Franc ¸ois Boulier 
  
¸ois Franc 
  
Lemaire 
email: lemaire@lifl.fr
  
COMPUTING CANONICAL REPRESENTATIVES OF REGULAR DIFFERENTIAL IDEALS

Keywords: differential algebra, Rosenfeld-Gröbner, canonical representatives, lextriangular, regular differential ideal, characteristic sets, characteristic presentations

In this paper, we give three theoretical and practical contributions for solving polynomial ODE or PDE systems. The first one is practical: an algorithm which improves the purely algebraic part of Rosenfeld-Gröbner (the polynomial ODE or PDE systems simplifier which is the core of the Maple 5.5 diffalg package). It is a variant of lextriangular but does not need any Gröbner basis computation. The second one is theoretical: a characterization of the output of Rosenfeld-Gröbner and a clarification of the existing relationship between algebraic and differential characteristic sets. The third one is theoretical as well as practical: an algorithm to compute canonical representatives of differential polynomials modulo regular differential ideals without any use of Gröbner bases. This algorithm simplifies the theory (somehow a "pedagogic" contribution) but permits us also to perform easily linear algebra over the base field in the factor differential ring defined by a regular differential ideal.

INTRODUCTION

We make precise in next sections some of the terms used in this introduction.

Rosenfeld-Gröbner [START_REF] Boulier | Étude et implantation de quelques algorithmes en algèbre différentielle[END_REF][START_REF] Boulier | Representation for the radical of a finitely generated differential ideal[END_REF][START_REF] Boulier | Computing representations for radicals of finitely generated differential ideals[END_REF] is a simplifier for systems of polynomial differential equations (ordinary or with partial derivatives). It solves a theoretical problem of differential algebra (deciding membership in the radical of finitely generated differential ideals) and furnishes as a byproduct tools to solve systems of polynomial ODE and PDE. The situation is similar to that of the Buchberger algorithm [START_REF] Buchberger | An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal[END_REF], which solves a theoretical problem of commutative algebra (deciding membership in polynomial ideals) and furnishes as a byproduct tools to solve systems of polynomial equations.

It is the heart of the diffalg package which is part of Maple 5.5 standard library.

Technically, given a system Σ of differential polynomials, Rosenfeld-Gröbner outputs finitely many characteristic presentations C1, . . . , Ct which are particular cases of triangular systems. Each characteristic presentation Ci represents a differential ideal, denoted [Ci] : H ∞ C i . The radical p [Σ] of the differential ideal generated by Σ is the intersection

p [Σ] = [C1] : H ∞ C 1 ∩ • • • ∩ [Ct] : H ∞ C t .
Roughly speaking, Rosenfeld-Gröbner consists in two steps.

The first step is the differential step which transforms Σ as finitely many systems A = 0, S = 0 of equations and inequations, called regular differential systems.

p [Σ] = [A1] : S ∞ 1 ∩ • • • ∩ [A t ′ ] : S ∞ t ′ .
These systems satisfy the hypotheses of the key Rosenfeld's lemma which "reduces differential problems to purely algebraic ones". Each regular differential system A = 0, S = 0 represents a regular differential ideal denoted [A] : S ∞ . Its set of equations A is triangular but A is not necessary a characteristic presentation of [A] : S ∞ .

The second step is the purely algebraic step which transforms a regular differential system A = 0, S = 0 into finitely many characteristic presentations C1, . . . , C t ′′ satisfying

[A] : S ∞ = [C1] : H ∞ C 1 ∩ • • • ∩ [C t ′′ ] : H ∞ C t ′′ .
It is applied separately over each regular differential system produced by the first step.

The fact that computing characteristic presentations from regular differential systems is a purely zerodimensional algebraic problem is only claimed in [8, page 35] with no proofs. The first complete proofs of that claim are given in [START_REF] Hubert | Factorization free decomposition algorithms in differential algebra[END_REF].

The first result of this paper is an efficient algorithm, called regCharacteristic which performs the second step without computing any Gröbner basis.

The regCharacteristic algorithm first reduces the problem to a dimension zero problem 1 . It puts in the coefficient field all the derivatives occuring in A and S which are not leaders of any element of A, giving sets A and S. It then calls the subalgorithm satTriangular which computes a set of normalized triangular sets {T1, . . . , Tt} which (nearly immediately) give the desired characteristic presentations {C1, . . . , Ct}.

The satTriangular subalgorithm is a very close variant of the lextriangular algorithm [20, page 129, algorithm D5lextriangular] [START_REF] Maza | Polynomial gcd computations over towers of algebraic extensions[END_REF] and [25, page 133] which applies the D5 [START_REF] Dora | About a new method for computing in algebraic number fields[END_REF] process. Let's quote [20, page 129]: lextriangular is given a Gröbner basis B of a zero-dimensional ideal of polynomials in X1, . . . , Xn, sorted by increasing leading monomials for the lexicographical ordering such that X1 < • • • < Xn and produces on output a finite family of normalized triangular sets T1, . . . , Tt such that

V (B) = V (T1) ∪ • • • ∪ V (Tt) (1) 
where V (Ti) denotes the set of the common zeroes of the elements of Ti in the algebraic closure of the base field.

Our implementation of satTriangular is directly inspired from [START_REF] Maza | Polynomial gcd computations over towers of algebraic extensions[END_REF][START_REF] Maza | Calculs de Pgcd au-dessus des Tours d'Extensions Simples et Résolution des Systèmes d' Équations Algébriques[END_REF] (we do not claim any algorithmic improvement w.r.t. these papers): it performs the subresultant algorithm in the factor ring defined by the already built triangular sets instead of performing it generically and specializing its result afterwards.

There are however important theoretical differences between satTriangular and lextriangular: we start from a system of polynomial equations A = 0, S = 0 which is not a Gröbner basis2 ; more important, we want much stronger properties for our output than (1) i.e. properties P1 to P5 stated in section 4. These properties just do not hold for the output of lextriangular in general and we were led to write complete proofs.

We have implemented two versions of Rosenfeld-Gröbner based on regCharacteristic. One in Maple 5.5 and one in C++. We compare existing methods (which are written in Maple) with our Maple version.

