteristic sets
are slightly weaker than ours: he does not require that the
elements of characteristic sets are primitive (our definition 3,
condition D3) whence his characteristic sets are not canon-
ical representatives of the prime differential ideals they de-
fine. However, when canonical representatives are needed
for an application to control theory, Ollivier divides the ele-
ments of characteristic sets by their initials and does obtain
canonical representatives [27, page 115].

Our third result is a new method to compute canonical forms
of differential polynomials modulo a regular differential ideal.

Computing canonical forms of differential polynomials mod-
ulo a given differential ideal a is a real issue for the set of
canonical forms modulo a often forms (here it is the case)
a vector space over the base field K of the equations. Us-
ing canonical forms we thus can look for linear dependencies
over K modulo a by easily performing linear algebra in the
factor ring. This is one of the main ideas carried out by the
important FGLM algorithm [14] in the context of Gröbner
bases and lifted to regular differential systems in [6].

This problem of computing canonical forms modulo poly-
nomial differential equations was, as far as we know, only
addressed in [6] and required the computation of a Gröbner
basis. The method we give in section 8 is based on triangu-
lar sets and pseudo reduction only. It solves a problem left
open in [6].

Our method applies for ordinary (non differential) polyno-
mials modulo regular sets [16, 2] of polynomial equations
too and we believe it could be interesting in this context
also. Computing canonical forms imposes to compute the
inverses of the initials of the elements of the set. These al-
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gebraic inverses computations can be performed only once
by making the set strongly normalized. This is probably
very CPU expensive but is interesting at least for pedagogic
reasons.

2. DEFINITIONS AND NOTATIONS

2.1 Commutative algebra
Let X be an ordered alphabet (possibly infinite). A term
over X is a power product of elements of X.

Let R = K[X] be a polynomial ring where K is a field. Let
p ∈ R \K be a polynomial. The leader of p, denoted ld p, is
the greatest indeterminate x which occurs in p. The poly-
nomial p can be written as

p = ad xd + · · · + a1 x + a0

where d = deg(p, x) and the polynomials ai are free of x.
The polynomial ip = ad is the initial of p. The rank of p is
the monomial xd. If xd and ye are two ranks then xd < ye

if x < y or x = y and d < e. The separant of p is the
polynomial

sp =
∂p

∂x
·

The polynomial p is said to be monic if its initial is equal
to 1. The set iter(p) of the iterated initials of p is defined
as follows: if p ∈ K then iter(p) = ∅ otherwise iter(p) =
{p} ∪ iter(ip).

Let A ⊂ R \K be a set of polynomials. Then IA (resp. SA)
denotes the set of the initials (resp. the separants) of its
elements. We denote HA = IA ∪ SA. The set A is said to
be triangular if its elements have distinct leaders.

Let A be a triangular set. A polynomial p is said to be nor-
malized w.r.t. A if the set of leaders of iter(p) is disjoint from
the set of leaders of A. The set A is said to be normalized
if every p ∈ A is normalized w.r.t. A \ {p}.

A polynomial p is said to be strongly normalized w.r.t. A if
no leader of A occurs in the initial of p. The set A is said to
be strongly normalized if every p ∈ A is strongly normalized
w.r.t. A \ {p}.

Every strongly normalized triangular set is normalized.

We denote prem(p, A) the pseudo–remainder [17, volume 2,
page 407] of p by all the elements of A viewed as univariate
polynomials in their leaders.

If R is a unique factorization domain and p ∈ R[X] then p
can be written:

p = a0 t0 + · · · + ak tk

where the ti are terms over X and the ai ∈ R. The content
of p over R is the gcd of its coefficients:

cont(p) = gcd(a0, . . . , ak)

The primitive part of p over R is the polynomial

pp(p) =
p

cont(p)
·

A polynomial is said to be primitive if it is equal to its
primitive part.

If A is a subset of a ring R then (A) denotes the ideal gen-
erated by A. Let a be an ideal of R. Then

√
a denotes the

radical of a. If S = {s1, . . . , st} is a finite family of elements
of R then the saturation a : S∞ of a by S is the ideal:

a : S∞ = {p ∈ R | ∃a1, . . . , at ∈ N s.t. sa1

1 · · · sat
t p ∈ a}.

2.2 Differential algebra
We only provide a short presentation. The reference books
are [28] and [18]. We also refer to the Maple 5.5 diffalg

package and thus to the articles [7, 8] which present it.

A derivation over a ring R is a map δ : R → R which
satisfies, for every a, b ∈ R

δ(a + b) = δa + δb,

δ(a b) = (δa)b + a(δb).

A differential ring is a ring endowed with finitely many
derivations which commute pairwise. The commutative mo-
noid generated by the derivations is denoted Θ. Its elements
are the derivation operators θ = δa1

1 · · · δam
m where the ai

are nonnegative integer numbers. The sum of the expo-
nents ai, called the order of the operator θ, is denoted ord θ.
The identity operator is the unique operator with order 0.
The other ones are called proper. If φ = δb1

1 · · · δbm
m then

θφ = δa1+b1
1 · · · δam+bm

m . If ai > bi for each 1 ≤ i ≤ m then

θ/φ = δa1−b1
1 · · · δam−bm

m .

