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Fast learning rates in statistical inference through aggregation

We develop minimax optimal risk bounds for the general learning task consisting in predicting as well as the best function in a reference set G up to the smallest possible additive term, called the convergence rate. When the reference set is finite and when n denotes the size of the training data, we provide minimax convergence rates of the form C log |G| n v with tight evaluation of the positive constant C and with exact 0 < v ≤ 1, the latter value depending on the convexity of the loss function and on the level of noise in the output distribution.

The risk upper bounds are based on a sequential randomized algorithm, which at each step concentrates on functions having both low risk and low variance with respect to the previous step prediction function. Our analysis puts forward the links between the probabilistic and worst-case viewpoints, and allows to obtain risk bounds unachievable with the standard statistical learning approach. One of the key idea of this work is to use probabilistic inequalities with respect to appropriate (Gibbs) distributions on the prediction function space instead of using them with respect to the distribution generating the data.

The risk lower bounds are based on refinements of the Assouad lemma taking particularly into account the properties of the loss function. Our key example to illustrate the upper and lower bounds is to consider the L q -regression setting for which an exhaustive analysis of the convergence rates is given while q ranges in [1; +∞[.

Introduction

We are given a family G of functions and we want to learn from data a function that predicts as well as the best function in G up to some additive term called the convergence rate. Even when the set G is finite, this learning task is crucial since

• any continuous set of prediction functions can be viewed through its covering nets with respect to (w.r.t.) appropriate (pseudo-)distances and these nets are generally finite.

• one way of doing model selection among a finite family of submodels is to cut the training set into two parts, use the first part to learn the best prediction function of each submodel and use the second part to learn a prediction function which performs as well as the best of the prediction functions learned on the first part of the training set.

From this last item, our learning task for finite G is often referred to as model selection aggregation. It has two well-known variants. Instead of looking for a function predicting as well as the best in G, these variants want to perform as well as the best convex combination of functions in G or as well as the best linear combination of functions in G. These three aggregation tasks are linked in several ways (see [START_REF] Tsybakov | Optimal rates of aggregation[END_REF] and references within).

Nevertheless, among these learning tasks, model selection aggregation has rare properties. First, in general an algorithm picking functions in the set G is not optimal (see e.g. [8, Theorem 2], [44, Theorem 3], [23, p.14]).

This means that the estimator has to look at an enlarged set of prediction functions. Secondly, in the statistical community, the only known optimal algorithms are all based on a Cesaro mean of Bayesian estimators (also referred to as progressive mixture rule). Thirdly, the proof of their optimality is not achieved by the most prominent tool in statistical learning theory: bounds on the supremum of empirical processes (see [START_REF] Vapnik | Estimation of Dependences Based on Empirical Data[END_REF], and refined works as [START_REF] Bartlett | Localized rademacher complexities[END_REF][START_REF] Koltchinskii | Local rademacher complexities and oracle inequalities in risk minimization[END_REF][START_REF] Massart | Some applications of concentration inequalities to statistics[END_REF]19] and references within).

The idea of the proof, which comes back to Barron [START_REF] Barron | Are bayes rules consistent in information?[END_REF], is based on a chain rule and appeared to be successful for least square and entropy losses [START_REF] Catoni | A mixture approach to universal model selection[END_REF][START_REF] Catoni | Universal aggregation rules with exact bias bound[END_REF][START_REF] Barron | Information-theoretic determination of minimax rates of convergence[END_REF][START_REF] Yang | Combining different procedures for adaptive regression[END_REF][START_REF] Bunea | Sequential procedures for aggregating arbitrary estimators of a conditional mean[END_REF] and for general loss in [START_REF] Juditsky | Learning by mirror averaging[END_REF].

In the online prediction with expert advice setting, without any probabilistic assumption on the generation of the data, appropriate weighting methods have been showed to behave as well as the best expert up to a minimax-optimal additive remainder term (see [47,29] and references within). In this worst-case context, amazingly sharp constants have been found (see in particular [START_REF] Haussler | Sequential prediction of individual sequences under general loss functions[END_REF][START_REF] Cesa-Bianchi | How to use expert advice[END_REF][START_REF] Cesa-Bianchi | On prediction of individual sequences[END_REF][START_REF] Yaroshinsky | How to better use expert advice[END_REF]). These results are expressed in cumulative loss and can be transposed to model selection aggregation to the extent that the expected risk of the randomized procedure based on sequential predictions is proportional to the expectation of the cumulative loss of the sequential procedure (see Lemma 4.3 

for precise statement).

This work presents a sequential algorithm, which iteratively updates a prior distribution put on the set of prediction functions. Con-trarily to previously mentioned works, these updates take into account the variance of the task. As a consequence, posterior distributions concentrate on simultaneously low risk functions and functions close to the previously drawn prediction function. This conservative law is not surprising in view of previous works on high dimensional statistical tasks, such as wavelet thresholding, shrinkage procedures, iterative compression schemes ( [START_REF] Audibert | A better variance control for PAC-Bayesian classification[END_REF]), iterative feature selection ( [START_REF] Alquier | Iterative feature selection in least square regression estimation[END_REF]).

The paper is organized as follows. Section 2 introduces the notation and the existing algorithms. Section 3 proposes a unifying setting to combine worst-case analysis tight results and probabilistic tools. It details our sequentially randomized estimator and gives a sharp expected risk bound. In Sections 4 and 5, we show how to apply our main result under assumptions coming respectively from sequential prediction and model selection aggregation. While all this work concentrates on stating results when the data are independent and identically distributed, Section 4.2 collects new results for sequential predictions, i.e. when no probabilistic assumption is made and when the data points come one by one (i.e. not in a batch manner). Section 6 contains algorithms that satisfy sharp standard-style generalization error bounds. To the author's knowledge, these bounds are not achievable with classical statistical learning approach based on supremum of empirical processes.

Here the main trick is to use probabilistic inequalities w.r.t. appropriate distributions on the prediction function space instead of using them w.r.t. the distribution generating the data. Section 7 presents an improved bound for L q -regression (q > 1) when the noise has just a bounded moment of order s ≥ q. This last assumption is much weaker than the traditional exponential moment assumption. Section 8 refines Assouad's lemma in order to obtain sharp constants and to take into account the properties of the loss function of the learning task. We illustrate our results by providing lower bounds matching the upper bounds obtained in the previous sections and by improving significantly the constants in lower bounds concerning Vapnik-Cervonenkis classes in classification. Section 9 summarizes the contributions of this work and lists some related open problems.

Notation and existing algorithms

We assume that we observe n pairs Z 1 = (X 1 , Y 1 ), . . . , Z n = (X n , Y n ) of input-output and that each pair has been independently drawn from the same unknown distribution denoted P . The input and output space are denoted respectively X and Y, so that P is a probability distribution on the product space Z X × Y. The target of a learning algorithm is to predict the output Y associated with an input X for pairs (X, Y ) drawn from the distribution P . In this work, Z n+1 will denote a random variable independent of the training set Z n 1 (Z 1 , . . . , Z n ) and with the same distribution P . The quality of a prediction function g : X → Y is measured by the risk (also called expected loss or regret): R(g) E Z∼P L(Z, g), where L(Z, g) assesses the loss of considering the prediction function g on the data Z ∈ Z. The symbol is used to underline that the equality is a definition. When there is no ambiguity on the distribution that a random variable has, the expectation w.r.t. this distribution will simply be written by indexing the expectation sign E by the random variable. For instance, we can write R(g) E Z L(Z, g). More generally, when they are multiple sources of randomness, E Z means that we take the expectation with respect to the conditional distribution of Z knowing all other sources of randomness.

We use L(Z, g) rather than L[Y, g(X)] to underline that our results are not restricted to non-regularized losses, where we call nonregularized loss a loss that can be written as ℓ[Y, g(X)] for some function ℓ : Y × Y → R.

For any i ∈ {0, . . . , n}, the cumulative loss suffered by the prediction function g on the first i pairs of input-output, denoted Z i 1 for short, is

Σ i (g) i j=1 L(Z j , g),
where by convention we take Σ 0 identically equal to zero. The symbol ≡ is used to underline when a function is identical to a constant (e.g. Σ 0 ≡ 0). With slight abuse, a symbol denoting a constant function may be used to denote the value of this function.

We assume that the set, denoted Ḡ, of all prediction functions has been equipped with a σ-algebra. Let D be the set of all probability distributions on Ḡ. By definition, a randomized algorithm produces a prediction function drawn according to a probability in D. Let P be a set of probability distributions on Z in which we assume that the true unknown distribution generating the data is. The learning task is essentially described by the 3-tuple (G, L, P ) since we look for a possibly randomized estimator (or algorithm) ĝ such that sup

P ∈P E Z n 1 R(ĝ Z n 1 ) -min g∈G R(g)
is minimized, where we recall that R(g) E Z∼P L(Z, g). To shorten notation, when no confusion can arise, the dependence of ĝZ n 1 w.r.t. the training sample Z n 1 will be dropped and we will simply write ĝ. This means that we use the same symbol for both the algorithm and the prediction function produced by the algorithm on a training sample.

We implicitly assume that the quantities we manipulate are measurable: in particular, we assume that a prediction function is a measurable function from X to Y, the mapping (x, y, g) → L[(x, y), g] is measurable, the estimators considered in our lower bounds are measurable, . . .

The n-fold product of a distribution µ, which is the distribution of a vector consisting in n i.i.d. realizations of µ, is denoted µ ⊗n . For instance the distribution of (Z 1 , . . . , Z n ) is P ⊗n .

The symbol C will denote some positive constant whose value may differ from line to line. The set of non-negative real numbers is denoted R + = [0; +∞[. We define ⌊x⌋ as the largest integer k such that k ≤ x. To shorten notation, any finite sequence a 1 , . . . , a n will occasionally be denoted a n 1 . For instance, the training set is Z n 1 . To handle possibly continuous set G, we consider that G is a measurable space and that we have some prior distribution π on it. The set of probability distributions on G will be denoted M. The Kullback-Leibler divergence between a distribution ρ ∈ M and the prior distribution π is

K(ρ, π) E g∼ρ log ρ π (g) if ρ ≪ π, +∞ otherwise
where ρ π denotes the density of ρ w.r.t. π when it exists (i.e. ρ ≪ π). For any ρ ∈ M, we have K(ρ, π) ≥ 0 and when π is the uniform distribution on a finite set G, we also have K(ρ, π) ≤ log |G|. The Kullback-Leibler divergence satisfies the duality formula (see e.g. [24, p.10]): for any real-valued measurable function h defined on G, inf ρ∈M E g∼ρ h(g) + K(ρ, π) =log E g∼π e -h(g) .

(2.1)

and that the infimum is reached for the Gibbs distribution π -h (dg)

e -h(g) E g ′ ∼π e -h(g ′ ) • π(dg).

(2.2)

Intuitively, the Gibbs distribution π -h concentrates on prediction functions g that are close to minimizing the function h : G → R.

For any ρ ∈ M, E g∼ρ g : x → E g∼ρ g(x) = g(x)ρ(dg) is called a mixture of prediction functions. When G is finite, a mixture is simply a convex combination. Throughout this work, whenever we consider mixtures of prediction functions, we implicitly assume that E g∼ρ g(x) belongs to Y for any x so that the mixture is a prediction function. This is typically the case when Y is an interval of R.

We will say that the loss function is convex when the function g → L(z, g) is convex for any z ∈ Z, equivalently L(z, E g∼ρ g) ≤ E g∼ρ L(z, g) for any ρ ∈ M and z ∈ Z. In this work, we do not assume the loss function to be convex except when it is explicitly mentioned.

The algorithm used to prove optimal convergence rates for several different losses (see e.g. [START_REF] Catoni | A mixture approach to universal model selection[END_REF][START_REF] Catoni | Universal aggregation rules with exact bias bound[END_REF][START_REF] Barron | Information-theoretic determination of minimax rates of convergence[END_REF][START_REF] Blanchard | The progressive mixture estimator for regression trees[END_REF][START_REF] Yang | Combining different procedures for adaptive regression[END_REF][START_REF] Bunea | Sequential procedures for aggregating arbitrary estimators of a conditional mean[END_REF][START_REF] Juditsky | Learning by mirror averaging[END_REF]) is the following:

Algorithm A: Let λ > 0. Predict according to 1 n+1 n i=0 E g∼π -λΣ i g,
where we recall that Σ i maps a function g ∈ G to its cumulative loss up to time i.

In other words, for a new input x, the prediction of the output given by Algorithm A is 1 n+1 n i=0 g(x)e -λΣ i (g) π(dg) e -λΣ i (g) π(dg) . Algorithm A has also been used with the classification loss. For this non-convex loss, it has the same properties as the empirical risk minimizer on G ([43, 42]). To give the optimal convergence rate, the parameter λ and the distribution π should be appropriately chosen. When G is finite, the estimator belongs to the convex hull of the set G.

From Vovk, Haussler, Kivinen and Warmuth works ( [START_REF] Vovk | Aggregating strategies[END_REF][START_REF] Haussler | Sequential prediction of individual sequences under general loss functions[END_REF][START_REF] Vovk | A game of prediction with expert advice[END_REF]) and the link between cumulative loss in online setting and expected risk in the batch setting (see later Lemma 4.3), an "optimal" algorithm is:

Algorithm B: Let λ > 0.
For any i ∈ {0, . . . , n}, let ĥi be a prediction function such that

∀ z ∈ Z L(z, ĥi ) ≤ - 1 λ log E g∼π -λΣ i e -λL(z,g) .
If one of the ĥi does not exist, the algorithm is said to fail. Otherwise it predicts according to 1 n+1 n i=0 ĥi . In particular, for appropriate λ > 0, this algorithm does not fail when the loss function is the square loss (i.e. L(z, g) = [yg(x)] 2 ) and when the output space is bounded. Algorithm B is based on the same Gibbs distribution π -λΣi as Algorithm A. Besides, in [START_REF] Haussler | Sequential prediction of individual sequences under general loss functions[END_REF]Example 3.13], it is shown that Algorithm A is not in general a particular case of Algorithm B, and that Algorithm B will not generally produce a prediction function in the convex hull of G unlike Algorithm A. In Sections 4 and 5, we will see how both algorithms are connected to the SeqRand algorithm presented in the next section.

The algorithm and its generalization error bound

The aim of this section is to build an algorithm with the best possible minimax convergence rate. The algorithm relies on the following central condition for which we recall that G is a subset of the set Ḡ of all prediction functions and that M and D are the sets of all probability distributions on respectively G and Ḡ.

For any λ > 0, let δ λ be a real-valued function defined on Z × G × Ḡ that satisfies the following inequality, which will be referred to as the variance inequality

∀ ρ ∈ M ∃ π(ρ) ∈ D sup P ∈P E Z∼P E g ′ ∼π(ρ) log E g∼ρ e λ L(Z,g ′ )-L(Z,g)-δ λ (Z,g,g ′ ) ≤ 0.
The variance inequality is our probabilistic version of the generic algorithm condition in the online prediction setting (see [56, proof of Theorem 1] or more explicitly in [37, p.11]), in which we added the variance function δ λ . Our results will be all the sharper as this variance function is small. To make the variance inequality more readable, let us say for the moment that • without any assumption on P, for several usual "strongly" convex loss functions, we may take δ λ ≡ 0 provided that λ is a small enough constant (see Section 4).

• the variance inequality can be seen as a "small expectation" inequality. The usual viewpoint is to control the quantity L(Z, g) by its expectation w.r.t. Z and a variance term. Here, roughly, L(Z, g) is mainly controlled by L(Z, g ′ ) where g ′ is appropriately chosen through the choice of π(ρ), plus the additive term δ λ . By definition this additive term does not depend on the particular probability distribution generating the data and leads to empirical compensation.

• in the examples we will be interested in throughout this work, π(ρ) will be either equal to ρ or to a Dirac distribution on some function, which is not necessarily in G.

• for any loss function L, any set P and any λ > 0, one may choose δ λ (Z, g, g ′ ) = λ 2 L(Z, g) -L(Z, g ′ ) 2 (see Section 6).

Our results concern the sequentially randomized algorithm described in Figure 1, which for sake of shortness we will call the SeqRand algorithm. Remark 3.1. When δ λ (Z, g, g ′ ) does not depend on g, we recover a more standard-style algorithm to the extent that we then have π -λSi = π -λΣi . Precisely our algorithm becomes the randomized version of Algorithm A. When δ λ (Z, g, g ′ ) depends on g, the posterior distributions tend to concentrate on functions having small risk and small variance term. In Section 6, we will take

δ λ (Z, g, g ′ ) = λ 2 L(Z, g) -L(Z, g ′ ) 2 .
This choice implies a conservative mechanism: roughly, with high probability, among functions having low cumulative risk Σ i , ĝi will be chosen close to ĝi-1 .

For any i ∈ {0, . . . , n}, the quantities S i , ρi and ĝi depend on the training data only through Z i 1 , where we recall that Z i 1 denotes

Input: λ > 0 and π a distribution on the set G.

