Computing representations for radicals of finitely generated differential ideals - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 1999

Computing representations for radicals of finitely generated differential ideals

Résumé

This paper deals with systems of polynomial differential equations, ordinary or with partial derivatives. The embedding theory is the differential algebra of Ritt and Kolchin. We describe an algorithm, named Rosenfeld-Gröbner, which computes a representation for the radical P of the differential ideal generated by any such system S. The computed representation constitutes a normal simplifier for the equivalence relation modulo P (it permits to test membership in P). It permits also to compute Taylor expansions of solutions of S. The algorithm is implemented within a package in MAPLE V.
Fichier principal
Vignette du fichier
blop97.pdf (487.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00139061 , version 1 (29-03-2007)

Identifiants

  • HAL Id : hal-00139061 , version 1

Citer

François Boulier, Daniel Lazard, François Ollivier, Michel Petitot. Computing representations for radicals of finitely generated differential ideals. 1999. ⟨hal-00139061⟩
874 Consultations
166 Téléchargements

Partager

More