A differential ideal a of R is an ideal of R stable under deriva-
tion i.e. such that

a ∈ a ⇒ δa ∈ a.

Let A be a nonempty subset of R. We denote [A] the differ-
ential ideal generated by A which is the smallest differential
ideal which contains A.

2.2.1 Differential polynomials
Let U = {u1, . . . , un} be a set of differential indeterminates.
Derivation operators act over differential indeterminates giv-
ing derivatives θu. We denote ΘU the set of all the deriva-
tives. Let K be a differential field. The differential ring of
the differential polynomials built over the alphabet ΘU with
coefficients in K is denoted R = K{U}.

A ranking is a total ordering over the set of the derivatives
[18, page 75] satisfying the following axioms

1. δv > v for each derivative v and derivation δ,

2. v > w ⇒ δv > δw for all derivatives v, w and each
derivation δ.

Fix a ranking. The infinite alphabet ΘU gets ordered. Con-
sider a polynomial p ∈ R \ K. Then the leader, initial, sep-
arant . . . of p are well defined. Axioms of rankings imply
that the separant of p is the initial of every proper derivative
of p.
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Let rank p = vd. A differential polynomial q is said to be
partially reduced w.r.t. p if no proper derivative of v occurs
in q. It is said to be reduced w.r.t. p if it is partially reduced
w.r.t. p and deg(q, v) < d.

A set A of differential polynomials is said to be differentially
triangular if it is triangular and if its elements are pairwise
partially reduced. It is said to be autoreduced if its elements
are pairwise reduced.

Every autoreduced set is differentially triangular.

If A is a set of differential polynomials and v is a derivative
then Av = {θp | p ∈ A, ld θp ≤ v}. Thus Rv denotes the set
of all the differential polynomials having leader less than or
equal to v.

2.2.2 Ritt’s reduction algorithms
They are generalizations of the Euclidean division algorithm
for differential polynomials. One distingues the partial re-
duction algorithm, denoted partial rem from the full reduc-
tion algorithm, denoted full rem. We only give specifications
of these algorithms. See [18, page 77] for a more precise de-
scription. Let q be a differential polynomial and A be a set
of differential polynomials. Let v = ld q and A = A ∩ Rv.

If q = partial rem(q, A) denotes the partial remainder of q
by A then q is partially reduced w.r.t. all the elements of A
and there exists a power product h of elements of SA such

that h q ≡ q mod (Av).

If q = full rem(q, A) denotes the full remainder of q by A
then q is reduced w.r.t. all the elements of A, there exists
a power product h of elements of HA such that h q ≡ q

mod (Av).

2.2.3 Critical pairs
A pair {p1, p2} of differential polynomials is said to be a
critical pair3 if the leaders of p1 and p2 are derivatives of
some same differential indeterminate u (say ld p1 = θ1u
and ld p2 = θ2u). Assume A is differentially triangular.
Then critical pairs(A) denotes all the critical pairs that can
be formed with any two elements of A. Let {p1, p2} ∈
critical pairs(A) be a critical pair. Denote θ12 the least
common multiple between θ1 and θ2. The ∆–polynomial
∆(p1, p2) is

∆(p1, p2) = s2

θ12

θ1

p1 − s1

θ12

θ2

p2

where s1, s2 denote the separants of p1 and p2. Let A =
0, S 6= 0 be a system of differential polynomial equations
and inequations. The critical pair {p1, p2} is said to be solved
by A = 0, S 6= 0 if there exists a derivative v < θ12u such
that

∆(p1, p2) ∈ (Av) : (S ∩ Rv)∞.

If full rem(∆(p1, p2), A) = 0 and HA ⊂ S then the critical
pair {p1, p2} is solved by A = 0, S 6= 0.

3This definition was introduced for the first time in [8, sec-
tion 4], under the name “pair”.

2.2.4 Regular differential systems

Definition 1. (regular differential systems)4

A differential system A = 0, S 6= 0 of a differential polyno-
mial ring R is said to be a regular differential system (for a
ranking R) if

C1 A is differentially triangular,

C2 S contains the separants of the elements of A and is
partially reduced w.r.t. A,

C3 all the critical pairs {p, p′} ∈ critical pairs(A) are solved
by the system A = 0, S 6= 0 (coherence property5).

If A = 0, S 6= 0 is a regular differential system then the ideal
[A] : S∞ (resp. (A) : S∞) is called the regular differential
ideal (resp. regular algebraic ideal) defined by the system.

If A = 0, S 6= 0 is a regular differential system, we call
derivatives under the stairs of A the elements of ΘU which
are not derivatives of any leader of element of A.

Regular systems enjoy the following properties.

Theorem 1. Let A = 0, S 6= 0 be a regular differential
system of R = K{U}. Let L denote the set of leaders of A
and N the set of the derivatives under the stairs of A. Then

1. the regular algebraic ideal (A) :S∞ is radical (Lazard’s
lemma) ;

2. if b denotes a prime ideal minimal over (A) : S∞ then
the set N furnishes a transcendence basis of the field
of fractions of R/b over K (Lazard’s lemma) ;

3. we have [A] : S∞ ∩ K[L, N ] = (A) : S∞ (Rosenfeld’s
lemma) ;

4. the regular differential ideal [A] : S∞ is radical (lifting
of Lazard’s lemma) ;

5. if (A) : S∞ has t minimal primes bi then [A] : S∞ has
t minimal differential primes pi defined by (lifting of
Lazard’s lemma)

pi ∩ K[L, N ] = bi.