Let us compare our work with existing methods.

Wang and Li solve the second step in [START_REF] Li | Coherent, regular and simple systems in zero decompositions of partial differential systems[END_REF] by using the SimSys [START_REF] Wang | Decomposing polynomial systems into simple systems[END_REF] algorithm which handles general polynomial systems.

They claim [21, p. 59] that a more specialized algorithm than SimSys could be applied. Our regCharacteristic is such an algorithm.

In [START_REF] Boulier | Computing representations for radicals of finitely generated differential ideals[END_REF], this second step is solved by computing first a Gröbner basis of the localized ideal S -1 (A). This is expensive, does not take into account the fact that A is already triangular and explicits the inverses of the elements of S which are not needed at all. Algorithm 7.1 in [START_REF] Hubert | Factorization free decomposition algorithms in differential algebra[END_REF] applies exactly the same principles as regCharacteristic. The only difference is that it computes a Gröbner basis of S -1 (A) instead of calling satTriangular.

It suffers therefore of the drawbacks mentioned above for [START_REF] Boulier | Computing representations for radicals of finitely generated differential ideals[END_REF]. Note also that [START_REF] Hubert | Factorization free decomposition algorithms in differential algebra[END_REF] is the first to prove completely that computing characteristic presentations from regular differ-ential systems is a purely algebraic (zerodimensional) problem. This was only claimed in [8, page 35].

Observe that testing the invertibility of differential polynomials modulo triangular sets in order to build characteristic sets was already considered in [START_REF] Maârouf | Étude de Quelques Problèmes Effectifs en Algèbre Différentielle[END_REF][START_REF] Bouziane | Unmixed-Dimensional Decomposition of a Finitely Generated Perfect Differential Ideal[END_REF]. The method of these authors is different from ours, at least because it is based on Gröbner bases computations [9, page 7] and [23, page 29].

The second result of this paper consists in two theorems (theorems 2 and 3) which clarify the relationship between characteristic presentations, characteristic sets and regular differential ideals. Our third result is a new method to compute canonical forms of differential polynomials modulo a regular differential ideal.

Computing canonical forms of differential polynomials modulo a given differential ideal a is a real issue for the set of canonical forms modulo a often forms (here it is the case) a vector space over the base field K of the equations. Using canonical forms we thus can look for linear dependencies over K modulo a by easily performing linear algebra in the factor ring. This is one of the main ideas carried out by the important FGLM algorithm [START_REF] Faugère | Efficient computation of Gröbner bases by change of orderings[END_REF] in the context of Gröbner bases and lifted to regular differential systems in [START_REF] Boulier | Efficient computation of regular differential systems by change of rankings using Kähler differentials[END_REF].

This problem of computing canonical forms modulo polynomial differential equations was, as far as we know, only addressed in [START_REF] Boulier | Efficient computation of regular differential systems by change of rankings using Kähler differentials[END_REF] and required the computation of a Gröbner basis. The method we give in section 8 is based on triangular sets and pseudo reduction only. It solves a problem left open in [START_REF] Boulier | Efficient computation of regular differential systems by change of rankings using Kähler differentials[END_REF].

Our method applies for ordinary (non differential) polynomials modulo regular sets [START_REF] Kalkbrener | A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties[END_REF][START_REF] Aubry | On the theories of triangular sets[END_REF] of polynomial equations too and we believe it could be interesting in this context also. Computing canonical forms imposes to compute the inverses of the initials of the elements of the set. These al-gebraic inverses computations can be performed only once by making the set strongly normalized. This is probably very CPU expensive but is interesting at least for pedagogic reasons.

DEFINITIONS AND NOTATIONS 2.1 Commutative algebra

Let X be an ordered alphabet (possibly infinite). A term over X is a power product of elements of X.

Let R = K[X] be a polynomial ring where K is a field. Let p ∈ R \ K be a polynomial. The leader of p, denoted ld p, is the greatest indeterminate x which occurs in p. The polynomial p can be written as

p = a d x d + • • • + a1 x + a0
where d = deg(p, x) and the polynomials ai are free of x.

The polynomial ip = a d is the initial of p. The rank of p is the monomial x d . If x d and y e are two ranks then x d < y e if x < y or x = y and d < e. The separant of p is the polynomial

sp = ∂p ∂x •
The polynomial p is said to be monic if its initial is equal to 1. The set iter(p) of the iterated initials of p is defined as follows: if p ∈ K then iter(p) = ∅ otherwise iter(p) = {p} ∪ iter(ip).

Let A ⊂ R \ K be a set of polynomials. Then IA (resp. SA) denotes the set of the initials (resp. the separants) of its elements. We denote HA = IA ∪ SA. The set A is said to be triangular if its elements have distinct leaders.

Let A be a triangular set. A polynomial p is said to be normalized w.r.t. A if the set of leaders of iter(p) is disjoint from the set of leaders of A. The set A is said to be normalized if every p ∈ A is normalized w.r.t. A \ {p}.

A polynomial p is said to be strongly normalized w.r.t. A if no leader of A occurs in the initial of p. The set A is said to be strongly normalized if every p ∈ A is strongly normalized w.r.t. A \ {p}.

Every strongly normalized triangular set is normalized.

We denote prem(p, A) the pseudo-remainder [17, volume 2, page 407] of p by all the elements of A viewed as univariate polynomials in their leaders.

If R is a unique factorization domain and p ∈ R[X] then p can be written:

p = a0 t0 + • • • + a k t k
where the ti are terms over X and the ai ∈ R. The content of p over R is the gcd of its coefficients:

cont(p) = gcd(a0, . . . , a k )
The primitive part of p over R is the polynomial

pp(p) = p cont(p) •
A polynomial is said to be primitive if it is equal to its primitive part.

If A is a subset of a ring R then (A) denotes the ideal generated by A. Let a be an ideal of R. Then √ a denotes the radical of a. If S = {s1, . . . , st} is a finite family of elements of R then the saturation a : S ∞ of a by S is the ideal:

a : S ∞ = {p ∈ R | ∃a1, . . . , at ∈ N s.t. s a 1 1 • • • s a t t p ∈ a}.

