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RESOLUTION OF SINGULARITIES OF THREEFOLDS IN

POSITIVE CHARACTERISTIC I

VINCENT COSSART AND OLIVIER PILTANT

1. Introduction.

The purpose of this article and [13] is to prove theorem 2.1 below: resolution of
singularities holds for algebraic varieties of dimension three over a field k of charac-
teristic p > 0 whenever k is differentially finite over some perfect subfield k0. This
condition is satisfied in particular when k is a function field over k0. The resolution of
singularities π : Z̃ → Z which we obtain is projective, birational and an isomorphism
away from the singular locus of any given variety Z. It should be emphasized however
that our construction of π is purely existential: it neither respects embeddings of Z
in a regular space, nor is given by any resolution algorithm.

For k an algebraically closed field of characteristic p > 5, our result is a consequence
of Abhyankar’s theorem proved in 1966 [5] and of its refinement in [12]. Abhyankar’s
techniques have been greatly simplified in [17] under the same assumption on k. Al-
though several written programs have appeared in the recent years to prove resolution
of singularities [30] [28] or the weaker local uniformization theorem [43] over a per-
fect ground field, none has been completed to this date. On the other hand, dealing
with nonperfect ground fields induces great technical difficulties which do not seem
to have been systematically considered in any written program to this date. Some
partial results in dimension three were already known [11] [38], but no such general
statement as theorem 2.1

If the condition of π being “birational” is relaxed to “generically finite”, the exis-
tence of π : Z̃ → Z with Z̃ regular is known in all dimensions by de Jong’s theorem
[29]. It is worth noting that when k is not perfect, de Jong’s theorem is somewhat
weaker in the sense that the obtained π is not generically smooth in general. Our
approach basically relies on two different kind of techniques:

On the one hand, we use Zariski’s reduction to local uniformization of valuations
as in [46]. This is still a subtle problem to handle in dimension three and we adapt
Abhyankar’s ramification techniques in [1] to dimension three in order to further
reduce local uniformization to Artin-Schreier (g 6= 0 below ) or purely inseparable
(g = 0 below) covers of degree p of a regular (three dimensional) germ of variety, i.e.
for local rings

O := (S[X]/(h))(X,u1,u2,u3), h := Xp − gp−1X + f, (1)

where S is a regular local ring of dimension three, essentially of finite type over k,
with maximal ideal mS := (u1, u2, u3) and f, g ∈ mS . Such reduction is the purpose
of this first article and is the content of theorem 7.2. It is at the present state of our
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2 VINCENT COSSART AND OLIVIER PILTANT

knowledge restricted to dimension at most three but does work for arbitrary ground
fields of positive characteristic.

On the other, local uniformization is proved directly for singularities of the form (1)
in [13] and this is the hard part. There, we rely on differential techniques introduced
by the first author and J. Giraud which had already been successful in the purely in-
separable case g = 0 in [11]. At this point, we emphasize that the Galois assumption
in (1) is essential and that our proof does not extend in a trivial way when h ∈ S[X]
is an arbitrary monic polynomial of degree p. Dealing with Artin-Schreier coverings
of degree p is what makes our result valid for small characteristics: S. Abhyankar
cleverly avoids this difficulty in [5], one consequence being his restriction to p ≥ 7.
See also [35] for details.

We now conclude this introduction by sketching the logical organisation of the
proof in this article and [13].

In the next four sections, we state or extend lower dimensional results that are
necessary to reduce our resolution theorem to local uniformization of rank one, resid-
ually algebraic valuations. This is classical material. From section 6 on, we follow
the lines of Abhyankar’s proof in dimension two [1]. The basic ingredient used in
here is Krull’s structure theorem for the inertia group of extensions of valuation rings
[32]. This leads to proving “pulling up” and “pushing down” theorems for local uni-
formization in elementary field extensions.

The only difficult case in pulling up is that of Artin-Schreier and purely inseparable
extensions of degree p, dealt with in [13]. Our formulation of theorem 7.2 stresses
the role played by immediate wildly ramified extensions of valued fields which are the
main obstruction to proving local uniformization, see [31] and [33].

Pushing down theorems are less difficult because wildly ramified extensions can
be avoided by this ramification theoretic construction. The main difficulty is con-
centrated in proposition 9.3 and deals with pushing down local uniformization in
subextensions of the strict Henselisation of a given normal local ring of dimension
three which are not necessarily Galois. We then have to refine substantially Ab-
hyankar’s argument in [1].

In [13], singularities of the form (1) are uniformized using Hironaka’s methods when
h has order smaller than p. What has to be achieved is to reduce to this situation.

In chapter 1 of [13], we introduce our main invariant (ordxh,Ω(x)) at any point
x ∈ X := SpecO. To begin with, it can be assumed that X is nonsingular away
from η−1(E), E a divisor with normal crossings on SpecS and η : X → SpecS
(section I). Then Ω(x) = (ω(x), ω′(x)) ∈ N×{1, 2, 3} is built up in section II.3 from
certain Jacobian ideals J(f, E) [11] [21] when the Hironaka characteristic polyhedron
∆(h; u1, u2, u3;X) ⊆ R3

≥0 is minimal [24].

The case ω(x) = 0 is easily dealt with in II.4.6 by a simple combinatorial algo-
rithm (Hironaka’s game). When ω(x) > 0, the refinement ω′(x) ∈ {1, 2, 3} essentially
stores in the information that ω(x) w.r.t. (1) is computed from g (ω′(x) = 1), from
f alone (ω′(x) = 2) or from both f and g (ω′(x) = 3). The main point is our defini-
tion of permissible blowing ups for Ω(x) and its non-increasing by such blowing ups
(section II.5). Our notion of permissible blowing ups is more restrictive than that of
Hironaka (i.e. regular and equimultiple centers for the hypersurface X). The main
difficulty which is overcome here is to get some hold on the transformation laws for
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Hironaka’s characteristic polyhedra under permissible blowing ups in our sense. The
cases ω′(x) = 3 (theorem II.5.6) and ω′(x) = 1 (theorems I.1 and I.2.7 of chapter
2) are easily dispatched once this behavior has been understood.

In chapter 2, we begin the definition of a secondary invariant κ(x) ∈ {0, 1, 2, 3, 4, 5}
which is a multivalued function. The case κ(x) ∈ {0, 1} (I.2.3 and I.2.5) corresponds
to Abhyankar’s good points: some reasonable algorithm makes Ω(x) drop. Section II

recollects several cases where κ(x) ∈ {0, 1} in terms of the equation (1).

We then define κ(x) ∈ {2, 3, 4, 5} in the last two chapters in terms of equation (1);
this is the reason why κ(x) is multivalued. Roughly speaking, the cases κ(x) ∈ {2, 3}
(resp. κ(x) ∈ {4, 5}) mean that our Jacobian ideals J(f, E) are transverse (resp.
tangent) to E in a certain sense. Our strategy is then to make the maximal value of
κ(x) drop, and this is the technical heart of [13]. It is worth noting that in the case
κ(x) = 3, we are lead to use nonpermissible blowing ups by preparing the base SpecS.

To conclude this overview of the proof, the authors want to point out that most of
the constructions and computations in [13] are actually performed w.r.t. the graded
ring grmS

S ≃ k(x)[U1, U2, U3]. This is sufficiently significant for the authors to make
it hopeful that the unequal characteristic case could be dealt with by similar methods
which are in progress.

2. Statement of main result and proof assuming the following

sections.

The main result of this article is the following theorem. The proof given below
recollects all results from the next sections and [13].

Theorem 2.1. Let k be a field of positive characteristic which is differentially fi-
nite over a perfect field k0, i.e. Ω1

k/k0
has finite dimension. Let Z/k be a reduced

quasiprojective scheme of dimension three with singular locus Σ. There exists a pro-
jective morphism π : Z̃ → Z, such that

(i) Z̃ is regular.

(ii) π induces an isomorphim Z̃\π−1(Σ) ≃ Z\Σ.

(iii) π−1(Σ) ⊂ Z̃ is a divisor with strict normal crossings.

Proof. Let Z1, . . . , Zs be the distinct irreducible components of Z. If s ≥ 2, let η :
Z ′ → Z be the blowing up along the scheme theoretic intersection Z1∩(Z2∪· · ·∪Zs).
Note that η induces an isomorphism away from the singular locus of Z and that the
strict transform of Z1 is a connected component of Z ′. By induction on s, we reduce
to the case when Z is irreducible. Since the theorem is true in dimension less than or
equal to two [36], we assume that Z has dimension three.

Once (i) and (ii) have been proved, (iii) follows from proposition 4.1. By propo-
sition 4.9, it is sufficient to prove local uniformization for any k-valuation ring V/k
of K(Z)/k. By proposition 5.1, it can further be assumed that V has rank one and
κ(V )/k is algebraic.

By theorem 7.2, it can be assumed that V birationally dominates an Artin-Schreier
or purely inseparable covering of degree p of an algebraic regular local ring of dimen-
sion three, essentially of finite type over k and that (2) of proposition 7.2 holds. Local
uniformization in this last case is proved directly in [13], under the given assumption
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on k.
¤

3. Notations and prerequisites.

From now on up to the end of this article, k denotes any field of characteristic p > 0.

Local rings and models.

Let R be a local ring. We denote the maximal ideal of R by mR, by κ(R) = R/mR

its residue field, and by R̂ its formal completion at mR. We denote by QF (R) the
quotient field of a domain R.

Suppose that R ⊆ S is an inclusion of local rings. We say that R dominates S if
mS ∩ R = mR, which is denoted by R < S.

Suppose that K/k is a function field. We say that a subring R of K is an affine
(resp. a local) model of K/k if QF (R) = K and R is a k-algebra of finite type (resp.
the localization at a prime ideal of a k-algebra of finite type). A model is called
normal (resp. regular) if it is normal (resp. regular) as a ring.

Suppose that L/K is a finite field extension and R is a normal local ring such that
QF (R) = K. We say that a subring S of L lies over R and R lies below S if S is the
localization at a maximal ideal of the integral closure of R in L. In particular, S is
then a normal local ring such that QF (S) = L.

Valuation rings.

A valuation ring V is called a k-valuation ring if k ⊆ V and is denoted by V/k.
The value group of a valuation ring V is denoted by V K, where QF (V ) = K. The
rank of V is the rank of V K as an ordered group, and the rational rank of V is the
dimension of the Q-vector space V K ⊗Z Q.

Let K/k be a function field and V/k be a k-valuation ring with QF (V ) = K. If
X/k is an integral separated scheme with function field K, the unique point p ∈ X,
if it exists, such that V dominates OX,p is called the center of V on X.

An affine (resp. local) model of V/k is an affine (resp. local) model R of K/k such
that R ⊆ V (resp. R < V ). The center of V on X = SpecR exists and is the prime
ideal mV ∩R. A regular local model of V/k is also called a local uniformization of V/k.

Monoidal transforms

Suppose that R is a Noetherian local domain. A monoidal transform R < R1 is a
birational extension of Noetherian local domains such that R1 = R[P

x ]m where P is a

regular prime ideal of R (i.e. R
P is a regular local ring), 0 6= x ∈ P and m is a prime

ideal of R[P
x ] such that m ∩ R = mR. Also R < R1 is called a quadratic transform

if P = mR. If R is regular, and R < R1 is a monoidal transform, then R1 is regular
and there exists a regular system of parameters (r.s.p. for short) (x1, . . . , xd) of R
and r ≤ d such that

R1 = R

[

x2

x1
, . . . ,

xr

x1

]

m

.
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Suppose that K/k is a function field, V is a k-valuation ring with QF (V ) = K
and R is a local model of V/k. Then R < R1 is a monoidal transform along V if V
dominates R1.