Actually pi = {p ∈ R | partial rem(p, A) ∈ bi}.

Proof. [8, Lazard’s lemma, the lifting of Lazard’s lemma
and Rosenfeld’s lemma]. See also [31, 29, 7, 30, 26, 15,
21].

4[8, Definition 4.4].
5If IA ⊂ S and full rem(∆(p, p′), A) = 0 for every critical
pair {p, p′} ∈ critical pairs(A) then C3 is satisfied.
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2.2.5 Characteristic sets

Definition 2. Let a be a differential ideal of R. A set
C ⊂ a is said to be a characteristic set of a if C is autore-
duced and a contains no nonzero polynomial reduced w.r.t. C.

In the following theorem, the equivalence between the two
first items is well–known. This theorem is very close to [27,
Théorème 2, page 94] though Ollivier only considers differ-
ential prime ideals. The equivalence with the third item
may be essentially proved already in [9]. The correspon-
dence with the recent [2, Theorem 6.1] is interesting in itself
anyway.

Theorem 2. Let C be an autoreduced set of differential
polynomials and a = [C] :H∞

C . The following conditions are
equivalent.

1. C is a characteristic set of a,

2. p ∈ a ⇔ full rem(p, C) = 0,

3. C = 0, HC 6= 0 is a regular differential system such
that C is regular6 in the sense of [2] and squarefree7

in the sense of [1, def 4.5.11].

Proof. 1 ⇒ 2. If p ∈ a then full rem(p, C) ∈ a, is reduced
w.r.t. C, thus is zero. If full rem(p, C) = 0 then, for some
power product h of elements of HC we have h p ∈ [C] ⊂ a

whence p ∈ a.

2 ⇒ 3. The differential system C = 0, HC 6= 0 satisfies
conditions C1 and C2. The set C reduces to zero all ∆(p, p′)
such that {p, p′} ∈ critical pairs(C) (for C reduces a to zero)
thus C = 0, HC 6= 0 satisfies C3 and is a regular differential
system. C reduces to zero (C) : I∞C ⊂ a whence is regular in
the sense of [2] by [2, Theorem 6.1]. C reduces to zero (C) :

H∞
C ⊂ a without differentiating any element of C whence

(C):H∞
C ⊂ (C):I∞C . Since the converse inclusion obviously

holds too we have (C) : I∞C = (C) :H∞
C thus C is squarefree

by theorem 1 (1).

3 ⇒ 1. Let f be a differential polynomial reduced w.r.t. C.
We must prove f = 0. We have f ∈ K[L, N ]. Since C =
0, HC 6= 0 is a regular differential system, theorem 1 (3)
applies and f ∈ (C) : H∞

C . The set C is regular in the
sense of [2] thus C is a characteristic set of (C) : I∞C by [2,
Theorem 6.1]. Since C is squarefree, (C) : I∞C is radical and
(C) : I∞C = (C) : H∞

C by [15, Proposition 3.3]. Therefore C
is a characteristic set of (C) : H∞

C and f = 0.

2.2.6 Characteristic presentations
The following definition is different from that of [8, Defini-
tion 6.1] but we do believe both definitions are equivalent
(we do not prove this claim). Hubert weakens the definition

6A triangular set C = f1 < · · · < fn is regular in the
sense of [2] if the initial of fk does not divide zero modulo
(f1, . . . , fk−1) : (i1 · · · ik−1)

∞ for every 1 ≤ k ≤ n.
7A regular (in the sense of [2]) triangular set C is said to
be squarefree if (C) : I∞C is radical (in [1, def 4.5.11], the
qualifier separable is used in place of squarefree).

of characteristic presentations in [15] (she only imposes D1

and D2) thus looses canonicity properties.

Definition 3. A set C ⊂ K{U} is said to be a charac-
teristic presentation of the differential ideal [C] : H∞

C if

D1 the differential system C = 0, HC 6= 0 is regular,

D2 if p ∈ R then p ∈ [C] : H∞
C ⇔ full rem(p, C) = 0,

D3 C is a strongly normalized autoreduced set of K[L, N ]
such that the elements of C are primitive over K[N ]
where L denotes the set of leaders of the elements of C
and N denotes the other derivatives occuring in C.

Corollary 1. A set C of differential polynomials is a
characteristic presentation of [C] : H∞

C if and only if C is a
characteristic set of [C] : H∞

C which satisfies D3.

Theorem 3. A characteristic presentation C is a canon-
ical representative of the regular differential [C]:H∞

C (it only
depends on the ideal and on the ranking).

