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Abstract

Partially ionized plasmas corresponding to different ionization degrees are derived and con-

nected one with each other by the diffusion approximation methodology. These plasmas are

the following electrical discharges: a thermal arc discharge, glow discharges in local thermo-

dynamic equilibrium -LTE- and in non-LTE, and a non-LTE glow discharge interacting with

an electron beam (or flow).

Keywords: Arc discharge, glow discharge, electron flow, gas mixture, disparate masses, im-

pact ionization, inelastic collisions, diffusion approximation, fluid limit, Hilbert expansion, Saha

plasma.

1 Introduction

Quasi-neutral gases of charged and possibly neutral particles which exhibit collective behaviour

can either be natural or manmade. Well known examples of natural plasmas are solar corona,

solar wind, nebula, lightning strokes, and aurora Borealis. Manmade plasmas have existed for

almost two centuries and developments useful for practical applications are still in progress.

In this study we investigate cold plasmas, that means partially ionized with electron energies less

than a few hundred of electron volts. The most common way to form and maintain a cold plasma

is, up to now, the electric discharge in a gas, or gas discharge. Various electric discharges exist

and produce plasma characterized by different parameters such as luminosity, electron energy,

and ionization degree. Most manmade cold plasmas have electron densities lying within the

range of 106 to 1018 electrons/cm3, and electron energies from 0.1 to 20 eV. They can thus be

used for a broad variety of applications.

A simple way of making discharges (developed by Townsend) is to introduce a gas into a glass

tube ended by two planar electrodes distant by l and apply a voltage V [18]. Consider for
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instance a DC discharge and a low pressure neon gas (1 Torr) with l = 50 cm [12], [19]. Varying

the applied voltage V , three types of discharges may be observed and classified as function of

the measured current I flowing through it: the dark discharge (where I < 10−5 A), the glow

discharge (10−5 ≤ I ≤ 1 A), and the arc discharge ( I ≥ 0.1 A). In addition, each type of

discharge is subdivided into regimes.

The dark discharge (invisible to the eye except for corona) covers the background ionization

regime (10−10 ≤ I < 10−9 A) and the saturation regime (I ≈ 10−9 A) where ionization is

only produced by surrounding sources such as cosmic rays. It also covers the Townsend regime

(10−9 < I ≤ 10−5 A). There, electrons in the discharge start being enough accelerated by the

applied electric field for initiating ionization reactions and producing secondary electrons, but

not enough to self-sustain the discharge. As the applied electric field further increases, the

secondary electrons may also in turn initiate ionization, leading to an avalanche. The Townsend

regime includes the unipolar corona discharge (where visible radiations start being emitted)

and sparking or electrical breakdown. Corona discharges can indeed be either initiated from

electrodes with sharp geometries or from asperities creating a localized electric field larger than

the breakdown voltage.

Discharges get self-sustained when their voltage reaches the breakdown voltage. Then, the

cathode layer generates enough electrons to balance the plasma current in the positive column.

This delimits the transition from dark to glow (luminous plasma) discharge. The glow discharge

includes the normal glow regime (10−5 ≤ I ≤ 10−2 A) characterized by almost independent

current-voltage and the abnormal glow regime (10−2 ≤ I ≤ 1 A) where the current increases

with the voltage up to the glow-arc transition zone (0.1 ≤ I ≤ 1 A ). Dark and glow discharges

are both non-thermal with gas (that is ions and neutral) energy much lower than the electron

energy. Moreover electrons do not always sufficiently interact among themselves to achieve

kinetic equilibrium, so that their energy distribution function is often non-Maxwellian.

The arc discharge also has a non-thermal regime, which is associated with a falling voltage

(1 ≤ I ≤ 10 A) and, as in this example, a low pressure (10−3 - 100 Torr). In addition, and

contrary to the previous discharges, it posseses a thermal regime which is associated with an

increasing voltage (I ≥ 10 A) and a high pressure (0.1-100 atm). There, all the species (including

electrons) are usually in local or partial local thermodynamical equilibrium, and temperatures

are of same order.

These three types of electric discharges are involved in various domains such as: wave absorp-

tion for stealthness [17], energy transport [14], industrial products and manufacturing [19], [20].

As an illustration, corona is the operating principle of electrostatic precipitators, xerography,

surface modification of polymer films (wettability, adhesivity), antistatic applications for photo-

graphic films and plastic sheets, or plasma chemistry (for producing ozone for instance). Many

applications are also based on high voltage plasma discharges, that is above the electrical break-

down. Glow discharge plasma is the operating principle of lightning devices such as neon and

fluorescent lights, plasma screens, plasma chemical reactors. Glow may also be used for deposit-

ing thin films, as active media for gas lasers, and for forming charged particle beams allowing

doping micro-electronics components for instance. Arc discharges are often coupled with a gas

flow to form plasma jets with temperatures above the melting (and/or vaporization) point of
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many metals and ceramics; they are thus commonly used for material processing [2]. An impor-

tant application field is in metallurgy to cut, melt or weld. Another concerns plasma torches

used to spray protective coatings (for a better resistance to wear, corrosion, oxidation, thermal

fluxes, also for electric or electronic purposes and bio-compatibility) or to vitrify toxic wastes

for instance. In addition, these types of discharges may be associated to take advantage of their

respective properties. A typical example is the gliding (or auto-oscillating periodic) arc that

combines non-thermal arc properties (promoting selective chemical reactions) to thermal arc

properties (high power level), [15]. Gliding arcs were first applied in the beginning of the 1900s

for producing nitrogen-based fertilizers. Nowadays they are used for many chemical applications

that cannot be made with conventional means (combustion): environmental control to reduce

emission of indutrial exhausts such as chlorofluorocarbons for instance.

The cold plasmas investigated in this study are the typical non-thermal and thermal discharges,

that is the glow and arc discharges. The ionization mechanism of a plasma glow is mostly

provided by direct electron impact with non-excited atoms and molecules. Conventional values

of glow discharge parameters are: high voltage between electrodes (100-1000 V) to promote

enough secondary electron emissions, low electrode current (10−4 - 0.5 A), a power level of

around 100 W. Concerning the plasma core (or positive column), the electron energy ranges

from 1 to 3 eV, the gas temperature is close to room temperature, the ionization degree is weak

with an electron density ranging from 109 to 1011 electrons per cm3, and the gas pressure is low

(0.03 - 30 Torr). In the vicinity of atmospheric pressure, the ionization mechanism of a thermal

plasma arc is mostly provided by direct electron impact with preliminary excited atoms and

molecules. At larger pressure radiative ionization also gets important. Conventional values of

thermal arc discharge parameters are: a lower voltage between electrodes (10-100V) leading to

Joule heating of the gas, a larger arc current (30 A - 30k A), and a power level per unit length

larger than 1kW/cm. In the positive column electron and gas energies are of same order (1-10

eV), the ionization degree is moderate with an electron density within the range of 1015 to 1019

electrons per cm3, while the gas pressure is often atmospheric or even larger (0.1-100 atm).

We here focus on plasmas defined according to Langmuirs description: the region of a discharge

not influenced by walls and/or electrodes. In other words, we study the plasma core, or positive

column. The transition zone (sheath) between the plasma and its boundaries is not considered

here. It screens electrically the plasma from the influence of its surrounding and has properties

that differ from the plasma properties. Its modelling still raises difficulties. There exist various

models developed for low potential fall and very narrow sheath as in arc discharges, also for larger

potential fall and thick multi-layer sheath as in glow discharges. Further details are available in

[12], [19].

As mentioned earlier, a gas discharge provides a mean to produce either ion or electron beams.

The beam particles may initially have a rather low drift velocity and broad thermal velocity

distribution. External electromagnetic fields are thus often used for accelerating them, narrowing

their thermal velocity distribution, also for deflecting, focussing, or keeping parallel the beam

in order to transport and utilize it effectively.

Charged particle beams were first used for atomic and nuclear physics, and are now also applied

to plasma diagnostics, space propulsion applications, film deposition [21] and ion implantation
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for microelectronics, to perform precision electron beam welding, rapid cutting of thermosetting

plastics, cross-linking of thermoplastics to improve their physical properties, promote or increase

plasma chemical activity, to invert the population of a gas laser and give rise to light amplification

(from the soft X-ray region to the far infrared) [13], to control thermonuclear reactions via plasma

heating [5], to process of surface treatment and depollution of high-volume exhaust streams [13],

to support externally nonself-sustained discharges, or to study stellar plasma. Some of these

listed applications combine an electron beam interacting with a plasma. We also investigate

that case, considering a glow plasma that interacts with an electron beam characterized by a

low drift velocity and a broad thermal velocity distribution. In the sequel, we will use the term

electron flow rather than beam, to avoid any confusion with focussed and mono-energetic beams.

In this study, we start from the kinetic scale to derive macroscopic hydrodynamic/diffusion limits

suited to the modelling of the plasma column of: an atmospheric thermal arc discharge (denoted

by case 1), a glow discharge (case 2), and a glow discharge interacting with an electron flow (case

3). We account for impact ionization and recombination, and neglect radiative ionization and

recombination (that get significant for high pressure thermal discharges). We thus investigate

partially ionized plasma whose electrons, ions and neutral molecules are subject to elastic binary

collisions as well as impact ionization and its reverse recombination reaction. The activation

energy ∆ of ionization reactions is supposed to be constant and given by the impacting electron.

We will see that the coupling between electrons and heavy species plays a major role.

Let us recall that the derivation of hydrodynamic/diffusion limits for a binary plasma gas mixture

can be found in [9] for instance. The ternary gas mixture corresponding to a very weakly ionized

plasma, such as a glow discharge where ionization occurs very seldom, is studied in [10]. A

problem with dominant impact ionization and its reverse recombination is investigated in [7]-[8]

within the frame of semiconductors (where all charged particles have masses of same order) and

in [6] in the arc discharge context (where electron and ion masses differ by orders of magnitude).

This paper is a followup of reference [6], where we give a more precise description of the model.

We start this study introducing the kinetic model: a system of Boltzmann type transport equa-

tions governing the distribution functions of electrons, ions and neutral molecules. This system

is coupled through collision operators that involve three collisional processes: i) elastic binary

collisions where at least one particle is neutral (Boltzmann), ii) elastic binary collisions between

charged particles (Fokker-Planck), and iii) inelastic collisions with impact ionization and its

reverse recombination.

This system is scaled in section 3, based on its two small parameters. The first parameter ǫ

measures the relative smallness of the electron mass with respect to the neutral particles. The

second parameter δ measures the ionization level of the plasma. The three different cases:

themal arc, glow discharge, and glow interacting with an electron flow are then introduced.

Sections 4 to 6 are devoted to some preparatory results: the conservation relations of the collision

terms, the moment method, and the diffusion scaling, that will be used when investigating each

of the three different cases. A model of thermal arc discharge is then derived in section 7. For

readability purpose, the proofs of sections 6 and 7 are detailed in section 8. A model of glow

discharge is then developed in section 9, and its interaction with an electron flow is detailled in

section 10. The hierarchy between these various models, as well as the macroscopic limit linking
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two successive steps of this hierarchy are schematicaly summarized in section 11.

2 The kinetic model

Let us consider a mixture made of three species: electrons (e), ions (i) and neutrals (n), which

interact all together, through various collisional processes which can be of elastic or inelastic type

(taking thus into account ionization or recombination processes). Denoting by fα (α = e, i, n)

the distribution function of the α species, the kinetic system modelling this mixture is given by

[6]:

∂tfα + vα · ∇xfα +
Fα

mα
· ∇vαfα = (∂tfα)c, (1)

where mα is the mass of the α species and Fα denotes a force term; moreover, the notation

(∂tfn)c stands for the collision terms which are given by:

(∂tfα)c = Qαα(fα, fα) +Qαβ(fα, fβ) +Qαγ(fα, fγ) +Qα,ir(fα, fβ, fγ), (2)

where the superscript ir stands for ionization-recombination, and α, β, γ = e, i, n with α 6= β 6=
γ 6= α. Let us now describe more precisely these different collision terms, starting with the

elastic ones.