Given a finite sequence

R0 < R1 < · · · < Rn

such that Ri is a monoidal (resp. quadratic) transform of Ri−1 for each i, 1 ≤ i ≤ n,
one says that Rn is an iterated monoidal (resp. quadratic) transform of R. Also, Rn

is called an iterated monoidal (or quadratic) transform along V if V is a valuation
ring birationally dominating ∪n

i=1Ri.

Ramification theory of local rings.

Let L/K be a finite field extension. We will denote the group of K-automorphisms
of L by Gal(L/K).

Suppose that L/K is a finite Galois (i.e. normal and separable) field extension
with group G := Gal(L/K). Let R be a normal local ring such that QF (R) = K
and S be a normal local ring such that QF (S) = L which lies above R. We can then
define the splitting group and inertia group of S over R as follows:

Gs(S/R) := {g ∈ G | g.S = S}, (2)

Gi(S/R) := {g ∈ Gs(S/R) | ∀x ∈ S, g.x ≡ x mod mS}. (3)

In other terms Gi(S/R) = Ker (Gs(S/R) → Gal(κ(S)/κ(R))) is a normal sub-
group of Gs(S/R). The splitting field Ks (resp. inertia field Ki) of S over R is the
fixed field of Gs(S/R) (resp. Gi(S/R)). We have a corresponding sequence of field
inclusions

K ⊆ Ks ⊆ Ki ⊆ L,

Ks being the largest subfield of L such that S is the only local ring lying above S∩Ks

(Proposition 1.46 [4]). We have a sequence of inclusion of local domains

R ⊆ Rs ⊆ Ri ⊆ S (4)

where the splitting ring Rs := S ∩ Ks and the inertia ring Ri := S ∩ Ki of S over R
lie above R. Then R ⊆ Rs is unramified (i.e. local étale in the sense of [40] defini-
tion 2, p.80), with R/mR = Rs/mRs , Rs ⊆ Ri is unramified, Ri/mRi is Galois over
Rs/mRs = R/mR with Galois group Gs(S/R)/Gi(S/R), by Theorem 1.48 [4].

Finally, note that if K/k is a function field and H ⊆ G, the fixed ring SH = S∩LH

is a normal local model of LH/k if S is a normal local model of L/k (e.g. [37] lemma
1 on p. 262).

Ramification theory of valuation rings.

Let L/K be a finite extension of function fields over k, and let W1, . . . , Ws be all
extensions to L of a given k-valuation ring V of K such that QF (V ) = K.

The reduced ramification index of Wj relative to V is defined to be ([47] p.53)

ej := [WjL : V K]. (5)
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The relative degree of Wj with respect to V is defined to be (ibid.)

fj := [κ(Wj) : κ(V )]. (6)

One says that V is totally ramified in L if V has a unique extension W to L (i.e.
s = 1) and if the residue extension κ(W )/κ(V ) is purely inseparable.

In case L/K is Galois with group G := Gal(L/K) we define the splitting groups
Gs(Wj/V ) and the inertia groups Gi(Wj/V ) as in the previous subsection. Note that
Wj(g.x) = Wjx for each g ∈ Gs(Wj/V ) and each x ∈ L, and that Wj(g.x − x) > 0
for each g ∈ Gi(Wj/V ) and each x ∈ Wj . The ramification group Gr(Wj/V ) ⊆
Gi(Wj/V ) is defined by

Gr(Wj/V ) := {g ∈ Gi(Wj/V ) | ∀x ∈ S, Wj(g.x − x) > Wjx}.
The ramification group is thus the kernel of the well-defined map

Gi(Wj/V ) → Hom(WjL/V K, κ(Wj)
×), g 7→

(

w 7→ gxw/xw mod mWj

)

, (7)

where xw is any element of L such that Wjxw = w. There is an induced isomorphism

Gi(Wj/V )/Gr(Wj/V ) ≃ Hom(WjL/V K, κ(Wj)
×), (8)

and Gr(Wj/V ) is a p-group ([47] theorems 24 and 25).
The groups Gs(Wj/V ), Gi(Wj/V ) and Gr(Wj/V ) are independent of j up to

conjugation. The reduced ramification index ej (resp. residue degree fj) is then
independent of j and denoted by e (resp. f). One deduces the equality

[L : K] = sefpd, (9)

where d ≥ 0 and pd divides the order of Gr(Wj/V ) ([47], corollary on p.78).

4. Reduction to local uniformization.

This section contains two known results: embedded resolution in a regular quasipro-
jective variety of dimension three and a refined version of Zariski’s patching theorem,
due to the first author.

We emphasize that the following proposition is considered as well known by experts
in resolution of singularities. Unfortunately, the two authors do not know any pub-
lished sufficiently general proof of it, except in the (essential) case when I is locally
principal [10] (a self contained proof in the most general case where Z := V (I) is
a reduced closed subscheme of any excellent regular scheme of dimension three is in
preparation, work of the first author in collaboration with U. Janssen and S. Saito).
Reducing to this special case is called “Principalisation” and we give in proposition
4.2 below a sketch of proof of this result for self-completeness of the article. This is
also intended to serve as an introduction to the more intricate techniques developed
in [13]. We do not pretend any originality in this sketch of proof and apologize in
advance if there existed a reference that we are not aware of. If the reader wants to
attach names to this proposition, Abhyankar-Hironaka-Zariski would fit.

Proposition 4.1. (Embedded resolution) Let K/k be a function field of transcendence
degree three and let X/k be a regular quasiprojective model of K/k. Let (0) 6= I ⊂ OX

be an ideal sheaf. There exists a finite composition of blowing ups

X =: X(0) ← X(1) ← · · · ← X(n)
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with the following properties;

(i) For each j, 0 ≤ j ≤ n−1, X(j+1) is obtained by blowing up a regular integral
subscheme Y (j) ⊂ X(j) with

Y (j) ⊆ {yj ∈ X(j) | IOX(j),yj
is not a normal crossings divisor}.

(ii) IOX(n) is a normal crossings divisor.

Proposition 4.2. (Principalisation) Let X/k be a regular quasiprojective model of
K/k and I ⊂ OX be an ideal sheaf. There exists a finite composition of blowing ups

X =: X(0) ← X(1) ← · · · ← X(n)

with the following properties;

(i) For each j, 0 ≤ j ≤ n−1, X(j+1) is obtained by blowing up a regular integral
subscheme Y (j) ⊂ X(j) with

Y (j) ⊆ {yj ∈ X(j) | IOX(j),yj
is not locally principal}.

(ii) IOX(n) is locally principal.

Proof. Let E1, ..., Em be the irreducible components of codimension one of Z :=
V (I)red, and a(j) := ordEj

I, 1 ≤ j ≤ m. Then H := OX(−∑

1≤i≤m a(i)Ei) ⊆ I,
and

J := H−1I ⊆ OX

is such that V (J ) has codimension at least two in X. For x ∈ X, we denote m(x) :=
ordxJ and let

µ := supx∈X{m(x)}, Σ := {x ∈ X|m(x) = µ}.
Clearly

I is locally principal ⇔ µ = 0 ⇔ J = OX .

We thus assume from now on that µ ≥ 1. Then Σ is a closed subset of X of dimen-
sion zero or one. Let E be the idealistic exponent (J , µ) ([26] or [27]). By definition,
Sing(E) := Σ. A closed set Y is called permissible at x ∈ Σ if Y is regular at x and
Y ⊆ Σ (in particular dim(Y ) ≤ 1).

Basic invariants for embedded singularities.

Let x ∈ Σ be a closed point. We denote R := OX,x and m its maximal ideal. Note
that gr

m
(R) = k(x)[Y1, Y2, Y3], where (y1, y2, y3) is a r.s.p. of R and Yi denotes the

image of yi in m/m
2.

Let Jx := clµJx ⊆ k(x)[Y1, Y2, Y3]µ. We call tangent cone of E at x the affine
subscheme Cx(E) ⊂ A3

k(x) with ideal Jxgr
m

(R).

There exists a minimal k(x)-vector subspace Tx ⊆ m/m
2 = k(x).Y1 ⊕ k(x).Y2 ⊕

k(x).Y3 such that
(Jx ∩ k(x)[Tx])gr

m
(R) = Jx,

where k(x)[Tx] = Sym(Tx) ⊆ Sym(m/m
2) = gr

m
(R), i.e. such that Jx is generated by

elements in k(x)[Tx]. This minimal Tx is called the directrix of E at x. Let τ(x) :=
dimk(x)(Tx). The inclusion of vector spaces Jx ⊆ Symµ(Tx) defines an embedding of
cones

Dirx(E) := Spec (gr
m

(R)/Txgr
m

(R)) ⊆ Cx(E).

This subscheme also has an intrinsic definition [21], [25].
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Near and very near points.

With notations as above, let Y = V (y1, . . . , yr) be permissible for E at x (so r = 2
or r = 3). Let E ′ be the transform of E in the blowing up X ′ of (X,x) along Y , i.e.
E ′ = (J ′, µ) where J ′ = I(Y )−µJ is the weak transform of J . We denote by Σ′ the
singular locus of E ′. Then

(a) For any point x′ above x, ordx′J ′ ≤ µ; if equality holds, we say that x′ is near x.

(b) If x′ is near x, then τ(x′) ≥ τ(x); if equality holds, we say that x′ is very near x.

To prove (a), let f ∈ I with ordxf = µ. By definition of permissibility and directrix,
we have

F (Y1, Y2, Y3) := inxf ∈ k(x)[Y1, . . . , Yr] ∩ k(x)[Tx]. (10)

In the chart of X ′ where, say y′
1 := y1 is an equation of the exceptional divisor,

y−µ
1 f ≡ F (1, y′

2, y
′
3) mod (y′

1, y
′
3) (resp. mod (y′

1)), (11)

where y′
2 = y2/y1 and y′

3 = y3 (resp. y′
3 = y3/y1) if r = 2 (resp. r = 3).

Now (11) proves (a), since ordx′J ′ ≤ degF = µ. By Hironaka’s theorem 2 [25],

x′ ∈ Proj(Dirx(E)) ⊆ Proj(k(x)[Y1, . . . , Yr])

if x′ is very near to x. This holds if k is perfect or if char(k) ≥ dim(Cx(E)) which is
the case here, since dimR = 3. See also ibid. corollary 3.2. Hironaka’s theorem leads
to lemma 4.3 below which refines statement (b) above.

Using induction on µ, proposition 4.2 is now a consequence of its rephrased version
in proposition 4.4 below.

¤

Lemma 4.3. Let q : X ′ → X be a blowing up along a permissible center Y at x as
above. The following holds:

(1) If τ(x) = 3, then Y = {x} and no x′ ∈ q−1(x) is near x. Moreover x is an
isolated point of Σ.

(2) If τ(x) = 2 and Y is a curve, then no x′ ∈ q−1(x) is near x. Moreover Y and
Σ coincide locally at x.

(3) If τ(x) = 2, Y = {x} and x′ ∈ q−1(x) is near x, then x′ is uniquely deter-
mined, rational over x and has τ(x′) ≥ τ(x) = 2.

(4) If τ(x) = 1, Y is a curve and x′ ∈ q−1(x) is near x, then x′ is uniquely
determined and rational over x. If Γ′ is the one-dimensional component of
Σ′ ∩ q−1(Y ), then Γ′ is either empty or a regular irreducible curve projecting
isomorphically to Y by q.

(5) If τ(x) = 1 and Y = {x}, then those points x′ ∈ q−1(x) near x all lie on the
projective line

Lx := Proj(Dirx(E)) ⊂ q−1(x) ≃ P2
k(x).

Proof. Assertion (1) is clear from Hironaka’s theorem 2 or corollary (3.2) [26]. Asser-
tion (2) follows easily from (10) and (11).