1. Define ρ0 π(π) in the sense of the variance inequality (p.7) and draw a function ĝ0 according to this distribution. Let S 0 (g) = 0 for any g ∈ G.

2. For any i ∈ {1, . . . , n}, iteratively define

S i (g) S i-1 (g) + L(Z i , g) + δ λ (Z i , g, ĝi-1 ) for any g ∈ G. (3.1) 
and ρi π(π -λS i ) in the sense of the variance inequality (p.7) and draw a function ĝi according to the distribution ρi .

3. Predict with a function drawn according to the uniform distribution on the finite set {ĝ 0 , . . . , ĝn }. Conditionally to the training set, the distribution of the output prediction function will be denoted μ.

Figure 1: The SeqRand algorithm (Z 1 , . . . , Z i ). Besides they are also random to the extent that they depend on the draws of the functions ĝ0 , . . . , ĝi-1 .

The SeqRand algorithm produces a prediction function which has three causes of randomness: the training data, the way ĝi is obtained (step 2) and the uniform draw (step 3). For fixed Z i 1 (i.e. conditional to Z i 1 ), let Ω i denote the joint distribution of ĝi 0 = (ĝ 0 , . . . , ĝi ). The randomizing distribution μ of the output prediction function by SeqRand is the distribution on Ḡ corresponding to the last two causes of randomness. From the previous definitions, for any function h : Ḡ → R, we have

E g∼μ h(g) = E ĝn 0 ∼Ωn 1 n+1 n i=0 h(ĝ i ). Our main upper bound controls the expected risk E Z n 1 E g∼μ R(g) of the SeqRand procedure. Theorem 3.1. Let ∆ λ (g, g ′ ) E Z∼P δ λ (Z, g, g ′
) for g ∈ G and g ′ ∈ Ḡ, where we recall that δ λ is a function satisfying the variance inequality (see p.7). The expected risk of the SeqRand algorithm satisfies

E Z n 1 E g ′ ∼μ R(g ′ ) ≤ min ρ∈M E g∼ρ R(g) + E g∼ρ E Z n 1 E g ′ ∼μ ∆ λ (g, g ′ ) + K(ρ,π) λ(n+1) (3.
2) In particular, when G is finite and when the loss function L and the set P are such that δ λ ≡ 0, by taking π uniform on G, we get

E Z n 1 E g∼μ R(g) ≤ min G R + log |G| λ(n+1) (3.3) 
Proof. Let E denote the expected risk of the SeqRand algorithm:

E E Z n 1 E g∼μ R(g) = 1 n+1 n i=0 E Z i 1 E ĝi 0 ∼Ωi R(ĝ i ).
We recall that Z n+1 is a random variable independent of the training set Z n 1 and with the same distribution P . Let S n+1 be defined by (3.1) for i = n + 1. To shorten formulae, let πi π -λSi so that by definition we have ρi = π(π i ). The variance inequality implies that

E g ′ ∼π(ρ) R(g ′ ) ≤ -1 λ E Z E g ′ ∼π(ρ) log E g∼ρ e -λ[L(Z,g)+δ λ (Z,g,g ′ )]
.

So for any i ∈ {0, . . . , n}, for fixed ĝi-1 0 = (ĝ 0 , . . . , ĝi-1 ) and fixed Z i 1 , we have

E g ′ ∼ ρi R(g ′ ) ≤ -1 λ E Zi+1 E g ′ ∼ ρi log E g∼πi e -λ[L(Zi+1,g)+δ λ (Zi+1,g,g ′ )]
Taking the expectations w.r.t. (Z i 1 , ĝi-1 0 ), we get

E Z i 1 E ĝi 0 R(ĝ i ) = E Z i 1 E ĝi-1 0 E g ′ ∼ ρi R(g ′ ) ≤ -1 λ E Z i+1 1 E ĝi 0 log E g∼πi e -λ[L(Zi+1,g)+δ λ (Zi+1,g,ĝi)] .
Consequently, by the chain rule (i.e. cancellation in the sum of logarithmic terms; [START_REF] Barron | Are bayes rules consistent in information?[END_REF]) and by intensive use of Fubini's theorem, we get

E = 1 n+1 n i=0 E Z i 1 E ĝi 0 R(ĝ i ) ≤ -1 λ(n+1) n i=0 E Z i+1 1 E ĝi 0 log E g∼πi e -λ[L(Zi+1,g)+δ λ (Zi+1,g,ĝi)] = -1 λ(n+1) E Z n+1 1 E ĝn 0 n i=0 log E g∼πi e -λ[L(Zi+1,g)+δ λ (Zi+1,g,ĝi)] = -1 λ(n+1) E Z n+1 1 E ĝn 0 n i=0 log Eg∼π e -λS i+1 (g) Eg∼π e -λS i (g) = -1 λ(n+1) E Z n+1 1 E ĝn 0 log Eg∼π e -λS n+1 (g) Eg∼π e -λS 0 (g) = -1 λ(n+1) E Z n+1 1 E ĝn 0 log E g∼π e -λSn+1(g)
Now from the following lemma, we obtain

E ≤ -1 λ(n+1) log E g∼π e -λE Z n+1 1 E ĝn 0 Sn+1(g) = -1 λ(n+1) log E g∼π e -λ (n+1)R(g)+E Z n 1 E ĝn 0 n i=0 ∆ λ (g,ĝi) = min ρ∈M E g∼ρ R(g) + E g∼ρ E Z n 1 E ĝn 0 n i=0 ∆ λ (g,ĝi) n+1 + K(ρ,π) λ(n+1) .
Lemma 3.2. Let W be a real-valued measurable function defined on a product space A 1 × A 2 and let µ 1 and µ 2 be probability distributions on respectively A 1 and A 2 such that E a1∼µ1 log E a2∼µ2 e -W(a1,a2) < +∞.

We have

-E a1∼µ1 log E a2∼µ2 e -W(a1,a2) ≤ -log E a2∼µ2 e -Ea 1 ∼µ 1 W(a1,a2) .
Proof. By using twice (2.1) and Fubini's theorem, we have a2) .

-E a1 log E a2∼µ2 e -W(a1,a2) = E a1 inf ρ E a2∼ρ W(a 1 , a 2 ) + K(ρ, µ 2 ) ≤ inf ρ E a1 E a2∼ρ W(a 1 , a 2 ) + K(ρ, µ 2 ) = -log E a2∼µ2 e -Ea 1 W(a1,
Inequality (3.3) is a direct consequence of (3.2).
Theorem 3.1 bounds the expected risk of a randomized procedure, where the expectation is taken w.r.t. both the training set distribution and the randomizing distribution. From the following lemma, for convex loss functions, (3.3) implies

E Z n 1 R(E g∼μ g) ≤ min G R + log |G| λ(n+1) , (3.4) 
where we recall that μ is the randomizing distribution of the SeqRand algorithm and λ is a parameter whose typical value is the largest λ > 0 such that δ λ ≡ 0.

Lemma 3.3. For convex loss functions, the doubly expected risk of a randomized algorithm is greater than the expected risk of the deterministic version of the randomized algorithm, i.e. if ρ denotes the randomizing distribution, we have

E Z n 1 R(E g∼ ρ g) ≤ E Z n 1 E g∼ ρ R(g). Proof.
The result is a direct consequence of Jensen's inequality.

In [START_REF] Cesa-Bianchi | How to use expert advice[END_REF], the authors rely on worst-case analysis to recover standardstyle statistical results such as Vapnik's bounds [START_REF] Vapnik | The nature of statistical learning theory[END_REF]. Theorem 3.1 can be seen as a complement to this pioneering work. Inequality (3.4) is the model selection bound that is well-known for least square regression and entropy loss, and that has been recently proved for general losses in [START_REF] Juditsky | Learning by mirror averaging[END_REF].

Let us discuss the generalized form of the result. The r.h.s. of (3.2) is a classical regularized risk, which appears naturally in the PAC-Bayesian approach (see e.g. [START_REF] Catoni | Statistical Learning Theory and Stochastic Optimization: Ecole d'été de Probabilités de Saint-Flour XXXI -2001[END_REF][START_REF] Catoni | A PAC-Bayesian approach to adaptive classification[END_REF][START_REF] Audibert | PAC-Bayesian statistical learning theory[END_REF][START_REF] Zhang | Information theoretical upper and lower bounds for statistical estimation[END_REF]). An advantage of stating the result this way is to be able to deal with uncountable infinite G. Even when G is countable, this formulation has some benefit to the extent that for any measurable function h :

G → R, min ρ∈M {E g∼ρ h(g) + K(ρ, π)} ≤ min g∈G {h(g) + log π -1 (g)}.
Our generalization error bounds depend on two quantities λ and π which are the parameters of our algorithm. Their choice depends on the precise setting. Nevertheless, when G is finite and with no particular structure a priori, a natural choice for π is the uniform distribution on G.

Once the distribution π is fixed, an appropriate choice for the parameter λ is the minimizer of the r.h.s. of (3.2). This minimizer is unknown by the statistician, and it is an open problem to adaptively choose λ close to it in this general context. Solutions for specific sequential prediction frameworks are known (see [10, Section 2] and [START_REF] Cesa-Bianchi | Improved secondorder bounds for prediction with expert advice[END_REF]Lemma 3]). They are based on incremental updating of λ. In appendix, one may found a slight improvement of the argument used in the forementioned works, based on Lemma D.2.

Link with sequential prediction

This section aims at providing examples for which the variance inequality (p.7) holds, at stating results coming from the online learning community in our batch setting (Section 4.1), and at providing new results for the sequential prediction setting in which no probabilistic assumption is made on the way the data are generated (Section 4.2).

From online to batch

In [START_REF] Vovk | Aggregating strategies[END_REF][START_REF] Haussler | Sequential prediction of individual sequences under general loss functions[END_REF][START_REF] Vovk | A game of prediction with expert advice[END_REF], the loss function is assumed to satisfy: there are positive numbers η and c such that

∀ ρ ∈ M ∃ g ρ : X → Y ∀ x ∈ X ∀ y ∈ Y L[(x, y), g ρ ] ≤ -c η log E g∼ρ e -ηL[(x,y),g] (4.1) 
Remark 4.1. If g → e -ηL(z,g) is concave, then (4.1) holds for c = 1 (and one may take g ρ = E g∼ρ g).

Assumption (4.1) implies that the variance inequality is satisfied both for λ = η and δ λ (Z, g, g ′ ) = (1 -1/c)L(Z, g ′ ) and for λ = η/c and δ λ (Z, g, g ′ ) = (c -1)L(Z, g), and we may take in both cases π(ρ) as the Dirac distribution at g ρ . This leads to the same procedure that is described in the following straightforward corollary of Theorem 3.1.

Corollary 4.1. Let g π-ηΣ i be defined in the sense of (4.1) (for ρ = π -ηΣi ). Consider the algorithm which predicts by drawing a function in {g π-ηΣ 0 , . . . , g π-ηΣ n } according to the uniform distribution. Under Assumption (4.1), its expected risk

E Z n 1 1 n+1 n i=0 R(g π-ηΣ i ) is upper bounded by c min ρ∈M E g∼ρ R(g) + K(ρ,π) η(n+1) . (4.2) 
This result is not surprising in view of the following two results. The first one comes from worst-case analysis in sequential prediction. Theorem 4.2 (Haussler et al. [START_REF] Haussler | Sequential prediction of individual sequences under general loss functions[END_REF], Theorem 3.8). Let G be countable. For any g ∈ G, let Σ i (g) = i j=1 L(Z j , g) (still) denote the cumulative loss up to time i of the expert which always predicts according to function g. Under Assumption (4.1), the cumulative loss on Z n 1 of the strategy in which the prediction at time i is done according to g π-ηΣ i-1 in the sense of (4.1) (for ρ = π -ηΣi-1 ) is bounded by

inf g∈G {cΣ n (g) + c η log π -1 (g)}. ( 4.3) 
The second result shows how the previous bound can be transposed into our model selection context by the following lemma. Lemma 4.3. Let A be a learning algorithm which produces the prediction function A(Z i 1 ) at time i + 1, i.e. from the data Z i 1 = (Z 1 , . . . , Z i ). Let L be the randomized algorithm which produces a prediction function L(Z n 1 ) drawn according to the uniform distribution on {A(∅), A(Z 1 ), . . . , A(Z n 1 )}. The (doubly) expected risk of L is equal to 1 n+1 times the expectation of the cumulative loss of A on the sequence Z 1 , . . . , Z n+1 .

Proof. By Fubini's theorem, we have

ER[L(Z n 1 )] = 1 n+1 n i=0 E Z n 1 R[A(Z i 1 )] = 1 n+1 n i=0 E Z i+1 1 L[Z i+1 , A(Z i 1 )] = 1 n+1 E Z n+1 1 n i=0 L[Z i+1 , A(Z i 1 )].
For any η > 0, let c(η) denote the infimum of the c for which (4.1) holds. Under weak assumptions, Vovk ([57]) proved that the infimum exists and studied the behavior of c(η) and a(η) = c(η)/η, which are key quantities of (4.2) and (4.3). Under weak assumptions, and in particular in the examples given in Table 1, the optimal constants in (4.3) are c(η) and a(η) ([57, Theorem 1]) and we have c(η) ≥ 1, η → c(η) nondecreasing and η → a(η) nonincreasing. From these last properties, we understand the trade-off which occurs to choose the optimal η.

Output space

Loss L(Z,g)

c(η) Entropy loss Y = [0; 1] Y log Y g(X) c(η) = 1 if η ≤ 1 [37, Example 4.3] +(1 -Y ) log 1-Y 1-g(X) c(η) = ∞ if η > 1 Absolute loss game Y = [0; 1] |Y -g(X)| η 2 log[2/(1+e -η )] [37, Section 4.2] = 1 + η/4 + o(η) Square loss Y = [-B, B] [Y -g(X)] 2 c(η) = 1 if η ≤ 1/(2B 2 ) [37, Example 4.4] c(η) = +∞ if η > 1/(2B 2 ) Lq-loss Y = [-B, B] |Y -g(X)| q c(η) = 1 (see p. 14) q > 1 if η ≤ q-1 qB q (1 ∧ 2 2-q )
Table 1: Value of c(η) for different loss functions. Here B denotes a positive real.

Table 1 specifies (4.2) in different well-known learning tasks. For instance, for bounded least square regression (i.e. when |Y | ≤ B for some B > 0), the generalization error of the algorithm described in Corollary 4.1 when η = 1/(2B 2 ) is upper bounded by

min ρ∈M E g∼ρ R(g) + 2B 2 K(ρ,π) n+1 . (4.4) 
The constant appearing in front of the Kullback-Leibler divergence is much smaller than the ones obtained in unbounded regression setting even with gaussian noise and bounded regression function (see [START_REF] Bunea | Sequential procedures for aggregating arbitrary estimators of a conditional mean[END_REF][START_REF] Juditsky | Learning by mirror averaging[END_REF] and [25, p.87]). The differences between these results partly comes from the absence of boundedness assumptions on the output and from the weighted average used in the aforementioned works. Indeed the weighted average prediction function, i.e. E g∼ρ g, does not satisfy (4.1) for c = 1 and η = 1/(2B 2 ) as was pointed out in [START_REF] Haussler | Sequential prediction of individual sequences under general loss functions[END_REF]Example 3.13]. Nevertheless, it satisfies (4.1) for c = 1 and η ≤ 1/(8B 2 ) (by using the concavity of x → e -x 2 on [-1/ √ 2; 1/ √ 2] and Remark 4.1), which leads to similar but weaker bound (see (4.2)).

Case of the L q -losses. To deal with these losses, we need the following slight generalization of the result given in Appendix A of [START_REF] Kivinen | Averaging expert predictions[END_REF]. 

η ≤ inf a≤y1<y<y2≤b ℓ ′ y 1 (y)ℓ ′′ y 2 (y)-ℓ ′′ y 1 (y)ℓ ′ y 2 (y) ℓ ′ y 1 (y)[ℓ ′ y 2 (y)] 2 -[ℓ ′ y 1 (y)] 2 ℓ ′ y 2 (y) , (4.5) 
where the infimum is taken w.r.t. y 1 , y and y 2 .

Proof. See Section 10.1.

Remark 4.2. This result simplifies the original one to the extent that ℓ y does not need to be twice differentiable at point y and the range of values for y in the infimum is (y 1 ; y 2 ) instead of (a; b).

Corollary 4.5. For the L q -loss, when Y = [-B; B] for some B > 0, condition (4.1) is satisfied for c = 1 and

η ≤ q-1 qB q (1 ∧ 2 2-q )
Proof. We apply Theorem 4.4. By simple computations, the r.h.s. of (4.5) is inf

-B≤y1<y<y2≤B (q-1)(y2-y1) q(y-y1)(y2-y)[(y-y1) q-1 +(y2-y) q-1 ] = q-1 q(2B) q inf 0<t<1 1 t(1-t)[t q-1 +(1-t) q-1 ]
For 1 < q ≤ 2, the infimum is reached for t = 1/2 and (4.5) can be written as η ≤ q-1 qB q . For q ≥ 2, since the previous infimum is larger than inf 0<t<1 1 t(1-t) = 4, (4.5) is satisfied at least when η ≤ 4(q-1) q (2B) q .