Let us first consider binary elastic collisions between the two particles α and β. When one of

these particles (or both) is neutral, collisions are governed by short range forces, significant only

when the particles are in close proximity to each other. Then, the binary collisions are described

by Boltzmann operators of the form:

Qαβ(fα, fβ)(vα) =

∫

IR3×S2
+

σBαβ |vα − vβ⋆
|
(

fα′fβ′
⋆
− fαfβ⋆

)

dvβ⋆
dΩ , (3)

where α = n and β = e, i, n or α = e, i, n and β = n. In this expression, vα [resp. vβ⋆
] is the

velocity of particle α [resp. β] before collision, and fα [resp. fβ⋆
] denotes: fα = fα(t, x, vα)

[resp. fβ⋆
= fβ(t, x, vβ⋆

)]. The post-collisional velocities vα
′ and vβ⋆

′ are defined from the

pre-collisional velocities vα and vβ⋆
by:

vα
′ = vα − 2

µαβ

mα

(

(vα − vβ⋆
) · Ω

)

Ω and vβ⋆

′ = vβ⋆
+ 2

µαβ

mβ

(

(vα − vβ⋆
) · Ω

)

Ω, (4)

where µαβ = mαmβ/(mα +mβ) is the reduced mass, and Ω ∈ S2
+ denotes a unit vector of part

of the unit sphere S2 of IR3 defined by: S2
+ :=

{

Ω ∈ S2; (vα − vβ⋆
) · Ω > 0

}

. The notations fα′

and fβ′
⋆

stand for fα(t, x, vα
′) and fβ(t, x, vβ⋆

′), respectively.

The scattering cross section σBαβ is a function of two variables:

σBαβ = σBαβ (E , χ) ,

where E = µαβ |vα − vβ⋆
|2 is the reduced kinetic energy and χ denotes the angle

(

vα−vβ⋆

|vα−vβ⋆ |
,Ω
)

.

While the former belongs to IR+, the latter lies within the range [0, 1].
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Elastic collisions between two charged particles α and β are conversely governed by long range

Coulomb interactions which act between each and every charged particle in the plasma. They

are modelled by Fokker-Planck-Landau operators:

Qαβ(fα, fβ)(vα) =
µ2

αβ

mα
∇vα ·

[

∫

IR3

σFαβ |vα − vβ⋆
|3 S(vα − vβ⋆

)

×
( 1

mα
∇vαfα fβ⋆

− 1

mβ
∇vβ⋆

fβ⋆
fα

)

dvβ⋆

]

,

where α, β = e, i and ∇vαfα = (∇fα)(vα), while S(w) denotes the matrix S(w) = Id − w⊗w
|w|2 ,

Id being the identity matrix. Here, the scattering cross section for grazing collisions σFαβ only

depends on the reduced kinetic energy:

σFαβ = σFαβ (E) .

Radiative ionization and recombination are supposed to be negligible; the ionization process we

consider is thus impact ionization. Its mechanism can be schematized by the following direct

and reverse reactions:

e+A −→σd

e + e + A+ and e+A ←−σr

e + e + A+ , (5)

where e represents an electron, A+ a single charged ion, and A the related neutral atom or

molecule. σd and σr stand for the direct and reverse reaction cross sections. They are supposed

to be positive.

Applying the principle of detailed balance, we assume in the sequel that these cross sections are

linked through

σd = F0 σ
r, (6)

where F0 is a positive constant, which represents the efficiency of the dissociation with respect

to the recombination. The ionization-recombination operators are then given by:

Qe,ir(fe, fi, fn)(ve) =

∫

IR12

σr δv δE (fe′ fe⋆ fi −F0 fe fn) dve
′ dv⋆

e dvi dvn

+2

∫

IR12

σr ′ δv′ δE ′ (F0 fe′ fn − fe fe⋆ fi) dve
′ dv⋆

e dvi dvn,
(7-a)

Qi,ir(fe, fi, fn)(vi) =

∫

IR12

σr δv δE (F0 fe fn − fe′ fe⋆ fi) dve dve
′ dv⋆

e dvn, (7-b)

Qn,ir(fe, fi, fn)(vn) =

∫

IR12

σr δv δE (fe′ fe⋆ fi −F0 fe fn) dve dve
′ dv⋆

e dvi. (7-c)

We suppose that the activation energy of impact ionization reactions is given by the electron,

and not by a heavy particle, so that the reverse reaction cross section writes

σr = σr(ve
′, v⋆

e , vi; ve, vn) = σr(ve
′, v⋆

e ; ve), (8)
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and σr ′ = σr(ve, v
⋆
e ; ve

′). The notations δE and δv hold for the energy and momentum conserva-

tion during the ionization-recombination process; more precisely, we have:

δE = δ
(

me|ve|2 +mn|vn|2 − [me(|ve
′|2 + |v⋆

e |2) +mi|vi|2 + 2∆]
)

,

δv = δ
(

meve +mnvn − [me(ve
′ + v⋆

e) +mivi]
)

,
(9)

where δ denotes the Dirac measure, and ∆ the ionization energy (which is a constant). In the

same way, the notations δE ′ and δv′ stand for:

δE ′ = δ
(

me|v′e|2 +mn|vn|2 − [me(|ve|2 + |v⋆
e |2) +mi|vi|2 + 2∆]

)

,

δv′ = δ
(

mev
′
e +mnvn − [me(ve + v⋆

e) +mivi]
)

.
(10)

Notice that the factor 2 in Eq. (7-a) is a consequence of the indistinguishability of the two

electrons in the right hand side of equations (5). This indistinguishability and the principle of

detailed balance imply that

σr = σr(ve
′, v⋆

e ; ve) = σr(v⋆
e , ve

′; ve) = σr(ve, v
⋆
e ; ve

′) = σr ′. (11)

Remark. In this study we do not consider the internal energy of atoms or molecules and

the related ions. This is justified as far as glow discharges are concerned since then heavy

particles are ”cold”. For arc discharges this assumption is a simplification since, as mentioned in

introduction, the heavy species are pre-excited by Joule effect. The internal energy of atoms or

molecules may thus contribute, jointly with the electron kinetic energy, to promote the ionization

reactions.

The reference values of the problem are now introduced in order to scale the kinetic system (1).

3 Different scalings of the kinetic system

Let us first introduce the different small parameters involved in this study. First, ε denotes

the parameter measuring the relative smallness of the electron mass with respect to the neutral

particle:

ε =

√

me

mn
=

√

me

mi +me
<< 1.

Case 1: For a thermal arc discharge the plasma column is in local thermal equilibrium (generally

partial) so electrons, ions and neutral species have temperatures of same order of magnitude T0.

Case 2 and 3: For a glow discharge, local thermal equilibrium is not satisfied. Electrons have

energies of the order of the electronVolt (where 1 eV may be asociated to 11 065 K), while

ions and neutral species have temperatures close to room temperature. So heavy and electron

temperatures do not have the same order of magnitude; the difference is however rather small

and gets almost negligible as far as thermal velocities are concerned (the square root of the

characteristic temperatures ratio being less than one order of magnitude).
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Case 3: The electron flow retainned in this study is also supposed to have a temperature of

order T0.

The characteristic velocities of all species (vα)0 are thus defined in all cases as the respective

thermal velocities, i.e.

(vα)0 =

√

kT0

mα
, with α = e, i, n,

k being the Boltzmann constant. Consequently, these velocities only depend on the masses, and

more precisely we have:

(vn)0 =
√

1− ε2 (vi)0 = ε (ve)0.

Besides, we will choose x0 = t0 (ve)0 as reference length. The reference time t0 is specified latter

on, for different physical situtations.

We assume that the mean densities of the charged particles (denoted by (ρe)0 and (ρi)0) are

smaller than the typical density (ρn)0 of the neutral particles; but, a priori, they can have

different orders of magnitude. We thus denote by δe and δi the two small paremeters defined

by:

δe =
(ρe)0
(ρn)0

, δi =
(ρi)0
(ρn)0

.

In the particular case (ρe)0 = (ρi)0, we simply denote by δ the ratio

δ =
(ρe)0
(ρn)0

=
(ρi)0
(ρn)0

,

and call it the ionization level. We get the following general orderings (compare with ([6]):

τee = (1− ε2)2 δi
δe
τei = ε(1− ε2)3/2τie =

ε√
1− ε2

δi
δe
τii,

and:

τen =
ε√

1− ε2
τin = ετnn = δeτne =

ε√
1− ε2

δiτni.

The dimensionless kinetic equations then write:

∂tfe + ve · ∇xfe + Fe · ∇vefe = Qε
e(fe, fi, fn),

∂tfi +
ε√

1− ε2
(vi · ∇xfi + Fi · ∇vi

fi) = Qε
i (fe, fi, fn),

∂tfn + ε (vn · ∇xfn + Fn · ∇vnfn) = Qε
n(fe, fi, fn),

(12)
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where we have set for simplicity:

Qε
e(fe, fi, fn) =

t0
τir

Qε
e,ir(fe, fi, fn)

+
t0
τee

[

Qee(fe, fe) +
δi
δe
Qε

ei(fe, fi)
]

+
t0
τen

Qε
en(fe, fn),

Qε
i (fe, fi, fn) =

t0
τir

δe
δi
Qε

i,ir(fe, fi, fn)

+
t0
τee

[ ε√
1− ε2

δi
δe
Qii(fi, fi) + ε Qε

ie(fi, fe)
]

+
t0
τen

ε√
1− ε2

Qε
in(fi, fn),

Qε
n(fe, fi, fn) =

t0
τir

δe Q
ε
n,ir(fe, fi, fn)

+
t0
τen

[

ε Qnn(fn, fn) + ε δe Q
ε
ne(fn, fe) +

ε δi√
1− ε2

Qε
ni(fn, fi)

]

.

(13)

The scaled collision operators are now detailed. In the Boltzmann case, we have (note that the

factor 1/ε just below is due to the fact that the integral term in the expression of Qε
ni is of order

ε; we refer to [9] for details, and to Lemma A.1):

Qε
ne(fn, fe)(vn) =

√
1 + ε2

ε

∫

IR3×S2

BB
(ε vn − ve√

1 + ε2
,Ω
) (

fε
n′fε

e′ − fnfe

)

dve dΩ,

Qε
en(fe, fn)(ve) =

√
1 + ε2

∫

IR3×S2

BB
(ve − ε vn√

1 + ε2
,Ω
) (

fε
e′f

ε
n′ − fefn

)

dvn dΩ,

Qε
ni(fn, fi)(vn) =

√

1− 1
2ε

2

∫

IR3×S2

BB
⋆

(

√
1− ε2 vn − vi
√

1− 1
2ε

2
,Ω
) (

fε
n′fε

i′ − fnfi

)

dvi dΩ,

Qε
in(fi, fn)(vi) =

√

1− 1
2ε

2

∫

IR3×S2

BB
⋆

(vi −
√

1− ε2 vn
√

1− 1
2ε

2
,Ω
) (

fε
i′f

ε
n′ − fifn

)

dvn dΩ,

and

Qnn(fn, fn)(vn) =

∫

IR3×S2

BB
⋆ (vn − v⋆

n,Ω)
(

fn
′fn

⋆′ − fnfn
⋆
)

dv⋆
n dΩ.

Concerning the Fokker-Planck-Landau case, the scaled collision operators read:

Qαα(fα, fα)(vα) = ∇vα ·
∫

IR3

BF
⋆ (vα − v⋆

α) S (vα − v⋆
α)
(

∇vαfαfα⋆ −∇v⋆
α
fα⋆fα

)

dv⋆
α with α = e, i,

Qε
ei(fe, fi)(ve) =

√
1− ε2 ∇ve ·

∫

IR3

BF
(
√

1− ε2 ve − ε vi

)

S
(

ve −
ε√

1− ε2
vi

)

×
(

∇vefefi −
ε√

1− ε2
∇vi

fife

)

dvi,

and

Qε
ie(fi, fe)(vi) = −∇vi

·
∫

IR3

BF
(

ε vi −
√

1− ε2 ve

)

S
( ε√

1− ε2
vi − ve

)

×
(

∇vefefi −
ε√

1− ε2
∇vi

fife

)

dve.
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We refer to Lemma A.1 and A.2 for a precise development, in terms of the small parameter

ε, of these elastic inter species collision operators. Let us finally consider the inelastic collision

operators. The scaled conservation equations (9) are written:

δE = δ
(

|ve|2 + |vn|2 − [|ve
′|2 + |v⋆

e |2 + |vi|2 + 2∆]
)

,

δv = δ
(

ε ve + vn − [ε (ve
′ + v⋆

e) +
√

1− ε2 vi]
)

,
(14)

where ∆ holds for the ionization energy scaled by the thermal energy kT0, so that these operators

also depend on ε. Moreover, the factor F0 has to be rescaled according to the relation:

F0 = δeδi(ρn)0

(

me

kT0

)3/2

F ′
0,

where k is the Boltzmann constant, and F ′
0 (which will be later simply denoted by F0) is of

order one. We refer to Lemma A.5 for a development of these operators in terms of ε and also

to some properties (weak formulation, entropy ...) of their leading order terms.