Proof. Let C and C′ be two characteristic presentations
of [C] : H∞

C . Both sets have the same rank for they are
characteristic sets of the same ideal. Consider any f ∈ C and
f ′ ∈ C′ having the same rank. Denote i and i′ their initials.
The polynomial i′ f − i f ′ ∈ (C) : H∞

C . Since C and C′

are autoreduced and strongly normalized, this polynomial
is reduced w.r.t. both C and C′ whence is zero. Since f and
f ′ are primitive over K[N ] we have f = f ′ thus C = C′.

In practice, in order to have canonicity properties, we im-
pose also the coefficients in K of the elements of C to be
normalized. In the case K = Q(Y ) is a pure transcenden-
tal field extension of the field of the rational numbers (Y is
an alphabet of indeterminates) then the elements of C are
polynomials in Z[Y ∪N∪L] primitive over the ring Z[Y ∪N ].

3. THE PROBLEM
We are given a regular differential system A = 0, S 6= 0
of R. We assume moreover that HA ⊂ S. We want to
compute sets C1, . . . , Ct of differential polynomials such that
the following conditions hold

A1 each Ci is a characteristic presentation of the differential
ideal [Ci] : H∞

Ci
,

A2 [A] : S∞ = [C1] : H∞
C1

∩ · · · ∩ [Ct] : H∞
Ct

,

A3 the intersection is not redundant: if p is a differential
prime component of [A]:S∞ then p is a minimal differ-
ential prime of exactly one differential ideal [Ci] :H

∞
Ci

.

4. REGCHARACTERISTIC
Denote X the set of the derivatives occuring in A ∪ S and
L ⊂ X the set of the leaders of the elements of A and N =
X \ L. Denote G = K(N) the ring obtained by putting the
elements of N in the base field of the differential polynomial
ring. The algorithm involves three steps.
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1. Transform the system A = 0, S 6= 0 into a system
A = 0, S 6= 0 of G[L]. That step is purely formal.

2. Apply the algorithm satTriangular (described later) over
A = 0, S 6= 0. This algorithm returns a possibly
empty set of squarefree normalized8 autoreduced sets
{T1, . . . , Tt} of G[L] satisfying the following properties:

P1 if the set is empty then (A) : S
∞

= G[L],

P2 (A) : S
∞

= (T1) ∩ · · · ∩ (Tt),

P3 if i 6= j then (Ti) + (Tj) = (1),

P4 for every 1 ≤ i ≤ t we have (Ti) = (Ti) : H∞
Ti

,

P5 ld Ti = ld A.

3. Transform each triangular set Ti of G[L] as a triangu-
lar set Ci of K[X] by replacing every polynomial p/s
occuring in the Ti systems by the primitive part of p
over K[N ]. The obtained systems C1, . . . , Ct are the
characteristic presentations we are looking for.

4.1 Proof of the algorithm
The part of regCharacteristic that we prove in this section is
shared together with [15, Algorithm 7.1]. Proofs can thus
be found in [15, Theorem 3.10 and 6.2]. We give them anew
to make this article selfcontained.

Let φ be the canonical ring homomorphism K[X] → G[L].

Lemma 1. (A) : S∞ = (C1) : H∞
C1

∩ · · · ∩ (Ct) : H∞
Ct

.

Proof. The relation above is obtained by applying φ−1

over P2 componentwise. Indeed, φ−1 preserves intersections

by [13, Proposition 2.2, (a)] and maps (A) : S
∞

(resp. (Ti))
to (A) : S∞ (resp. (Ci) : H∞

Ci
) by P4, [13, Proposition 2.2]

and the fact that the nonzero elements of K[N ] belong to
none of the minimal primes of (A) : S∞ (resp. (Ci) : H∞

Ci
)

by theorem 1 (2) (resp. P5 and theorem 1 (2)).

Lemma 2. A prime ideal b is minimal over (A) : S∞ iff
b is minimal over some (Ci) : H∞

Ci
.

Proof. By P5 and theorem 1 (2), the prime ideals which
are minimal over (A) : S∞ and the ones which are minimal
over the (Ci) : H∞

Ci
all have the same dimension. If b ⊂ b′

are two prime ideals having the same dimension then b = b′.
The lemma follows now from lemma 1.

Lemma 3. Each system Ci = 0, HCi
6= 0 is a regular

differential system.

Proof. It suffices to prove if {p, p′} ∈ critical pairs(Ci)
then full rem(∆(p, p′), Ci) ∈ b where b is any prime ideal
minimal over (Ci) :H∞

Ci
. By lemma 2 and theorem 1 (5) b is

the intersection with K[X] of some differential prime ideal p

minimal over [A] : S∞. Since p, p′, Ci belong to p we have
full rem(∆(p, p′), Ci) ∈ b.

8Observe in this case, every normalized set is strongly nor-
malized for its elements are monic.

Lemma 4. Let 1 ≤ i ≤ t be an index. The set Ci is a
characteristic set, in the sense of Ritt, of the ideal (Ci):H

∞
Ci

Proof. Let us prove that p ∈ (Ci) :H
∞
Ci

iff prem(p, Ci) =
0 for any p ∈ K[X]. The implication from right to left is
clear. The converse one comes from the following: first, p ∈
(Ci) : H∞

Ci
iff φp ∈ (Ti) by P4 ; second, prem(p, Ci) = 0 iff

prem(φp, Ti) = 0 ; third prem(φp, Ti) = 0 iff φp
∗−−−−→
Ti

0

for9 the elements of Ti are monic ; last, Ti is a Gröbner
basis of (Ti) [3, Lemma 5.66 (Buchberger’s first criterion)]
thus reduces to zero all the elements of (Ti) [3, Proposition
5.38].