Sequential prediction

First note that using Corollary 4.5 and Theorem 4.2, we obtain a new result concerning sequential prediction for L q loss. Nevertheless this result is not due to our approach but on a refinement of the argument in [START_REF] Kivinen | Averaging expert predictions[END_REF]Appendix A]. In this section, we will rather concentrate on giving results for sequential prediction coming from the arguments underlying Theorem 3.1.

In the online setting, the data points come one by one and there is no probabilistic assumption on the way they are generated. In this case, one should modify the definition of the variance function into: for any λ > 0, let δ λ be a real-valued function defined on Z × G × Ḡ that satisfies the following online variance inequality

∀ ρ ∈ M ∃ π(ρ) ∈ D ∀ Z ∈ Z E g ′ ∼π(ρ) log E g∼ρ e λ L(Z,g ′ )-L(Z,g)-δ λ (Z,g,g ′ ) ≤ 0.
The only difference with the variance inequality (defined in p.7) is the removal of the expectation with respect to Z. Naturally if δ λ satisfies the online variance inequality, then it satisfies the variance inequality. The online version of the SeqRand algorithm is described in Figure 2. It satisfies the following theorem whose proof follows the same line as the one of Theorem 3.1.

Input: λ > 0 and π a distribution on the set G.

Define ρ0

π(π) in the sense of the online variance inequality (p.15) and draw a function ĝ0 according to this distribution. For data Z 1 , predict according to ĝ0 . Let S 0 (g) = 0 for any g ∈ G.

2. For any i ∈ {1, . . . , n -1}, define S i (g) S i-1 (g) + L(Z i , g) + δ λ (Z i , g, ĝi-1 ) for any g ∈ G.

and ρi π(π -λS i ) in the sense of the online variance inequality (p.15) and draw a function ĝi according to the distribution ρi . For data Z i+1 , predict according to ĝi . 

E ĝi-1 L(Z i , ĝi-1 ) ≤ min ρ∈M E g∼ρ n i=1 L(Z i , g)+E g∼ρ E ĝn-1 0 n i=1 δ λ (Z i , g, ĝi-1 )+ K(ρ, π) λ
In particular, when G is finite, by taking π uniform on G, we get

n i=1 E ĝi-1 L(Z i , ĝi-1 ) ≤ min g∈G n i=1 L(Z i , g)+E ĝn-1 0 n i=1 δ λ (Z i , g, ĝi-1 )+ log |G| λ
Up to the online variance function δ λ , the online variance inequality is the generic algorithm condition of [37, p.11]. So cases where δ λ are equal to zero are already known. Now new results can be obtained by using that for any loss function L and any λ > 0, the online variance inequality is satisfied for δ λ (Z, g, g ′ ) = λ 2 L(Z, g) -L(Z, g ′ ) 2 (proof in Section 10.3). The associated distribution π(ρ) is then just ρ. This leads to the following corollary.

Corollary 4.7. The cumulative loss of the online SeqRand algorithm with δ λ (Z, g, g

′ ) = λ 2 L(Z, g) -L(Z, g ′ ) 2 and π(ρ) = ρ for any ρ ∈ M satisfies n i=1 E ĝi-1 L(Z i , ĝi-1 ) ≤ min ρ∈M E g∼ρ n i=1 L(Z i , g) + λ 2 E g∼ρ E ĝn-1 0 n i=1 L(Z i , g)-L(Z i , ĝi-1 ) 2 + K(ρ, π) λ . (4.6) 
Note that the prediction functions ĝi appears in both the left-hand side and the right-hand side of (4.6). For loss functions taking their values in an interval of range A, we have [L(Z i , g)-L(Z i , ĝi-1 )] 2 ≤ A 2 . So when G is finite, by taking π uniform on G and λ = (2 log |G|)/(nA 2 ), we obtain that the cumulative regret satisfies the more explicit cumulative regret bound:

n i=1 E ĝi-1 L(Z i , ĝi-1 ) -min g∈G n i=1 L(Z i , g) ≤ A 2n log |G|. (4.7)
This bound is loose by a factor 2 (see [29, Theorem 2.2]). Nevertheless an advantage of the online SeqRand algorithm with δ λ (Z, g, g

′ ) = λ 2 L(Z, g) -L(Z, g ′ )
2 is that it will take advantage of situations in

which n i=1 E g∼ρ E ĝn-1 0 L(Z i , g) -L(Z i , ĝi-1 ) 2 ≪ nA 2 ,
whereas it is not clear that the exponentially weighted average forecaster does. The proper tuning of the parameter λ is a nontrivial task, whereas for the exponentially weighted average forecaster with incremental updates, it has been recently proved that one can tune this parameter without any prior knowledge on the loss sequences [START_REF] Cesa-Bianchi | Improved secondorder bounds for prediction with expert advice[END_REF]Theorem 6]. The argument given in the appendix p.72 can be applied in order to use incremental updates, but for the online SeqRand algorithm with

δ λ (Z, g, g ′ ) = λ 2 L(Z, g) -L(Z, g ′ ) 2
, we do not know how to choose the updates in order to recover a result similar to [30, Theorems 5 and 6].

Model selection aggregation under Juditsky, Rigollet and Tsybakov assumptions ([38])

The main result of [START_REF] Juditsky | Learning by mirror averaging[END_REF] relies on the following assumption on the loss function L and the set P of probability distributions on Z in which we assume that the true distribution is. There exist λ > 0 and a real-valued function ψ defined on G × G such that for any P ∈ P

   E Z∼P e λ[L(Z,g ′ )-L(Z,g)] ≤ ψ(g ′ , g) for any g, g ′ ∈ G ψ(g, g) = 1
for any g ∈ G the function g → ψ(g ′ , g) is concave for any g ′ ∈ G

(5.1) Theorem 3.1 gives the following result.

Corollary 5.1. Consider the algorithm which draws uniformly its prediction function in the set {E g∼π -λΣ 0 g, . . . , E g∼π -λΣn g}. Under Assumption (5.1), its expected risk

E Z n 1 1 n+1 n i=0 R(E g∼π -λΣ i g) is upper bounded by min ρ∈M E g∼ρ R(g) + K(ρ,π) λ(n+1) . (5.2)
Proof. We start by proving that the variance inequality holds with δ λ ≡ 0, and that we may take π(ρ) as the Dirac distribution at the function E g∼ρ g. By using Jensen's inequality and Fubini's theorem, Assumption (5.1) implies that

E g ′ ∼π(ρ) E Z∼P log E g∼ρ e λ[L(Z,g ′ )-L(Z,g)] = E Z∼P log E g∼ρ e λ[L(Z,E g ′ ∼ρ g ′ )-L(Z,g)] ≤ log E g∼ρ E Z∼P e λ[L(Z,E g ′ ∼ρ g ′ )-L(Z,g)] ≤ log E g∼ρ ψ(E g ′ ∼ρ g ′ , g) ≤ log ψ(E g ′ ∼ρ g ′ , E g∼ρ g) = 0
, so that we can apply Theorem 3.1. It remains to note that in this context the SeqRand algorithm is the one described in the corollary.

In this context, the SeqRand algorithm reduces to the randomized version of Algorithm A. From Lemma 3.3, for convex loss functions, (5.2) also holds for the risk of Algorithm A. Corollary 5.1 also shows that the risk bounds for Algorithm A proved in [START_REF] Juditsky | Learning by mirror averaging[END_REF]Theorem 3.2 and the examples of Section 4.2] hold with the same constants for the Se-qRand algorithm (provided that the expected risk w.r.t. the training set distribution is replaced by the expected risk w.r.t. both training set and randomizing distributions).

On Assumption (5.1) we should say that it does not a priori require the function L to be convex. Nevertheless, any known relevant examples deal with "strongly" convex loss functions and we know that in general the assumption will not hold for the SVM (or hinge) loss function and for the absolute loss function. Indeed, without further assumption, one cannot expect rates better than 1/ √ n for these loss functions (see Section 8.4.2).

By taking the appropriate variance function δ λ (Z, g, g ′ ), it is possible to prove that the results in [38, Theorem 3.1 and Section 4.1] holds for the SeqRand algorithm (provided that the expected risk w.r.t. the training set distribution is replaced by the expected risk w.r.t. both training set and randomizing distributions). The choice of δ λ (Z, g, g ′ ), which for sake of shortness we do not specify, is in fact such that the resulting SeqRand algorithm is again the randomized version of Algorithm A.

Standard-style statistical bounds

This section proposes new results of a different kind. In the previous sections, under convexity assumptions, we were able to achieve fast rates. Here we have assumption neither on the loss function nor on the probability generating the data. Nevertheless we show that the SeqRand algorithm applied for δ λ (Z, g, g ′ ) = λ[L(Z, g) -L(Z, g ′ )] 2 /2 satisfies a sharp standard-style statistical bound. This section contains two parts: the first one provides results in expectation (as in the preceding sections) whereas the second part provides deviation inequalities on the risk that requires advances on the sequential prediction analysis.

6.1 Bounds on the expected risk

6.1.1 Bernstein's type bound Theorem 6.1. Let V (g, g ′ ) = E Z [L(Z, g) -L(Z, g ′ )] 2 . Consider the SeqRand algorithm (see p.8) applied with δ λ (Z, g, g ′ ) = λ[L(Z, g) - L(Z, g ′ )] 2 /2 and π(ρ) = ρ. Its expected risk E Z n 1 E g∼μ R(g)
, where we recall that μ denotes the randomizing distribution, satisfies

E Z n 1 E g ′ ∼μ R(g ′ ) ≤ min ρ∈M E g∼ρ R(g) + λ 2 E g∼ρ E Z n 1 E g ′ ∼μ V (g, g ′ ) + K(ρ,π) λ(n+1) (6.1)
Proof. See Section 10.3.

To make (6.1) more explicit and to obtain a generalization error bound in which the randomizing distribution does not appear in the r.h.s. of the bound, the following corollary considers a widely used assumption relating the variance term to the excess risk (see Mammen and Tsybakov [START_REF] Mammen | Smooth discrimination analysis[END_REF][START_REF] Tsybakov | Optimal aggregation of classifiers in statistical learning[END_REF], and also Polonik [48]). Precisely, from Theorem 6.1, we obtain Corollary 6.2. If there exist 0 ≤ γ ≤ 1 and a prediction function

g (not necessarily in G) such that V (g, g) ≤ c[R(g) -R(g)] γ for any g ∈ G, the expected risk E = E Z n 1 E g∼μ R(g)
of the SeqRand algorithm used in Theorem 6.1 satisfies

• When γ = 1, E -R(g) ≤ min ρ∈M 1+cλ 1-cλ E g∼ρ R(g) -R(g) + K(ρ,π) (1-cλ)λ(n+1)
In particular, for G finite, π the uniform distribution, λ = 1/(2c), when g belongs to G, we get E ≤ min g∈G R(g) + 4c log |G| n+1 .

• When γ < 1, for any 0 < β < 1 and for R(g) R(g) -R(g),

E -R(g) ≤ 1 β min ρ∈M E g∼ρ [ R(g) + cλ Rγ (g)] + K(ρ,π) λ(n+1) ∨ cλ 1-β 1 1-γ .
Proof. See Section 10.4.

To understand the sharpness of Theorem 6.1, we have to compare this result with the following one that comes from the traditional (PAC-Bayesian) statistical learning approach which relies on supremum of empirical processes. In the following theorem, we consider the estimator minimizing the uniform bound, i.e. the estimator for which we have the smallest upper bound on its generalization error.

Theorem 6.3. We still use V (g, g ′ ) = E Z [L(Z, g) -L(Z, g ′ )] 2 .
The generalization error of the algorithm which draws its prediction function according to the Gibbs distribution π -λΣn satisfies

E Z n 1 E g ′ ∼π -λΣn R(g ′ ) ≤ min ρ∈M E g∼ρ R(g) + K(ρ,π)+1 λn + λE g∼ρ E Z n 1 E g ′ ∼π -λΣn V (g, g ′ ) +λ 1 n n i=1 E g∼ρ E Z n 1 E g ′ ∼π -λΣn [L(Z i , g) -L(Z i , g ′ )] 2 . (6.
2) Let ϕ be the positive convex increasing function defined as ϕ(t)

e t -1-t t 2
and ϕ(0) = 1 2 by continuity. When sup z∈Z,g∈G,g ′ ∈G |L(z, g ′ ) -L(z, g)| ≤ B, we also have

E Z n 1 E g ′ ∼π -λΣn R(g ′ ) ≤ min ρ∈M E g∼ρ R(g) +λϕ(λB)E g∼ρ E Z n 1 E g ′ ∼π -λΣn V (g, g ′ ) + K(ρ,π)+1 λn . (6.3) 
Proof. See Section 10.5.

As in Theorem 6.1, there is a variance term in which the randomizing distribution is involved. As in Corollary 6.2, one can convert (6.3) into a proper generalization error bound, that is a non trivial bound

E Z n 1 E g∼π -λΣn R(g) ≤ B(n, π, λ)
where the training data do not appear in B(n, π, λ).

By comparing (6.3) and (6.1), we see that the classical approach requires the quantity sup g∈G,g ′ ∈G |L(Z, g ′ ) -L(Z, g)| to be uniformly bounded and the unpleasing function ϕ appears. In fact, using technical small expectations theorems (see e.g. [4, Lemma 7.1]), exponential moments conditions on the above quantity would be sufficient.

The symmetrization trick used to prove Theorem 6.1 is performed in the prediction functions space. We do not call on the second virtual training set currently used in statistical learning theory (see [START_REF] Vapnik | The nature of statistical learning theory[END_REF]). Nevertheless both symmetrization tricks end up to the same nice property: we need no boundedness assumption on the loss functions. In our setting, symmetrization on training data leads to an unwanted expectation and to a constant four times larger (see the two variance terms of (6.2) and the discussion in [START_REF] Audibert | A better variance control for PAC-Bayesian classification[END_REF]Section 8.3.3]).

In particular, deducing from Theorem 6.3 a corollary similar to Corollary 6.2 is only possible through (6.3) and provided that we have a boundedness assumption on sup z∈Z,g∈G,g ′ ∈G |L(z, g ′ )-L(z, g)|. Indeed one cannot use (6.2) because of the last variance term in (6.2) (since Σ n depends on Z i ).

Our approach has nevertheless the following limit: the proof of Corollary 6.2 does not use a chaining argument. As a consequence, in the particular case when the model has polynomial entropies (see e.g. [START_REF] Mammen | Smooth discrimination analysis[END_REF]) and when the assumption in Corollary 6.2 holds for γ < 1 (and not for γ = 1), Corollary 6.2 does not give the minimax optimal convergence rate. Combining the better variance control presented here with the chaining argument is an open problem.

Hoeffding's type bound

Contrary to generalization error bounds coming from Bernstein's inequality, (6.1) does not require any boundedness assumption. For bounded losses, without any variance assumption (i.e. roughly when the assumption used in Corollary (6.2) does not hold for γ > 0), tighter results are obtained by using Hoeffding's inequality, that is: for any random variable W satisfying a ≤ W ≤ b, then for any λ > 0 Ee λ(W -EW ) ≤ e λ 2 (b-a) 2 /8 . Theorem 6.4. Assume that for any z ∈ Z and g ∈ G, we have a ≤ L(z, g) ≤ b for some reals a, b. Consider the SeqRand algorithm (see

8) applied with δ λ (Z, g, g ′ ) = λ(b -a) 2 /8 and π(ρ) = ρ. Its expected risk E Z n 1 E g∼μ R(g)
, where we recall that μ denotes the randomizing distribution, satisfies

E Z n 1 E g∼μ R(g) ≤ min ρ∈M E g∼ρ R(g) + λ(b-a) 2 8 + K(ρ,π) λ(n+1) (6.4)
In particular, when G is finite, by taking π uniform on G and λ =

8 log |G| (b-a) 2 (n+1) , we get E Z n 1 E g∼μ R(g) -min g∈G R(g) ≤ (b -a) log |G| 2(n+1) (6.5) 
Proof. From Hoeffding's inequality, we have

E g ′ ∼π(ρ) log E g∼ρ e λ[L(Z,g ′ )-L(Z,g)] = log E g∼ρ e λ[E g ′ ∼π(ρ) L(Z,g ′ )-L(Z,g)] ≤ λ 2 (b-a) 2 8 ,
hence the variance inequality holds for δ λ ≡ λ(ba) 2 /8 and π(ρ) = ρ.

The result directly follows from Theorem 3.1.

The standard point of view (see Appendix B) applies Hoeffding's inequality to the random variable W = L(Z, g ′ ) -L(Z, g) for g and g ′ fixed and Z drawn according to the probability generating the data. The previous theorem uses it on the random variable W = L(Z, g ′ ) -E g∼ρ L(Z, g) for fixed Z and fixed probability distribution ρ but for g ′ drawn according to ρ. Here the gain is a multiplicative factor equal to 2 (see Appendix B).