All along the present study, we assume that the smallest time scale unit is the one related to

the collisions with the neutrals, and more precisely that we have:

t0 = τen << τir = τee. (15)

We also investigate different orderings of the ionization processes (i.e. of the parameter τir) and

various values for the parameters δe and δi corresponding to different physical situations. More

precisely, we consider three cases, which share in common that:

τir = τee =
τen
δi
. (16)

Case 1: For a thermal arc discharge, the plasma column is free of space charge, i.e. quasi-

neutral, thus δi = δe = δ, [6]. The ionization level δ lies within the range 10−3 to 10−1, so that

δ ≃ ε. This case thus corresponds to:

δi = δe = δ = ε. (17)

Case 2: For a glow problem the plasma column is also free of space charge, i.e. quasi-neutral,

thus δi = δe = δ. But the ionization level is lower than for an arc discharge; it lies within the

range 10−8 to 10−5, so that δ ≤ ε2. Here we will retain δ ≃ ε2 which corresponds to (see[10]):

δi = δe = δ = ε2. (18)

Case 3: In the last problem, a glow discharge (as in case 2) interacts with an electron flow of

relative numerical density δe,beam = ε compared to the neutrals of the plasma glow. The electron

and ion densities of the system (glow discharge + electron flow) have thus different orders of

magnitude. More precisely we suppose that:

δi = ε2, δe = ε2 + ε ≃ ε. (19)

10



So in all the cases under consideration here, we have:

δi ≤ δe ≤ ε (20)

From now on, we suppose assumptions (15), (16) and (20) fulfilled (we will particularize each

specific case later). So, the collision terms (13) have the following orderings (all the parameters

involved in the equations below are small parameters):

Qε
e(fe, fi, fn) = Qε

en(fe, fn) + δi

[

Qee(fe, fe) + δi

δe
Qε

ei(fe, fi) +Qε
e,ir(fe, fi, fn)

]

,

Qε
i (fe, fi, fn) = ε√

1−ε2
Qε

in(fi, fn) + δeQ
ε
i,ir(fe, fi, fn)

+ ε δi

[

1√
1− ε2

δi
δe
Qii(fi, fi) +Qε

ie(fi, fe)

]

,

Qε
n(fe, fi, fn) = ε Qnn(fn, fn) + δe

[

εQε
ne(fn, fe) +

ε√
1− ε2

δi
δe
Qε

ni(fn, fi) + δiQ
ε
n,ir(fe, fi, fn)

]

.

(21)

Within this framework, we remark that impact ionization can be a leading order collisional

process. More precisely, in the first and third cases (i.e. under assumptions (17) or (19)), it

is actually a dominant collision term for the ions. As a direct consequence, this will lead to a

generalized Saha law (55) for the corresponding equilibrium states (see Proposition 6.1 below).

In order to derive a macroscopic model, we use, if possible, a classical moment method, that

we briefly recall in paragraph 5. But for this method to work, we first need some conservation

relations concerning the collision operators that we now state.

4 Conservation relations of the collision terms

Concerning the elastic collision operators, we have the following classical conservations [3] , [4] :

(i) The intra species elastic collision operators conserve mass, momentum and energy, which

writes:

∫

R3

Qα,α(fα, fα)(vα)









1

vα

|vα|2
2









dvα =







0

0

0






, α = e, i, n. (22)

(ii) The inter species elastic collision operators conserve mass, i.e.:

∫

R3

Qε
α,β(fα, fβ)(vα) dvα = 0, α, β = e, i, n, (23)

while they globaly conserve the impulse and energy of the considered coupled system of particles,

which means that we have:

∫

R3 Q
ε
en(fe, fn)(ve) ve dve +

∫

R3 Q
ε
ne(fn, fe)(vn) vn dvn = 0, (24)

1√
1−ε2

∫

R3 Q
ε
ei(fe, fi)(ve) ve dve +

∫

R3 Q
ε
ie(fi, fe)(vi) vi dvi = 0, (25)

∫

R3 Q
ε
in(fi, fn)(vi) vi dvi + 1√

1−ε2

∫

R3 Q
ε
ni(fn, fi)(vn) vn dvn = 0, (26)

11



∫

R3 Q
ε
en(fe, fn)(ve) |ve|2 dve + ε

∫

R3 Q
ε
ne(fn, fe)(vn) |vn|2 dvn = 0, (27)

∫

R3 Q
ε
ei(fe, fi)(ve) |ve|2 dve + ε

∫

R3 Q
ε
ie(fi, fe)(vi) |vi|2 dvi = 0, (28)

∫

R3 Q
ε
in(fi, fn)(vi) |vi|2 dvi +

∫

R3 Q
ε
ni(fn, fi)(vn) |vn|2 dvn = 0. (29)

(iii) The inelastic collision operators conserve the electric charge and the number of heavy

particles, i.e.:

∫

R3 Q
ε
e,ir(fe, fi, fn)(ve) dve −

∫

R3 Q
ε
i,ir(fe, fi, fn)(vi) dvi = 0, (30)

∫

R3 Q
ε
i,ir(fe, fi, fn)(vi) dvi +

∫

R3 Q
ε
n,ir(fe, fi, fn)(vn) dvn = 0. (31)

(iv) Last, these ionization-recombination operators conserve the global momentum and energy,

which gives:

ε
∫

R3 Q
ε
e,ir(fe, fi, fn)(ve) ve dve +

√
1− ε2

∫

R3 Q
ε
i,ir(fe, fi, fn)(vi) vi dvi

+
∫

R3 Q
ε
n,ir(fe, fi, fn)(vn) vn dvn = 0, (32)

∫

R3 Q
ε
e,ir(fe, fi, fn)(ve)

(

|ve|2
2 + ∆

)

dve +
∫

R3 Q
ε
i,ir(fe, fi, fn)(vi)

|vi|2
2 dvi

+
∫

R3 Q
ε
n,ir(fe, fi, fn)(vn) |vn|2

2 dvn = 0. (33)

5 The moment method

The aim in this paper is to derive (when it is possible) a fluid model for the mixture. This one

involves the following scaled macroscopic quantities associated with each species α: the mean

density ρα, mean velocity uα and total mean energy Wα, which are defined by:







ρα

ραuα

Wα






=

∫

R3







1

vα

1
2 |vα|2






fα(vα)dvα. (34)

One can also split the total energy Wα into the kinetic energy (1
2nα|uα|2) and the internal energy

according to:

Wα =
1

2
ρα|uα|2 + wα, with wα =

1

2

∫

R3

|vα − uα|2fα(vα)dvα. (35)

A way to derive an evolution system for the above macroscopic quantities consists in multiplying

the kinetic equation for the α species by 1, vα, |vα|2, and integrating with respect to the velocity

variable vα. If we do this manipulation directly on the kinetic system (12), we get the following

system (setting for simplicity εα = 1, for α = e, εα = ε/
√

1− ε2 for α = i and εα = ε for α = n):

∂tρα + divx(ραuα) = Rα,

∂t(ραuα) + εα [ divx(ραuα ⊗ uα + Pα)− ραFα ] = Sα,

∂tWα + εα [ divx(Wαuα + Pαuα + Qα)− ραuα · Fα ] = Uα,

(36)
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where we have introduced the pressure tensor Pα and the heat flux vector Qα defined by:

Pα =
∫

R3 fα(vα) (vα − uα)⊗ (vα − uα) dvα,

Qα =
∫

R3 fα(vα) |vα−uα|2
2 (vα − uα) dvα;

(37)

we have also set, for the source terms:

Rα =
∫

R3 Q
ε
α(fe, fi, fn)(vα) dvα,

Sα =
∫

R3 Q
ε
α(fe, fi, fn)(vα) vα dvα,

Uα =
∫

R3 Q
ε
α(fe, fi, fn)(vα) |vα|2

2 dvα.

(38)

Let us note that, as all the elastic collision operators conserve mass, the source term Rα only

depends on the ionization-recombination term Qε
α,ir(fe, fi, fn); moreover, the source terms Sα

and Uα do not depend on the intra-species collision operator Qα,α(fα, fα) because this one also

preserves momentum and energy.

But system (36) is not closed, because the space derivatives cannot be a priori expressed in

terms of the macroscopic variables (ρα, uα,Wα). One thus need a ”closure relation”, in order to

compute the pressure tensor and the heat flux, which consists in supposing that the distribution

function fα has a particular form which can be expressed only with the macroscopic variables

(ρα, uα,Wα). This is the usually called the ”Local Thermodynamical Equilibrium” (LTE) as-

sumption: the distribution function is supposed to be close to a Maxwellian, i.e. a function of

the following form (still in scaled variables):

ραMuα,Tα
(vα) =

ρα

(2πTα)3/2
exp

(

−|vα − uα|2
2Tα

)

. (39)

For such functions we have in fact:

∫

R3







1

vα

1
2 |vα|2






ραMuα,Tα(vα) dvα =







ρα

ραuα

Wα






, (40)

with here:

Wα =
1

2
ρα|uα|2 + wα, with wα =

3

2
ραTα, (41)

and also:

Pα = pα Id, with pα = ραTα, and Qα = 0. (42)

A way to justify this LTE assumption consists in viewing the system at large time and space

scales, far larger than the typical time and space units related to the collisional processes.

So, from now on, we write the kinetic system at far larger time and space scales, and more

precisely at the ”diffusion” scale (t→ ε2t, x→ εx) (this terminology will get more clear later).
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6 The diffusion scaling

We start from the scaled system of kinetic equations (12) with collision terms given by (21).

Introducing the diffusion scaling of small parameter ε: t → ε2t , x → εx, we obtain:

∂tf
ε
e + 1

ε (ve · ∇xf
ε
e + Fe · ∇vef

ε
e ) = 1

ε2 Q
ε
e(f

ε
e , f

ε
i , f

ε
n) (43)

∂tf
ε
i + vi · ∇xf

ε
i + Fi · ∇vi

fε
i = 1

ε2 Q
ε
i (f

ε
e , f

ε
i , f

ε
n) (44)

∂tf
ε
n + vn · ∇xf

ε
n + Fn · ∇vnf

ε
n = 1

ε2 Qε
n(fε

e , f
ε
i , f

ε
n) (45)

Let us however point out that the sources terms in (44) and (45) are in fact of order 1
ε because,

on account of (20), Qε
i and Qε

n are both of order ε.

Now, taking the moments of these equations with respect to the velocity variables leads to

the following system (apart from the index ε, the notations are those defined in the previous

paragraph):

∂tρ
ε
e + 1

ε divx(ρ
ε
eu

ε
e) = 1

ε2 Rε
e,

∂t(ρ
ε
eu

ε
e) + 1

ε divx(ρ
ε
eu

ε
e ⊗ uε

e + Pε
e)− 1

ε ρ
ε
eFe = 1

ε2 Sε
e,

∂tW
ε
e + 1

ε divx(W
ε
eu

ε
e + Pε

eu
ε
e + Qε

e)− 1
ε ρ

ε
eu

ε
e · Fe = 1

ε2 Uε
e,

(46)

and, for the heavy species (i.e. α=i,n) by:

∂tρ
ε
α + divx(ρ

ε
αuε

α) = 1
ε2 Rε

α,

∂t(ρ
ε
αu

ε
α) + divx(ρ

ε
αuε

α ⊗ uε
α + Pε

α)− ρε
αFα = 1

ε2 Sε
α,

∂tW
ε
α + divx(W

ε
αuε

α + Pε
αuε

α + Qε
α)− ρε

αuε
α · Fα = 1

ε2 Uε
α,

(47)

but with Rε
α, S

ε
α and U ε

α of order ε, still on account of (20).

We now look for the limit ε→ 0 of this macroscopic system (46) -(47). To this aim, we have to

perform the limit ε→ 0 in the microscopic system (43)-(45), with collision terms given by (21).

