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Mortar finite element discretization

of a model coupling Darcy and Stokes equations

by C. Bernardi'!, T. Chacén Rebollo'?, F. Hecht' and Z. Mghazli®

Abstract: As a first draft of a model for a river flowing on a homogeneous porous ground,
we consider a system where the Darcy and Stokes equations are coupled via appropriate
matching conditions on the interface. We propose a discretization of this problem which
combines the mortar method with standard finite elements, in order to handle separately
the flow inside and outside the porous medium. We prove a priori and a posteriori error
estimates for the resulting discrete problem. Some numerical experiments confirm the
interest of the discretization.

Résumé: Comme premiere esquisse d'un modele de riviere coulant sur un sol poreux ho-
mogene, nous considérons un systeme ou les équations de Darcy et de Stokes sont couplées
par des conditions de raccord appropriées sur l'interface. Nous proposons une discrétisation
de ce probleme qui combine la méthode de joints avec des éléments finis usuels de facon a
traiter séparément ’écoulement a 'intérieur et a ’extérieur du milieu poreux. Nous prou-
vons des estimations a priori et a posteriori de I'erreur. Quelques expériences numériques
confirment l'intérét de la discrétisation.
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1. Introduction.

We first describe the model we intend to work with. Let € be a rectangle in dimension
d = 2 or a rectangular parallelepiped in dimension d = 3. We assume that it is divided
(without overlap) into two connected open sets Qp and Qp with Lipschitz—continuous
boundaries, where the indices P and F' stand for porous and fluid, respectively. The fluid
that we consider is viscous and incompressible. So in the porous medium, which is assumed
to be rigid and saturated with the fluid, we consider the following equations, due to Darcy,

au+gradp = f in Qp,
{ (1.1)

divu =0 in Qp.

In Qp, the flow of this same fluid is governed by the Stokes equations

—vAu+gradp=f in Qp,
{ (1.2)

divu =0 in Qp.

The unknowns both in (1.1) and (1.2) are the velocity w and the pressure p of the fluid. The
parameters v and « are positive constants, representing the viscosity of the fluid and the
ratio of this viscosity to the permeability of the medium, respectively. The porous medium
is supposed to be homogeneous, so that we take o constant on the whole subdomain 2p
(we refer to [1] and [5] for handling the somewhat more realistic case where « is piecewise
constant in a different framework).

Figure 1. An example of domain {2

Concerning the boundary conditions, as illustrated in Figure 1, we denote by I', the
upper edge (d = 2) or face (d = 3) of 2, where the index a means in contact with the
atmosphere. Let I';p be the intersection I'; N 0Qp and I'yr the intersection I'y N 0N g
(note that I';p can be empty in some practical situations). We set:

sz(@Qﬂ&Qp)\I‘ap and FF:(aﬂﬂaﬁp)\Pa}?



Let m stand for the unit outward normal vector to €2 on 9€2 and also to Qp on 0Qp. We
provide the previous partial differential equations (1.1) and (1.2) with the conditions

u-n=%k onlp and p=p, onlyp, (1.3)

and
u=g onlp and vo,u—pn==t, onl,.p. (1.4)

Note that these conditions are of Dirichlet type on 92 \ I',, while the condition on I',p
only means that the pressure, here equal to p,, depends on the atmospheric pressure. The
condition on I'yr means that the variations of the free surface at the top of the flow are
neglected in the model. Thus t, mainly depends on the atmospheric pressure and the
wind on the river. This is standard in geophysics, see e.g. [24, §1.4]; note however that,
when the flux fFF (g - n)(T)drT + pr k(T) dT is too large, this boundary condition is not
compatible with the physics of the problem.

To conclude, let I denote the interface 9Qp N 0N p. On I' we consider the matching
conditions

ulg, -m=1ulg, N and —plap, m =voyulg, —pla,n on I (1.5)

Indeed, from a physical point of view, conservation of mass enforces continuity of the nor-
mal velocities at the interface. Similarly, conservation of momentum enforces conservation
of the normal stresses. Such interface conditions are studied for instance in [23], [17] and
[15, §4.5].

System (1.1) — (1.5) is only a first draft of a model for the laminar flow of a river
over a porous rock such as limestone, however it seems that its discretization has not
been considered before. Of course, in more realistic models, the Stokes equations must be
replaced by the Navier-Stokes equations (for instance when the river meets obstacles) and
the Darcy equations must be replaced by more complex models as proposed in [29] (see
also [4] or [26]). However we are interested with this system. We first write an equivalent
variational formulation of it and prove that it admits a unique solution.

The discretization that we propose relies on the mortar element method, a domain
decomposition technique introduced in [7] (see also [9] for the new trends). Indeed it
seems convenient to use a subdomain for the fluid and another one for the porous medium.
Moreover, owing to the flexibility of the mortar method, independent meshes can be used
on the different parts of the domain. On each subdomain, we consider a finite element
discretization, relying on standard finite elements both for the Stokes problem (the element
first introduced in [18] and analyzed in [11]) and the Darcy equations (the Raviart—-Thomas
element [30]). Combining these two choices, we construct a discrete problem and we check
that it has a unique solution. We then prove optimal a priori and a posteriori upper bounds
for the error, despite the lack of conformity of the mortar method.

Thanks to the error indicators issued from the a posteriori analysis, we are in a position
to perform mesh adaptivity independently in the porous and fluid domain. We describe
the adaptivity strategy that we use. Next we present numerical experiments. The results
are in good agreement with the error estimates, so they justify our choice of discretization.

2



The outline of the paper is as follows.
e In Section 2, we write the variational formulation of the problem and prove its well-
posedness.
e Section 3 is devoted to the description of the discrete problem and to the proof of its
well-posedness.
e We prove the a priori and a posteriori estimates in Sections 4 and 5, respectively.
e The adaptivity strategy and numerical experiments are presented in Section 6.



2. Analysis of the model.

We first intend to write a variational formulation of system (1.1) — (1.5). From now
on, for each domain O in R? with a Lipschitz-continuous boundary, we use the full scale of
Sobolev spaces H*(O) and Hg(0O), s > 0, their trace spaces on 90O and their dual spaces.

We denote by €°°(O) the space of restrictions to O of indefinitely differentiable functions
on R? and by 2(0) its subspace made of functions with a compact support in O.

Let also H(div, ) denote the space of functions v in L?(2)¢ such that divv belongs
to L?(Q), equipped with the norm

D=

lollive = (193 + Idivoliag ) (2.1)

We recall the Stokes formula, valid for smooth enough functions v and g,

/Q(divv)(m) q(x) dm—i—/ﬂv(m) - (grad ¢)(z) d :/ (v - n)(7)q(T)dT.

o2

Since €>°()? is dense in H(div, ) [20, Chap I, Thm 2.4], we derive from this formula
that the normal trace operator: v — v - n is defined and continuous from H(div,2) into

H~2(89). This leads to define
Hy(div, ) = {v € H(div;,Q); v - n=0o0n 69}. (2.2)

Then 2(Q)? is dense in Hy(div,Q) [20, Chap. I, Thm 2.6], and both H(div,) and
Hy(div, ) are Hilbert spaces for the scalar product associated with the norm defined in
(2.1).

Remark 2.1. Let I'* be any part of 92 with positive measure. We refer to [25, Chap. 1,

1
§11] for the definition of H3,(I'*) as the space of functions in H 2(I'*) such that their
extension by zero belongs to Hz (9). The normal trace on I'* of a function v in H (div, ©2)

1
makes sense in Hg,(I'*)’, owing to the following formula

(divo)(x) q(x) dw+/ﬂv(a}) - (grad q)(x) de,

(v m)(r)a(r)dr = |

1
vq S HOQO(F*)v / 0

*

where § is any lifting in H(Q) of the extension by zero of ¢ to 9 (clearly the integral
in the left-hand side of the previous equality represents a duality pairing). Note moreover

that H~=(T'*) is imbedded in HZ (I'*)'.
We now introduce the variational spaces

X(Q) = {v € H(div,Q); vq, € Hl(QF)d}, s
XO(Q):{'UEX(Q);'v-n:0oanand'v200nFF}. .
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Both of them are equipped with the norm

1
2

lollxe = (101 + 1013 @) (2.4)

and are Hilbert spaces for the corresponding scalar product. We also consider the bilinear
forms

a(u,v) = ap(u,v) + ap(u,v),
with  ap(u,v) za/ u(x) - v(x)dex,

Qp

rlwv)=v [ (gradu)(@) : (gradv)(@)do,

b(v,q) = —/Q(divv)(a:)q(a:) dz.

It is readily checked that the first three forms are continuous on X (2) x X (), while the
last one is continuous on X (Q) x L?(Q).

The variational problem that we consider now reads
Find (u,p) in X(Q) x L*(Q) such that
u-n=k onlp and u=g onlp, (2.6)

and that
Vo € Xo(2), a(u,v)+b(v,p) = L(v),

Vg € L*(), b(u,q) =0,

where the linear form L(-) is defined by

E(v):/Qf(zc) v(@) dw—/r (v - n)(T)pa(T)dT+/F (1) - to(r)dr.  (2.8)

aF

Note that, in this definition, we have used integrals for the sake of clarity, however they
are most often replaced by duality pairings. Indeed, from now on, we make the following
assumption on the five data

kEHié(FP)v QGH%(FF)da I GXO(Q)/7 Pa 6}I()Eo(l—‘ap)u ta eHié(FaF)dv
(2.9)
where H=2(T'p) and H~2(T'yp) stand for the dual spaces of H2(I'p) and H2 (Typ), re-
spectively. With this choice, the boundary conditions (2.6) makes sense (see Remark 2.1)
and the form £(-) is continuous on X (2).

Standard arguments lead to the equivalence of problems (1.1) —(1.5) and (2.6) — (2.7).

Proposition 2.2. Any smooth enough pair of functions (u,p) is a solution of problem
(2.6) — (2.7) if and only if it is a solution of problem (1.1) — (1.5).
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To prove the well-posedness of problem (2.6) — (2.7), we first construct a lifting of the
boundary conditions (2.6).

Lemma 2.3. There exists a divergence-free function w, in X () which satisfies
u, -n==%k onlp and u, =g onlp, (2.10)

and

Proof: It is performed in three steps.