Proposition 1. (condition A1)

Let 1 ≤ i ≤ t be an index. The set Ci is a characteristic
presentation of the ideal [Ci] : H∞

Ci
.

Proof. The set Ci is autoreduced. All its elements are
strongly normalized for they are obtained by multiplying
monic polynomials by elements of K[N ]. They are primitive
over K[N ] by construction. Thus Ci satisfies D3. Condi-
tion D1 holds by lemma 3. Condition D2 thus holds by
theorem 1 (3) and lemma 4.

Lemma 5. A differential prime p is minimal over [A]:S∞
iff it is minimal over some [Ci] : H∞

Ci
.

Proof. By lemmas 2, 3 and theorem 1 (5).

Proposition 2. (condition A2)

[A] : S∞ = [C1] : H∞
C1

∩ · · · ∩ [Ct] : H∞
Ct

.

Proof. The proposition is a corollary of lemma 5.

Proposition 3. (condition A3)

If p is a differential prime component of [A] :S∞ then p is a
differential prime component of exactly one differential ideal
[Ci] : H∞

Ci
.

Proof. Let p be a minimal differential prime of [Ci]:H
∞
Ci

and of [Cj ] : H
∞
Cj

. Then b = p∩K[X] is a minimal prime of

(A) :S∞ by lemma 5. Then (φb) is a minimal prime of (Ti)
and of (Tj). Property P3 implies i = j.

5. THE INVERT SUBALGORITHM
Computing the normalized sets Ti amounts to normalizing
the polynomials of A, which consists in inverting the initials
of the polynomials of A.

Denote L = {X1, . . . , Xn}.
9This denotes the reduction in the sense of the Gröbner basis
theory [3, page 199].
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5.1 Specification of invert
We describe precisely the inputs and outputs of the algo-
rithm invert:

Inputs of invert:

• p ∈ G[L], a non zero polynomial

• T = {p1, . . . , pk} a normalized triangular set of the
ring G[X1, . . . , Xk] with k ≤ n.

Outputs of invert:

• either the inverse q ∈ G[L] such that pq = 1 (mod (T )).
We say invert has found the inverse of p modulo the
ideal (T ).

• or a triple (j, g, h) (if invert could not compute an in-
verse) with j ≤ k such that

– ld(g) = ld(h) = Xj

– g and h are monic

– pj = g h (mod (p1, . . . , pj−1))

5.2 Algorithmic scheme of invert
The algorithms invert and ExtEuclid (see below) respectively
are simplified versions of the functions QuasiRecipElseSplit

and extendedSubResGcdElseSplit taken from [25] and based
on a splitting process à la D5 [11]. See [20, 1] too. The
implementation is far more complicated and optimizations
are detailed in section 7.

Denote p and q two nonconstant polynomials of the ring
G[X1, . . . , Xn] such that q is monic and has leader Xk.

The polynomial quo(p, q, Xk) (resp. rem(p, q, Xk) ) denotes
the quotient (resp remainder) of the Euclidean division of
p by q. The division does not raise any problem since q is
monic.

If T = {p1, . . . , pk} is a normalized triangular set of the ring
G[X1, . . . , Xk], then, in the algorithms, p mod T denotes
rem(. . . rem(p, pk, Xk) . . . , p1, X1), (i.e. the remainder of the
Euclidian division of p by all polynomials of T ). Remark: T
can be considered as a Gröbner basis and p mod T is equal
to the normal form [3, page 199] of p by T .

invert(p, {p1, . . . , pk})
if p ∈ G

return 1/p
else

let 1 ≤ j ≤ k such that ld p = ld pj

(g, u, v) := ExtEuclid(p, pj , {p1, . . . , pj−1})
if g = 1 then

return u
else

return to top level the triple
(j, g, quo(pj , g, Xk) mod {p1, . . . , pj−1})

fi

fi

The algorithm invert is based on the algorithm ExtEuclid we
describe below.

Specification of ExtEuclid

T = {p1, . . . , pk−1} is a normalized triangular set of the
ring G[X1, . . . , Xk−1] and p and q are two polynomials of
G[X1, . . . , Xk] with ld(p) = ld(q) = Xk and q is monic.
ExtEuclid tries to computes a triple (g, u, v) of three polyno-
mials of G[X1, . . . , Xk] such that:

• up + vq = g (mod (T )) (Bézout [4] identity)

• lcoeff(g, Xk) = 1, i.e. g is either the constant polyno-
mial 1 or a monic polynomial with leader Xk.

• g divides both p and q modulo the ideal (T )

Algorithmic scheme of ExtEuclid

ExtEuclid(p, q, T )
if q = 0 then

ıp :=invert(ip, T )
return (ıp p mod T, ıp, 0)

else

a := quo(p, q, Xk, T )
b := rem(p, q, Xk, T )
ıb :=invert(ib, T )
(g, u, v) := ExtEuclid(q, ıb b mod T , T )
return (g, ıb v mod T, u − ıb v a mod T )

fi

Remark: in case of splitting, the algorithm ExtEuclid does
not compute the expected triple because it is interrupted by
the algorithm invert at the line “return to top level”.