Deviation inequalities

For the comparison between Theorem 6.1 and Theorem 6.3 to be fair, one should add that (6.3) and (6.2) come from deviation inequalities that are not exactly obtainable to the author's knowledge with the arguments developed here. Precisely, consider the following adaptation of Lemma 5 of [60]. Lemma 6.5. Let A be a learning algorithm which produces the prediction function A(Z i 1 ) at time i + 1, i.e. from the data Z i 1 = (Z 1 , . . . , Z i ). Let L be the randomized algorithm which produces a prediction function L(Z n 1 ) drawn according to the uniform distribution on {A(∅), A(Z 1 ), . . . ,

A(Z n 1 )}. Assume that sup z,g,g ′ |L(z, g) -L(z, g ′ )| ≤ B for some B > 0. Condi- tionally to Z 1 , . . . , Z n+1 , the expectation of the risk of L w.r.t. to the uniform draw is 1 n+1 n i=0 R[A(Z i 1 )
] and satisfies: for any η > 0 and ǫ > 0, for any reference prediction function g, with probability at least 1ǫ w.r.t. the distribution of Z 1 , . . . , Z n+1 ,

1 n+1 n i=0 R[A(Z i 1 )] -R(g) ≤ 1 n+1 n i=0 L[Z i+1 , A(Z i 1 )] -L(Z i+1 , g) +ηϕ(ηB) 1 n+1 n i=0 V [A(Z i 1 ), g] + log(ǫ -1 )
η(n+1) (6.6) where we still use V (g, g ′ ) = E Z [L(Z, g) -L(Z, g ′ )] 2 for any prediction functions g and g ′ and ϕ(t) e t -1-t t 2 for any t > 0.

Proof. See Section 10.6.

We see that two variance terms appear. The first one comes from the worst-case analysis and is hidden in

n i=0 L[Z i+1 , A(Z i 1 )
]-L(Z i+1 , g) and the second one comes from the concentration result (Lemma 10.1). The presence of this last variance term annihilates the benefits of our approach in which we were manipulating variance terms much smaller than the traditional Bernstein's variance term.

To illustrate this point, consider for instance least square regression with bounded outputs: from Theorem 4.2 and Table 1, the hidden variance term is null. In some situations, the second variance term

1 n+1 n i=0 V [A(Z i 1 )
, g] may behave like a positive constant: for instance, this occurs when G contains two very different functions having the optimal risk min g∈G R(g). By optimizing η, this will lead to a deviation inequality of order n -1/2 even though from (4.4) the procedure has n -1 -convergence rate in expectation. In [START_REF] Audibert | Progressive mixture rules are deviation suboptimal[END_REF]Theorem 3], in a rather general learning setting, this deviation inequality of order n -1/2 is proved to be optimal.

To conclude, for deviation inequalities, we cannot expect to do better than the standard-style approach since at some point we use a Bernstein's type bound w.r.t. the distribution generating the data. Besides procedures based on worst-case analysis seem to suffer higher fluctuations of the risk than necessary (see [8, discussion of Theorem 3]). Remark 6.1. Lemma 6.5 should be compared with Lemma 4.3. The latter deals with results in expectation while the former concerns deviation inequalities. Note that Lemma 6.5 requires the loss function to be bounded and makes a variance term appear.

7 Application to L q -regression for unbounded outputs

In this section, we consider the L q -loss: L(Z, g) = |Yg(X)| q . As a warm-up exercise, we tackle the absolute loss setting (i.e. q = 1). The following corollary holds without any assumption on the output (except naturally that if E Z |Y | < +∞ to ensure finite risk).

Corollary 7.1. Let q = 1. Assume that sup g∈G E Z g(X) 2 ≤ b 2 for some b > 0. There exists an estimator ĝ such that Now we deal with the strongly convex loss functions (i.e. q > 1). By using Theorem 3.1 jointly with the symmetrization idea developed in the previous section allows to obtain new convergence rates in heavy noise situation, i.e. when the output is not constrained to have a bounded exponential moment. We start with the following theorem concerning general loss functions. For λ ∈ (0; λ 0 ], consider the algorithm that draws uniformly its prediction function in the set {E g∼π -λΣ 0 g, . . . , E g∼π -λΣn g}, and consider the deterministic version of this randomized algorithm. The expected risk of these algorithms satisfy

ER(ĝ) -min g∈G R(g) ≤ 2b 2 log |G| n+1 . (7.1) Proof. Using E Z [|Y -g(X)| -|Y -g ′ (X)|] 2 ≤ 4b
E Z n 1 R( 1 n+1 n i=0 E g∼π -λΣ i g) ≤ E Z n 1 1 n+1 n i=0 R(E g∼π -λΣ i g) ≤ min ρ∈M E g∼ρ R(g) + K(ρ,π) λ(n+1) +E λ∆ 2 (Y ) 2 1 λ∆(Y )<1;|Y |>B + ∆(Y ) -1 2λ 1 λ∆(Y )≥1;|Y |>B . (7.2)
Proof. See Section 10.7.

Remark 7.1. For y ∈ [-B; B], concavity of y ′ → e -λ0ℓ(y,y ′ ) on [-b; b] for λ 0 > 0 implies convexity of y ′ → ℓ(y, y ′ ) on [-b; b].
In particular, for least square regression, Theorem 7.2 can be simplified into:

Theorem 7.3. Assume that sup g∈G,x∈X |g(x)| ≤ b for some b > 0.
For any 0 < λ ≤ 1/(8b 2 ), the expected risk of the algorithm that draws uniformly its prediction function among E g∼π -λΣ 0 g,. . . ,E g∼π -λΣn g is upper bounded by

min ρ∈M E g∼ρ R(g) + 8λb 2 E Y 2 1 |Y |>(8λ) -1/2 + K(ρ,π) λ(n+1) . (7.3) 
Proof. For any B ≥ b, for any y ∈ [-B; B], straightforward computations show that y ′ → e -λ0(y-y ′ ) 2 is concave on [-b; b] for λ 0 = 1 2(B+b) 2 , so that we can apply Theorem 7.2. We have ∆(y) = 4b|y| for any |y| ≥ b so that by optimizing the parameter B, we obtain that the expected risk of the algorithm is upper bounded by

min ρ∈M E g∼ρ R(g) + K(ρ,π) λ(n+1) + E 4b|Y | -1 2λ 1 |Y |≥(4bλ) -1 +E 8λb 2 Y 2 1 (2λ) -1/2 -b<|Y |<(4bλ) -1 ≤ min ρ∈M E g∼ρ R(g) + K(ρ,π) λ(n+1) + E 8λb 2 Y 2 1 |Y |≥(4bλ) -1 +E 8λb 2 Y 2 1 (2λ) -1/2 -b<|Y |<(4bλ) -1 ,
which gives the desired result. Juditsky, Rigollet and Tsybakov proved that Corollary 7.4 can also be obtained through a simple adaptation of their original analysis (see [START_REF] Juditsky | Learning by mirror averaging[END_REF]Section 4.1]).

Proof. The moment assumption on Y implies α s-q E|Y | q 1 |Y |≥α ≤ A for any 0 ≤ q ≤ s and α ≥ 0.

(7.5)

As a consequence, the second term in (7.3) is bounded by 8λb 2 A(2λ) (s-2)/2 , so that (7.3) is upper bounded by min g∈G R(g)+A2 2+s/2 b 2 λ s/2 + log |G| λn , which gives the desired result.

In particular, with the minimal assumption EY 2 ≤ A (i.e. s = 2), the convergence rate is of order n -1/2 , and at the opposite, when s goes to infinity, we recover the n -1 rate we have under exponential moment condition on the output. Using Theorem 7.2, we can generalize Corollary 7.4 to L q -regression and obtain the following result. for some s ≥ q and A > 0 G finite Let π be the uniform distribution on G, C 1 > 0 and

λ = C 1 log |G| n (q-1)/s when q ≤ s < 2q -2 C 1 log |G| n q/(s+2)
when s ≥ 2q -2 .

The expected risk of the algorithm which draws uniformly its prediction function among E g∼π -λΣ 0 g, . . . , E g∼π -λΣn g is upper bounded by

     min g∈G R(g) + C log |G| n 1-q-1 s when q ≤ s ≤ 2q -2 min g∈G R(g) + C log |G| n 1-q s+2 when s ≥ 2q -2 .
for a quantity C which depends only on C 1 , b, A, q and s.

Proof. See Section 10.8.

Remark 7.2. For q > 2, low convergence rates (that is n -γ with γ < 1/2) appear when the moment assumption is weak: E|Y | s ≤ A for some A > 0 and q ≤ s < 2q -2. Convergence rates faster that the standard non parametric rates n -1/2 are achieved for s > 2q -2. Fast convergence rates systematically occurs when 1 < q < 2 since for these values of q, we have s ≥ q > 2q -2. Surprisingly, for q = 1, the picture is completely different (see Section 8. 

Lower bounds

The simplest way to assess the quality of an algorithm and of its expected risk upper bound is to prove a risk lower bound saying that no algorithm has better convergence rate. This section provides this kind of assertions. The lower bounds developed here have the same spirit as the ones in [20, [START_REF] Assouad | Deux remarques sur l'estimation[END_REF][START_REF] Birgé | Approximation dans les espaces métriques et théorie de l'estimation[END_REF], [START_REF] Devroye | Combinatorial methods in density estimation[END_REF]Chap. 15] and [6, Section 5] to the extent that it relies on the following ideas:

• the supremum of a quantity Q(P ) when the distribution P belongs to some set P is larger than the supremum over a well chosen finite subset of P, and consequently is larger than the mean of Q(P ) when the distribution P is drawn uniformly in the finite subset.

• when the chosen subset is a hypercube of 2 m distributions (see Definition 8.1), the design of a lower bound over the 2 m distributions reduces to the design of a lower bound over two distributions.

• when a data sequence Z 1 , . . . , Z n has similar likelihoods according to two different probability distributions, then no estimator will be accurate for both distributions: the maximum over the two distribution of the risk of any estimator trained on this sequence will be all the larger as the Bayes-optimal prediction associated with the two distributions are 'far away'.

We refer the reader to [START_REF] Birgé | A new lower bound for multiple hypothesis testing[END_REF] and [51, Chap. 2] for lower bounds not parlicularly based on finding the appropriate hypercube. Our analysis focuses on hypercubes since in several settings they afford to obtain lower bounds with both the right convergence rate and close to optimal constants. Our contribution in this section is

• to provide results for general non-regularized loss functions (we recall that non-regularized loss functions are loss functions which can be written as L[(x, y), g] = ℓ[y, g(x)] for some function ℓ :

Y × Y → R),
• to improve the upper bound on the variational distance appearing in Assouad's argument,

• to generalize the argument to asymmetrical hypercubes which, to our knowledge, is the only way to find the lower bound matching the upper bound of Corollary 7.5 for q ≤ s ≤ 2q -2,

• to express the lower bounds in terms of similarity measures between two distributions characterizing the hypercube.

• to obtain lower bounds matching the upper bounds obtained in the previous sections.

Remark 8.1. In [START_REF] Haussler | Sequential prediction of individual sequences under general loss functions[END_REF], the optimality of the constant in front of the (log |G|)/n has been proved by considering the situation when both |G| and n goes to infinity. Note that this worst-case analysis constant is not necessary the same as our batch setting constant. This section shows that the batch setting constant is not "far" from the worst-case analysis constant. Besides Lemma 4.3, which can be used to convert any worst-case analysis upper bounds into a risk upper bound in our batch setting, also means that any lower bounds for our batch setting leads to a lower bound in the sequential prediction setting (the converse is not true). Indeed the cumulative loss on the worst sequence of data is bigger than the average cumulative loss when the data are taken i.i.d. from some probability distribution. As a consequence, the bounds developed in this section partially solve the open problem introduced in [37, Section 3.4] consisting in developing tight non-asymptotical lower bounds. For least square loss and entropy loss, our bounds are off by a multiplicative factor smaller than 4 (see Remarks 8.6 [p.42] and 8.7 [p.44]). This section is organized as follows. Section 8.1 defines the quantities that characterize hypercubes of probability distributions and details the links between them. Section 8.2 defines a similarity measure between probability distributions coming from f -divergences (see [START_REF] Csiszar | Information-type measures of difference of probability distributions and indirect observations[END_REF]) and gives their main properties. We give our main lower bounds in Section 8.3. These bounds are illustrated in Section 8.4.

Hypercube of probability distributions

Let m ∈ N * . Consider a family of 2 m probability distributions on Z P σ : σ (σ 1 , . . . , σ m ) ∈ {-; +} m having the same first marginal, denoted µ: P σ (dX) = P (+,...,+) (dX) µ(dX) for any σ ∈ {-; +} m , and such that there exist • a partition X 0 , . . . , X m of X ,

• functions h 1 and h 2 defined on X -X 0 taking their values in Y

• functions p + and p -defined on X -X 0 taking their values in [0 ; 1] for which for any j ∈ {1, . . . , m}, for any x ∈ X j , we have

P σ Y = h 1 (x) X = x = p σj (x) = 1 -P σ Y = h 2 (x) X = x , (8.1 
) and for any x ∈ X 0 , the distribution of Y knowing X = x is independent of σ (i.e. the 2 m conditional distributions are identical).

In particular, (8.1) means that for any x ∈ X -X 0 , the conditional probability of the output knowing the input x is concentrated on two values and that, under the distribution P σ , the disproportion between the probabilities of these two values is all the larger as p σj (x) is far from 1/2 for j the integer such that x ∈ X j . Remark 8.2. Equality (8.1) indirectly implies that for any x, h 1 (x) = h 2 (x). This is not at all restricting since points for which we would have liked h 1 (x) = h 2 (x) can be put in the "garbage" set X 0 . Definition 8.1. The family of 2 m probability distributions will be referred to as an hypercube of distributions if and only if for any j ∈ {1, . . . , m},

• the probability µ(X j ) = µ(X ∈ X j ) is independent of j, i.e.

µ(X

1 ) = • • • = µ(X m ),
• the law of p + (X), p -(X), h 1 (X), h 2 (X) when X is drawn according to the conditional distribution µ(•|X j ) µ(•|X ∈ X j ) is independent of j, i.e. the m conditional distributions are identical.

Remark 8.3. The typical situation in which we encounter hypercubes are when X ⊆ R d for some d ≥ 1 and when we have translation invariance to the extent that there exist t 2 , . . . , t d in R d such that for any j ∈ {2, . . . , m}, X j = X 1 + t j and for any x ∈ X 1 ,

p + (x + t j ), p -(x + t j ), h 1 (x + t j ), h 2 (x + t j ) = p + (x), p -(x), h 1 (x), h 2 (x) .
A special hypercube is illustrated in Figure 3.

0 1/2 1 X 0 X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 p + = 1+ξ 2 p -= 1-ξ 2 P [Y = h 1 (X)|X = x]
x is the best prediction function to the extent that it minimizes the risk R. Section 8.4.1 provides other typical examples of loss functions and [START_REF] Bartlett | Convexity, classification, and risk bounds[END_REF] gives an exhaustive study of their links.

For any q + and q -in [0; 1], introduce

ψ q+,q-,y1,y2 (α) φ y1,y2 [αq + + (1 -α)q -] -αφ y1,y2 (q + ) -(1 -α)φ y1,y2 (q -) (8.4) Lemma 8.1.
1. For any y 1 ∈ Y, y 2 ∈ Y, q + ∈ [0; 1] and q -∈ [0; 1], the functions φ y1,y2 and ψ q+,q-,y1,y2 are concave, and consequently admit one-sided derivatives everywhere. The function ψ q+,q-,y1,y2 is non-negative.

Define the function

K α as K α (t) = [(1 -α)t] ∧ [α(1 -t)]. Let q -= p -∧ p + and q + = p -∨ p + . Assume that the function φ y1,y2
is twice differentiable by parts on [q -; q + ] to the extent that there exist

q -= β 0 < β 1 < • • • < β d < β d+1 = q + such
that for any ℓ ∈ {0, . . . , d}, φ y1,y2 is twice differentiable on ]β ℓ ; β ℓ+1 [. For any ℓ ∈ {1, . . . , d}, let ∆ ℓ denote the difference between the right-sided and left-sided derivatives of φ y1,y2 at point β ℓ . We have

ψ p+,p-,h1,h2 (α) = -(p + -p -) 2 1 0 K α (t)φ ′′ h1,h2 tp + + (1 -t)p -dt -|p + -p -| d ℓ=1 K α β ℓ -p- p+-p-∆ ℓ
In particular, we have

ψ p+,p-,y1,y2 (1/2) = (p+-p-) 2 2 1 0 [t ∧ (1 -t)] φ ′′ y1,y2 tp + + (1 -t)p -dt + 1 2 d ℓ=1 |p + -β ℓ | ∧ |β ℓ -p -| |∆ ℓ | (8.5)
Proof.

