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2-Tape Büchi Automata

Olivier Finkel

Equipe de Logique Mathématique
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Abstract. We show that, from a topological point of view, 2-tape Büchi
automata have the same accepting power than Turing machines equipped
with a Büchi acceptance condition. In particular, for every non null re-
cursive ordinal α, there exist some Σ0

α
-complete and some Π0

α
-complete

infinitary rational relations accepted by 2-tape Büchi automata. This
surprising result gives answers to questions of Simonnet [Sim92] and of
Lescow and Thomas [Tho90,LT94].

Keywords: 2-tape Büchi automata; infinitary rational relations; Cantor topology;

topological complexity; Borel hierarchy; complete sets.

1 Introduction

In the sixties, automata accepting infinite words were firstly considered by Büchi
in order to study decidability of the monadic second order theory S1S of one suc-
cessor over the integers [Büc62]. Then the so called ω-regular languages have
been intensively studied and have found many applications for specification and
verification of non terminating systems, see [Tho90,Sta97,PP04] for many results
and references. On the other hand, rational relations on finite words were also
studied in the sixties, and played a fundamental role in the study of families of
context free languages [Ber79]. Investigations on their extension to rational rela-
tions on infinite words were carried out or mentioned in the books [BT70,LS77].
Gire and Nivat studied infinitary rational relations in [Gir81,GN84]. These rela-
tions are sets of pairs of infinite words which are accepted by 2-tape finite Büchi
automata with asynchronous reading heads. The class of infinitary rational re-
lations, which extends both the class of finitary rational relations and the class
of ω-regular languages, and the rational functions they may define, have been
much studied, see for example [CG99,BCPS00,Sim92,Sta97,Pri00].
Notice that a rational relation R ⊆ Σω

1 ×Σω
2 may be seen as an ω-language over

the alphabet Σ1 × Σ2.
A way to study the complexity of languages of infinite words accepted by fi-
nite machines is to study their topological complexity and firstly to locate them
with regard to the Borel and the projective hierarchies. This work is analysed



for example in [Sta86,Tho90,EH93,LT94,Sta97]. It is well known that every ω-
language accepted by a Turing machine with a Büchi or Muller acceptance
condition is an analytic set and that ω-regular languages are boolean combina-
tions of Π0

2-sets hence ∆0
3-sets, [Sta97,PP04].

The question of the topological complexity of relations on infinite words also
naturally arises and is asked by Simonnet in [Sim92]. It is also posed in a more
general form by Lescow and Thomas in [LT94] (for infinite labelled partial or-
ders) and in [Tho89] where Thomas suggested to study reducibility notions and
associated completeness results.
Every infinitary rational relation is an analytic set. We showed in [Fin03a] that
there exist some infinitary rational relations which are analytic but non Borel,
and in [Fin03c] that there are some Σ0

3-complete and some Π0
3-complete infini-

tary rational relations, using a coding of ω2-words by pairs of infinite words.
Using a different coding we proved in [Fin03d] that there exist such infinitary
rational relations which have a very simple structure and can be easily described
by their sections. Using this very simple structure, we constructed also some
infinitary rational relations, accepted by 3-tape Büchi automata, which are Σ0

4-
complete.
On the other hand we recently proved in [Fin05a,Fin05b] that the Borel hier-
archy of ω-languages accepted by Büchi real time 1-counter automata is equal
to the Borel hierarchy of ω-languages accepted by Büchi Turing machines. In
particular, for each non null recursive ordinal α, there exist some Σ0

α-complete
and some Π0

α-complete ω-languages accepted by Büchi real time 1-counter au-
tomata.
Using a simulation of real time 1-counter automata we prove in this paper a sim-
ilar result: the Borel hierarchy of the class of infinitary rational relations is equal
to the Borel hierarchy of ω-languages accepted by Büchi real time 1-counter
automata which is also equal to the Borel hierarchy of ω-languages accepted
by Büchi Turing machines. In particular, for each non null recursive ordinal α,
there exist some Σ0

α-complete and some Π0
α-complete infinitary rational rela-

tions. This gives answers to questions of Simonnet [Sim92] and of Lescow and
Thomas [Tho90,LT94].
The paper is organized as follows. In section 2 we recall the notion of 2-tape
automata and of real time 1-counter automata with Büchi acceptance condition.
In section 3 we recall definitions of Borel and analytic sets, and we prove our
main result in section 4.

