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ois Ollivier and Mi
hel PetitotUniversit�e Lille I, LIFL, 59655 Villeneuve d'As
q CEDEX, Fran
eUniversit�e Paris VI, LIP6, 75252 Paris CEDEX 05, Fran
e�E
ole Polyte
hnique, GAGE, 91128 Palaiseau CEDEX, Fran
eUniversit�e Lille I, LIFL, 59655 Villeneuve d'As
q CEDEX, Fran
eboulier�li
.fr, lazard�posso.lip6.fr, ollivier�gage.polyte
hnique.fr, petitot�li
.frTe
hni
al report IT306 of the LIFL. Unpublished.(Re
eived July 1997 (revised February 1999))This paper deals with systems of polynomial di�erential equations, ordinary or withpartial derivatives. The embedding theory is the di�erential algebra of Ritt and Kol
hin.We des
ribe an algorithm, named Rosenfeld{Gr�obner, whi
h 
omputes a representationfor the radi
al p of the di�erential ideal generated by any su
h system �. The 
omputedrepresentation 
onstitutes a normal simpli�er for the equivalen
e relation modulo p (itpermits to test membership in p). It permits also to 
ompute Taylor expansions ofsolutions of �. The algorithm is implemented within a pa
kagey in MAPLE V.

Introdu
tionThe following system � (whi
h has no physi
al signi�
an
e) is a system of three poly-nomial di�erential equations with partial derivatives.�8>>>>>><>>>>>>:
� ��x u(x; y)�2 � 4u(x; y) = 0;� �2�x �y u(x; y)�� ��y v(x; y)� � u(x; y) + 1 = 0;�2�x2 v(x; y)� ��x u(x; y) = 0:In the following, we denote (for short) derivations using indi
es. The system � be
omes�8<: u2x � 4u = 0;uxy vy � u+ 1 = 0;vxx � ux = 0:y A part of this work (in parti
ular the MAPLE pa
kage) was realized while the �rst author was apostdo
toral fellow at the Symboli
 Computation Group of the University of Waterloo, N2L 3G6 Ontario,Canada.y The pa
kage is available for MAPLE VR3 and R4. It is going to enter the main library of MAPLEVR5.0747{7171/90/000000 + 00 $03.00/0 
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2 F. Boulier, D. Lazard, F. Ollivier, M. PetitotThe Rosenfeld{Gr�obner algorithm that we present in this paper 
omputes a representa-tion of the radi
al p of the di�erential idealz generated by �. This representation tells usin parti
ular that the solutions of � (whi
h turn out to be polynomials) depend on threearbitrary 
onstants and permits us to 
ompute Taylor expansions of these solutions. If weexpand them in the neighborhood of the origin then the arbitrary 
onstants are u(0; 0),v(0; 0) and vx(0; 0). For u(0; 0) = 5, v(0; 0) = 421 and vx(0; 0) = � our algorithm givesus (
omputations are detailed in se
tion 8)u(x; y) = 5 + xp10p2 + yp10 + x2 + x yp2 + 12 y2;v(x; y) = 421 + x� + 2 yp2 + 12 x2p10p2 + x yp10 +14 y2p10p2 + 13 x3 + 12 x2 yp2 + 12 x y2 + 112 y3p2:The applied mathemati
al theory is 
alled di�erential algebra. It was initiated mostlyby Fren
h and Ameri
an resear
hers at the early twentieth 
entury (Riquier (1910), Janet(1920) and (1929) and Ritt (1932)) and really developed by the Ameri
an teams of Ritt(1950) and Kol
hin (1973). Di�erential algebra aims at studying di�erential equationsfrom a purely algebrai
 point of view. It is mu
h 
loser to ordinary 
ommutative algebrathan to analysis.The Rosenfeld{Gr�obner algorithm represents the radi
al of the di�erential ideal gen-erated by any �nite system � of polynomial di�erential equations as a �nite interse
tionof di�erential ideals r's (that we 
all regular).p =p[�℄ = r1 \ � � � \ rn:Ea
h regular di�erential ideal ri is presented by a set of di�erential polynomial equa-tions Ci whi
h satis�es:1 Ci is a 
anoni
al representative of ri,2 Ci redu
es to zero a di�erential polynomial p if and only if p 2 ri.Therefore, the set of the C's 
onstitutes a normal simpli�er for the equivalen
e relationmodulo p (i.e. an algorithm whi
h de
ides membership in p). The simpli�er is not 
anon-i
al for the representation may 
ontain redundant 
omponents: every di�erential primeideal whi
h is minimal over p is minimal over at least one of the regular di�erential idealsprodu
ed but the 
onverse is not true.Assume the solutions of p depend on �nitely many arbitrary 
onstants. The algorithmseparates the solutions whi
h do not depend on the same number of arbitrary 
onstants.In our introdu
tory example, only one regular di�erential ideal was produ
ed. This provesthat all the solutions of p depend on three arbitrary 
onstants.An implementation of this algorithm was realized for the MAPLE V 
omputer algebrasoftware. It is embedded in a pa
kage named diffalg.z We make pre
ise in further se
tions some of the notations and the terminology used in thisintrodu
tion



Computing representations for radi
als of �nitely generated di�erential ideals 3Used theoremsThe Rosenfeld{Gr�obner algorithm relies mainly on three theorems:1 a theorem of zeros (Hilbert's Nullstellensatz), whi
h states that a polynomial pbelongs to the radi
al of an ideal presented by a basis � if and only if every solutionof � is a solution of p ; we apply this theorem in the algebrai
 and in the di�erential
ase,2 a lemma of Rosenfeld, whi
h gives a suÆ
ient 
ondition so that a system of poly-nomial di�erential equations admits a solution if and only if this same system,
onsidered as a purely algebrai
 system admits a solution,3 a lemma of Lazard, whi
h establishes that ea
h regular ideal r is radi
al and thatall its prime 
omponents have a same parametri
 set (this property is stronger than\de�ning an unmixed algebrai
 variety").It utilizes only the operations and the equality test with zero in the base �eld of theequations: we refer to Ritt's redu
tion algorithms, 
omputations of Gr�obner bases andsplittings similar to those in the elimination methods of Seidenberg (1956). In parti
ular,it does not need any fa
torization.New resultsThe Rosenfeld{Gr�obner algorithm was �rst des
ribed by Boulier (1994) and improvedby Boulier et al. (1995). This paper 
ontains new results.We give in se
tion 2 a proof of Lazard's lemma whi
h is more pre
ise than the one wegave in Boulier et al. (1995), lemma 2, page 161.We give an original presentation of the fundamental Rosenfeld's lemma. We present itas a property of some 
lass of systems of polynomial di�erential equations and inequationsinstead of a property of some 
lass of sets of di�erential polynomials.We give a version of Rosenfeld's lemma more general than the one of Rosenfeld (thiswas already proven by Boulier (1997)) and not 
ontained in Kol
hin's version. Brie
y,our version only imposes to the ideals to be saturated by the separants of the di�erentialpolynomials (and no more by the initials). It also only imposes to the set of equations tobe triangular instead of autoredu
ed (but this is ane
doti
). Sin
e Lazard's lemma alsoholds in su
h a situation, we formulate our theorems without 
onsidering the initials ofdi�erential polynomials (though we do it in our implementation for eÆ
ien
y reasons).This is an improvement w.r.t. Kol
hin's theory.We prove new results for regular ideals: theorems 4.2 and 6.1. The former permits to
ompute the minimal di�erential prime 
omponents of regular ideals and provides alsoinformations about these prime ideals without having to 
ompute them ; the latter givesus an original presentation of a well known proof about formal power series.The algorithm presented is mu
h more eÆ
ient than the one of 1995. It applies forpolynomial di�erential equations an analogue of the se
ond 
riterion proven by Bu
h-berger (1979) for Gr�obner bases. Our implementation of this 
riterion was designed afterthe method of Gebauer and M�oller (1988).



4 F. Boulier, D. Lazard, F. Ollivier, M. PetitotComparison with other methodsThere is a strong relationship between our algorithm and Seidenberg's work. AntonSeidenberg (1956) designed elimination algorithms for systems of ODE and PDE in
hara
teristi
 zero and non zero. His PDE elimination algorithm in 
hara
teristi
 zeroa
tually solves the same problem we are solving: de
iding membership in the radi
alof a �nitely generated di�erential ideal. He proved (theorem 6, page 51) an analogue ofRosenfeld's lemma whi
h is a bit weaker (restri
tion to orderly rankings on the derivativesof a single di�erential indeterminate) and more te
hni
al (note Rosenfeld (1959) presentshis lemma as a new version of Seidenberg's theorem). In his theorem 11, page 59 he showsthat, if � is a system whi
h satis�es the hypotheses of his theorem 6 then every algebrai
solution of � furnishes a unique di�erential solution. He showed later (Seidenberg, 1969)how di�erential solutions 
an be 
onverted as formal power series.There are di�eren
es between Seidenberg's algorithm and ours. The most importantis the following: the Rosenfeld{Gr�obner algorithm 
omputes a representation of radi
aldi�erential ideals whi
h 
an be used afterwards for testing membership in the ideal manytimes afterwards while Seidenberg's de
ides if a di�erential polynomial p belongs to theradi
al of the di�erential ideal generated by a �nite family � by eliminating su

essivelyall the di�erential indeterminates whi
h o

ur in the system � = 0; p 6= 0 in order to testif this system admits solutions (Hilbert's theorem of zeros). The answer of his algorithmis a boolean.Another important di�eren
e: Seidenberg's elimination algorithms are restri
ted toelimination rankings between di�erential indeterminates whi
h indu
e very explosive
omputations, while orderly rankings are handled by the Rosenfeld{Gr�obner algorithm(this is the 
ase for instan
e in our introdu
tory example).Ritt (1950) gave a method to de
ompose the radi
al of an ordinary di�erential idealas an interse
tion of prime di�erential ideals, providing a 
hara
teristi
 set for ea
hof these ideals. This de
omposition is not the minimal one be
ause of the redundan
yproblem (still open). That algorithm is in
onvenient be
ause it is only partially e�e
tive:it pro
eeds by fa
torization over a tower of algebrai
 �eld extensions of the �eld of
oeÆ
ients. To our knowledge, it has not been implemented. It only applies for ODE.Wu Wen Ts�un (1987) designed a variant of Ritt's algorithm for ordinary di�erentialequations, with a notion of 
hara
teristi
 set weaker than Ritt's (e.g. a 
hara
teristi
 setin the sense of Wu may have no solution). Other authors (e.g. Wang (1994)) developedlater Wu's and Seidenberg's ideas. These algorithms only apply for ODE.Ollivier (1990) and Carra-Ferro (1987) have independently tried to generalize Gr�obnerbases to systems of ordinary polynomial di�erential equations. These di�erential Gr�obnerbases are in general in�nite, even for ODE systems.Another de�nition of di�erential Gr�obner bases was attempted by Mans�eld (1991).The algorithm DIFFGBASIS, implemented in MAPLE, utilizes Ritt's algorithm of re-du
tion and then always terminates. It handles PDE systems. In general however, it
annot guarantee its output to be a di�erential Gr�obner basis. Note that the member-ship problem in an arbitrary di�erential ideal is unde
idable (Gallo et al., 1991), and themembership problem of a �nitely generated di�erential ideal is still open.Bouziane et al. (1996) and Maârouf (1996) designed re
ently a variant of the Rosenfeld{Gr�obner algorithm. They started from the algorithm of Kalkbrener (1993) whi
h 
omputede
ompositions of radi
als of ideals in non di�erential polynomial algebras. They des
ribe



Computing representations for radi
als of �nitely generated di�erential ideals 5a method for 
omputing 
hara
teristi
 sets of prime di�erential ideals di�erent from ourmethods given in Ollivier (1990), Boulier (1994) and Boulier et al. (1995), se
tion 5, page164.Reid et al. (1994) and Reid et al. (1996) developed algorithms for studying systemsof PDE and 
omputing Taylor expansions of their solutions. These methods are basedmore on di�erential geometry than on algebra. They do not 
laim to be as general as theRosenfeld{Gr�obner algorithm.Organization of the paperSe
tions 1 and 2 deal with 
ommutative algebra. The former 
ontains preliminaries; inthe latter, we prove Lazard's lemma and show how some 
omputations 
an be performedin dimension zero. Se
tion 3 
ontains di�erential algebra preliminaries. In se
tion 4 weprove our version of Rosenfeld's lemma and some te
hni
al results whi
h will be used foreÆ
iently testing the 
oheren
e hypothesis of this lemma (in parti
ular, we show thereour analogue of Bu
hberger's se
ond 
riterion). Se
tion 5 shows how to represents radi-
al di�erential ideals as interse
tions of regular di�erential ideals. This is the 
ore of theRosenfeld{Gr�obner algorithm. In the next se
tion, we show how to 
ompute 
anoni
alrepresentatives for regular di�erential ideals and we state the Rosenfeld{Gr�obner algo-rithm as a theorem (theorem 6.4) with an e�e
tive proof. The algorithm is obtained bytranslating the proof in any programming language. In se
tion 7 we explain how alge-brai
 solutions of regular di�erential ideals 
an be expanded as formal power series. Afew examples are developed in the last se
tion.1. Commutative algebra preliminariesLet R = K[X ℄ be a polynomial ring where K is a �eld and X is an alphabet (possiblyin�nite) endowed with an ordering R. Let p 2 R nK be a polynomial. The leader of pis the greatest indeterminate x 2 X w.r.t. R whi
h appears in p. It is denoted ld p. Letd = deg(p; x) be the degree of p in x. The initial ip of p is the 
oeÆ
ient of xd in p.The separant sp of p is the polynomial �p=�x. The rank of p is the monomial xd. It isdenoted rank p. The rank of a set of polynomials is the set of ranks of the elements ofthe set.If A � R nK is a set of polynomials then IA (respe
tively SA) denotes the set of theinitials (respe
tively separants) of the elements of A and HA = IA [ SA.If p and q are two polynomials with ranks xd and ye then q < p if y < x or y = xand e < d.Let A = fp1; : : : ; png and A0 = fp01; : : : ; p0n0g be two nonempty subsets of R n K.Renaming the polynomials if needed, assume rank pi � rank pi+1 and rank p0j � rankp0j+1for all i < n, j < n0. The set A is said to be less than A0 if there exists some i � min(n; n0)su
h that pi < p0i and rank pj = rankp0j for 1 � j < i else if n > n0 and rank pj = rank p0jfor 1 � j � n0. Two sets of polynomials su
h that none of them is less than the otherone are said to have the same rank.A subset A of R nK is said to be triangular if the leaders of its elements are pairwisedi�erent.If A � R then (A) denotes the smallest ideal of R 
ontaining A. If a is an ideal of Rthen the radi
al pa of a is the ideal of all the elements of R, a power of whi
h lies in a.An ideal equal to its radi
al is said to be radi
al. Any radi
al ideal r of a polynomial



6 F. Boulier, D. Lazard, F. Ollivier, M. Petitotring R = K[X ℄ (X �nite) is a �nite interse
tion of prime ideals whi
h is unique whenminimal.A 
omponent (say p1) of an interse
tion r = p1\� � �\pn is said to be redundant w.r.t. rif r = p2 \ � � � \ pn. An element p of a ring R is said to be a divisor of zero if p 6= 0 andthere exists in R an element q 6= 0 su
h that the produ
t p q = 0.If r is an ideal and S is a �nite subset of a ring R then the saturation r : S1 of r byS is the ideal of all the polynomials p 2 R su
h that there exists a power produ
t h ofelements of S su
h that h p 2 r. 1.1. Gr�obner basesIn this se
tion R = K[X ℄ denotes a polynomial ring over a �eld. We only re
all someproperties of Gr�obner bases. The books of Cox et al. (1992) and Be
ker and Weispfenning(1991) provide a real presentation.If B is a Gr�obner basis of an ideal r of a polynomial ring R = K[X ℄ for an ordering R.The redu
tion by B, denoted ��!B preserves the equivalen
e relation mod r and we have1 r = (B),2 when it is redu
ed, a Gr�obner basis is a 
anoni
al representative of r (it only dependson the ideal and on the ordering),3 the ideal r is equal to R if and only if 1 2 B (Be
ker and Weispfenning, 1991,
orollary 6.16, page 257),4 given any p 2 R, there exists a unique polynomial �p irredu
ible by B su
h thatp ��!B �p. This polynomial is a 
anoni
al representative of the residue 
lass of pmodulo r (it only depends on the ideal and the ordering). In parti
ular, if p 2 rthen �p = 0,Even if X is in�nite, one 
an 
ompute Gr�obner bases of �nitely generated ideals ofK[X ℄. This remark is important sin
e we are going to 
ompute Gr�obner bases of (nondi�erential) ideals in di�erential polynomial rings. The theoreti
al justi�
ation is givenby the following lemma.Lemma 1.1. Let r be an ideal of a ring R and x be trans
endental over R. If � denotesthe 
anoni
al ring homomorphism � : R! R[x℄ then ��1(�r) = r.Let A = fp1; : : : ; png and S = fs1; : : : ; smg be �nite sets of polynomials of R. Letfz1; : : : ; zmg be a �nite set of indeterminates over R. One gets a Gr�obner basis B0 ofthe ideal S�1(A) of S�1R by 
omputing a Gr�obner basis of the setfp1; : : : ; pn; s1 z1 � 1; : : : ; sm zm � 1gfor any ordering (Eisenbud, 1995, exer
ise 2.2, page 79). Ea
h zi stands for 1=si. To geta Gr�obner basis B1 of (A) : S1, 
ompute �rst B0 for any ordering whi
h eliminates thez's. Then B1 = B0 \ R (Be
ker and Weispfenning, 1991, proposition 6.15, page 257).2. Lazard's lemmaLazard's lemma (theorem 2.1) is a result of 
ommutative algebra, interesting in itself.It was �rst published in (Boulier et al., 1995, lemma 2, page 161) with a proof relying on