1. The function φ y1,y2 is concave since it is the infimum of concave (affine) functions. As a direct consequence, the function ψ p+,p-,y1,y2 is concave and non-negative.

2. It suffices to apply the following lemma, that is proved in Section 10.9, to the function f : t → φ y1,y2 [tp + + (1t)p -], which has critical points on t ℓ defined as

t ℓ p + + (1 -t ℓ )p -= β ℓ .
Lemma 8.2. Let f : [0; 1] → R be a function twice differentiable by parts to the extent that there exist 0 = t 0 < t 1 < • • • < t d < t d+1 = 1 such that for any ℓ ∈ {0, . . . , d}, f is twice differentiable on ]t ℓ ; t ℓ+1 [. Assume that f is continuous and admits left-sided derivatives f ′ l and right-sided derivatives f ′ r (t ℓ ) at the critical points t ℓ . For any α ∈ [0; 1], we have

f (α) -αf (1) -(1 -α)f (0) = - 1 0 K α (t)f ′′ (t)dt - d ℓ=1 K α (t ℓ )[f ′ r (t ℓ ) -f ′ l (t ℓ )]
Definition 8.2. Let P σ : σ (σ 1 , . . . , σ m ) ∈ {-; +} m be a hypercube of distributions.

1. The positive integer m is called the dimension of the hypercube.

2. The probability w µ(X 1 ) = • • • = µ(X m ) is called the edge probability.

3. The characteristic function of the hypercube is the function ψ : R + → R + defined as for any

u ∈ R + ψ(u) = 1 2 m(u + 1)E X∼µ 1 X∈X1 ψ p+(X),p-(X),h1(X),h2(X) u u+1 = mw 2 (u + 1)E µ(•|X1) ψ p+,p-,h1,h2 u u+1
in short.

4. The edge discrepancies of type I of the hypercube are

d I ψ(1) mw = E µ(•|X1) ψ p+,p-,h1,h2 (1/2) d ′ I E µ(•|X1) (p + -p -) 2 (8.6)
5. The edge discrepancy of type II of the hypercube is defined as

d II E µ(•|X1) p + (1 -p -) -(1 -p + )p - 2 . (8.7) 6. 
A probability distribution P 0 on Z satisfying P 0 (dX) = µ(dX) and for any x ∈ X -X 0 ,

P 0 Y = h 1 (x)|X = x = 1 2 = P 0 Y = h 2 (x)|X =
x will be referred to as a base of the hypercube.

7. Let P 0 be a base of the hypercube. Consider distributions P [σ] , σ ∈ {-, +} admitting the following density w.r.t. P 0 :

P [σ] P0 (x, y) =    2p σ (x) when x ∈ X 1 and y = h 1 (x) 2[1 -p σ (x)] when x ∈ X 1 and y = h 2 (x) 1 otherwise
The distributions P [-] and P [+] will be referred to as the representatives of the hypercube.

8. When the functions p + and p -are constant on X 1 , the hypercube will be said constant.

9. When the functions p + and p -satisfies p + = 1p -on X -X 0 , the hypercube will be said symmetrical. In this case, the function 2p + -1 will be denoted ξ so that

p + = 1+ξ 2 p -= 1-ξ 2 (8.8)
Otherwise it will be said asymmetrical.

The edge discrepancies are non-negative quantities that are all the smaller as p -and p + become closer. Let us introduce the following assumption.

Differentiability assumption. For any x ∈ X 1 , the function φ h1(x),h2(x) is twice differentiable and satisfies for any t

∈ [p -(x) ∧ p + (x); p -(x) ∨ p + (x)], φ ′′ h1(x),h2(x) (t) ≥ ζ (8.9)
for some ζ > 0.

When Y ⊆ R, the differentiability assumption is typically fulfilled when for any y 1 = y 2 , the functions y → ℓ(y 1 , y) and y → ℓ(y 2 , y) admit second derivatives lower bounded by a positive constant and when these functions are minimum for respectively y = y 1 and y = y 2 . This is the case for least square loss and entropy loss, but it is not the case for hinge loss, absolute loss or classification loss. The following result gives the main properties of the characteristic function ψ and useful lower bounds of it.

Lemma 8.3. The characteristic function of the hypercube is a concave nondecreasing function and satisfies

• ψ(0) = 0 • ψ(u) ≥ (u ∧ 1) ψ(1)
• Under the differentiability assumption (see (8.9)), we have

ψ(u) ≥ mwζ 4 d ′ I u u+1 ≥ mwζ 8 d ′ I (u ∧ 1)
where we recall that

d ′ I E µ(•|X1) (p + -p -) 2 .
In particular, we have

d I ≥ ζ 8 d ′ I . (8.10) 
Proof. From Lemma 8.1, the function ψ is non-negative and concave. Therefore the characteristic function is also concave and non-negative on R + . Consequently, it is nondecreasing. The remaining assertions of the lemma are then straightforward.

To underline the link between the discrepancies of types I and II, one may consider (8.10) jointly with the following result Lemma 8.4. When a hypercube is constant and symmetrical, i.e. when on X 1 p + = 1+ξ 2 and p -= 1-ξ 2 for ξ constant, we have

d ′ I = d II = ξ 2 .
Finally, since the design of constant and symmetrical hypercubes is the key of numerous lower bounds, we use the following: Definition 8.3. A ( m, w, dII )-hypercube is a constant and symmetrical m-dimensional hypercube with edge probability w and edge discrepancy of type II equal to dII , and for which p + > 1/2 and h 1 and h 2 are constant functions.

For these hypercubes, we have m = m, w = w, d II = dII and

     ξ ≡ √ d II p -≡ 1- √ dII 2 p + ≡ 1+ √ dII 2
and from (8.5), when the function φ h1,h2 is twice differentiable on ]p -; p + [,

d I = dII 2 1 0 [t ∧ (1 -t)] φ ′′ h1,h2 1- √ dII 2 + √ d II t dt. (8.11)

f -similarity

Let us introduce a similarity measure between probability distributions. When a probability distribution P is absolutely continuous w.r.t. another probability distribution Q, i.e. P ≪ Q, P Q denotes the density of P w.r.t. Q. Definition 8.4. Let f : R + → R + be a concave function. The fsimilarity between two probability distributions is defined as

S f (P, Q) = f P Q dQ if P ≪ Q f (0) otherwise (8.12)
Equivalently, if p and q denote the density of P and Q w.r.t. the probability distribution (P + Q)/2, one can define the f -similarity as

S f (P, Q) = q>0 f p q dQ
It is called f -similarity in reference to f -divergence (see [START_REF] Csiszar | Information-type measures of difference of probability distributions and indirect observations[END_REF]) to which it is closely related. Precisely, introduce the function f = f (1)f . f is convex and satisfies f (1) = 0. Thus it is associated with an f -divergence, which is defined as

D f (P, Q) = f P Q dQ if P ≪ Q f (0) otherwise (8.13)
Then we have

S f (P, Q) = f (1) -D f (P, Q).
Here we use f -similarities since they are the quantities that naturally appear when developing our lower bounds. As the f -divergence, the f -similarity is in general asymmetric in P and Q. Nevertheless for a concave function f : R + → R + , one may define a concave function f * : R + → R + as f * (u) = uf (1/u) and f * (0) = lim u→0 uf (1/u), and we have (see [START_REF] Csiszar | Information-type measures of difference of probability distributions and indirect observations[END_REF] for the equivalent result for f -divergence): when P ≪ Q and Q ≪ P,

S f (P, Q) = S f * (Q, P).
(8.14)

We will use the following properties of f -similarities.

Lemma 8.5. Let P and Q be two probability distributions on a measurable space (E, B) such that P ≪ Q.

1. Let f and g be non-negative concave functions defined on R + and let a and b be non-negative real numbers. For any probability distributions P and Q, we have S af +bg (P,

Q) = aS f (P, Q) + bS g (P, Q). Besides if f ≤ g, then S f (P, Q) ≤ S g (P, Q). 2. Let A ∈ B such that P Q = 1 on A. Let A c = E -A.
Let f : R + → R + be a concave function. Let P ′ and Q ′ be probability distributions on E such that

• P ′ ≪ Q ′ • P ′ Q ′ = 1 on A. • P ′ = P and Q ′ = Q on A c , i.e. for any B ∈ B, P ′ (B ∩ A c ) = P(B ∩ A c ) and Q ′ (B ∩ A c ) = Q(B ∩ A c ).
We have

S f (P ′ , Q ′ ) = S f (P, Q).
3. Let E ′ be a measurable space and µ be a σ-finite positive measure on E ′ . Let {f v } v∈E ′ be a family of non-negative concave functions defined on R + such that (u, v) → f v P Q (u) is measurable. We have

E ′ S fv (P, Q)µ(dv) = S E ′ fv µ(dv) (P, Q). ( 8 

.15)

Proof.

1. It directly follows from the definition of f -similarities.

2. We have

S f (P ′ , Q ′ ) = A f P ′ Q ′ dQ ′ + A c f P ′ Q ′ dQ ′ = f (1)Q ′ (A) + A c f P Q dQ = f (1)Q(A) + A c f P Q dQ = S f (P, Q)

Generalized Assouad's lemma

We recall that the n-fold product of a distribution P is denoted P ⊗n . We start this section with a general lower bound for hypercubes of distributions (as defined in Section 8.1). This lower bound is expressed in terms of a similarity (as defined in Section 8.2) between n-fold products of representatives of the hypercube. where the minimum is taken over the space of all prediction functions and ER(ĝ) denotes the expected risk of the estimator ĝ trained on a sample of size n:

ER(ĝ) = E Z n 1 ∼P ⊗n R(ĝ Z n 1 ) = E Z n 1 ∼P ⊗n E (X,Y )∼P ℓ[Y, ĝZ n 1 (X)]. Proof. See Section 10.10.
This theorem provides a lower bound holding for any estimator and expressed in terms of the hypercube structure. To obtain a tight lower bound associated with a particular learning task, it then suffices to find the hypercube in P for which the r.h.s. of (8.16) is the largest possible. By providing lower bounds of S ψ P ⊗n

[+] , P ⊗n

[-]

that are more explicit w.r.t. the hypercube parameters, we obtain the following results that are more in a ready-to-use form than Theorem 8.6.

Theorem 8.7. Let P be a set of probability distributions containing a hypercube of distributions characterized by its dimension m, its edge probability w and its edge discrepancies d I and d II (see Definition 8.2). For any estimator ĝ and training set size n ∈ N * , the following assertions hold. 

We have

sup P ∈P ER(ĝ) -min g R(g) ≥ mwd I 1 -1 -[1 -d II ] nw ≥ mwd I 1 - √ nwd II . ( 8 

When the hypercube satisfies p

+ ≡ 1 ≡ 1 -p -, we also have sup P ∈P ER(ĝ) -min g R(g) ≥ mwd I (1 -w) n (8.19)
4. When the hypercube is constant and symmetrical and when the differentiability assumption (see (8.9)) holds, we also have

sup P ∈P ER(ĝ) -min g R(g) ≥ mwζdII 8 × 1 + 1 2 1 -1 - √ 1 -d II w n -1 2 1 + 1+dII √ 1-dII -1 w n (8.20)
Proof. See Section 10.11.

The lower bounds (8.17), (8.18) and (8.20) are of the same nature. (8.17) is the general lower bound having the simplest form. For constant and symmetrical hypercubes, it can be refined into (8.18) and, when the differentiability assumption holds, into (8.20). These refinements mainly concern constants as we will see in Section 8.4.3. Finally, (8.19) is less general but provide results with tight constants when convergence rate of order n -1 has to be proven (see Remarks 8.6 [p.42] and 8.7 [p.44]).

To better understand the link between (8.17), (8.18) and (8.20), the following corollary considers an asymptotic setting in which n goes to infinity and the parameters of the hypercube varies with n (which is the typical situation even for finite sample lower bounds). 

P ∈P ER(ĝ) -min g R(g) ≥ 1 - √ 1 -e -a ≥ 1 - √ a, (8.22 

Examples

Theorem 8.7 motivates the following simple strategy to obtain a lower bound for a given set P of probability distributions and a reference set G of prediction functions: it consists in looking for the hypercube contained in the set P and for which

• the lower bound is maximized,

• for any distribution of the hypercube, G contains a best prediction function, i.e. min g R(g) = min g∈G R(g).

In general, the order of the bound is given by the quantity mwd I (or mwζd II in the case of (8.20)) and the quantities w and d II are taken such that nwd II is of order 1.

In this section, we apply this strategy in different learning tasks. Before giving these lower bounds (Section 8.4.2), Section 8.4.1 stresses on the influence of the loss function in the computations of the edge discrepancy d I and the constant ζ of the differentiability assumption (8.9).

Edge discrepancy d I and constant ζ of the differentiability assumption

All the previous lower bounds rely on either the edge discrepancy d I or the constant ζ of the differentiability assumption (that has been introduced to control d I in a simple way). The aim of this section is to provide more explicit formulas of these quantities for different loss functions.

To obtain the formula for d I , we essentially use (8.6) and (8.5) jointly with the explicit computation of the second derivative of the function φ.

Entropy loss.

Here we consider Y = [0; 1] and the loss for prediction y ′ instead of y is ℓ(y, y ′ ) = K(y, y ′ ), where K(y, y ′ ) is the Kullback-Leibler divergence between Bernoulli distributions with respective parameters y and y ′ , i.e. K(y, y ′ ) = y log y y ′ + (1y) log 1-y 1-y ′ . Let H(y) denote the Shannon's entropy of the Bernoulli distribution with parameter y, i.e.

H(y) = -y log y -(1 -y) log(1 -y). (8.25)
Computations lead to: for any p ∈ [0; 1],

φ y1,y2 (p) = H py 1 + (1 -p)y 2 -pH(y 1 ) -(1 -p)H(y 2 ), (8.26) hence φ ′′ y1,y2 (p) = - (y1-y2) 2 [py1+(1-p)y2][(p(1-y1)+(1-p)(1-y2)] .
This last equality is useful when one wants to compute ζ satisfying (8.9).

Classification loss. In this setting, we have |Y| < +∞ and the loss incurred by predicting y ′ instead of the true value y is ℓ(y, y ′ ) = 1 y =y ′ . In this learning task, we have φ y1,y2 (p) = [p ∧ (1p)]1 y1 =y2 and φ ′′ y1,y2 ≡ 0 on [0; 1] -{1/2}. Then (8.6), (8.5) and Remark 8.2 [p.28] lead to

d I = E µ(•|X1) p + -1 2 ∧ p --1 2 1 (p+-1 2 )(p-- 1 
2 )<0 .

Binary classification losses (or regression losses when the output is binary). In this setting, we have Y = R ∪ {-∞; +∞}, but we know that P (Y ∈ {-1; +1}) = 1. So we are only interested in hypercubes of distributions satisfying this constraint, i.e. such that for any x ∈ X , h 1 (x) and h 2 (x) belong to {-1; +1}. In this setting, a best prediction function g, i.e. a measurable function from

X to Y minimizing R(g) = E ℓ[Y, g(X)
], is determined by the regression function:

η(x) = P (Y = +1|X = x).
Let sign(x) = 1 x≥0 -1 x<0 be the sign function on R.

• R-Classification loss. The loss function is ℓ(y, y ′ ) = 1 yy ′ <0 and a best prediction function is g * (x) = sign(η(x) -1/2). Without surprise, we recover the same formulae as for the classification loss.

• Hinge loss. The loss function is ℓ(y, y ′ ) = (1-yy ′ ) + = max{0; 1yy ′ } and a best prediction function is g * (x) = sign(η(x) -1/2). For any y 1 , y 2 ∈ {-1; +1}, we have φ y1,y2 (p) = 2[p∧(1-p)]1 y1 =y2 and φ ′′ y1,y2 ≡ 0 on [0; 1] -{1/2}. Then (8.6), (8.5) and Remark 8.2 [p.28] lead to

d I = 2E µ(•|X1) p + -1 2 ∧ p --1 2 1 (p+-1 2 )(p-- 1 
2 )<0 ,

• Exponential loss (or AdaBoost loss). The loss function is ℓ(y, y ′ ) = e -yy ′ . For any y 1 = y 2 ∈ {-1; +1} and any p ∈ [0; 1], the function ϕ p,y1,y2 is minimized for y = y1 2 log p 1-p , so a best prediction function is

g * (x) = 1 2 log η(x) 1-η(x) . We obtain φ y1,y2 (p) = 2 p(1 -p)1 y1 =y2 and φ ′′ y1,y2 (p) = - 1 2[p(1-p)] 3/2 1 y1 =y2 .
In this setting, to obtain a lower bound of d I , one has typically to compute ζ satisfying (8.9) and to use (8.10).