We first replace in (21) the elastic (and inelastic for neutrals) inter species collision operators

by their expansions in terms of ε (according to Lemma A.1, A.2 and A.5). Then we expand the

solutions in powers of ε according to:

fε
α = f0

α + ε f1
α +O(ε2), α = e, i, n, (48)

and insert these expansions in the system (43)-(45). Finally, we identify terms of equal powers

of ε, starting with the lowest order terms, which are of order ε−2 for the electrons (in equation

(43)) and ε−1 for the other species (i.e. in equations (44) (45)). We get:

Q0
en

(

f0
e , f

0
n

)

(ve) = 0, (49)

Qnn

(

f0
n, f

0
n

)

(vn) = 0. (50)
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Concerning the ions, if δe = ε (which corresponds to cases 1 (17) and 3 (19)), we get:

Q0
in

(

f0
i , f

0
n

)

(vi) +Q0
i,ir

(

f0
e , f

0
i , f

0
n

)

(vi) = 0, (51)

and, if δe = ε2 (i.e. in the second case (18)), then:

Q0
in

(

f0
i , f

0
n

)

(vi) = 0. (52)

This allows to derive the equilibrium distribution functions f0
n, f0

i and f0
e . More precisely, we

first obtain (the proof is postponed to section 8):

Proposition 6.1: The equilibrium distribution function of electrons f0
e is an isotropic function.

The equilibrium states for neutral particles (f0
n) and ions (f0

i ) are Maxwellians characterized by

the same mean velocity u and temperature T :

f0
α(vα) = ραMu,T (vα) =

ρα

(2πT )3/2
exp

(

−|vα − u|2
2T

)

, with α = i, n. (53)

Moreover, if δe = ε (which corresponds to case 1 (17) or to case 3 (19)), we have:

Q0
i,ir

(

f0
e , f

0
i , f

0
n

)

(vi) = Q0
n,ir

(

f0
e , f

0
i , f

0
n

)

(vi) = 0, (54)

and, if f0
e 6= 0, then the density ρi is given in terms of the two other species by:

ρi = ρnF0

∫

IR9

σr(v′e, v
⋆
e ; ve) δ

0
E f

0
e (|ve|) dve dve

′ dv⋆
e

∫

IR9

σr(v′e, v
⋆
e ; ve) δ

0
E f

0
e (|v′e|) f0

e (|v⋆
e |) dve dve

′ dv⋆
e

, (55)

where δ0E stands for |ve|2 = |ve
′|2 + |v⋆

e |2 + 2∆.

Remark. Let us point out that relation (55) is a generalization of the Saha law (62) exhibited

in [6] in the first case (i.e. under assumption (17)).

As the heavy species share in common the same mean velocity u and temperature T , we can

drop the two last equations in the fluid system (47) for one species, for example for α = i, and

keep the complete system only for α = n. Moreover, if δe = ε (i.e. in case 1 (17) or 3 (19)), ρi

is completely determined, in terms of the other species, by (55); so, in that case, we can drop

the whole fluid system (47) for α = i.

We also remark that, at this level, the electrons have not necessarely reached their local ther-

modynamical equilibrium: the order zero term f0
e is only for the moment an isotropic function.

Moreover, on account of the assumption (20) (and the resulting scaling (21) for the collision

terms), it will not be possible to go further (i.e. to obtain a Maxwellian distribution) if we

suppose for example δi = ε2, which corresponds to the two last cases under consideration here.

But, concerning the first one, it will be (see section 7 below). As a consequence, the macrosopic

models will be completely different, especially concerning the electrons: we obtain an ”energy-

transport” (ET) model in the first case (i.e. a diffusion system on the electronic density ρe and

temperature Te), and a model, that we will denote by ”SHE-FP” model (”SHE” for ”Spherical
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Harmonic Expansion” - using a common terminology of semi-conductors theory- and ”FP” for

”Fokker-Planck” model - referring to plasma context-), in the last two cases (i.e. a diffusion

equation on the isotropic distribution function f0
e ). But in both cases, the electronic models

depend on the heavy species through transport coefficients and source terms.

Notice that these results are in agreement with the physical properties of glow and arc discharges

(recalled in introduction): in glow discharges, and contrary to arc discharges, electrons do not

always sufficiently interact among themselves to achieve kinetic equilibrium, so that their energy

distribution function is often non-Maxwellian.

So, we now propose to examine separately each situation, combining a classical moment method

with a Hilbert method, when necessary, for electrons. We start with the first case, which

corresponds to the arc discharge problem.

7 Case 1: a thermal arc plasma

We recall that this case corresponds to a partially ionized plasma with assumptions (15), (16)

and: δi = δe = δ = ε [6]. The scaled collision terms are here given by:

Qε
e(fe, fi, fn) = Qε

en(fe, fn) + ε
[

Qee(fe, fe) +Qε
ei(fe, fi) +Qε

e,ir(fe, fi, fn)
]

,

Qε
i (fe, fi, fn) = ε

[

1√
1− ε2

Qε
in(fi, fn) + Qε

i,ir(fe, fi, fn)

]

+ ε2
[

1√
1− ε2

Qii(fi, fi) +Qε
ie(fi, fe)

]

,

Qε
n(fe, fi, fn) = ε Qnn(fn, fn) + ε2

[

Qε
ne(fn, fe) +

1√
1− ε2

Qε
ni(fn, fi) +Qε

n,ir(fe, fi, fn)

]

,

(56)

Replacing in (56) the elastic (and inelastic for neutrals) inter species collision operators by their

expansions in terms of ε (according to Lemma A.1, A.2 and A.5), we get the following kinetic

system:

∂tf
ε
e + 1

ε (ve · ∇xf
ε
e + Fe · ∇vef

ε
e ) = 1

ε2 Q
0
en(fε

e , f
ε
n)

+ 1
ε

[

Q1
en(fε

e , f
ε
n) +Q0

ei(f
ε
e , f

ε
i ) +Qee(f

ε
e , f

ε
e ) +Qε

e,ir(f
ε
e , f

ε
i , f

ε
n)
]

+ Q2
en(fε

e , f
ε
n) +Q1

ei(f
ε
e , f

ε
i ) +O(ε),

(57)

∂tf
ε
i + vi · ∇xf

ε
i + Fi · ∇vi

fε
i = 1

ε

[

Q0
in(fε

i , f
ε
n) +Qε

i,ir(f
ε
e , f

ε
i , f

ε
n)
]

+Qii(f
ε
i , f

ε
i ) +Q0

ie(f
ε
i , f

ε
e ) +O(ε),

(58)

∂tf
ε
n + vn · ∇xf

ε
n + Fn · ∇vnf

ε
n = 1

ε Qnn(fε
n, f

ε
n)

+ Q0
ne(f

ε
n, f

ε
e ) +Q0

ni(f
ε
n, f

ε
i ) +Q0

n,ir(f
ε
e , f

ε
i , f

ε
n) +O(ε).

(59)
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Next, we expand the solutions in powers of ε according to (48) and identify terms of order ε−1

in the kinetic equation (57). We get, using the notations of Lemma A.5 for the development of

the ionization-recombination operator Qe,ir:

− ve · ∇xf
0
e (ve)− Fe · ∇vef

0
e (ve) +Q0

en

(

f1
e , f

0
n

)

(ve) +Q0
en

(

f0
e , f

1
n

)

(ve)

+Q1
en

(

f0
e , f

0
n

)

(ve) +Qee

(

f0
e , f

0
e

)

(ve) +Q0
e,ir

(

f0
e , f

0
i , f

0
n

)

(ve) + Q0
ei

(

f0
e , f

0
i

)

(ve) = 0.
(60)

The solvability condition for this equation of unknown f1
e specifies the equilibrium state for the

electrons. In fact, thanks to some entropy properties satisfied by the operator Q0
e,ir (see Lemma

A.5 below), we get the following result:

Proposition 7.1: The distribution function f0
e is a centered Maxwellian, i.e. of the following

form:

f0
e (ve) = ρeM0,Te

(ve) =
ρe

(2πTe)3/2
exp

(

−|ve|2
2Te

)

. (61)

Remark. According to (55), the densities ρe, ρi and ρn are now linked to the electron temper-

ature Te by the following Saha law (see [6]):

ρi =
F0 ρn

ρe
(2πTe)

3/2 exp
(

−∆

Te

)

. (62)

We now see how the informations concerning these equilibrium states translate into the macro-

scopic system. In order to do this, we use a classical Hilbert expansion of all the macroscopic

quantities, in the following way:

ρε
α = ρ0

α + ε ρ1
α +O(ε2), uε

α = u0
α + ε u1

α +O(ε2), ... α = e, i, n. (63)

At the lowest order, we get:

ρ0
e = ρe, u0

e = 0, W 0
e = w0

e = 3
2ρeTe,

ρ0
n = ρn, u0

n = u, W 0
n = 1

2ρn|u|2 + w0
n, w0

n = 3
2ρnT

ρ0
i = ρi, u0

i = u, W 0
i = 1

2ρi|u|2 + w0
i , w0

i = 3
2ρiT

(64)

Concerning the pressure tensor and the heat flux, the order zero terms are given by:

P0
α = pαId,

Q0
α = 0,

(65)

with pα = ραTα and α = e, i, n. This gives the leading order terms in the left hand side of

the fluid equations satisfied by the heavy species, i.e. in system (47). But concerning the

electrons, the corresponding leading order terms (i.e. in the left hand side of system (46)) are

also connected to the order one corrections u1
e and Q1

e, which are given in terms of f1
e by:

ρeu
1
e =

∫

R3 f
1
e (ve)vedve,

Q1
e = 1

2

∫

R3 f
1
e (ve)ve|ve|2dve − 5

2ρeTeu
1
e.

(66)
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So we first need to compute f1
e , from equation (60). In fact, up to the addition of an arbitrary

isotropic function, we have the following explicit computation of the first order correction f1
e

(this is specific to the case of Lorentz operators):

Lemma 7.2: Introducing the entropic variables (µe

Te
,− 1

Te
), where µe is the chemical potential

defined by:

µe

Te
= Log

( ρe

T
3/2
e

)

, (67)

the general solution of equation (60) writes:

f1
e = f1,o

e + f1,e
e , with f1,e

e isotropic and f1,o
e = f0

e φ
1,o
e , (68)

where φ1,o
e is given by:

φ1,o
e (ve) = ve · φ̄1

e(ve), φ̄1
e(ve) =

u

Te
− 1

2α(ve)ρn

[

∇x

(µe

Te

)

− Fe

Te
+
|ve|2

2
∇x

(

− 1

Te

)

]

. (69)

In this expression, α is the isotropic function defined by:

α(v) = α(|v|) =

∫

S2
+

BB(v,Ω)
(v,Ω)2

|v|2 dΩ. (70)

This allows deriving the expected terms in (66).

Corollary 7.3: We have:

u1
e = u+ uJ , Q1

e = −5

2
ρeuJTe + ρevJ , (71)

with:

(

uJ

vJ

)

= −D





∇x

(

µe

Te

)

− Fe

Te

∇x

(

− 1
Te

)



 , (72)

where the diffusion matrix

D =

(

d11 d12

d21 d22

)

(73)

is given by:

d11 = 1
6ρn

∫

R3

|v|2
α(|v|)M0,Te

(v)dv, d12 = d21 = 1
12ρn

∫

R3

|v|4
α(|v|)M0,Te

(v)dv,

d22 = 1
24ρn

∫

R3

|v|6
α(|v|)M0,Te

(v)dv.
(74)

As a consequence, the leading divergence term in the electronic energy equation of system (46)

is given by:

(W 0
e + P0

e)u
1
e + Q1

e =
5

2
ρeuTe + ρevJ . (75)
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First, as the leading order velocity term for electrons is perfectly known (in terms of the other

macroscopic parameters), we can drop the second equation in the system (46).

It now remains to look at the limits, when ε → 0, of the right hand sides in systems (46),(47).

For that, let us do an asymptotic expansion, with respect to ε, in these source terms, according

to:

Rε
α = R0

α + ε R1
α + ε2 R2

α +O(ε3), Sε
α = S0

α + ε S1
α + ε2 S2

α +O(ε3),

U ε
α = U0

α + ε U1
α + ε2 U2

α +O(ε3), α = e, i, n.
(76)

Concerning the neutrals, we get, first on account of the scaling of Qε
n and secondly thanks to

(50), that:

Rε
n = O(ε2), Sε

n = O(ε2), U ε
n = O(ε2). (77)

Moreover, as Q0
ne(f

0
n, f

0
e ) = Q0

ni(f
0
n, f

0
i ) = Q0

n,ir(f
0
e , f

0
i , f

0
n) = 0, we deduce that:

Rε
n = O(ε3), Sε

n = O(ε3), U ε
n = O(ε3), (78)

so that the source terms in the fluid system (47) are all equal to zero for α = n. As a consequence,

we get the following fluid model for neutrals, which is completely independant of the two other

species:

Proposition 7.4: The density ρn of neutral particles, their velocity u and their temperature T

are governed by the following fluid system (t > 0, x ∈ IR3)

∂tρn + div(ρnu) = 0,

∂t(ρnu) + div [ρn (u⊗ u)] +∇x (ρnT)− ρnFn = 0,

∂t(W
0
n) + div

[

u (W0
n + ρnT)

]

− ρnu · Fn = 0,

(79)

where W 0
n = 1

2ρn|u|2 + 3
2ρnT .