Differential algebra

We only provide a short presentation. The reference books are [START_REF] Ritt | Differential Algebra[END_REF] and [START_REF] Kolchin | Differential Algebra and Algebraic Groups[END_REF]. We also refer to the Maple 5.5 diffalg package and thus to the articles [START_REF] Boulier | Representation for the radical of a finitely generated differential ideal[END_REF][START_REF] Boulier | Computing representations for radicals of finitely generated differential ideals[END_REF] which present it.

A derivation over a ring R is a map δ : R → R which satisfies, for every

a, b ∈ R δ(a + b) = δa + δb, δ(a b) = (δa)b + a(δb).
A differential ring is a ring endowed with finitely many derivations which commute pairwise. The commutative monoid generated by the derivations is denoted Θ. Its elements are the derivation operators

θ = δ a 1 1 • • • δ am m
where the ai are nonnegative integer numbers. The sum of the exponents ai, called the order of the operator θ, is denoted ord θ. The identity operator is the unique operator with order 0. The other ones are called proper.

If φ = δ b 1 1 • • • δ bm m then θφ = δ a 1 +b 1 1 • • • δ am+bm m . If ai > bi for each 1 ≤ i ≤ m then θ/φ = δ a 1 -b 1 1 • • • δ am-bm m . A differential ideal a of R is an ideal of R stable under deriva- tion i.e. such that a ∈ a ⇒ δa ∈ a.
Let A be a nonempty subset of R. We denote [A] the differential ideal generated by A which is the smallest differential ideal which contains A.

Differential polynomials

Let U = {u1, . . . , un} be a set of differential indeterminates. Derivation operators act over differential indeterminates giving derivatives θu. We denote ΘU the set of all the derivatives. Let K be a differential field. The differential ring of the differential polynomials built over the alphabet ΘU with coefficients in K is denoted R = K{U }.

A ranking is a total ordering over the set of the derivatives [18, page 75] satisfying the following axioms 1. δv > v for each derivative v and derivation δ, 2. v > w ⇒ δv > δw for all derivatives v, w and each derivation δ.

Fix a ranking. The infinite alphabet ΘU gets ordered. Consider a polynomial p ∈ R \ K. Then the leader, initial, separant . . . of p are well defined. Axioms of rankings imply that the separant of p is the initial of every proper derivative of p.

Let rank p = v d . A differential polynomial q is said to be partially reduced w.r.t. p if no proper derivative of v occurs in q. It is said to be reduced w.r.t. p if it is partially reduced w.r.t. p and deg(q, v) < d.

A set A of differential polynomials is said to be differentially triangular if it is triangular and if its elements are pairwise partially reduced. It is said to be autoreduced if its elements are pairwise reduced.

Every autoreduced set is differentially triangular.

If A is a set of differential polynomials and v is a derivative then Av = {θp | p ∈ A, ld θp ≤ v}. Thus Rv denotes the set of all the differential polynomials having leader less than or equal to v.

Ritt's reduction algorithms

They are generalizations of the Euclidean division algorithm for differential polynomials. One distingues the partial reduction algorithm, denoted partial rem from the full reduction algorithm, denoted full rem. We only give specifications of these algorithms. See [18, page 77] for a more precise description. Let q be a differential polynomial and A be a set of differential polynomials. Let v = ld q and A = A ∩ Rv.

If q = partial rem(q, A) denotes the partial remainder of q by A then q is partially reduced w.r.t. all the elements of A and there exists a power product h of elements of S A such that h q ≡ q mod (Av).

If q = full rem(q, A) denotes the full remainder of q by A then q is reduced w.r.t. all the elements of A, there exists a power product h of elements of H A such that h q ≡ q mod (Av).

Critical pairs

A pair {p1, p2} of differential polynomials is said to be a critical pair 3 if the leaders of p1 and p2 are derivatives of some same differential indeterminate u (say ld p1 = θ1u and ld p2 = θ2u). Assume A is differentially triangular. Then critical pairs(A) denotes all the critical pairs that can be formed with any two elements of A. Let {p1, p2} ∈ critical pairs(A) be a critical pair. Denote θ12 the least common multiple between θ1 and θ2. The ∆-polynomial

∆(p1, p2) is ∆(p1, p2) = s2 θ12 θ1 p1 -s1 θ12 θ2 p2
where s1, s2 denote the separants of p1 and p2. Let A = 0, S = 0 be a system of differential polynomial equations and inequations. The critical pair {p1, p2} is said to be solved by A = 0, S = 0 if there exists a derivative v < θ12u such that

∆(p1, p2) ∈ (Av) : (S ∩ Rv) ∞ .
If full rem(∆(p1, p2), A) = 0 and HA ⊂ S then the critical pair {p1, p2} is solved by A = 0, S = 0.

Regular differential systems

Definition 1. (regular differential systems)4 

A differential system A = 0, S = 0 of a differential polynomial ring R is said to be a regular differential system (for a ranking R) if C1 A is differentially triangular, C2 S contains the separants of the elements of A and is partially reduced w.r.t. A, C3 all the critical pairs {p, p ′ } ∈ critical pairs(A) are solved by the system A = 0, S = 0 (coherence property 5 ).

If A = 0, S = 0 is a regular differential system then the ideal [A] : S ∞ (resp. (A) : S ∞ ) is called the regular differential ideal (resp. regular algebraic ideal) defined by the system.

If A = 0, S = 0 is a regular differential system, we call derivatives under the stairs of A the elements of ΘU which are not derivatives of any leader of element of A.

Regular systems enjoy the following properties.

Theorem 1. Let A = 0, S = 0 be a regular differential system of R = K{U }. Let L denote the set of leaders of A and N the set of the derivatives under the stairs of A. Then Proof. [8, Lazard's lemma, the lifting of Lazard's lemma and Rosenfeld's lemma]. See also [START_REF] Seidenberg | An elimination theory for differential algebra[END_REF][START_REF] Rosenfeld | Specializations in differential algebra[END_REF][START_REF] Boulier | Representation for the radical of a finitely generated differential ideal[END_REF][START_REF] Schicho | A construction of radical ideals in polynomial algebra[END_REF][START_REF] Morrison | The Differential Ideal [P ] : M ∞[END_REF][START_REF] Hubert | Factorization free decomposition algorithms in differential algebra[END_REF][START_REF] Li | Coherent, regular and simple systems in zero decompositions of partial differential systems[END_REF].