2 2-tape automata and 1-counter automata

We assume the reader to be familiar with the theory of formal (ω)-languages
[Tho90,Sta97]. We shall use usual notations of formal language theory.
When Σ is a finite alphabet, a non-empty finite word over Σ is any sequence
x = a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length
of x is k, denoted by |x|. The empty word has no letter and is denoted by λ; its
length is 0. For x = a1 . . . ak, we write x(i) = ai and x[i] = x(1) . . . x(i) for i ≤ k



and x[0] = λ. Σ⋆ is the set of finite words (including the empty word) over Σ.
The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . .,
where for all integers i ≥ 1, ai ∈ Σ. When σ is an ω-word over Σ, we write
σ = σ(1)σ(2) . . . σ(n) . . ., where for all i, σ(i) ∈ Σ, and σ[n] = σ(1)σ(2) . . . σ(n)
for all n ≥ 1 and σ[0] = λ.
The prefix relation is denoted ⊑: a finite word u is a prefix of a finite word v
(respectively, an infinite word v), denoted u ⊑ v, if and only if there exists a
finite word w (respectively, an infinite word w), such that v = u.w. The set of
ω-words over the alphabet Σ is denoted by Σω. An ω-language over an alphabet
Σ is a subset of Σω. The complement (in Σω) of an ω-language V ⊆ Σω is
Σω − V , denoted V −.

Infinitary rational relations are subsets of Σω × Γ ω, where Σ and Γ are finite
alphabets, which are accepted by 2-tape Büchi automata (2-BA).

Definition 1. A 2-tape Büchi automaton is a sextuple T = (K, Σ, Γ, ∆, q0, F ),
where K is a finite set of states, Σ and Γ are finite alphabets, ∆ is a finite
subset of K × Σ⋆ × Γ ⋆ × K called the set of transitions, q0 is the initial state,
and F ⊆ K is the set of accepting states.
A computation C of the 2-tape Büchi automaton T is an infinite sequence of
transitions

(q0, u1, v1, q1), (q1, u2, v2, q2), . . . (qi−1, ui, vi, qi), (qi, ui+1, vi+1, qi+1), . . .

The computation is said to be successful iff there exists a final state qf ∈ F and
infinitely many integers i ≥ 0 such that qi = qf .
The input word of the computation is u = u1.u2.u3 . . .
The output word of the computation is v = v1.v2.v3 . . .
Then the input and the output words may be finite or infinite.
The infinitary rational relation R(T ) ⊆ Σω × Γ ω accepted by the 2-tape Büchi
automaton T is the set of couples (u, v) ∈ Σω × Γ ω such that u and v are the
input and the output words of some successful computation C of T .
The set of infinitary rational relations will be denoted RATω.

Definition 2. A (real time) 1-counter machine is a 4-tuple M=(K, Σ, ∆, q0),
where K is a finite set of states, Σ is a finite input alphabet, q0 ∈ K is the initial
state, and the transition relation ∆ is a subset of K×Σ×{0, 1}×K×{0, 1,−1}.
If the machine M is in state q and c ∈ N is the content of the counter then the
configuration (or global state) of M is (q, c).

For a ∈ Σ, q, q′ ∈ K and c ∈ N, if (q, a, i, q′, j) ∈ ∆ where i = 0 if c = 0 and
i = 1 if c 6= 0 then we write:

a : (q, c) 7→M (q′, c + j)

7→⋆
M is the transitive and reflexive closure of 7→M.

Thus we see that the transition relation must satisfy:



if (q, a, i, q′, j) ∈ ∆ and i = 0 then j = 0 or j = 1 (but j may not be equal to
−1).