6. SATTRIANGULAR
Recall HA ⊂ S and L = ld(A). The algorithm satTriangular

builds a finite sequence (Fi)1≤i≤r of r sets of systems of
equations and inequations.

Initially, take F0 = {(A = 0, S 6= 0)}. We suppose we have
built the set Fi. Two cases may arise:

• Denote Fi = {(T1 = 0, S1 6= 0), . . . , (Tt = 0, St 6= 0)}.
If each Ti is a normalized triangular set and each Si is
empty, the algorithm then stops and outputs the set
{T1, . . . , Tt}.

• Fi contains a system A = 0, S 6= 0 such that A con-
tains a non monic polynomial or S is not empty. Then
transform A = 0, S 6= 0 with one of the two rules R1
or R2 (defined below). Both rules compute a set F of
zero, one or two systems of equations and inequations.

Take Fi+1 = Fi \ {A = 0, S 6= 0} ∪ F .

R1 : try to make a polynomial monic. If there exists
some non monic pk ∈ A s.t. p1, . . . , pk−1 are monic,
three cases are possible:

44



R1.1 The initial of pk is zero modulo (p1, . . . , pk−1).
Take F = ∅.

R1.2 invert finds the inverse q of ipk
modulo the ideal

(p1, . . . , pk−1). Take F = {A′ = 0, S 6= 0}
where A′ = A \ {pk} ∪ {pk} where pk = q pk

mod {p1, . . . , pk−1}.
R1.3 invert does not find the inverse of ipk

modulo
(p1, . . . , pk−1), but a triple (j, g, h) such that 1 ≤
j < k and pj = g h (mod (p1, . . . , pj−1)). Take
F = {(Ag = 0, S 6= 0), (Ah = 0, S 6= 0)} where
Ag = A \ {pj} ∪ {g} and Ah = A \ {pj} ∪ {h}.

R2 : try to get rid of an inequation. If there is some
s ∈ S such that ld s = ld pk and p1, . . . , pk are monic
then three cases are possible:

R2.1 s is zero modulo (p1, . . . , pk). Take F = ∅.
R2.2 invert finds the inverse of s modulo (p1, . . . , pk).

Take F = {A = 0, S′ 6= 0} where S′ = S \ {s}.
R2.3 invert does not find the inverse of s modulo the

ideal (p1, . . . , pk) but a triple (j, g, h) such that
1 ≤ j ≤ k and pj = g h (mod (p1, . . . , pj−1)).
Take F = {(Ag = 0, S 6= 0), (Ah = 0, S 6= 0)}
where Ag = A\{pj}∪{g} and Ah = A\{pj}∪{h}.

6.1 Proof
If I ⊂ G[L] is an ideal, V (I) denotes the set of zeros of I in
the algebraic closure of G.

Lemma 6. Let I ⊂ G[L] be a zerodimensional ideal. Let
S ⊂ G[L] a finite set of polynomials. Then I = I : S∞ iff
for each s ∈ S and z ∈ V (I), we have s(z) 6= 0.

Proof. (sketched) The proof follows from the two follow-
ing points: first, every zero of I is an irreducible component
of the algebraic variety of I (since I is zerodimensional);
second, the algebraic variety of I : S∞ is the union of all
the irreducible components of I which do not annihilate any
element of S.

Proposition 4. For 1 ≤ i ≤ r, Fi satisfies invariants I1

to I3 where Fi = {(A1 = 0, S1 6= 0), . . . , (At = 0, St 6= 0)}.

I1
T

1≤l≤t

(Al) : S∞l = (A) : S
∞

.

I2 (Al) : S∞l = (Al) : (Sl ∪ HAl
)∞, for each 1 ≤ l ≤ t.

I3 (Al) : S∞l +(Am) : S∞m = G[L], for each 1 ≤ l < m ≤ t.

Corollary 2. For each 1 ≤ l ≤ t, the ideal (Al) : S∞l
has dimension zero and is radical.

Proof. This is a corollary to invariant I2 and Lazard’s
lemma (theorem 1 (1,2)).

Proof. of proposition 4

The proof is an induction on i. The basis of the induction
is clear. Suppose Fi verifies the invariants. We prove that

Fi+1 does too. We distinguish several cases, corresponding
to the way Fi+1 is built.

• Case R1.1

It suffices to prove (A) : S∞ = G[L]. The initial of pk

belongs to both (A) and HA. Thus (A) : (S∪HA)∞ = G[L].
By invariant I2, (A) : S∞ = G[L].

• Case R1.2

We have (A) = (A′) since q pk ∈ (A) and p = ipk
q pk

(mod (p1, . . . , pk−1)).

Therefore, by saturating, (A) : S∞ = (A′) : S∞. Thus,
Fi+1 satisfies I1 and I3.