Characteristic sets

Definition 2. Let a be a differential ideal of R. A set C ⊂ a is said to be a characteristic set of a if C is autoreduced and a contains no nonzero polynomial reduced w.r.t. C.

In the following theorem, the equivalence between the two first items is well-known. This theorem is very close to [27, Théorème 2, page 94] though Ollivier only considers differential prime ideals. The equivalence with the third item may be essentially proved already in [START_REF] Bouziane | Unmixed-Dimensional Decomposition of a Finitely Generated Perfect Differential Ideal[END_REF]. The correspondence with the recent [2, Theorem 6.1] is interesting in itself anyway. 

Characteristic presentations

The following definition is different from that of [8, Definition 6.1] but we do believe both definitions are equivalent (we do not prove this claim). Hubert weakens the definition

6 A triangular set C = f1 < • • • < fn is regular in the sense of [2] if the initial of f k does not divide zero modulo (f1, . . . , f k-1 ) : (i1 • • • i k-1
) ∞ for every 1 ≤ k ≤ n. 7 A regular (in the sense of [START_REF] Aubry | On the theories of triangular sets[END_REF]) triangular set C is said to be squarefree if (C) : I ∞ C is radical (in [1, def 4.5.11], the qualifier separable is used in place of squarefree).

of characteristic presentations in [START_REF] Hubert | Factorization free decomposition algorithms in differential algebra[END_REF] (she only imposes D1 and D2) thus looses canonicity properties.

Definition 3. A set C ⊂ K{U } is said to be a charac- teristic presentation of the differential ideal [C] : H ∞ C if D1 the differential system C = 0, HC = 0 is regular, D2 if p ∈ R then p ∈ [C] : H ∞ C ⇔ full rem(p, C) = 0, D3 C is a strongly normalized autoreduced set of K[L, N ]
such that the elements of C are primitive over K[N ] where L denotes the set of leaders of the elements of C and N denotes the other derivatives occuring in C. 

Corollary 1. A set C of differential polynomials is a characteristic presentation of [C] : H ∞ C if and only if C is a characteristic set of [C] : H ∞ C which satisfies D3.

THE PROBLEM

We are given a regular differential system A = 0, S = 0 of R. We assume moreover that HA ⊂ S. We want to compute sets C1, . . . , Ct of differential polynomials such that the following conditions hold

A1 each Ci is a characteristic presentation of the differential ideal [Ci] : H ∞ C i , A2 [A] : S ∞ = [C1] : H ∞ C 1 ∩ • • • ∩ [Ct] : H ∞ C t , A3 the intersection is not redundant: if p is a differential prime component of [A]:S ∞ then p is a minimal differ- ential prime of exactly one differential ideal [Ci] : H ∞ C i .

REGCHARACTERISTIC

Denote X the set of the derivatives occuring in A ∪ S and L ⊂ X the set of the leaders of the elements of A and N = X \ L. Denote G = K(N ) the ring obtained by putting the elements of N in the base field of the differential polynomial ring. The algorithm involves three steps.

1. Transform the system A = 0, S = 0 into a system A = 0, S = 0 of G[L]. That step is purely formal.

2. Apply the algorithm satTriangular (described later) over A = 0, S = 0. This algorithm returns a possibly empty set of squarefree normalized 8 autoreduced sets {T1, . . . , Tt} of G[L] satisfying the following properties: 

P1 if the set is empty then (A) : S ∞ = G[L], P2 (A) : S ∞ = (T1) ∩ • • • ∩ (Tt), P3 if i = j then (Ti) + (Tj) = (1), P4 for every 1 ≤ i ≤ t we have (Ti) = (Ti) : H ∞ T i , P5 ld Ti = ld A.

Proof of the algorithm

The part of regCharacteristic that we prove in this section is shared together with [START_REF] Hubert | Factorization free decomposition algorithms in differential algebra[END_REF]Algorithm 7.1]. Proofs can thus be found in [15, Theorem 3.10 and 6.2]. We give them anew to make this article selfcontained.

Let φ be the canonical ring homomorphism

K[X] → G[L]. Lemma 1. (A) : S ∞ = (C1) : H ∞ C 1 ∩ • • • ∩ (Ct) : H ∞ C t .
Proof. The relation above is obtained by applying φ -1 over P2 componentwise. Indeed, φ -1 preserves intersections by [ 8 Observe in this case, every normalized set is strongly normalized for its elements are monic. A1)

Let 1 ≤ i ≤ t be an index. The set Ci is a characteristic presentation of the ideal [Ci] : H ∞ C i .
Proof. The set Ci is autoreduced. All its elements are strongly normalized for they are obtained by multiplying monic polynomials by elements of K[N ]. They are primitive over K[N ] by construction. Thus Ci satisfies D3. Condition D1 holds by lemma 3. Condition D2 thus holds by theorem 1 (3) and lemma 4.

Lemma 5. A differential prime p is minimal over [A]:S ∞ iff it is minimal over some [Ci] : H ∞ C i .
Proof. By lemmas 2, 3 and theorem 1 (5).

Proposition 2. (condition A2)

[A] :

S ∞ = [C1] : H ∞ C 1 ∩ • • • ∩ [Ct] : H ∞ C t .
Proof. The proposition is a corollary of lemma 5.

Proposition 3. (condition A3) If p is a differential prime component of [A] : S ∞ then p is a differential prime component of exactly one differential ideal [Ci] : H ∞ C i . Proof. Let p be a minimal differential prime of [Ci]:H ∞ C i and of [Cj] : H ∞ C j . Then b = p ∩ K[X]
is a minimal prime of (A) : S ∞ by lemma 5. Then (φb) is a minimal prime of (Ti) and of (Tj). Property P3 implies i = j.

THE INVERT SUBALGORITHM

Computing the normalized sets Ti amounts to normalizing the polynomials of A, which consists in inverting the initials of the polynomials of A.

Denote L = {X1, . . . , Xn}.