Let us now consider the electrons. On account of the scaling (56) of the ionization-recombination

collision term in Qε
e, and the fact that Q0

e,ir(f
0
e , f

0
i , f

0
n) = 0, we first get: R0

e = R1
e = 0, so that:

Rε
e = ε2R2

e +O(ε3). In the same way, thanks to (49) and (60), we have: U ε
e = ε2U2

e +O(ε3). It

thus remains to compute R2
e and U2

e .

Lemma 7.5: We have:

R2
e = Re, (80)

and

U2
e = u · [∇x(ρeTe)− ρeFe] + 3λρeρn

T − Te

Te
− ∆Re, (81)

where the source term Re is defined by:

Re =ρnF0

∫

IR9 σ
r δ0E f

0
e (ve)

[

φ1,e
e (ve)− φ1,e

e (ve
′)− φ1,e

e (v⋆
e)
]

dve dve
′ dv⋆

e

+F0

∫

IR12 σ
r δ0E f

0
e (ve) f

0
n(vn) (φ1

n − φ1
i )(vn) dvn dve dve

′ dv⋆
e ,

(82)
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with the notations φ1
α = f1

α/f
0
α, for α ∈ {i, n}, φ1,e

e = f1,e
e /f0

e and δ0E = δ(|ve|2−|ve
′|2−|v⋆

e |2−2∆).

The relaxation coefficient λ is defined by:

λ =
2

3

∫

R3

α(|v|)|v|2M0,Te
(v)dv.

Gathering all the above results and notations, we obtain:

Lemma 7.6: The electronic density ρe and the temperature Te satisfy the following ET model:

∂tρe + div(ρe(u + uJ)) = Re,

∂t(
3
2ρeTe) + div

[

5
2ρeuTe + ρevJ

]

− ρe(u + uJ) · Fe = U2
e .

(83)

Remark. The first equation in (83) looks like a ”mass conservation equation”; in fact, let us

point out that the right hand side Re is here unknown, because it depends (in particular) on

the arbitrary isotropic part f1,e
e of f1

e .

Now, thanks to (140), the ion density ρi is such that

∂tρi + div(ρiu) = R2
i = Re. (84)

In fact, we can remark that the equality R2
e = R2

i also results from the charge conservation (30)

(at the kinetic level), which gives here: Rε
e = Rε

i .

Taking into account (84), we can write system (83) in an equivalent form, where the source term

Re completely disappears. More precisely, we obtain the following global two temperatures fluid

model:

Theorem 7.7: The equilibrium states for the heavy species, defined by (53), are characterized

by the same mean velocity u and temperature T , while the electronic distribution function f0
e is

the centered Maxwellian given by (61). Moreover, the ion density ρi is given in terms of the two

other densities ρn and ρe, and the electronic temperature Te, by the following Saha law:

ρi =
F0 ρn

ρe
(2πTe)

3/2 exp
(

−∆

Te

)

. (85)

The neutral particles satisfy an Euler system (setting W 0
n = 1

2ρn|u|2 + 3
2ρnT ):

∂tρn + div(ρnu) = 0,

∂t(ρnu) + div [ρn (u⊗ u)] +∇x (ρnT)− ρnFn = 0,

∂t(W
0
n) + div

[

u (W0
n + ρnT)

]

− ρnu · Fn = 0,

(86)

which is totally independant on the other species. Finally, the electronic macroscopic quantities

(ρe, Te) satisfy the following modified ET model:

∂t(ρe − ρi) + div(jρe
− ρiu) = 0,

∂t(
3
2ρeTe + ∆ρe) + div

[

jTe
+ ∆jρe

]

− jρe
· Fe = Ue,

(87)
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where we have introduced, for simplicity:

jρe = ρe(u+ uJ), jTe
=

5

2
ρeuTe + ρevJ , (88)

with uJ and vJ defined by (72) and:

Ue = u · [∇x(ρeTe)− ρeFe] + 3λρeρn
T − Te

Te
. (89)

Remark. The first equation in (86) corresponds, at the macroscopic level, to conservation of the

number of heavy particles; the two last ones to the global momentum and energy conservation

laws. The first equation in (87) is linked to the charge conservation, while the last one reflects

the balance-sheet of the electronic energy.

8 Proofs of parts 6 and 7

Proof of Proposition 6.1: The equilibrium distribution function f0
n is given by equation (50);

applying the classical Boltzmann theory, we obtain (53) for α = n. Referring to Lemma A.1 and

A.3, equation (49) means that f0
e is a (non negative) isotropic function, i.e. f0

e (ve) = f0
e (|ve|).

Let us now determine f0
i , first under the assumption δ = ε. In that case, equation (51) reads:

Q0
in

[

f0
i , ρnMu,T

]

+Q0
i,ir

[

f0
e , f

0
i , ρnMu,T

]

= 0. (90)

We look for f0
i in the form f0

i = Mu,T φ0
i , with unknown φ0

i . Let us set for simplicity:

ρi =

∫

R3

f0
i (vi) dvi =

∫

R3

Mu,T (vi) φ
0
i (vi) dvi.

Using Lemma A.5 (point (i)), we obtain:

Q0
i,ir

(

f0
e , f

0
i , ρnMu,T

)

(vi) =
[

a1ρn − a φ0
i (vi)

]

Mu,T (vi), (91)

where a1 and a denote the following non negative constants (thanks to (8), a1 and a are in fact

independent of vi):

a1 = A1(f
0
e ) =

∫

IR9

σr(v′e, v
⋆
e ; ve) δ

0
E F0 f

0
e (|ve|) dve dve

′ dv⋆
e ,

a = A(f0
e ) =

∫

IR9

σr(v′e, v
⋆
e ; ve) δ

0
E f

0
e (|v′e|) f0

e (|v⋆
e |) dve dve

′ dv⋆
e ,

(92)

with the notation δ0E = δ
(

|ve|2 − |v′e|2 − |v∗e |2 − 2∆
)

. Referring to the definition (131) of Lin,

the determination of f0
i solution of (90) reduces then to the derivation of the positive function

φ0
i solution of:

[Lin − a]φ0
i = −a1ρn. (93)
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There are two cases. First, if f0
e = 0, then a1 = a = 0, and the above equation admits all the

constant functions as solutions; we then deduce that: f0
i = ρiMu,T , with arbitrary density ρi.

In the opposite case, i.e. if f0
e 6= 0, then a > 0 and the operator Lin − aId (Id denotes the

identity operator) is invertible, so that equation (93) admits a unique solution. Let us identify

this solution. We first observe that, integrating this equation against the Maxwellian Mu,T , we

get: aρi = a1ρn, which means that ρi is uniquely determined in terms of the two other species

by relation (55). Secondly, equation (93) now writes: [Lin − a]φ0
i = −aρi; it clearly admits the

constant function φ0
i = ρi as a trivial solution, and this is the unique solution. In both cases,

we check that (54) is satisfied, which concludes the proof in the case δ = ε. In the second case,

i.e. if δ = ε2, f0
i satisfies the equation (52). Setting again f0

i = Mu,Tφ
0
i , we have: Lin(φ0

i ) = 0;

now, thanks to Lemma A.4, we deduce that φ0
i is a constant function, which ends the proof.

Proof of Proposition 7.1: Let us set: f1
e (ve) = f0

e (ve)φ
1
e(ve). As f0

e is isotropic, the collisional

terms Q0
en(f0

e , f
1
n), and Q0

ei(f
0
e , f

0
i ) are both equal to zero, so that equation (60) reads Lenφ

1
e =

Se
1, where Len is defined by (129) and:

Se
1 = (f0

e )−1
[

ve · ∇xf
0
e + Fe · ∇vef

0
e −Q1

en(f0
e , f

0
n)−Qee(f

0
e , f

0
e )−Q0

e,ir(f
0
e , f

0
i , f

0
n)
]

. (94)

With the notations introduced in Lemma A.3, we get, by integration on any arbitrary sphere

SW (W > 0):

∀W > 0,

∫

SW

Se
1(v) dN(v) =

∫

SW

[Lenφ
1
e](v) dN(v) = 0.

Now, as f0
e is an even function of the velocity, we know from Lemma A.1 iii) that Q1

en(f0
e , f

0
n) is

an odd function of ve and, remarking that ve · ∇xf
0
e + Fe · ∇vef

0
e is also odd, the above relation

then reduces to:

∀W > 0,

∫

SW

[Qee(f
0
e , f

0
e ) +Q0

e,ir(f
0
e , f

0
i , f

0
n)](v) dN(v) = 0. (95)

Let us now consider the isotropic function H
(

fe

)

= log
(

F−1
0 ρ−1

n ρi fe

)

; we get in particular:

∫

R3

[Qee(f
0
e , f

0
e ) +Q0

e,ir(f
0
e , f

0
i , f

0
n)](v)H

(

fe

)

(v) dv = 0. (96)

But, thanks to the classical H-theorem applied to the operator Qee, and to Lemma A.5 iii), we

have separately:
∫

R3

Qee(f
0
e , f

0
e )(v)H

(

fe

)

(v) dv ≤ 0,

∫

R3

Q0
e,ir(f

0
e , f

0
i , f

0
n)](v)H

(

fe

)

(v) dv ≤ 0,

so that (96) implies that each one of these two terms has to be zero. Now from the first one, we

classicaly deduce that f0
e is a Maxwellian; and this Maxwellian is necessarely centered, i.e. of the

form (61), because it is isotropic. Conversely, let us suppose (61); then, we have Qee(f
0
e , f

0
e ) = 0

and also Q0
e,ir(f

0
e , f

0
i , f

0
n) = 0, on account of (55), which here becomes (62) (see Lemma A.5,

point (iv)), so that (95) is fulfilled.

Proof of Lemma 7.2: Referring to the computations done in [16] (our operator Len is a

Lorentz operator), we can compute φ1
e. Remarking that [9]

Len(v) = −2α(|v|)ρnv, (97)
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with α given by (70), and also that:

−(f0
e )−1Q1

en(f0
e , f

0
n) = Len(

u · ve

Te
),

it remains to solve

Len(φ1
e −

u · ve

Te
) =

( ∇xρe

ρe
+

( |ve|2
2Te

− 3

2

) ∇xTe

Te
− Fe

Te

)

· ve.

Thanks to Lemma A.3, this gives (68), where φ1,o
e writes:

φ1,o
e (ve) = ve · φ̄1

e(ve), φ̄1
e(ve) =

u

Te
− 1

2α(ve)ρn

[∇xρe

ρe
+

( |ve|2
2Te

− 3

2

) ∇xTe

Te
− Fe

Te

]

,

or, equivalently, expression (69).

Proof of Lemma 7.5: Let us introduce for simplicity Q2
e defined by (Q2

e is the term of order

ε0 in the right hand side of equation (57)):

Q2
e = Q0

en

(

f2
e , f

0
n

)

+Q0
en

(

f0
e , f

2
n

)

+ Q0
en

(

f1
e , f

1
n

)

+Q1
en

(

f1
e , f

0
n

)

+Q1
en

(

f0
e , f

1
n

)

+ Q2
en

(

f0
e , f

0
n

)

+ 2Qee

(

f1
e , f

0
e

)

+ Q0
ei

(

f1
e , f

0
i

)

+Q0
ei

(

f0
e , f

1
i

)

+Q1
ei

(

f0
e , f

0
i

)

+LQe,ir

(

φ1
e, φ

1
i , φ

1
n

)

+R1
e,ir.