Let σ = a1a2 . . . an be a finite word over Σ. A sequence of configurations r =
(qi, ci)1≤i≤n+1 is called a run of M on σ, starting in configuration (p, c), iff:

(1) (q1, c1) = (p, c)
(2) for each i ∈ [1, n], ai : (qi, ci) 7→M (qi+1, ci+1)

Let σ = a1a2 . . . an . . . be an ω-word over Σ. An ω-sequence of configurations
r = (qi, ci)i≥1 is called a run of M on σ, starting in configuration (p, c), iff:

(1) (q1, c1) = (p, c)
(2) for each i ≥ 1, ai : (qi, ci) 7→M (qi+1, ci+1)

For every such run, In(r) is the set of all states entered infinitely often during
run r.
A run r of M on σ, starting in configuration (q0, 0), will be simply called “a run
of M on σ”.

Definition 3. A (real time) Büchi 1-counter automaton is a 5-tuple

M=(K, Σ, ∆, q0, F ),

where M′=(K, Σ, ∆, q0) is a (real time) 1-counter machine and F ⊆ K is the
set of accepting states. The ω-language accepted by M is

L(M)= {σ ∈ Σω | there exists a run r of M on σ such that In(r) ∩ F 6= ∅}

The class of (real time) Büchi 1-counter automata will be denoted r-BC(1).
The class of ω-languages accepted by real time Büchi 1-counter automata will
be denoted r-BCL(1)ω.

3 Borel hierarchy

We assume the reader to be familiar with basic notions of topology which may
be found in [Mos80,LT94,Kec95,Sta97,PP04]. There is a natural metric on the
set Σω of infinite words over a finite alphabet Σ which is called the prefix metric
and defined as follows. For u, v ∈ Σω and u 6= v let δ(u, v) = 2−lpref(u,v) where
lpref(u,v) is the first integer n such that the (n + 1)st letter of u is different from
the (n+1)st letter of v. This metric induces on Σω the usual Cantor topology for
which open subsets of Σω are in the form W.Σω, where W ⊆ Σ⋆. A set L ⊆ Σω

is a closed set iff its complement Σω − L is an open set. Define now the Borel
Hierarchy of subsets of Σω:

Definition 4. For a non-null countable ordinal α, the classes Σ0
α and Π0

α of
the Borel Hierarchy on the topological space Σω are defined as follows:
Σ0

1 is the class of open subsets of Σω, Π0
1 is the class of closed subsets of Σω,

and for any countable ordinal α ≥ 2:
Σ0

α is the class of countable unions of subsets of Σω in
⋃

γ<α Π0
γ .

Π0
α is the class of countable intersections of subsets of Σω in

⋃
γ<α Σ0

γ.



For a countable ordinal α, a subset of Σω is a Borel set of rank α iff it is in
Σ0

α ∪ Π0
α but not in

⋃
γ<α(Σ0

γ ∪ Π0
γ).

There are also some subsets of Σω which are not Borel. In particular the class of
Borel subsets of Σω is strictly included into the class Σ1

1 of analytic sets which are
obtained by projection of Borel sets, see for example [Sta97,LT94,PP04,Kec95]
for more details. The (lightface) class Σ1

1 of effective analytic sets is the class of
sets which are obtained by projection of arithmetical sets. It is well known that
a set L ⊆ Σω, where Σ is a finite alphabet, is in the class Σ1

1 iff it is accepted
by a Turing machine with a Büchi or Muller acceptance condition [Sta97].
We now define completeness with regard to reduction by continuous functions.
For a countable ordinal α ≥ 1, a set F ⊆ Σω is said to be a Σ0

α (respectively,
Π0

α, Σ1
1)-complete set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ0

α

(respectively, E ∈ Π0
α, E ∈ Σ1

1) iff there exists a continuous function f : Y ω →
Σω such that E = f−1(F ). Σ0

n (respectively Π0
n)-complete sets, with n an

integer ≥ 1, are thoroughly characterized in [Sta86].

4 Topology and infinitary rational relations

The first non-recursive ordinal, usually called the Church-Kleene ordinal, will be
denoted below by ωCK

1 .