To prove (3), we choose (y1, y2, y3) in such a way that Tx =< Y2, Y3 >. By (11), the
only point in q−1(x) which may be near x is the point x′ := (y′

1 = y1, y
′
2 = y2/y1, y

′
3 =
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y2/y3). If x′ is near x, for any f ∈ Jx with ordxf = µ, with F := inxf , we have
F (Y ′

2 , Y ′
3) ∈ clµ(J ′) + (Y ′

1). Therefore

Tx′ + k(x′)Y ′
1 =< Y ′

1 , Y ′
2 , Y ′

3 > . (12)

To prove (4), we may now choose (y1, y2, y3) in such a way that Dx = k(x).Y2,
with Y = (y1, y2). Similarly, the only point in ∈ q−1(x) which may be very near x is
the point x′ := (y′

1 = y1, y
′
2 = y2/y1, y3). For any f ∈ Jx with ordxf = µ, we now

have by (11)

y−µ
1 f ≡ λfy′

2
µ

mod (y′
1, y3)

with λf 6= 0, hence Tx′+ < Y ′
1 , Y3 >=< Y ′

1 , Y ′
2 , Y ′

3 >. Hence any irreducible compo-
nent of Γ′ maps surjectively to Y by q. By ibid. applied at the generic point of Y , Γ′

is unique and k(Γ′) = k(Y ), hence Γ′ maps isomorphically to Y , since Y is regular.
To prove (5), we may now choose (y1, y2, y3) in such a way that Tx = k(x).Y3. For

any f ∈ Jx with ordxf = µ, we now have by (11)

y−µ
1 f ≡ λfy′

3
µ

mod (y′
1),

with λf 6= 0 and the conclusion follows.
¤

Proposition 4.4. Let X/k be a regular quasiprojective model of K/k and E = (I, µ)
be an idealistic exponent on X, with dimV (I) ≤ 1. There exists a finite composition
of blowing ups

X =: X(0) ← X(1) ← · · · ← X(n)

with regular centers mapping to V (I) such that the singular locus Σ(n) of the trans-
form E(n) of E in X(n) is empty (in which case we say that E is desingularized in
X(n)).

Proof. We apply the following algorithm where E(i) := (I(i), µ) is the transform of E
in X(i), Σ(i) its singular locus and X(0) := X.

The algorithm.

1- If Σ(i) has an irreducible component of dimension one which is singular, let
X(i + 1) be the blowing up of X(i) along any such singular point. Otherwise go to 2.

2- If Σ(i) has regular components of dimension one which do not intersect transver-
sally, let X(i+1) be the blowing up of X(i) along any such non-transverse intersection
point. Otherwise go to 3.

3- If all components of dimension one of Σ(i) are regular and intersect transversally,
and some (distinct) two among them do intersect, let X(i + 1) be the blowing up of
X(i) along any such intersecting curve. Otherwise go to 4.

4- If all connected components of Σ(i) are regular and Σ(i) 6= ∅, let X(i + 1) be
the blowing up of X(i) along any of these components. If Σ(i) = ∅, stop the algorithm.

We will prove that the above algorithm is finite, i.e. Σ(i) = ∅ for some i ≥ 0 and
the conclusion follows.

For each i ≥ 0, let s(i) be the defining step in the algorithm for q(i) : X(i + 1) →
X(i), with s(i) ∈ {1, 2, 3, 4}. By lemma 4.3, we have s(i + 1) ≥ s(i) (note that under
assumption (4) in lemma 4.3, the strict transform of Σ in X ′ is transverse to the
exceptional divisor, hence to Γ′ if all components of Γ meet transversally). Moreover,



10 VINCENT COSSART AND OLIVIER PILTANT

each exceptional curve in Σ(i + 1) created by the algorithm is regular. By embedded
resolution of curves, we have s(i) ≥ 2 for i >> 0.

If s(i) = 2 for some i ≥ 0, any exceptional curve in Σ(i+1) created by the algorithm
is transverse to the strict transforms of each one dimensional irreducible component
of Σ(i). By embedded resolution of (reducible) curves, we have s(i) ≥ 3 for i >> 0.

If s(i) = 3 for some i ≥ 0, assumption (4) in lemma 4.3 holds. Let C1(i), . . . , Cn(i)(i)
be all one dimensional irreducible components of Σ(i). By (4) in lemma 4.3, we have

n(i + 1) ≤ n(i)

whenever s(i) = 3. Working above the generic point η(i) of some one dimensional
component of Σ(i), we have JOX(i),η(i) principal for i >> 0 (this is a consequence
of [47] appendix 5, theorem 3 and (E) on p. 391); hence n(i) eventually drops for
i >> 0. Therefore s(i) = 4 for i ≥ i0. The same argument together with lemma 4.3
gives the following structure for Σ(i) for i ≥ i0:

(*) Σ(i) is a disjoint union of closed points and projective lines, each of them de-
fined over some finite extension of k and having normal crossings with the exceptional
divisor E(i) of X(i) → X(i0).

Note that E(i) has only normal crossings and at most two irreducible components
at each x(i) ∈ X(i). Finally, lemma 4.3 also implies that

(**) for each x(i) ∈ Σ(i), we either have τ(x(i)) = 2, or (τ(x(i)) = 1 and
Tx(i) =: k(x(i)).Yx(i) is transverse to each component of E(i) at x(i)).

The above statement about transverseness of the directrix is an easy consequence
of lemma 4.3 (4) and (5).

The invariant when τ(x(i)) = 1.

For each point x(i) ∈ Σ(i) with τ(x(i)) = 1 and satisfying (**), we now define
an invariant (β(x(i)), α(x(i)). We take i = 0 in what follows to avoid extra indexing
in i in what follows, a normal crossings divisor E ⊂ X being specified. We let J := Jx.

Let (y, u1, u2) be a r.s.p. of R := OX,x be such that Tx = k(x).Y and Σ ⊆ V (y, u1)
locally at x. By (**), it can furthermore be assumed that E is such that E ⊆ div(u1u2)
locally at x. The polyhedron ∆(E ; u1, u2; y) ⊆ R2

+ is the convex hull of the set E+R2
+,

where

E = {(c/i, d/i) ∈ Q2
≥0|∃f ∈ JR̂, f = γyµ +

µ
∑

i=1

λi,a,by
µ−iua

1ub
2, λi,c,d 6= 0, γ ∈ R̂}.

The above expansion of f is made in R̂ = k(x)[[y, u1, u2]] with λi,a,b ∈ k(x). Note that
γ is a unit whenever ordxf = µ by the Weierstrass preparation theorem. Moreover,
we have E ⊆ {(x1, x2) ∈ R2

≥0|x1 + x2 > 1} since Tx = k(x).Y .

Let v = (v1, v2) be a vertex of ∆(E ;u1, u2; y). For f ∈ J , we denote

inv(f) := γY µ +
∑

c=iv1,d=iv2

λi,c,dY
µ−iU c

1Ud
2 ∈ k(x)[Y,U1, U2], (13)

and

inv(E) :=< {inv(f), f ∈ J} > .
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We say that a vertex v of ∆(E ; u1, u2; y) is solvable if (v ∈ N2 and there exists
λv ∈ k(x) such that inv(E) = k(x).(Y + λvUv1

1 Uv2
2 )µ). We say that ∆(E ;u1, u2; y) is

prepared if no vertex of ∆(E ;u1, u2; y) is solvable. Finally, we denote by

(α(E ; u1, u2; y), β(E ; u1, u2; y)) := minv∈∆(E;u1,u2;y){(v1, v2)lex}. (14)

We will use the notation (α, β) for short to denote the coordinates of this vertex
of ∆(E ; u1, u2; y) with smaller first coordinate when the context is clear.

It is easy to show [24] that there exists z = y + θ, θ ∈ k(x)[[u1, u2]], such that
∆(E ;u1, u2; z) is prepared: if a vertex v = (v1, v2) is solvable, change y to y+λvuv1

1 uv2
2

and note that (α + β, α)lex increases. Note that the Newton polygon of θ is then
contained in ∆(E ; u1, u2; y). In particular, we have Tx = k(x).Z. We now define the
main invariant:

i(x) := (β(x), α(x)) := min(z,u1,u2){(β(E ; u1, u2; z), α(E ; u1, u2; z))lex},
(15)

where the minimum is taken over all r.s.p.’s of R such that ∆(E ; u1, u2; z) is prepared,
Σ ⊆ V (z, u1) and E ⊆ div(u1u2) locally at x. The behaviour of our invariant under
permissible blowing up is given in lemma 4.5 below.

We now conclude the proof. Assume that the above given algorithm does not
stop. There exists an increasing function σ : N → N such that for each i ≥ 0,
xσ(i) ∈ Σ(i) and xσ(i+1) is a closed point on the exceptional divisor created by blowing
up (Xσ(i), xσ(i)) along the permissible center Yσ(i).

By lemma 4.3 (1), we have τ(xσ(i)) ≤ 2 for i ≥ 0. Assume that τ(xσ(i1)) = 2 for
some i1 ≥ 0. By lemma 4.3 (2) and (3), we have τ(xσ(i)) = 2 and Yσ(i) = {xσ(i)}
(coinciding locally at xσ(i)) with Σ(Xσ(i))) for i ≥ i1. By (12), there exists a regular
(possibly formal) curve Γ such that xσ(i) belongs to the strict transform of Γ for
i ≥ i1. By standard arguments, we must have Γ ⊆ Σ(i1), so Γ is a formal branch
of an irreducible component of Σ(i1) passing through x(i1): a contradiction, since
{xσ(i1)} is an isolated point of Σ(Xσ(i1)). Therefore τ(xσ(i)) = 1 for all i ≥ 0.

Using lemma 4.5 below, β(xσ(i)) = β(xσ(i+1)) and Yσ(i) = {xσ(i)} (coinciding
locally at xσ(i)) with Σ(Xσ(i))) for i ≥ i1. The last statement in (2) of lemma 4.5 also
implies the existence of a regular (possibly formal) curve Γ such that xσ(i) belongs to
the strict transform of Γ for i ≥ i1: a contradiction by the same argument as above
(case τ(xσ(i1)) = 2). This concludes the proof. ¤

Lemma 4.5. Assume that τ(x) = 1 and x satisfies (**). Let X ′ → (X, x) be the
blowing up along Σ and x′ ∈ q−1(x) be very near x. The following holds.

(1) if Σ is a curve, then x′ is uniquely determined and has

i(x′) ≤ (β(x), α(x) − 1)lex.

(2) if Σ = {x}, then β(x′) ≤ β(x). If equality holds, then x′ is rational over x
and does not belong to the strict transform of div(u1).

Proof. To prove (1), note that x′ has r.s.p. (u1, u2, z
′ = z/u1) if x′ is near x by lemma

4.3 (4). Then ∆(E ′; u1, u2; z
′) is the translated image of ∆(E ; u1, u2; z) by one unit to

the left, so ∆(E ′; u1, u2; z
′) remains prepared. The conclusion follows.

We now prove (2). Since Σ = {x}, I 6⊆ (z, u1)
µ, so

α(E ;u1, u2; z) < 1. (16)
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In particular, we must have

β(E ; u1, u2; z) > 0, (17)

since α(E ;u1, u2; z) + β(E ; u1, u2; z) > 1.

By lemma 4.3 (5), x′ is on the strict transform of div(z) and on the exceptional
divisor of X ′ → X. There are two charts to consider: the first one has origin the point
x′

0 := (u1, u2/u1, z/u1); the second contains a unique point x′
1 := (u1/u2, u2, z/u2) on

the strict transform of div(z).

If x′
0 is very near x, it is easy to see that ∆(E ′; u1, u2/u1; z/u1) is prepared, the

correspondence between vertices of ∆(E ;u1, u2; z) and ∆(E ′; u1, u2/u1; z/u1) given by

(α(x), β(x)) 7→ (α(x) + β(x) − 1, β(x)),

and the conclusion follows in this case.

