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Abstract

Using an approximate analytical solution of the Cahn-Hilliard equation describing the coalescence

during a first order phase transition, we compute the characteristic time for one step of period

doubling in Langer’s self similar scenario for Ostwald ripening. As an application, we compute the

thermodynamically stable period of a 1D modulated phase pattern.
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I. INTRODUCTION

When a homogenous system departs suddenly from equilibrium, it will spontaneously

segregate into two different states, thermodynamically more stable.

This process can either initiate via a nucleation process, where an energy barrier has to

be crossed, or via a spinodal decomposition when the system is led into a linearly unstable

configuration. In this latter case, the leading instability selects a modulation of the order

parameter at a well defined length scale. This instability will grows and, due to nonlinearity,

saturates. The resulting micro-segregated pattern is composed of well defined interfaces

delimiting monophasic domains containing one of the two stable phases. These interfaces

will then interact with each other and coalesce, during a much slower, self-inhibiting process,

where the number of domains diminishes whereas their typical size increases, ending with the

formation of either a micro-segregated complex pattern [1], or a single interface separating

two semi infinite domains, one for each new stable phase (macro-segregation).

Hillert[2], Cahn and Hilliard[3] have proposed a model equation describing the segregation

for a binary mixture. This model, known as the Cahn-Hilliard equation (C-H later on),

belongs to the Model B class in Hohenberg and Halperin’s classification [4]. It is a standard

model for phase transition with conserved quantities and has applications to phase transition

in alloys [2], binary mixtures[5], vapor condensation [6] and liquid crystals[7], segregation of

granular mixtures in a rotating drum[8], or formation of sand ripples [9, 10].

In this article, by spinodal decomposition, we refer to the first stage of the dynamics only,

while coarsening or Ostwald ripening will denote the second stage. Although this coarsening

dynamics is in fact already present, its influence can be neglected during the first stage of

the process.

An important activity has been devoted to the description of the dynamics of phase

transition, using experiments, numerical simulations [11] or scaling methods [12]. The late

stage of the dynamics, where the Ostwald ripening dominates, exhibits ”dynamical scaling” :

the dynamics presents a self-similar evolution where time enters only through a length scale

L(t), associated with a typical length of the domains. This scaling argument gives the law

L(t) ∼ t1/3 for spatial dimensions greater than one and a logarithmic behavior in D=1.
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This last stage, as observed in two-dimensional demixion of copolymers[13] and as sug-

gested initially by Langer[14], can be described as a process of synchronous fusion and

evaporation of domains, spatially alternated. It corresponds to the evolution that breaks

the least the symmetries of the pattern. This observation motivated our work and the aim

of this article is to make use of a one dimensional ansatz to describe quantitatively the ideal

coalescence process. This ansatz is in the form of a one parameter family of symmetric pro-

files which interpolates between two stationary states composed of homogeneous domains

of length λ and 2λ. It allows in 1D to describe a self similar sequence of coalescence and

evaporation of domains (or of their dual counterparts, the interfaces), starting from the pe-

riodic micro-segregated state which ends the spinodal decomposition dynamics, and leading

continuously to either a single interface, or a stable 1D modulated phase.

The paper is organized as followed: part 2 will focus on the first part of the dynamics,

i.e. spinodal decomposition. We will reproduce briefly the original derivation by Cahn

and Hilliard, restricting ourselves to the one dimensional case, mainly to fix the notations

(part 2.1). In part 2.2, a family of symmetric solutions of the Ginzburg-Landau equation

will be used to study the non linear part of dynamics and in part 2.3 we will identify all

the intermediate symmetric stationary states of the (C-H) dynamics. Then in part 3, we

will turn to Ostwald ripening : in part 3.1, a non-symmetric family of solutions of the

(G-L) equation is used to construct a continuous interpolation between two consecutive

symmetric stationary states. After a study of the energy landscape associated with this

ansatz (part 3.2), we will compute in part 3.3 the characteristic time associated with one

step of coalescence : we will recover the 1D logarithmic law. Before concluding, as an

application in part 4, our ansatz will be used, in the case of micro-segregation, to compute

the period of the final thermodynamically stable modulated pattern.
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II. THE CAHN-HILLIARD MODEL