. . 1 . .
1) Let g be an extension of g into Hz(90Qr). We introduce a fixed smooth function ¢
with support in I" and set

—%

@ n)m)dr
g —=g—

Je(p - n)(7)dr

P.
So the function g* belongs to Hz (9Qp) and satisfies

R T I R U

Thus, the Stokes problem

—UAubF—l—gradpr =0 in QF,
{ divupr =0 in Qp, (2.12)
Uppr — g* on OQF,

has a solution in H'(Qr) x L?(Qr), which is unique up to an additive constant on the
pressure [20, Chap. I, Thm 5.1]. Moreover, thanks to the previous inequality, this solution
satisfies

sl eys < gy (2.13)

2) We now denote by Y (2p) the space
Y(Qp) = {,u € H'(Qp); p=0o0n Fap},
When I',p has a positive measure, we consider the problem: Find \ in Y (2p) such that
ey (), [ (grad (@) - (grad ()
Qp

(2.14)
:/F k(T)u(T) dT—i—/(ubF - n)(T)u(T)dr.

T

This problem has a unique solution. Moreover the function u;p = grad A is divergence-free
on Qp (as follows by taking p in Z(2) in the previous problem) and satisfies

upp -n=~k onlp and Uupp M =upr -n onl, (2.15)



and
lwspllaaiver) < e (k-5 ) F190 5 0,00 (2.16)

3) When T',p has a zero measure, it follows from the definition of I';p and Iy that T'yp
has a positive measure. Thus, we introduce a further function g* in H B (T')4 such that

[ - mmyar = | k)i,

and there exists a function g in H? (0Q2F) equal to g on I'rp and to g* on I' (note that this
requires some compatibility conditions between g and g* on I'y N T when this last set is
not empty). By adding to g a constant times a fixed smooth function now with support
in Ty, we construct a function g* in Hz (9Qp) which satisfies

/ (@ - m)(T)dr =0.
151955

Then the Stokes problem (2.12) with this modified function g* still admits a solution, and
this solution satisfies

sl < e (-3 o+ 18005 ) (2.17)

Next, since the function equal to £ on I'p and to uprp - m = g* - n on I' has a null integral
on 0N p, problem (2.14) admits a solution A, unique up to an additive constant (note that
Y (Qp) now coincides with H1(Qp)). The function u,p = grad ) is divergence-free on Qp
and still satisfies (2.15) and (2.16).

To conclude, we observe from either (2.13) or (2.17) and (2.16) that the function u, equal
to upp on 2p and to upp on Qp satisfies all the desired properties.

Remark 2.4. Note that the first assumption in (2.9) could be replaced by the weaker one
1
k E H020(FP)/’
see Remark 2.1. However, the previous proof does not work with only this assumption
when, for instance, I'p N I' is not empty, see (2.14). So we do not handle this modified

assumption since we have no direct application for it.

To go further, we set: ug = u — up, where wuy, is the function exhibited in Lemma 2.3.
We observe that problem (2.6) — (2.7) admits a solution if the following problem has one:

Find (ug, p) in Xo(Q) x L?(Q) such that

Vo € Xo(22), a(up,v)+ b(v,p) = —a(up, v) + L(v),

0 (2.18)
Vg € L*(Q), blug,q) =0.
It is readily checked that the kernel
V(Q) = {v € Xo(); Vg € L*(Q), b(v,q) =0}, (2.19)
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coincides with the space of functions in X, (€2) which are divergence-free on 2. We first
check the ellipticity of the form a(-,-) on V().

Lemma 2.5. Assume that
(i) either I'p has a positive measure in 0Qp,
(i) or the normal vector n(x) runs through a basis of R? when x runs through T.

There exists a constant o > 0 such that the following ellipticity property holds

Vo e V(Q), a(v,v) >« HUH?X(Q). (2.20)

Proof: Let us observe that, for all v in V(Q),
a(v,v) = min{o, v} ([|v]|72(0,)0 + 0[5 0pa) (2.21)

and

Nl=

vl x@) = (”U”%z(gp)d + |v|i11(QF)d + ||v||2L2(QF)d) (2.22)

Let now v be a function in V/(§2) such that [|v||12(q,)¢ and |v|g1(q,)e are equal to zero.
Thus, v is zero on Qp and is equal to a constant ¢ on Qp. When assumption (i) holds,
it follows from the definition of X((€2) that this constant is zero. When assumption (ii)
holds, since v is zero on Qp, ¢ - n is zero on I' and, since n runs through a basis of R?, ¢
is zero. Then v is zero on 2. Thanks to the Peetre-Tartar Lemma [20, Chap. I, Thm 2.1],
it follows from this property, (2.22) and the compactness of the imbedding of H'(2r) into
L?(Qp) that

1
Vo e V(Q), (Ilvl72qpya + 101F ) > = clvllx@)-

This, combined with (2.21), gives the desired ellipticity property.

Lemma 2.6. There exists a constant 3 > 0 such that the following inf-sup condition holds

b(v,
Ve 2@, swp —D > gl o). (2.23)
vexo(@) [Vlx @)

Proof: Let Q be a rectangle (d = 2) or a rectangular parallelepiped (d = 3) such that
I'y =T, NOQ, is contained in the interior of I', and has a positive measure. Then, the
function ¢4 defined by

q on {2,
= _measl(Q+) fQ q(a:) dx on Q+’

belongs to L2(Q U Q) and has a null integral on this domain. It thus follows from the
standard inf-sup condition, see [20, Chap. I, Cor. 2.4], that there exists a function v, in
H}(QUT L UQ,)? such that

divoy = —gy and ||’U+HH1(QUF+UQ+)d <c ||Q+||L2(Qur+u9+)-

8



Taking v equal to the restriction of v4 to € (which obviously belongs to Xy(£2)) leads to
the desired inf-sup condition.

We are now in a position to prove the main result of this section. Note that, due to
the mixed boundary conditions, no further assumption on the flux of the data is needed
for the existence of a solution.

Theorem 2.7. If the assumptions of Lemma 2.5 hold, for any data (k,g, f,pa,ts) satis-
fying (2.9), problem (2.6) — (2.7) has a unique solution (u, p) in X (Q) x L?(Q). Moreover
this solution satisfies

1wl x @) + [IPllz2(0)
(2.24)

< 1 1 ’ 1 1 .
< (1l -3 gy 1803 g0+ I ot + el 3 el o)

Proof: It follows from Lemmas 2.5 and 2.6, see [20, Chap. I, Thm 4.1], that problem
(2.18) has a unique solution (ug,p) in Xo(2) x L?(Q) and that this solution satisfies

Jesollon + Wellzzcan < e (lsllxcon + 18 o+ Wall 3 o Ml ) (2:25)

Then, the pair (u = ug + up, p) is a solution of problem (2.6) — (2.7), and estimate (2.24)
is a consequence of (2.25) and (2.11). On the other hand, let (u1,p;) and (us,p2) be two
solutions of problem (2.6) — (2.7). Then, the difference (u; — u2,p; — p2) is a solution of
problem (2.18) with data ws, f, p, and ¢, equal to zero. Thus, it follows from (2.25) that
it is zero. So the solution of problem (2.6) — (2.7) is unique.

From now on, we assume that the non restrictive assumptions of Lemma 2.5 hold. We
conclude with some regularity properties of the solution (u, p).

Proposition 2.8. Let us assume that the five data satisfy
ke H:(Tp), ge H:(Tr)!, feH M, p,eH2(T,p), tocH(T,p)% (2.26)

Then, the restriction (w|q,,pj,) of the solution (u,p) of problem (2.6) — (2.7) to Qp
belongs to the space H*? (Qp)¢ x H*?+1(Qp) for a real number sp > 0 given by

e sp=1/4if Qp is a polygon (d = 2),

e sp=1/2if,p is empty or if Qp is a polygon or a polyhedron and there exists a convex
neighbourhood in Qp of (TpUT)NT,p,

e sp < 1if',p is empty and Qp is a convex polygon or polyhedron or has a ¢*''-boundary.
The restriction (u|q,., p|a,) of the solution (u,p) of problem (2.6) — (2.7) to Q2 belongs
to the space HF 1 (Qp)? x H*F (QF) for a real number sp > 0 given by

e sp=1/4if Qp is a polygon (d = 2),

e sp = 1/2 if T'p is empty or if Qp is a polygon (d = 2) and there exists a convex
neighbourhood in Qp of (Tyr UT) N T,

o sy < 1ifT'p is empty and QF is a convex polygon or polyhedron or has a ¢*'-boundary.
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Proof: We check successively the two assertions.
1) The function p|q,, is a solution of the Poisson equation with mixed boundary conditions

—Ap = —div f in Qp,
P = DPa on I'yp,
Ohp=f n—ak onI'p,
Ohp=f n—-auyq, -n on I

Moreover, since u|q, belongs to H'(Q)4, its normal trace U|q, - n belongs to H%(F).
The desired regularity of pjq, is easily derived from [21, Thms 2.2.2.3 & 3.2.1.2] or [16,
§3] thanks to appropriate Sobolev imbeddings. The regularity of ug, then follows from
the first line in (1.1).

2) The pair (u|q,,p|o, ) is a solution of the Stokes problem with mixed boundary conditions

—vAu+gradp = f in Qp,

divu =0 in Qp,

u=g on I'p,

vopu—pn=t, onI'yp,
Vo —pn = —pjo, N onI.

It can also be noted from part 1) of the proof that p|o, n belongs at least to Hz (I)<. So
the desired results follow from [28].

Assumption (2.26) is too strong for most results of Proposition 2.8, and we only make
it for simplicity. Moreover the norms of (ujq,,pj,) in H? (Qp)? x H**T1(Qp) and of
(Wjap, Py) in H3PTH(Qp)Y x HSF (Qp) are bounded as a function of weaker norms of the
data. Note also that compatibility conditions on the data at the intersections of different
parts of the boundaries should be made to obtain higher regularity, i.e. to break the
restrictions sp < 1 and sp < 1. Similar results hold in other situations that we do not
consider in this work (for instance, when I, is empty).

10



3. The discrete problem and its well-posedness.

The mortar finite element discretization relies on the partition of €2 into Qp and
Qr. Indeed, even if some further partitions could be introduced to handle anisotropic
domains for instance, we do not consider them in this work. Let (7,7)s, and (7,})s, be
regular families of triangulations of Qp and Qp, respectively, by closed triangles (d = 2)
or tetrahedra (d = 3), in the usual sense that:

e For each hp, Qp is the union of all elements of Thp and, for each hp, Qp is the union of
all elements of 7,";

e The intersection of two different elements of ’]}ZP , if not empty, is a vertex or a whole
edge or a whole face of both of them, and the same property holds for the intersection of
two different elements of 7,%;

e The ratio of the diameter hx of any element K of 7,7 or of 7,F to the diameter of its
inscribed circle or sphere is smaller than a constant o independent of hp and hp.

As usual, hp stands for the maximum of the diameters of the elements of 7,"" and hp for
the maximum of the diameters of the elements of ZLF . From now on, ¢, ¢, ... stand for
generic constants that may vary from one line to the next but are always independent of
hp and hr. We make the further standard and non restrictive assumptions.