We have proved in [Fin05a,Fin05b] the following result.

Theorem 5. For every non null countable ordinal α < ωCK
1 , there exist some

Σ0
α-complete and some Π0

α-complete ω-languages in the class r-BCL(1)ω.

We are going to prove a similar result for the class RATω, using a simulation of
1-counter automata.
We now first define a coding of an ω-word over a finite alphabet Σ by an ω-word
over the alphabet Γ = Σ ∪ {A}, where A is an additionnal letter not in Σ.

For x ∈ Σω the ω-word h(x) is defined by :

h(x) = A.0.x(1).A.02.x(2).A.03.x(3).A.04.x(4).A . . . A.0n.x(n).A.0n+1.x(n+1).A . . .

Then it is easy to see that the mapping h from Σω into (Σ∪{A})ω is continuous
and injective.

Lemma 6. Let Σ be a finite alphabet and α ≥ 2 be a countable ordinal. If
L ⊆ Σω is Π0

α-complete (respectively, Σ0
α-complete) then

h(L) ∪ h(Σω)−

is a Π0
α-complete (respectively, Σ0

α-complete) subset of (Σ ∪ {A})ω.



Proof. Let L be a Π0
α-complete (respectively, Σ0

α-complete) subset of Σω, for
some countable ordinal α ≥ 2 .

The topological space Σω is compact thus its image by the continuous function
h is also a compact subset of the topological space (Σ ∪ {A})ω. The set h(Σω)
is compact hence it is a closed subset of (Σ ∪ {A})ω and its complement

(h(Σω))− = (Σ ∪ {A})ω − h(Σω)

is an open (i.e. a Σ0
1) subset of (Σ ∪ {A})ω.

On the other side the function h is also injective thus it is a bijection from
Σω onto h(Σω). But a continuous bijection between two compact sets is an
homeomorphism therefore h induces an homeomorphism between Σω and h(Σω).
By hypothesis L is a Π0

α (respectively, Σ0
α)-subset of Σω thus h(L) is a Π0

α

(respectively, Σ0
α)-subset of h(Σω) (where Borel sets of the topological space

h(Σω) are defined from open sets as in the case of the topological space Σω).

The topological space h(Σω) is a topological subspace of (Σ ∪ {A})ω and its
topology is induced by the topology on (Σ ∪ {A})ω: open sets of h(Σω) are
traces on h(Σω) of open sets of (Σ ∪{A})ω and the same result holds for closed
sets. Then one can easily show by induction that for every ordinal β ≥ 1, Π0

β-

subsets (resp. Σ0
β-subsets) of h(Σω) are traces on h(Σω) of Π0

β-subsets (resp.

Σ0
β-subsets) of (Σ∪{A})ω, i.e. are intersections with h(Σω) of Π0

β-subsets (resp.

Σ0
β-subsets) of (Σ ∪ {A})ω.

But h(L) is a Π0
α (respectively, Σ0

α)-subset of h(Σω) hence there exists a Π0
α

(respectively, Σ0
α)-subset T of (Σ ∪ {A})ω such that h(L) = T ∩ h(Σω). But

h(Σω) is a closed i.e. Π0
1-subset (hence also a Π0

α (respectively, Σ0
α)-subset) of

(Σ ∪ {A})ω and the class of Π0
α (respectively, Σ0

α)-subsets of (Σ ∪ {A})ω is
closed under finite intersection thus h(L) is a Π0

α (respectively, Σ0
α)-subset of

(Σ ∪ {A})ω.

Now h(L)∪(h(Σω))− is the union of a Π0
α (respectively, Σ0

α)-subset and of a Σ0
1-

subset of (Σ∪{A})ω therefore it is a Π0
α (respectively, Σ0

α)-subset of (Σ∪{A})ω

because the class of Π0
α (respectively, Σ0

α)-subsets of (Σ∪{A})ω is closed under
finite union.