A. Linear stability Analysis

The Cahn-Hilliard (or Conservative Time Dependant Ginzburg Landau) equation is a

modified diffusion equation for the scalar order parameter Ψ, which reads in its dimensionless

form:

∂Ψ

∂t
(r, t) = ∇2 δFGL(Ψ)

δΨ
= ∇2(

ε

2
Ψ + 2Ψ3 −∇2Ψ). (1)

The real order parameter can correspond to the dimensionless magnetization in Ising fer-

romagnet, to the fluctuation of density of a fluid around its mean value during a phase

separation or to the local concentration of one of the components of a binary solution. ε is

the dimensionless control parameter of the system ; it is often identified to the reduced tem-

perature (ε = T−Tc

Tc
where Tc is the critical temperature of the first order phase transition).

This equation, first derived by Cahn and Hilliard, has also been retrieved by Langer[14]

from microscopic considerations. A conservative noise can be added to account for thermal

fluctuations [15], but in this article, we will only consider the noiseless (C-H) equation.

It admits homogeneous stationary solutions which are extrema of the symmetric Landau

potential V (Ψ) = ε
4
Ψ2 + 1

2
Ψ4. For positive ε, there is only one homogenous solution Ψ = 0

which is linearly stable. A pitchfork bifurcation can be experienced when quenching the

system from a positive reduced temperature ε to a negative one : the Ψ = 0 solution

becomes unstable ; two other symmetric stable solutions appear Ψ = ±
√
−ε
2

.

Spinodal decomposition is the dynamics resulting of such a quench. Cahn and Hilliard

have studied the early times of this dynamics by linearizing equation (1) around Ψ = 0 (i.e.

neglecting the non linear term Ψ3). Considering Ψ as a sum of Fourier modes:

Ψ(r, t) =
∑

q

Ψqe
iq·r+σt (2)

where Ψq is the Fourier coefficient at t = 0, they obtained for the amplification factor σ(q) :

σ(q) = −(q2 +
ε

2
)q2 (3)

This shows immediately that Ψ = 0 is linearly stable for ε > 0 while a band of Fourier

modes are unstable for negative ε, since σ(q) > 0 for 0 < q <
√

(−ε/2). Moreover, the
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most unstable mode is for qC−H =
√
−ε/2. This wave number of maximum amplification

factor will dominate the first stage of the dynamics; this explains in particular why the

homogeneous domains appear at length scales close to L = λC−H/2 = π/qC−H , half the

wave length associated with the instability. For longer times, interfaces separating each

domain interact through Ostwald ripening, causing < L > to change slowly toward higher

values [11, 16]

We will now use known results on non-homogeneous solutions of the (G-L) equation to

study both the saturation of the spinodal decomposition and the coalescence.

B. Stationary States of the Cahn-Hilliard Dynamics : Symmetric Soliton Lattice

Solutions

For ε < 0, there exists a whole family of solution of the one dimensional (G-L) equation :

ε

2
Ψ + 2Ψ3 −∇2Ψ = 0 (4)

These solutions, the so-called soliton-lattice solutions, are :

Ψk,ε(x) = k∆Sn(
x

ξ
, k) with ξ = ∆−1 =

√
2
k2 + 1

−ε (5)

where Sn(x, k) is the Jacobian elliptic function sine-amplitude, or cnoidal mode. This family

of solutions is parametrized by ε and by the Jacobian modulus k ∈ [0, 1], or ”segregation

parameter”. These solutions describe periodic patterns of period

λ = 4K(k)ξ, where K(k) =

∫ π

2

0

dt√
1 − k2 sin2 t

(6)

is the complete Jacobian elliptic integral of the first kind. Together with k, it characterizes

the segregation, defined as the ratio between the size of the homogeneous domains, L = λ/2,

and the width of the interface separating them, 2ξ. The equation (6) and the relation

ξ = ∆−1, enable to rewrite this family as :

Ψk,λ(x) =
4K(k) · k

λ
Sn(

4K(k)