If x′
1 is very near x, then similarly ∆(E ′; u1/u2, u2; z/u2) is prepared and we get

β(E ′; u1/u2, u2; z/u2) ≤ α(E ; u1, u2; z/u1) + β(E ;u1, u2; z/u1) − 1.

Then (16) implies β(E ′; u1/u2, u2; z/u2) < β(E ; u1, u2; z/u1).

The hard part is now to control i(x′) at points in the first chart distinct from x′
0.

We denote (u′
1 := u1, u

′
2 := u2/u1, z

′ := z/u1). Let P ∈ k(x)[u1, u2] be homogeneous,
irreducible and unitary in u2 such that (u′

1, v
′, z′) is a r.s.p. at x′, where v′ := P (1, u′

2).
We have R′ := OX′,x′ = OX,x[u′

2, z
′](u′

1,v′,z′) and

R̂′ ≃ k(x′)[[u′
1, v

′, z′]], k(x′) ≃ k(x)[u′
2]/(P (1, u′

2)).

When x′ is rational over x, i.e. P = u2 + λu1 for some λ ∈ k(x), λ 6= 0, we
replace (u1, u2, z) by (u1, v2 := u2 +λu1, z). By (14) and definition of vertex solvabil-
ity, we have v := (α(E ;u1, v2; z), β(E ; u1, v2; z)) = (α(E ; u1, u2; z), β(E ; u1, u2; z)) and
this vertex is not solvable in ∆(E ; u1, v2; z). If ∆(E ;u1, v2; z) is not prepared, we will

change z to w := z + θ, θ ∈ (u1)R̂ to get ∆(E ;u1, v2; w) prepared without changing
inv(E). Then it can be assumed that x′ = x′

0 and the conclusion follows.

We now assume that x′ is not rational over x. The problem is that, in general,
∆(E ′; u′

1, v
′; z′) is not prepared. Let us denote

δ := inf{c + d|(c, d) ∈ ∆(E ;u1, u2; z)} > 1. (18)

Let µ0 be the monomial valuation on R̂ ≃ k(x)[[u1, u2, z]] given by

µ0(
∑

abc

λabcu
a
1ub

2z
c) = inf{c +

a + b

δ
| λabc 6= 0}.

We now compute the initial form of J w.r.t. µ0 in grµ0
(R) ≃ k(x)[U1, U2, Z],

where Z (resp. U1, U2) is in degree one (resp. in degree 1/δ). To begin with, we have
µ0(J) = µ by definition (18). Hence inµ0

(J) has weight µ and is generated as a vector
space by forms

F := inµ0
f = Zµ +

∑

1≤i≤µ,
degFi

i
=δ

Zµ−iFi(U1, U2). (19)
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The valuation µ0 has a unique extension to R̂′ ≃ k(x′)[[u′
1, v

′, z′]] which is denoted
by µ1 to avoid confusions, i.e.

µ1(
∑

a′b′c′

λa′b′c′u
′
1
a′

v′
b′

z′
c′

) = inf{c′ + a′

δ − 1
| λa′b′c′ 6= 0}.

Then grµ1
(R̂′) ≃ k(x′)[[v′]][U ′

1, Z
′], where Z ′ (resp. U ′

1, v
′) is in degree one (resp. in

degree 1/(δ−1), 0). Since J is generated by its elements of value µ w.r.t. µ0, J ′ := J ′
x′

is generated by elements

F ′ := U ′
1
−µ

F (U ′
1, U

′
1u

′
2, U

′
1Z

′) = Z ′µ +
∑

1≤i≤µ,
degFi

i
=δ

Z ′µ−i
U ′

1
i(δ−1)

Fi(1, u′
2)

(20)

constructed from (19). Since there exists some F in (19) with Fi 6= 0 for some i,
1 ≤ i ≤ µ by definition (18), we have

α(E ′;u′
1, v

′; z′) = δ − 1. (21)

For any such pair (F, i) with Fi 6= 0, we denote Fi =: U
a(i)
1 Gi(U1, U2) with Gi(0, U2) 6=

0, a(i) ≥ 0. By construction, we have

β(E ′;u′
1, v

′; z′) ≤ ordv′(Gi(1, u′
2))

i
,

and

β(E ′; u′
1, v

′; z′) ≤ ordv′(Gi(1, u′
2))

i
≤ degGi

i
≤ β(E ;u1, v; z). (22)

In particular, lemma 4.5 holds if ∆(E ′;u′
1, v

′; z′) is prepared: the middle equality
in (22) is strict since degGi/i = β(x) > 0 by (17) and [k(x′) : k(x)] > 1. Otherwise,
let w′ = z′ + θ′, θ′ ∈ k(x′)[[u′

1, v
′]], be such that ∆(E ′; u′

1, v
′; w′) is prepared. By (21),

we have a := ordu′

1
θ′ ≥ δ − 1. If a > δ − 1 (e.g. if δ 6∈ N), then W ′ := inµ1(w

′) = Z ′,
so

β(E ′; u′
1, v

′; w′) ≤ ordv′(Gi(1, u′
2))

i
, (23)

and the conclusion follows. From now on, we assume that a = δ − 1 and let

Θ′(U ′
1, v

′) := inµ1(θ
′) = U ′

1
δ−1

ψ′(v′),

with ψ′(v′) ∈ k(x′)[[v′]]. Changing z′ to w′ induces an automorphism of the k(x′)[[v′]]-

module inµ1(J
′R̂′) given by

Φ(U ′
1, v

′, Z ′) 7→ Φ(U ′
1, v

′,W ′ − Θ′(U ′
1, v

′)). (24)

If dimk(x)(inµ0
(J)) ≥ 2, then inµ1

(J ′) has a minimal generator of the form

H ′ :=
∑

i0≤i≤µ,
degHi

i
=δ

Zµ−iU ′
1
i(δ−1)

Hi(1, u′
2)

with i0 ≥ 1 and Hi0 6= 0, so (23) holds with Gi replaced with Hi0 and the conclusion
follows. From now on, we assume in addition that dimk(x)inµ0

(inµ0
(J)) = 1. Then F

in (19) is uniquely determined.

Let µ =: pαl, with g.c.d.(l, p) = 1 and I0 := {i, 1 ≤ i ≤ µ | Fi 6= 0}. If I0 6⊂ pαN,
then (23) holds for i = i0, where i0 := min{i0 ∈ I0 | i0 6∈ pαN} and the conclusion
follows. From now on, I0 ⊂ pαN and let i0 := min{i0 ∈ I0}.
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Suppose that Fpα ∈ (k(x)[U1, U2])
pα

, say Fpα = K(U1, U2)
pα

. After replacing z
with z + 1

l K(u1, u2), it can be assumed that i0 > pα. In particular we have l 6= 1,
since ∆(E ; u1, u2; z) is prepared. By construction, we now have

(δ − 1,
ordv′(Gi0(1, u′

2))

i0
) ∈ ∆(E ′; u′

1, v
′;w′),

from which one deduces β(E ′; u′
1, v

′; w′) < β(E ; u1, u2; z)) as in (22) and the conclu-
sion follows.

There remains to deal with the case i0 = pα and Fpα 6∈ (k(x)[U1, U2])
pα

, say

Fpα = K(U1, U2)
pα′

,

with K(U1, U2) 6∈ (k(x)[U1, U2])
p and α′ < α.

By (20) and (24), the coefficient c′pα of W ′µ−pα

in F ′(U ′
1, u

′
2,W

′ − Θ′(U ′
1, v

′))
satisfies

inµ1
(c′pα) = U ′

1
pα(δ−1)

(Gpα(1, u′
2) − lψ′(v′)pα

).

If k is differentially finite over some perfect subfield k0, the estimates in chapter 1
II.5.3.2(i) of [13] applied to the polynomial K(U1, U2) yield

ordv′(Gpα(1, u′
2) − lψ′(v′)pα

) ≤ degGpα

[k(x′) : k(x)]
+ pα′

and we conclude that

β(E ′; u′
1, v

′;w′) ≤ β(E ; u1, u2; z)

[k(x′) : k(x)]
+

1

pα−α′
. (25)

Since δ > 1 and δ ∈ N, we have δ ≥ 2. On the other hand, δ ≤ α(E ;u1, u2; z) +
β(E ;u1, u2; z), so by (16), we have β(E ;u1, u2; z) > 1. Since [k(x′) : k(x)] ≥ 2, (25)
gives

β(E ′; u′
1, v

′; w′) ≤ β(E ; u1, u2; z) + 1

2
< β(E ; u1, u2; z).

For general k, let kc be the field generated by all coefficients of K and P , and let
ζ be a root of P over k(x). There is an embedding kc(ζ) ⊂ k(x′) and we let

k′
1 := kc(ζ)

1
p ∩ k(x′) ⊂ k(x′).

Then k′
1 is finitely generated, hence differentially finite over the prime subfield k0 :=

Fp, and there is an expansion

K(1, u′
2) ∈ kc(ζ)[[v′]].

Hence it can be assumed that ψ′(v′)pα−α′
−1 ∈ k′

1[[v
′]] in the above argument. Since

P is irreducible over k(x), we have [k′
1 : k1] = [k(x′) : k(x)]. This proves that we may

substitute for k(x) its subfield k1 in the above computations, so chapter 1 II.5.3.2(i)
of [13], hence (25) holds in any case. ¤

Corollary 4.6. Let K/k be a function field of transcendence degree three and V/k be
a valuation ring with QF (V ) = K having a local uniformization R.
Then for any local model R0 of V/k, there exists a local uniformization R1 of V/k
such that R0 < R1.

Proof. Let A0 := k[x1, . . . , xn] be an affine model of V/k such that R0 is the localiza-

tion of A0 at some prime ideal. Write xi = fi

gi
, with fi, gi ∈ R, gi 6= 0. By proposition

4.2, with X := SpecR and I := (fi, gi), there exists an iterated monoidal transform
R′ of R along V such that xi ∈ R′. By induction on n, it can then be assumed that
A0 ⊆ R′. Then take R1 := R′. ¤
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Proposition 4.9 below is a refined version of Zariski’s patching theorem ([46] Fun-
damental Theorem on p. 539) in characteristic zero. We first indicate why this result
remains true over any base field k of positive characteristic. As written on p. 539 of
[46], two preliminary results are required: theorem 7 (elimination of regular points
in the fundamental locus of a birational map of threefolds) and the lemma in section
24 (local factorisation of birational morphisms of regular surfaces) of loc.cit.. Let us
show that these two results can be extended to any base field.

To begin with, the lemma in section 24 has been proved in a very general setup by
S.S. Abhyankar:

Proposition 4.7. ([2] theorem 3) Let (R, M) and (R′,M ′) be regular two dimensional
local domains with a common quotient field K such that R < R′. Then R′ is an
iterated quadratic transform of R.

In Zariski’s proof, this lemma is used only on page 541 of [46] with R := OV,η

(Q(Γ) := OV,η with Zariski’s notations) and R′ = OV ′,η′ =: Q(Γ′), where V and V ′

are birationally equivalent projective varieties of dimension 3, Γ (resp. Γ′) an irre-
ducible curve on V (resp. on V ′) whose generic point η (resp. η′) is regular on V
(resp. on V ′). Since V ′ · · · → V is defined at η′, proposition 4.7 applies.

Extending [46] theorem 7 to any base field is an easy consequence of proposition
4.1; Zariski’s theorem 7 can be rephrased as follows:

Proposition 4.8. Let T : Z · · · → X be a birational map between three-dimensional
integral projective varieties over k and F ⊂ Z be its fundamental locus. There exists
a composition of blowing ups with regular centers q : Z ′ → Z such that no point of
q−1(F ∩ Zreg) is fundamental for q ◦ T .