Computing representations for radi
als of �nitely generated di�erential ideals 7basi
 arguments. During the Spe
ial Year in Di�erential Algebra and Algebrai
 Geometryorganized in 1995 at the City College of New York by Prof. Hoobler and Sit, a weaknessin the proof was pointed outy: there was a 
laim whi
h was true but not proven. Morrison(1995) proved then a generalized version of the lemma whi
h is presented in Morrison(1997). Another proof was written later by S
hi
ho and Li (1995). The one we give hereonly relies on elementary 
ommutative algebra (say van der Waerden (1966), 
hapter 15).In this sense, it is simpler than the other ones. The knowledge of Morrison's proof helpedus to �x ours. Se
tion 2.2 
ontains the argument (Ollivier, 1998) missing in (Boulieret al., 1995).Definition 2.1. (regular algebrai
 systems)A system A = 0; S 6= 0 of a polynomial ring R is said to be a regular algebrai
 system(for an ordering R) if1 A is triangular,2 S 
ontains the separants of the elements of A.The ideal (A) :S1 is 
alled the regular algebrai
 ideal de�ned by the system. The systemis said to be in
onsistent if (A) : S1 = R. It is said to be 
onsistent otherwise.Theorem 2.1. (Lazard's lemma)Let A = 0; S 6= 0 be a 
onsistent regular algebrai
 system of a polynomial ring R =K[X ℄. Denote L the set of the leaders of the elements of A and N = X n L. Then1 the regular algebrai
 ideal (A) : S1 is radi
al,2 if p is a prime ideal minimal over (A) : S1 then dim p = jN j and p \K[N ℄ = (0).Proof. Noti
e it is enough to prove the theorem in the 
ase S = SA for, if (A) : S1A isradi
al, the ideal (A) : S1 is the interse
tion of the prime ideals whi
h are minimal over(A) : S1A and whi
h do not meet S (van der Waerden, 1966, se
tion 15.6).Propositions 2.2 and 2.3 imply that if p is an asso
iated prime of (A) : S1A thendim p = jN j and p \K[N ℄ = (0). This proves the point 2.The nonzero elements of K[N ℄ are thus di�erent from zero and do not divide zero inR=(A) :S1A . The elements of SA are not zero and do not divide zero either in R=(A) :S1A .We have thus the ring isomorphismyFr(R=(A) : S1A ) ' Fr(S�1�A �R=S�1�A ( �A))where �R = K(N)[L℄ and �A denotes the image of A by the 
anoni
al ring homorphismR ! �R. A produ
t of �elds is isomorphi
 to its total ring of fra
tions thus the ringFr(R=(A) :S1A ) is isomorphi
 to a produ
t of �elds by proposition 2.1. A

ording to theaxioms of produ
ts, Fr(R=(A) : S1A ) 
ontains no nilpotentz element thus R=(A) : S1Adoes not either when
e (A) : S1A is radi
al. 2y The �rst author would like to thank Prof. Hoobler, Sit and in parti
ular Prof. Sally Morrison formany fruitful 
omments and email 
ommuni
ations.y If R is a ring then Fr(R) denotes the total ring of fra
tions of R, obtained by making invertible allthe non divisors of zero of R.z An element g of a ring R is said to be nilpotent if g 6= 0 and gn = 0 for some n 2 N .



8 F. Boulier, D. Lazard, F. Ollivier, M. PetitotIn the sequel, we 
onsider the ideal (A) : S1A . We denote L the set of leaders of thetriangular set A and N the remaining indeterminates. Thus (A) : S1A � R = K[N; L℄.We assume (A) : S1A 6= R.2.1. Lazard's lemma in dimension zeroIn this se
tion we 
onsider the 
ase jN j = 0.We denote S�1A R the ring lo
alized at SA and S�1A (A) the ideal generated by the imageof (A) in S�1A R (van der Waerden, 1966, se
tion 15.9) or (Eisenbud, 1995, se
tion 2).Lemma 2.1. Let K[x℄ be a polynomial ring in one indeterminate over a �eld. Let p 2K[x℄ be a polynomial and s be its separant. The ideal s�1K[x℄=s�1(p) is isomorphi
 toa produ
t of algebrai
 �eld extensions of K.Proof. The ideal s�1(p) is generated by the produ
t of the irredu
ible simple fa
torsof p. These fa
tors generate 
omaximal ideals inK[x℄. The lemma 
omes from the Chineseremainders theorem (Eisenbud, 1995, se
tion 2, exer
ise page 79). 2Lemma 2.2. If R0 is a ring isomorphi
 to a produ
t of algebrai
 �eld extensions of Kand x is a new inderminate, p 2 R0[x℄ is a polynomial and s = �p=�x is its separantthen s�1R0[x℄=s�1(p) is isomorphi
 to a produ
t of algebrai
 �eld extensions of K.Proof. Let R0 ' K1 � � � � �Kh. We have R0[x℄ ' K1[x℄ � � � � �Kh[x℄. Denote �i the
anoni
al ring homomorphism R0[x℄! Ki[x℄ (1 � i � h). We haves�1R0[x℄=s�1(p) ' hYi=1(�is)�1Ki[x℄=(�is)�1(�ip):Sin
e �is = ��ip=�x (1 � i � h), lemma 2.1 applies: ea
h (�is)�1Ki[x℄=(�is)�1(�ip) isisomorphi
 to a produ
t of algebrai
 �eld extensions of K thus so is s�1R0[x℄=s�1(p). 2Proposition 2.1. The ring S�1A R=S�1A (A) is isomorphi
 to a produ
t of algebrai
 �eldextensions of K.Proof. Apply lemma 2.2 indu
tively on jAj. 22.2. Non leaders form a parametri
 setIf i and j are two ideals of R then the quotient i : j of i by j (van der Waerden, 1966,se
tion 15.2) is de�ned by i : j = fp 2 R j 8q 2 j; p q 2 igLemma 2.3. Denote i = (A) : S1A . If h 2 R then for every q 2 i : (h) we have8x 2 L; �q�x = 0 ) 8x 2 N; �q�x 2 i : (h):Proof. Denote D the determinant of the ja
obian matrix J of A, whi
h is the produ
tof the elements of SA sin
e A is triangular.J = ��p�x�p2A; x2L



Computing representations for radi
als of �nitely generated di�erential ideals 9Assume q 2 i : (h). Then there exists some � � 0 and some mp 2 R (p 2 A) su
h thatD� h q = Xp2Amp p:Assume x 2 L. Di�erentiating w.r.t. x, multiplying by D and h and applying the fa
tthat �q=�x = 0 we 
on
lude Dh Xp2Amp �p�x 2 (A):Denote ~J the 
ofa
tors matrix of J and I the identity matrix. Using the fa
t that J ~J =D I we �nd that D2 hmp 2 (A) for ea
h p 2 A whi
h implies mp 2 i : (h) for ea
h p 2 Awhen
e �q=�x 2 i : (h) for any x 2 N . 2Corollary 2.1. Denote i = (A) : S1A . If h 2 R is a polynomial su
h that i : (h) 6= Rthen i : (h) \K[N ℄ = (0).Proof. If q 2 i : (h) \K[N ℄ then for any x 2 L we have �q=�x = 0. Using lemma 2.3we see i : (h) \ K[N ℄ is stable under the a
tion of the partial derivations w.r.t. all theindeterminates. This ideal is therefore either equal to K[N ℄ (in whi
h 
ase i : (h) = R)or to (0). 2Proposition 2.2. If q is an isolated primary 
omponent of (A) : S1A then dim q = jN jand q \K[N ℄ = (0).Proof. Let h 2 R be a polynomial belonging to all the asso
iated primes of i = (A):S1Abut not to the asso
iated prime of q. This polynomial exists for q is isolated (van derWaerden, 1966, se
tion 15.6). For � � 0 great enough, h� belongs to all the primary
omponents of i but not to q and we have i:(h�) = q. Corollary 2.1 implies q\K[N ℄ = (0)when
e dim q � jN j.Now, denote �R = K(N)[L℄ and denote �A the image of A by the 
anoni
al ring homor-phism � : R! �R. If p is a prime ideal minimal over i then �p = (�p) is minimal over theideal j = ( �A) : S1�A (van der Waerden, 1966, se
tion 15.9). The proposition 2.1 impliesthat dim �p = 0 when
e dim p = jN j. 2Proposition 2.3. If q is a primary 
omponent of (A) : S1A then q is isolated.Proof. Assume i = (A) : S1A admits an imbedded primary 
omponent q. By proposi-tion 2.2 we have dim q < jN j when
e q \K[N ℄ 6= (0). There exists some polynomial h(taken in all the isolated 
omponents of i but not in q) su
h that i : (h) 6= R. Sin
e i : (h)
ontains an interse
tion of imbedded primary 
omponents of i we have i:(h)\K[N ℄ 6= (0).This 
ontradi
ts 
orollary 2.1. 2Definition 2.2. (asso
iated Gr�obner basis)Let A = 0; S 6= 0 be a 
onsistent regular algebrai
 system of a ring R = K[X ℄.Denote L the set of the leaders of the elements of A and N = X nL. The redu
ed Gr�obnerbasis of the ideal (A) : S1, 
omputed in the ring K(N)[L℄ for the elimination orderinggiven by the ordering over X is 
alled the Gr�obner basis asso
iated to A = 0; S 6= 0.



10 F. Boulier, D. Lazard, F. Ollivier, M. PetitotCorollary 2.2. If A = 0; S 6= 0 is a 
onsistent regular algebrai
 system of a polyno-mial ring R = K[X ℄ and xi 2 X is an indeterminate then the following 
onditions areequivalent1 xi is the leader of some element of A,2 xi is the leader of some element of the Gr�obner basis asso
iated to A = 0; S 6= 0,3 xi is the leader of a 
hara
teristi
 set (for the ordering de�ned over X) of anyprime ideal minimal over (A) : S1.2.3. Computing in dimension zeroLet A = 0; S 6= 0 be a regular algebrai
 system of a polynomial ring R0 = K[X ℄ foran ordering R. Let L � X be the set of the leaders of the elements of A and N = X nL.Denote r0 = (A) : S1 and B0 the redu
ed Gr�obner basis of r0 w.r.t. the eliminationordering given by R.Let R1 = K(N)[L℄ be the polynomial ring obtained by extending the ground �eld Kwith N and ' the 
anoni
al ring homomorphism R0 �! R1. Denote r1 = ('A) : ('S)1and B1 the Gr�obner basis asso
iated to A = 0; S 6= 0. The basis B1 is a Gr�obner basisof r1.Be
ause of theorem 2.1 the ring homomorphism R0=r0 �! R1=r1 is inje
tive and thereis a one{to{one 
orresponden
e between the prime ideals p1; : : : ; pm whi
h are minimalover r0 and the prime ideals q1; : : : ; qm whi
h are minimal of r1. The q's are dimensionzero ideals thus so is r1.Therefore, thoughB1 is not a Gr�obner basis of r0, many 
omputations 
an be performedusing the latter sin
e1 for any p 2 R0 we have p 2 r0 if and only if 'p ��!B1 0,2 a polynomial p 2 R0 is a divisor of zero modulo r0 if and only if 'p is a divisor ofzero modulo r1,3 minimal triangular subsets of B0 have the same rank as minimal triangular subsetsof B1.The basis B1 turns out to be mu
h smaller and faster to 
ompute than B0. It issometimes faster to 
ompute Gr�obner bases of regular algebrai
 ideals in dimensionzero in MAPLE than to 
ompute the Gr�obner bases in dimension d > 0 using the GBsoftware of Faug�ere (whi
h runs usually one thousand times faster than the MAPLE'simplementation of the Bu
hberger's algorithm).3. Di�erential algebra preliminariesThe referen
e book is the one of Kol
hin (1973), 
hapters I{IV. Readers who dis
overthe theory had probably better however to start with the book of Ritt (1950).A di�erential ring is a ring endowed with �nitely many derivations Æ1; : : : ; Æm whi
h
ommute pairwise. Derivation operators are denoted multipli
atively � = Æa11 � � � Æammwhere the a's are nonnegative integers. The sum of the exponents a's is the order of �,denoted ord �. The identity operator has order 0. All other operators are said to beproper. If � = Æa11 � � � Æamm and � = Æb11 � � � Æbmm then �� = Æa1+b11 � � � Æam+bmm . If ai � bi
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als of �nitely generated di�erential ideals 11for i = 1; : : : ; m then (�=�) = Æa1�b11 � � � Æam�bmm . The monoid of derivation operators isdenoted �.If R is a di�erential ring and S � R then �S denotes the smallest subset of R 
ontainingS and stable under derivation. If R0 � R1 are two di�erential rings and S � R1 thenR0fSg denotes the smallest di�erential ring 
ontaining R0 and S i.e. R0[�S℄.We deal with a di�erential polynomial ring R = Kfu1; : : : ; ung where K is a di�er-ential �eld of 
hara
teristi
 zero. The u's are 
alled di�erential indeterminates and the�u's are 
alled derivatives. The set of the derivatives is denoted �U .The di�erential ring R 
an be viewed as a non di�erential polynomial ring K[�U ℄whose indeterminates are the derivatives of R. The de�nitions given for non di�erentialpolynomial rings hold therefore for di�erential ones.If �u and �u are derivatives of some same di�erential indeterminate u, we denotel
d(�u; �u) the least 
ommon derivative between �u and �u. It is equal to l
m(�; �)u.A ranking R is an ordering over �U 
ompatible with the a
tion of the derivationsover �U (Kol
hin, 1973, page 75):1 Æv > v (for all derivation Æ and v 2 �U),2 v > w ) Æv > Æw (for all derivation Æ and v; w 2 �U).Rankings su
h that ord � > ord� ) �v > �w (for all derivations operators �, � andall di�erential indeterminates v; w) are said to be orderly. Rankings su
h that v > w )�v > �w (for all derivations operators �, � and all di�erential indeterminates v; w) aresaid to be elimination rankings. Any ranking is a well{ordering (Kol
hin, 1973, page 75).Properties of rankings imply that the separant of a di�erential polynomial p 2 R nKis also the initial of all the proper derivatives of p.If A � RnK is a set of di�erential polynomials and v is any derivative then Av denotesthe set of the derivatives of the elements of A whose leaders are less than or equal to v:Av = f�p j p 2 A; � 2 � and ld �p � vg:A

ording to this notation, Rv denotes the ring of the di�erential polynomials whoseleaders are less than or equal to v. ThereforeA \ Rv = fp 2 A j ld p � vg:Let p 2 R n K and q 2 R be di�erential polynomials. Denote rank p = vd. Thedi�erential polynomial q is said to be partially redu
ed w.r.t. p if no proper derivativeof v appears in q; it is said to be redu
ed w.r.t. p if q is partially redu
ed w.r.t. p anddeg(q; v) < d.A set A � R nK is said to be autoredu
ed if any element of A is redu
ed w.r.t. anyother element of the set.Definition 3.1. A set A � RnK is said to be di�erentially triangular if it is triangularand if its elements are pairwise partially redu
ed.Every autoredu
ed set is �nite (Kol
hin, 1973, page 77). The proof holds also fordi�erentially triangular sets. A 
hara
teristi
 set of a sety S � R is an autoredu
edy This de�nition 
orresponds to Ritt's one (Ritt, 1950, I, 5, page 5) and 
oin
ides with Kol
hin's whenS is a di�erential ideal. Kol
hin only de�ned 
hara
teristi
 sets for ideals (Kol
hin, 1973, I 10, page 81and III, 2, page 124).
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h has lowest rank among the autoredu
ed subsets of S. It is also aminimal (a