In order to prove that h(L) ∪ (h(Σω))− is Π0
α (respectively, Σ0

α)--complete it
suffices to remark that

L = h−1[h(L) ∪ (h(Σω))−]

This implies that h(L)∪ (h(Σω))− is Π0
α (respectively, Σ0

α)-complete because L
is assumed to be Π0

α (respectively, Σ0
α)-complete. �



Let now Σ be a finite alphabet such that 0 ∈ Σ and let α be the ω-word over
the alphabet Σ ∪ {A} which is defined by:

α = A.0.A.02.A.03.A.04.A.05.A . . . A.0n.A.0n+1.A . . .

We can now state the following Lemma.

Lemma 7. Let Σ be a finite alphabet such that 0 ∈ Σ, α be the ω-word over
Σ ∪ {A} defined as above, and L ⊆ Σω be in r-BCL(1)ω. Then there exists an
infinitary rational relation R1 ⊆ (Σ ∪ {A})ω × (Σ ∪ {A})ω such that:

∀x ∈ Σω (x ∈ L) iff ((h(x), α) ∈ R1)

Proof. Let Σ be a finite alphabet such that 0 ∈ Σ, α be the ω-word over Σ∪{A}
defined as above, and L = L(A) ⊆ Σω, where A=(K, Σ, ∆, q0, F ) is a 1-counter
Büchi automaton.

We define now the relation R1. A pair y = (y1, y2) of ω-words over the alphabet
Σ ∪ {A} is in R1 if and only if it is in the form

y1 = A.u1.v1.x(1).A.u2.v2.x(2).A.u3.v3.x(3).A . . . A.un.vn.x(n).A. . . .
y2 = A.w1.z1.A.w2.z2.A.w3.z3.A . . .A.wn.zn.A . . .

where |v1| = 0 and for all integers i ≥ 1,

ui, vi, wi, zi ∈ 0⋆ and x(i) ∈ Σ and

|ui+1| = |zi| + 1

and there is a sequence (qi)i≥0 of states of K such that for all integers i ≥ 1:

x(i) : (qi−1, |vi|) 7→A (qi, |wi|)

Moreover some state qf ∈ F occurs infinitely often in the sequence (qi)i≥0.
Notice that the state q0 of the sequence (qi)i≥0 is also the initial state of A.

Let now x ∈ Σω such that (h(x), α) ∈ R1. We are going to prove that x ∈ L.

By hypothesis (h(x), α) ∈ R1 thus there are finite words ui, vi, wi, zi ∈ 0⋆ such
that |v1| = 0 and for all integers i ≥ 1, |ui+1| = |zi| + 1, and

h(x) = A.u1.v1.x(1).A.u2.v2.x(2).A.u3.v3.x(3).A . . . A.un.vn.x(n).A. . . .

α = A.w1.z1.A.w2.z2.A.w3.z3.A . . . A.wn.zn.A . . .

Moreover there is a sequence (qi)i≥0 of states of K such that for all integers
i ≥ 1:

x(i) : (qi−1, |vi|) 7→A (qi, |wi|)



and some state qf ∈ F occurs infinitely often in the sequence (qi)i≥0.

on the other side we have:
h(x) = A.0.x(1).A.02.x(2).A.03.x(3).A . . . A.0n.x(n).A.0n+1.x(n + 1).A . . .
α = A.0.A.02.A.03.A.04.A . . . A.0n.A . . .

So we have |u1.v1| = 1 and |v1| = 0 and x(1) : (q0, |v1|) 7→A (q1, |w1|). But
|w1.z1| = 1, |u2.v2| = 2, and |u2| = |z1| + 1 thus |v2| = |w1|.

We are going to prove in a similar way that for all integers i ≥ 1 it holds that
|vi+1| = |wi|.
We know that |wi.zi| = i, |ui+1.vi+1| = i + 1, and |ui+1| = |zi| + 1 thus |wi| =
|vi+1|.

Then for all i ≥ 1, x(i) : (qi−1, |vi|) 7→A (qi, |vi+1|).
So if we set ci = |vi|, (qi−1, ci)i≥1 is an accepting run of A on x and this implies
that x ∈ L.
Conversely it is easy to prove that if x ∈ L then (h(x), α) may be written in the
form of (y1, y2) ∈ R1.