Proof. Let Z̃ be the closure of the graph of the birational map T . Then Z̃ is projec-
tive, i.e. the blowing up of a certain ideal sheaf I ⊂ OY . We apply proposition 4.2 to
the quasiprojective variety U := Zreg and the ideal sheaf I|U . Each blowing up center
Y (j) ⊂ U(j) is either a closed point or a regular curve. For each j, 0 ≤ j ≤ n− 1, we
define inductively a projective variety Z(j) containing U(j) as a dense open subset
as follows, with Z(0) := Z to begin with:

1- if Y (j) is a closed point, let Z(j + 1) be the blowing up of Z(j) along Y (j);

2- if Y (j) is a regular curve, let Y (j) be its Zariski closure in Z(j). Let Z(j +1) →
Z(j) be the minimal composition of point blowing ups making the strict transform

Y (j)
′
of Y (j) regular followed by the blowing up along Y (j)

′
.

Let q : Z ′ := Z(n) → Z be the obtained map. By the universal property of
blowing up, the birational map q ◦ T is defined on q−1(F ∩ Zreg) and this concludes
the proof. ¤

To get (ii) in theorem 2.1, we need the following refinement of Zariski’s patching
theorem which is due to the first author [12]. The proof in [12] is written for k
algebraically closed, but only uses this assumption via propositions 4.7 and 4.8 above.
Since these results have been seen to be valid for any ground field k, we thus have:

Proposition 4.9. (Refined patching theorem [12]) Let K/k be a function field of
transcendence degree three. Assume that any k-valuation ring V/k such that QF (V ) =
K has a local uniformization.
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Then for any quasiprojective model Z/k of K/k, there exists a projective birational

morphism π : Z̃ → Z, such that Z̃ is regular and π induces an isomorphim

Z̃\π−1(Σ) ≃ Z\Σ,

where Σ ⊂ Z is the singular locus of Z.

5. Reduction of local uniformization to the rank one, residually

algebraic case.

In this section, we use known results in dimension less than or equal to two to
reduce local uniformization in dimension three to the case of rank one, residually
algebraic k-valuation rings.

Proposition 5.1. Let K/k be a function field of dimension three and V/k be a k-
valuation ring such that QF (V ) = K and either V has rank greater than one or
κ(V )/k is transcendental. Then V/k has a local uniformization.

Proof. First assume that κ(V )/k is transcendental. Let t ∈ V be such that its im-
age in κ(V ) is transcendental over k. Then K/k(t) is an algebraic function field of
transcendence degree two. By e.g. [36], there exists a local uniformization of V/k(t),
hence of V/k since k(t) ⊂ V .

Assume now that κ(V )/k is algebraic and that V has rank greater than one. Let
V be composed of the valuation ring V0 and of the rank one k-valuation ring V : V0

is a residually transcendental k-valuation ring such that QF (V ) = K, and V /k is
a k-valuation ring of κ(V0) such that QF (V ) = κ(V0) and κ(V ) = κ(V ) (see [47],
Chapter VI for background on composed valuations). We have

V := {f ∈ V0 / f ∈ V },
where f denotes the image of f in κ(V0) by the canonical surjection. Let τ :=
tr.deg(κ(V0)/k) (necessarily τ = 1 or 2). Pick ti ∈ V0 such that V ti > 0, 1 ≤ i ≤ τ
and {t1, . . . , tτ} is a transcendence basis of κ(V0)/k. It has already been proved that
there exists a local uniformization R0 := k(t1, . . . , tτ )[f1, . . . , fn]P0

of V0. Since V
has rank one, there exists for each i, 1 ≤ i ≤ n, a nonnegative integer ai such that
t1

aifi ∈ V . Then

R1 := k[t1, . . . , tτ , ta1
1 f1, . . . , tan

1 fn]mV ∩k[t1,... ,tτ ,t
a1
1 f1,... ,tan

1 fn]

is a local model of V/k satisfying (R1)mV0
∩R1 = R0.

Let R1 := R1/mV0 ∩ R1 and K1 := QF (R1). Then K1/k is a function field of
transcendence degree τ ≤ 2 and V ∩K1 is a k-valuation ring such that QF (V ∩K1) =
K1 dominating its local model R1. Again by [36], there exists a local uniformization
S of V ∩ K1 dominating R1, say

S := R1 [g1, . . . , gn]m
V
∩R1[g1,... ,gn] .

Write gi = hi/h0, 1 ≤ i ≤ n, where h0, h1, . . . , hn ∈ R1. For each i, 0 ≤ i ≤ n, let
hi ∈ R1 be a lifting of hi, gi := hi/h0 and

S := R1[g1, . . . , gn]mV ∩R1[g1,... ,gn].

We have SmV0
∩S = (R1)mV0

∩R1 = R0 and S/mV0 ∩ S = S.
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At this point, we have obtained a local model S of V/k such that the regular
subspace SpecS ⊂ SpecS has maximal contact along V in the sense of Hironaka [21];
let

S =: S0 < S1 < · · · < Sm < · · ·
be the sequence of monoidal transforms of S along V defined as follows. For i ≥ 0, Si+1

is the monoidal transform at a smallest regular prime Pi satisfying mV0
∩Si ⊂ Pi which

is permissible, i.e. such that SpecSi is normally flat along Pi. Since principalisation
of ideals holds in dimension τ (τ ≤ 2), mV0

∩ Sm itself becomes a permissible center
for some m ≥ 0. Therefore Sm is regular since (Sm)mV0

∩Sm
= R0 is regular. Whence

Sm is a local uniformization of V/k. ¤

6. Galois approximation of local rings

In this section, we state the connexion between the ramification theory of valuation
rings and that of their normal local models.

Lemma 6.1. Let L/K be a finite Galois extension of fields and let K ′, K ⊆ K ′ ⊆ L
be any intermediate field.
Let S be a normal local ring such that QF (S) = L and let R′ := S ∩K ′, R := S ∩K.
We have

(1) Gs(S/R′) = Gs(S/R) ∩ Gal(L/K ′) and Gi(S/R′) = Gi(S/R) ∩ Gal(L/K ′).
(2) If S is a valuation ring, then Gr(S/R′) = Gr(S/R) ∩ Gal(L/K ′).

Proof. Part (1) of the lemma is a direct consequence of the definitions (2) and (3) ([4]
proposition 1.49). For part (2), by (7), we have a commutative diagram with exact
rows

1 → Gr(S/R) → Gi(S/R) → Hom(SL/RK, κ(S)×) → 1
↑ ↑ ↑

1 → Gr(S/R′) → Gi(S/R′) → Hom(SL/R′K ′, κ(S)×) → 1.

The inclusion Gr(S/R′) ⊆ Gr(S/R) ∩ Gal(L/K ′) is obvious. The reverse inclusion
holds because the vertical arrow to the right is an inclusion. ¤

The following proposition is important since it gives the connexion between the
ramification theory of valuation rings and the ramification theory of their normal
local models. It is implicit in [1].

Proposition 6.2. (Galois approximation) Let L/K be a Galois extension of function
fields over k and let W/k be a k-valuation ring such that QF (W ) = L. Let V :=
W ∩ K.
For any given normal local model R of V/k, let R̃ be the unique normal local model
of W/k which lies above R, and let Rs (resp. Ri) be the splitting ring (resp. inertia

ring) of R̃ over R.
There exists a normal local model R0 of V/k such that for any normal local model R
of V/k dominating R0, the following holds.

(1) We have

Gs(W/V ) = Gs(R̃/R) and Gi(W/V ) = Gi(R̃/R), (26)

i.e. Rs = R̃Gs(W/V ) and Ri = R̃Gi(W/V ).
(2) Let Rr := R̃Gr(W/V ). Then

κ(Rr) = κ(Ri), (27)

and the action of H := Gi(W/V )/Gr(W/V ) on Rr is induced by a diagonal

κ(Ri)-linear action on R̂r ≃ κ(Ri)[[x1, . . . , xn]]/I.
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Proof. Since V is the direct union of all its normal local models R, its integral closure
V in L is the direct union of all corresponding integral closures R in L. Since the
extensions of V to L are the localizations of V at its maximal ideals m1, . . . ,ms,
any R0 such that for 1 ≤ i ≤ s, the m(Wi) ∩ R0’s are pairwise distinct satisfies the
statement about splitting groups in (1) of the proposition.

Let now R be any normal local model of V/k such that R0 < R. By definition

of the inertia group, there is an inclusion Gi(W/V ) ⊆ Gi(R̃/R). Let t1, . . . , tf be
elements of W whose residues t1, . . . , tf generate the κ(V )-vector space κ(W ). Af-
ter possibly changing R0, it can be assumed that κ(V )/κ(R0) is algebraic and that

t1, . . . , tf ∈ R̃0. Then any g ∈ Gi(R̃/R) ⊆ Gs(W/V ) maps to g ∈ Gal(κ(W )/κ(V ))
such that g.ti = ti, 1 ≤ i ≤ f . Therefore g ∈ Gi(W/V ) and this concludes the proof
of (1).

We now turn to the proof of (2). Let R0 satisfy the conclusion of (1) in the
proposition and let R be any normal local model of V/k such that R0 < R. By
proposition 1.46 [4], Rr is the only normal local subring of Kr, with quotient field
Kr, which lies above Ri. The residue extension κ(Rr)/κ(Ri) is purely inseparable

since κ(R̃)/κ(Ri) is (Theorem 1.48 [4]). By (8), Kr/Ki is an Abelian extension of
degree prime to p with group H.

Let η ∈ Rr, with minimal polynomial P (X) ∈ Ki[X] over Ki. The field extension
Ki(η)/Ki is Abelian of order prime to p, since Kr/Ki is; whence degP is prime to p
and

P (X) =
∏

g∈Gal(Ki(η)/Ki)

(X − g.η).

By definition of Gi(W/V ), we have g.η−η ∈ mW ∩Rr = mRr for each g ∈ Gi(W/V ).
Let η (resp. P ) be the image of η (resp. P ) in κ(Rr) (resp. κ(Rr)[X]). We get

P (X) = (X − η)degP ∈ κ(Rr)[X].

In particular, we have ηdegP ∈ κ(Ri) since P ∈ Ri[X]. On the other hand, ηpα ∈ κ(Ri)
for some α ≥ 0 since κ(Rr)/κ(Ri) is purely inseparable. Therefore η ∈ κ(Ri), since
degP is prime to p, and this proves (27).

From now on, for x ∈ mRr , we write x for its initial form in mRr/m2
Rr . Consider

the following κ(Ri)-linear representation of H

ρ : H → GL
(

mRr/m2
Rr

)

, h 7→
(

x 7→ h.x
)

. (28)

By (8), κ(W ) contains the group µε of εth-roots of unity, where ε is the exponent
of the Abelian group H, and ε is prime to p. Since κ(W )/κ(V i) is purely inseparable
(Theorem 1.48 [4]), we also have µε ⊆ κ(V i). Since V i = ∪RRi, it can be assumed
that µε ⊆ κ(Ri) after possibly changing R0.

Now, any irreducible representation of H over κ(Ri) has degree one, since H is
Abelian and µε ⊆ κ(Ri). Therefore, ρ is diagonal up to choosing a basis (x1, . . . , xn)
of mRr/m2

Rr . We write ρ(h).xj =: χj(h)xj , for 1 ≤ j ≤ n and h ∈ H, where
χj ∈ Hom(H, κ(Ri)×).

We now fix a field of representatives κ(Ri) ⊂ R̂i ⊆ R̂r. Let K̂r := QF (R̂r) and

K̂i := QF (R̂i). Since W/V i is totally ramified, we also have Gal(K̂r/K̂i) = H with
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the natural extension of the H-action to formal completions. Let

yj :=
1

| H |
∑

h∈H

χj(h
−1)(h.xj) ∈ R̂r. (29)

It is immediately checked that yj = xj and that h.yj = χj(h)yj for each h ∈ H. After
replacing xj with yj , it can therefore be assumed that

h.xj = χi(h)xj (30)

for each h ∈ H and 1 ≤ j ≤ n, i.e. the action is diagonal on R̂r.