Assumption 3.1. The intersection of each element K of Thp with either T'yp or I'p or T,
if not empty, is a vertex or a whole edge or a whole face of K. The intersection of each
element K of ’];lF with either I'yz or I'x or T, if not empty, is a vertex or a whole edge or
a whole face of K.

It must be noted that, up to now, no assumption is made on the intersection of the
elements of 7,7 and 7,F. So the K NI, K € 7,7, and the K NT', K € T,F, form two

independent triangulations of I', that we denote by Sf T and 55 ’F, respectively. However,
we are led to make a third assumption.

Assumption 3.2. For any element K of 7,f, the number of elements K’ of 7,7 such that
0K NOK' has a positive (d — 1)-measure is bounded independently of K, hp and hp.

We now define the local discrete spaces. As already explained in the introduction, the
space of discrete velocities in (2p is contructed from the Raviart-Thomas finite element
[30], which leads to the following definition

X}ILD:{’U}LGH(CHV,QP); VKE’];LP’ 'Uh‘KGPRT(K)}7 (31)

where Pr(K) stands for the space of restrictions to K of polynomials of the form a+bx,
a € R? and b € R. We also introduce the space

Xé?l:{'thX;};; v, -n=0on Fp}. (32)
Similarly, on Qp, we consider the space related to the Bernardi-Raugel element [11], i.e.
XF ={v, € H' ()% VK € T,F, vy i € Pur(K)}, (3.3)

where Py, (K) stands for the space spanned by the restrictions to K of affine functions on
R? with values in R? and the d + 1 normal bubble functions . n. (for each edge (d = 2)
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or face (d = 3) e of K, 1. denotes the bubble function on e equal to the product of the
barycentric coordinates associated with the endpoints or vertices of e and n. stands for
the unit outward normal vector on e). We also need the space

X5 ={vneX; vy=00nTp}. (3.4)

Let now h denote the discretization parameter, here equal to the pair (hp,hp), and
let 7, stand for the union of 7,F and 7,F". We define the discrete space of pressures as

My, = {gn € L*(Q); VK € Tp,, qnx € Po(K)}, (3.5)

where Py(K) is the space of constant functions on K.

Remark 3.3. Other choices of finite elements are possible. However, the Raviart-Thomas
element is the simplest div-conforming element and is necessarily associated with piecewise
constant pressures. So we must keep the same type of pressure finite elements for the Stokes
part, and the Bernardi-Raugel element is the less expensive H'-conforming finite element
for this type of pressures. In dimension d = 2, piecewise quadratic velocities can also be
used on Qp and in dimension d = 3, Pyzx(K) can be replaced by the space spanned by
affine functions and the ., up to the power d.

The skeleton of the decomposition is now the interface I'. As standard for the mortar
element method, see [7] and [9], the construction of the global space of velocities relies
on the fact that the matching conditions are enforced via the orthogonality to functions
defined on 7;7 or 7,F". Since these matching conditions only deal with the normal trace
of the velocity, we have decided to make the choice proposed in [5, §3], which is more
naturally associated with functions defined on ’ThP , i.e. we define the space

Wy, = {on, € L2(D); Ye € £, pnje € Pole)}, (3.6)

with obvious definition for Py(e).

The global spaces of velocities are then the spaces X; and Xg; of functions v, such
that
e their restrictions vy o, to 2p belong to X f and X(J)Dh, respectively,
e their restrictions vj|q,. to {2 belong to X f and Xé?h, respectively,
e the following matching conditions hold on I'

‘v’gph € Wy, /F((’UMQP — 'Uh|QF) . n)(r)goh(T) dr = 0, (37)

where T stands for the tangential coordinate(s) on I'. Note that these conditions are
not sufficient to enforce the continuity of v, - m through I', so that the discretization is
nonconforming: For instance, X}, is not contained in H (div,(2). However, the spaces Xj
and Xgy, are still equipped with the norm || - || x ().

To discretize the essential boundary conditions that appear in (2.6), we now define
the approximations of the data k and g that we use in this work. We denote by kj, the
piecewise constant approximation of k defined by

1
KeTl KNr k = k(T)dr. .
VK €7, /meas(KNILp) >0, kyrnr, meas(K N Tp) /Kmrp (T)dr (3.8)
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Note that this choice requires that k belongs to H=7(f2), 0 < 1. We also introduce an
approximation of g: When assuming that g is continuous on 'z (which is slightly stronger
than the hypothesis made in (2.9)), the function gy,
e belongs to the trace space of X }Ij ,
e for each K in 7,7, is equal to g(a) at each endpoint or vertex a of K NT'p,
e and satisfies

| e mmir= [ (g wmar

KAT'p KNl

Indeed, these conditions define kj, and g, in a unique way, as follows from [30, Remark 3]
and [11, Lemma II.1].

We are now in a position to write the discrete problem, which is constructed by the
Galerkin method from (2.7). It reads

Find (up, pp) in Xp, x My, such that
up, -m==%k, onlp and up =gn onl'p, (3.9)

and that

Yo, € Xon,  alun,vp) + b(vn, pr) = L(vp), (3.10)
vQh € Mh; I;(uh, Qh) = 07

where the bilinear form b(-,-) is defined by

b(v,q) = —/Q (divvg,)(x)q(x) d:I:—/ (div v, )(x)q(x) dz. (3.11)

Qp

The introduction of this modified form is due to the nonconformity of the discretization,
and it is readily checked that it coincides with b(-,-) on H(div,Q) x L?(Q).

As in the continuous case, to prove the well-posedness of problem (3.9) — (3.10), we
first construct a lifting of the boundary conditions (3.9). It requires the Raviart-Thomas
operator II", see [30, §3] and also [27, §1.3] for its three-dimensional analogue: For any
smooth enough function v on Qp, II#7v belongs to X/” and satisfies on all edges (d = 2)
or faces (d = 3) e of elements of 7,7,

/ (I*v - n)(T)dT = / (v - n)(7)dr. (3.12)

e e

The fact that these equations define the operator II}* in a unique way and its main
properties are proved in [30, Thm 3] in the two-dimensional case. Moreover, this operator
preserves the nullity of the normal trace on I'p (this requires Assumption 3.1). Similarly,
we introduce another operator that we call Bernardi-Raugel operator and denote by II7":
For any continuous function v on Qp , II7*v belongs to X ,‘: , is equal to v(a) at any vertex

a of the elements of 7," and satisfies on all edges (d = 2) or faces (d = 3) e of elements of
7,

/ (5% - n)(7) dr = / (v - n)(r)dr. (3.13)

e

13



This defines the operator II7* in a unique way, see [11, Lemma II.1].

We now establish some properties of the operator II;". We refer to [19, Appendix]
for their proof in the two-dimensional case and for quadrilateral finite elements and to
[14, §II11.3] for additional results. It requires the Piola transform Ay, defined as follows,
see [20, Chap. III, form. (4.63)]: For any element K of 7,7, denoting by Fi one of the
affine mappings which maps the reference triangle or tetrahedron K onto K and by Bg

the Jacobian matrix of F, we associate with any vector field v defined on K the vector
field v = Agv defined on K by the formula

N 1 N

We recall two properties of this transform, valid for all smooth enough functions v and ¢

. 1 . 1
(le U) o FK = MTBM div (AK 'U), (315)
/ (v - n)(r)p(r) dr = / (A - ) (#)(p o Fx)(F) dF (3.16)
oK oK

where n and 7 stand for the unit outward normal vectors to K and K , respectively. We
also introduce the basis functions associated with the space X ,f  If S}f denotes the set of
edges (d = 2) or faces (d = 3) of elements of 7,7, with each e in &, we associate the
function ¢, in X7 such that

/(goe cn)(T)dr =1 and Ve €&, e #e, //(goe -n)(T)dTr=0. (3.17)

The ., e € &, form a basis of X{'. Moreover, it is readily checked that each ¢, - n is

piecewise constant, equal to —2— on e and to zero on all e’ # e.
meas(e)

Lemma 3.4. The following property holds for any K in T,F and any v in H(div,Qp),
||diVH}I§T’U”L2(K) < ||d1V’U||L2(K) (318)

The following property holds for any K in T,F' and any v in H(div,Qp) N H*(Qp)?,
0<s< %,

IR vl L2 (acya < e (vl z2 ey + M (0] ()2 + huc [|div ol L2 ). (3.19)

Proof: We check successively the two assertions of the lemma.
1) Since the divergence of all functions in X/ is constant on each element K of 7,7, we
have

Idiv I 22 ) = (div IE70) | / (div 17" v) (z) dze
K

— (div T o) /a (7o my(r)dr

14



It follows from the definition (3.12) of II" that

Jdiv I ol e = (@iv o) e |

[ (w-mmar - / (div [E7) (div v)(x) de,

K

so that using a Cauchy—Schwarz inequality yields (3.18).
2) Denoting by £k the set of edges (d = 2) or faces (d = 3) of K, we have from (3.12)

(o) = 3 / (v - n)(7) d7) @,
EEEK ¢
so that
I e < 3 | / (v - m)(7) dr| | @ell e (3.20)
GEEK N

When setting é = Fy'(e), it follows from (3.16) and (3.17) that the function @, = Az ¢,
is such that

/(@~ﬁ)(+)d+:1 and V&' €&, ¢ #é, /(@ﬁ)(ﬂ&:o,

so that ||@e| r2(fye 18 bounded independently of K. Thus, standard arguments relying on
(3.14) give
1—4
el e < ehlg ®. (3.21)

On the other hand, denoting by X. the function equal to 1 on e and to 0 on 0K \ e, by Xe
the function x. o F and by X, a lifting of X, to K, we have from (3.16)

[ mmir= [ e mmTE a

e 8K

— [ (At)(@) - (rad T)(@) o+ [ (div (A5'v)) (@) To(@) de
K

K

Note however that, since X only belongs to H"(K) for all r < 1 (grad x.)(&) only

belongs to H T_%(k ) and that the first integral in the second line of the previous equation
must be replaced by a duality pairing. Then, choosing r such that % —r = s yields

| / (v - n)(T)dr| < ¢ (| ARl e 0 + AV (AR 0)]| 2 )

Standard arguments relying on (3.14), (3.15) and the use of intrinsic norm and seminorm

~

on H*(K), see for instance [3, §7.43], give

41 dis—1 4 ..
| [ myydr| < (h ollsuos + BE ol + b ldivoliaa). (.22

Inserting (3.21) and (3.22) into (3.20) leads to (3.19).
We now briefly prove analogous results for the operator II7".
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Lemma 3.5. The following property holds for any real number sy, 0 < sg < 1, for any K
in 7,F and any v in H*(Qp)?, 4 <5 <2,

o = TE™0] -0 r0ye < ehie ™ [[0]] e rcye- (3.23)
Proof: Let Z; denote the Lagrange interpolation operator with values in piecewise affine

functions. It follows from the definition of II?* that, if £ x denotes the set of edges (d = 2)
or faces (d = 3) of K,

(IE"v) ik = (Znv) 1k + Z_ L _ffliz;ﬁi)m T pene.
e€fk
We recall the usual estimate, for 0 < rg <1 and % <r<2,
v = Zhvl|mro(xya < ch™"° ||]| grr(xcya- (3.24)
Applying this estimate with ro = sg yields
o = Zuvll g0 1y < el ™ [[0ll e rcye (3.25)

On the other hand, we derive from standard arguments that
%—So /1d—1
Ve el oo (rye < chg | Ve (T) dT’ >c hy .
e

Combining this with (3.22) and three applications of (3.24) gives for each e in £

[.((v=Tyv) - n) ()
[ tbe(T) dT

dr s
’ [the Trel| oo (xya < chye ™ (vl e (e

This inequality and (3.25) yield the desired estimate.
To go further, we need the following result which is a consequence of Assumption 3.2.