Specification of invert

We describe precisely the inputs and outputs of the algorithm invert:

Inputs of invert:

• p ∈ G[L], a non zero polynomial • T = {p1, . . . , p k } a normalized triangular set of the ring G[X1, . . . , X k ] with k ≤ n.
Outputs of invert:

• either the inverse q ∈ G[L] such that pq = 1 (mod (T )).

We say invert has found the inverse of p modulo the ideal (T ).

• or a triple (j, g, h) (if invert could not compute an inverse) with j ≤ k such that ld(g) = ld(h) = Xj g and h are monic pj = g h (mod (p1, . . . , pj-1))

Algorithmic scheme of invert

The algorithms invert and ExtEuclid (see below) respectively are simplified versions of the functions QuasiRecipElseSplit and extendedSubResGcdElseSplit taken from [START_REF] Maza | Calculs de Pgcd au-dessus des Tours d'Extensions Simples et Résolution des Systèmes d' Équations Algébriques[END_REF] and based on a splitting process à la D5 [START_REF] Dora | About a new method for computing in algebraic number fields[END_REF]. See [START_REF] Lazard | Solving Zero-dimensional Algebraic Systems[END_REF][START_REF] Aubry | Ensembles triangulaires de polynômes et résolution de systèmes algébriques[END_REF] too. The implementation is far more complicated and optimizations are detailed in section 7.

Denote p and q two nonconstant polynomials of the ring G[X1, . . . , Xn] such that q is monic and has leader X k .

The polynomial quo(p, q, X k ) (resp. rem(p, q, X k ) ) denotes the quotient (resp remainder) of the Euclidean division of p by q. The division does not raise any problem since q is monic.

If T = {p1, . . . , p k } is a normalized triangular set of the ring G[X1, . . . , X k ], then, in the algorithms, p mod T denotes rem(. . . rem(p, p k , X k ) . . . , p1, X1), (i.e. the remainder of the Euclidian division of p by all polynomials of T ). Remark: T can be considered as a Gröbner basis and p mod T is equal to the normal form [3, page 199] of p by T .

invert(p, {p1, . . . , p k }) if p ∈ G return 1/p else let 1 ≤ j ≤ k such that ld p = ld pj (g, u, v) := ExtEuclid(p, pj, {p1, . . . , pj-1}) if g = 1 then return u else
return to top level the triple (j, g, quo(pj, g, X k ) mod {p1, . . . , pj-1}) fi fi

The algorithm invert is based on the algorithm ExtEuclid we describe below.

Specification of ExtEuclid

T = {p1, . . . , p k-1 } is a normalized triangular set of the ring G[X1, . . . , X k-1 ] and p and q are two polynomials of G[X1, . . . , X k ] with ld(p) = ld(q) = X k and q is monic. ExtEuclid tries to computes a triple (g, u, v) of three polynomials of G[X1, . . . , X k ] such that:

• up + vq = g (mod (T )) (Bézout [4] identity)

• lcoeff(g, X k ) = 1, i.e. g is either the constant polynomial 1 or a monic polynomial with leader X k .

• g divides both p and q modulo the ideal (T )

Algorithmic scheme of ExtEuclid ExtEuclid(p, q, T ) if q = 0 then ıp :=invert(ip, T ) return (ıp p mod T, ıp, 0) else a := quo(p, q, X k , T ) b := rem(p, q, X k , T )

ı b :=invert(i b , T ) (g, u, v) := ExtEuclid(q, ı b b mod T , T ) return (g, ı b v mod T, u -ı b v a mod T ) fi
Remark: in case of splitting, the algorithm ExtEuclid does not compute the expected triple because it is interrupted by the algorithm invert at the line "return to top level".

SATTRIANGULAR

Recall H A ⊂ S and L = ld(A). The algorithm satTriangular builds a finite sequence (Fi) 1≤i≤r of r sets of systems of equations and inequations.

Initially, take F0 = {(A = 0, S = 0)}. We suppose we have built the set Fi. Two cases may arise:

• Denote Fi = {(T1 = 0, S1 = 0), . . . , (Tt = 0, St = 0)}.

If each Ti is a normalized triangular set and each Si is empty, the algorithm then stops and outputs the set {T1, . . . , Tt}.

• Fi contains a system A = 0, S = 0 such that A contains a non monic polynomial or S is not empty. Then transform A = 0, S = 0 with one of the two rules R1 or R2 (defined below). Both rules compute a set F of zero, one or two systems of equations and inequations.

Take Fi+1 = Fi \ {A = 0, S = 0} ∪ F.

R1 : try to make a polynomial monic. If there exists some non monic p k ∈ A s.t. p1, . . . , p k-1 are monic, three cases are possible: Same as R1.1.

• Case R2.2

The inequation s admits an inverse we call q. The property s q = 1 (mod (p1, . . . , p k )) clearly implies that s does not vanish on the zeros of (A) : S ∞ . Thus, by lemma 6, we have (A) : S ∞ = (A) : S ′∞ and Fi+1 satisfies the three invariants.

• Case R2.3 Same as R1.3

This ends the proof of proposition 4

Proposition 5. The algorithms stops.

Proof. To each system Σ = (A = 0, S = 0), associate the sum of the degrees of the elements of A in their leader, the number of the non monic elements of A and the number of elements of S. Denote v(Σ) this positive integer.

When the algorithm rewrites a system Σ into a set F , then v(Σ ′ ) < v(Σ) for each Σ ′ ∈ F.

By [START_REF] König | Theorie der endlichen und unendlichen Graphen[END_REF]Satz 6.6] (i.e. every infinite locally finite tree contains a branch of infinite length), the algorithm stops. Proposition 6. The output {T1, . . . , Tt} of the algorithm satisfies P1, . . . , P5 Proof. This is an immediate consequence of the invariants I1, I2 and I3 satisfied by Fr.

IMPLEMENTATION

The codes of the algorithms invert and ExtEuclid, in section 5, just are algorithmic schemes. Most of the optimizations below are implemented in our private version of the Maple package diffalg. They were suggested to us by Marc Moreno Maza, who is very familiar with triangularization algorithms.

• One can compute pairs instead of triples in ExtEuclid following [17, Volume 2, page 325]: using the final pair and the Bézout identity, one can recover the missing coefficient by a mere Euclidean division modulo a triangular set.