¤

Corollary 6.3. Let L/K be a Galois extension of function fields of transcendence
degree three over k and let W/k be a k-valuation ring such that QF (W ) = L. Let
V := W ∩ K.
Let K ′, K ⊆ K ′ ⊆ L be an intermediate extension such that K ′ is contained in Ki,
the inertia field of W over V . Let V ′ := W ∩ K ′.
If V/k has a local uniformization, then V ′/k has a local uniformization.

Proof. By assumption, we have

Gi(W/V ) ⊆ Gal(L/K ′). (31)

Let R0 ⊂ K be a normal local model satisfying the conclusion of proposition 6.2 (1)
w.r.t. the extension of valuation rings W/V . By corollary 4.6, there exists a local
uniformization R of V/k such that R0 < R. By proposition 6.2 (1) and (31), the

corresponding R̃ ⊂ L satisfies the equality

Gi(W/V ) = Gi(R̃/R) ⊆ Gal(L/K ′).

Let R′ ⊂ K ′ be the unique local ring of K ′ lying above R which is dominated by V ′.
By construction, R′ is contained in the inertia field Ki(R̃/R), so that R′ is local-étale
over R by [40], theorem 2 on p.110. Then R′ is regular, since R is. ¤

7. Abhyankar’s strategy: reduction to Artin-Schreier and purely

inseparable extensions.

In this section, we state the main reduction of local uniformization to the case of
Artin-Schreier and purely inseparable extensions of degree p which is the purpose of
[13]. The main ingredients in the proof of theorem 7.2 are postponed to the next two
sections. Once more, the strategy is adapted from that of [1] in dimension two.

Definition 7.1. An extension of valuation rings V ⊆ W , with K := QF (V ) ⊆ L :=
QF (W ) is said to be immediate if the inclusions V K ⊆ WL and κ(V ) ⊆ κ(W ) are
isomorphisms.

When L/K is finite Galois, immediate ramified extensions of valuation rings are
precisely those whose factor pd in (9) is not trivial. See [33] for background and further
scrutiny on these extensions. In order to emphasize the role played by such extensions
in the local uniformization problem, we state the main reduction as follows:

Theorem 7.2. Let k be a field of positive characteristic. Assume that for every func-
tion field K of transcendence degree three over k, for every k-valuation ring V/k of
rank one such that κ(V )/k is algebraic and QF (V ) = K, and for every local uni-
formization R of V/k, the following holds:

“For every pair f, g ∈ mR (with g 6= 0 if k is perfect) such that
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(1) the polynomial h := Xp − gp−1X + f ∈ R[X] is irreducible over K, and

(2) there exists a unique extension W of V to L := QF (S), where

S := (R[X]/(h))(mR,X) ,

and V ⊂ W is immediate,

there exists a local uniformization of W/k.”

Then for every function field K of transcendence degree three over k, every k-
valuation ring V/k of rank one such that κ(V )/k is algebraic and QF (V ) = K has a
local uniformization.

Proof. Let K be a function field of transcendence degree three over k, and let V/k be
a k-valuation ring of rank one such that κ(V )/k is algebraic and QF (V ) = K. Let
K0 := k(x1, x2, x3), where (x1, x2, x3) is a transcendence basis of K/k, with V xi ≥ 0
for 1 ≤ i ≤ 3. Then V0 := V ∩ K0 has a local uniformization R0 on the regular
projective model P3

k of K0.

Let K1 be the separable algebraic closure of K0 in K. Note that (x1, x2, x3) can be
chosen such that K1 = K0 if k is perfect by [37] theorem 26.3. The extension K/K1

is a tower of purely inseparable extensions of degree p

K1 := K1,0 ⊂ K1,1 ⊂ · · · ⊂ K1,n = K,

with n ≥ 0. Assume that V ∩ K1/k has a local uniformization R1We claim that
V ∩K1,i/k has a local uniformization R1,i, which we prove by induction on i, 0 ≤ i ≤
n1. By proposition 8.3 and the induction step, V ∩K1,i+1/k has a local uniformization
unless V ∩K1,i ⊂ V ∩K1,i+1 is immediate, which we assume now. Then there exists
ηi+1 ∈ mV ∩ K1,i+1 such that K1,i+1 = K1,i(ηi+1). By corollary 4.6, it can be as-
sumed that ηp

i+1 ∈ R1,i. Then V ∩K1,i+1/k has a local uniformization by assumption
in the statement of the theorem (with R := R1,i and g := 0, f := −ηi+1 ∈ mR), and
this proves the claim. Hence it can be assumed that K = K1 without loss of generality.

Let L/K0 be a Galois closure of K/K0 with Galois group G0, and W be an exten-
sion of V to L. Let G := Gal(L/K) ⊆ G0. One denotes by Gi

0 (resp. Gi) and Gr
0

(resp. Gr) the corresponding inertia and ramification group of W/V0 (resp. W/V ).
The corresponding fixed fields are denoted by Ki

0 (resp. Ki) and Kr
0 (resp. Kr).

By lemma 6.1, we have Gi = Gi
0 ∩ G and Gr = Gr

0 ∩ G. There is a diagram of field
inclusions

K → Ki → Kr → L
↑ ↑ ↑
K0 → Ki

0 → Kr
0 .

By corollary 6.3 applied to the field extension L/K0, the valuation ring W and the
intermediate field K ′ := Ki

0, W ∩ Ki
0/k has a local uniformization since V0/k has.

By (8), Kr
0/Ki

0 is an Abelian extension of order prime to p, whence a tower of
Abelian extensions of prime degrees li 6= p. Therefore, using induction on [Kr

0 : Ki
0],

W ∩ Kr
0/k has a local uniformization by proposition 8.3 (2) (whose assumption is

satisfied by (9)).
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Now Kr/Kr
0 need not be Galois. However, since Gr

0 is a p-group, it is nilpotent,
that is, there is a composition series

(1) = H0 ⊂ H1 ⊂ · · · ⊂ Hα = Gr
0,

where for each j, 0 ≤ j < α, Hj is invariant in Gr
0, Hj+1/Hj ⊆ Z(Gr

0/Hj) and
Hj+1/Hj ≃ Z/p (this is easily proved by induction on α, where | Gr

0 |=: pα, given
that the center of a p-group is nontrivial). In particular, we have

h−1
j+1ghj+1 ⊆ gHj (32)

for each g ∈ Gr
0, hj+1 ∈ Hj+1. Let H ′

j be the subgroup of Gr
0 generated by Gr and

Hj , 0 ≤ j ≤ α. Equation (32) implies that H ′
j is invariant in H ′

j+1 and that H ′
j+1/H ′

j

is a quotient of Hj+1/Hj ≃ Z/p. By Galois correspondence, the extension Kr/Kr
0 is

a tower of Galois extensions of degree p. As in the purely inseparable case, the local
uniformization in each intermediate extension of this tower is handled by proposition
8.3 (nonimmediate case) or by assumption in the statement of the theorem (immedi-
ate case). Therefore W ∩ Kr/k has a local uniformization.

By proposition 9.5 below applied to the field extension L/K, the valuation ring W
and the intermediate field K ′ := Kr, V/k has a local uniformization since W ∩Kr/k
has. ¤

8. Refined monomialization and applications to local uniformization.

In this section, we prove the following refined version of proposition 4.1 along a
valuation. A simple application yields proposition 8.3, which handles the local uni-
formization of extensions of prime degree which are not immediate (definition 7.1).

Proposition 8.1. Let L/k be a function field of transcendence degree three and W/k
be a k-valuation ring of L with QF (W ) = L, of rank one, rational rank r (1 ≤ r ≤ 3)
and such that κ(W )/k is algebraic. Let S0 be a given normal local model of W/k and
f0 ∈ S0, f0 6= 0.
Assume that there exists a local uniformization of W/k.
There exists f ∈ mS0

, f 6= 0, such that f0 | f , and a local uniformization S of W/k
with r.s.p. (x1, x2, x3) having the following properties:

(1) S0 < S and (S0)f = Sf .

(2)
√

fS =
√

mS0
S = (x1 · · ·xr) and Wx1, . . . ,Wxr are linearly independent in

WL ⊗Z Q.

Proof. There exists a local uniformization S1 of W/k such that S0 < S1 by corol-
lary 4.6. Since S0 and S1 are birational and of the same dimension (three), there
exists g ∈ mS0 , g 6= 0 such that (S0)g = (S1)g. We pick elements f1, . . . , fr ∈ mS0

such that Wf1, . . . , Wfr are linearly independent in WL ⊗Z Q. Then (1) holds
with f := g(f0 · · · fr) for any local uniformization S of W/k such that S1 < S and
(S1)f = Sf .

By proposition 4.1 applied to the ideal fmS0S1, there exists a local uniformization
S2 of W/k with r.s.p. (y1, y2, y3) such that S1 < S2, (S1)f = (S2)f and each of the
ideals fS2 and mS0S2 is monomial in y1, y2, y3.
Let E ⊆ {1, 2, 3} (resp. F ⊆ {1, 2, 3}) be the set of indices i such that (yi) divides
fS2 (resp. mS0

S2) in S2. Note that F ⊆ E, since f ∈ mS0
, and that

♯(E) ≥ r, (33)
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since the values {Wfj}1≤j≤r are linearly independent (hence the values {Wyi}i∈E

generate WL⊗ZQ). There remains to achieve the extra property that ♯(E) = ♯(F ) =
r which is the content of (2) in the statement of the proposition.

Suppose F ⊂ E. Take i1 ∈ E \ F , i2 ∈ F and let {i3} := {1, 2, 3} \ {i1, i2}. Let

S
(1)
2 be the monoidal transform at (yi1 , yi2) of S2 along W .
If Wyi2 ≥ Wyi1 , then

(

y
(1)
i3

:= yi3 , y
(1)
i1

:= yi1 , y
(1)
i2

:= P

(

yi2

yi1

))

is a r.s.p. of S
(1)
2 , where P ∈ S2[X] is monic and such that its image in κ(S2)[X]

is irreducible. We denote by E(1), F (1) the corresponding subsets of {1, 2, 3}. By
construction,

E(1) \ F (1) = E \ (F ∪ {i1}),
so that we have achieved a reduction in ♯(E \ F ).

If Wyi2 < Wyi1 ,
(

y
(1)
i3

:= yi3 , y
(1)
i1

:=
yi1

yi2

, y
(1)
i2

:= yi2

)

is a r.s.p. of S
(1)
2 and we have E(1) = E, F (1) = F . Since W has rank one, we have

nWyi2 ≥ Wyi1 for some n ≥ 1 so that we achieve a reduction in ♯(E \ F ) after iterat-
ing n times. Therefore, after possibly replacing S2 by an iterated monoidal transform
along W , it can be assumed that E = F . Note that property (1) of the proposition
is preserved by this construction.

By (33), we can now number the regular parameters of S2 in such a way that
{1, . . . , r} ⊆ E = F and Wy1, . . . , Wyr generate WL ⊗Z Q. Suppose that ♯(E) > r
(in particular r ≤ 2) so that r + 1 ∈ E after possibly renumbering yr+1, . . . , y3.