Lemma 3.6. For each h, let \j, denote the maximal ratio hy /hg/, where K runs through
TF, K' runs through 7,F' and 0K N 0K’ has a positive (d — 1)-measure. Then, all ), are
smaller that a constant \ independent of h.

Proof: Let K be any element of 7,/ which has an edge (d = 2) or a face (d = 3) e
contained in I'. Assumption 3.2 yields that e is contained in the union of edges or faces
ei, 1 <1 <1, of elements K; of ’Z;LP , where I is bounded independently of K and h. So,
we have

On the other hand,
e meas(e) is equivalent to hf{l and each meas(e;) is equivalent to hf{il, with equivalence
constants only depending on the regularity parameter o,
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e when e; and e; are adjacent, i.e. share a vertex in dimension d = 2 or an edge in
dimension d = 3, the ratio hg,/hk;, is bounded by constants only depending on o,

e for all e; and e;, there exists a path linking e; to e;, only going from an e to an adjacent
e’ and crossing at most ¢ elements e, where ¢ is bounded as a function of I.

Combining all this yields the desired result.

Lemma 3.7. If the data (k,g) belong to H’?(T'p) x H°F (L'p)?, op > —% and op > L,
there exists a function wyy, in X;, which satisfies

Upp "N = k‘h on Fp and Upp, = gn OI FF, (326)

and
lwpnl| x () < ¢ (1Kl mer @) + 19l Hor @r))- (3.27)

Proof: We use once more the function u; exhibited in Lemma 2.3 and, since it is con-
structed from the solutions of problems (2.12) and (2.14), we observe from [21, §7.3.3] or
[16, Cor. 3.7], that, since Qp and Qp are polygons or polyhedra, there exist real numbers
sp,0<sp<op-+ %, and sp, %l <sp<op+ %, such that the pair (upq,, uso,) belongs
to H°P (Qp)? x H*F (Qp)? and satisfies

lwpll s @pya + 1ol ror (mye < ¢ (1kllzor 0py + 19l Ho P (Tp)a)- (3.28)

The construction of the function wy, is now performed in two steps.
1) We first introduce the function w} such that

1 _ RT 1 _ BR
W0, = Uy upap, W0, = Uy "0
It follows from Lemmas 3.4 and 3.5 that, since uy;, is divergence-free on (p,

i r(aiv,0p) + 1wl @y < ¢ (Jwollmer @pye + sl ger @pe)- (3.29)

Moreover, owing to the definitions of II” and II?%, the function w; satisfies the boundary
conditions (3.26).

2) Recalling that 55 1" denotes the set of edges (d = 2) or faces (d = 3) of elements of T
which are contained in T', we consider the function w? defined by

wy g, = Z (/((wfleF —wyg,) - 1) (T) dT) Pe; wy g, = 0.

pr “J€
e€&,”

where the functions ¢, are defined in (3.17). We observe from the choice of w? that the
function up, = wji + w? satisfies the matching conditions (3.7), hence belongs to Xp,.
Owing to the properties of the functions ¢, 'w,zl - n vanishes on I'p, so that wy;, satisfies
(3.26). Moreover, it follows from (3.15) and (3.21) that, if K denotes the triangle of 7,
that contains e,

_d
lpell aiv, ) < chg?. (3.30)
Next, owing to the definition of w}, we have

[ (@i, ~wiia,) - m)@)ir == [ ((w = wh,) - m)(r)ar

e

17



Applying (3.22) yields

| [ (s = whia,) - m)ryar]
dys—1

d__ a
<ec Z(h,.% "y = Ty | g2 oy + hi2

K

|wp — TI; | s ()

d
il = T s ey ).

where the previous summation is taken on all the x in ’ThF such that e N Ok has a positive
measure. We use Lemma 3.5 to bound the norms on the x. Combining all this with (3.30)
yields

_4d dysp—1
‘/((wllsz - wilmp) : n)(T) dr| |pellraiv,i) < chy® Zh,.% ! [l frer ()a-

K

4 d d
Note also that the ratio k2 /h}. is bounded by A?, hence by a constant independent of h,
see Lemma 3.6. This gives

1w} || m (aiv.ap) < chiF ! lws || e (2ya- (3.31)

Finally, estimate (3.27) is derived from (3.28), (3.29) and (3.31).

We prove a further result which is needed in Section 4. It requires the following
parameters.

Notation 3.8. The parameters Ap and \p are defined as follows:

(i) Ap is positive in the general case, equal to 1/4 if Qp is a polygon (d = 2), equal to 1/2
if I, p is empty or if there exists a convex neighbourhood in Qp of (fp Uf) NI',pand <1
if [',p is empty and 2p is a convex polygon or polyhedron,

(ii) Ar is equal to § in the general case and to 1 if Qp is convex.

Corollary 3.9. If the assumptions of Lemma 3.7 are satisfied, the following estimates
hold between the function w;, introduced in Lemma 2.3 and the function wy, introduced
in Lemma 3.7

min{ap—%,AF}

min{o —|—l,)\
luy — won || x () < ¢ (hp tortaart | hp ) (1B zor 0p) + 191l Hor (0p)a),
(3.32)
and _
b(u ,q min{or—1 )\
sup DL B) minor—EAY (gl en) (333)

anerty lanllez) ~

Proof: Owing to the regularity properties of problems (2.12) and (2.14), see [21, §7.3.3] or
[16, Cor. 3.7], estimate (3.28) holds with sp = min{ap—i—%, Ap}and sp = min{ap—i—%, A+
1}. With the notation of the previous proof, since both u; and II;"u; are divergence-free
on 2p, we have the inequality

lwy — wonl x(0) < llws — T ws | L2 pye + Juo — TE w10y )a + W] |1 (div,0p)- (3.34)
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The approximation properties of the operator Il are easily derived from the fact that it
preserves the constants on each K in 7, by applying (3.19) to the function v — cx for an
appropriate constant cx and using the approximation properties of this constant. They
read, for 0 < r <1,

[0 = T agrere < e [0]l g0y (3.35)

So, using (3.35) to bound the first term in the right-hand side of (3.34), (3.23) to bound
the second term and (3.31) to bound the third term yields (3.32). We also derive from the
properties (3.12) and (3.13) of the operators II;/" and II7" that, since uy is divergence-free
on €2, we have for all ¢ in My,

b(wy, qn) = Z dn| K AK(w}lz -n)(T)dr = Z qn| K /BK(Ub -n)(T)dr =0,

KeThPUThF KeThPUThF

so that 3 .
b(won, an) = b(wi, qn) < ||} | g (aiv.0mllanll 2@,

and we derive (3.33) from (3.31).

In analogy with Section 2, we now set: wg, = up — upp, where uypy, is the function
exhibited in Lemma 3.7. This leads to consider the problem

Find (uop, pr) in Xop x My, such that

Yo, € Xon,  a(uon, vi) + b(vn, pr) = —a(upn, vi) + L(vy),

- - (3.36)
vqh S Mha b(u0h7 qh) = _b(ubha Qh)
We also introduce the discrete kernel
Vi, = {v), € Xon; Vg € My, b(vn, q) = 0}. (3.37)

It must be noted that the functions in V}, are divergence-free only on 2p. We now study
the properties of the forms a(-,-) and b(-,-) on the discrete spaces.

Lemma 3.10. If I'r has a positive measure in O)g, there exists a constant & > 0 such
that the following ellipticity property holds

Yo, € Vi,  alvp,vp) > @& thH%((Q)' (3.38)

Proof: Since functions in V}, are divergence—free on 2p, properties (2.21) and (2.22) still
hold for all functions v in Vj. So, we now wish to check that

Vo € Vi, lvnllz2pye < clvnlpop)e-

When I'r has a positive measure, this inequality is a simple consequence of the Poincaré—
Friedrichs inequality and of the imbedding of X%, into the space of functions in H*(Qr)
vanishing on I'fr.
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Remark 3.11. When I'r has a zero measure but the normal vector n(x) when x runs
through I' runs through a basis of R? (this is the second possible assumption of Lemma
2.5), it is readily checked that any element of Vj such that a(vp,v) = 0 is equal to zero.
Thus, using the equivalence of norms on the finite-dimensional space V;, yields that there
exists a constant oy, positive but depending on the triangulations 7, and 7,'" such that

V’Uh € Vh, CL(’Uh,’Uh) > o, ||’Uh||§(—(Q) (339)

However the standard arguments to evaluate the dependence of «aj, with respect to hp and
hr seem to fail here. Fortunately, the assumption that I' has a positive measure in 0Q2p
is not restrictive for the applications that we wish to consider.

We now prove the inf-sup condition on I~)(, -). It requires the modified Bernardi-Raugel

operator ﬁﬁ 7 defined as follows: if R}, denotes a Clément type regularization operator with
values in the space of piecewise affine functions which vanish on I'p (see for instance [8,
§IX.3] for a detailed definition of such an operator),

v—Rypv) - n.)(T)d
fe Ye(T)dT

(ﬁﬁRvNK = (Rnv)|x + Z fe(( T Ve M. (3.40)

GEEK

Lemma 3.12. There exist two constants hg > 0 and B > 0 such that, either when both
I'yp and I'yp have a positive measure or for all h < hg, the following inf-sup condition
holds

b
Vg, € My, sup (’Uh, Qh)

> BllanllL2(e)- (3.41)
oncton 10 ]x(0) ()

We must prove this lemma in the three next situations: When both I'yp and I'yp
have a positive measure, when I',p has a zero measure and when I',z has a zero measure.
However, we skip the proof in the third situation since it is less realistic than the second
one (see Figure 1) and the arguments are exactly the same.