• For efficiency reasons, one can implement different versions of ExtEuclid, one which computes a full Bézout identity, one which only computes one of the Bézout coefficients (for computing an inverse), and one which only computes the gcd (for testing invertibility). For example, Marc Moreno Maza observed that the last division of the former item can be very expensive.

• The classical scheme of the extended Euclidean algorithm can be performed with the subresultants algorithm which controls the growth of the coefficients of the intermediate remainders. The recent Ducos [START_REF] Ducos | Optimizations of the subresultant algorithm[END_REF] optimization of the subresultants algorithm is worth being implemented. It replaces some pseudoremainders of the traditional subresultant algorithm by a few more computations which involve smaller datas. The alternative [START_REF] Lombardi | New structure theorem for subresultants[END_REF] algorithm could be used as well.

• The rule R2.3 can be specialized when j = k. In this case, the system Ag = 0, S = 0 is inconsistent. The same optimization applies for R1.3 when j = k -1.

• It is interesting to invert separants of the equations as soon as possible. Once the separants of all considered equations are inverted, the ideal generated by these equations is radical (Lazard's lemma). This gives another optimization of the rule R2.3 when j = k. In this case, s is necessarily invertible modulo (A h ) and can be removed from S.

• A good strategy consists in applying R2 as soon as possible in the case both R1 and R2 apply. Indeed, this may split the systems into smaller systems which are easier to handle.

Experiments

Some other algorithms which have the same specifications as regCharacteristic are implemented in Maple [START_REF] Boulier | Computing representations for radicals of finitely generated differential ideals[END_REF] and [START_REF] Hubert | Factorization free decomposition algorithms in differential algebra[END_REF] but are superseded by ours: the first step of the other algorithms consists in computing a Gröbner basis of (A) : S ∞ . This is certainly not the best way since the Buchberger algorithm does not take into account the fact that A is already triangular and explicits the inverses of the inequations, which are not needed.

The advantage of our method only appears for differential systems which make Rosenfeld-Gröbner spend a lot of time on the purely algebraic treatment of regular differential systems.

Let's try the following system which has no physical significance but makes Rosenfeld-Gröbner spend most of the time in the purely algebraic part (second step):

v uxx + u 2 xx + ux, uyy + uy for the orderly ranking

• • • > uxx > uxy > uyy > vxx > vxy > vyy > ux > uy > vx > vy > u > v.
We perform our comparisons in Maple 5.5 over a Sun Ultra 5 at 333Mhz with 128Mb memory.

Our private version of Rosenfeld-Gröbner produces six regular differential ideals in 75 seconds, including 62 seconds for regCharacteristic. One of the regular differential systems A = 0, S = 0 to deal with is quite large. We do not give its characteristic presentation.

The other implementations of Rosenfeld-Gröbner (the one in Maple 5.5 and its variant by Hubert) cannot carry this example out: Maple 5.5 does not succeed in computing the Gröbner basis of the localized ideal S -1 (A). To any differential polynomial q we may associate a fraction NF(q, C) = a b satisfying 1. b q = a mod a, 2. NF(q, C) is a canonical form of the equivalence class of q in R/a (the fraction only depends on the ranking, the differential ideal a and the equivalence class of q). In particular q = q ′ mod a ⇒ NF(q, C) = NF(q ′ , C). The following proposition is straightforward but very important for it permits us to perform easily linear algebra over K in R/a. Proposition 7. The set {NF(q, C) | q ∈ R} forms a vector space over K.

CANONICAL FORMS

We now show how to compute normal forms. First consider the case q ∈ K[L, N ] for which things are easy since C is strongly normalized. Let q = prem(q, C). For some power product h of initials of C we have h q = q mod (C). We define NF(q, C) as the fraction a/b obtained by making q/h irreducible. The differential polynomial q is reduced w.r.t. C. Since C is strongly normalized, h ∈ K[N ].

Lemma 7. b q = a mod a.

Proof. We have h q = q mod a. Factors of h are not zero divisors in R/a thus we may factor them out from above relation. Lemma 8. NF(q, C) = NF(q ′ , C) for any q ′ ∈ K[L, N ] such that q = q ′ mod a. We now consider the general case. The problem is due to the separants which do not belong to K[N ]. It is overruled by inverting them using the extended Euclidean algorithm.

Let q be a differential polynomial. Let q = partial rem(q, C). For some power product h of separants of elements of C we have h q = q mod a.

Using the invert algorithm, we may compute10 the inverse of h modulo (C) : H ∞ C in K(N ) [L]. Multiplying by some element of K[N ] to clear denominators we find a differential polynomial h such that h h = g mod a and g ∈ K[N ]. Therefore g q = h q mod a. Let NF(h q, C) = a/b. We define NF(q, C) to be the fraction a/b obtained by making the fraction a/g b irreducible.

Proofs of the general case are easy variants of the former ones.

Canonicity properties are consequences of theorem 3 and lemma 8.

CONCLUSION

The algorithm presented in this paper is a first step in merging the efficient solvers of polynomial equations implemented by [START_REF] Maza | Calculs de Pgcd au-dessus des Tours d'Extensions Simples et Résolution des Systèmes d' Équations Algébriques[END_REF][START_REF] Aubry | Ensembles triangulaires de polynômes et résolution de systèmes algébriques[END_REF] and the Rosenfeld-Gröbner algorithm. Merging these solvers, we expect to obtain an efficient solver for differential polynomial equations in which there would not be any distinction between differential and algebraic parts. In particular, such a new solver would be able to handle the purely algebraic subproblems which also arise in the differential part of the current Rosenfeld-Gröbner. It would be very interesting for systems of DAE and PDAE.
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 1 the regular algebraic ideal (A) : S ∞ is radical (Lazard's lemma) ; 2. if b denotes a prime ideal minimal over (A) : S ∞ then the set N furnishes a transcendence basis of the field of fractions of R/b over K (Lazard's lemma) ; 3. we have [A] : S ∞ ∩ K[L, N ] = (A) : S ∞ (Rosenfeld's lemma) ; 4. the regular differential ideal [A] : S ∞ is radical (lifting of Lazard's lemma) ; 5. if (A) : S ∞ has t minimal primes bi then [A] : S ∞ has t minimal differential primes pi defined by (lifting of Lazard's lemma) pi ∩ K[L, N ] = bi. Actually pi = {p ∈ R | partial rem(p, A) ∈ bi}.