ording to our de�nition) element in the set of the autoredu
ed subsets of S.If S � R admits autoredu
ed subsets then S admits a 
hara
teristi
 set.A di�erential ideal of a di�erential ring R is an ideal of R stable under derivation. IfA � R then [A℄ = (�A) denotes the smallest di�erential ideal of R 
ontaining A. Sin
e Rhas 
hara
teristi
 zero, the radi
al of a di�erential ideal is a di�erential ideal. Any radi
aldi�erential ideal r of a di�erential polynomial ring R is a �nite interse
tion of di�erentialprime ideals whi
h is unique when minimal (Kol
hin, 1973, III, Theorem 1, page 126)or (Ritt, 1950, I, Theorem, page 10). The following is a di�erential analogue of Hilbert'stheorem of zeros (Seidenberg, 1952, Nullstellensatz, weak form) or (Kol
hin, 1973, 
hapterIV, se
tion 2).Theorem 3.1. (theorem of zeros)Let R = KfUg be a di�erential polynomial ring over a di�erential �eld of 
hara
teristi
zero and r be a di�erential ideal of R. A di�erential polynomial p vanishes on everysolution of r, in any di�erential �eld extension of K, if and only if p 2 pr:Proof. The impli
ation from right to left is immediate. The impli
ation from left toright: if p =2 pr then p does not belong to at least one di�erential prime ideal p minimalover pr. The 
anoni
al ring homorphism whi
h maps R to the �eld of fra
tions of R=pfurnishes a solution of r whi
h is not a solution of p. 2Corollary 3.1. A di�erential polynomial p vanishes on every solution of a system ofpolynomial di�erential equations and inequations A = 0; S 6= 0 i� p 2p[A℄ : S1.Proof. Using the de�nitions of the radi
al and of the saturation of an ideal, we seethat p 2 p[A℄ : S1 if and only if there exists a produ
t h of elements of S su
h thathp 2 p[A℄. A

ording to the theorem of zeros, hp 2 p[A℄ if and only if hp vanishes onevery solution of the system A = 0 i.e. if and only if p vanishes on every solution of thesystem A = 0; S 6= 0. 2The following te
hni
al lemma is 
lassi
al. See Ritt (1950), page 30 for instan
e. Weare going to use it many times.Lemma 3.1. Let A be a �nite subset of some di�erential polynomial ring R. Let q =s v + r be a di�erential polynomial with leader v, su
h that deg(q; v) = 1 and v does notappear in s, r nor any element of A. For any p 2 R, if p 2 (A; q) and v does not appearin p then p 2 (A) : s1.Proof. Sin
e p 2 (A; q) there exists a formula (f) su
h thatp = Xpi2ABi pi + C q| {z }(f)where Bi; C 2 R. Apply on the terms of (f) the substitutionv �! q � rs
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als of �nitely generated di�erential ideals 13and multiply by some power of s to erase denominators. Sin
e v does not appear in pand the pi one gets another formula (f 0) su
h thats� p = Xpi2ADi pi +E q| {z }(f 0)where Di; E 2 R and v only appears in q. Therefore E = 0 and p 2 (A) : s1. 23.1. Ritt's redu
tion algorithmsRitt's redu
tion algorithms are pseudo{division (Knuth, 1966, vol. 2, page 407) al-gorithms, extended to di�erential algebra. Many su
h algorithms exist (Kol
hin, 1973,page 77) (Ritt, 1950, I, 6, page 5) whi
h may produ
e di�erent results. We �x one ofthem.Let q be a di�erential polynomial and A be any �nite subset of RnK. Denote v = ld q.Let �A = fp 2 A j rank p � rank qg. We distinguish the Ritt's partial redu
tion (purelydi�erential, denoted partial{rem) from Ritt's full redu
tion (denoted full{rem).Spe
i�
ation of the partial redu
tion algorithm.If �q = q partial{rem A denotes the partial remainder of q by A then1 �q is partially redu
ed w.r.t. all the elements of A,2 there exists a power produ
t h of elements of S �A su
h that h q � �q (mod ( �Av)).The following instru
tions provide an algorithm to 
ompute h and �q from q. Build asequen
e of pairs (hi; qi). Initially, set h0 = 1 and q0 = q and stop at the �rst index nsu
h that qn is partially redu
ed w.r.t. A (then take h = hn and �q = qn). If i is an indexsu
h that qi is not partially redu
ed w.r.t. A then let w be the highest derivative whi
ho

urs in qi whi
h is also a proper derivative of the leader of some p 2 A. If there aremany di�erent possibilities for p, take whi
h one you want. Now, let � be the derivationoperator su
h that ld �p = w. Take for qi+1 the pseudo{remainder of qi by �p. Thereexists then some � 2 N su
h that s�p qi = qi+1 (mod (�p)). Take hi+1 = s�p h.Spe
i�
ation of the full redu
tion algorithm.If �q = q full{rem A denotes the full remainder of q by A then1 �q is redu
ed w.r.t. all the elements of A,2 there exists a power produ
t h of elements of H �A su
h that h q � �q (mod ( �Av)).The following instru
tions provide an algorithm to 
ompute h and �q from q. Build asequen
e of pairs (hi; qi). Initially, set h0 = 1 and q0 = q and stop at the �rst index nsu
h that qn is redu
ed w.r.t. A (then take h = hn and �q = qn). If i is an index su
h thatqi is not redu
ed w.r.t. A then let w be the highest derivative whi
h o

urs in qi su
hthat one of the following 
onditions holds:1 w is a proper derivative of the leader of some p 2 A,2 w is the leader of some p 2 A and deg(qi; w) � deg(p; w).
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ase arises then pro
eed as for the partial redu
tion algorithm else if these
ond 
ase arises then take for qi+1 the pseudo{remainder of qi by p There exists thensome � 2 N su
h that i�p qi = qi+1 (mod (p)). Take hi+1 = i�p h.We have q 2 [A℄ :H1A if and only if (q full{rem A) 2 [A℄ :H1A . In parti
ular, q full{remA = 0) q 2 [A℄ :H1A . We have q 2 [A℄ : S1A if and only if (q partial{rem A) 2 [A℄ : S1A .4. Regular di�erential systemsAll the de�nitions given in this se
tion are new (e.g. the de�nitions of \pairs" and\solved pairs"). We de�ne the 
oheren
e as a property of systems of di�erential polyno-mial equations and inequations (
ondition C3 of de�nition 4.4) instead of the traditionalproperty of systems of di�erential polynomials. This important 
hange turns out to bevery 
onvenient and permits us to formulate Rosenfeld's lemma for regular systems in-stead of 
oherent autoredu
ed sets. Though this lemma only needs �{polynomials tobe de�ned between elements of di�erentially triangular sets, we give a more general def-inition be
ause we want to prove an analogue of Bu
hberger's se
ond 
riterion in nontriangular situations.Definition 4.1. (pairs)A set fp1; p2g of di�erential polynomials is said to be a pair if the leaders of p1 and p2have 
ommon derivatives. If A is a set of di�erential polynomials then pairs(A) denotesthe set of all the pairs whi
h 
an be formed between any two elements of A.We do not distinguish a pair fp1; p2g from the pair fp2; p1g.Let fp1; p2g be a pair. It may happen that the leader of (say) p2 is a (non ne
essarilyproper) derivative of the leader of p1. In that 
ase, the pair fp1; p2g is 
alled a redu
tionpair.Note however we will never 
onsider a pair fp1; p2g su
h that rank p1 = rank p2.Definition 4.2. (�{polynomials)Let fp1; p2g be a pair. Assume rankp1 < rank p2. Denote �1u = ld p1, �2u = ld p2and �12u = l
d(�1u; �2u). The �{polynomial �(p1; p2) between p1 and p2 is de�ned asfollows. If fp1; p2g is a redu
tion pair then�(p1; p2) = p2 full{rem �2�1 p1;else �(p1; p2) = s1 �12�2 p2 � s2 �12�1 p1:If D is a set of pairs then �(D) denotes the set of all the �{polynomials of its elements.With the same notations, if �1u < �2u then ld�(p1; p2) < �12u and there exist some� 2 N and a di�erential polynomial q 2 R su
h that�(p1; p2) = s�1 �12�2 p2 � q �12�1 p1:
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als of �nitely generated di�erential ideals 15The notation � for �{polynomials 
omes from Rosenfeld's papery. Seidenberg, Rosen-feld and Kol
hin never 
onsidered redu
tion pairs. Our de�nition 
oin
ides with theirsin the other 
ase. 4.1. Solved pairsDefinition 4.3. (solved pairs)A pair fp1; p2g is said to be solved by a di�erential system of equations and inequationsA = 0; S 6= 0 if there exists a derivative v < l
d(ld p1; ld p2) su
h that�(p1; p2) 2 (Av) : (S \Rv)1:In our algorithm, we shall apply the following 
riterion to test whether a pair is solvedby a di�erential system.Lemma 4.1. Let fp1; p2g be a pair su
h that ld p1 6= ld p2. Let A = 0; S 6= 0 be adi�erential system su
h that HA � S. If �(p1; p2) full{rem A = 0 then the pair fp1; p2gis solved by A = 0; S 6= 0.Proof. Denote v = ld�(p1; p2). Sin
e ld p1 6= ld p2 we have v < l
d(ld p1; ld p2). De-note �A = fp 2 A j rank p � rank�(p1; p2)g. A

ording to the spe
i�
ations of Ritt'salgorithms of redu
tion, there exist then h1; : : : ; hn 2 H �A su
h that, for some positiveintegers �1; : : : ; �n we have h�11 � � �h�nn �(p1; p2) 2 ( �Av). Sin
e H �A � HA \ Rv and�Av � Av we have �(p1; p2) 2 (Av) : (S \ Rv)1 and the pair is solved by the di�erentialsystem A = 0; S 6= 0. 2The next lemma is a generalization to a non triangular situation of a lemma alreadyproven by Seidenberg (1956), inside theorem 6, page 51, Rosenfeld (1959), inside thelemma page 397 and Kol
hin (1973), page 167.Lemma 4.2. Let p1 and p2 be two di�erential polynomials whose leaders �1u and �2uhave 
ommon derivatives. Denote s1 and s2 their separants. Let (�) denote a di�erentialsystem A = 0; S 6= 0. If (H1) �1u and �2u are di�erent, (H2) the pair fp1; p2g is solvedby (�) and (H3) s1; s2 2 S then for ea
h derivation operator 
 2 �, the pair f
p1; 
p2gis solved by (�).Proof. Denote �12 = l
m(�1; �2) and �
 = �(
p1; 
p2). Denote also �u = 
�12u =l
d(ld 
p1; ld 
p2).The proof is done by indu
tion on the order of 
. If the order is zero then the lemma issatis�ed be
ause of H2 else, de
ompose 
 = Æ� where Æ is a mere derivation and denote� = ��12. Assume (indu
tion hypothesis) that the pair f�p1; �p2g is solved by (�).There exists then a derivative v < �u and a power produ
t h of elements of S \Rv su
hthat h�� 2 (Av). By H1 (assuming p1 < p2) there exist some � 2 N and a di�erentialpolynomial q su
h that �� = s�1 (�=�2)p2 � q (�=�1)p1.Consider the di�erential polynomial Æ(h��). The se
ond axiom of rankings impliesthat it belongs to (AÆv) and that Æv < �u. Multiply it by h. One gets a sum (Æh)h�� +y Note the symbol � has a di�erent meaning in Kol
hin's text: it denotes the set of derivations.
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tion hypothesis. Sin
e (Av) � (AÆv) we
on
lude h2 Æ�� belongs to this latter ideal. Expand this polynomialh2(Æ��) = h2Æns�1 ��2 p2 � q ��1 p1o (4.1)= h2n(Æ(s�1 )) ��2 p2 � (Æq) ��1 p1o (4.2)+ h2ns�1 ��2 p2 � q ��1 p1o: (4.3)The polynomials (�=�i)pi (i = 1; 2) have both �u < �u for leaders. If w = max(�u; Æv)then w < �u and the term (4.2) is in (Aw). Thus so is the term (4.3). Sin
e �=�2 and �=�1are proper derivation operators, we have �
 = s1 (�=�2)p2 � s2 (�=�1)p1. The term (4.3)is equal to h2 s��11 �
 + C (�=�1)p1 where C is a di�erential polynomial. Using H3, thefa
t that Rv � Rw and ld s1 � ld p1 � �u � w, for some power produ
t h0 of elementsof S \ Rw we have h0�
 2 (Aw ; (�=�1)p1). The di�erential polynomial h0�
 and theelements of Aw are free of �u. Lemma 3.1 applies, �
 2 (Aw) : (S \ Rw)1 and the pairf
p1; 
p2g is solved by (�). 24.2. Rosenfeld's lemmaDefinition 4.4. (regular di�erential systems)A di�erential system A = 0; S 6= 0 of a di�erential polynomial ring R is said to be aregular di�erential system (for a ranking R) ifC1 A is di�erentially triangular,C2 S 
ontains the separants of the elements of A and is partially redu
ed w.r.t. A,C3 all the pairs fp; p0g 2 pairs(A) are solved by A = 0; S 6= 0 (
oheren
e property).The di�erential ideal [A℄ :S1 is 
alled the regular di�erential ideal de�ned by the system.The following lemma is a generalization of Rosenfeld (1959), lemma, page 397. whi
hwas already proven by Boulier (1997). The �rst version is due to Seidenberg (1956),theorem 6, page 51. Another version was proven in Kol
hin (1973), lemma 5, page 137but the part of Kol
hin's lemma whi
h is not in Rosenfeld's is not proven algorithmi
.Kol
hin's proof 
onsists in a very ni
e trans�nite indu
tion (van der Waerden, 1966,
hapter 9). We apply the idea in the proof of theorem 4.1.Theorem 4.1. (Rosenfeld's lemma)If A = 0; S 6= 0 is a regular di�erential system of a di�erential polynomial ring Rfor a ranking R then every di�erential polynomial in [A℄ : S1 whi
h is partially redu
edw.r.t. A belongs to (A) : S1.Proof. Let A = fp1; : : : ; png. Let q 2 [A℄ : S1 be a di�erential polynomial partiallyredu
ed w.r.t. A. Denote F (q) the set of all the formul� (f) su
h that, for some power
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als of �nitely generated di�erential ideals 17produ
t h of elements of S we have a �nite sumh q = X�2� nXj=1Bj;� �pj| {z }(f) :Assume q =2 (A) : S1. In ea
h formula (f) 2 F (q) appears therefore some (at leastone) proper derivatives of some leaders of elements of A. Denote v(f) the greatest ofthem a

ording to the ranking R. Among all the formul� (f) 2 F (q) let us 
onsiderone su
h that v(f) is minimal w.r.t. R. Su
h a formula exists for all rankings are well{orderings. We 
laim there exists another formula (f 0) 2 F (q) su
h that v(f 0) < v(f).This 
ontradi
tion will prove the lemma.By lemma 1.1 and the minimality hypothesis, v(f) is the derivative of the leader of atleast one element of A. Let v(f) = �u be a proper derivative of the leaders �1u; : : : ; �iuof the di�erential polynomials p1; : : : ; pi 2 A, renaming the p's if needed.Denote ��i pi = si �u+ r. Apply on the terms of the formula (f) the substitutionv(f)! (�=�i)pi � rsi(as in lemma 3.1) and multiply by some power s�i to erase denominators. Denoting
j = (�=l
m(�i; �j)) we get a formulas�i h q = D ��i pi (4.4)+ i�1Xj=1Ej �(
jpi; 
jpj) (4.5)+ X�2� nXj=1 Cj;� �pj (4.6)su
h that only derivatives less than v(f) appear in the terms of the sums (4.5) and (4.6).Sin
e the elements of S and q are partially redu
ed w.r.t. A, the derivative v(f) onlyappears in the di�erential polynomial (�=�i)pi. Therefore D = 0.If A is a system of ODE the sum (4.5) is empty and there exists a derivative w < v(f)su
h that q 2 (Aw) : S1. Contradi
tion.Assume A = 0; S 6= 0 is a PDE system. Sin
e it is regular, 
ondition C3 of de�ni-tion 4.4 holds and lemma 4.2 applies: all the pairs f
jpi; 
jpjg are solved. There existsthus a derivative w < v(f) su
h that q 2 (Aw) : S1. Contradi
tion. 2Corollary 4.1. If A = 0; S 6= 0 is a regular di�erential system of a di�erential poly-nomial ring R then1 we have [A℄ : S1 = R if and only if (A) : S1 = R,2 for any p 2 R we have p 2 [A℄ : S1 i� (p partial{rem A) 2 (A) : S1,3 a di�erential polynomial p 2 R is a divisor of zero modulo [A℄ : S1 if and only if(p partial{rem A) is a divisor of zero modulo (A) : S1.Proof. The �rst point. By Rosenfeld's lemma, 1 2 [A℄ : S1 if and only if 1 2 (A) : S1.