λ
x, k). (7)

As for k = 1, Sn(x, 1) = tanh(x), we recover the usual solution

Ψ1,ε(x) =

√
|ε|
2

tanh(

√
|ε|
2

x). (8)
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associated with a single interface (or soliton) of width 2/
√
|ε| that connected the two ho-

mogenous phases Ψ = ±
√
−ε
2

. Because K(1) diverges, it corresponds to a strong, or macro-

scopic, segregation. In the opposite limit (weak segregation regime), Ψk,ε(x) describes a

sinusoidal modulation

Ψk→0,ε(x) = k

√
|ε|
2

sin(

√
|ε|
2
x) = k

2π

λ
sin(

2π

λ
x) = kq sin(qx) (9)

It will correspond to the Fourier mode q = 2π
λ

=

√
|ε|
2

of the initial white noise, with van-

ishing amplitude Ψq = kq. Since experiences, numerical simulations and linear stability

analysis show that λ, the spatial period of the pattern is constant during the whole spinodal

decomposition process, we choose λ to coincide with the most instable wave length obtain

with the Cahn Hilliard linear approach, λ = λC−H = 4π√−ε0
, where ε0 is the quench tem-

perature. We then obtain a one parameter family of profiles Ψ∗(x, k) = Ψk,λC−H
(x) which

describe very well both the linear growth and the saturation of the spinodal decomposition

[17]. Thus, the dynamics is now reduced to the time evolution of the single free parameter:

k(t). Using equations (5) and (6), we find that λ, k and ε are related to one another through

the state equation

ε(k) = −2(1 + k2)

(
4K(k)

λ

)2

. (10)

This implicit equation tells us that if we impose λ = λC−H , the dynamics can be reduced

to the evolution of ε(t), interpreted as the fictitious temperature or “local temperature”

associated with the segregation parameter k(t) which characterizes the pattern. This tem-

perature can be extracted from the profile at any time, using the correspondence between

ε and k of equation (10). For instance, at t = 0, the amplitude is small and we find that

k(t = 0) = ΨqλC−H

2π
→ 0 and thus ε∗(0) = 8π2/λ2, different a priori from ε0 (ε∗(0) = ε0

2
for

λ = λC−H) : the system is initially out of equilibrium

Somehow, the dynamics of (C-H) can be projected at first order onto a dynamics along the

sub-family Ψ∗(x, k) = Ψk,λC−H
(x), which can be considered as an attractor of the solutions,

i.e. the density profile of the system will evolve with time, staying always close to a function

Ψ∗(x, k). Thus, using equation (4), the (C-H) dynamics reduces to equation :

∂Ψ∗

∂t
(r, t) =

∂Ψ∗

∂k
(r, k(t))

dk

dt
=

(ε0 − ε(k))

2
∇2Ψ∗. (11)

The non linearity has now disappeared into Ψ∗(x, k). Using a solubility condition, it is

possible to transform this equation into a differential equation for k(t) and to compute the
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full non linear part of this dynamics (i.e. the saturation of the spinodal decomposition),

which leads the system in a well defined stationary state [17].

C. Saturations of the Spinodal Decomposition Dynamics

The spinodal decomposition dynamics will saturate when the fictitious temperature ε(t)

will reach the real thermodynamic one, i.e. the quench temperature ε0; that is, using

equation of state (10) for λ = λC−H , when k = ks
0 =0.687 solution of the implicit equation

:

2(1 + ks2
0 )K(ks

0)
2 = −ε0λ

2
C−H

16
= π2 . (12)

Using linear stability analysis, Langer has shown that the stationary profile thus obtained,

Ψ∗(x, ks
0) = Ψks

0,λC−H
(x), is destroyed by stochastic thermal fluctuations. He has identified

the most instable mode as an ”antiferro” mode, leading to a period doubling. The result of

this destabilization is another periodic profile of alternate interfaces of period λ = 2λC−H,

where the length of the domains is : L = λ/2 = λC−H . This means that the new stationary

profile is given by Ψks
1,2λC−H

(x), where ks
1 =0.985 is solution of the implicit relation

2(1 + ks2
1 )K(ks

1)
2 =

−ε0(2λC−H)2

16
= 4π2 . (13)

Again, this new stationary profile turns out to be linearly instable with respect to an ”an-

tiferro” perturbation of period 4λC−H .