Proof: Case where I';p and ', have a positive measure

In this situation, it follows from exactly the same arguments as in the proof of Lemma 2.6
that, for any function g, in My, there exists a function vp in H'(Qp)%, vanishing on I'p
and also on I' such that

diV’Up = —@p On Qp and ||'UP||H1(QP)d <c ||qh||L2(QP)7 (342)
and also a function vy in H'(Qp)?, vanishing on 'z UT such that
div Vp = —(@qp OIn QF and ||'vF||H1(QF)d S C ||qh||L2(QF). (343)

We now define
RT BR
Unjop = Hh vp, Un|Qp = Hh UF.

Only for this proof, we make the further assumption that the operator R, _takes its values
in the space of piecewise affine functions which also vanish on I', so that II7"vr vanishes
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on I'p UT'. On the other hand, it is readily checked that all functions vg in Pr,(K) are
such that vi - n is constant on each edge (d = 2) or face (d = 3) of K, so that II;/"vp - n
vanishes on I'p UT'. These two properties yield that the function vy, satisfies that matching
conditions (3.7), hence belongs to Xgp,. We also have

b(vn,an) =— Y QhIK/

KeTF oK

(vp - m)(7)dT — Z Qh’K/ (v, - n)(T)dT.

So it follows from the definition of the operators II;'*" and ﬁﬁR that

bonan) =~ 3 ailx /8K<vp-n><r>df— > al [ (oe - m)r)dr

KeTP KeTF K

=—/ (divop)(x)qn(x) da:—/ (divop)(x)qn(x) de.
Qp

QF

Combining this with (3.42) and (3.43) yields

b(vn, qn) = llanll 720 (3.44)

We also deduce from Lemma 3.4 that

lvall 2 eaiv.0p) < cllvpllar@pyes
whence, from (3.42),
|vall 7 (aiv,00) < cllanllz2@p)- (3.45)

The same arguments as in the proof of Lemma 3.5, with (3.24) replaced by (see [8, Chap.
IX, Th. 3.11))
||’U — thHHsU(K)d S Ch}(_so ||'U||H1(AK)d,

where A is the union of elements x of 7,F such that K N« is not empty, lead to
|vnll 1@y < ellvrllm@pe,

whence, owing to (3.43),
lvnll a1y < cllanllzp)- (3.46)

The desired inf-sup condition now follows from (3.44), (3.45) and (3.46).

Proof: Case where I',p has a zero measure.
Let ¢ be a smooth vector field with support contained in the interior of I' such that

/F(L,oF -n)(T)dr = 1.

We define ¢, in the following way: On Qp, ¢rp, is affine on all elements K of ’]}f and is
equal to ¢r(a) at all vertices a of these elements that belong to I and to zero at all other
vertices; on 2p, we set

PrujQp = Z (/(Qophmp - n)(7)dT) p.

P,T €
e€&,
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Thus, it is readily checked that ¢rp, belongs to X and moreover that, when h is small
enough,

. (3.47)

N

[ o - my(ryar >

For a while, we set
bp(v,q) = —/Q (divvg,)(x)q(z) dz, br(v,q) —/Q (divv)g, ) (x)q(x) dz.

Next, we proceed in two steps.
1) On Qp, we use the decomposition

- : _ 1
dniQp = Gn + qp; with g, = m /Q qn(x) de.
P

Indeed, there exists a stable function v in H} (Q2p)? such that —dive = §; then, the
function ¥, = IIF7v belongs to X/ N Ho(div, Qp) and satisfies

bp(On, Gn) = Gnll720p) and  [[Onllaaiv.or) < clldnllzz@p)- (3.48)

On the other hand, it is readily checked by integration by parts and also from (3.47) that
the function

. _ meas({)p)
Vp = —(p fp(sorh - n)(T) ar Prh,
satisfies
bp (@, a1) = [anl 720y and  [[Onllx@) < clfnlzz@p)- (3.49)

Thus, applying the Boland and Nicolaides argument, see [12], which relies on the orthog-
onality properties

bP<f)thh) = 07 / Qh(w)qh(w) dx = 07
Qp

gives the existence of a constant u independent of h such that the function vyq, = vp+pvy,
satisfies

bp(vh,qn) = C||qh|!%2(gp) and  ||vnllgaiv.or) < ¢ llanllLz@p)- (3.50)

2) It follows from the definition of ¢, that (div@y)|q,. is constant on each element of TF.
Thus, Lemma 2.6 yields the existence of a function v in H'(2r)?, vanishing on I'r U T,
such that —div v is equal to g + div (uvy) and applying the modified Bernardi-Raugel

operator ﬁﬁR defined in (3.40) to it yields that the function vy, = ﬁ,’fR'v + p vy, satisfies

br(vn, qn) = lanll 720 and  [lonllm ey < e (llanllz2r) + Onllx @) (3.51)

To conclude, we observe that the function vy belongs to Xgp,. The desired inf-sup condition
is then derived from (3.50), (3.51) and (3.49).

From now on, we assume that h is small enough for the inf-sup condition (3.41) to
hold. Indeed, this condition which is only needed when I',p or I,z has a zero measure is
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not at all restrictive. Owing to the previous lemmas, we are now in a position to prove
the main result of this section.

Theorem 3.13. Assume that I'r has a positive measure in 0Q2p. Then, for any data
(k7 g, .f:paa ta) Satl'Sfying

1
ke HP(Tp), ge H"Tp)?, feL*Q? p,cHZTap), toc H 3(Cur)?,

(3.52)
for some real numbers op > —% and op > %, problem (3.9) — (3.10) has a unique
solution (wp,pp) in Xp X My,. Moreover this solution satisfies

lunllx @) + [PrllL2@) < c (H’fHHJP(rp) + gl zor 0pya + 11l 2204
(3.53)

Proof: We check separately the existence and the uniqueness.

1) Let upy, denote the function exhibited in Lemma 3.7. It follows from the ellipticity
property (3.38) and the inf-sup condition (3.41), see [20, Chap. I, Thm 4.1], that problem
(3.36) has a unique solution (ugp, pp) in Xop x My, which moreover satisfies

Hz (FaF)d> '
(3.54)

Then, the pair (up = won + Upn, pr) is a solution of problem (3.9) — (3.10), and estimate

(3.53) is a direct consequence of (3.27) and (3.54).

2) If all data (k, g, f, pa,ta) are equal to zero, (up, pp) is a solution of problem (3.36) with

the right-hand sides of the two equations equal to zero. Thus, it follows from (3.38) and

(3.41) that it is equal to zero. So, the solution of problem (3.9) — (3.10) is unique.

|wonllx () + lPnllz2 @) < c (||ubh||X(Q) + | Fllr2 () + ||pa||H% LT £l

00( aP)

Remark 3.14. The regularity assumptions that are made on the data f in Theorem
3.13 can easily be weakened: It suffices to enforce that f|q, belongs to the dual space of
functions on H (div,{2p) with zero normal traces on I'p and f|,. belongs to the dual space
of functions on H'(Q2p)? vanishing on I'r. However we have no direct application for this
weaker regularity.
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4. A priori error estimates.

We intend to prove an error estimate between the solution (u,p) of problem (2.6) —
(2.7) and the solution (wp, pp) of problem (3.9) — (3.10). The main difficulty here is that
applying the interpolation operator Zj or the operator II7* to the solution u g, (in order
to recover the boundary condition g, of the discrete problem) would require that w|q, is

continuous on Qp. In view of Proposition 2.8, this assumption is not likely, at least in
dimension d = 3. So we prefer to follow another approach, based on the triangle inequality

lu —wunllx@) < luy — wonllx () + [uo — wonl x (@), (4.1)

where the functions u;, and uy, are introduced in Lemmas 2.3 and 3.7, respectively.

An estimate for the quantity |[uy —upn || x () is established in Corollary 3.9. So we are
now interested in proving the following version of the second Strang’s lemma for problems
(2.18) and (3.36), the main difficulty being due to the nonconformity of the mortar element
discretization.

Lemma 4.1. Assume that I'p has a positive measure in 02r. The following estimate
holds between the solution (ug,p) of problem (2.18) and the solution (wugp, pp) of problem
(3.36)

- <c( inf - inf ||p—
o — wonlx(o) < inf fluo —willx@ + if |p - rallzx)

b(woh, qn
+ |lup — wpn || x (o) + sup bluon, an)
aned, anllzz o)

© s Je((Whiar — vnja,) - 2) (1) Pja, (T) dT>'
vy €Xon ||vh||X(Q)

(4.2)

Proof: It is divided in three steps.
1) Owing to the inf-sup condition (3.41), there exists [20, Chap. I, Lemma 4.1] a function
uy, in Xpp such that

vqh € th E(aha Qh) = g(“Oh?Qh)a
and, by using the second line of (3.36),

_ . b(wph, gn
n]|x@) < B~ sup blusn, an) )- (4.3)
qn €My, HQh||L2(Q)
Then, the function @g, = wep — up belongs to Vj, and satisfies
Y, € Vh, a(’&,()h, ’Uh> = —a(ubh, 'vh) — a('&h, 'Uh) -+ L’('vh). (4.4)

2) When multiplying the first lines of (1.1) and (1.2) by a function v, of V},, integrating
by parts and summing the two resulting equations, we obtain

a(u,vy) + b(vs,p) = L(vp) — /F((vhmp —vpj0,) - 1) (T) pla,(T) dT.
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This last equation can be written equivalently as

Vop € Vi, a(ug,vp) + b(vg,p) = —a(up, vy) + L(vp)

- /F((Uhmp — Vp|0p) n)(T)pmp(T) dr. (45)

3) Let now wy, and 75, be any elements of V;, and My, respectively. It follows from (4.4)
and (4.5) that

Yop € Vy,  a(ton — wp, vp) = alug — wp, vy) + a(wy — wpp, ) — a(tp, vp)

+ B(onp— ) + / (Oniap — Vhiae) - 1) (7) Pl (7) d-

Since gy, — wp, belongs to Vj,, we now use the ellipticity property (3.38) of the form a(-,-)
on V. When combined with several Cauchy—Schwarz inequalities, this yields

[@on — wh |l x @) < ¢ ([luo — wallx@) + llus — wnllx (@) + ll@nl x @)

v —v -n)(T T)dT
+lp—rullze) + sup fr(( hi2p hir) )( ) Plap(T) )
v €Xop ||vh||X(Q)

Combining this with (4.3) and using a further triangle inequality lead to (4.2).