By lemma 8.2 below, there exists an integer n ≥ 1, a sequence of monoidal trans-
forms along W

S2 =: S
(0)
2 < S

(1)
2 < · · · < S

(n)
2 ,

a matrix A = (aij) ∈ GL(r + 1,Z) with nonnegative entries such that the following

holds: the iterated monoidal transform S
(n−1)
2 along W has a r.s.p. (y

(n−1)
1 , y

(n−1)
2 , y

(n−1)
3 );

for each i, 1 ≤ i ≤ r + 1, there is an expression

yi =

r+1
∏

j=1

(

y
(n−1)
j

)aij

;

we have y3 = y
(n−1)
3 if r = 1. Moreover, there exists in, i′n ∈ {1, . . . , r + 1}, in 6= i′n

such that Wy
(n−1)
in

= Wy
(n−1)
i′n

and S
(n)
2 is the monoidal transform of S

(n−1)
2 at

(y
(n−1)
in

, y
(n−1)
i′n

) along W .

Note that S = S
(n)
2 still has property (1) of the proposition. By construction, the

corresponding subsets E(n), F (n) of {1, 2, 3} satisfy E(n) = F (n) ⊂ E. Therefore we
can achieve a reduction of ♯(E) if ♯(E) > r.

If r = 2 or if (r = 1 and ♯(E) = 2), we let S := S
(n)
2 . If r = 1 and ♯(E) = 3,

we apply twice the previous procedure obtained from lemma 8.2. In both cases, we
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achieve an iterated monoidal transform S of S2 along W satisfying (1) and (2) in the
statement of the proposition. ¤

The following lemma is an immediate application of the Perron algorithm ([45]
theorem 1 on p. 862).

Lemma 8.2. Let R(0) be a regular local ring of dimension d ≥ 2 and r.s.p. (x
(0)
1 , . . . , x

(0)
d ).

Let V be a valuation ring such that R(0) < V and QF (V ) = K := QF (R(0)). Assume

that V x
(0)
1 , . . . , V x

(0)
r are linearly independent in V K⊗ZQ, generate an Archimedean

subgroup of V K and that V x
(0)
r+1 ∈ ⊕r

i=1QV x
(0)
i .

There exists an integer n ≥ 1, a sequence of monoidal transforms along V

R(0) < R(1) < · · · < R(n),

where for each j, 1 ≤ j ≤ n, R(j) has a r.s.p. (x
(j)
1 , x

(j)
2 , . . . , x

(j)
d ) and there exists

ij , i
′
j ∈ {1, . . . , r + 1}, ij 6= i′j such that R(j) is the monoidal transform of R(j−1) at

(x
(j−1)
ij

, x
(j−1)
i′
j

) along V and the following holds:

(1) for 1 ≤ j ≤ n, we have x
(j)
i = x

(j−1)
i for i ∈ {1, . . . , d} \ {i′j};

(2) for 1 ≤ j ≤ n − 1, we have x
(j)
i′
j

= x
(j−1)
i′
j

/x
(j−1)
ij

;

(3) we have V x
(n−1)
i′n

= V x
(n−1)
in

.

Proposition 8.1 together with the Perron algorithm imply the following result. It
is worth observing that the proof of (2) of proposition 8.3 is not harder in the wildly
ramified case l = p than in the tamely ramified case l 6= p. See the statement
of theorem 7.2, where emphasis is put on the extra difficulty caused by the wildly
ramified and immediate case. See also the argument in [13], II.4.6 of chapter 1 for
another argument shortcutting the computations after (36) below.

Proposition 8.3. Let L/K be an extension of function fields of transcendence degree
three over k of prime degree l and let W/k be a k-valuation ring of rank one such that
QF (W ) = L. Let V := W ∩ K.
Assume that either

(1) [L : K] = [κ(W ) : κ(V )], or
(2) [L : K] =| WL/V K |.

If V/k has a local uniformization, then W/k has a local uniformization.

Proof. Under assumption (1) (resp. (2)), we pick η ∈ W such that its image η in
κ(W ) does not belong to κ(V ) (resp. Wη 6∈ V K). Then L = K(η), since l = [L : K]
is prime. Let

P (X) := X l + f1X
l−1 + · · · + fl ∈ K[X] (34)

be the minimal polynomial of η over K, where fi ∈ V for 1 ≤ i ≤ l. By proposition
4.6, there exists a local uniformization R of V/k such that fi ∈ R for 1 ≤ i ≤ l. Then
S := R[η]mW ∩R[η] is a local model of W/k.

Under assumption (1), we have mW ∩ R[η] = mRR[η] since the morphism

κ(R)(η) ≃ R[X]

mRR[X] + P (X)
→ R[η]

mRR[η]
, X 7→ η.

is surjective. Therefore mS = mRS, so S is a regular local ring of dimension three,
since R is.
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Under assumption (2), we note that

Wηl = Wfl < min1≤i≤l−1W (fiη
l−i), (35)

since Wη has order l in WL/V K. We deduce that

Wf
l!
l

l < min1≤i≤l−1{Wf
l!
i

i }.
Let

I := ({f
l!
i

i }1≤i≤l) ⊂ R.

Let E := {j / fj 6= 0} ⊆ {1, . . . , l}. Applying consecutively proposition 4.1 to the
ideal I, then proposition 8.1 to f0 :=

∏

j∈E fj , it can be assumed that R has a r.s.p.

(x1, x2, x3), such that the following holds: we have

IR = (f
l!
l

l ) =





∏

1≤j≤r

x
αj

j





l!
l

, (36)

where V x1, . . . , V xr are linearly independent in V K⊗ZQ and α1, . . . , αr are positive
integers. Moreover, fj is a unit in R times a monomial in x1, . . . , xr for each j ∈ E.

Let S := R[X](mR,X), where X is an indeterminate. Let W0 be the discrete
valuation ring SP (X), and W be the rank two k-valuation ring which is composed of
W0 and of the valuation ring W of κ(W0) ≃ QF (S) = L. Then S < W and S has a
r.s.p. (x0 := X, x1, x2, x3). We have

Wx0 =
1

l

∑

1≤j≤r

αjWxj

by (35) and (36).
By lemma 8.2, there exists an integer n ≥ 1, a sequence of monoidal transforms

along W
S =: S(0) < S(1) < · · · < S(n), (37)

a matrix A = (aij)0≤i,j≤r ∈ GL(r+1,Z) with nonnegative entries such that the follow-

ing holds: the iterated monoidal transform S(n−1) along W has a r.s.p. (x
(n−1)
0 , . . . , x

(n−1)
3 );

for each i, 0 ≤ i ≤ r, there is an expression

xi =
r

∏

j=0

(

x
(n−1)
j

)aij

;

for each i, r + 1 ≤ i ≤ 3, we have xi = x
(n−1)
i . Moreover, there exists in, i′n ∈

{0, . . . , r}, in 6= i′n such that Wx
(n−1)
in

= Wx
(n−1)
i′n

and S(n) is the monoidal trans-

form of S(n−1) at (x
(n−1)
in

, x
(n−1)
i′n

) along W.

We have expressions

xl
0 =

r
∏

j=0

(

x
(n−1)
j

)la0j

and

fl =

r
∏

j=0

(

x
(n−1)
j

)

∑

r

i=1
αiaij

.
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Since the x
(n−1)
j ’s have rationally independent values for j ∈ {0, . . . , r} \ {i′n} and

Wx
(n−1)
in

= Wx
(n−1)
i′n

, we recover from (35) that

la0j =

r
∑

i=1

αiaij , for j ∈ {0, . . . , r} \ {in, i′n}, (38)

and

l(a0in
+ a0i′n

) =

r
∑

i=1

αi(aiin
+ aii′n

). (39)

For j ∈ {0, . . . , r} \ {in, i′n}, let βj := la0j . For j ∈ {in, i′n}, let

βj := min{la0j,

r
∑

i=1

αiaij}.

Since each fi is either zero or a monomial in x1, . . . , xr times a unit, we get from
(36) and (38) that

g := g.c.d.S(n−1)

(

xl
0, {fix

l−i
0 }1≤i≤l

)

=
∏

j∈{0,... ,r}

x
βj

j ,

and from (36) and (39) that

ordm
S(n−1)

xl
0 = ordm

S(n−1)
fl < min1≤i≤l−1{ordm

S(n−1)
fix

l−i
0 }.

The previous considerations yield the following expression in S(n−1):

P (x0) = g
(

(x
(n−1)
j )m − u(x

(n−1)
j′ )m + terms of order at least m + 1

)

,
(40)

where {j, j′} = {in, i′n}, m := (la0in
−βin

)+(la0i′n −βi′n) ≥ 0 and u ∈ S is a unit such

that u−1fl is a monomial in x1, . . . , xr. Note that m > 0 since A is a nonsingular
matrix.

We now claim that m = 1. Namely, for 0 ≤ j ≤ n − 1, let

g(j) := g.c.d.S(j)(xl
0, fl).

Each of xl
0, u

−1fl, g
(j) is a monomial in x

(j)
0 , . . . , x

(j)
r and we let

xl
0

g(j)
=:

∏

i∈E(j)

(

x
(j)
i

)ε
(j)
i

,
fl

g(j)
=:

∏

i∈F (j)

(

x
(j)
i

)ε
(j)
i

,

where E(j), F (j) ⊂ {0, . . . , r} and ε
(j)
i > 0. Note that E(j) ∩F (j) = ∅. We extend the

definition by letting ε
(j)
i = 0 whenever i 6∈ E(j) ∪ F (j).

Let
δ(j) := g.c.d.({ε(j)i }i∈E(j)∪F (j)).

By assumption (2) in the proposition, we have δ(0) = 1. For 1 ≤ j ≤ n − 1, the

transformation law for the exponents ε
(j)
i are

ε
(j)
i = ε

(j−1)
i if i 6= ij , (41)

and;

ε
(j)
ij

= ε
(j−1)
ij

+ ε
(j−1)
i′
j

if {ij , i′j} ⊆ E(j) or {ij , i′j} ⊆ F (j), (42)

or

ε
(j)
ij

=| ε
(j−1)
ij

− ε
(j−1)
ij

′ | otherwise. (43)
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The formula d(j) = d(j−1) follows from (41) and from (42) or (43). Therefore
m = d(n−1) = 1 in (40) and the claim is proved.

Since m = 1 in (40), the iterated monoidal transform S(n−1) of S ≃ S/P (x0) in
S(n−1) which is induced by (37) is regular. Hence W/k has a local uniformization.

¤

9. Pushing down local uniformization in tamely ramified extensions.

In this section, we consider the following problem.

Problem 9.1. (Pushing down local uniformization) Let L/K be an extension of func-
tion fields of transcendence degree three over k and let W/k be a k-valuation ring of
rank one such that QF (W ) = L having a local uniformization.

Has W ∩ K/k a local uniformization?

An affirmative answer to this problem would allow us to deduce local uniformiza-
tion from de Jong’s theorem [29] or from its weaker valuative version [34]. However,
we do not know how to deal with the case when W/W ∩ K is wildly ramified. Since
we are interested here in applications to the local uniformization problem, this wildly
ramified case can be avoided via Abhyankar’s construction performed in the proof of
theorem 7.2. In proposition 9.5 below we answer in the affirmative the special case
of problem 9.1 when W/W ∩ K is tamely ramified. See [6] for a survey and open
problems related to simultaneous resolution along a valuation.

Problem 9.2. (Lying below problem) Let L/K be an extension of function fields of
transcendence degree three over k and let W/k be a k-valuation ring of rank one such
that QF (W ) = L having a local uniformization.

Does there exist a normal local model R of W ∩ K/k lying below some local uni-
formization S of W/k?