18 F. Boulier, D. Lazard, F. Ollivier, M. PetitotLet p 2 R be a di�erential polynomial. The se
ond point relies on the two followingfa
ts: be
ause of 
ondition C2, p 2 [A℄ : S1 if and only if (p partial{rem A) 2 [A℄ : S1;the di�erential polynomial (p partial{rem A) is partially redu
ed w.r.t. A.The third point. Let p; q 2 R be di�erential polynomials. Denote �p = p partial{rem Aand �q = q partial{rem A. A

ording to the se
ond point above, we havep 2 [A℄ : S1 , �p 2 (A) : S1 and q 2 [A℄ : S1 , �q 2 (A) : S1:We also have p q 2 [A℄ : S1 if and only if �p �q 2 (A) : S1. Therefore, p q 2 [A℄ : S1,p; q =2 [A℄ : S1 (i.e. p is a divisor of zero modulo [A℄ : S1) if and only if �p �q 2 (A) : S1,�p; �q =2 (A) : S1 (i.e. �p is a divisor of zero modulo (A) : S1). 2Theorem 4.2. (lifting of Lazard's lemma)If A = 0; S 6= 0 is a 
onsistent regular di�erential system of a di�erential polynomialring R and R0 � R denotes the ring of the di�erential polynomials partially redu
edw.r.t. A then1 the regular di�erential ideal [A℄ : S1 is radi
al,2 there is a bije
tion between the minimal di�erential prime 
omponents p1; : : : ; pnof [A℄ : S1 and the minimal prime 
omponents b1; : : : ; bn of (A) : S1 given bybi = (pi \ R0) ; moreover, if Ci is a 
hara
teristi
 set of bi then Ci is also a
hara
teristi
 set of pi and pi = [Ci℄ :H1Ci .Proof. Assume pk 2 [A℄ : S1 for some k 2 N . Denote �p = (p partial{rem A). ByRosenfeld's lemma �pk 2 (A) : S1. By Lazard's lemma �p 2 (A) : S1. By the 
orollarybelow Rosenfeld's lemma (point 2), p 2 [A℄ : S1 thus [A℄ : S1 is radi
al.The ideals b's are prime and their interse
tion is equal to (A) :S1. Let's assume (H1)that b1 is redundant w.r.t. (A) : S1 and seek a 
ontradi
tion. Let f 2 p2 \ � � � \ pnbe a di�erential polynomial and g = f partial{rem A. Sin
e A � pi we have g 2 pifor every 2 � i � n. Sin
e g 2 R0 we have g 2 b2 \ � � � \ bn. Using H1 we 
on
ludeg 2 (A) : S1. Let's summarize: (f partial{rem A) 2 (A) : S1. By the 
orollary (point 2)below Rosenfeld's lemma f 2 [A℄ :S1 thus p1 is redundant w.r.t. [A℄ :S1. Contradi
tion.Assume Ci is a 
hara
teristi
 set of (pi \R0). Let p 2 pi and denote q = p full{rem Ci.We have q 2 pi. By Lazard's lemma, ldA = ldCi thus q 2 R0. Sin
e q 2 pi\R0 is redu
edw.r.t. Ci we have q = 0. Therefore Ci is a 
hara
teristi
 set of pi and pi = [Ci℄ :H1Ci . 2If A = 0; S 6= 0 is a regular di�erential system then the set of leaders of the ele-ments of A is equal to the set of leaders of ea
h of the di�erential prime ideals whi
h areminimal over [A℄ : S1. All these di�erential prime ideals have therefore the same di�er-ential Hilbert's fun
tion. The 
omputation of this fun
tion is then a purely 
ombinatorialproblem (Kol
hin, 1973, 
hapter II, se
tion 12).Moreover, by applying a primary de
omposition algorithm over (A) : S1 we get thedi�erential prime de
omposition of the di�erential ideal [A℄ : S1. Chara
teristi
 sets forthe minimal di�erential prime 
omponents of [A℄ : S1 
an then be 
omputed using themethod given by Boulier et al. (1995), Theorem 6, page 164.
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als of �nitely generated di�erential ideals 194.3. Testing the 
oheren
eLet A = 0; S 6= 0 be a di�erential system of R whi
h satis�es 
onditions C1 and C2 ofde�nition 4.4. If A is di�erentially triangular, HA � S and �(p; p0) full{rem A = 0 for allpairs fp; p0g 2 pairs(A) then the di�erential system A = 0; S 6= 0 is regular (lemma 4.1).This 
riterion is useful for pra
ti
al purposes but only gives a suÆ
ient 
ondition.Consider the next di�erential system A = 0; SA 6= 0 for any elimination ranking su
hthat u > v. It generates only one �{polynomial �(p1; p2) = vy. Now, �(p1; p2) (vy+1)2 2(A�) for some derivative � < uxy. Sin
e (vy+1) is a multiple fa
tor of p3, it is also a fa
torof the separant of p3 when
e �(p1; p2) 2 (A�) : (S \ R�)1. Therefore A = 0; SA 6= 0 isa regular di�erential system. However, the �{polynomial vy is redu
ed w.r.t. A.A8<: p1 = ux + v;p2 = uy;p3 = vy(vy + 1)2:Given a di�erential system and a ranking, one may de
ide whether the system is regularor not. The de
ision algorithm is quite expensive and not very useful: the followingexample (borrowed from Boulier (1997)) shows that the 
oheren
e property is only asuÆ
ient 
ondition for Rosenfeld's lemma.Consider the following system A of Qft; u; v; wg endowed with derivations w.r.t. xand y, for any ranking su
h that tx, ux, uy and vy are the leaders of p1, p2, p3 and p4 re-spe
tively. It generates only one pair fp2; p3g. The asso
iated �{polynomial is �(p2; p3) =vy � wx. A8>><>>: p1 = t2x + vy;p2 = ux + v;p3 = uy + w;p4 = (vy � wx)vy:If the ranking is orderly, then there exists a derivative � su
h that tx; ux; uy; vy � � <uxy. Then A � A� and tx 2 SA\R�. Using p1 and p4 it is 
lear that �(p2; p3) t2x 2 (A�).Sin
e tx 2 SA \R� it follows that �(p2; p3) 2 (A�) : (SA \R�)1 i.e. the pair fp2; p3g issolved by A = 0; S 6= 0. This di�erential system is thus regular and Rosenfeld's lemmaapplies.If the ranking is an elimination ranking su
h that t > u then for ea
h derivative� < uxy we have p1 =2 A� and tx =2 SA \ R�. It 
an be proven (Boulier, 1997, lemma 6)| but this is quite obvious | that �(p2; p3) =2 (A�) : (S \ R�)1 i.e. the pair fp2; p3gis not solved by A = 0; S 6= 0. This di�erential system is not regular w.r.t. this latterranking. However, sin
e the leaders and the families SA are the same for both rankings,the 
on
lusion of Rosenfeld's lemma still holds.4.3.1. Bu
hberger's 
riteriaMost of the results of this se
tion are borrowed from Boulier (1997). Bu
hberger (1979)established a few 
riteria whi
h predi
t that some S{polynomials (Be
ker and Weispfen-ning, 1991, def. 5.46, page 211) are redu
ed to zero without having to a
tually redu
ethem. They turn out to be very important in pra
ti
e sin
e most of the CPU time isspent in S{polynomials redu
tions. Remark however they do not 
hange the theoreti
al
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omplexity of Gr�obner bases sin
e this 
omplexity expresses the size of the Gr�obner basis(whi
h does not depend on the algorithm) in terms of the size of the input system.Bu
hberger's �rst 
riterion (Be
ker and Weispfenning, 1991, lemma 5.66, page 222)states that if the leading terms of two polynomials p and q are disjoint (i.e. their least
ommon multiple is equal to their produ
t) then the S{polynomial S(p; q) ��!fp;qg 0.In di�erential algebra, we might 
onje
ture that if p and q are two di�erential polynomi-als with leaders �u and �u respe
tively and if � and � are disjoint then the �{polynomial�(p; q) full{rem fp; qg = 0. This 
onje
ture is false in general but true in the next 
ase.Proposition 4.1. (analogue of Bu
hberger's �rst 
riterion)If p and q are two di�erential polynomials whi
h are linear, homogeneous, in onedi�erential indeterminate, with 
onstant 
oeÆ
ients and if (denoting ld p = �u and ld q =�u) we have l
d(�u; �u) = ��u then �(p; q) full{rem fp; qg = 0.Proof. Let R = Kfug be a di�erential polynomial ring endowed with a ranking and aset of derivations fÆ1; : : : ; Æmg. Let �R = K[x1; : : : ; xm℄ be a non di�erential polynomialring.To ea
h di�erential polynomial f = �1u + � � � + �su whi
h is linear, homogeneousand with 
onstant 
oeÆ
ients we may asso
iate a polynomial 
f 2 �R de�ned by 
f =
�1u + � � � + 
�su and 

 = 
 for every 
 2 K and 
(Æ�11 � � � Æ�mm u) = x�11 � � �x�mm . Themonoid of terms over the alphabet fx1; : : : ; xmg is endowed with the admissible ordering(Be
ker and Weispfenning, 1991, def. 4.59, page 167) given by the ranking.Let p; q; r 2 R satisfying the hypotheses of the proposition. On one hand, �(p; q) =
�1S(
p; 
q) ; on another hand r full{rem fp; qg = �r if and only if 
r ��!f
p; 
qg 
�r.By Bu
hberger's �rst 
riterion, S(
p; 
q) ��!f
p; 
qg 0 so �(p; q) full{rem fp; qg = 0. 2The following example shows that the 
onje
ture is false if the equations are nothomogeneous: take p = ux + 1 and q = uy + u. The �{polynomial �(p; q) = ux isredu
ed to 1 by the set fp; qg.This one shows that the 
onje
ture is false if the 
oeÆ
ients of the equations are not
onstants: assume the 
oeÆ
ient 
 is su
h that 
y = 1 and take p = ux + 
u and q = uy.The �{polynomial �(p; q) = 
uy + u is redu
ed to u by fp; qg.In proposition 4.2, we prove an analogue of Bu
hberger's se
ond 
riterion. Howeverwe impose restri
tions on the di�erential polynomials whi
h have no 
ounterpart in theGr�obner bases theory. This makes the proof of its implementation in the Rosenfeld{Gr�obner algorithm more painful than in the non di�erential 
ase.Proposition 4.2. (analogue of Bu
hberger's se
ond 
riterion)Let hp1; p2; p3i be a triple of di�erential polynomials su
h that (H1) the leaders �1u,�2u and �3u of the p's have 
ommon derivatives and are pairwise di�erent, (H2) l
d(�1u; �3u)is a derivative of �2u and (H3) one of the following 
onditions holds:1 ld pi is not a derivative of ld pj (1 � i; j � 3 and i 6= j),2 p1 < p2 < p3 or p3 < p2 < p1,3 p2 < p1 < p3 and deg(p1; �1u) = 1,4 p1 < p3 < p2 and deg(p3; �3u) = 1.
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als of �nitely generated di�erential ideals 21Let A = 0; S 6= 0 be a di�erential system. If (H4) the pairs fp1; p2g and fp2; p3gare solved by A = 0; S 6= 0 and (H5) s1; s2; s3 2 S then the pair fp1; p3g is solvedby A = 0; S 6= 0.Proof. Denote �iju = l
d(�iu; �ju). Be
ause of H2 the derivation operators (�13=�12)and (�13=�23) exist. Denote �3 = ���13�12 p1; �13�12 p2� ;�1 = ���13�23 p2; �13�23 p3� :Lemma: if there exist di�erential polynomials B, C and D and a power produ
t h ofelements of S su
h that ldh < �13u andh�(p1; p3) = B�3 + C�1 +D �13�1 p1 (4.7)then the pair fp1; p3g is solved by A = 0; S 6= 0. Proof: by H4 and lemma 4.2 thereexists a derivative v < �13u su
h that �3; �1 2 (Av) : (S \ Rv)1. By H5 there exists apower produ
t h0 of elements of S su
h that h0�(p1; p3) 2 (Av ; (�13=�1)p1) and ldh0 =max(ldh; v) < �13u. Denote w = max(�1u; ldh0). Be
ause of H1 we have w < �13u.By H5 and lemma 3.1, �(p1; p3) 2 (Aw) : (S \ Rw)1 and the pair fp1; p3g is solvedby A = 0; S 6= 0. 2If ld pi is not a derivative of ld pj (1 � i; j � 3 and i 6= j) then s2�(p1; p3) =s1�1 + s3�3. Be
ause of H1 we have ld s2 < �13u. By H5 our lemma above applies andthe pair fp1; p3g is solved by A = 0; S 6= 0.If p1 < p2 < p3 then there exist some �1; �2; �3 2 N and some di�erential polynomialsq1; q2 and q3 su
h that �3 = s�31 �13�2 p2 � q3 �13�1 p1;�1 = s�12 �13�3 p3 � q1 �13�2 p2;�(p1; p3) = s�21 �13�3 p3 � q2 �13�1 p1:Denoting � = max(�2; �3), there exists a di�erential polynomial C su
h thats���21 s�12 �(p1; p3) = s�1�1 + q1 s���31 �3 + C �13�1 p1:Be
ause of H1 we have ld(s���21 s�12 ) < �13u. By H5 our lemma applies and the pairfp1; p3g is solved by A = 0; S 6= 0.If p2 < p1 < p3 then �3 = s�32 �13�1 p1 � q3 �13�2 p2:Computing as above we �nd a relationq3 s�12 �(p1; p3) = q1 s�21 �3 � q3 s�21 �1 + C �13�1 p1:In the general 
ase, one 
annot apply our lemma for q3 =2 S. Assume deg(p1; �1u) = 1.



22 F. Boulier, D. Lazard, F. Ollivier, M. PetitotBy H5 we have q3 = s1 2 S. Be
ause of H1, we have ld(q3 s�12 ) < �13u. Our lemmaapplies and the pair fp1; p3g is solved by A = 0; S 6= 0.The last 
ase is similar to the former one. 2p1 = vu3xx + u2xx + ux;p2 = uxy;p3 = uyy + u2y;p4 = vy;p5 = vxxx + u3xx;�(p1; p2) = vyu3xx + uxy;�(p2; p3) = uyuxy: -Æy0 1 2
6Æx

01
2 uxx(�1u) uxy(�2u) uyy (�3u)

�12u �23u�13u- 6 - 6�12=�2 �23=�3The pi
ture illustrates proposition 4.2 in the triangular 
ase. Both �(p1; p2) and�(p2; p3) are redu
ed to zero by A. Therefore the pairs fp1; p2g and fp2; p3g are solvedby the system A = 0; HA 6= 0. The least 
ommon derivative between the leaders of p1and p3 is a derivative of the leader of p2. Thus the pair fp1; p3g is solved by the system.5. Computing a regular de
ompositionThis se
tion aims at proving the theorem 5.1 whi
h 
onstitutes the 
ore of the Rosenfeld{Gr�obner algorithm. Our implementation of the algorithm 
an be viewed as a mere trans-lation in the MAPLE programming language of the e�e
tive proof of this theorem.Our implementation 
arries the analogue of Bu
hberger's se
ond 
riterion out. It is alifting for the di�erential algebra of the version of Bu
hberger's algorithm by Gebauerand M�oller (1988). The book of Be
ker and Weispfenning (1991), pages 230{232 furnishedus many important informations on that subje
t. It is mu
h more eÆ
ient than the onesgiven by Boulier (1994) or Boulier et al. (1995).Theorem 5.1. (
omputing a regular de
omposition)If P0 = 0; S0 6= 0 is a di�erential system of a di�erential polynomial ring R then it ispossible to 
ompute �nitely many 
onsistent regular di�erential systems Ai = 0; Si 6= 0(1 � i � n) su
h thatp =q[P0℄ : S10 = [A1℄ : S11 \ � � � \ [An℄ : S1n : (5.1)This de
omposition may 
ontain 
omponents redundant w.r.t. p. Operations needed areaddition, multipli
ation, di�erentiation and equality test with zero in the base �eld of R.A quadruple G = hA; D; P; Si is a data stru
ture whi
h 
ontains a di�erential systembeing pro
essed until it is regular. The set A � R 
ontains equations already pro
essed.The set P � R 
ontains the equations whi
h are not yet pro
essed. The set D 
ontainspairs whi
h have to be solved and S � R 
ontains the inequations.Initially, P = P0, S = S0 and A = D = ;. If P 6= ; orD 6= ; then the 
urrent quadrupleis rewritten as �nitely many quadruples by a 
ompletion and splitting pro
ess. If P =D = ; then an autoredu
tion pro
ess transforms the di�erential system A = 0; S 6= 0
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als of �nitely generated di�erential ideals 23as an equivalent regular di�erential system �A = 0; �S 6= 0. The autoredu
tion pro
essde
ides if the system is 
onsistent or not. In the former 
ase, the regular di�erential ideal[ �A℄ : �S1 be
omes one of the 
omponents of interse
tion 5.1; in the latter, the system isdis
arded.Let G = hA; D; P; Si be a quadruple. We denote P(D) the set of all the di�erentialpolynomials p su
h that there exists a redu
tion pairy fp; p0g 2 D with rank p > rank p0.We denote F(G) = A[P(D)[P and I(G) =p[F(G)℄ : S1. The solutions of a quadru-ple G are de�ned as the solutions of the di�erential system F(G) = 0; S 6= 0. A pairis said to be solved by G if it is solved by the system F(G) = 0; S 6= 0. The followingaxioms give the de�nition of pairs nearly solved by G.A1 Every pair whi
h is solved by G is nearly solved by G.A2 Every pair whi
h belongs to D is nearly solved by G.A3 If fp1; p2g and fp2; p3g are pairs nearly solved by G and if the triple hp1; p2; p3isatis�es the hypotheses H1, H2 and H3 of proposition 4.2 then the pair fp1; p3gis nearly solved by G.We are now ready to state some properties whi
h will be
ome loop invariants of ourimplementation of the Rosenfeld{Gr�obner algorithm. Let G = hA; D; P; Si be a quadru-ple.I1 The rank of the set A is autoredu
ed.I2 If fp; p0g 2 D is a redu
tion pair with rank p > rankp0 = vd and F = ff 2 F(G) jrankf � vdg then p0 2 (Fv) : (S \ Rv)1.I3 Every pair fp; p0g 2 pairs(A) is nearly solved by G.I4 If p 2 A or p belongs to some pair of D then ip; sp 2 S.I5 If fp; p0g 2 D is not a redu
tion pair then �(p; p0) 2 I(G).I6 If fp; p0g 2 D is a pair then rank p 6= rank p0.5.1. The final autoredu
tion pro
essLet G = hA; D; P; Si be a quadruple satisfying the invariants and s.t. D = P = ;.The di�erential system is not ne
essarily regular. We present here one possible wayto transform it as an equivalent regular di�erential system. This pro
ess may showthat I(G) = R. In that 
ase, the quadruple G is dis
arded. We build a sequen
e ofdi�erential systems. Let A0 = A; S0 = S:Let k � 0 be an index. If Ak is not di�erentially triangular then let �u be the greatestderivative o

uring in some p 2 Ak being also a proper derivative of the leader �0u ofsome p0 2 Ak. Denoting � = �=�0, 
ompute �p = p full{rem �p0 andAk+1 = Ak n fpg [ f�pg;Sk+1 = Sk [ fi�p; s�pg:If rankAk 6= rankAk+1 then I(G) = R (proved below) and the quadruple is dis
arded.Let's assume rankAk = rankAk+1. If Ak is di�erentially triangular then take�A = Ak; �S = Sk partial{rem �A:y Re
all we don't distinguish fp; p0g from fp0; pg.