Theorem 2 . 1 .

 21 Let C be an autoreduced set of differential polynomials and a = [C] : H ∞ C . The following conditions are equivalent. C is a characteristic set of a, 2. p ∈ a ⇔ full rem(p, C) = 0, 3. C = 0, HC = 0 is a regular differential system such that C is regular 6 in the sense of[START_REF] Aubry | On the theories of triangular sets[END_REF] and squarefree 7 in the sense of[1, def 4.5.11].Proof. 1 ⇒ 2. If p ∈ a then full rem(p, C) ∈ a, is reduced w.r.t. C, thus is zero. If full rem(p, C) = 0 then, for some power product h of elements of HC we have h p ∈ [C] ⊂ a whence p ∈ a.2 ⇒ 3. The differential system C = 0, HC = 0 satisfies conditions C1 and C2. The set C reduces to zero all ∆(p, p ′ ) such that {p, p ′ } ∈ critical pairs(C) (for C reduces a to zero) thus C = 0, HC = 0 satisfies C3 and is a regular differential system. C reduces to zero (C) : I ∞ C ⊂ a whence is regular in the sense of [2] by [2, Theorem 6.1]. C reduces to zero (C) : H ∞ C ⊂ a without differentiating any element of C whence (C):H ∞ C ⊂ (C):I ∞ C . Since the converse inclusion obviously holds too we have (C) : I ∞ C = (C) : H ∞ C thus C is squarefree by theorem 1 (1). 3 ⇒ 1. Let f be a differential polynomial reduced w.r.t. C. We must prove f = 0. We have f ∈ K[L, N ]. Since C = 0, HC = 0 is a regular differential system, theorem 1 (3) applies and f ∈ (C) : H ∞ C . The set C is regular in the sense of [2] thus C is a characteristic set of (C) : I ∞ C by [2, Theorem 6.1]. Since C is squarefree, (C) : I ∞ C is radical and (C) : I ∞ C = (C) : H ∞ C by [15, Proposition 3.3]. Therefore C is a characteristic set of (C) : H ∞ C and f = 0.

Theorem 3 .

 3 A characteristic presentation C is a canonical representative of the regular differential [C]:H ∞ C (it only depends on the ideal and on the ranking). Proof. Let C and C ′ be two characteristic presentations of [C] : H ∞ C . Both sets have the same rank for they are characteristic sets of the same ideal. Consider any f ∈ C and f ′ ∈ C ′ having the same rank. Denote i and i ′ their initials. The polynomial i ′ fi f ′ ∈ (C) : H ∞ C . Since C and C ′ are autoreduced and strongly normalized, this polynomial is reduced w.r.t. both C and C ′ whence is zero. Since f and f ′ are primitive over K[N ] we have f = f ′ thus C = C ′ . In practice, in order to have canonicity properties, we impose also the coefficients in K of the elements of C to be normalized. In the case K = Q(Y ) is a pure transcendental field extension of the field of the rational numbers (Y is an alphabet of indeterminates) then the elements of C are polynomials in Z[Y ∪N ∪L] primitive over the ring Z[Y ∪N ].

3 .

 3 Transform each triangular set Ti of G[L] as a triangular set Ci of K[X] by replacing every polynomial p/s occuring in the Ti systems by the primitive part of p over K[N ]. The obtained systems C1, . . . , Ct are the characteristic presentations we are looking for.

13 ,Lemma 3 .

 133 Proposition 2.2, (a)] and maps (A) : S ∞ (resp. (Ti)) to (A) : S ∞ (resp. (Ci) : H ∞ C i ) by P4, [13, Proposition 2.2] and the fact that the nonzero elements of K[N ] belong to none of the minimal primes of (A) : S ∞ (resp. (Ci) : H ∞ C i ) by theorem 1 (2) (resp. P5 and theorem 1 (2)). Lemma 2. A prime ideal b is minimal over (A) : S ∞ iff b is minimal over some (Ci) : H ∞ C i . Proof. By P5 and theorem 1 (2), the prime ideals which are minimal over (A) : S ∞ and the ones which are minimal over the (Ci) : H ∞ C i all have the same dimension. If b ⊂ b ′ are two prime ideals having the same dimension then b = b ′ . The lemma follows now from lemma 1. Each system Ci = 0, HC i = 0 is a regular differential system. Proof. It suffices to prove if {p, p ′ } ∈ critical pairs(Ci) then full rem(∆(p, p ′ ), Ci) ∈ b where b is any prime ideal minimal over (Ci) : H ∞ C i . By lemma 2 and theorem 1 (5) b is the intersection with K[X] of some differential prime ideal p minimal over [A] : S ∞ . Since p, p ′ , Ci belong to p we have full rem(∆(p, p ′ ), Ci) ∈ b.

Lemma 4 . 0 for 9

 409 Let 1 ≤ i ≤ t be an index. The set Ci is a characteristic set, in the sense of Ritt, of the ideal (Ci):H ∞ C i Proof. Let us prove that p ∈ (Ci) : H ∞ C i iff prem(p, Ci) = 0 for any p ∈ K[X]. The implication from right to left is clear. The converse one comes from the following: first, p ∈ (Ci) : H ∞ C i iff φp ∈ (Ti) by P4 ; second, prem(p, Ci) = 0 iff prem(φp, Ti) = 0 ; third prem(φp, Ti) = 0 iff φp * ----→ T i the elements of Ti are monic ; last, Ti is a Gröbner basis of (Ti) [3, Lemma 5.66 (Buchberger's first criterion)] thus reduces to zero all the elements of (Ti) [3, Proposition 5.38]. Proposition 1. (condition

Let

  C be the characteristic presentation of the differential ideal a = [C] : H ∞ C in the differential ring R = K{U }. De-note L the set of leaders of C and N the set of the other derivatives occuring in C.

3 .