(98)

We have:
(

R2
e

U2
e

)

=

∫

R3

Q2
e(ve)

(

1
1
2 |ve|2

)

dve. (99)

Referring to the definition of Q0
en given in Lemma A.1, we first observe that Q0

en(f0
e , f

2
n) is equal

to zero. In a similar way, Lemma A.2 implies that Q0
ei(f

0
e , f

1
i ) = 0. Now, as Q1

en(f1,e
e , f0

n),

Qee(f
1,o
e , fe

0 ), Q0
ei(f

1,o
e , f0

i ) and Q1
ei(f

0
e , f

0
i ) are odd functions of the velocity variable (and

Q0
ei(f

1,e
e , f0

i ) = 0), it remains:
(

R2
e

U2
e

)

=

∫

R3

Q̃2
e(ve)

(

1
1
2 |ve|2

)

dve, (100)

where we have introduced:

Q̃2
e = Q0

en

(

f2
e , f

0
n

)

+ Q0
en

(

f1
e , f

1
n

)

+Q1
en

(

f1,o
e , f0

n

)

+Q1
en

(

f0
e , f

1
n

)

+ Q2
en

(

f0
e , f

0
n

)

+ 2Qee

(

f1,e
e , f0

e

)

+LQe,ir

(

φ1
e, φ

1
i , φ

1
n

)

+R1
e,ir.

(101)

From the definition of Q0
en (see Lemma A.1), and the properties of qBe (self adjointness, kernel

made of isotropic functions, see [9]), we have, for any f and g (and setting Cg = (
∫

R3 g(v)dv)):

∫

R3

Q0
en(f, g)

(

1
1
2 |ve|2

)

dve = Cg

∫

R3

f(ve)

(

qBe (1)

qBe (1
2 |ve|2)

)

dve =

(

0

0

)

. (102)
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In the same way, as Q1
en(f0

e , f
1
n) = qBe (∇f0

e )
∫

R3 vnf
1
ndvn, we also have:

∫

R3

Q1
en(f0

e , f
1
n)

(

1
1
2 |ve|2

)

dve =

(

0

0

)

. (103)

From [11], we get:

∫

R3

(

Q1
en(f1,o

e , f0
n) +Q2

en(f0
e , f

0
n)
)

(

1
1
2 |ve|2

)

dve =

(

0

u · [∇x(ρeTe)− ρeFe] + 3λρeρn
T−Te

Te

)

.(104)

Concerning the linearized Fokker Planck operator, we classicaly have:

∫

R3

Qee(f
1
e , f

0
e )

(

1
1
2 |ve|2

)

dve =

(

0

0

)

. (105)

It remains to compute the contribution due to the inelastic collision term. Referring to the

definition of LQe,ir in Lemma A.6, and to (134), simple computations show that we have:

∫

R3

LQe,ir

(

φ1
e, φ

1
i , φ

1
n

)

(ve)

(

1
1
2 |ve|2

)

dve = C

(

1

−∆

)

, (106)

where we have set for simplicity:

C =ρnA1(f
1
e )− ρi

∫

IR9 σ
r δ0E

[

f0
e (ve

′) f1
e (v⋆

e) + f1
e (ve

′) f0
e (v⋆

e)
]

dve dve
′ dv⋆

e

+a1

∫

R3 f
1
n(vn) dvn − a

∫

R3 f
1
i (vi) dvi.

=ρnF0

∫

IR9 σ
r δ0E f

0
e (ve)

[

φ1
e(ve)− φ1

e(ve
′)− φ1

e(v
⋆
e)
]

dve dve
′ dv⋆

e

+F0

∫

IR9 σ
r δ0E f

0
e (ve) f

0
n(vn) (φ1

n − φ1
i )(vn) dvn dve dve

′ dv⋆
e .

But thanks to (138), we have C = Re, with Re given by (82). Now, taking into account the

conservation relations (140) for the remainder term, we get

∫

R3

[LQe,ir

(

φ1
e, φ

1
i , φ

1
n

)

+R1
e,ir](ve)

(

1
1
2 |ve|2

)

dve = Re

(

1

−∆

)

, (107)

which concludes the proof.

9 Case 2: a glow plasma

In the glow problem, we have: t0 = τen = ε2τir and δ = ε2 (instead of t0 = ετir and δ = ε).

The scaled collision terms are here given by:

Qε
e(fe, fi, fn) = Qε

en(fe, fn) + ε2
[

Qee(fe, fe) +Qε
ei(fe, fi) +Qε

e,ir(fe, fi, fn)
]

,

Qε
i (fe, fi, fn) =

ε√
1− ε2

Qε
in(fi, fn) + ε2 Qε

i,ir(fe, fi, fn)

+ ε3
[

1√
1− ε2

Qii(fi, fi) +Qε
ie(fi, fe)

]

,

Qε
n(fe, fi, fn) = ε Qnn(fn, fn) + ε3

[

Qε
ne(fn, fe) +

1√
1− ε2

Qε
ni(fn, fi)

]

+ ε4Qε
n,ir(fe, fi, fn),

(108)
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At the diffusion scale, we get:

∂tfe +
1

ε

(

ve · ∇x + Fe · ∇ve

)

fe =
1

ε2
Q0

en(fe, fn) +
1

ε
Q1

en(fe, fn)

+Qee(fe, fe) +Q2
en(fe, fn) +Q0

ei(fe, fi) + Q0
e,ir(fe, fi, fn) + O(ε)

(

∂t + vi · ∇x + Fi · ∇vi

)

fi =
1

ε
Q0

in(fi, fn) + Q1
in(fi, fn) +Q0

i,ir(fe, fi, fn) + O(ε)

(

∂t + vn · ∇x + Fn · ∇vn

)

fn =
1

ε
Qnn(fn, fn) + O(ε)

We remark in particular that, concerning the ions, Qi,ir is no longer a leading order term, and,

for the electrons, Qe,ir is ε2 smaller than Qe,n.

Expanding each distribution function in terms of ε according to (48), we still have (49), (50)

and (52), so that the equilibrium states f0
e , f0

i and f0
n are always given by Proposition 6.1; but

we do not have the generalized Saha law (55) anymore. This means in particular that, at the

macroscopic level, we willl have to keep the first equation in the fluid system (47) for α = i.

Moreover, Proposition 7.1 is not valid anymore, because f0
e is only an isotropic function (and

not a priori a Maxwellian). In fact, f1
e solves the following equation:

Len(f1
e ) = (v · ∇x + Fe · ∇v) f

0
e − Q1

en(f0
e , f

0
n),

which right hand side is an odd function of the velocity variable, so that its integral over any

arbitrary sphere SW , of fixed energy W = |v|2/2, is zero. Moreover, we have:

Len(f1
e ) = v · ∇̃xf

e
0 − u

∂fe
0

∂W
· Len(v), (109)

where the operator ∇̃x is defined, for any isotropic function by:

∇̃xf = ∇xf + Fe
∂f

∂W
. (110)

Thanks to (97), we can precisely compute f1
e (like in [16]), and we obtain:

Lemma 9.1: The order one correction fe
1 is given by:

f1
e = L(f0

e ) + f1,e
e , with f1,e

e isotropic, (111)

where the operator L is defined, for any isotropic function f , by:

L(f) = − 1

2α(|v|)ρn
v · ∇̃xf − v · u ∂f

∂W
. (112)

Concerning the neutral particles, the macroscopic system of Proposition 7.4 is still valid. Con-

cerning the ions, we have, with simple computations:

Lemma 9.2: The density ρi of ions satisfies the following equation:

∂tρi + div(ρiu) = Ri, (113)
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where Ri is given by:

Ri = a1ρn − aρi, (114)

using the notations: a1 = A1(f
0
e ) and a = A(f0

e ), with A1 and A defined in Lemma A.5.

Remark. We first remark that the source term Ri only depends on the equilibrium states f0
e , f

0
i

and f0
n and not on the corrections of order one, like in the previous scaling (i.e. the arc discharge

problem). Moreover, this term, which is not a priori equal to zero here, is thus a relaxation term

on the ”general” Saha law (55), which is not satisfied here anymore.

If we go on for electrons and identify terms of constant order (with respect to ε) in (124), we

get, thanks to the fact that Q0
en(f0

e , f
2
n) = 0:

Lenf
2
e = ∂tf

0
e +

[

ve · ∇x + Fe · ∇ve

]

f1
e −Q0

en(f1
e , f

1
n)−Q1

en(f1
e , f

0
n)−Q1

en(f0
e , f

1
n)

−Q2
en(f0

e , f
0
n)− Qee(f

0
e , f

0
e )−Q0

e,ir(f
0
e , f

0
i , f

0
n).

(115)

With the notations of Lemma A.3, we integrate this equation on any sphere SW (W > 0) and

obtain:

∀W > 0, N(W )
∂f0

e

∂t
+

∫

SW

(v · ∇x + F · ∇v)L(f0
e ) dv = Se(W ).

The source term Se is given by (using the oddness of Q1
en(f1,e

e , f0
n), Q1

en(f0
e , f

1
n) and property

(102) ):

Se(W ) =

∫

SW

[Qee(f
0
e , f

0
e ) +Q1

en(L(f0
e ), f0

n) +Q2
en(f0

e , f
0
n) +Q0

e,ir(f
0
e , f

0
i , f

0
n) ] dN(v) (116)

and does not depend on the arbitrary isotropic part f1,e
e . We then get the following result:

Lemma 9.3: The isotropic function f0
e satisfies the following SHE-FP model:

N(W ) ∂f0
e

∂t − ∇̃x ·
[

D(W ) ∇̃x f
0
e

]

− 2W
3 N(W ) ∇̃x · (∂f0

e

∂W u)− N(W )Fe · u ∂f0
e

∂W

= Se(W ), ∀W > 0,
(117)

where N(W ) =
∫

SW
dN(vL) = 4π

√
2W , ∇̃x is defined by (110) and D(W ) is the following

diffusion matrix:

D(W ) =
2W
3 N(W )

2ρnα(W )
Id.

The electron source term Se is given by (116).

Gathering all the above results and notations, we have in summary:

Proposition 9.4: The equilibrium states are given by:

f0
n = ρnMu,T , f0

i = ρiMu,T , f0
e (v) = f0

e (W ) ( with W = |v|2/2 ),
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and we obtain the following hydrodynamic/SHE-FP system:

• ∂tρn + div(ρnu) = 0

∂t(ρnu) + div[ρn(u⊗ u)] +∇x(ρnT)− ρnFn = 0

∂t(W
0
n) + div[u

(

W0
n + ρnT

)

]− ρnu · Fn = 0 with W0
n = 1

2 ρn|u|2 + 3
2 ρnT

• ∂tρi + div(ρiu) = Ri

• N(W ) ∂f0
e

∂t − ∇̃x ·
[

D(W ) ∇̃x f
0
e

]

− 2W
3 N(W ) ∇̃x · (∂f0

e

∂W u)− N(W )Fe · u ∂f0
e

∂W

= Se(W ), ∀W > 0.

Remark 1. If we multiply the SHE-FP equation satisfied by the isotropic function f0
e by 1 and

W , and integrate it with respect to W , we get the following energy-transport (ET) model for

the electrons:

• ∂tρe + div(ρe(u + ūJ)) = Re,

• ∂t(
3
2ρeTe) + div[52ρeuTe + ρev̄J]− ρe(u + ūJ) · Fe = SE

e ,

where the electronic temperature Te is defined by: 3ρeTe =
∫

R3 f
0
e (v)|v|2dv and where we have

set:

ūJ = − 1
6ρn

[

∇x · (
1

ρe

∫

R3

|v|2
α(|v|)f

0
e (v)dv ) +

Fe

ρe
(

∫

R3

|v|2
α(|v|)DW f0

e (v)dv )

]

,

v̄J = − 1
12ρn

[

∇x · (
1

ρe

∫

R3

|v|4
α(|v|)f

0
e (v)dv ) +

Fe

ρe
(

∫

R3

|v|4
α(|v|)DW f0

e (v)dv )

]

,

(118)

Moreover, we have:

Re = Ri = ρna1 − ρia, SE
e = u · [∇x(ρeTe)− ρeFe] + 3ρeρn

(

λ̄+ λ̃Tn

)

− ∆Re, (119)

with:

λ̄ =
2

3ρe

∫

R3

α(|v|)|v|2f0
e (v)dv, λ̃ =

2

3ρe

∫

R3

α(|v|)|v|2DW f0
e (v)dv. (120)

The source term Re is thus also a relaxation term on the generalized Saha law (55); the relation

Re = Ri still reflects the charge conservation.