Thus these families of profiles and instabilities enable to describe the one dimensional

coarsening as a cascade of doubling process. Each of these successive intermediate profiles

can be described by an element of the above family of soliton lattice Ψks
n,2n×λC−H

(x). The

sequence of associated segregation parameters {ks
n}, are determined by the implicit relations

2(1 + ks2
n )K(ks

n)2 = −ε0(2
nλC−H)2

16
= π222n. (14)

We have found numerically for the first of them [18]

ks
0 =0.6869795924

ks
1 =0.9851675587

ks
2 = 0.99997210165

ks
3 =0.9999999999027

(15)
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We see that {ks
n} converges toward ks

∞ = 1 (single interface case), while the amplitude of the

modulation converges toward

√
|ε0|
2

. For large n, we can conclude from the implicit relation

(14) that the ratio of the domain size to the interface width characterized by K(ks
n) behaves

as π2n−1 and (ks
n)

2 = 1 − 16 exp(−π2n). Each of the stationary profiles

Ψn(x) = Ψks
n,2nλC−H

(x) =

√
|ε0|ks

nK(ks
n)

2nπ
Sn(

√
|ε0|K(ks

n)

2nπ
x, ks

n) =

√
|ε0|ks

n√
2(1 + ks2

n )
Sn(

√
|ε0|x√

2(1 + ks2
n )
, ks

n)

(16)

is identically destroyed by the Langer ”antiferro” instability .

III. 1D OSTWALD RIPENING

A. Non-symmetric soliton lattice profile as an ansatz for the 1D coarsening process

In order to describe one step of the coalescence process, i.e. the dynamics that starts

from Ψn(x) and ends with the profile Ψn+1(x) , we will use another family of equilibrium

profiles [19], of period 2λ, solutions of (G-L) equation, which write:

ψ̂(x, k) =
K(k)

λ
+ ψ̂∗(x, k) =

K(k)

λ

1 − k′ − (1 + k′)
√

1 − k′Sn(2x, k)√
1 − k′Sn(2x, k) − 1

(17)

where k2 + k′2 = 1. Note that < ψ̂(x, k) >= 0 whereas the family ψ̂∗(x, k) is solution of :

∇2ψ̂∗ = ε(k)
ψ̂∗

2
+ 2ψ̂∗3 + µ(k) (18)

with µ(a, k) = (k2 − 1)
(

2K(k)
λ

)3

and ε(k) = (k2 − 5)
(

2K(k)
λ

)2

(we have ε(k) > ε0 ).

Using Gauss’ transformation (or descending Landen transformation [20]), we can relate

the soliton lattice of spatial period 2λ (and of modulus k) to the soliton lattice of period λ

(and of modulus µ = 1−k′

1+k′
) as follows

ψ̂(x− λ
2
, k) + ψ̂(x+ λ

2
, k) = 4µK(µ)

λ
Sn((4x+ λ)K(µ)

λ
, µ) (19)

ψ̂(x− λ
4
, k) + ψ̂(x+ λ

4
, k) = 4kK(k)

2λ
Sn(4xK(k)

2λ
, k) (20)

Note that K(k) = (1 + µ)K(µ). As if k = ks
n+1, µ = ks

n, we see that both the initial

state Ψn(x) = Ψks
n,2nλC−H

(x) and the final state Ψn+1(x) = Ψks
n+1,2n+1λC−H

(x) of a step of

the coalescence process can be describe, modulo a phase shift, by the same function :

Φ(x, k, φ) = ψ̂(x− (1 − φ/2)
λ

2
, k) + ψ̂(x+ (1 − φ/2)

λ

2
, k) (21)
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with k = ks
n+1 and λ = 2nλC−H (see also Figure 1). Therefore we can describe the coalescence

by a transformation at constant segregation parameter k, while the degree of freedom φ,

associated with the relative phase between the two profiles, evolves in time from 0 to 1 (or

−1) according to the C-H dynamics [22].