24 F. Boulier, D. Lazard, F. Ollivier, M. PetitotProposition 5.1. The autoredu
tion pro
ess terminates.Proof. The sequen
e of the rewritten derivatives �u is stri
tly de
reasing and rankingsare well orderings. 2Proposition 5.2. For ea
h index k � 0 we have HAk � Sk. Moreover, H �A � �S.Proof. The �rst statement is 
lear. The se
ond one is due to the fa
t that, sin
e �Ais di�erentially triangular, the initials and the separants of its elements are partiallyredu
ed w.r.t. it, and are thus left in
hanged by the �nal partial redu
tion. 2Proposition 5.3. For ea
h index k � 0, if rankAk 6= rankAk+1 then [Ak℄ : S1k = R.Proof. If rankAk 6= rankAk+1 then some initial ip of some element of Ak has been re-du
ed to zero. By proposition 5.2 we have ip 2 [Ak ℄:S1k . Sin
e ip 2 Sk (by proposition 5.2again) [Ak℄ : S1k = R. 2Let us now expli
it the values of �p, its initial and its separant. Let k � 0 be anindex. Sin
e rankAk is autoredu
ed, ld�p0 = �u < ld p and there exist some � 2 N anddi�erential polynomials q0; q1; q2 2 R�u su
h that�p = s�p0 p� q0 �p0; (5.2)s�p = s�p0 sp � q1 �p0; (5.3)i�p = s�p0 ip � q2 �p0: (5.4)Lemma 5.1. If rankAk = rankAk+1 then for every derivative v we havey(Ak;v) : (Sk \ Rv)1 � (Ak+1;v) : (Sk+1 \ Rv)1:Proof. First observe Sk � Sk+1. If v < ld p then Ak;v = Ak+1;v . If v � ld p, it suÆ
esto prove p 2 (Ak+1;v) : (Sk+1 \ Rv)1. Sin
e ld p = ld �p we have �p 2 Ak+1;v . Sin
eld�p0 = �u < ld p we have �p0 2 Ak+1;v and sp0 2 Rv . Using proposition 5.2 andrelation (5.2) we 
on
lude p 2 (Ak+1;v) : (Sk+1 \ Rv)1. 2Proposition 5.4. For ea
h index k � 0, we have [Ak ℄ : S1k = [Ak+1℄ : S1k+1.Proof. The in
lusion [Ak℄ : S1k � [Ak+1℄ : S1k+1 
omes from lemma 5.1. The 
onverseone. Assume f is a di�erential polynomial su
h that, for some �; 
 2 N we have i��ps
�pf 2[Ak+1℄. By relation (5.2) we have �p 2 [Ak℄:S1k hen
e [Ak+1℄ � [Ak ℄:S1k . By relations (5.3)and (5.4) and the fa
t that sp; sp0 ; ip 2 Sk (proposition 5.2) f 2 [Ak ℄ : S1k . 2Lemma 5.2. Assume all the sets Ak have the same rank. All pairs in pairs(Ak) are solvedby Ak = 0; Sk 6= 0.y By Ak;v we mean Ev where E = Ak.



Computing representations for radi
als of �nitely generated di�erential ideals 25Proof. The proof is an indu
tion on k. Basis of the indu
tion. Be
ause of I3, the fa
tthat D = ; and proposition 4.2 every pair fp; p0g 2 pairs(A0) is solved by the di�erentialsystem A0 = 0; S0 6= 0.The general 
ase. Let k � 0 be an index. We assume (indu
tion hypothesis) thatall pairs in pairs(Ak) are solved by Ak = 0; Sk 6= 0 and we prove that, if fp1; p2g 2pairs(Ak+1) then fp1; p2g is solved by Ak+1 = 0; Sk+1 6= 0.First sub
ase: p1 6= �p and p2 6= �p. Then fp1; p2g 2 pairs(Ak) is solved by the systemAk = 0; Sk 6= 0 i.e. there exists some v < l
d(ld p1; ld p2) su
h that �(p1; p2) 2 (Ak;v) :(Sk \Rv)1. By lemma 5.1 �(p1; p2) 2 (Ak+1;v) : (Sk+1 \Rv)1 and the pair is solved byAk+1 = 0; Sk+1 6= 0.Se
ond sub
ase: p1 = �p. Sin
e rankAk = rankAk+1 we have ld p = ld �p = ld p1 = �1uand (assuming with no loss of generality that �p < p2)�(�p; p2) = s�p �12�2 p2 � sp2 �12�1 �p:Expanding the value of �(�p; p2) using formul� (5.2) and (5.3) and re
alling ld�p0 < ld p1we see there exists a derivative v < �12u su
h that s�p0�(p; p2) � �(�p; p2) (mod (Ak;v)).By the fa
t that the pair fp; p2g is solved by Ak = 0; Sk 6= 0 (indu
tion hypothesis) andlemma 5.1 the pair f�p; p2g is solved by Ak+1 = 0; Sk+1 6= 0. 2Proposition 5.5. Every pair in pairs( �A) is solved by �A = 0; �S 6= 0.Proof. By lemma 5.2 every pair in pairs( �A) is solved by �A = 0; Sk 6= 0, where k is theindex su
h that �A = Ak is di�erentially triangular.It suÆ
es to prove that for any derivative v we have ( �Av):(Sk\Rv)1 � ( �Av):( �S\Rv)1.Let s 2 Sk\Rv be not partially redu
ed w.r.t. A and �s = s partial{rem A. There exists apower produ
t h of elements of SA\Rv su
h that h s � �s (mod (Av)). By proposition 5.2we have SA � �S and the proposition is proved. 2By propositions 5.3 and 5.4, if the rank of the set Ak 
hanges during the autoredu
tionpro
ess then the di�erential system A = 0; S 6= 0 is proved to be in
onsistent and 
anbe dis
arded. Let's assume this is not the 
ase. The system �A = 0; �S 6= 0 is a regulardi�erential system. Indeed �A is di�erentially triangular (
ondition C1 is satis�ed); �S
ontainsH �A (proposition 5.2) and is partially redu
ed w.r.t. �A (
onditionC2 is satis�ed);proposition 5.5 proves 
ondition C3 holds for �A = 0; �S 6= 0. Computing a Gr�obner basisof the ideal ( �A) : �S1 in dimension zero, one de
ides whether the regular di�erentialsystem �A = 0; �S 6= 0 is 
onsistent (
orollary below Rosenfeld's lemma, point 1). If it isin
onsistent, it is dis
arded. Otherwise, I(G) = [ �A℄ : �S1 by theorem 4.2 (point 1).5.2. The 
ompletion pro
essWe 
onsider a quadruple G = hA; D; P; Si satisfying the invariants and su
h thatD 6= ; or P 6= ;. Roughly, we pi
k a new equation q = 0 from these sets, redu
e it by Aand enlarge A with it (if non zero of 
ourse). Applying the analogues of Bu
hberger's
riteria, we do not only try to generate as few pairs as possible but also to remove asmany pairs as possible from D. The method is not optimal. Gebauer and M�oller's versionof the Bu
hberger algorithm is not either.Pi
k either a di�erential polynomial q0 2 P or a pair fp0; p00g 2 D. In the former
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ase, let P � = P n fq0g let D� = D and q = q0 full{rem A. In the latter let P � = P ,let D� = D n ffp0; p00gg and q = �(p0; p00) full{rem A. Assume q 6= 0 and denoteG0 = hA0; D0; P 0; S0i any quadruple satisfying:A0 = fqg [ fp 2 A j ld p is not a derivative of ld qg.D0 = D1 [D2 whereD1 � D0 = ffp; qg j p 2 A and ld p has 
ommon derivatives with ld qgA pair fp; qg 2 D0 is not kept in D1 only if 
ondition (a) or (b) holds:(a) p and q are linear homogeneous di�erential polynomials in one di�erentialindeterminate with 
onstant 
oeÆ
ients and l
m(�; �) = ��(where ld q = �u and ld p = �u),(b) there exists a pair fp0; qg 2 D1 su
h that the triple hq; p0; pi satis�es thehypotheses H1, H2 and H3 of proposition 4.2.D2 � D�.A pair fp; p0g 2 D� is not kept in D2 only if the triple hp; q; p0i satis�esthe hypotheses H1, H2 and H3 of proposition 4.2 and l
d(ld p; ld p0)is di�erent from both l
d(ld p; ld q) and l
d(ld p0; ld q).P 0 = P �.S0 = S [ fiq; sqg.Lemma 5.3. A � A0 [ P(D0).Proof. It suÆ
es to show that if p 2 A is su
h that ld p is a derivative of ld q then theredu
tion pair fp; qg is kepty in D1. By the hypothesis H2 of proposition 4.2, if fp; qg isnot kept in D1, there exists a di�erential polynomial p0 2 A su
h that l
d(ld p; ld q) = ld pis a derivative of ld p0. This is impossible for p; p0 2 A and rankA is autoredu
ed. 2Lemma 5.4. If fp; p0g 2 D� is a redu
tion pair then fp; p0g 2 D2.Proof. Assume rank p > rankp0. Sin
e fp; p0g is a redu
tion pair we have l
d(ld p; ld p0) =ld p. Thus, if the triple hp; q; p0i satis�es the hypothesisH2 of proposition 4.2 then ld p isa derivative of ld q hen
e l
d(ld p; ld q) = ld p = l
d(ld p; ld p0) and the pair is kept in D2.2Lemma 5.5. If vd is any rank, F = fp 2 F(G) j rank p � vdg and F 0 = fp 2 F(G0) jrank p � vdg then (Fv) : (S \ Rv)1 � (F 0v) : (S0 \ Rv)1.Proof. Denote F � = fp 2 A [ P(D�) [ P � j rank p � vdg. By lemmas 5.3 and 5.4 wehave F � � F 0. We thus have two 
ases to 
onsider.First 
ase: P � 6= P . More pre
isely, we assume q = q0 full{rem A with q0 2 P and weprove that, if rank q0 � vd then q0 2 (F 0v) : (S0 \Rv)1.This 
omes from lemma 5.3, the fa
t that the elements of A involved in the redu
tionpro
ess of q0 have rank lower than or equal to that of q0 that HA � S � S0 that q 2 A0and rank q � rank q0.y A
tually, the lemma is false when p; q are linear homogeneous di�erential polynomials, in onedi�erential indeterminate u, with 
onstant 
oeÆ
ients and when ld q = u. In that 
ase, the equation pis lost. However, this does not matter for q := u = 0 makes super
uous all other linear homogeneousdi�erential polynomials in u alone and with 
onstant 
oeÆ
ients.
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als of �nitely generated di�erential ideals 27Se
ond 
ase: P(D�) 6= P(D). More pre
isely, we assume q = �(p0; p00) full{rem A andfp0; p00g is a redu
tion pair with rank p0 > rankp00. We prove that, if rank p0 � vd thenp0 2 (F 0v) : (S0 \ Rv)1.Claim: there exists a power produ
t h of elements of S0 \ Rv su
h that h p0 ��(p0; p00) (mod (F 0v)). Sin
e fp0; p00g is a redu
tion pair, there exists some derivationoperator � su
h that �(p0; p00) = p0 full{rem �p00. Thus there exist �; � 2 N su
h thati�p00 s�p00 p0 � �(p0; p00) (mod (�p00)).Using lemmas 5.3 and 5.4, the fa
t that G satis�es I2 and rankp00 < rank p0 � vd wesee p00 2 (F 0v) : (S0 \ Rv)1. Sin
e ld�p00 = ld p0 � v, we have �p00 2 (F 0v) : (S0 \ Rv)1.Sin
e ip00 ; sp00 2 S0 \ Rv by I4 the 
laim is proved. 2Now ld�(p0; p00) � v thus, a

ording to the spe
i�
ations of Ritt's algorithms of re-du
tion, there exists a power produ
t h of elements of S0 \ Rv su
h that h�(p0; p00) �q (mod (F 0v)). Sin
e rank q � rank�(p0; p00) < vd we have q 2 F 0v . Using the 
laim above,the lemma is proved. 2Proposition 5.6. I(G) : fiq; sqg1 = I(G0).Proof. The in
lusion I(G) : fiq; sqg1 � I(G0) is a 
orollary of lemma 5.5. Let's provethe 
onverse in
lusion and �rst that q 2 I(G). For this, we 
onsider three 
ases:First 
ase: q = q0 full{rem A with q0 2 P . It is 
lear for q0 2 I(G), A � I(G) andHA � S.Se
ond 
ase: q = �(p0; p00) full{rem A when fp0; p00g is not a redu
tion pair. It 
omesfrom I5 and the fa
t that A � I(G) and HA � S.Third 
ase: q = �(p0; p00) full{rem A when fp0; p00g is a redu
tion pair (with rank p0 >rank p00). It 
omes from the fa
t that p00 2 I(G) by I2 (applied to G), p0 2 P(D) � I(G),A � I(G) and HA � S.Sin
e q 2 I(G), we have A0 � I(G). If p 2 P(D0) does not belong to P(D) then pbelongs to a redu
tion pair fp; qg 2 D0 with p 2 A ; thus P(D0) � I(G). The lemma
omes now from the fa
t that P 0 � P and S0 = S [ fiq; sqg. 2Proposition 5.7. G0 satis�es invariants I1, I4 and I6.Proposition 5.8. G0 satis�es invariant I5.Proof. This 
omes from the fa
t that all the pairs in D0 whi
h are not redu
tion pairshave the form fp; qg with p; q 2 A0 � I(G0), that I(G) � I(G0) and G satis�es I5. 2Proposition 5.9. G0 satis�es invariant I2.Proof. Invariant I2 is satis�ed for all redu
tion pairs in D0 whi
h are not in D sin
ethose pairs have the form fp; qg with rankp > rank q and q 2 A0. Invariant I2 is satis�edfor all redu
tion pairs in D0 whi
h belong also to D by lemma 5.5. 2Lemma 5.6. If v is any derivative then every fp; p0g 2 pairs(A[fqg) whi
h is su
h thatl
d(ld p; ld p0) < v is nearly solved by G0.Proof. By indu
tion on v. Basis of the indu
tion: if v is less than or equal to the
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d(ld p; ld p0) for all fp; p0g 2 pairs(A [ fqg) then the lemma is triviallysatis�ed. In the general 
ase, let us assume that v > v0 and (indu
tion hypothesis) thatevery fp; p0g 2 pairs(A [ fqg) su
h that l
d(ld p; ld p0) < v is nearly solved by G0.First 
ase: p 6= q and p0 6= q.First sub
ase: if fp; p0g is solved by G then, by lemma 5.5, the pair fp; p0g is solvedby G0. It is thus nearly solved by G0 a

ording to A1.Se
ond sub
ase: if fp; p0g 2 D� then either it belongs toD0 or it does not. In the former
ase, it is nearly solved by G0 a

ording to A2. In the latter, the triple hp; q; p0i satis�esthe hypotheses H1 to H3 of proposition 4.2 and l
d(ld p; ld p0) is a proper derivativeof both l
d(ld p; ld q) and l
d(ld p0; ld q). By the indu
tion hypothesis and A3, the pairfp; p0g is nearly solved by G0.Third sub
ase: if fp; p0g = fp0; p00g 2 D and q = �(p0; p00) full{rem A then fp; p0g issolved by the di�erential system A [ fqg = 0; S0 6= 0 (spe
i�
ations of Ritt's redu
tionalgorithms). By lemma 5.3 and the fa
t that q 2 A0, the pair fp; p0g is solved by G0. Itis thus nearly solved by G0 a

ording to A1.Se
ond 
ase: the pair is formed by q and some p 2 A.First sub
ase: If fp; qg 2 D1 � D0 then fp; qg is nearly solved by G0 a