If moreover, we suppose that f0
e is Maxwellian, i.e. f0

e = ρeM0,Te
(this can be obtained, for

example, by rescaling Qee by a factor 1/ε), then we get for the electrons the above energy-

transport model with in addition:

ūJ = uJ , v̄J = vJ , λ̄ = λ, λ̃ = − 1

Te
λ,

so that the second term in SE
e is a relaxation term on the temperatures. The closed fluid model
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we obtain is then the following hydrodynamic/ET system:

• ∂tρn + div(ρnu) = 0,

∂t(ρnu) + div[ρn(u⊗ u)] +∇x(ρnT)− ρnFn = 0,

∂t(W
0
n) + div[u

(

W0
n + ρnT

)

]− ρnu · Fn = 0, with W0
n = 1

2 ρn|u|2 + 3
2 ρnT,

• ∂tρi + div(ρiu) = Re,

• ∂tρe + div(ρe(u + uJ)) = Re,

• ∂t(
3
2ρeTe) + div[52ρeuTe + ρevJ]− ρe(u + uJ) · Fe = SE

e ,

(121)

where Re = Ri, which is given by (114), is a relaxation term of the Saha law (85); moreover,

SE
e = Ue−∆Re, with Ue given by (89). So, up to the Saha relaxation term Re, we recover for

the electrons the same ET model than in Lemma 7.6.

Remark 2. We can recover the complete hydrodynamic/ET system of Theorem 7.7, either by

rescaling the source term Re in the above system (121) by a factor 1/ε, or directly from the

hydrodynamic/SHE-FP system of Proposition 9.4, by rescaling Qe,ir (in the source term Se) by

the same factor 1/ε (thanks to point (iv) of Lemma A.5, f0
e is then a Maxwellian).

10 Case 3: a glow plasma interacting with an electron flow

In the last example under consideration, we assume that the densities of the charged particles

do not have the same order of magnitude and more precisely that we have:

t0 = τen = ε2 τir = ε2 τee and δe = ε, δi = ε2. (122)

The collision terms have here the following orderings:

Qε
e(fe, fi, fn) = Qε

en(fe, fn) + ε2
[

Qee(fe, fe) +Qε
e,ir(fe, fi, fn)

]

+ ε3Qε
ei(fe, fi),

Qε
i (fe, fi, fn) = ε

[

1√
1−ε2

Qε
in(fi, fn) + Qε

i,ir(fe, fi, fn)
]

+ ε3 Qε
ie(fi, fe) +

ε4√
1− ε2

Qii(fi, fi),

Qε
n(fe, fi, fn) = ε Qnn(fn, fn) + ε2Qε

ne(fn, fe) + ε2
[

1√
1− ε2

Qε
ni(fn, fi) + Qε

n,ir(fe, fi, fn)

]

,

(123)

We observe in particular that, concerning the ions, Qi,ir is now again a leading order term (like

for the arc discharge problem). At the diffusion scale, the kinetic system (12) writes:

∂tf
ε
e + 1

ε (ve · ∇xf
ε
e + Fe · ∇vef

ε
e ) = 1

ε2 Qen(fε
e , f

ε
n) +

[

Qee(f
ε
e , f

ε
e ) +Qε

e,ir(f
ε
e , f

ε
i , f

ε
n)
]

+O(ε),(124)

∂tf
ε
i + vi · ∇xf

ε
i + Fi · ∇vi

fε
i = 1

ε

[

1√
1−ε2

Qin(fε
i , f

ε
n) +Qi,ir(f

ε
e , f

ε
i , f

ε
n)
]

+O(ε), (125)
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∂tf
ε
n + vn · ∇xf

ε
n + Fn · ∇vnf

ε
n = 1

ε Qnn(fε
n, f

ε
n) + Qne(f

ε
n, f

ε
e ) +O(ε). (126)

Next, we expand the distribution functions in powers of ε. At the lowest order, we get exactly the

same system (49),(50), (51) as for the arc discharge problem; as a consequence, the equilibrium

states are still given by Proposition 6.1, and we have: f0
e is isotropic, while f0

i and f0
n are

both Maxwellians, with same mean velocity u and temperature T ; moreover, the ion density

is given in terms of the two other species by the general Saha law (55), and we also have:

Q0
i,ir

(

f0
e , f

0
i , f

0
n

)

= Q0
n,ir

(

f0
e , f

0
i , f

0
n

)

= 0.

Once more, we find that Proposition 7.1 does not apply here: f0
e is only an isotropic function,

and not a Maxwellian. In fact, f1
e still solves the equation (109) (with odd right hand side) and

we have the same expression (111) for f1
e . Concerning the heavy species, the results contained

in Proposition 7.4 are unchanged. If we go on for electrons and identify terms of constant order

(with respect to ε) in (124), we still get equation (115), so that Lemma 9.3 is once more valid.

Gathering all the above results and notations, we have in summary:

Proposition 10.1: The equilibrium states are given by:

f0
n = ρnMu,T , f0

i = ρiMu,T , f0
e (v) = f0

e (W ) ( with W = |v|2/2 ),

and we obtain the following hydrodynamic/SHE-FP system:

• ∂tρn + div(ρnu) = 0

∂t(ρnu) + div[ρn(u⊗ u)] +∇x(ρnT)− ρnFn = 0

∂t(W
0
n) + div[u

(

W0
n + ρnT

)

]− ρnu · Fn = 0 with W0
n = 1

2 ρn|u|2 + 3
2 ρnT

• ρi given by (55) ( i.e. generalized Saha law )

• N(W ) ∂f0
e

∂t − ∇̃x ·
[

D(W ) ∇̃x f
0
e

]

− 2W
3 N(W ) ∇̃x · (∂f0

e

∂W u)− N(W )Fe · u ∂f0
e

∂W

= Se(W ), ∀W > 0.

Let us remark that this new system can be recovered from the previous one (i.e. the

hydrodynamic/SHE-FP system of Proposition 9.4) by rescaling the ion source term Ri by a

factor 1/ε.

Remark 1. If we multiply the SHE-FP equation satisfied by the isotropic function f0
e by 1 and

W , and integrate it with respect to W , we get the following energy-transport (ET) model for

the electrons:

• ∂tρe + div(ρe(u + ūJ)) = 0,

• ∂t(
3
2ρeTe) + div[52ρeuTe + ρev̄J]− ρe(u + ūJ) · Fe = SE

e ,

with ūJ , v̄J defined by (118) and where denotes the electronic temperature Te (i.e. 3ρeTe =
∫

R3 f
0
e (v)|v|2dv). Moreover, the mass source term is here equal to zero (because it is linked

to the equilibrium states, and not to the order one corrections): this is linked to the charge

conservation, at the macroscopic level. Finally, SE
e is given by:

SE
e = u · [∇x(ρeTe)− ρeFe] + 3ρeρn

(

λ̄+ λ̃Tn

)

,
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with λ̄ and λ̃ defined by (120).

If moreover, we suppose that f0
e is Maxwellian, i.e. f0

e = ρeM0,Te
(rescaling Qee by a factor

1/ε), we obtain the following closed hydrodynamic/ET system:

• ∂tρn + div(ρnu) = 0,

∂t(ρnu) + div[ρn(u⊗ u)] +∇x(ρnT)− ρnFn = 0,

∂t(W
0
n) + div[u

(

W0
n + ρnT

)

]− ρnu · Fn = 0, with W0
n = 1

2 ρn|u|2 + 3
2 ρnT,

• ρi given by (85) (i.e. Saha law),

• ∂tρe + div(ρe(u + uJ)) = 0,

• ∂t(
3
2ρeTe) + div[52ρeuTe + ρevJ]− ρe(u + uJ) · Fe = Ue,

(127)

with Ue given by (89). So, up to the Saha relaxation term Re (which is here zero), we recover

for the electrons the same ET model than in Lemma 7.6.

Last, this fluid system (127) can also be recovered from (121) by rescaling the ion source term

by a factor 1/ε.

Remark 2. We can also recover the first hydrodynamic/ET system of Theorem 7.7 from the

hydrodynamic/SHE-FP system of Proposition 10.1, by rescaling Qe,ir (in the source term Se)

by the factor 1/ε.

11 Conclusion

The hierarchy between the various models previously derived, as well as the macroscopic limit

linking two successive steps of this hierarchy are now summarised Fig. 1. Each of the considered

models appears in a box. For simplicity, we have not specified the macroscopic Euler system for

neutrals. An arrow between two boxes indicates the macroscopic limit connecting two models.

Along the arrow is written the specific collision mechanism (i.e. the leading order collisional

process associated with a specific space and time scale) used in the corresponding macroscopic

limit. For simplicity, we have simply denoted by ”neutrals” the elastic collisions against neutrals

for each species. Note that we can also replace Qe,ir by Qee each time in this figure.

A similar hierarchy has been established in [1] within the frame of semiconductors using the

diffusion approximation methodology. An important difference lies in the fact that charged

particles have masses of same order of magnitude when addressing semiconductor problems,

while they differ by at least two orders of magnitude concerning plasma problems. In addition,

impact ionization was not included in the set of collisions accounted for in [1].
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.

Kinetic system of

Boltzmann type equations

↓
neutralsւ neutrals +Qi,ir + εQe,ir ց neutrals + Qi,ir

↓

Glow plasma

(Case 2) :

SHE model for electrons

no Saha law

Ri−−−−−−−−−−−−−−−→
Saha law relaxation

Glow plasma + electron flow

(Case 3) :

SHE model for electrons

generalized Saha law (55)

Qe,ir ց ↓ ւ Qe,ir

Thermal arc discharge

(Case 1) :

ET model for electrons

Saha law (85)

Fig 1. : The hierarchy of models
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12 Annex: main properties of the collision operators

In the Boltzmann case, we have:

Lemma A.1: Let fα, where α = e, i, n, be sufficiently regular functions.

i) Let α, β = i, n and α 6= β. Then

Qε
αβ(fα, fβ) = Q0

αβ(fα, fβ) +O(ε2),

with

Q0
αβ(fα, fβ)(vα) =

∫

IR3×S2

BB
⋆

(

vα − v⋆
β,Ω

) (

fα′fβ′
⋆
− fαfβ⋆

)

dv⋆
β dΩ.

ii) Let α, β = e, n and α 6= β. Then

Qε
αβ(fα, fβ) = Q0

αβ(fα, fβ) + ε Q1
αβ(fα, fβ) +O(ε2),

with

Q0
en(fe, fn)(ve) = qBe (fe)(ve)

∫

R3

fn(vn)dvn,

Q1
en(fe, fn)(ve) =

(

−∇ve [q
B
e (fe)] + qBe (∇vefe)

)

(ve) ·
∫

R3

vnfn(vn)dvn,

Q0
ne(fn, fe)(vn) = − 2 ∇vnfn(vn) ·

∫

IR3×S2

BB(ve,Ω)
(ve · Ω)2

|ve|2
ve fe(ve) dve dΩ,

Q1
ne(fn, fe)(vn) = 2∇2

vn
fn(vn) :

[

∫

IR3×S2

BB(ve,Ω)
(ve,Ω)4

|ve|4
(ve ⊗ ve) fe(ve) dve dΩ

+
1

2

∫

IR3×S2

BB(ve,Ω) (ve,Ω)2
(

1− (ve,Ω)2

|ve|2
)

S(ve) fe(ve) dve dΩ
]

− 2[∇vn(vnfn)]s(vn) :

∫

IR3×S2

BB(ve,Ω)
(ve,Ω)2

|ve|2
(ve ⊗∇vefe)

s(ve) dve dΩ.

The superscript s indicates that a tensor is symmetrized, and the notation A : B, where A and

B are two matrices with respective entries Aij, Bij, denotes the contracted product:
∑

i,j AijBij.

Moreover, the linear operator qBe is defined by:

qBe (fe)(ve) =

∫

S2

BB (ve,Ω)
[

fe (ve − 2(ve,Ω)Ω)− fe(ve)
]

dΩ.

iii) For any fe, fn we have:

Qi
en

[

fe(−ve), fn

]

(ve) = (−1)i Qi
en

[

fe, fn

]

(−ve)

iv) Mass conservation imply that:

∫

R3

Qj
en

(

fe, fn

)

(ve) dve = 0, ∀j ∈ IN.
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In the Fokker-Planck-Landau case, we obtain:

Lemma A.2:

i) Let fα with α = e, i, be sufficiently regular functions. Then

Qε
ei(fe, fi) = Q0

ei(fe, fi) + ε Q1
ei(fe, fi) +O(ε2),

Qε
ie(fi, fe) = Q0

ie(fi, fe) +O(ε),

with

Q0
ei(fe, fi)(ve) = qFe (fe)(ve)

∫

R3

fi(vi)dvi,

Q1
ei(fe, fi)(ve) =

(

−∇ve [q
F
e (fe)] + qFe (∇vefe)

)

(ve) ·
∫

R3

vifi(vi)dvi,

Q0
ie(fi, fe)(vi) = − 2 ∇vi

fi(vi) ·
∫

IR3

BF (ve)

|ve|2
ve fe(ve) dve ,

and

qFe (fe) = ∇ve ·
[

BF S∇vefe

]

.

ii) Mass conservation imply that:

∫

R3

Qj
ei

(

fe, fi

)

(ve) dve = 0, ∀j ∈ IN.