B. Energy Landscape

In order to prove the usefulness of this ansatz, we have plot the energy averaged over a

period, FGL(φ) =
∫
FGL(Φ(x, k, φ))dx, as a function of the parameter φ, keeping k constant.

We see in Figure 2 that the value φ = 0 corresponds to a local maximum of energy, while

φ = 1 (or −1) is a minimum. Note that there is no energy barrier in this particular energy

landscape, in agreement with linear stability analysis.

Using the properties of the ansatz, we can extract φ(t) from a numerical simulation.

Indeed

Φ(
λ

2
, k, φ) = ψ̂(φ

λ

4
, k) + ψ̂(λ− φ

λ

4
, k) = 2ψ̂(φ

λ

4
, k) (22)

Φ(−λ
2
, k, φ) = ψ̂(φ

λ

4
− λ, k) + ψ̂(−φλ

4
, k) = 2ψ̂(−φλ

4
, k)

For φ = 0, Φ(λ
2
) = Φ(−λ

2
) = 2K

λ
(k′ − 1) while Φ(λ

2
) = −Φ(−λ

2
) = 2Kk

λ
for φ = 1. A k = ks

n+1

is known, from A(t) ∈ [0, 1] defined as follows

2A(t) = 1 − Φ(λ
2
, k, φ(t))

Φ(−λ
2
, k, φ(t))

=
4k′Sn(φK(k)

2
, k)

√
1 − k′ + 2k′Sn(φK(k)

2
, k) − k

√
1 + k′Sn2(φK(k)

2
, k)

, (23)

one can extract φ :

φ(t) =
2

K(k)

∫ k
′(A−1)+

√
A2+k′2−2Ak′2

kA

√
1+k′

0

da√
1 − k2a2

√
1 − a2

. (24)

One sees in Figure3 that the dynamics is dominated by the time required to leave a

stationary state. Moreover, the dynamics ends when φ reaches 1 : we then have Φ = Ψn+1

for which ε0

2
Ψn+1 + 2Ψ3

n+1 −∇2Ψn+1 = 0.

C. Linear stability analysis

If we look at the time evolution of the profile Φ(x, ks
n+1, φ), starting from the region φ = 0,

we can transform the (C-H) equation into a phase field equation, replacing ∂
∂t

Φ(x, ks
n+1, φ)
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by ∂
∂φ

Φ(x, ks
n+1, φ(t)) × dφ

dt
(with k fixed). The dynamics will then be similar to spinodal

decomposition (eq. (11)), for φ growing initially as exp(t/τn) and saturating later at φ = 1.

In Figure 4 is plotted ∂Φ
∂φ

(x, ks
n+1) = λ

4
Ψ̃L(x, ks

n+1) for φ = 0, which corresponds to the

most unstable mode founded in Langer’s linear stability analysis and is characterized by the

alternated growth and decrease of domains (”antiferro” mode) :

Ψ̃L(x, k) = ψ̂′(x− (1 − φ/2)
λ

2
, k) − ψ̂′(x+ (1 − φ/2)

λ

2
, k) (25)

where

ψ̂′(x, k) = k′
√

1 − k′
(

2K(k)

λ

)2 Cn(2xK(k)
λ
, k)Dn(2xK(k)

λ
, k)

(
1 −

√
1 − k′Sn(2xK(k)

λ
, k)

)2 (26)

verifies

∇2ψ̂′(x, k) = ε(k)
ψ̂′(k, x)

2
+ 6ψ̂∗2ψ̂′(k, x). (27)

In order to describe the evolution of the phase φ(t) we linearize the Cahn-Hilliard

dynamics around Ψn(x) = Φ(x, ks
n+1, φ = 0) inserting Ψ (x, t) = Ψn(x) + ∂Φ

∂φ
φ(t) =

Ψn(x) + λ
4
Ψ̃L(x, ks

n+1)φ(t) into (1). We then have the following dynamics

Ψ̃L.
dφ

dt
= φ(t)