In the right-hand side of (4.2), the first two terms represent the approximation error.
The next two ones are issued from the treatment of the Dirichlet boundary conditions.
The last term represents the consistency error and is due to the nonconformity of the
discretization.

Lemma 4.2. If the assumptions of Lemma 4.1 are satisfied, the following estimate holds
between the solution (ug, p) of problem (2.18) and the solution (wop, pp) of problem (3.36)

- <c( inf - inf ||p —
Ip thL2(Q)_C<w’11IéVh lwo wh”X(Q)‘I'Thlth P — 7allz2()

b(wpn, qn
+ [|up — wpnl|x (@) + sup bluwn, n)
qn €My, ||Qh||L2(Q)

© s Jr ((Onj0r — vhjar) - 1) (T) pla,(T) dT>‘
vn €Xon lvnllx (@)

(4.6)

Proof: The same arguments as in the previous proof yield, for any function r;, in My,

Yoy, € Xop,  b(vp,pn — 7h) = a(wo — uon, vr) + a(wy — wpp, V4)

+ B(vhap - ’I"h) + /F<(vh|ﬂp - Uh|QF) ' ’I’L) (T) Piap (T) dr.

So the desired estimate follows from the inf-sup condition (3.41) combined with several
Cauchy—Schwarz inequalities, estimate (4.2) and a further triangle inequality.
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We now evaluate the approximation errors. The distance of the pressure to the space
M, is bounded in a completely standard way, see [8, Chap. IX, Th. 2.1] for instance: If
pja, belongs to H'(Qp) (which is always true, see Proposition 2.8) and pja, belongs to
H*"(Qp), 0<sp <1,

7nhiéll\f/ﬂh Ip—rhllzz) < ¢ (hp lplla ey + b3 Dl aer @r))- (4.7)

To estimate the distance of u to Vj, we first use an argument due to [20, Chap. II,
form. (1.16)]: Since ug belongs to V(£2), it follows from the inf-sup condition (3.41) that

inf ||lug —w <c inf |up—w . 4.8
whEVhH 0 h”X(Q)— wr €Xon || 0 h||X(Q) ( )

Lemma 4.3. The following estimate holds for any function wy in V' (§2) such that ugq,
belongs to H*? (Qp)%, 0 < sp < 1, and ug|,. belongs to Hsr+t1(Qp)d, 0 <sp <1,

Jinf o —willxa) < e (0 lluoll ror gy + 15 ol aersiiopya). (49)

Proof: The construction of the function wy, is performed in two steps.
1) We first set
’wﬁ!QP = II}/"uy, wmﬂp = Rpu,

where the Clément regularization operator Ry, is introduced in Section 3, see (3.40). Since
both uy and 'w% are divergence-free on {2p, we have

o — Wi | sraiv.0p) = 1o — W || 220 pa-

Then, relying on the fact that II#” preserves the constants on each K in 7,7’ and combining
(3.19) with the approximation properties of this constant leads to

lwo — wh | r(aiv.0p) < hi ol mer @p)e. (4.10)

On the other hand, we derive from the approximation properties of the operator R, see
[8, Chap. IX, Th. 3.11], that

o — wll @yt < B3 luollsrersr @y (411)
2) For the functions ¢, introduced in (3.17), we now set
b b
wylop = Z (/(('wiﬁsz - wlﬁm\QP) : n)(T) dT) Pes wp o, = 0.
eeSf’F ¢

The arguments for evaluating ||w} || x (o) are nearly the same as in the proof of Lemma 3.7:
Combining (3.30) with (3.12) and a Cauchy-Schwarz inequality yields

) . 4
lwhllx@ < (Y hotlluo —w)ig, [32)

eGS:’F
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We refer to [8, Chap. IX, Cor. 3.12] for the following result: on each element e’ of 5,1: T

+l
|uwo — RhUOHm(ef) < Chzf : ||u0||HSF+1(Ae/)d7

where A,/ is the union of elements x of 7;F such that € N x is not empty. Using this
estimate for all ¢’ such that e N e’ has a positive measure leads to, owing to Lemma 3.6,

lwhllx() < chi ol mer+ e (4.12)

To conclude, we note that the function wy, = 'w% + w’, belongs to Xop,. Estimate (4.9) is
then derived from (4.10), (4.11) and (4.12).

Estimating the consistency error requires the orthogonal projection operator from
L3*(T') onto Wy, that we denote by .

Lemma 4.4. The following estimate holds for any function p in L*() such that pjq,
belongs to H**T1(Qp), 0 < sp < 1,

sup Jro((Whigr — vhr) - n)(T)plo,(T)d

-
S ChSP—H ||p|| sp+1 . (413)
v €Xon |vallx @) P HePT (@)

Proof: It follows from the matching conditions (3.7) that, for each e in 5}1; T

/F((Uth—UhmF) n) (T)p\Qp(T) dr = /F((’Uhmp—vhmp) : n)(T) (p\Qp_W;l:pmp)("') dr.

Moreover, since the normal trace of vj,q, on I' belongs to Wy, for any vy, in Xy, this gives

/F((’Uhmp - ’vhmF) : ")(T)pmp(T) dr = —/(’UhQF : n) (7) (pmp - W}Epmp)("') dr.

r

This yields

fr(('vh‘QP — ’th|QF) . ’I’L) (T)p|QP(T) dr < ||Uh|QF||H%(F)de|QP - ﬂ-ll:p|QP||H—%(F)

Y

vnll x (@) |onll x (o)

whence, by applying the trace theorem on I,

Jr((hjap — vhjar) - 0)(T) P, (T) dT
vl x @)

<clpias = mhpieel -4 gy

The standard duality argument

JePlep — mpie,)(T) (¢ — m,0)(7) dT

Y

r _
IPj0p — 7rhPIQPHH—%(r) - Sup el 1
peH?2(T) B2 (D)
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combined with the approximation properties of the operator 7}, see [8, Chap. IX, Th.
2.1], leads to

sp+1
<chy

Hp|QP HHSer%(F)’

whence the desired result.

The five terms in the right-hand side of (4.2) and (4.6) are bounded in (4.8) and
Lemma 4.3, (4.7), Corollary 3.9 and Lemma 4.4, respectively. When combining this with
(4.1) and using once more Corollary 3.9, we derive the a priori error estimate. We recall
that the parameters Ap and Ag have been introduced in Notation 3.8.

Theorem 4.5. Assume that I'r has a positive measure in 0 and moreover that

(i) the data (k,g) belong to H°?(I'p) x H°F(T'p)?, op > —L and op > 452,

(ii) the solution (uy, ,p) of problem (2.18) is such that (uo|q,, pja,) belongs to H? (Qp)? x
HY(2p), 0 < sp <1, and (ug)q,,pja,) belongs to H37 1 (Qp)? x H57 (Qp), 0 < sp < 1.
Then the following a priori error estimate holds between the solution (u,p) of problem
(2.6) — (2.7) and the solution (wp,py) of problem (3.9) — (3.10)

|u —unlx@) + P — pullzz()

<c <thDP (lwollz=r pye + 1Pl 1 00)) + 2 (Il ger+1 @y + 1Pl mer (0r)) (4.14)

min{op+1 .\ min{opr—21, X
4 (TR | er A (o gllor ) )

The statement of Theorem 4.5 is rather complex. Note anyhow that:
e In the case of zero boundary conditions k and g, estimate (4.14) can be written more
simply as

|w —unlx) + P — pullz2(@)
. o (4.15)
< (W (lullmer@pye + Pl @) + B3 (1l gorsr g + [Plaer @) ).

This last estimate is fully optimal: Indeed, for a smooth solution (u,p), the error behaves
like h p+ h F.

e In the general case, the order of convergence depends on the parameters A\p and Ag. So
the order 1 is only obtained when I', p is empty and both Qp and Q2 are convex, for smooth
data and solutions. When the regularity of (u,p) is unknown, the order of convergence is
given by Proposition 2.8 and, for instance, is always larger than 1/4 in dimension d = 2.
Moreover, a different analysis (relying on the construction of an approximation of u in Xj
satisfiying the boundary conditions (3.9), which requires the continuity of wq, ), yields
that, there also, for a smooth solution (u, p), the error behaves like hp + hp.

To conclude, it can be observed that, in all cases and for smooth enough data (k, g),
the convergence of the discretization results from Theorem 4.5.
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5. A posteriori error estimates.

Some further notation are needed to define the error indicators. For each K in 7,7,
we denote
e by Ex the set of edges (d = 2) or faces (d = 3) of K which are not contained in 0€2p,
e by £¢F the set of edges (d = 2) or faces (d = 3) of K which are contained in T',p.
For each K in 7;F', we denote
e by Ex the set of edges (d = 2) or faces (d = 3) of K which are not contained in 0Qp,
e by £ the set of edges (d = 2) or faces (d = 3) of K which are contained in T',p.
For each e in any of the £k and also in 5,1; ’F, we agree to denote by [-]. the jump through
e (making its sign precise is not necessary). We also denote by h. the length (d = 2) or
diameter (d = 3) of e.

We need a further notation for some global sets: B
o EP is the set of edges or faces of elements of 7,F which are contained in T',p,
e &P is the set of all other edges or faces of elements of 7,7.

With each element K of 7," and each edge ‘e of K, we associate the quantities vx and
ve equal to 1 if K or e, respectively, intersects I' \ I'r and to zero otherwise.

We introduce the space Zj, of functions in L?(€Q)? such that their restrictions to each
K in T,F or in 7,F is constant. Similarly, we denote by Z! the space of functions in
L?(Tyr)? such that their restriction to each e in EF K € ThF , is constant. Indeed, we
consider an approximation fj of f in Zj; and an approximation t,; of ¢, in Zf . Finally,
assuming that the datum p, is continuous on I'yp, we define p,;, as the function which is
affine on each e in £Y’, K € T,F, and equal to p,(a) at all endpoints (d = 2) or vertices
(d = 3) a of these e.

We consider three families of error indicators, related to the error on Qp, Qp and I,
respectively.
e For each K in ThP , the error indicator n¥ is defined by

Mie = [1fn — awnllrzgeye + Y he * lpnlellzze) + Y he ? llpan — prllzze).  (5.1)

ec€fk ecgel

e For each K in 7,7, the error indicator nk is defined by

_ 1~
77;12 = h}( YK H-fh + I/A’u,hHLz(K)d + Z hé v H[Van’u,h — DPh ’I’L]eHLZ(e)d

eclk
1, ‘ (5.2)
+ Y hE T ban — v Opun + p | L2(eye + |divan]| 2 ).
ec&F
e For each e in 8}]; T’ the error indicator nl is defined by
1
ne = (pr )0, + W Oaun — P ) oy | L2(ye + he ® [[un - nlellz2(e)- (5.3)
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It is readily checked that these indicators are easy to compute once the discrete solution
(up,pp) is known. Moreover, they are all of residual type. Note also that only the second
term in the . comes from the nonconformity of the discretization.