ording to A2.Se
ond sub
ase: If fp; qg =2 D0 then either it is solved byG0 a

ording to proposition 4.1or there exists a pair fp0; qg 2 D1 � D0 su
h that the triple hq; p0; pi satis�es thehypothesesH1 toH3 of proposition 4.2. In this latter 
ase, l
d(ld p; ld q) is a derivative ofl
d(ld p; ld p0) and, a

ording to the �rst 
ase 
onsidered above, the pair fp; p0g 2 pairs(A)is solved by G0. A

ording to A3 the pair fp; qg is nearly solved by G0. 2Proposition 5.10. G0 satis�es I3.Proof. This is a 
onsequen
e of lemma 5.6 and of the fa
t that A0 � A [ fqg. 25.3. SplittingsWhen the 
ompletion pro
ess enlarges A with a new equation q = 0, the set S isalso enlarged with two inequations iq 6= 0; sq 6= 0. In order not to loose solutions ofthe 
urrent quadruple, we must also 
onsider its solutions whi
h 
an
el the initial or theseparant of q. This we do by splitting 
ases as in Seidenberg's elimination algorithms. Theargument relies on the di�erential analogue of Hilbert's theorem of zeros (theorem 3.1).Lemma 5.7. If A = 0; S 6= 0 is a di�erential system and h is a di�erential polynomialthen every solution of A = 0; S 6= 0 is a solution of A[ fhg = 0; S 6= 0 or a solution ofA = 0; S [ fhg 6= 0 and 
onversely.Corollary 5.1. p[A℄ : S1 =p[A; h℄ : S1 \p[A℄ : (S [ fhg)1.Proof. The 
orollary 
omes from lemma 5.7 and the 
orollary 3.1 of the theorem ofzeros. 2Let's 
ome ba
k to the quadruples G, G0 and to the di�erential polynomial q of se
-tion 5.2. Denote rank q = vd. Let qi = q � iq vd and qs = d q � v sq . DenoteGi = hA; D�; P � [ fiq; qig; Si;Gs = hA; D�; P � [ fsq; qsg; S [ fiqgi:
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als of �nitely generated di�erential ideals 29Proposition 5.11. I(G) = I(Gi) \ I(Gs) \ I(G0).Proof. Using lemma 5.7, every solution of F(G) = 0; S 6= 0 is a solution of F(G) [fiqg = 0; S 6= 0 (denoted �i) or a solution of F(G) = 0; S [ fiqg 6= 0 and 
onversely.Using lemma 5.7 again, every solution of the latter system is a solution of F(G)[fsqg =0; S [ fiqg 6= 0 (denoted �s) or a solution of F(G) = 0; S [ fiq; sqg 6= 0 (denoted �0)and 
onversely.The system �i (respe
tively �s) has the same solutions as the quadruple Gi (respe
-tively Gs). By proposition 5.6, the system �0 has the same solutions as the quadruple G0.The proposition follows now from 
orollary 5.1. 2Observe that if a di�erential polynomial h does not divide zero modulo p[�℄ thenthere is no need of splitting on h sin
e in that 
ase p[�℄ = p[�℄ : h1. This is the 
asefor instan
e if h 2 K (h 6= 0).5.3.1. The system Gi satisfies all the invariantsNote: the proofs are simpler variants of the ones given for G0 in se
tion 5.2. They relyon the fa
t that q 2 (iq; qi) and rank iq; qi < rank q. Therefore, sin
e q 2 (sq ; qs) andrank sq ; qs < rank q the same proofs hold for Gs ; if q = 0 then they hold for the quadrupleG� = hA; D�; P �; Si too.Lemma 5.8. If vd is any rank, F = fp 2 F(G) j rank p � vdg and Fi = fp 2 F(Gi) jrank p � vdg then (Fv) : (S \ Rv)1 � (Fi;v) : (Si \ Rv)1.Proof. We only have to 
onsider two 
ases.First 
ase: P � 6= P . More pre
isely, we assume q = q0 full{rem A with q0 2 P and weprove that, if rank q0 � vd then q0 2 (Fi;v) : (Si \ Rv)1.This 
omes from the fa
t that the elements of A involved in the redu
tion pro
ess of q0have rank lower than or equal to that of q0, the fa
t that HA � S � S0 and the fa
t thatq 2 (iq; qi) � (Fi;v).Se
ond 
ase: P(D�) 6= P(D). More pre
isely, we assume q = �(p0; p00) full{rem A andfp0; p00g is a redu
tion pair with rank p0 > rankp00. We prove that, if rank p0 � vd thenp0 2 (Fi;v) : (Si \Rv)1.Claim: there exists a power produ
t h of elements of Si \ Rv su
h that h p0 ��(p0; p00) (mod (Fi;v)). Sin
e fp0; p00g is a redu
tion pair, there exists some derivationoperator � su
h that �(p0; p00) = p0 full{rem �p00. Thus there exist �; � 2 N su
h thati�p00 s�p00 p0 � �(p0; p00) (mod (�p00)).Using the fa
t that G satis�es I2 and rankp00 < rank p0 � vd we see p00 2 (Fi;v) : (Si \Rv)1. Sin
e ld�p00 = ld p0 � v, we have �p00 2 (Fi;v): (Si\Rv)1. Sin
e ip00 ; sp00 2 Si\Rvby I4 the 
laim is proved. 2Now ld�(p0; p00) � v thus, a

ording to the spe
i�
ations of Ritt's algorithms of re-du
tion, there exists a power produ
t h of elements of Si \ Rv su
h that h�(p0; p00) �q (mod (Fi;v)). Sin
e rank iq; qi < rank�(p0; p00) < vd and q 2 (iq ; qi) we have q 2 (Fi;v).Using the 
laim above, the lemma is proved. 2Proposition 5.12. Gi satis�es invariants I1, I4 and I6.



30 F. Boulier, D. Lazard, F. Ollivier, M. PetitotProposition 5.13. Gi satis�es invariant I5.Proof. This 
omes from the fa
t that I(G) � I(Gi) and G satis�es invariant I5. 2Proposition 5.14. Gi satis�es invariant I2.Proof. This proposition is a 
orollary of lemma 5.8. 2Proposition 5.15. Gi satis�es invariant I3.Proof. Be
ause of lemma 5.8, all the pairs in D solved by G whi
h still belong to D�are also solved by Gi.It suÆ
es thus to show that if q = �(p0; p00) full{rem A then fp0; p00g is solved by Gi.This pair is solved by the di�erential system A [ fqg = 0; Si 6= 0. Sin
e q 2 (iq; qi) �F(Gi) and rank iq; qi < rank q the pair fp0; p00g is solved by Gi. 25.4. Proof of theorem 5.1The axioms below de�ne a partial ordering among quadruples. Let G = hA0; D0; P 0; S0iand G = hA; D; P; Si be two quadruples su
h that rankA and rankA0 are autoredu
ed.O1 If A0 < A then G0 is said to be less than G.O2 If A0 = A and D0 has fewer elements than D then G0 is said to be less than G.O3 Assume A0 = A and D0 = D. If there exists a di�erential polynomial p 2 P and a�nite set E (possibly empty) of di�erential polynomials all less than p su
h thatP 0 = P n fpg [ E then G0 is said to be less than G.Lemma 5.9. The ordering de�ned above is artinian (i.e. every stri
tly de
reasing se-quen
e of quadruples is �nite).Proof. We assume there exists an in�nite stri
tly de
reasing sequen
e (Gn) of quadru-ples and seek a 
ontradi
tion. Denote Gn = hAn; Dn; Pn; Sni. Sin
e the ordering onautoredu
ed sets of di�erential polynomials is artinian, (Gn) 
ontains an in�nite subse-quen
e (Gin) of quadruples su
h that all Ai's have the same rank. By a similar argument,(Gin) 
ontains itself an in�nite subsequen
e (Gjn) of quadruples su
h that all Aj 's havethe same rank and all Dj have the same number of elements. By an argument of graphtheory (K�onig, 1950, Satz 6.6) (i.e. every in�nite lo
ally �nitey tree 
ontains a bran
h ofin�nite length) there exists (taken from the Pj) an in�nite stri
tly de
reasing sequen
eof di�erential polynomials. This 
annot be for rankings are well{orderings. This �nal
ontradi
tion proves the lemma. 2Proof of theorem 5.1. Di�erential systems are represented using quadruples. LetG = hA; D; P; Si be a quadruple of R satisfying the invariant properties I1 up to I6.The initial system, 
oded h;; ;; P0; S0i satis�es them. We assume indu
tively that thetheorem holds for any quadruple G0 < G satisfying the invariants. The indu
tion istrans�nite (lemma 5.9).y A tree is said to be lo
ally �nite if only �nitely many bran
hes start from ea
h of its nodes.
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als of �nitely generated di�erential ideals 31Assume D and P are empty (basis of the indu
tion). Applying the method des
ribed inse
tion 5.1, one de
ides whether the di�erential system A = 0; S 6= 0 is 
onsistent or not.It is dis
arded if it is in
onsistent else one gets a regular di�erential system �A = 0; �S 6= 0su
h that I(G) = [ �A℄ : �S1.AssumeD or P not empty (general 
ase). Pi
k either a di�erential polynomial q0 2 P ora pair fp0; p00g 2 D. In the former 
ase, let P � = P nfq0g let D� = D and q = q0 full{remA. In the latter let P � = P , let D� = D n ffp0; p00gg and q = �(p0; p00) full{rem A.Assume q = 0 and denote G� = hA; D�; P �; Si. The quadruple G� satis�es the invari-ants (
f. the note in se
tion 5.3.1). Sin
e I(G) = I(G�) and G� < G by O2 or O3 thequadruple G� 
an be disposed of by indu
tion.Assume q 6= 0. Let G0 be any quadruple obtained following se
tion 5.2. The quadru-ple G0 satis�es the invariants and is less than G a

ording to O1. It 
an be disposed ofby indu
tion.Denote rank q = vd. Let qi = q � iq vd and qs = d q � v sq . Form two quadruples Giand Gs as in se
tion 5.3. Sin
e qi; qs; iq; sq < q the quadruples Gi and Gs are both lessthan G a

ording to O2 or O3. They satisfy the invariants. They 
an be disposed of byindu
tion.The proof of the theorem is now 
ompleted by proposition 5.11. 25.5. About the implementationThe following pseudo{
ode furnishes the method 
arried out by implementation of theRosenfeld{Gr�obner algorithm for 
onstru
ting D0 from D0 and D�. Note the �rst loopkeeps the pairs whi
h 
ould be dis
arded using the analogue of Bu
hberger's �rst 
riterion(proposition 4.1). Let's pseudo{quote Be
ker and Weispfenning (1991), page 231: if twoor more pairs have the same least 
ommon derivative of leaders, so that there is a 
hoi
eas to whi
h one(s) should be deleted, then it is advantageous to try and keep one whi
hwill be dis
arded later by the analogue of Bu
hberger's �rst 
riterion. That way, oneeventually gets rid of all of them.D1 := ;while D0 6= ; dopi
k a pair fp; qg 2 D0D0 := D0 n ffp; qggif p; q are linear homogeneous di�erential polynomials in one di�erentialindeterminate and with 
onstant 
oeÆ
ients or if there does notexist any pair fp0; qg 2 D0 [D1 su
h that the triple hq; p0; pi satis�esthe hypotheses H1 to H3 of proposition 4.2 thenD1 := D1 [ ffp; qgg�odRemove from D1 all pairs fp; qg su
h that p; q are linear homogeneous di�erentialpolynomials in one di�erential indeterminate and with 
onstant 
oeÆ
ientsLet D2 be the subset of all the pairs fp; p0g 2 D� su
h that hp; q; p0i does not satisfythe hypotheses H1, H2 and H3 of proposition 4.2 or l
d(ld p; ld p0) is equal tol
d(ld p; ld q) or l
d(ld p0; ld q).D0 := D1 [D2.



32 F. Boulier, D. Lazard, F. Ollivier, M. Petitot5.5.1. Avoiding splittingsAs stated in se
tion 5.3, if a di�erential polynomial h does not divide zero modulop =p[P0℄ : S10 then there is nod need of splitting on h.Here is a way to apply this idea: before 
omputing a de
omposition of p w.r.t. to somedesired ranking R �rst 
ompute a de
omposition of p w.r.t. another ranking R0 
hosenheuristi
ally so that the representation involves only few 
omponents. Afterwards, useit while 
omputing the de
omposition of p w.r.t. R: ea
h time the algorithm is aboutto split 
omputations between (say) h = 0 and h 6= 0, test whether h is a divisor ofzero modulo p. If h is proven not to be a divisor of zero, the splitting 
an be avoidedand the bran
h h = 0 dis
arded. The di�erential polynomial h 2 p if and only if thebran
h h 6= 0 only leads to in
onsistent regular di�erential systems. Su
h bran
hes 
antherefore always be dete
ted and dis
arded. If h is proven to be a divisor of zero or ifnothing 
an be proven then the splitting must be generated.The method above is parti
ularly interesting when p 
an be represented by a uniqueregular di�erential system C = 0 whi
h is orthonomi
 (i.e. all the initials and separantsof C belong to the base �eld of R). In that 
ase (whi
h turns out to happen quiteoften) p = [C℄ is prime. No di�erential polynomial 
an divide zero modulo a prime ideal.The implementation of the Rosenfeld{Gr�obner algorithm in the diffalg pa
kage ap-plies this improvement.5.5.2. Redu
ing the inequationsIt is interesting to keep S partially redu
ed w.r.t. A for inequations are usually smalldi�erential polynomials (for problems whi
h 
an be handled): redu
ing them is not veryCPU expensive and 
an point out in
onsisten
ies. Note invariant I4must then be 
hangedand proofs modi�ed.5.5.3. Linear equationsIf our implementation is given linear di�erential polynomials then the analogue ofBu
hberger's se
ond 
riterion always applies ; moreover, no splittings are generated. Inparti
ular, if the given system is a set of non di�erential polynomials, 
oded as di�er-ential polynomials linear, homogeneous, in one di�erential indeterminate with 
onstant
oeÆ
ients then this implementation behaves exa
tly (up to the implementation over-head) as a good implementation of the Bu
hberger's algorithm (the one of Gebauer andM�oller (1988)). 6. Computing 
anoni
al representativesA

ording to the results of the previous se
tions any regular di�erential ideal may bepresented by a regular di�erential system and by its asso
iated Gr�obner basis. This wasthe 
hoi
e in (Boulier et al., 1995). This representation is not only heavy but also non
anoni
al for di�erent regular di�erential systems may de�ne the same regular di�erentialideal. In this se
tion, we de�ne better representatives of regular di�erential ideals thatwe 
all 
hara
teristi
 presentations. Theorem 6.3 then shows how to 
ompute 
hara
ter-isti
 presentations from regular di�erential systems. The Rosenfeld{Gr�obner algorithm(theorem 6.4) 
an then be stated.
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als of �nitely generated di�erential ideals 336.1. Chara
teristi
 presentationsThe impli
ation from left to right in the proof of the following theorem was alreadyproven in Boulier et al. (1995), lemma 5, page 162.Theorem 6.1. (
anoni
ity theorem)If A1 = 0; S1 6= 0 and A2 = 0; S2 6= 0 are two regular di�erential systems of somedi�erential polynomial ring R then [A1℄ : S11 = [A2℄ : S12 i� (A1) : S11 = (A2) : S12 .Proof. The impli
ation from left to right. We assume (H1) that [A1℄ : S11 = [A2℄ : S12and (H2) that (A1):S11 6= (A2):S12 . We seek a 
ontradi
tion. Denote B1 = p1 < � � � < pnand B2 = q1 < � � � < qm the Gr�obner bases asso
iated to the algebrai
 regular ideals.Apply H2 and assume B1 < B2. There exists an index i � n su
h that pi is not redu
edto zero by B2 and pj = qj (1 � j < i). By H1 we have pi 2 [A2℄ : S12 . By the 
orollarybelow Lazard's lemma and the fa
t that pj = qj (1 � j < i), the di�erential polynomial piis partially redu
ed w.r.t. q1; : : : ; qi�1. It is also partially redu
ed w.r.t. qi; : : : ; qm forld pi � ld qi; : : : ; ld qm and B2 is a Gr�obner basis w.r.t. an elimination ordering de�nedby a ranking. By the 
orollary of Lazard's lemma, pi is partially redu
ed w.r.t. A2. ByRosenfeld's lemma pi 2 (A2) : S12 . Contradi
tion.The impli
ation from right to left now. We assume (H1) that (A1) : S11 = (A2) : S12and (H2) that p 2 [A1℄ :S11 . We 
laim p 2 [A2℄ :S12 . Let q = (p partial{rem A2). Thereexists thus a power produ
t h of elements of S2 su
h that h p � q modulo [A2℄. A

ordingto H1 we have A2 � [A1℄ : S11 thus h p � q modulo this latter ideal. Be
ause of H2 wehave q 2 [A1℄ : S11 . By the 
orollary below Lazard's lemma and H1 again q is partiallyredu
ed w.r.t. A1. By Rosenfeld's lemma, it belongs to (A1) : S11 = (A2) : S12 . Let'ssummarize: (p partial{rem A2) 2 (A2) :S12 . By the 
orollary (point 2) below Rosenfeld'slemma, p 2 [A2℄ : S12 . 2In the next de�nition, the only purpose of 
onditions C2 and C3 is to ensure the
anoni
ity property of 
hara
teristi
 presentations.Definition 6.1. (
hara
teristi
 presentations)Let A = 0; S 6= 0 be a 
onsistent regular di�erential system of a di�erential polynomialring R for a ranking R and B be the Gr�obner basis asso
iated to the regular algebrai
ideal (A) : S1, 
omputed in dimension zero.A di�erentially triangular set C = p1 < � � � < pn is 
alled a 
hara
teristi
 presentationof the regular di�erential ideal [A℄ : S1 if it satis�es the following 
onditions:C1 for any p 2 R we have p 2 [A℄ : S1 if and only if (p full{rem C) = 0,C2 the set C is a minimal di�erentially triangular subset of B,C3 if C 0 = p01 < � � � < p0n is another set whi
h satis�es C1 and C2 and i � n is thesmallest index su
h that pi 6= p0i then the leading termy of pi is less than the oneof p0i.A 
hara
teristi
 presentation C of a regular di�erential ideal [A℄ : S1 is not exa
tly a
hara
teristi
 set in the sense of Ritt of the ideal sin
e it is not autoredu
ed. However,y The term ordering used is the elimination one given by the ranking.