It remains to prove that the above defined relation R1 is an infinitary rational
relation. It is easy to find a 2-tape Büchi automaton T accepting the infinitary
rational relation R1.

Lemma 8. The set

R2 = (Σ ∪ {A})ω × (Σ ∪ {A})ω − (h(Σω) × {α})

is an infinitary rational relation.

Proof. By definition of the mapping h, we know that a pair of ω-words over the
alphabet (Σ∪{A}) is in h(Σω)×{α} iff it is in the form (σ1, σ2), where

σ1 = A.0.x(1).A.02.x(2).A.03.x(3).A . . . .A.0n.x(n).A.0n+1.x(n + 1).A . . .
σ2 = α = A.0.A.02.A.03.A . . . A.0n.A.0n+1.A . . .

where for all integers i ≥ 1, x(i) ∈ Σ.

So it is easy to see that (Σ ∪ {A})ω × (Σ ∪ {A})ω − (h(Σω)× {α}) is the union
of the sets Cj where:

– C1 is formed by pairs (σ1, σ2) where
σ1 has not any initial segment in A.Σ2.A.Σ3.A, or σ2 has not any initial
segment in A.Σ.A.Σ2.A.

– C2 is formed by pairs (σ1, σ2) where
σ2 /∈ (A.0+)ω, or σ1 /∈ (A.0+.Σ)ω.



– C3 is formed by pairs (σ1, σ2) where
σ1 = A.w1.A.w2.A.w3.A . . . A.wn.A.u.A.z1

σ2 = A.w′
1.A.w′

2.A.w′
3.A . . . A.w′

n.A.v.A.z2

where n is an integer ≥ 1, for all i ≤ n wi, w
′
i ∈ Σ⋆, z1, z2 ∈ (Σ∪{A})ω and

u, v ∈ Σ⋆ and |u| 6= |v| + 1

– C4 is formed by pairs (σ1, σ2) where
σ1 = A.w1.A.w2.A.w3.A.w4 . . . A.wn.A.wn+1.A.v.A.z1

σ2 = A.w′
1.A.w′

2.A.w′
3.A.w′

4 . . . A.w′
n.A.u.A.z2

where n is an integer ≥ 1, for all i ≤ n wi, w
′
i ∈ Σ⋆, wn+1 ∈ Σ⋆, z1, z2 ∈

(Σ ∪ {A})ω and
u, v ∈ Σ⋆ and |v| 6= |u| + 2

Each set Cj , 1 ≤ j ≤ 4, is easily seen to be an infinitary rational relation
⊆ (Σ ∪ {A})ω × (Σ ∪ {A})ω (the detailed proof is left to the reader). The class
RATω is closed under finite union thus

R2 = (Σ ∪ {A})ω × (Σ ∪ {A})ω − (h(Σω) × {α}) =
⋃

1≤j≤4

Cj

is an infinitary rational relation. �

We can now state the following result :

Theorem 9. For every non null countable ordinal γ < ωCK
1 , there exists some

Σ0
γ-complete and some Π0

γ-complete infinitary rational relations in the class
RATω.

Proof. For γ = 1 (and even γ = 2) the result is already true for regular ω-
languages.
Let then γ ≥ 2 be a countable non null recursive ordinal and L = L(A) ⊆ Σω

be a Π0
γ-complete (respectively, Σ0

γ-complete) ω-language accepted by a (real
time) Büchi 1-counter automaton A.

Let Γ = Σ∪{A} and R1 ⊆ Γ ω×Γ ω be the infinitary rational relation constructed
from L(A) as in the proof of Lemma 7 and let

R = R1 ∪ R2 ⊆ Γ ω × Γ ω

The class RATω is closed under finite union therefore R is an infinitary rational
relation.

Lemma 7 and the definition of R2 imply that Rα = {σ ∈ Γ ω | (σ, α) ∈ R} is
equal to the set L = h(L) ∪ (h(Σω))− which is a Π0

γ-complete (respectively,
Σ0

γ-complete) subset of (Σ ∪ {A})ω by Lemma 6.