∂2

∂x2

(ε0

2
Ψ̃L + 6Ψ2

nΨ̃L −∇2Ψ̃L

)
= φ(t)

∂2

∂x2
L(Ψ̃L). (28)

where L is the Lamé operator. Even if this operator doesn’t have simple (algebraic) exact

eigenfunction of period 2λC−H [21], Ψ̃L(x, k, φ), for φ = 0 and k = ks
n+1, happens never-

theless to be a good approximation for the eigenfunction of lowest eigenvalue [22]. Due

to the concavity of FGL(φ) around φ = 0, (see Figure 2), this eigenvalue will be negative,

triggering a linear destabilization of the pattern Ψn and an exponential amplification of the

perturbation, i.e. an exponential growth of the translation φ with time.

Indeed, using equation (18) we get

∇2Ψ̃L = ∇2
[
ψ̂′

+ − ψ̂′
−

]
=
ε(k)

2
Ψ̃L + 6(ψ̂∗2

+ ψ̂
′
+ − ψ̂∗2

− ψ̂
′
−). (29)

So

ε0

2
Ψ̃L + 6Ψ∗2

i Ψ̃L −∇2Ψ̃L =
ε0 − ε(k)

2
Ψ̃L + 6

(
ψ̂∗2
− ψ̂

′
+ − ψ̂∗2

+ ψ̂
′
−

)
(30)

+ 6

[
(
2K(k)

λ
)2 + 2(

2K(k)

λ
(ψ̂∗

+ + ψ̂∗
−) + ψ̂∗

+ψ̂
∗
−)

]
(ψ̂′

+ − ψ̂′
−).

10



It turns out that for φ = 0,

2K(k)

λ

(
ψ̂∗

+ + ψ̂∗
−

)
+ ψ̂∗

+ψ̂
∗
− =

(
k′2 − 4

)(
K(k)

λ

)2

together with

ψ̂∗2
− ψ̂

′
+ − ψ̂∗2

+ ψ̂
′
− ≃

(
4 − k′2 − 4k

′

)(
K(k)

λ

)2

(ψ̂′
+ − ψ̂′

−).

So finally
ε0

2
Ψ̃L + 6Ψ∗2

i0 Ψ̃L −∇2Ψ̃L ≃ −6k
′

(
2K(k)

λ

)2

Ψ̃L. (31)

As the period associated with ks
n+1 is 2λ, equation (10) gives

(
2K(k)

λ

)2

= − ε0

2(1+k2)
and thus

equation (28) can now be written in a simpler form, similar to equation (11) :

Ψ̃L.
dφ

dt
= ε0

3k′

1 + k2
φ(t)

∂2

∂x2
Ψ̃L. (32)

We recover that Ψ̃L is an eigenstate of Lamé equation with a negative eigenvalue −3k′|ε0|
2−k′2 .

This eigenvalue goes to zero as the coalescence progresses towards higher segregation.

The characteristic time for one step of period doubling is thus τn ≃ 2
3ε2

0

2−k′2

k′
(the extra ε0/2

comes from ∂2

∂x2 Ψ̃L). As for small k′, k′ ≃ 4 exp(−K(k)), we have the following relationship

between τ−1
n and the period of the profile :

τ−1
n ≃ 3

4
ε2
0k

′ = 3ε2
0 exp(−K(k)) = 3ε2

0 exp(−2n−1π) = 3ε2
0 exp(− πλ

2λC−H
). (33)

As ln τn goes like a power of n, we can conclude that in D = 1, the size of the domain will

evolve for long t as 2
π
λC−H ln(3ε2

0t).