34 F. Boulier, D. Lazard, F. Ollivier, M. Petitotit has the same rank as the 
hara
teristi
 sets of the ideal and it 
ould easily be madeautoredu
ed by performing a few redu
tions. We have [A℄ :S1 = [C℄ :H1C . Remark alsothat a 
hara
teristi
 set of [A℄ :S1 is not ne
essarily a 
hara
teristi
 presentation of thisideal sin
e it may redu
e to zero more than the ideal.Theorem 6.2. (
anoni
ity of 
hara
teristi
 presentations)If it exists, the 
hara
teristi
 presentation of a regular di�erential ideal is a 
anoni
alrepresentative of this ideal (it only depends on the ideal and on the ranking).Proof. It is an easy 
onsequen
e of theorem 6.1, 
onditions C2 and C3 and the 
anon-i
ity property of redu
ed Gr�obner bases. 2Here is an algorithm to extra
t a minimal di�erential triangular subset C from theasso
iated Gr�obner basis B of a 
onsistent regular di�erential system A = 0; S 6= 0: forea
h derivative v whi
h is the leader of some element of A, pi
k from B a di�erentialpolynomial with leader v and with minimal degree in v (among the elements of B whoseleader is v).If C is su
h a set of di�erential polynomials then C is a triangular subset of B. ByLazard's lemma, a derivative v is the leader of some element of B if and only if it isthe leader of some element of A. Thus C is a minimal triangular subset of B. Sin
e A isdi�erentially triangular, so is C.Lemma 6.1. (algorithmi
 test for 
ondition C1)Let A = 0; S 6= 0 be a 
onsistent regular di�erential system of a di�erential polynomialring R for a ranking R and B be its asso
iated Gr�obner basis.If C is a minimal di�erentially triangular subset of B and no element of HC is adivisor of zero modulo (A) : S1 then C satis�es C1.Proof. By the hypothesis and the 
orollary (point 3) below Rosenfeld's lemma, noelement of HC is a divisor of zero modulo [A℄ : S1. Sin
e C � [A℄ : S1, the set C onlyredu
es to zero elements of this di�erential ideal.By the 
orollary of Lazard's lemma, a derivative v is the leader of some element of Cif and only if it is the leader of some element of B. Thus if p is a non zero di�erentialpolynomial redu
ed in the sense of Ritt w.r.t. C then p is partially redu
ed w.r.t. A onone hand; on the other hand, the terms of p are not divisible by the leading terms of theelements of B thus p is irredu
ible by the Gr�obner basis B and p =2 (B) = (A) : S1. ByRosenfeld's lemma, p =2 [A℄ : S1. Therefore, every element of [A℄ : S1 is redu
ed to zeroby C. 2Lemma 6.2. Let A = 0; S 6= 0 be a 
onsistent regular di�erential system of a di�erentialpolynomial ring R for a ranking R, B be its asso
iated Gr�obner basis and C be a minimaldi�erentially triangular subset of B.An element h 2 HC is a divisor of zero modulo (B) if and only if the redu
ed Gr�obnerbasis of (B) : h1 (
omputed in dimension zero) is di�erent from B.Proof. First note h =2 (B) for h is irredu
ible by B. Now, the ideal (B) is radi
al byLazard's lemma; the prime ideals whi
h are minimal over (B) :h1 are the minimal primeideals of (B) whi
h do not 
ontain h; a polynomial h is a divisor of zero modulo a radi
al



Computing representations for radi
als of �nitely generated di�erential ideals 35ideal r if and only if it belongs to some but not all of the prime ideals whi
h are minimalover r; redu
ed Gr�obner bases are 
anoni
al representatives of the ideals they generate.2Theorem 6.3. (
omputing 
hara
teristi
 presentations)If A = 0; S 6= 0 is a 
onsistent regular di�erential system for a ranking R of a di�er-ential polynomial ring R then it is possible to 
ompute �nitely many regular di�erentialideals given by 
hara
teristi
 presentations Ci (i = 1; : : : ; n) su
h that[A℄ : S1 = [C1℄ :H1C1 \ � � � \ [Cn℄ :H1Cn : (6.1)This de
omposition does not 
ontain redundant 
omponents w.r.t. [A℄ : S1. Operationsneeded are addition, multipli
ation and equality test with zero in the base �eld of R.Proof. Denote r = [A℄ : S1 and B the Gr�obner basis asso
iated to (A) : S1. Theparagraph above lemma 6.1 shows how to extra
t minimal di�erentially triangular sub-sets C from B. Lemmas 6.1 and 6.2 show how to test if one of them is a 
hara
teristi
presentation of r.The proof is an indu
tion on the number of prime 
omponents of (B). If (B) is primeand C is a minimal di�erentially triangular subset of B then no element of HC divideszero modulo (B) hen
e C satis�es C1.Assume (A) : S1 admits no 
hara
teristi
 presentation. Let C be a minimal di�er-entially triangular subset of B and p 2 HC be a divisor of zero modulo (B). We haver = r1 \ r2 where r1 =p[A [ fpg℄ : S1 and r2 = r : p1.Both r1 and r2 have fewer 
omponents than r. The latter ideal is a regular di�eren-tial system when
e is disposed of by indu
tion. Using theorem 5.1, one 
an 
ompute arepresentation of r1 as an interse
tion of regular di�erential ideals. Moreover, one 
anmanage to 
ompute an irredundant interse
tion by using the te
hnique des
ribed inparagraph 5.5.1 2The method des
ribed in the proof above is the one applied in the diffalg pa
kage.It is not very eÆ
ient. The Lextriangular algorithm of Lazard (1992) (see also MorenoMaza (1997)) would be mu
h more eÆ
ient and would even permit us to 
ompletelyavoid the use of Gr�obner bases.6.1.1. An exampleSome regular di�erential ideals (quite unusual in pra
ti
e) have no 
hara
teristi
 pre-sentation. An example is given by the following triangular set A, for the eliminationordering x5 > � � � > x1. The example is purely algebrai
 but 
an be easily transformedinto a di�erential one.A8<: p3 = ((x22 + x1)x5 + x24 + x3)(x2x5 + x4);p2 = x4(x24 + x3);p1 = x2(x22 + x1):



36 F. Boulier, D. Lazard, F. Ollivier, M. PetitotBelow is the redu
ed Gr�obner basis B (
omputed over Q ) of the ideal (A) : S1A for theelimination ordering x5 > � � � > x1.B8>>>><>>>>: b5 = x5;b4 = x4(x24 + x3);b3 = x1x24 + (x22 + x1)x3;b2 = x2x4;b1 = x2(x22 + x1):It 
ontains only one minimal triangular subset fb1; b2; b5g, whi
h is not a 
hara
teristi
presentation of r = (A) : S1A sin
e the initial x2 of b2 is a divisor of zero modulo r.Moreover, r 
ontains no di�erentially triangular subset satisfying C1. Let us assumethe existen
e of su
h a set C and seek a 
ontradi
tion. This set redu
es b2 to zero. Soit 
ontains either a polynomial p 2 r \ K[x1; x2℄ of degree 1 in x2 (impossible) or apolynomial p 2 r \ K[x1; : : : ; x4℄ of degree 1 in x4, say p = a1 x4 + a0. In this latter
ase, p 2 (b1; b2) is a multiple of x2 and so is a1 whi
h is thus a divisor of zero modulo r(
ontradi
tion).A

ording to theorem 6.3, the regular ideal 
an be de
omposed as an interse
tionof regular ideals whi
h admit 
hara
teristi
 presentations. The ideal r = (A) : S1A isde
omposed as the interse
tion r = r1 \ r2 where r1 = r : x12 and r2 = r+ (x2). Here are
hara
teristi
 presentations of these two ideals.r18<: x5;x4;x22 + x1 ; r28<: x5;x24 + x3;x2:6.2. The main theoremTheorem 6.4. (the Rosenfeld{Gr�obner algorithm)If P0 = 0; S0 6= 0 is a di�erential system of a di�erential polynomial ring R then itis possible to 
ompute �nitely many regular di�erential systems given by 
hara
teristi
presentations Ci (i = 1; : : : ; n) su
h thatp =q[P0℄ : S10 = [C1℄ :H1C1 \ � � � \ [Cn℄ :H1Cn : (6.2)Operations needed are addition, multipli
ation, di�erentiation and equality test with zeroin the base �eld of R. This de
omposition may 
ontain 
omponents redundant w.r.t. p. Itprovides a normal simpli�er for the equivalen
e relation modulo this ideal i.e.p 2 p () p full{rem Ci = 0 (1 � i � n):Proof. The �rst 
laim is proven by theorems 5.1 and 6.3. The property of being anormal simpli�er is an immediate 
onsequen
e of 
ondition C1 of de�nition 6.1. 2By applying a primary de
omposition algorithm over the regular de
omposition of p,one would get a (redundant) di�erential prime de
omposition of p (see a remark belowtheorem 4.2). This algorithm would probably be mu
h more eÆ
ient than the 
hara
ter-isti
 sets algorithm of Ritt (1950) and would provide the same result.Remark that de
omposition of radi
al di�erential ideals in regular di�erential idealsdoes not depend on the base �eld whereas the de
omposition in prime di�erential idealsdoes.
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als of �nitely generated di�erential ideals 37The 
omputed representation of a radi
al di�erential ideal p is not 
anoni
al be
ause ofthe regular 
omponents whi
h may be redundant w.r.t. p. Moreover, even if r is a regulardi�erential ideal whi
h is not redundant w.r.t. p, there may exist among the minimaldi�erential prime 
omponents of r some di�erential ideals redundant w.r.t. p.De
iding whether a regular di�erential ideal is redundant or not w.r.t. a de
ompositionof type (6.2) is related to a famous open problem in di�erential algebra (Kol
hin, 1973,page 166).The 
omputed representation of p is therefore not a 
anoni
al simpli�er for the equiv-alen
e relation modulo p. However, being a normal simpli�er is enough for de
idingwhether two given di�erential polynomials p and q are equivalent modulo p for p � q ifand only if p� q � 0 modulo p.In the 
ase of di�erential ideals generated by only one di�erential polynomial, theproblem of the 
omputation of the minimal prime de
omposition is solved by the LowPower Theorem (Kol
hin, 1973, 
hapter IV, se
tion 15), mu
h studied by Ritt (1950)and Levi (1945). See also Hubert (1997) for an implementation of this theorem basedon the Rosenfeld{Gr�obner algorithm and a generalization of it to regular di�erentialde
ompositions.7. Formal power series solutions of regular di�erential idealsThe 
ontent of this se
tion is a variant of Seidenberg's results (Seidenberg, 1956, the-orem 11, page 59) (Seidenberg, 1958, Embedding theorem) and (Seidenberg, 1969). Wegive proofs for the sake of 
ompleteness and be
ause the hypotheses of Seidenberg's the-orems are slightly di�erent from ours. This se
tion was also partly inspired by (P�eladan-Germa, 1997).Let A = 0; S 6= 0 be a di�erential system of a di�erential polynomial ring R =Kfu1; : : : ; ung and R0 be the ring of the di�erential polynomials partially redu
edw.r.t. A.Let �0 be any algebrai
 solution of A = 0; S 6= 0, viewed as a non di�erential systemof R0. The solution �0 de�nes a K{algebra homomorphism �0 : R0 ! G where G issome �eld extension of K. Note �0 maps the elements of S to nonzero elements of G.We prove �rst (proposition 7.1) that �0 extends to a unique solution � of the di�erentialideal [A℄ : S1. Then we prove � is uniquely de�ned (proposition 7.2) and provides the
oeÆ
ients of a formal power series solution of [A℄ : S1 (proposition 7.3).Let v 2 �U be a derivative and let p = v partial{rem A. There exist then a powerprodu
t h of elements of S and a di�erential polynomial p 2 R0 su
h thath v � p (mod [A℄): (7.1)We de�ne �(v) = �0(p)=�0(h).Lemma 7.1. The map � is well de�ned (i.e. the de�nition does not depend on the dif-ferential polynomials h and p).Proof. Let h; p be the di�erential polynomials de�ned in 
ongruen
e (7.1). Assumethere exists another power produ
t h0 of elements of S and another di�erential poly-nomial p0 2 R0 su
h that h0 v � p0 (mod [A℄). We have hp0 � h0p 2 [A℄ : S1 \ R0.Sin
e A = 0; S 6= 0 is a regular di�erential system, Rosenfeld's lemma applies andhp0 � h0p 2 (A) : S1 when
e �0(p)=�0(h) = �0(p0)=�0(h0). 2



38 F. Boulier, D. Lazard, F. Ollivier, M. PetitotThe map � extends to a unique K{algebra homomorphism K[�U ℄ ! G that wedenote � also.Proposition 7.1. If p 2 [A℄ : S1 then �(p) = 0.Proof. First observe that if p is a proper derivative of some element of A then thereexists a possible partial redu
tion su
h that p partial{rem A = 0 ; a

ording to lemma 7.1we have �(p) = 0.Now, if p 2 [A℄ : S1 then �p = (p partial{rem A) 2 (A) : S1 by Rosenfeld's lemmawhen
e �(�p) = 0. Moreover, there exists a power produ
t h of elements of S su
h thath p � �p is equal to a linear 
ombination of proper derivatives of elements of A ; thus�(p) = �(�p)=�(h) = 0. 2Proposition 7.2. The homomorphism � is the unique K{algebra homomorphism ex-tending �0 whi
h maps [A℄ : S1 to zero.Proof. Assume there exists another homomorphism �0 extending �0 whi
h maps [A℄:S1to zero. Let v 2 �U be a derivative and h; p be the di�erential polynomials de�ned in
ongruen
e (7.1). We have �0(v) = �0(p)=�0(h) = �(v). 2If � = (�1; : : : ; �m) 2 Nm is a multi{index, and � = (�1; : : : ; �m) 2 Gm then wedenote � ! =Qmi=1 �i ! and (x� �)� = (x1 � �1)�1 � � � (xm � �m)�m and Æ� = Æ�11 � � � Æ�mm .To ea
h di�erential indeterminate u 2 U we 
an asso
iate a formal power series (� is thepoint of expansion of the series):�u = X�2Nm �(Æ�u)�! (x� �)�:The derivations de�ned over R a
t over su
h a formal power series a

ording to the rules:Æixi = 1; Æixj = 0; (i 6= j):Lemma 7.2. The substitution u! �u de�nes a di�erential homomorphism of K{algebraR! G[[x� �℄℄.We omit the proof whi
h is purely 
omputational.Proposition 7.3. The n{uple (�u1; : : : ; �un) is a di�erential solution of [A℄ : S1.Proof. Using lemma 7.2, for any di�erential polynomial p 2 R we havep(�u1; : : : ; �un) = X�2Nm �(Æ�p)�! (x� �)�hen
e p(�u1; : : : ; �un) = 0 if and only if �(Æ�p) = 0 for ea
h � 2 Nm. Sin
e � maps [A℄ :S1to zero and [A℄ : S1 is a di�erential ideal, for every p 2 [A℄ : S1 and every � 2 Nm wehave �(Æ�p) = 0 when
e p(�u1; : : : ; �un) = 0. 2A regular di�erential ideal may have a formal power series solution for initial 
onditions
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als of �nitely generated di�erential ideals 39whi
h annihilate some elements of S. The simplest example is probably u2x�4u = 0 withux 6= 0 and �0(ux) = 0 (the solution being u(x) = x2).The formal power series de�ned here do not belong to G[[x℄℄ but to G[[x� �℄℄. Fixingthe ring of formal power series where we seek solutions would �x the expansion point.Denef and Lipshitz (1984) showed that there does not exist any algorithm whi
h de
ideswhether systems of polynomial di�erential equations have solutions in a given ring offormal power series (see however their arti
le for exa
t statements).8. ExamplesWe detail the resolution of the system presented in the introdu
tion with the help ofthe diffalg pa
kage of MAPLE V.�8<: u2x � 4u = 0;uxy vy � u+ 1 = 0;vxx � ux = 0:The following instru
tions load the pa
kage and store in R the di�erential polynomialring Q (x; y)fu; vg endowed with derivations w.r.t. x and y and an orderly ranking over�fu; vg su
h that1 if ord(�) = ord(') then �u > 'v2 if ord(�) = ord(') and � > ' for the lexi
al order x > y then �u > 'u (idem for v).> with ( diffalg ):> R := differential_ring ( derivations = [x,y℄, ranking = [[u,v℄℄ ):The Rosenfeld{Gr�obner algorithm is 
alled and returns a list (understand \interse
tion")of regular di�erential ideals presented by 
hara
teristi
 sets. The ideals are stored inMAPLE tables. Only the names of the tables (i.e. \regular") get printed. Over thisexample, the list only involves one table.> Sigma := [ u[x℄^2 - 4*u[℄, u[x,y℄*v[y℄ - u[℄ + 1, v[x,x℄ - u[x℄ ℄:> ideal := Rosenfeld_Groebner ( Sigma, R );bytes used=1002848, allo
=851812, time=1.48ideal := [regular℄The following instru
tion displays the 
hara
teristi
 presentation of the regular idealas rewrite rules for Ritt's redu
tion algorithms: let p be a di�erential polynomial withrank vd ; then p = advd + ad�1vd�1 + � � �+ a0 for some di�erential polynomials a's (theinitial of p is ad). the di�erential polynomial p is displayed asvd = �ad�1vd�1 + � � �+ a0ad �> rewrite_rules ( ideal [1℄ );[vx; x = 2 uy vy�1 + u ; ux = 2 uy vy�1 + u ; uy2 = 2u; vy2 = 12 u2 � u + 12℄