While problem 9.2 has trivially an affirmative answer when L/K is Galois with
group G (in which case the invariant ring R := SG lies below S), it is by no ways
obvious in the non Galois case. See [1] theorem 4.8 for an affirmative answer in
dimension two and [19], [39] for refined statements. See also [15] (resp. [16]) in
characteristic zero, all dimensions (resp. for a counterexample to the global version
of problem 9.2 in dimension two and all characteristics). Finally, see [20] for the case
dimQ(V K ⊗Z Q) ≥ tr.deg(K/k)−1. On the other hand, we prove the following case,
where V ′ is unramified over V but K ′/K is not necessarily Galois, including the case
dimQ(V K ⊗Z Q) = 1 which is not covered by Fu’s theorem [20]:

Proposition 9.3. Let L/K be a Galois extension of function fields of transcendence
degree three over k and let W/k be a k-valuation ring of rank one such that QF (W ) =
L and κ(W )/k is algebraic. Let V := W ∩ K.
Let K ′, K ⊆ K ′ ⊆ L be an intermediate extension such that K ′ is contained in Ki,
the inertia field of W over V . Let V ′ := W ∩ K ′. Assume that V ′/k has a local
uniformization S′

0.
There exists a local uniformization S′ of V ′/k, with S′

0 < S′, and a local uni-
formization R of V/k lying below S′.

Proof. Let Ks be the splitting field of W over V . There is a Cartesian square of field
extensions

Ks → Ks.K ′ ⊆ Ki

↑ ↑
Ks ∩ K ′ → K ′ .
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By proposition 6.2, there exists a normal local model R0 of V/k such that for any
normal local model R of V/k dominating R0, we have

Gs(W/V ) = Gs(R̃/R) and Gi(W/V ) = Gi(R̃/R), (44)

where R̃ is the unique normal local model of W/k lying above R. Let R′ be the unique
normal local model of V ′/k lying above R. Since K ′ ⊆ Ki and Ki is the inertia field

of R̃ over R by (44), R′ is local-étale over R by [40], theorem 2 on p.110, so that

R is regular ⇔ R′ is regular. (45)

By corollary 4.6, it can be assumed that R′
0 < S′

0. Then by lemma 6.1, we also

have Gi(S̃′
0/S′

0) = Gi(W/V ′), so that the unique normal local model Si
0 of W ∩Ki/k

lying above S′
0 is regular. Now, the invariant ring Ss

0 := (Si
0)

Gs(W/V )/Gi(W/V ) ⊂ Ks

a normal local model of V s/k, where V s := W ∩ Ks. By (44) and lemma 6.1, we

have equalities Gs(R̃0/Rs
0) = Gs(S̃′

0/Ss
0) = Gs(W/V ) and Gi(R̃0/Rs

0) = Gi(S̃′
0/Ss

0) =
Gi(W/V ). This shows that

Gi(Si
0/Ss

0) = Gs(W/V )/Gi(W/V ) = Gal(Ki/Ks).

Therefore Si
0 is local-étale over Ss

0 by [40], theorem 2 on p.110, so that Ss
0 is regular,

since Si
0 is. In particular, V s/k has a local uniformization.

Assume that the statement of the proposition holds whenever K ′ = Ks. Then
there exists a local uniformization Ss of V s/k, with Ss

0 < Ss, and a local uniformiza-
tion R of V/k lying below Ss. The unique normal local model S′ of V ′/k lying above
R dominates S′

0 and is regular by (45). Therefore we have reduced the proposition to
the case K ′ = Ks, which we assume from now on.

Let R1 be a normal local model of V/k such that R′
1 dominates the given local

uniformization S′
0 of V ′/k. We now pick f1, . . . , fr ∈ R1 such that (V f1, . . . , V fr)

form a basis of V K ⊗Z Q, and let f0 := f1 · · · fr. By proposition 8.1, there exists
f ∈ mR′

1
, f 6= 0 such that f0 | f and a local uniformization S′ of V ′/k with r.s.p.

(x1, x2, x3) having the following properties;

(1) R′
1 < S′ and (R′

1)f = S′
f .

(2)
√

fS′ =
√

mR′

1
S′ = (x1 · · ·xr), and V ′x1, . . . , V ′xr are linearly independent

in V ′K ′ ⊗Z Q.

For each i, 1 ≤ i ≤ r, there is an expression

fi = γi

r
∏

j=1

x
aij

j ,

where γi is a unit in S′. Since (V ′fi)1≤i≤r and (V ′xj)1≤j≤r are bases of V ′K ′ ⊗Z Q,
the matrix A := (aij)1≤i,j≤r is nonsingular. After possibly permuting two of the fi’s
(if r ≥ 2), it can be assumed that detA > 0. Let B =: (bij) be the adjoint matrix of
A, and let

Fi :=

r
∏

j=1

f
bji

j =





r
∏

j=1

γ
bji

j



xdetA
i ∈ S′ ∩ K, (46)

for 1 ≤ i ≤ r.
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If r ≤ 2, let P ′ := (xr+1, . . . , x3) ∈ SpecS′, and P ′
1 := P ′ ∩ R′

1. Let π : SpecS′ →
SpecR′

1 and F ⊂ SpecR′
1 be the fundamental locus of π. By properties (1) and

(2) above, we have π−1(F) = V (x1 · · ·xr). In particular, V (P ′
1) 6⊆ F , so that the

induced map Spec(S′/P ′) → Spec(R′
1/P ′

1) is birational. In algebraic terms, there
exists gr+1, . . . , g3 ∈ P ′

1 such that

P ′ = (g′r+1, . . . , g′3), (47)

where

gj =: g′j

r
∏

i=1

x
cij

i , (48)

with g′j ∈ S′ not divisible by xi for 1 ≤ i ≤ r, r + 1 ≤ j ≤ 3. We let

G′
j :=

gdetA
j

∏r
i=1 F

cij

i

= γ′
j(g

′
j)

detA ∈ S′, (49)

where γ′
j ∈ S′ is a unit, for r + 1 ≤ j ≤ 3.

By (44), Gs(R̃1/R1) = Gal(L/Ks) = Gal(L/QF (R′
1)), so that R′

1 ⊂ Rh
1 , where Rh

1

is the Henselization of R1 ([40], theorem 2 on p.110). In particular, R1 lies dense in
R′

1 for the mR′

1
-adic topology. Let

C := maxi,j{cij} (50)

and let hj ∈ R1 be such that hj ≡ gj modmC+1
R′

1
, for r + 1 ≤ j ≤ 3. By (48), (50) and

property (2) above, there is an expression

hj =: h′
j

r
∏

i=1

x
cij

i ,

with h′
j ∈ S′ not divisible by xi for 1 ≤ i ≤ r, r + 1 ≤ j ≤ 3, and a congruence

h′
j ≡ g′j mod(x1 · · ·xr)S

′.

Let

Hj :=
hdetA

j
∏r

i=1 F
cij

i

∈ S′ ∩ K.

Comparison with (49) produces the congruence

Hj ≡ γ′
j(g

′
j)

detA mod(x1 · · ·xr)S
′, (51)

for r + 1 ≤ j ≤ 3. By (46), (47) and (51), we have
√

({Fi}1≤i≤r, {Hj}r+1≤j≤3)S′ = mS′ . (52)

Let R be the integral closure of R1[{Fi}1≤i≤r, {Hj}r+1≤j≤3] ⊂ S′ ∩ K. We have

R := RmS′∩R < S′ and QF (R) = K. By (52) and Zariski’s Main Theorem ([40],

theorem 1 on p.41), R lies below S′. Now, R is regular since S′ is by (45) and the
proposition follows. ¤

Lemma 9.4. Let L/K be a Galois extension of function fields of transcendence degree
three over k of prime degree l 6= p.
Let W/k be a k-valuation ring of rank one such that QF (W ) = L and κ(W )/k is
algebraic. Let V := W ∩ K.
If W/k has a local uniformization, then V/k has a local uniformization.
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Proof. We have L = Ki(W/V ) -in which case the lemma follows from proposition 9.3
(Galois case)- except if s = f = pd = 1, e = l in (9), which we assume from now on.
In particular G := Gal(L/K) = Gi(W/V ) = Z/l and Gr(W/V ) = (1).

Let µl be the group of lth-roots of unity in k and ζl be a generator of µl. First
assume that µl 6⊂ K. Let K ′ := K(ζl) and L′ := L(ζl). Then L′/K ′ is still a
Galois extension with group G, where G acts trivially on µl. Let W ′ be an extension
of W to L′ and V ′ := W ′ ∩ K ′. By (8), µl ⊆ κ(W ) = κ(V ), so that we have
Gi(W ′/W ) = Gi(V ′/V ) = (1), i.e. V (resp. W ) totally splits in K ′ (resp. L′).

By corollary 6.3, W ′/k has a local uniformization since W has. If V ′/k has local
uniformization, then V has local uniformization too by proposition 9.3 (Galois case).
In other terms, it can be assumed that µl ⊂ K.

Let R0 be a normal local model of V/k satisfying the conclusion of proposition 6.2,

and let S be a local uniformization of W/k such that R̃0 < S. We have k(ζl) ⊂ S. Also
S is stable by G, since any conjugate of S is dominated by W , hence equal to S. Let
R := SG. Then R is a normal local model of V/k and S lies above R. By proposition

6.2, we have Gi(S/R) = G, κ(R) = κ(S), and the action on Ŝ ≃ κ(S)[[x1, x2, x3]] is
given by

g.xi = ζti

l xi,

where g is a generator of G and ti 6≡ 0 modl for some i. Note that it can be assumed
that x1, x2, x3 ∈ S by (29), since k(ζl) ⊂ S.

The lattice

N := {v := (v1, v2, v3) ∈ Z3 | v1t1 + v2t2 + v3t3 ≡ 0 modl}
has index l in Z3. By elementary linear algebra, there exists a basis (v1,v2,v3) of Z3

having the following properties

(a) (lv1,v2,v3) is a basis of N ,
(b) N3 ⊆ Nv1 + Nv2 + Nv3, and

(c)
∑3

j=1 vijWxj ≥ 0 for 1 ≤ i ≤ 3.

We define

yi :=

3
∏

j=1

x
vij

j (53)

for 1 ≤ i ≤ 3, and S := S[y1, y2, y3]. By (c), S1 := SmW ∩S is a local model of W and

S1 is regular by (b). By (a) and (53), we have

g.y1 = ζt
l y1, g.y2 = y2, g.y3 = y3 (54)

for some t 6≡ 0 modl. Let R1 := SG
1 . Then R1 is a normal local model of V/k and

S1 lies above R1. By proposition 6.2, we have κ(R1) = κ(S1), so that there exist
γ2, γ3 ∈ R1 such that S1 has r.s.p. (z1 := y1, z2 := y2 − γ2, z3 := y3 − γ3) satisfying

g.z1 = ζt
l z1, g.z2 = z2, g.z3 = z3

by (54).
Therefore

ŜG
1 = Ŝ1

G
= κ(S1)[[z

l
1, z2, z3]]

is a regular local ring. Thus SG
1 is a local uniformization of V/k.

¤
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Proposition 9.5. Let L/K be a Galois extension of function fields of transcendence
degree three over k and let W/k be a k-valuation ring of rank one such that κ(W )/k
is algebraic and QF (W ) = L. Let V := W ∩ K.
Let K ′, K ⊆ K ′ ⊆ L be an intermediate extension such that K ′ is contained in Kr,
the ramification field of W over V . Let V ′ := W ∩ K ′.
If V ′/k has a local uniformization, then V/k has a local uniformization.

Proof. Let Ki be the inertia field of W over V . There is a Cartesian square of field
extensions

Ki → Ki.K ′ ⊆ Kr

↑ ↑
Ki ∩ K ′ → K ′ .

By lemma 6.1, K ′′ := Ki.K ′ is the inertia field of W over V ′. Let V ′′ := W ∩ K ′′.
Then V ′′/k has a local uniformization by corollary 6.3, since V ′/k has. Since Kr/Ki

is an Abelian extension of order prime to p, K ′′/Ki is a tower of Abelian extensions
of prime degrees li 6= p. By successive applications of lemma 9.4, V i/k has a local
uniformization, where V i := W ∩ Ki. The conclusion then follows from proposition
9.3. ¤
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