Moreover, for all u ∈ Γ ω − {α}, Ru = {σ ∈ Γ ω | (σ, u) ∈ R} = Γ ω holds by
definition of R2.

In order to prove that R is a Π0
γ (respectively, Σ0

γ)-complete set remark first
that R may be written as the union:

R = L× {α}
⋃

Γ ω × (Γ ω − {α})

We already know that L is a Π0
γ (respectively, Σ0

γ)-complete subset of (Σ ∪
{A})ω. Then it is easy to show that L × {α} is also a Π0

γ (respectively, Σ0
γ)-

subset of (Σ ∪ {A})ω × (Σ ∪ {A})ω. On the other side it is easy to see that
Γ ω × (Γ ω − {α}) is an open subset of Γ ω × Γ ω. Thus R is a Π0

γ (respectively,
Σ0

γ)-set because the Borel class Π0
γ (respectively, Σ0

γ) is closed under finite union.

Moreover let g : Σω → (Σ ∪ {A})ω × (Σ ∪ {A})ω be the function defined by:

∀x ∈ Σω g(x) = (h(x), α)

It is easy to see that g is continuous because h is continuous. By construction it
turns out that for all ω-words x ∈ Σω, (x ∈ L) iff ((h(x), α) ∈ R) iff (g(x) ∈ R).
This means that g−1(R) = L. This implies that R is Π0

γ (respectively, Σ0
γ)-

complete because L is Π0
γ (respectively, Σ0

γ)-complete. �

Remark 10. The structure of the infinitary rational relation R can be described
very simply by the sections Ru, u ∈ Γ ω. All sections but one are equal to Γ ω,
so they have the lowest topological complexity and exactly one section ( Rα ) is
a Π0

γ (respectively, Σ0
γ)-complete subset of Γ ω.

5 Concluding remarks

The Wadge hierarchy is a great refinement of the Borel hierarchy and we have
proved in [Fin05a,Fin05b] that the Wadge hierarchy of the class r-BCL(1)ω is
equal to the Wadge hierarchy of the class of ω-languages accepted by Büchi
Turing machines. Using the above coding and similar reasoning as in [Fin05b],
we can easily infer that the Wadge hierarchy of the class RATω and the Wadge
hierarchy of the class r-BCL(1)ω are equal. Thus the Wadge hierarchy of the
class RATω is also the Wadge hierarchy of the (lightface) class Σ1

1 of ω-languages
accepted by Turing machines with a Büchi acceptance condition. In particular
their Borel hierarchies are also equal.
We have to indicate here a mistake in [Fin05a]. We wrote in that paper that it is
well known that if L ⊆ Σω is a Σ1

1 set (i.e. accepted by a Turing machine with
a Büchi acceptance condition), and is a Borel set of rank α, then α is smaller
than ωCK

1 . This fact, which is true if we replace Σ1
1 by ∆1

1, seemed to us an
obvious fact, and was accepted by many people as true, but it is actually not
true. Kechris, Marker and Sami proved in [KMS89] that the supremum of the



set of Borel ranks of (lightface) Π1
1 , so also of (lightface) Σ1

1 , sets is the ordinal
γ1
2 . This ordinal is defined in [KMS89] and it is proved to be strictly greater than

the ordinal δ1
2 which is the first non ∆1

2 ordinal. Thus it holds that ωCK
1 < γ1

2 .
The ordinal γ1

2 is also the supremum of the set of Borel ranks of ω-languages in
the class r-BCL(1)ω or in the class RATω. Notice however that it is not proved
in [KMS89] that every non null ordinal γ < γ1

2 is the Borel rank of a (lightface)
Π1

1 (or Σ1
1) set, while it is known that every ordinal γ < ωCK

1 is the Borel rank
of a (lightface) ∆1

1 set. The situation is then much more complicated than it
could be expected. More details will be given in the full versions of [Fin05a] and
of this paper.

Acknowledgements. Thanks to the anonymous referees for useful comments
on a preliminary version of this paper.
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