• Logit loss. The loss function is ℓ(y, y ′ ) = log(1 + e -yy ′ ). For any y 1 = y 2 ∈ {-1; +1} and any p ∈ [0; 1], the function ϕ p,y1,y2 is minimized for y = y 1 log p 1-p , so a best prediction function is g * (x) = log η(x) 1-η(x) . We obtain φ y1,y2 (p) = H(p)1 y1 =y2 , where H(p) denote the Shannon's entropy of the Bernoulli distribution with parameter p (see (8.25)). We get

φ ′′ y1,y2 (p) = -1 p(1-p) 1 y1 =y2 .
Once more, to obtain a lower bound of d I , one has typically to compute ζ satisfying (8.9) and to use (8.10).

L q -loss. We consider Y = R and the loss function is ℓ(y, y ′ ) = |yy ′ | q with q ≥ 1. The values q = 1 and q = 2 respectively correspond to the absolute loss and the least square loss.

• Case q = 1 : Due to the lack of strong convexity of the loss function, the absolute loss setting differs completely from what occurs for q > 1 and appears to be similar to the classification and hinge losses settings. Indeed computations lead to φ y1,y2 (p) = [p ∧ (1p)]|y 2y 1 | and φ ′′ y1,y2 ≡ 0 on [0; 1] -{1/2}. Then (8.6) and (8.5) lead to

d I = E µ(•|X1) |h 2 -h 1 | p + -1 2 ∧ p --1 2 1 (p+-1 2 )(p-- 1 
2 )<0 . (8.27) • Case q > 1 : Tedious computations put in Appendix A lead to:

for any p ∈ [0; 1],

φ y1,y2 (p) = p(1 -p) |y2-y1| q p 1 q-1 +(1-p) 1 q-1 q-1 (8.28)
and

φ ′′ y1,y2 (p) = -q q-1 [p(1 -p)] 2-q q-1 |y2-y1| q p 1 q-1 +(1-p) 1 q-1 q+1 (8.29)
To obtain a lower bound of d I , as for the entropy loss, one has to compute ζ satisfying (8.9) and to use (8.10). • Special case q = 2 : For the least square setting, the formulae simplify into φ y1,y2 (p) = p(1-p)|y 2 -y 1 | 2 and φ ′′ y1,y2 (p) = -2|y 2y 1 | 2 . Then the edge discrepancy d I can be written explicitly as

d I = 1 4 E µ(•|X1) (p + -p -) 2 (h 2 -h 1 ) 2 . (8.30)

Various learning lower bounds

Before giving learning lower bounds matching up to multiplicative constants the upper bounds developed in the previous sections, we will start with two standard problems: classification lower bounds for Vapnik-Cervonenkis classes and uniform universal consistency.

n, "any discrimination rule can have an arbitrarily bad probability of error for finite sample size" ( [32]), precisely:

inf ĝ sup P P[Y = ĝ(X)] -min g P[Y = g(X)] = 1/2,
where the infimum is taken over all (possibly randomized) classification rules. For general loss functions, as soon as |X | = +∞, we can use (⌊nα⌋, 1/⌊nα⌋, 1)-hypercubes with α tending to infinity and obtain

inf ĝ sup P ER(ĝ) -inf g∈G R(g) ≥ sup y1,y2∈Y
ψ 1,0,y1,y2 (1/2), (8.34) where ψ is the function defined in (8.4).

Entropy loss setting. We consider Y = [0; 1] and ℓ(y, y ′ ) = K(y, y ′ ) (see p.38). We have seen in Section 4 that there exists an estimator ĝ such that

ER(ĝ) -min g∈G R(g) ≤ log |G| n (8.35)
The following consequence of (8.19) shows that this result is tight.

Theorem 8.10. For any training set size n ∈ N * , positive integer d and input space X containing at least ⌊log 2 (2d)⌋ points, there exists a set G of d prediction functions such that: for any estimator ĝ there exists a probability distribution on the data space X × [0; 1] for which

ER(ĝ) -min g∈G R(g) ≥ e -1 (log 2) 1 ∧ ⌊log 2 |G|⌋ n+1
Proof. We use a m, 

d I = ψ 1,0,0,1 (1/2) = φ 0,1 (1/2) = H(1/2) = log 2.
From (8.19), we obtain

ER(ĝ) -min g∈G R(g) ≥ ⌊log 2 |G|⌋ n+1 ∧ 1 (log 2) 1 -1 n+1 ∧ 1 ⌊log 2 |G|⌋ n Then the result follows from [1 -1/(n + 1)] n ց e -1 .
Remark 8.6. For |G| < 2 n+2 , the lower bound matches the upper bound (8.35) up to the multiplicative factor e ≈ 2.718 . For |G| ≥ 2 n+2 , the size of the model is too large and, without any extra assumption, no estimator can learn from the data. To prove the result, we consider distributions for which the output is deterministic when knowing the input. So the lower bound does not come from noisy situations but from situations in which different prediction functions are not separated by the data to the extent that no input data falls into the (small) subset on which they are different.

L q -regression with bounded outputs. We consider Y = [-B; B] and ℓ(y, y ′ ) = |yy ′ | q (see p.40). The following two theorems are roughly summed up in Figure 5 that represents the optimal convergence rate for L q -regression.

0 1/2 1/2 1 u v Figure 5:
Influence of the convexity of the loss on the optimal convergence rate. Let c > 0. We consider L q -losses with q = 1 + c log |G| n u for u ≥ 0.

For such values of q, the optimal convergence rate of the associated learning task is of order log |G| n v with 1/2 ≤ v ≤ 1. This figure represents the value of u in abscissa and the value of v in ordinate. The value u = 0 corresponds to constant q greater than 1. For these q, the optimal convergence rate is of order n -1 while for q = 1 or "very close" to 1, the convergence rate is of order n -1/2 .

• Case 1 ≤ q ≤ 1 + ⌊log 2 |G|⌋ 4n ∧ 1: From (6.5), there exists an estimator ĝ such that

ER(ĝ) -min g∈G R(g) ≤ 2 2q-1 2 B q log |G| n (8.36)
The following corollary of Theorem 8.7 shows that this result is tight.

Theorem 8.11. Let B > 0 and d ∈ N * . For any training set size n ∈ N * and any input space X containing at least ⌊log 2 d⌋ points, there exists a set G of d prediction functions such that:

for any estimator ĝ there exists a probability distribution on the data space X × [-B; B] for which

ER(ĝ) -min g∈G R(g) ≥ c q B q ⌊log 2 |G|⌋ n if |G| < 2 4n+1 2c q B q otherwise ,
where

c q = 1/4 if q = 1 q/40 if 1 < q ≤ 1 + ⌊log 2 |G|⌋ 4n ∧ 1 
Proof. See Section 10.12.

• Case q > 1 + ⌊log 2 |G|⌋ 4n ∧ 1 : We have seen in Section 4 that there exists an estimator ĝ such that

ER(ĝ) -min g∈G R(g) ≤ q(1∧2 q-2 )B q q-1 (log 2) log 2 |G| n (8.37)
The following corollary of Theorem 8.7 shows that this result is tight.

Theorem 8.12. Let B > 0 and d ∈ N * . For any training set size n ∈ N * and input space X containing at least ⌊log 2 (2d)⌋ points, there exists a set G of d prediction functions such that: for any estimator ĝ there exists a probability distribution on the data space X × [-B; B] for which

ER(ĝ) -min g∈G R(g) ≥ q 90(q-1) ∨ e -1 B q ⌊log 2 |G|⌋ n+1 ∧ 1 .
Proof. See Section 10.12.

Remark 8.7. For least square regression (i.e. q=2), Remark 8.6 [p.42] holds provided that the multiplicative factor becomes 2e log 2 ≈ 3.77. More generally, the method used here gives close to optimal constants but not the exact ones. We believe that this limit is due to the use of the hypercube structure. Indeed, the reader may check that for hypercubes of distributions, the upper bounds used in this section are not constant-optimal since the simplifying step consisting in using min ρ∈M

• • • ≤ min g∈G • • • is loose.
The reader may recover that there are essentially two classes of bounded losses: the ones which are not convex or not enough convex (typical examples are the classification loss, the hinge loss and the absolute loss) and the ones which are sufficiently convex (typical examples are the least square loss, the entropy loss, the logit loss and the exponential loss). For the first class of losses, the edge discrepancy of type I is proportional to √ d II for constant and symmetrical hypercubes and (8.17) leads to a convergence rate of (log |G|)/n. For the second class, the convergence rate is (log |G|)/n and the lower bound can be explained by the fact that, when two prediction functions are different on a set with low probability (typically n -1 ), it often happens that the training data has no input points in this set. For such training data, it is impossible to consistently choose the right prediction function.

This picture of convergence rates for finite models is rather wellknown, since

• similar bounds (with looser constants) were known before for some cases (e.g. in classification, see [START_REF] Vapnik | Theory of Pattern Recognition[END_REF][START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF]).

• mutatis mutandis, the picture exactly matches the picture in the individual sequence prediction literature: for mixable loss functions (similar to "sufficiently convex"), the minimax regret is O(log |G|)/n, whereas for 0/1-type loss functions, it is O (log |G|)/n (see e.g. [START_REF] Haussler | Sequential prediction of individual sequences under general loss functions[END_REF]).

L q -regression for unbounded outputs having finite moments.

• Case q = 1 : From (7.1), when sup g∈G E Z g(X) 2 ≤ b 2 for some b > 0, there exists an estimator for which

ER(ĝ) -min g∈G R(g) ≤ 2b (2 log |G|)/n.
The following corollary of Theorem 8.7 shows that this result is tight.

Theorem 8.13. For any training set size n ∈ N * , positive integer d, positive real number b and input space X containing at least ⌊log 2 d⌋ points, there exists a set G of d prediction functions uniformly bounded by b such that: for any estimator ĝ there exists a probability distribution for which E|Y | < +∞ and

ER(ĝ) -min g∈G R(g) ≥ b 4 ⌊log 2 |G|⌋ n ∧ 1 4 Proof. Let m = ⌊log 2 |G|⌋. We consider a m, 1/ m, m 4n ∧ 1 - hypercube with h 1 ≡ -b and h 2 ≡ b. One may check that d I = b √
d II so that (8.17) gives that for any estimator there exists a probability distribution for which E|Y | < +∞ and

ER(ĝ) -min g∈G R(g) ≥ b m 4n ∧ 1 1 -1 4 ∧ n m ,
hence the desired result.

• Case q > 1 : First let us recall the upper bound. In Corollary 7.5, under the assumptions

   sup g∈G,x∈X |g(x)| ≤ b for some b > 0 E|Y | s ≤ A
for some s ≥ q and A > 0 G finite we have proposed an algorithm satisfying

R(ĝ) -min g∈G R(g) ≤ C log |G| n 1-q-1 s when q ≤ s ≤ 2q -2 C log |G| n 1-q s+2 when s ≥ 2q -2 .
for a quantity C which depends only on b, A, q and s.

The following corollary of Theorem 8.7 shows that this result is tight and is illustrated by Figure 6.

Theorem 8.14. Let d ∈ N * , s ≥ q > 1, b > 0 and A > 0.
For any training set size n ∈ N * and input space X containing at least ⌊log 2 (2d)⌋ points, there exists a set G of d prediction functions uniformly bounded by b such that: for any estimator ĝ there exists a probability distribution on the data space X × R for which E|Y | s ≤ A and

ER(ĝ) -min g∈G R(g) ≥ C log |G| n ∧ 1 1-q-1 s C log |G| n ∧ 1 1-q s+2 
, for a quantity C which depends only on the real numbers b, A, q and s.

Both inequalities simultaneously hold but the first one is tight for q ≤ s ≤ 2q -2 while the second one is tight for s ≥ 2q -2. They are both based on (8.17) applied to a ⌊log 2 |G|⌋-dimensional hypercubes.

Contrary to other lower bounds obtained in this work, the first inequality is based on asymmetrical hypercubes. The use of this kind of hypercubes can be partially explained by the fact that the learning task is asymmetrical. Indeed all values of the output space do not have the same status since predictions are constrained to be in [-b; b] while outputs are allowed to be in the whole real space (see the constraints on the hypercube in the proof given in Section 10.13).

8.4.3 Numerical comparison of the lower bounds (8.17), (8.18) and (8.20)

To compare (8.17), (8.18) and (8.20), we will compare their asymptotical version, i.e. (8.22), (8.23) and (8.24).

0 q 2/(q+2) 1 s v 0 q 2q-2 1/q 1/2 1 s v Figure 6:
Optimal convergence rates in L q -regression when the output has a finite moment of order s (see Theorem 8.14). The convergence rate is of order log|G| n v with 0 < v ≤ 1. The figure represents the value of s in abscissa and the value of v in ordinate. Two cases have to be distinguished. For 1 < q ≤ 2 (figure on the left), v depends smoothly on q. For q > 2 (figure on the right), two stages are observed depending whether s is larger than 2q -2.

Classification in VC classes. We consider |Y| = 2 and ℓ(y, y ′ ) = 1 y =y ′ . Since the differentiability assumption does not hold in this setting, we only compare (8.17 

P ∈P E Z n 1 R(ĝ Z n 1 ) -inf g∈Gn R(g) ≥ α 1 from (8.22) α 2 from (8.23) with    α 1 = max a>0 √ a(1- √ 1-e -a ) 2 ≈ 0.135 α 2 = max a>0 a 2π
+∞ a e -t 2 /2 dt ≈ 0.170 .

In particular for a given set G of finite VC-dimension V , for n sufficiently large, any estimator ĝ satisfies Least square regression with unbounded outputs satisfying EY 2 ≤ A for some A > 0. We consider the context of Corollary 7.4 with s = 2. The best explicit constant in (7.4) is obtained from (7.3) 

sup P ∈P ER(ĝ) -inf g∈G R(g) ≥ 1 6 V /n.
for λ = log |G| 8b 2 A(n+1) ∧ (8b 2 ) -1 . When log |G| ≤ An/(8b 2 ), we get R(ĝ) -min g∈G R(g) ≤ √ 32 b √ A log |G| n Now let
P ∈P E Z n 1 R(ĝ Z n 1 ) -min g R(g) ≥    β 1 b √ A from (8.22) β 2 b √ A from (8.23) β 3 b √ A from (8.24) with      β 1 = (log 2) -1 max a>0 √ a(1 - √ 1 -e -a ) ≈ 0.3897 β 2 = (log 2) -1 max a>0 2a π
+∞ a e -t 2 /2 dt ≈ 0.4904 β 3 = (log 2) -1 max a>0 √ a 1 + 1 2 e -a/2 -1 2 e 3a/2 ≈ 0.5154 .

Proof. See Section 10.14.

The three inequalities, coming from (8.22), (8.23) and (8.24), only differ by a multiplicative constant. The one coming from (8.24) gives the tightest result. The difference between the upper bound and this lower bound is a multiplicative factor smaller than 11. Remark 8.8. In all these examples (i.e. the ones of Section 8.4), we have only considered constant hypercubes. The use of non-constant hypercubes can be required when smoothness assumptions are put on the regression function η : x → P (Y = 1|X = x). This is typically the case in works on plug-in classifiers ([2, 9]). For instance, the proof of [9, Theorems 3.5 and 4.1] relies on non-constant symmetrical hypercubes for which the function ξ (see Definition 8.2) is chosen such that it vanishes on the border of the partition cells, which ensures the regularity of the regression function η.

Summary of contributions and open problems

This work has developed minimax optimal risk bounds for the general learning task consisting in predicting as well as the best function in a reference set. It has proposed to summarize this learning problem by the variance function appearing in the variance inequality (p.7). The SeqRand algorithm (Figure 1) based on this variance function leads to minimax optimal convergence rates in the model selection aggregation problem, and our analysis gives a nice unified view to results coming from different communities.

In particular, results coming from the online learning literature are recovered in Section 4.1. Corollary 4.7 gives a new bound in the online learning setting (sequential prediction with expert advice). The generalization error bounds obtained by Juditsky, Rigollet and Tsybakov in [START_REF] Juditsky | Learning by mirror averaging[END_REF] are recovered for a slightly different algorithm in Section 5.

Without any extra assumption on the learning task, we have obtained a Bernstein's type bound which has no known equivalent form when the loss function is not assumed to be bounded (Section 6.1.1). When the loss function is bounded, the use of Hoeffding's inequality w.r.t. Gibbs distributions on the prediction function space instead of the distribution generating the data leads to an improvement by a factor 2 of the standard-style risk bound (Theorem 6.4).

To prove that our bounds are minimax optimal, we have refined Assouad's lemma particularly by taking into account the properties of the loss function. Theorem 8.7 is tighter than previous versions of Assouad's lemma and easier to apply to a learning setting than Fano's lemma (see e.g. [51]), besides the latter leads in general to very loose constants. It improves the constants of lower bounds related to Vapnik-Cervonenkis classes by a factor greater than 1000. We have also illustrated our upper and lower bounds by studying the influence of the noise of the output and of the convexity of the loss function.

For the L q -loss with q ≥ 1, new matching upper and lower bounds are given: in the online learning framework under boundedness assumption (Corollary 4.5 and Section 8.4.2 jointly with Remark 8.1), in the batch learning setting under boundedness assumption (Section 4.1 and Section 8.4.2), in the batch learning setting for unbounded observations under moment assumptions (Section 7 and 8.4.2). In the latter setting, we still do assume that the prediction functions are bounded.