IV. APPLICATION : MODULATED PHASE SYSTEMS

We can use the preceding ansatz to work out the period of modulated phase systems for

which there is a competition between two types of interactions: a short-range interaction

which tends to make the system more homogeneous together with a long-range one, or a

non-local one, which prefers proliferation of domain walls. This competition results in a

microphase separation with a preferred length scale [1]. These systems can be study using

a modified Landau-Ginzburg approach, derived from Cahn-Hilliard equation and often use

for numerical simulations [23]:

∂Ψ

∂t
= (∇2 δFGL(Ψ)

δΨ
) − β2Ψ = ∇2(

ε0

2
Ψ + 2Ψ3 −∇2Ψ) − β2Ψ. (34)

11



−β2Ψ models in the Cahn-Hilliard equation the long-range interactions, which prevents

the formation of macroscopic domains and favors the modulation. We could have chosen

other ways of representing this long-range interaction, but the inclusion of such a term,

following Oono, enables to describe the behavior of modulated systems at T much lower

than Tc, as we will show below. If we suppose for example that in a 3D problem, the long

range interaction decreases like 1
r
, the full free energy density writes

F (Ψ) = FGL + Fint =
1

2
(∇Ψ(r))2 +

ε

4
Ψ2(r) +

1

2
Ψ4(r) +

∫
Ψ(r′)g(r′, r)Ψ(r)dr′ , (35)

where g(r′, r) = β2

|r′−r| .The long range interaction g(r′, r) corresponds to a repulsive inter-

action when Ψ(r′) and Ψ(r) are of the same sign : thus it favor the formation of interphases.

If we want to study the dynamic of this phase separation, we use the Cahn-Hilliard equation :

∂Ψ

∂t
= ∇2

r

(
δF (Ψ)

δΨ

)
= ∇2

r

(
ε0

2
Ψ + 2Ψ3 −∇2Ψ +

∫
Ψ(r′)g(r′, r)dr′

)
. (36)

If one recalls that −1
|r′−r| is the Green’s function associated with the Laplacian operator ∇2

r

in 3D, the preceding equation then transforms into

∇2
r

(∫
Ψ(r′)g(r′, r)dr′

)
=

∫
Ψ(r′)∇2

rg(r
′, r)dr′ = −β2

∫
Ψ(r′)δ(r′, r)dr′ = −β2Ψ(r).

(37)

which leads to equation (34). The family (16) is not anymore an exact stationary solution of

this dynamics. Nevertheless, Ψn(x, kn, 2
nλC−H) is an approximate solution and thus can be

use as a tool for the calculation using a solubility condition (i.e. if we project the dynamics

on χ ∈ Ker( ∂2

∂x2L)). There exists a new sequence {ko
n} which satisfies (ε∗(ko

n) − ε0) < χ |
∂x2Ψko

n
> +β2 < χ | Ψko

n
>= 0 and which will characterize the new family of approximate

stationary configuration. When looking at the linear stability analysis of these solutions,

equation (1) now writes

Ψ̃L.
dφ

dt
= φ(t)

(
3ε0k

′

2 − k′2
∂2

∂x2
Ψ̃L − β2Ψ̃L

)
. (38)

The profile will become stable when the eigenvalue of this modified Lamé’s equation become

negative, i.e. for τ−1
n < β2. This will take place for 3ε2

0 exp(− πλ
2λC−H

) ≃ β2. The dynamics of

period doubling will thus end with a thermodynamically stable 1D microseparated phase of

period λ = 8√−ε0
ln(

3ε2
0

β2 )

12



V. DISCUSSION ON THE HYPOTHESIS AND CONCLUSION

We have shown that the choice of two ansatzs within the soliton-lattice family allows a

reliable description of the one dimensional dynamics of both spinodal decomposition and

Ostwald ripening. Contrary to [11], our ansatz relies on the hypothesis that during the first

stage of the dynamics, the periodicity of the order parameter remains constant, while during

each steps of the coarsening process, it is the parameter k which remains constant. In a

sense, there are adiabatic ansatzs : the generation of higher harmonics is governed solely by

the time evolution of k(t) during the non linear saturation of the spinodal decomposition

and later on solely by φ(t) during the Ostwald ripening. The validity of the assumptions

have been investigated in details and checked numerically [17].