It remains to prove I2. We have (A) : S∞ = (A) : (S ∪
HA)∞ (invariant I2 over Fi). Lemma 6 implies that the
polynomials of HA do not vanish on the zeros of (A) :
S∞. Since SA′ = SA \ {spk

} ∪ {spk
} and spk

= q spk

(mod (p1, . . . , pk−1)), the polynomials of HA′ do not vanish
either on the zeros of (A) : S∞. Thus, by lemma 6, (A) :
S∞ = (A) : (S ∪HA′)∞ = (A′) : S∞ = (A′) : (S ∪HA′)∞,
so Fi+1 verifies I2.

• Case R1.3

We have pj = g h (mod (p1, . . . , pj−1)). Since pj , g and h
have the same leader, spj

= sgh+gsh (mod (p1, . . . , pj−1)).

Denote I = (A) : S∞ and Ig = (Ag) : S∞ and Ih = (Ah) :
S∞.

Proof of I3 : we claim

V (Ig) ∪ V (Ih) = V (I) (2)

V (Ig) ∩ V (Ih) = ∅ (3)

We have V (I) ⊃ V (Ig) ∪ V (Ih) for I ⊂ Ig and I ⊂ Ih.

The converse inclusion. Let z ∈ V (I).

g(z)h(z) = 0 (4)

sg(z)h(z) + g(z)sh(z) 6= 0 (5)

Thus, if g(z) = 0 then sg(z) 6= 0 and h(z) 6= 0 ; if g(z) 6= 0,
then h(z) = 0 and sh(z) 6= 0. This implies z is either a zero
of Ig or a zero of Ih, and it can’t be zero of both ideals.
Thus 2 and 3 are proved and Fi+1 satisfies I3.

Proof of I2 :

By invariant I2 on Fi and lemma 6, the polynomials of HA

do not vanish on V (I). By relation 2, they do not vanish on
V (Ig). The polynomial sg does not vanish on V (Ig) (con-
sequence of relation 5). We have HAg = HA \ {spj

} ∪ {sg}.
Therefore, by lemma 6, (Ag) : S∞ = (Ag) : (S ∪ HAg )∞.
The same proof holds for Ih. This ends the proof of I2.

By the theorem of zeros,
√

I =
p

Ig ∩
√

Ih. By invariant
I2 and theorem 1(1), all these ideals are radical. Thus Fi+1

satisfies I1.

• Case R2.1
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Same as R1.1.

• Case R2.2

The inequation s admits an inverse we call q. The property
s q = 1 (mod (p1, . . . , pk)) clearly implies that s does not
vanish on the zeros of (A) : S∞. Thus, by lemma 6, we

have (A) : S∞ = (A) : S′∞ and Fi+1 satisfies the three
invariants.

• Case R2.3

Same as R1.3

This ends the proof of proposition 4

Proposition 5. The algorithms stops.

Proof. To each system Σ = (A = 0, S 6= 0), associate
the sum of the degrees of the elements of A in their leader,
the number of the non monic elements of A and the number
of elements of S. Denote v(Σ) this positive integer.

When the algorithm rewrites a system Σ into a set F , then
v(Σ′) < v(Σ) for each Σ′ ∈ F .

By [19, Satz 6.6] (i.e. every infinite locally finite tree con-
tains a branch of infinite length), the algorithm stops.

Proposition 6. The output {T1, . . . , Tt} of the algorithm
satisfies P1, . . . , P5

Proof. This is an immediate consequence of the invari-
ants I1, I2 and I3 satisfied by Fr.

7. IMPLEMENTATION
The codes of the algorithms invert and ExtEuclid, in sec-
tion 5, just are algorithmic schemes. Most of the optimiza-
tions below are implemented in our private version of the
Maple package diffalg. They were suggested to us by Marc
Moreno Maza, who is very familiar with triangularization
algorithms.

• One can compute pairs instead of triples in ExtEuclid

following [17, Volume 2, page 325]: using the final pair
and the Bézout identity, one can recover the missing
coefficient by a mere Euclidean division modulo a tri-
angular set.

• For efficiency reasons, one can implement different ver-
sions of ExtEuclid, one which computes a full Bézout
identity, one which only computes one of the Bézout
coefficients (for computing an inverse), and one which
only computes the gcd (for testing invertibility). For
example, Marc Moreno Maza observed that the last
division of the former item can be very expensive.

• The classical scheme of the extended Euclidean algo-
rithm can be performed with the subresultants algo-
rithm which controls the growth of the coefficients of
the intermediate remainders. The recent Ducos [12]
optimization of the subresultants algorithm is worth
being implemented. It replaces some pseudoremain-
ders of the traditional subresultant algorithm by a few

more computations which involve smaller datas. The
alternative [22] algorithm could be used as well.

• The rule R2.3 can be specialized when j = k. In this
case, the system Ag = 0, S 6= 0 is inconsistent. The
same optimization applies for R1.3 when j = k − 1.

• It is interesting to invert separants of the equations as
soon as possible. Once the separants of all considered
equations are inverted, the ideal generated by these
equations is radical (Lazard’s lemma). This gives an-
other optimization of the rule R2.3 when j = k. In
this case, s is necessarily invertible modulo (Ah) and
can be removed from S.