In order to perform the a posteriori analysis, we first recall a useful argument due to
R. Verfiirth, see [10, §4] for instance. Indeed, we now set

YU = (u,p) € Y(Q) x L*(Q), VV = (v,q) € Y(Q) x L*(Q),

. . (5.4)
AU, V) = a(u,v) + b(v,p) + b(u, q),

where Y (Q2) stands for the space
Y(Q) = {v e L* ()% v, € H(div,Qp) and vjq, € H'(2r)?*}, (5.5)

of course equipped with the norm || - [[x(q). Indeed, it is readily checked that the form
A(,-) is continuous on (Y (Q)x L?(Q2)) x (Y (Q) x L?(£2)). Moreover, the following property
is a direct consequence of the ellipticity property (2.20) and of the inf-sup condition (2.23),
see [20, Chap. I, Lemma 4.1].

Lemma 5.1. If 'y has a positive measure in 0S)g, there exists a constant v > 0 such
that the following inf-sup condition holds

WU € Xo(Q) x L2(Q), sup AU V)

= YUl x@)xr2(9)- 5.6
vexo@xr2@) IVIx@xr2@ 10l @)x20) (5.6)

Unfortunately, the function u — u;, does not belong to X (€2) and even not to X (),
so that we cannot apply directly Lemma 5.1 to the residual equation satisfied by U — Uy,.
The idea consists in building a conforming approximation of u;, namely an approximation
which belongs to X () (see [5, Lemma 5.4] for a similar argument).

From now on, we call finite element function a function such that its restriction to each
element of ZIP or ZIF is a polynomial with degree bounded independently of hp and hpg.
We are led to make a further assumption, which is now standard in the a posteriori analysis
of mortar element discretizations (and is stronger than Assumption 3.2). We recall from
the previous sections that 8,15 T and 5,1: " denote the set of edges (d = 2) or faces (d = 3)
of elements of 7,F" or 7,F", respectively, which are contained in T.

Qr

Qp
Figure 2. Illustration of Assumption 5.2
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Assumption 5.2. Each element e of 5: I is the union of a finite number of elements of
5,15 ’F, where “finite” means bounded independently of hp and hp.

Lemma 5.3. If Assumption 5.2 holds, there exists a finite element function u} in X (2),
still satisfying the boundary conditions (3.9), such that

1
2

lwn — willx) < c( Y hot llfun - nlelliz() (5.7)

eGEf’F

Proof: It follows from Assumption 5.2 that each e in Ef T is the union of edges e; of 55 =
1 <i < I, where I, is bounded independently of hp and hp (see Figure 2). We denote
by n. the unit normal vector on e, directed from Qp to Qp. Let K; be the element of le
such that e; is an edge of K;, let b; denote the vertex of K; which does not belong to e;.
Thus, it can be checked that the function ¢, introduced in (3.17) (with obvious notation)

is equal to ﬁ;&{,) on K; and to zero elsewhere. Its normal trace on e; is constant, equal
to m On the other hand, it must be observed that

e on each e in " which is an edge or a face of K, up|. is the trace of a function in
Psr(K), which we denote by uf, for a while,
e on each edge e;, up|n, is equal to a; ¢., for a constant a;.
Next, we set
We, = Re, (uf, - ne)meas(e;) — a;,

where R, is a lifting operator from polynomials on e; onto polynomials on K;, constructed
by affine transformation from a fixed lifting operator on a reference triangle, and we define

I

up = up + Z Zwei Pe; -

ecg T i=1
Since uj, coincides with uj, in Qp, the function uj —uy, has its support contained in Q2pUT".
Moreover, since the normal trace of ¢., vanishes on all edges of triangles or all faces of
tetrahedra K; that are not contained in I', u} —uy, belongs to H(div, Qp) and u; satisfies
the boundary conditions (3.9). Finally, the jump of u} - n. on each e in S,f s equal to
zero, so that uj belongs to X (2).
In order to prove a bound for ||uy — uj ||z (div,0,), We write

||wei Pe, || H(div,K;) < ||w€1:

HY(K) IPe || Lo (K ;)4 + ||w€i L2(K;) dngOei L>=(K;)-
Next, we use the estimates
leellere € chir® ldivepe e, < chg,

and, noting that its trace of w,, on e; is equal to [uy, - n]. meas(e;), we obtain by switching
to the reference triangle

d—1-1
L2(K;) < he, ’ ”[uh ) n]SHLQ(ez‘)‘

Hwei H'(K;) + he_il Hwei
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Combining all this yields

1
|we; e, | H(div,k) < Che” [[un - nlellz2(e,)-
Summing the square of this estimate on the K; gives (5.7).
For a different reason, mainly due to the lack of regularity of the normal trace of func-
tions in H (div,Qp), we also need an approximation pj} of p, in H*(Qp). The construction
of such a function is standard, see [2, Thm 4.7]. Therefore, we only give an abridged proof

of the following lemma.

Lemma 5.4. There exists a finite element function p; equal to pp on Q0p and to p,n on
Lap, such that pj, g belongs to H'(Qp) and satisfies

Ipn = Prlleep) < c ( Z he H[ph]e||2L2(e) + Z he [lpn _pahH%Q(e))Eﬂ

ecEf ecgpt
« 1 2 ~1 2 3 (58)
|ph|H1(QP) <c ( Z he ||[ph]6||L2(e) + Z he ||ph _pah||L2(e)) 27
ecgl ec&P
and 1
lpn = Pillzey < e (D Mpalellze + D pn = panlliz(e) *- (5.9)
ecgl ec&lP

Proof: Let V,ILD denote the set of all vertices of the elements of ’Z;lP . We define p;‘;mp as

the function which is affine on each element K of ’Z;lP , equal to

e to pan(a) at all vertices a in V,I; which belong to Tup,

e and, at all other vertices a in Vf: , to the mean value of the p; x(a) on all elements K
of 7,F which contain a.

This leads to the construction pj satisfying the properties stated in the lemma. Estimates
(5.8) and (5.9) are derived by exactly the same arguments as in [2, Thm 4.7], see also [5,
Lemma 5.4].

Finally, with any function v in X((£2), we associate the function vj equal to Rpv on

Qr and to zero on 2p, where ﬁh stands for the modified Clément operator with values in
piecewise affine functions which vanish on I'r UT'. The main interest of this v is that it
belongs to Xo(€2). The next lemma is derived by using the local approximation properties

of the operator R}, see [8, Chap. IX, §3].

Lemma 5.5. For any function v in X(({2), there exists a funtion v, in Xop N Xo(§2), with
support in Qg, such that, for all K in ’Z;lF and all edges or faces e of K,

h;((l_VK) v —vnllL2(x)a + he_(i_%) v = wnl[z2e)e < cllvllarak), (5.10)

where A is the union of the elements of ’ThF that intersects K.
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Setting U = (u,p), Up = (up,pp) and U; = (u},p;), we observe that the function
U — U} now belongs to X () x L%(2). Moreover, it satisfies

(u—wuy) n=k—k, onlp and up —uy =9g—gn onlp.

Thus, applying Lemma 2.3 yields the existence of a divergence-free function e; in X (£2)
such that u — uj — e, belongs to X((2) and which satisfies

lesllx @) < c (k- kil -3 oy T 119 = thH%(FF)d)- (5.11)

When setting Ey, = (ep,0), we observe that the function U — U} — Ej now belongs tp
Xo(Q) X LQ(Q)

Next, we write, for any V = (v,q) in Xo(Q) x L?(Q),

AU = U — By, V) = a(u, —u} — ey, v) + b(uy — uj,q)
+ a(u —up,v) +b(v,p — ) + blu — up, q).

Denoting by vy, the approximation of v exhibited in Lemma 5.5 and setting V}, = (v, 0),
we observe from problems (2.6) — (2.7) and (3.9) — (3.10) (note that b(vy,, p, — p) is zero
since the intersection of the supports of v;, and pj — pj, is empty) that we can subtract V},
from the second line in this equation. Thus, we derive by integration by parts the following
residual equation

A(U - U;Lk - Eb7 V) = CL(’LLh - u; - ebalv) + i)(’u’h - ’U,;, Q)

5.12
+<RP,V—Vh>+<RF,V—Vh>+<RF,V—Vh>+<J’?,V—Vh>, ( )

where the four quantities Rp, Rp, Rr and F are given by

®Revi= 3 ([

v(x) - (gradp;)(x) de‘)7 (5.13)
KeTF K

(frn —aup)(x) - v(x)dx —/

K

Rev) = Y ([ G+ vBun)(@) - o) da

KeTF K
+%EGSK/61)(T) - [V Onup — prm]e(T)dT (5.14)
+ Y /U(T) - (tan — v Opup + ppn)(T) dT—}—/K(divuh)(m)q(m) dm),
e ¢

(Rr,V) = Z (/U(T) - ((pam)j0p + (W Oup — prm) g, ) (T) dT

e

G (5.15)
+/F(,U - n)(T) (p;;"QP — phiap) (T) dT);
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(F,V) = /Q(f — f)(@) - v(@)de - /Fap(’” T Pa = pan)(T) dT (5.16)
+/F ’U(’T) . (ta —tah)(T) dr.

We can now apply Lemma 5.1 to the function U — U — Ej, which leads to the main result
of this section.

Finally, we denote by ELF the set of edges or faces of elements of 7,I" which are
contained in I', 7.

Theorem 5.6. Assume that I'r has a positive measure in 0Q0g, that Assumption 5.2 is
satisfied and that the datum p, is continuous on I'qp. Then the following a posteriori
error estimate holds between the solution (u,p) of problem (2.6) — (2.7) and the solution
(wp, pp) of problem (3.9) — (3.10)

lw = wnllxi + I = pullzy < e (D @R+ D @R+ Y 60)?)

N[

KeTF KeT[F ecg"
¢ <||k— Bl =t oy 19 = 90l 3 o
+IF = Fallieapye + (D> PR If - thLZ(K))% 47
KeTFr
e —panll 3 ezg;F he 7 |[ta — tah||%2(e>d)%>-
€ h

Proof: Applying Lemma 5.1 to U — U, — E} and using equation (5.12) with a further
triangle inequality, we are led to bound the quantities

lun —upllx@),  lpr —phllzze),  llesllx@),
which follows from (5.7), the first part of (5.8) and (5.11), and the sum
sup (Rp,V—-Vi)+ (Rp,V =Vi) + (Rp,V = Vi) + (F,V = V},)

VEXo(Q)x L2(Q) 1V x@)xL2(0)

This is obtained by combining Cauchy-Schwarz inequalities with Lemmas 5.4 and 5.5.