It is an open problem to replace this boundedness assumption with a moment condition.

Finally this work has the following limits. Most of our results concern expected risks and it is an open problem to provide corresponding tight exponential inequalities. Besides we should emphasize that our expected risk upper bounds hold only for our algorithm. This is quite different from the classical point of view that simultaneously gives upper bounds on the risk of any prediction function in the model. To our current knowledge, this classical approach has a flexibility that is not recovered in our approach. For instance, in several learning tasks, Dudley's chaining trick [START_REF] Dudley | Central limit theorems for empirical measures[END_REF] is the only way to prove risk convergence with the optimal rate. So a natural question and another open problem is whether it is possible to combine the better variance control presented here with the chaining argument (or other localization argument used while exponential inequalities are available). First, by a scaling argument, it suffices to prove the result for a = 0 and b = 1. For Y = [0; 1], we modify the proof in Appendix A of [START_REF] Kivinen | Averaging expert predictions[END_REF]. Precisely, claims 1 and 2, with the notation used there, become:

1. If the function f is concave in α([p; q]) then we have A t (q) ≤ B t (p), 2. If c ≥ R(z, p, q) for any z ∈ (p; q), then the function f is concave in α([p; q]).
Up to the missing α (typo), the difference is that we restrict ourselves to values of z in [p; q]. The proof of Claim 2 has no new argument. For claim 1, it suffices to modify the definition of x ′ t,i into x ′ t,i = q ∧ G -1 [ℓ(p, x t,i )] ∈ [p; q]. Then we have L(p, x ′ t,i ) ≤ L(p, x t,i ) and L(q, x ′ t,i ) ≤ L(p, x t,i ), hence α(x ′ t,i ) ≥ α(x t,i ) and γ(x ′ t,i ) ≥ γ(x t,i ). Now one can prove that f is decreasing on α([p; q]). By using Jensen's inequality, we get

∆ t (q) = -c log n i=1 v t,i γ(x t,i ) ≥ -c log n i=1 v t,i γ(x ′ t,i ) = -c log n i=1 v t,i f [α(x ′ t,i )] ≥ -c log f n i=1 v t,i α(x ′ t,i ) ≥ -c log f n i=1 v t,i α(x t,i ) = L[q, G -1 (∆ t (p))]
The end of the proof of claim 1 is then identical.

Proof of Corollary 5.1

We start by proving that the variance inequality holds with δ λ ≡ 0, and that we may take π(ρ) be the Dirac distribution at the function E g∼ρ g.

By using Jensen's inequality and Fubini's theorem, Assumption (5.1) implies that

E g ′ ∼π(ρ) E Z∼P log E g∼ρ e λ[L(Z,g ′ )-L(Z,g)] = E Z∼P log E g∼ρ e λ[L(Z,E g ′ ∼ρ g ′ )-L(Z,g)] ≤ log E g∼ρ E Z∼P e λ[L(Z,E g ′ ∼ρ g ′ )-L(Z,g)] ≤ log E g∼ρ ψ(E g ′ ∼ρ g ′ , g) ≤ log ψ(E g ′ ∼ρ g ′ , E g∼ρ g) = 0
, so that we can apply Theorem 3.1. It remains to note that in this context the SeqRand algorithm is the one described in the corollary.

Proof of Theorem 6.1

To check that the variance inequality holds, it suffices to prove that for any z ∈ Z

E g ′ ∼ρ log E g∼ρ e λ[L(z,g ′ )-L(z,g)]-λ 2 2 [L(z,g ′ )-L(z,g)] 2 ≤ 0. ( 10.1) 
To shorten formulae, let α(g ′ , g) λ[L(z, g ′ ) -L(z, g)]. By Jensen's inequality and the following symmetrization trick, (10.1) holds.

E g ′ ∼ρ E g∼ρ e α(g ′ ,g)-α 2 (g ′ ,g) 2 ≤ 1 2 E g ′ ∼ρ E g∼ρ e α(g ′ ,g)-α 2 (g ′ ,g) 2 + 1 2 E g ′ ∼ρ E g∼ρ e -α(g ′ ,g)-α 2 (g ′ ,g) 2 ≤ E g ′ ∼ρ E g∼ρ cosh α(g, g ′ ) e -α 2 (g ′ ,g) 2 ≤ 1 (10.
2) where in the last inequality we used the inequality cosh(t) ≤ e t 2 /2 for any t ∈ R. The result then follows from Theorem 3.1.

Proof of Corollary 6.2

To shorten the following formula, let µ denote the law of the prediction function produced by the SeqRand algorithm (w.r.t. simultaneously the training set and the randomizing procedure). Then (6.1) can be written as: for any ρ ∈ M,

E g ′ ∼µ R(g ′ ) ≤ E g∼ρ R(g) + λ 2 E g∼ρ E g ′ ∼µ V (g, g ′ ) + K(ρ,π) λ(n+1) (10.3) 
Define R(g) = R(g) -R(g) for any g ∈ G. Under the generalized Mammen and Tsybakov assumption, for any g, g ′ ∈ G, we have

1 2 V (g, g ′ ) ≤ E Z [L(Z, g) -L(Z, g)] 2 + E Z [L(Z, g ′ ) -L(Z, g)] 2 ≤ c Rγ (g) + c Rγ (g ′ ),
51 so that (10.3) leads to

E g ′ ∼µ [ R(g ′ ) -cλ Rγ (g ′ )] ≤ E g∼ρ [ R(g) + cλ Rγ (g)] + K(ρ,π) λ(n+1) .
(10.4) This gives the first assertion. For the second statement, let ũ E g ′ ∼µ R(g ′ ) and χ(u) ucλu γ . By Jensen's inequality, the l.h.s. of (10.4) is lower bounded by χ(ũ). By straightforward computations, for any 0 < β < 1, when u ≥ cλ 1-β 1 1-γ , χ(u) is lower bounded by βu, which implies the desired result.

10.5 Proof of Theorem 6.3

Let us prove (6.3). Let r(g) denote the empirical risk of g ∈ G, that is r(g) = Σn(g) n .

Let ρ ∈ M be some fixed distribution on G. From [5, Section 8.1], with probability at least 1ǫ w.r.t. the training set distribution, for any µ ∈ M, we have

E g ′ ∼µ R(g ′ ) -E g∼ρ R(g) ≤ E g ′ ∼µ r(g ′ ) -E g∼ρ r(g) + λϕ(λB)E g ′ ∼µ E g∼ρ V (g, g ′ ) + K(µ,π)+log(ǫ -1 ) λn .
Since the Gibbs distribution π -λΣn minimizes µ → E g ′ ∼µ r(g ′ ) + K(µ,π) λn , we have

E g ′ ∼π -λΣn R(g ′ ) ≤ E g∼ρ R(g) + λϕ(λB)E g ′ ∼π -λΣn E g∼ρ V (g, g ′ ) + K(ρ,π)+log(ǫ -1 )
λn .

Then we apply the following inequality

EW ≤ E(W ∨ 0) = +∞ 0 P(W > u)du = 1 0 ǫ -1 P(W > log(ǫ -1 ))dǫ
to the random variable

W = λn E g ′ ∼π -λΣn R(g ′ ) -E g∼ρ R(g) -λϕ(λB)E g ′ ∼π -λΣn E g∼ρ V (g, g ′ ) -K(ρ, π).
We get EW ≤ 1. At last we may choose the distribution ρ minimizing the upper bound to obtain (6.3). Similarly using [5, Section 8.3], we may prove (6.2).

10.6 Proof of Lemma 6.5

It suffices to apply the following adaptation of Lemma 5 of [60] to

ξ i (Z 1 , . . . , Z i ) = L[Z i , A(Z i-1 1 )] -L(Z i , g).
Lemma 10.1. Let ϕ still denote the positive convex increasing function defined as ϕ(t)

e t -1-t t 2
. Let b be a real number. For i = 1, . . . , n + 1, let ξ i : Z i → R be a function uniformly upper bounded by b. For any η > 0, ǫ > 0, with probability at least 1ǫ w.r.t. the distribution of Z 1 , . . . , Z n+1 , we have

n+1 i=1 ξ i (Z 1 , . . . , Z i ) ≤ n+1 i=1 E Zi ξ i (Z 1 , . . . , Z i ) +ηϕ(ηb) n+1 i=1 E Zi ξ 2 i (Z 1 , . . . , Z i ) + log(ǫ -1 )
η , (10.5) where E Zi denotes the expectation w.r.t. the distribution of Z i only.

Remark 10.1. The same type of bounds without variance control can be found in [START_REF] Cesa-Bianchi | On the generalization ability of on-line learning algorithms[END_REF].

Proof. For any i ∈ {0, . . . , n + 1}, define

ψ i = ψ i (Z 1 , . . . , Z i ) i j=1 ξ j - i j=1 E Zj ξ j -ηϕ(ηb) i j=1 E Zj ξ 2 j .
where ξ j is the short version of ξ j (Z 1 , . . . , Z j ). For any i ∈ {0, . . . , n}, we trivially have

ψ i+1 -ψ i = ξ i+1 -E Zi+1 ξ i+1 -ηϕ(ηb)E Zi+1 ξ 2 i+1 . (10.6) 
Now for any b ∈ R, η > 0 and any random variable W such that W ≤ b a.s., we have Ee η(W -EW -ηϕ(ηb)EW 2 ) ≤ 1. (10.7)

Remark 10.2. The proof of (10.7) is standard and can be found e.g. in [START_REF] Audibert | Aggregated estimators and empirical complexity for least square regression[END_REF]Section 7.1.1]. We use (10.7) instead of the inequality used to prove Lemma 5 of [60], i.e. Ee η[W -EW -ηϕ(ηb ′ )E(W -EW ) 2 ] ≤ 1 for W -EW ≤ b ′ since we are interested in excess risk bounds. Precisely, we will take W of the form W = L(Z, g) -L(Z, g ′ ) for fixed functions g and g ′ . Then we have W ≤ sup z,g Linf z,g L while we only have W -EW ≤ 2 sup z,g Linf z,g L . Besides the gain of having E(W -EW ) 2 instead of EW 2 is useless in the applications we develop here. By combining (10.7) and (10.6), we obtain E Zi+1 e η(ψi+1-ψi) ≤ 1. (10.8)

By using Markov's inequality, we upper bound the following probability w.r.t. the distribution of Z 1 , . . . , Z n+1 :

P n+1 i=1 ξ i > n+1 i=1 E Zi ξ i + ηϕ(ηb) n+1 i=1 E Zi ξ 2 i + log(ǫ -1 ) η = P ηψ n+1 > log(ǫ -1 ) = P ǫe ηψn+1 > 1 ≤ ǫEe ηψn+1 ≤ ǫE Z1 e η(ψ1-ψ0) E Z2 • • • e η(ψn-ψn-1) E Zn+1 e η(ψn+1-ψn) ≤ ǫ
where the last inequality follows from recursive use of (10.8).

Proof of Theorem 7.2

The first inequality follows from Jensen's inequality. Let us prove the second. According to Theorem 3.1, it suffices to check that the variance inequality holds for 0 < λ ≤ λ 0 , π(ρ) the Dirac distribution at E g∼ρ g and 

E g∼ρ e λ[L(z,E g ′ ∼ρ g ′ )-L(z,g)-δ λ (z,g,g ′ )]
= e λL(z,E g ′ ∼ρ g ′ ) E g∼ρ e -λℓ[y,g(x)]

≤ e λL(z,E g ′ ∼ρ g ′ ) E g∼ρ e -λ0ℓ[y,g(x)] λ/λ0

≤ e λℓ[y,E g ′ ∼ρ g ′ (x)]-λℓ[y,Eg∼ρ g(x)] = 1, where the last inequality comes from the concavity of y ′ → e -λ0ℓ(y,y ′ ) . This concavity argument goes back to [START_REF] Kivinen | Averaging expert predictions[END_REF]Section 4], and was also used in [START_REF] Bunea | Sequential procedures for aggregating arbitrary estimators of a conditional mean[END_REF] and in some of the examples given in [START_REF] Juditsky | Learning by mirror averaging[END_REF]. • For any z = (x, y) ∈ Z such that |y| > B, for any 0 ≤ ζ ≤ 1, by using twice Jensen's inequality and then by using the symmetrization trick presented in Section 6, we have E g∼ρ e λ[L(z,E g ′ ∼ρ g ′ )-L(z,g)-δ λ (z,g,g ′ )] = e -δ λ (y) E g∼ρ e λ[L(z,E g ′ ∼ρ g ′ )-L(z,g)] ≤ e -δ λ (y) E g∼ρ e λ[E g ′ ∼ρ L(z,g ′ )-L(z,g)] ≤ e -δ λ (y) E g∼ρ E g ′ ∼ρ e λ[L(z,g ′ )-L(z,g)]

= e -δ λ (y) E g∼ρ E g ′ ∼ρ e λ(1-ζ)[L(z,g ′ )-L(z,g)]-1 2 λ 2 (1-ζ) 2 [L(z,g ′ )-L(z,g)] 2 × e λζ[L(z,g ′ )-L(z,g)]+ 1 2 λ 2 (1-ζ) 2 [L(z,g ′ )-L(z,g)] 2 ≤ e -δ λ (y) E g∼ρ E g ′ ∼ρ e λ(1-ζ)[L(z,g ′ )-L(z,g)]-1 2 λ 2 (1-ζ) 2 [L(z,g ′ )-L(z,g)] 2 × e λζ∆(y)+ 1 2 λ 2 (1-ζ) 2 ∆ 2 (y) ≤ e -δ λ (y) e λζ∆(y)+ 1 2 λ 2 (1-ζ) 2 ∆ 2 (y)
Taking ζ ∈ [0; 1] minimizing the last r.h.s., we obtain that

E g∼ρ e λ[L(z,E g ′ ∼ρ g ′ )-L(z,g)-δ λ (z,g,g ′ )] ≤ 1
From the two previous computations, we obtain that for any z ∈ Z, log E g∼ρ e λ[L(z,E g ′ ∼ρ g ′ )-L(z,g)-δ λ (z,g,g ′ )] ≤ 0, so that the variance inequality holds for the above values of λ, π(ρ) and δ λ , and the result follows from Theorem 3.1.

10.8 Proof of Corollary 7.5

To apply Theorem 7.2, we will first determine λ 0 for which the function ζ : y ′ → e -λ0|y-y ′ | q is concave. For any given y ∈ [-B; B], for any q > 1, straightforward computations give ζ ′′ (y ′ ) = λ 0 q|y ′ -y| q -(q -1) λ 0 q|y ′ -y| q-2 e -λ0|y-y ′ | q for y ′ = y, hence ζ ′′ ≤ 0 on [-b; b] -{y} for λ 0 = q-1 q(B+b) q . Now since the derivative ζ ′ is defined at the point y, we conclude that the function ζ is concave on [-b; b], so that we may use Theorem 7.2 with λ 0 = q-1 q(B+b) q . Contrary to the least square setting, we do not have a simple close formula for ∆(y), but for any |y| ≥ b, we have

2bq(|y| -b) q-1 ≤ ∆(y) ≤ 2bq(|y| + b) q-1 .
As a consequence, when |y| ≥ b + (2bqλ) -1/(q-1) , we have λ∆(y) ≥ 1 and ∆(y) -1/(2λ) can be upper bounded by C ′ |y| q-1 , where the quantity C ′ depends only on b and q.

For other values of |y|, i.e. when b ≤ |y| < b + (2bqλ) -1/(q-1) , we have 

+ (1-ζ) 2 λ∆ 2 (y) 2 1 |y|>B ≤ 1 2 λ∆ 2 (y)1 |y|>B ≤ 2λb 2 q 2 (|y| + b) 2q-2 1 |y|>B ≤ C ′′ λ|y| 2q-2 1 |y|>B ,
where C ′′ depends only on b and q.

Therefore, from (7.2), for any 0 < b ≤ B and λ > 0 satisfying λ ≤ q-1 q(B+b) q , the expected risk is upper bounded by

min ρ∈M E g∼ρ R(g) + K(ρ,π) λ(n+1) + E C ′ |Y | q-1 1 |Y |≥b+(2bqλ) -1/(q-1) ;|Y |>B +E C ′′ λ|Y | 2q-2 1 B<|Y |<b+(2bqλ) -1/(q-1) .
(10.9) Let us take B = q-1 qλ 1/qb with λ small enough to ensure that b ≤ B ≤ b + (2bqλ) -1/(q-1) . This means that λ should be taken smaller than some positive constant depending only on b and q. Then (10.9) can be written as

min ρ∈M E g∼ρ R(g) + K(ρ,π) λ(n+1) + E C ′ |Y | q-1 1 |Y |≥b+(2bqλ) -1/(q-1)
+E C ′′ λ|Y | 2q-2 1 ( q-1 qλ ) 1/q -b<|Y |<b+(2bqλ) -1/(q-1) . Now we define the distribution P σj,0 as P σj,0 (dX) = µ(dX) and

1 -P σj,0 (Y = h 2 (X)|X) = P σj,0 (Y = h 1 (X)|X) = 1 2 for any X ∈ X j P σ (Y = h 1 (X)|X) otherwise .
The distribution P σj,0 differs from P σ only by the conditional law of the output knowing that the input is in X j . We recall that P ⊗n denotes the n-fold product of a distribution P . For any r ∈ {-; +}, introduce the likelihood ratios for the data Z n 1 = (Z 1 , . . . , Z n ):

π r,j (Z n 1 )

P ⊗n σj,r P ⊗n σj,0 (Z n 1 )
Note that this quantity is independent of the value of σ. In the following, to shorten the notation, we will sometimes use h 1 for h 1 (X), h 2 for h 2 (X), p + for p + (X), p -for p -(X). Let ν be the uniform distribution on {-, +}, i.e. ν {+} = 1/2 = 1ν {-} . In the following, E σ denotes the expectation when σ is drawn according to the m-fold product distribution of ν, and E X = E X∼µ . We have sup Inequalities (8.17), (8.18) and (8.20) are deduced from Theorem 8.6 by lower bounding the ψ-similarity in different ways.