• A good strategy consists in applying R2 as soon as
possible in the case both R1 and R2 apply. Indeed,
this may split the systems into smaller systems which
are easier to handle.

7.1 Experiments
Some other algorithms which have the same specifications as
regCharacteristic are implemented in Maple [8] and [15] but
are superseded by ours: the first step of the other algorithms
consists in computing a Gröbner basis of (A) : S∞. This is
certainly not the best way since the Buchberger algorithm
does not take into account the fact that A is already trian-
gular and explicits the inverses of the inequations, which are
not needed.

The advantage of our method only appears for differential
systems which make Rosenfeld–Gröbner spend a lot of time
on the purely algebraic treatment of regular differential sys-
tems.

Let’s try the following system which has no physical signifi-
cance but makes Rosenfeld–Gröbner spend most of the time
in the purely algebraic part (second step):

v uxx + u2
xx + ux, uyy + uy

for the orderly ranking

· · · > uxx > uxy > uyy > vxx > vxy

> vyy > ux > uy > vx > vy > u > v.

We perform our comparisons in Maple 5.5 over a Sun Ultra
5 at 333Mhz with 128Mb memory.

Our private version of Rosenfeld–Gröbner produces six reg-
ular differential ideals in 75 seconds, including 62 seconds
for regCharacteristic. One of the regular differential systems
A = 0, S 6= 0 to deal with is quite large. We do not give its
characteristic presentation.

The other implementations of Rosenfeld–Gröbner (the one
in Maple 5.5 and its variant by Hubert) cannot carry this
example out: Maple 5.5 does not succeed in computing the
Gröbner basis of the localized ideal S−1(A).

8. CANONICAL FORMS
Let C be the characteristic presentation of the differential
ideal a = [C] : H∞

C in the differential ring R = K{U}. De-
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note L the set of leaders of C and N the set of the other
derivatives occuring in C.

To any differential polynomial q we may associate a fraction

NF(q, C) =
a

b

satisfying

1. b q = a mod a,

2. NF(q, C) is a canonical form of the equivalence class
of q in R/a (the fraction only depends on the ranking,
the differential ideal a and the equivalence class of q).
In particular

q = q′ mod a ⇒ NF(q, C) = NF(q′, C).

3. a ∈ K[L, N ] is reduced w.r.t. C and b ∈ K[N ] (in
particular b does not divide zero in R/a).

The following proposition is straightforward but very impor-
tant for it permits us to perform easily linear algebra over K
in R/a.

Proposition 7. The set {NF(q, C) | q ∈ R} forms a
vector space over K.

We now show how to compute normal forms. First consider
the case q ∈ K[L, N ] for which things are easy since C is
strongly normalized.

Let q = prem(q, C). For some power product h of initials
of C we have h q = q mod (C). We define NF(q, C) as
the fraction a/b obtained by making q/h irreducible. The
differential polynomial q is reduced w.r.t. C. Since C is
strongly normalized, h ∈ K[N ].

Lemma 7. b q = a mod a.

Proof. We have h q = q mod a. Factors of h are not
zero divisors in R/a thus we may factor them out from the
above relation.

Lemma 8. NF(q, C) = NF(q′, C) for any q′ ∈ K[L, N ]
such that q = q′ mod a.

Proof. Denote NF(q′, C) = a′/b′. The differential poly-
nomial a b′ − a′ b ∈ a, is reduced w.r.t. C for b, b′ ∈ K[N ]
and a, a′ are reduced w.r.t. C. It is zero for C is a charac-
teristic set of a. Since the fractions are reduced a = a′ and
b = b′.

We now consider the general case. The problem is due to
the separants which do not belong to K[N ]. It is overruled
by inverting them using the extended Euclidean algorithm.

Let q be a differential polynomial. Let q = partial rem(q, C).
For some power product h of separants of elements of C we
have h q = q mod a.

Using the invert algorithm, we may compute10 the inverse
of h modulo (C) : H∞

C in K(N)[L]. Multiplying by some
element of K[N ] to clear denominators we find a differen-
tial polynomial h such that h h = g mod a and g ∈ K[N ].
Therefore g q = h q mod a. Let NF(h q, C) = a/b. We de-
fine NF(q, C) to be the fraction a/b obtained by making the
fraction a/g b irreducible.

Proofs of the general case are easy variants of the former
ones.

Canonicity properties are consequences of theorem 3 and
lemma 8.

CONCLUSION
The algorithm presented in this paper is a first step in merg-
ing the efficient solvers of polynomial equations implemented
by [25, 1] and the Rosenfeld–Gröbner algorithm. Merging
these solvers, we expect to obtain an efficient solver for dif-
ferential polynomial equations in which there would not be
any distinction between differential and algebraic parts. In
particular, such a new solver would be able to handle the
purely algebraic subproblems which also arise in the differ-
ential part of the current Rosenfeld–Gröbner. It would be
very interesting for systems of DAE and PDAE.

We would like to thank Marc Moreno Maza for many expla-
nations about his algorithms and triangular sets. We would
like to thank both Marc Moreno Maza and François Ollivier
for their comments on a preliminary version of this paper.
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globale : approche théorique, méthodes effectives et bornes
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