Our analytic method rely on the assumption that at each step of the dynamics, the system

can be characterized by a specific spatial period : we need therefore to discuss how this

approach is relevant to the general case where noise is present. We have noted numerically

that, for the spinodal decomposition, the average size of the modulation is λC−H , with a

deviation of less than one percent from the value predicted by the linear theory. It does

not mean that, in a real system, each domain has a length scale of L = λC−H/2, but that

the distribution of the domains’ length will be centered around L. The coalescence events

can be neglected during the initial growth of the amplitude of the modulation : as all

the eigenvalues of the Lamé operator (28) are then positive, the dynamics remains within

the ansatz subfamily Ψ∗(x, k). Only after this initial growth has saturated, turns negative

the lowest eigenvalue ; the coalescence process then starts, and dominates the forthcoming

dynamics.

We have computed in this article the characteristic time associated with one step of ideal

coalescence. By ideal coalescence, we mean a process which breaks as few symmetries as

possible. In a real system, because of initial fluctuations in the periodicity of the pattern

selected just after the quench, this instability will concern only region of finite size, where

it choose a certain sublattice, or a range for φ (for example, φ varies from 0 to 1), while it is

the opposite choice in the neighboring region ( φ varies from 0 to -1). The global symmetry

is thus recover on the overall (as in an antiferromagnet). During each step of the process,

the width of the domains will locally double; but for the system as a whole, due to non

synchronization between regions, the average length scale will vary continuously.

13



We have also shown that in a modified version of the Cahn-Hilliard dynamics, which take

into account long range interactions, the computation of this lowest eigenvalue enables to

compute that the spatial period of the thermodynamically stable modulated phase will be

λ = 8√−ε0
ln(

ε2
0

2β2 ).

The use of the solubility technics combined with the choice of an adiabatic ansatz might be

generalized to the study of other non linear dynamics. For instance, spinodal decomposition

in superfluid Helium or Bose condensate has been argued to be described by a cubic-quintic

non linear equation[24] ; in this particular case, one needs to retrieve a relevant soliton-like

family of solution along which to compute the adiabatic dynamics. The same difficulties

would arise as well when the method will be adapted to higher space dimensions as there is

no equivalent to soliton lattice in 2D; the ansatzs (16) and (21) could however be used in a

numerical simulation as tools for following the dynamics.

It might also be possible to extend this approach to non symmetric profile like the ones

introduced in different contexts[19, 25]. Or for the cases of special quenches which are time

periodic [26] or spatially periodic [27].
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VI. FIGURES

Figure 1

Construction of the two first steady solutions of the (C-H) dynamics, using a superposition of

the non-symmetric profile ψ̂∗(k, x), itself stationary solution of the (C-H) equation. By changing

the phase shift between the two profiles entering into the linear combination, one obtains two

different symmetric profiles, of periods λ and segregation parameter ks
0 =0.687 (equation (19)) or

of period 2λ and segregation parameter ks
1 =0.985 (equation (20)).

Figure 2

Profile of the free energy landscape during a coarsening process, F(φ). It starts at φ = 0 for a

configuration characterized by the segregation ratio ks
1 =0.687 for which the energy per unit length

is F(φ)≃ −0.135; one sees that in this region, the free energy is a concave function of φ and thus,

the associated pattern is linearly instable. The elementary step of the coarsening process ends for

φ = 1 associated with a pattern characterized by the segregation ratio ks
2 = 0.985 for which the

energy per unit length is F(φ)≃ −0.45. In the region φ = 1, the free energy is a convex function

of φ. Note that there is no energy barrier.

Figure 3

Parameter φ as a function of time. φ is extract from a numerical integration of the Cahn-Hilliard

dynamics using relation (24) to relate at a given time the profile with the phase φ. It starts at

φ = 0 with an exponential growth and saturates at φ = 1.

Figure 4

Langer’s most instable perturbation mode of destabilization of the soliton lattice is identified

with Ψ̃L = ∂
∂φ

Φ(x, k, φ) at φ = 0. It is composed of two antisymmetric patterns, plotted in dotted

(plain) line, evolving toward right (left) at velocity +dφ
dt

(-dφ
dt

), causing an ”antiferro” instability

leading to a period doubling of the pattern. They are the spatial derivative of the initial non

symmetric profile ψ̂∗(x) which has been used to construct our ansatz in Figure 1.
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