To go further, we intend to prove an upper bound for each indicator nk , nk and nl.
To do this, we write the residual equation (5.12) in a simpler (and more usual) form: For
a smooth enough pair V' = (v, q),

AU =Un, V) = (Rp, V) + (Rp,V) + (R, V) + (F, V), (5.18)
where the new quantities R} and Rf. are defined by

R V)= ¥ (| h—auw@ v@de+g 3 [om)  niplinar

KGThP 665}(

+ Z / 1 (pr — Pan)(T )d7'>,

EEgG’P

(5.19)
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Ri V)= Y /v(T) - ((pr)j0p + (v Opun — pa )0y ) (T) dT. (5.20)

prve
e€&

However the quantity (R}, V) is not defined for all V' in X (2) since it requires a little
more regularity.

Proving the upper bounds for the nk is rather standard, it relies on the following
choices of the function V' = (v,0) in (5.18):
e Taking v equal to (f, — aup) vk on K and to zero elsewhere, where 1x denotes the
bubble function on K equal to the product of the barycentric coordinates associated with
the vertices of K
e If the edge e in £k belongs to another triangle K’, taking v equal to R¢([pr]e) 1. on
KUK’ and to zero elsewhere. Here 1. denotes the bubble function on e and R, is the lifting
operator introduced in the proof of Lemma 5.3 and constructed by affine transformation
from a fixed lifting operator on a reference triangle;
e Finally, for each e in £, taking v equal to Re(pn — Pan) Pe on K and to zero elsewhere.
Note that the next estimate is not optimal. However this seems due to the choice of the
discretization: Indeed, the same lack of optimality appears in [13] for the Darcy’s equations
only and in [6, Prop. 5.4] for another type of coupling Darcy and Stokes problems.

Proposition 5.7. The following estimate holds for each error indicator n¥. defined in
(5.1), K € T,

Nk < ¢ (lw—wnll m@ivwe) + b 1P = PrllL2 ) (5.21)
+1f = FullL2@i)s + hilPa = PanllL2(xor.,))

where wy denotes the union of the elements of T," that share at least an edge (d = 2) or
a face (d = 3) with K.

Bounding the nf relies again on the residual equation (5.18). The arguments are
exactly the same as in [10, Prop. 6] for instance, up to the multiplication by hz'* and
h; 7. So we skip the proof.

Proposition 5.8. The following estimate holds for each error indicator nf defined in
(5.2). K € TF,

nie < ch™ (lu = wnll g1 wrya + 1P = Pl 2w (5.22)
+hi |f = Fullr2@wi)e + hEllta — tanll L2 (kor,p)e),

where wg denotes the union of the elements of T,F that share at least an edge (d = 2) or
a face (d = 3) with K.

Proving upper bounds for the 1. requires a further argument.

Proposition 5.9. The following estimate holds for each error indicator n. defined in
(5.3), ec &1,

_1 1
0E < e (h lu = wnllxon) + e 2 o = pallien + B2 1F = Fallizos)s  (5:23)
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where w, denotes the union of the element of ’]7113 and of the element of ’Z}LF that share e.

Proof: Each e in S,I: T is the edge or face of an element K in 7,7 and is contained in
the edge or face of an element K’ in 7,F. From now on, we denote by K’ the element
contained in K’ that is constructed from K’ by homothety and translation and such that
e is an edge or a face of K’ (see Figure 3). We now prove a bound successively for the two
terms in 7l .

QP (&

Figure 3. Around an edge e of Slf T (case of dimension d = 2)

1) In (5.18), we take v equal to Re((pnn)jq, + (¥ Onun — prn)j0,) Ye on K U K’ and to
zero elsewhere, for the already introduced operator R., and q equal to zero. This yields
1((pr ) 10p + (v Opun — p ")|QF)1/)§ 172 ey
<c(flu— UhHL?(K)d”UHL?(K)d + |u — uh|H1(R/)d|U|H1(R')d
+[lp — Ph||L2(K)d|U\H1(K)d +lp — thL2(f</) |U|H1(K)d
+ [ fn = cunllzzyellvlLz e + 1Fn + v Aunll g2 gnallvll 2 zrya

+1F = Fullocyellollozcye + 1 = Full 2 zryalloll gz goya-

Note that, in contrast with (5.21), we can obtain an optimal estimate for || f, —a wp||L2(x)a-
Thus, using several inverse inequalities (see [31, §3.1] for instance), we derive

|(pn 1) j02p + (V Onttn, — pr ) 0 || L2y
(5.24)

<che ® (Jlu—wun|x@.) + 1P = prllez.) + b 1F = Fullz2(w.))-

2) Let ¢ be a function in H'(K U K’) which vanishes on (K U K'). By integration by
parts, we derive

/[uh - nle(T)q(T)dT = /Kuf{' ((div (uw — up)) (®)g(x) + (u — up)(z)(grad ¢)(z) do.

We now take g equal to R ([uy - 1)) 1. on K UK’ and to zero elsewhere. Thus, the same
inverse inequalities as previously lead to

_1 _
he ? [I[w - nlellzacey < e (= unllxw,) +he* llw—wnllr2(e). (5.25)
Estimate (5.23) is then derived from (5.24) and (5.25).
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There also, estimate (5.23) is not optimal. This seems due to the lack of homogeneity
when coupling Darcy and Stokes equations. Indeed, the jump [u - n] on I' is the sum of a

function in HO%O(F)’ and of a function in H2 (T).

To conclude, we observe that estimate (5.17) is optimal: Up to the terms involving
the data, the full error is bounded by a constant times the Hilbertian sum of all indicators.
Estimates (5.21), (5.22) and (5.23) are local, i.e., only involve the error in a neighbourhood
of K or e, and estimate (5.22) is optimal for all elements K that does not intersect I'. So
it can be hoped that the error indicators n&, nf and nl provide a good tool for mesh
adaptivity.
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6. The adaptivity strategy and some numerical experiments.

As standard, the adaptivity strategy that we use combines two steps, an initialization
step and an adaptation step. We fix a positive tolerance n* and present it in dimension
d = 2 for simplicity.

INITIALIZATION STEP. We fix a triangulation ’Z}lp(o) of Qp and a triangulation ThF(O) of
Qr which satisfy Assumptions 3.1 and 5.2 and such that the sum of the errors on the five
data which appear in Theorem 5.6, namely

Ve =kl 3 ) + 19 =gl 3 g
1
+ 1 = Fulle2pye + ( Z Wi If = fullZ2(x)) 2
KeTF
1
- a 1 h].—2’)/(.3 ta _ta 2 2
= panll g+ (30 B = bl

ecgpt

is smaller than n*. This last condition is possible for smooth data thanks to the approxi-
mation properties of the finite element spaces involved in the discretization, and we have
no applications for non smooth data.

ADAPTATION STEP. Assuming that the triangulations T;LP(") and ’]}LF(H) are known, we
compute the discrete solution of problem (3.9) — (3.10) corresponding to these triangula-
tions, and the error indicators nk, n and n! defined in (5.1), (5.2) and (5.3). We denote
by 7, 7" and 71+ the mean values of the n}?, 77]12 and 7!, respectively, times 0.9. Next, we
perform adaptivity in three substeps, of course taking into account Assumption 3.1 in all
of them:

e Allein Sf () (wih obvious notation) such that ! is larger than max{n*, 7'} are di-
vided into N equal segments, where N is proportional to the ratio nL'/ max{n*, 7' }. This

. . oP,(n+1
gives rise to a new set &, (n+ ).

e The triangulation ’Z;lF(n) is refined and coarsened according to the next criterion: The
diameter of a new element contained in K or containing K is proportional to hx times

the ratio 77 /nk. This gives rise to the new triangulation ’Z;LF(RH).

e First, the elements of gf T are divided where needed in order that Assumption 5.2
holds (this can be omitted when Assumption 5.2 does not seem necessary). Second, a new
triangulation on 2p is constructed such that these new edges are edges of the elements of
the new triangulation. Next, adaptivity is performed exactly as in the previous substep,

now depending on the ratios 7j*"/ nk-. This gives rise to the new triangulation ’Z;LP(HJFU.

Of course, the adaptation step is iterated either a finite number of times or until the
Hilbertian sum of all error indicators, namely

(> o2+ Y w2+ Y mh?)’,

KeTrP KeTF ecgPT

N

become smaller than n* (this is not always possible).
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The numerical experiment that is presented below is performed on the finite element
code FreeFem++, see [22]. It deals with the two-dimensional domain €2 =|0, 3[x] — 2, 0[.
The top part is the subdomain Qp occupied by the river and the bottom part is the
subdomain 2p occupied by calcalenite rock mixed with sand (so that I',p is empty). Both
Qp and Qg are nearly equal rectangles, except that a further rock creates an obstacle to
the river flow, see Figure 4.
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Figure 4. The computation domain and the initial mesh

The parameters a and v associated with the permeability of the calcalenite and the
viscosity of the water are given by

a = 2000, v =0.01. (6.1)
The data are given by f = 0,

b {0.02 on {0} x] —2,—1.8], _ { (1,0) on {0}x] —1,0],
10 elsewhere on I'p, 97 (1.004,0) on {3}x] —1,0[,  (6.2)

t, = (0.01,0) on 'y 5.

The non-zero data correspond to an underground spring, the inward and outward flow
of the river and the action of the wind, respectively. Note that, in order to preserve the
validity of the model, the flux [.. (g - n)(T)dr + [, k(T)dT is zero.

Figure 5 represent the final adapted mesh after 5 iterations of the adaptation step
(3412 triangles in Qp and 866 triangles in Q). Note that Assumption 5.2 which is needed
only for the a posteriori estimates is not satisfied by this mesh and seems useless for the
computation.

Figures 6 and 7 represent the isovalues of the stream function associated with w; and
the isovalues of the pressure pj,, respectively. It must be noted that the flow is much faster
in Qp than in Qp. So, to improve the visualization in Figure 6, we have chosen to use two
scales: the difference between two consecutive streamlines is 0.0004 in Qp (and there are
20 lines) and 0.1 in Qp (and there are only 10 lines). This explains the accumulation of
the streamlines in Q2p near IT'.

Finally, it appears that the discontinuities of the component w - n through I', issued
from the nonconformity of the discretization, are smaller than 1075, So using the mortar
method to handle this problem seems appropriate.
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Figure 5. The final adapted mesh

Figure 6. Isovalues of the streamfunction

Figure 7. Isovalues of the pressure
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