40 F. Boulier, D. Lazard, F. Ollivier, M. PetitotLooking at the leaders of the di�erential polynomials we see that there are only threederivatives (i.e. u, v and vx) whi
h are not derivatives of the leader of any equation ofthe 
hara
teristi
 presentation. The solutions of � depend therefore on three arbitrary
onstants (the symbols starting with unders
ores denote initial 
onditions).> initial_
onditions ( ideal [1℄ );[ Cu; Cv; Cv x℄The following fun
tion 
all 
omputes two obje
ts from the 
omputed representation whi
hgive us formal power series solutions of �.1 a \generi
" formal power series solution of � expanded at the origin and up toorder 100 (the series turn out to be a polynomial) ; this is the returned value of thefun
tion 
all,2 a triangular system of non di�erential polynomial equations and inequations overthe initial 
onditions (this is returned in the output parameter syst).> generi
_series := power_series_solution ([x=0,y=0℄,100,ideal[1℄,'syst');generi
 series := [u(x; y) = Cu+ 2 x Cu y Cv y�1 + Cu + y Cu y� 12 x2 (�128 Cv y Cu3 + 384 Cv y Cu2 � 384 Cv y Cu+ 128 Cv y)64 Cv y Cu3 � 192 Cv y Cu2 + 192 Cv y Cu� 64 Cv y� x y (48 Cu2 � 48 Cu� 16 Cu3 + 16)16 Cv y� 32 Cv y Cu+ 16 Cv y Cu2 + 12 y2; v(x; y) = Cv+ x Cv x+ y Cv y+ x2 Cu y Cv y�1 + Cu + x y Cu y� 18 y2 (�2 Cu Cu y+ 2 Cu y)Cv y� 16 x3 (�128 Cv y Cu3 + 384 Cv y Cu2 � 384 Cv y Cu+ 128 Cv y)64 Cv y Cu3 � 192 Cv y Cu2 + 192 Cv y Cu� 64 Cv y� 12 x2 y (48 Cu2 � 48 Cu� 16 Cu3 + 16)16 Cv y� 32 Cv y Cu+ 16 Cv y Cu2� 12 x y2 (�128 Cv y Cu2 + 256 Cv y Cu� 128 Cv y)128 Cv y Cu2 � 256 Cv y Cu+ 128 Cv y� 16 y3 (�128 Cu3 + 384 Cu2 � 384 Cu+ 128)256 Cv y Cu2 � 512 Cv y Cu+ 256 Cv y ℄> syst;[� Cv xx+ Cv xx Cu� 2 Cu y Cv y = 0;� Cu x+ Cu x Cu� 2 Cu y Cv y = 0; �2 Cu+ Cu y2 = 0;� Cu2 + 2 Cu+ 2 Cv y2 � 1 = 0; Cv y 6= 0; Cu y 6= 0; �1 + Cu 6= 0℄A

ording to se
tion 7, every solution of syst furnishes a unique formal power seriessolution of �. A

ording to Lazard's lemma Cu, Cv and Cv x furnish a family of



Computing representations for radi
als of �nitely generated di�erential ideals 41abitrary parameters. Let's take Cu = 5, Cv = 421 and Cv x = �. The spe
ializedsystem has now only �nitely many solutions. Here is one of them, 
omputed from bottomup.algebrai
 solution := Cv xx = p10p2; Cu x = p10p2; Cu y = p10; Cv y = 2p2;Cu = 5; Cv = 421; Cv x = �The 
orresponding solutions of � are obtained by spe
ializing the formal power series ofgeneri
 series at algebrai
 solution.> subs ( algebrai
_solution, generi
_series );[u(x; y) = 5 + xp10p2 + yp10 + x2 + x yp2 + 12 y2; v(x; y) = 421 + x� + 2 yp2+ 12 x2p10p2 + x yp10 + 14 y2p10p2 + 13 x3 + 12 x2 yp2 + 12 x y2 + 112 y3p2℄8.1. Lie symmetries with automati
 dis
ussionThis example 
onsists in solving a system of linear partial di�erential equations de-pending on a parameter. By splitting 
ases, the Rosenfeld{Gr�obner algorithm a
tuallydis
usses the solutions w.r.t. the parameter. The example and a part of its analysis areborrowed from Reid (1991). It deals with Lie symmetries of di�erential equations. SeeOlver (1993) and (1995) for the mathemati
al theory. The following di�erential equationis a variant of the wave equation. The symbol H denotes an arbitrary fun
tion of u(x; y)(i.e. a parameter of the di�erential equation).EH : �2�x2 u(x; y) = �2�y2 u(x; y) +H(u(x; y)) ��y u(x; y)We are 
on
erned with the Lie symmetries of the equation (EH). Indeed, the graph of asolution of the equation (EH) is a set of points (x; y; u) 2 R3 ; a Lie symmetry of thisequation is a transformation (a lo
al di�eomorphism) whi
h maps the graphs of solutionsto the graphs of other solutions:8<: X = '1(x; y; u);Y = '2(x; y; u);U = '3(x; y; u):We are looking for ve
tor �eldsV = V 1(x; y; u) ��x + V 2(x; y; u) ��y + V 3(x; y; u) ��uwhose 
ows are the desired symmetries. The set of these ve
tor �elds form a Lie algebrai.e. a ve
tor spa
e endowed with a Lie bra
ket.With the help of the liesymm pa
kage of MAPLE, we build a system �H of linearpartial derivatives equations in the three di�erential indeterminates V 1, V 2 and V 3 andderivations w.r.t. x, y and u.�H = [V 1xx �H V 1y � 2V 3xu � V 1yy; V 2xx � V 2yy +H V 2y + V 3Hu + 2V 3yu;V 3xx �H V 3y � V 3yy; V 1uu; V 2uu; �2V 1xu + V 3uu; V 2u ; V 1u ; V 1x � V 2y ; V 2yu � V 1xu;V 2x � V 1y ; V 2xu � V 1yu℄



42 F. Boulier, D. Lazard, F. Ollivier, M. PetitotDerivatives of the parameter H appear in the 
oeÆ
ients of the linear di�erential equa-tions. We enlarge the system with the two following equations, to express the fa
t that Honly depends on u. Hx = 0; Hy = 0:We want to dis
uss w.r.t. H the stru
ture of the Lie algebra (in parti
ular, its di-mension as a ve
tor spa
e). For this reason, we 
onsider �H as a system of polynomialdi�erential equations in four di�erential indeterminates V 1, V 2, V 3 and H and we 
allthe Rosenfeld{Gr�obner algorithm with a ranking whi
h eliminates the V 's. By split-ting 
ases, the Rosenfeld{Gr�obner algorithm dis
usses the stru
ture of the Lie algebraw.r.t. H . Four regular systems are generated.In the paragraphs below, 
omputations of regular di�erential systems and Taylorexpansions of solutions are performed using the diffalg pa
kage. Outputs are prettyprinted. Taylors expansions are 
omputed in the neighborhoud of x = 0; y = 0; u = 0.The symbols starting with a C denote the 
onstants appearing in these developments(e.g. CH = H(0; 0; 0); CHu = Hu(0; 0; 0); : : :).8.1.1. First systemHere is the 
hara
teristi
 presentation of the �rst system.V 1x = 0; V 1y = 0; V 1u = 0; V 2x = 0; V 2y = 0; V 2u = 0; V 3 = 0; Hx = 0; Hy = 0There is no di�erential equation in H alone (ex
ept the two ones we have introdu
edabove). This 
ase 
orresponds to the general 
ase. The solutions of the V 's areV 1(x; y; u) = CV1;V 2(x; y; u) = CV2;V 3(x; y; u) = 0:The allowed transformations are translations in the (x; y) plane (�; � denote 
onstants):X = x+ �; Y = y + �; U = u:8.1.2. Se
ond systemHere is the 
hara
teristi
 presentation of the se
ond system.V 1x = �V 3HuH ; V 1y = 0; V 1u = 0; V 2x = 0; V 2y = �V 3HuH ; V 2u = 0; V 3x = 0; V 3y = 0;V 3u = ��V 3Hu2 +HuuH V 3HuH ; Huuu = ��2HHuu2 +Hu2HuuHuH ; Hx = 0; Hy = 0:This 
ase 
orresponds to any fun
tion H whi
h satis�es the third order di�erential equa-tion above. Computing Taylor expansions of solutions we getV 1(x; y; u) = CV1 � x CV3 CHuCH ;V 2(x; y; u) = CV2 � y CV3 CHuCH ;
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als of �nitely generated di�erential ideals 43V 3(x; y; u) = CV3 � u (�CV3 CHu2 + CHuu CH CV3)CHu CHThe Lie algebra has dimension three i.e. the solutions depend on the three arbitrary
onstants CV1, CV2 and CV3 (the 
onstants whi
h appear in the Taylor expansion of Hare supposed to be known).V = CV1 0� 100 1A+ CV2 0� 010 1A+ CV3 0BBBBB� �xCHuCH�yCHuCHCHu CH+ u (CHu2 � CHuu CH)
1CCCCCARemark we �nd again (setting CV3 = 0) the Lie symmetries of se
tion 8.1.1. Someother symmetries exist however in this parti
ular 
ase. A 
lass of fun
tions H whi
hsatisfy the third order di�erential equation above is given byH(u) = �u+ �where �; � are 
onstants (a
tually � = CHu and � = CH here sin
e solutions have beenexpanded at the origin). Setting CHu = CH = 1 we �nd the symmetry groupV = CV1 0� 100 1A+ CV2 0� 010 1A+ CV3 0� �x�yu+ 1 1AThe 
ows generated by the two �rst ve
tor �elds are translations in the (x; y) plane. Thethird ve
tor �eld generates the group of dilatations (where � denotes a 
onstant)X = x� ; Y = y�; U + 1 = � (u+ 1):8.1.3. Third systemThe third regular di�erential system 
orrespond to the 
ase H(u) = 
onstant.V 2xx = 0; V 3xx = H V 3y + V 3yy; V 3xu = �12 V 2x H; V 3yu = 0; V 3uu = 0; V 1x = 0;V 1y = V 2x ; V 1u = 0; V 2y = 0; V 2u = 0; Hx = 0; Hy = 0; Hu = 0:The solutions of the V 's areV 1(x; y; u) = CV1 + y CV2x;V 2(x; y; u) = CV2 + xCV2x;V 3(x; y; u) = CV3 + xCV3x + yCV3y + uCV3u + 12 x2(CH CV3y + CV3yy)+ x yCV3xy � 12 xuCV2x CH+ 12 y2 CV3yy + � � �The ve
tor �elds asso
iated to CV1 and CV2 generate the translations we already metin the general 
ase. The ve
tor �eld asso
iated to CV2x generates an hyperboli
 rotation� XY � = � a bb a � � xy � ; U = u e� 12 (Y�y)



44 F. Boulier, D. Lazard, F. Ollivier, M. Petitotwhere a2 � b2 = 1. The ve
tor �eld asso
iated to CV3u generates the group of dilatationsU = �u. The other symmetries depend on an arbitrary solution �(x; y) of the equationEH sin
e it is linear in this 
ase (see Olver (1993), page 124):V = �(x; y) ��u �8.1.4. Fourth systemThe fourth system 
orresponds to the wave equation (H(u) = 0). There are still moresymmetries than in the third 
ase. See Olver (1993), page 124 for their des
riptions.V 2xx = V 2yy; V 3xx = V 3yy; V 3xu = 0; V 3yu = 0; V 3uu = 0; V 1x = V 2y ; V 1y = V 2x ;V 1u = 0; V 2u = 0; H = 0:Con
lusionWe have des
ribed an algorithm whi
h 
omputes a representation of the radi
al p ofany �nitely generated di�erential ideal as an interse
tion of radi
al di�erential ideals.The representation separates the minimal di�erential prime 
omponents of p whi
h donot have the same dimension. It permits to 
ompute Taylor expansions of solutions of pand the Hilbert's polynomials asso
iated to its minimal di�erential prime 
omponents.The algorithm is implemented in MAPLE within a pa
kage. Its implementation is quitetri
ky: it applies an analogue of Bu
hberger's se
ond 
riterion, it manages to performGr�obner bases 
omputations in dimension zero and is able to reuse a representation of pfor a ranking to simplify the 
omputation of a representation of p for another ranking.Quite surprisingly, the algebrai
 
omputations turn out to be mu
h easier to handle thanone might fear.In order to prove and present our algorithm, we had to improve some of Kol
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omposition of a FinitelyGenerated Perfe
t Di�erential Ideal. Journal of Symboli
 Computation. (submitted).Bu
hberger, B. (1979). A 
riterion for dete
ting unne
essary redu
tions in the 
onstru
tion of Gr�obnerbases, volume 72 of LNCS, pages 3{21. Springer Verlag.Carra-Ferro, G. (1987). Gr�obner bases and di�erential ideals. In Notes of AAECC 5, pages 129{140,Menor
a, Spain. Springer Verlag.Cox, D., Little, J., O'Shea, D. (1992). Ideals, Varieties and Algorithms. An introdu
tion to 
omputa-tional algebrai
 geometry and 
ommutative algebra. Undergraduate Texts in Mathemati
s. SpringerVerlag, New York.



Computing representations for radi
als of �nitely generated di�erential ideals 45Denef, J., Lipshitz, L. (1984). Power Series Solutions of Algebrai
 Di�erential Equations. Mathematis
heAnnalen, 267:213{238.Eisenbud, D. (1995). Commutative Algebra with a View Toward Algebrai
 Geometry, volume 150 ofGraduate Texts in Mathemati
s. Springer Verlag.Gallo, G., Mishra, B., Ollivier, F. (1991). Some 
onstru
tions in rings of di�erential polynomials, volume539 of Le
ture Notes in Computer S
ien
e, pages 171{182. , Montr�eal, Canada.Gebauer, R., M�oller, H. M. (1988). On an Installation of Bu
hberger's Algorithm. Journal of Symboli
Computation, 6(2&3):275{286.Hubert, �E. (1997). �Etude Alg�ebrique et Algorithmique des Singularit�es des �Equations Di��erentiellesImpli
ites. PhD thesis, Institut National Polyte
hnique de Grenoble, Fran
e.Janet, M. (1920). Syst�emes d'�equations aux d�eriv�ees partielles, volume 3 of Journal de Math�ematiques,8e s�erie. Gauthier{Villars, Paris.Janet, M. (1929). Le�
ons sur les syst�emes d'�equations aux d�eriv�ees partielles, volume IV of CahiersS
ienti�ques. Gauthier{Villars, Paris.Kalkbrener, M. (1993). A Generalized Eu
lidean Algorithm for Computing Triangular Representationsof Algebrai
 Varieties. Journal of Symboli
 Computation, 15:143{167.Knuth, D. E. (1966). The art of 
omputer programming. Addison{Wesley.Kol
hin, E. R. (1973). Di�erential Algebra and Algebrai
 Groups. A
ademi
 Press, New York.K�onig, D. (1950). Theorie der endli
hen und unendli
hen Graphen. Chelsea publ. Co., New York.Lazard, D. (1992). Solving Zero{dimensional Algebrai
 Systems. Journal of Symboli
 Computation,13:117{131.Levi, H. (1945). The low power theorem for partial di�erential equations. Annals of the Mathemati
alSo
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