We now examine some properties of the linear operators involved in the different steps of the

Hilbert expansion. In the sequel, we denote by Muα,Tα
the normalized (i.e. with mean density

equal to 1) Maxwellian of mean velocity uα and temperature Tα defined by:

Muα,Tα
(v) =

1

(2πTα)3/2
exp

[

−(v − uα)2

2Tα

]

. (128)

We also denote by L2
Mu,T

the weighted Hilbert space defined by:

L2
Mu,T

=

{

f /

∫

R3

f2(v) Mu,T (v) dv < +∞
}

,

First, concerning the electrons, the linear operator involved is the operator Len defined by:

Lenφ = Q0
en(φ, f0

n) = ρn q
B
e

(

φ
)

, (129)

where ρn =
∫

R3 f
0
n(vn)dvn is the density of neutral particles.

Let us first recall a result of Ref. [1].

Lemma A.3: (i) The operator Len is self-adjoint on the weighted Hilbert space L2
M0,T

. The

kernel of the operator Len is made of isotropic functions, i.e. functions φ = φ(v) such that
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φ(v) = φ̄(|v|). In particular, if ϕ is an odd function of the velocity variable, then the equation

Lenφ = ϕ has a unique odd solution φ0 and any other solution φ writes φ = φ0 + φ̄, where φ̄ is

isotropic.

(ii) More generally, let us introduce the energy variable W (v) = |v|2/2, and the sphere SW =

{v ∈ R3, W (v) = W}; we recall the co-area formula

∫

R3

f(v)dv =

∫ +∞

0

(∫

SW

f(v) dN(v)

)

dW,

where dN(v) = dSW (v)
|∇W (v)| = dSW (v)√

2W
(dSW is the euclidian surface element on SW ). Then the

equation Lenφ = ϕ has a solution if and only if the right hand side satisfies the following

orthogonality relation:

∀W > 0,

∫

SW

ϕ(v) dN(v) = 0. (130)

For the ions, we define the linear operator Lin by

Linφ = M−1
u,T Q0

in

(

Mu,Tφ, ρnMu,T

)

, (131)

with Q0
in given in Lemma A.1. We have

Linφ(vi) = ρn

∫

IR3×S2

BB
⋆ (vi − vn,Ω) Mu,T (vn)

[

φ(vi
′)− φ(vi)

]

dvn dΩ,

with the notation vi
′ = vi − (vi − vn,Ω)Ω. Then

Lemma A.4: The linear operator Lin is self-adjoint on the weighted Hilbert space L2
Mu,T

, and its

kernel is made of constant functions. Moreover, under suitable assumptions on BB
⋆ , the equation

Linφ = ϕ is solvable if and only if the right hand side ϕ satisfies the orthogonality relation:

∫

R3

ϕ(v) Mu,T (v) dv = 0 ;

the solution φ is then unique, up to an additive constant.

Proof: The proof partly results from the following weak formulation

∫

R3

Linφ(vi) ϕ(vi) Mu,T (vi) dvi = −1

2
ρn

∫

R3

∫

IR3×S2

BB
⋆ (vi − vn,Ω)

[

φ(vi
′)− φ(vi)

]

×
[

ϕ(vi
′)− ϕ(vi)

]

Mu,T (vi) Mu,T (vn) dΩ dvn dvi.

We now turn investigating some properties of the ionization-recombination collision operator:

in Lemma A.5 below, we first state a weak formulation, and an entropy inequality, for the

dominating part of this operator (in terms of ε), while Lemma A.6 is devoted to the computation

of its linearization.
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For any α ∈ {e, i, n}, we simply denote by Q0
α,ir the limit, when ε goes to zero, of the operator

Qα,ir. Taking into account the scaled conservation equations (14), we first get:

vi = vn + ε(ve − v′e − v⋆
e) + ε2

2 vn +O(ε3),

|ve|2 − [|ve
′|2 + |v⋆

e |2 + 2∆] = |vi|2 − |vn|2 = 2εvn · (ve − v′e − v⋆
e) +O(ε2),

(132)

so that we deduce the following result, which is a generalization of Lemma 4.5 of [6]:

Lemma A.5: Let us set: ρn =
∫

R3 fn(vn)dvn and ρi =
∫

R3 fi(vi)dvi.

i) We have, for any α ∈ {e, i, n}:

Qα,ir = Q0
α,ir + O(ε),

where the leading order operators Q0
α,ir are still given by expression (7-a)-(7-c), but where the

conservation equations δv, δE (14) have been replaced by their limit when ε goes to zero, i.e. by:

δ0v = δ(vi − vn),

δ0E = δ
(

|ve|2 − [|ve
′|2 + |v⋆

e |2 + 2∆]
)

,
(133)

Moreover, introducing the two following contants

A1(fe) =

∫

IR9

σr δ0E F0 fe(ve) dve dve
′ dv⋆

e , A(fe) =

∫

IR9

σr δ0E fe(ve
′) fe(v

⋆
e) dve dve

′ dv⋆
e ,

we have:

Q0
i,ir

(

fe, fi, fn

)

(v) = −Q0
n,ir

(

fe, fi, fn

)

(v) = A1(fe) fn(v)−A(fe) fi(v).

ii) For electrons, Q0
e,ir

(

fe, fi, fn

)

only depends on the heavy species through their densities ρn,

ρi, and we have the following weak formulation:
∫

R3

Q0
e,ir

(

fe, fi, fn

)

(ve) ψ(ve) dve =

−
∫

IR12

σr δ0E
[

F0 fe(ve) fn(vi)− fe(ve
′) fe(v

⋆
e) fi(vi)

] [

ψ(ve)− ψ(ve
′)− ψ(v⋆

e)
]

dve dve
′ dv⋆

edvi,

so that in particular, we get:

∫

R3

Q0
e,ir

(

fe, fi, fn

)

(ve)

(

1
1
2 |ve|2

)

dve = [ρnA1(fe)− ρiA(fe) ]

(

1

−∆

)

. (134)

The function ψ defined by ψ(v) = 1 + |v|2
2∆ is the only collisional invariant.

iii) Moreover, let H
(

fe

)

= log
(

F−1
0 ρ−1

n ρi fe

)

, and let σr be positive, then

∫

R3

Q0
e,ir

(

fe, fi, fn

)

(ve) H
(

fe

)

(ve) dve = −ρi

∫

IR9

σr δ0E
[

F0
ρn

ρi
fe(ve)− fe(ve

′) fe(v
⋆
e)
]

×
[

log
(

F0
ρn

ρi
fe(ve)

)

− log
(

fe(ve
′) fe(v

⋆
e)
)]

dve dve
′ dv⋆

e ≤ 0.
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iv) In particular, if fe is isotropic (i.e. fe(v
e) = fe(|ve|)) and such that Q0

e,ir

(

fe, fi, fn

)

= 0,

then we have:

fe = ρeM0,Te
, with ρe =

F0 ρn

ρi
(2πTe)

3/2 exp
(

−∆

Te

)

. (135)

Conversely, if fe is given by (135), then we have, for any fn, fi with fixed mean ratio of the

densities ρn/ρi:

Q0
e,ir

(

fe, fi, fn

)

= 0.

Let us now precise the expansion, in terms of ε, of each ionization-recombination operator around

the equilibrium state.

Lemma A.6: We suppose that: f i
0 = ρiMu,T , fn

0 = ρnMu,T and fe
0 = ρeM0,Te

. Next, we expand

the distribution functions in terms of ε by setting:

fε
α = fα

0

(

1 + ε φ1
α

)

+O(ε2) for α = e, i, n. (136)

Then, if (135) is satisfied, we have Q0
α,ir

(

f0
e , f

0
i , f

0
n

)

= 0, for α = e, n, i and:

Qα,ir (fε
e , f

ε
i , f

ε
n) = ε [LQα,ir

(

φ1
e, φ

1
i , φ

1
n

)

+R1
α,ir] + O(ε2), (137)

with:
(

f0
e (ve)

)−1
LQe,ir

(

φe, φi, φn

)

(ve) =

− F0

∫

IR9

σr δ0E f
0
n(vn)

[

φe(ve) + φn(vn)− φe(ve
′)− φe(v

⋆
e)− φi(vn)

]

dvn dv
⋆
e dve

′

+ 2

∫

IR9

σr ′ δ0E ′ f0
e (v⋆

e) f
0
i (vn)

[

φe(ve
′) + φn(vn)− φe(ve)− φe(v

⋆
e)− φi(vn)

]

dvn dv
⋆
e dve

′,

(

f0
i (vi)

)−1
LQi,ir

(

φe, φi, φn

)

(vi) =
∫

IR9

σr δ0E f
0
e (ve

′) f0
e (v⋆

e)
[

φe(ve) + φn(vi)− φe(ve
′)− φe(v

⋆
e)− φi(vi)

]

dve dv
⋆
e dve

′,

(

f0
n(vn)

)−1
LQn,ir

(

φe, φi, φn

)

(vn) =

F0

∫

IR9

σr δ0E f
0
e (ve)

[

φe(ve
′) + φe(v

⋆
e) + φi(vn)− φe(ve)− φn(vn)

]

dve dv
⋆
e dve

′,

where δ0E still stands for |ve|2 = |ve
′|2 + |v⋆

e |2 + 2∆. The remainder terms Rα,ir
1 are linked to the

order one corrections in the asymptotic expansions (in terms of ε) of the conservation equations

(132); thanks to the following property:

σr(−ve
′,−v⋆

e ;−ve) = σr(ve
′, v⋆

e ; ve), (138)

we have:

R1
e,ir(ve) = F0ρn

u
Te
·
[

∫

IR6

σr δ0E f
0
e (ve) (ve − ve

′ − v⋆
e) dv

⋆
e dve

′

−2

∫

IR6

σr ′ δ0E ′ f0
e (v′e) (ve

′ − ve − v⋆
e) dv

⋆
e dve

′
]

R1
i,ir(vi) = R1

n,ir(vn) = 0,

(139)
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and R1
e,ir is an odd function of the velocity variable. With (135), we deduce the following con-

servations:

∫

R3 R
1
e,ir(ve) dve =

∫

R3 R
1
e,ir(ve)

|ve|2
2 dve = 0,

∫

R3 LQe,ir (φe, φi, φn) (ve) dve =
∫

R3 LQi,ir (φe, φi, φn) (vi) dvi,
∫

R3 LQe,ir (φe, φi, φn) (ve) (1 + |v|2
2∆ ) dve = 0,

(140)

Proof: Under the assumption (135), we deduce from the expansion (132) of the conservation

equations that:

F0 f0
e (ve) f

0
n(vn)− f0

e (ve
′) f0

e (v⋆
e) f

0
i (vi)

= F0 f
0
e (ve) f

0
n(vn)

[

1− exp
(

− |vi|2−|vn|2
2 ( 1

T − 1
Te

)
)

exp
(

u
T · (vi − vn)

)]

= εF0 f
0
e (ve) f

0
n(vn)

{[

(vn − u) ( 1
T − 1

Te
)− u

Te

]

· (ve − ve
′ − v⋆

e)
}

+ O(ε2)

Now, inserting the expansion (136) in each ionization-recombination collision term, we obtain,

after some easy computations, the expected results. We just precise that the order one remainder

terms R1
i,ir and R1

n,ir, which are given by:

R1
i,ir(vi) = F0f

0
n(vi)[(vi − u)( 1

T − 1
Te

)− u
Te

] ·
∫

IR9

σr δ0E f
0
e (ve) (ve − ve

′ − v⋆
e) dvedv

⋆
e dve

′

R1
n,ir(vn) = − F0f

0
n(vn)[(vn − u)( 1

T − 1
Te

)− u
Te

] ·
∫

IR9

σr δ0E f
0
e (ve) (ve − ve

′ − v⋆
e) dvedv

⋆
e dve

′ ,

(141)

are in fact zero, thanks to relation (138).
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