 3 a ∈ K[L, N ] is reduced w.r.t. C and b ∈ K[N ] (in particular b does not divide zero in R/a).

  Proof. Denote NF(q ′ , C) = a ′ /b ′ . The differential polynomial a b ′a ′ b ∈ a, is reduced w.r.t. C for b, b ′ ∈ K[N ]and a, a ′ are reduced w.r.t. C. It is zero for C is a characteristic set of a. Since the fractions are reduced a = a ′ and b = b ′ .

As[START_REF] Boulier | Computing representations for radicals of finitely generated differential ideals[END_REF][START_REF] Hubert | Factorization free decomposition algorithms in differential algebra[END_REF] already do.

This is quite anecdotic for the algorithmic consequences of the Gianni and Kalkbrener theorem do not apply in our case.

This definition was introduced for the first time in[8, sec- 

tion 4], under the name "pair".

[START_REF] Boulier | Computing representations for radicals of finitely generated differential ideals[END_REF] Definition 4.4].

If IA ⊂ S and full rem(∆(p, p ′ ), A) = 0 for every critical pair {p, p ′ } ∈ critical pairs(A) then C3 is satisfied.

This denotes the reduction in the sense of the Gröbner basis theory[3, page 199].

Observe that, though h is invertible mod (C) : H ∞ C the invert algorithm may fail to compute the inverse. In that case however a splitting of the ideal is exhibited and computations can be restarted over each of its branches. One avoids this problem by precomputing the inverses of the separants of the elements of C

We would like to thank Marc Moreno Maza for many explanations about his algorithms and triangular sets. We would like to thank both Marc Moreno Maza and François Ollivier for their comments on a preliminary version of this paper.

R1. [START_REF] Aubry | Ensembles triangulaires de polynômes et résolution de systèmes algébriques[END_REF] The initial of p k is zero modulo (p1, . . . , p k-1 ).

Take F = ∅.

R1.2 invert finds the inverse q of ip k modulo the ideal (p1, . . . , p k-1 ). Take F = {A ′ = 0, S = 0} where A ′ = A \ {p k } ∪ {p k } where p k = q p k mod {p1, . . . , p k-1 }.

R1.3 invert does not find the inverse of ip k modulo (p1, . . . , p k-1 ), but a triple (j, g, h) such that 1 ≤ j < k and pj = g h (mod (p1, . . . , pj-1)). Take F = {(Ag = 0, S = 0), (A h = 0, S = 0)} where Ag = A \ {pj} ∪ {g} and A h = A \ {pj} ∪ {h}.

R2 : try to get rid of an inequation. If there is some s ∈ S such that ld s = ld p k and p1, . . . , p k are monic then three cases are possible: R2.1 s is zero modulo (p1, . . . , p k ). Take F = ∅.

R2.2 invert finds the inverse of s modulo (p1, . . . , p k ). Take F = {A = 0, S ′ = 0} where S ′ = S \ {s}.

R2.3 invert does not find the inverse of s modulo the ideal (p1, . . . , p k ) but a triple (j, g, h) such that 1 ≤ j ≤ k and pj = g h (mod (p1, . . . , pj-1)). Take F = {(Ag = 0, S = 0), (A h = 0, S = 0)} where Ag = A\{pj}∪{g} and A h = A\{pj}∪{h}.

Proof

Proof. (sketched) The proof follows from the two following points: first, every zero of I is an irreducible component of the algebraic variety of I (since I is zerodimensional); second, the algebraic variety of I : S ∞ is the union of all the irreducible components of I which do not annihilate any element of S.

Corollary 2. For each 1 ≤ l ≤ t, the ideal (A l ) : S ∞ l has dimension zero and is radical.

Proof. This is a corollary to invariant I2 and Lazard's lemma (theorem 1 (1,2)).

Proof. of proposition 4

The proof is an induction on i. The basis of the induction is clear. Suppose Fi verifies the invariants. We prove that Fi+1 does too. We distinguish several cases, corresponding to the way Fi+1 is built. • Case R1. [START_REF] Aubry | On the theories of triangular sets[END_REF] We have (A) = (A ′ ) since q p k ∈ (A) and p = ip k q p k (mod (p1, . . . , p k-1 )). Therefore, by saturating, (A) : S ∞ = (A ′ ) : S ∞ . Thus, Fi+1 satisfies I1 and I3.

It remains to prove I2. We have (A) : S ∞ = (A) : (S ∪ HA) ∞ (invariant I2 over Fi). Lemma 6 implies that the polynomials of HA do not vanish on the zeros of (A) : S ∞ . Since S A ′ = SA \ {sp k } ∪ {sp k } and sp k = q sp k (mod (p1, . . . , p k-1 )), the polynomials of H A ′ do not vanish either on the zeros of (A) : S ∞ . Thus, by lemma 6, (A) :

We have pj = g h (mod (p1, . . . , pj-1)). Since pj, g and h have the same leader, sp j = sgh + gs h (mod (p1, . . . , pj-1)).

Denote I = (A) : S ∞ and Ig = (Ag) : S ∞ and

We have V (I) ⊃ V (Ig) ∪ V (I h ) for I ⊂ Ig and I ⊂ I h .

The converse inclusion. Let z ∈ V (I).

g(z)h(z) = 0 (4)

Thus, if g(z) = 0 then sg(z) = 0 and h(z) = 0 ; if g(z) = 0, then h(z) = 0 and s h (z) = 0. This implies z is either a zero of Ig or a zero of I h , and it can't be zero of both ideals. Thus 2 and 3 are proved and Fi+1 satisfies I3.

Proof of I2 :

By invariant I2 on Fi and lemma 6, the polynomials of HA do not vanish on V (I). By relation 2, they do not vanish on V (Ig). The polynomial sg does not vanish on V (Ig) (consequence of relation 5). We have HA g = HA \ {sp j } ∪ {sg}. Therefore, by lemma 6, (Ag) : S ∞ = (Ag) : (S ∪ HA g ) ∞ .

The same proof holds for I h . This ends the proof of I2.

By the theorem of zeros, √ I = p Ig ∩ √ I h . By invariant I2 and theorem 1(1), all these ideals are radical. Thus Fi+1 satisfies I1.

• Case R2.1