P ∈P E Z n 1 ∼P ⊗n R(ĝ) -min g R(g) ≥ sup σ∈{-;+} m E Z n 1 ∼P ⊗n σ E Z∼Pσ ℓ[Y, ĝ(X)] -min g E Z∼Pσ ℓ[Y, g(X)] = sup σ∈{-;+} m E Z n 1 ∼P ⊗n σ E X∼Pσ(dX) E Y ∼Pσ (dY |X) ℓ[Y, ĝ(X)] -min y∈Y E Y ∼Pσ(dY |X) ℓ(Y, y) = sup σ∈{-;+} m E Z n 1 ∼P ⊗n σ E X m j=0 1 X∈Xj × ϕ pσ j ,h1,h2 [ĝ(X)] -φ h1,h2 [p σj ] ≥ E σ E Z n 1 ∼P ⊗n σ E X m j=1 1 X∈Xj × ϕ pσ j ,h1,h2 [ĝ(X)] -φ h1,h2 [p σj ] = m j=1 E X 1 X∈Xj E σ E Z n 1 ∼P ⊗n σj,0 P ⊗n σ P ⊗n σj,0 (Z n 1 ) × ϕ pσ j ,h1,h2 [ĝ(X)] -φ h1,h2 [p σj ] = m j=1 E X 1 X∈Xj E σ1,...,σj-1,σj+1,...,σm E Z n 1 ∼P ⊗n σj,0 E σj ∼ν π σj ,j (Z n 1 ) ϕ pσ j ,h1,h2 [ĝ(X)] -φ h1,h2 [p σj ] ( 10 
Since u → u ∧ 1 and u → u u+1 are non-negative concave functions defined on R + , we may define the similarities

S ∧ (P, Q) P Q ∧ 1 dQ = dP ∧ dQ S • (P, Q) P Q 1 P Q +1 dQ = dPdQ dP+dQ .
where the second equality of both formulas introduces a formal (but intuitive) notation.

From Theorem 8. (10.12)

where the minimum is taken over the space of prediction functions. Besides if for any x ∈ X 1 the function φ h1(x),h2(x) is twice differentiable and satisfies for any t ∈

[p -(x)∧p + (x); p -(x)∨p + (x)], -φ ′′ h1(x),h2(x) (t) ≥ ζ for some ζ > 0, then we have sup P ∈P ER(ĝ) -min g R(g) ≥ mwζ 4 d ′ I S • P ⊗n [+] , P ⊗n [-] ; (10.13) 
The following lemma and (10.12) imply (8.17) and (8.18).

Lemma 10.3. We have 

S ∧ P ⊗n [+] , P ⊗n [-] ≥ 1 -1 -[1 -d II ] nw ≥ 1 - √ nwd II . ( 10 
S ∧ P ⊗k X1,+ , P ⊗k X1,-≥ 1 -E X k 1 ∼P ⊗k X 1 ,0 1 -k i=1 S 2 √ P +,Xi , P -,Xi ≥ 1 -1 -E X k 1 ∼P ⊗k X 1 ,0 k i=1 S 2 √ P +,Xi , P -,Xi = 1 -1 -E X∼PX 1 ,0 S 2 √ P +,X , P -,X k = 1 -1 -E X∼µ(•|X1) S 2 √ P +,X , P -,X k Now we have E X∼µ(•|X1) S 2 √ P +,X , P -,X = E µ(•|X1) p + p -+ (1 -p + )(1 -p -) 2 = 1 -E µ(•|X1) p + (1 -p -) -(1 -p + )p - 2 = 1 -d II So we get S ∧ P ⊗k X1,+ , P ⊗k X1,-≥ 1 -1 -(1 -d II ) k ≥ 1 - √ kd II , (10.22) 
where the second inequality follows from the inequality 1-x k ≤ k(1-x) that holds for any 0 ≤ x ≤ 1 and k ≥ 1. This ends the proof of (10.18). For (10.19), since we assume that the hypercube is symmetrical and constant, we can tighten (10.22) 

(Z k 1 ) ≤ 1 + P ⊗k X1,- P ⊗k X 1 ,+ P ⊗k X 1 ,- (Z k 1 ) > 1 . (10.23) Since PX 1 ,+ PX 1 ,-(z) = PX 1 ,+ (Y =y|X=x) PX 1 ,-(Y =y|X=x) =
P+,x(y) P-,x(y) for any z = (x, y) ∈ Z, we have

P ⊗k X 1 ,+ P ⊗k X 1 ,- (Z k 1 ) = k i=1 P+,X i (Yi) P-,X i (Yi) = k i=1 p+(Xi) p-(Xi) 1 Y i =h 1 (X i ) 1-p+(Xi) 1-p-(Xi) 1 Y i =h 2 (X i ) . (10.24)
Using that the hypercube is symmetrical and constant, (10.24) leads to

P ⊗k X 1 ,+ P ⊗k X 1 ,- (Z k 1 ) = k i=1 p+(Xi) 1-p+(Xi) 1 Y i =h 1 (X i ) -1 Y i =h 2 (X i ) = p+ 1-p+ k i=1 [1 Y i =h 1 (X i ) -1 Y i =h 2 (X i ) ] . (10.25)
Without loss of generality, we may assume that p + > 1/2. Then we have p

+ = 1 -p -= 1+ √ dII 2 . Introduce W i 1 Yi=h1(Xi) -1 Yi=h2(Xi) .
hence for any probability distributions P and Q,

S • P, Q = θ P Q dQ ≥ 1 4 dP + dQ + √ dPdQ -dP 3/2 2dQ 1/2 -dQ 3/2 2dP 1/2 = 1 2 + 1 4 √ dPdQ -1 8 
dP 3/2 dQ 1/2 -1 8 
dQ 3/2 dP 1/2
The goal of this bound is to obtain a form for which tensorization equalities hold. Precisely, let

I 1 dP [+] dP [-] and I 2 dP 3/2 [+] dP 1/2 [-] = dP 3/2 [-] dP 1/2 [+]
, where the last equality holds since the hypercube is symmetrical. We have

S • P ⊗n [+] , P ⊗n [-] ≥ 1 2 + 1 4 I n 1 -1 4 I n 2
Since the hypercube is symmetrical and constant, without loss of generality, we may assume that p + ≥ 1 2 on X 1 . Then we have 1 -

p -= p + = (1 + √ d II )/2, hence I 1 = 1 -w + w √ 1 -d II and I 2 = 1 -w + w 2 (1+ √ dII) 3/2 (1- √ dII) 1/2 + (1- √ dII) 3/2 (1+ √ dII) 1/2 = 1 -w + w 1+dII √ 1-dII ,
which gives the desired result. Case 1 < q ≤ 1 + m 4n ∧ 1 :

From (8.11) and (8.29), for any 0 < ǫ ≤ 1, we have

d I ≥ dII 2 1+ǫ 2 1-ǫ 2 [t ∧ (1 -t)] φ ′′ h1,h2 1 
- √ dII 2 + √ d II t dt ≥ dII 2 ǫ(2-ǫ) 4 inf u∈ 1-ǫ √ d II 2 ; 1+ǫ √ d II 2 φ ′′ h1,h2 (u) ≥ ǫ(2-ǫ) 8 d II × φ ′′ -B,B 1-ǫ √ dII 2 ≥ ǫ(2-ǫ) 8 d II × q q-1 1-ǫ 2 dII 4 2-q q-1 (2B) q 2 q+1 [(1+ǫ √ dII)/2] q+1 q-1 ≥ ǫ(2-ǫ) 8 d II × 4qB q q-1 (1 -ǫ √ d II ) 2-q q-1 (1 + ǫ √ d II ) 1-2q q-1 = (1 -ǫ/2)qB q ǫdII q-1 (1 -ǫ √ d II ) 2-q q-1 (1 + ǫ √ d II ) 1-2q q-1 Let K = (1 -ǫ √ d II ) 2-q q-1 (1 + ǫ √ d II )
1-2q q-1 . From (8.17), taking w = 1/ m, we get sup

P ∈H ER(ĝ) -min g R(g) ≥ (1 -ǫ/2)KqB q ǫdII q-1 1 -nd II / m . (10.26) 
This leads us to choose d II = m 4n ∧ 1 and ǫ = (q -1) n m ∨ 1 4 ≤ 1 2 and obtain

ER(ĝ) -min g R(g) ≥ 3qB q 8 K 1 4 m n ∨ 1 -n m .
Since 1 < q ≤ 2 and ǫ √ d II = q-1 2 , we may check that K ≥ 0.29 (to be compared with lim q→1 K = e -1 ≈ 0.37).

Case q > 1 + m 4n : We take w = 

I = ψ 1,0,-B,B (1/2) = φ -B,B (1/2) = B q . From (8.19), we obtain ER(ĝ) -min g∈G R(g) ≥ ⌊log 2 |G|⌋ n+1 ∧ 1 B q 1 -1 n+1 ∧ 1 ⌊log 2 |G|⌋ n ≥ e -1 B q ⌊log 2 |G|⌋ n+1 ∧ 1 , (10.27 
) where the last inequality uses [1 -1/(n + 1)] n ց e -1 .

Improvement when 1 +

m 4n ∧ 1 < q < 2 : From (10.26), by choosing ǫ = 1/2 and introducing K ′ (1 - √ d II /2) 2-q q-1 (1 + √ d II /2) 1-2q
q-1 , we obtain sup

P ∈H ER(ĝ) -min g R(g) ≥ 3qB q 8 K ′ dII q-1 1 -nd II / m .
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This leads us to choose

d II = 4 m 9n ∧ 1. Since m 4n ∧ 1 < q -1, we have √ d II ≤ 4 3 (q -1), hence K ′ ≥ 1 -2 3 (q -1)
2-q q-1 1 + 2 3 (q -1)

1-2q q-1 . For any 1 < q < 2, this last quantity is greater than 0.2. So we have proved that for 1 Here we consider a constant m-dimensional hypercube of distributions with edge probability w such that p + ≡ p, p -≡ 0, h 1 ≡ +B and h 2 ≡ 0, where w, p and B are positive real parameters to be chosen according to the strategy described at the beginning of Section 8.4. To have E|Y | s ≤ A, we need that m wpB s ≤ A. To ensure that a best prediction function has infinite norm bounded by b, from the computations at the beginning of Appendix A, we need that B ≤ p 1/(q-1) +(1-p) 1/(q-1)

+ m 4n ∧ 1 < q < 2, ER(ĝ) -min g∈G R(g) ≥ q 90(q-1) B q ⌊log 2 |G|⌋ n . ( 10 
p 1/(q-1)
b.

This inequality is in particular satisfied for B = Cp -1/(q-1) for appropriate small constant C depending on b and q. From the definition of the edge discrepancy of type II, we have d II = p. In order to have the r.h.s. of (8.17) of order mwd I , we want to have n wp ≤ C < 1. All the previous constraints lead us to take the parameters w, p and B such that

   B = Cp -1/(q-1) m wpB s = A n wp = 1/4 . Let Q = m n ∧ 1.
This leads to p = CQ (q-1)/s , B = CQ -1/s and w = C m-1 Q 1-(q-1)/s with C small positive constants depending on b, A, q and s. Now from the definition of the edge discrepancy of type I and (8.5), we have

d I = p 2 2 1 0 [t ∧ (1 -t)] φ ′′ 0,B (tp) dt ≥ p 2 2 3/4 1/4 1 4 min [p/4;3p/4] φ ′′ 0,B (tp) dt ≥ Cp 2 p 2-q q-1 B q = C
where the last inequality comes from (8.29). From (8.17), we get sup

P ∈P ER(ĝ) -min g∈G R(g) ≥ CQ 1-q-1 s .
10.13.2 Proof of the second inequality of Theorem 8.14.

We still use m = ⌊log 2 |G|⌋. We consider a ( m, w, dII )-hypercube with h 1 ≡ -B and h 2 ≡ +B, where w, dII and B are positive real parameters to be chosen according to the strategy described at the beginning of Section 8.4. To have E|Y | s ≤ A, we need that m wB s ≤ A. To ensure that a best prediction function has infinite norm bounded by b, from the computations at the beginning of Appendix A), we need that

B ≤ [1+( dII) 1/2 ] 1/(q-1) +[1-( dII) 1/2 ] 1/(q-1) [1+( dII) 1/2 ] 1/(q-1) -[1-( dII) 1/2 ] 1/(q-1) b. (10.29)
For fixed q and b, this inequality essentially means that B ≤ C dII -1/2 since we intend to take dII close to 0. In order to have the r.h.s. of (8.17 We still use Q = m n ∧1. This leads to dII = CQ 2/(s+2) , B = CQ -1/(s+2) and w = C m-1 Q s/(s+2) with C small positive constants depending on b, A, q and s. Now from (8.29), the differentiability assumption is satisfied for ζ = CB q = CQ -q/(s+2) . From (8.17 10.14 Proof of Theorem 8.16

The starting point is similar to the one in Section 10.13.2. Since q = 2, (10.29) simplifies into B ≤ b( dII ) -1/2 . We take B = b( dII ) -1/2 and w = A/( mB 2 ) and we optimize the parameter dII in order to maximize the lower bound. From (8.30), we get m wd I = A dII . Introducing a n w dII = nA mb 2 ( dII ) 2 , we obtain m wd I = b A m/n √ a. The results then follow from Corollary 8.8 and the fact that the differentiability assumption (8.9) holds for ζ = 8B 2 = 8dI dII .

A Computations of the second derivative of φ for the L q -loss Let y 1 and y 2 be fixed. We start with the computation of φ y1,y2 . For any p ∈ [0; 1], the quantity ϕ p,y1,y2 (y) = p|yy 1 | q + (1p)|yy 2 | q is minimized when y ∈ [y 1 ∧ y 2 ; y 1 ∨ y 2 ] and pq(yy 1 ) q-1 = (1p)q(y 2y) q-1 . Introducing r = 1 q-1 and D = p r + (1p) r , the minimizer can be written as y = p r y1+(1-p) r y2 D and the minimum is

φ y1,y2 (p) = p (1-p) rq D q + (1 -p) p rq D q |y 2 -y 1 | q = p(1 -p) |y2-y1| q D q-1 ,
where we use the equality rq = 1 + r. We get 1 |y2-y1| q φ ′ y1,y2 (p) = 1-2p D q-1 + p(1p)(1q)rD -q [p r-1 -(1p) r-1 ] = D -q (1 -2p)[p r + (1p) r ] -(1p)p r + p(1p) r ] = D -q (1p) r+1p r+1 , hence 1 |y2-y1| q φ ′′ y1,y2 (p) = -qrD -q-1 [p r-1 -(1p) r-1 ][(1p) r+1p r+1 ] -qrD -q-1 [p r -(1p) r ] 2 = -qrD -q-1 p r-1 (1p) r-1 = -q q-1 [p(1-p)] 2-q q-1 p 1 q-1 +(1-p) 1 q-1 q+1 .

B Expected risk bound from Hoeffding's inequality

Let λ ′ > 0 and ρ be a probability distribution on G. Let r(g) denote the empirical risk of a prediction function g, that is r(g) = for any η > 0. For η = λ ′ /n, this leads to E Z n 1 e λ ′ [R(g ′ )-Eg∼ρ R(g)-r(g ′ )+Eg∼ρ r(g)] ≤ e (λ ′ ) 2 (b-a) 2 /(2n) Consider the Gibbs distribution ρ = π -λ ′ r . This distribution satisfies E g ′ ∼ ρ r(g ′ ) + K(ρ, π)/λ ′ ≤ E g∼ρ r(g) + K(ρ, π)/λ ′ .
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We have

E Z n 1 E g ′ ∼ ρ R(g ′ ) -E g∼ρ R(g) ≤ E Z n 1 E g ′ ∼ ρ R(g ′ ) -E g∼ρ
R(g)r(g ′ ) -E g∼ρ r(g) + K(ρ,π)-K( ρ,π)

λ ′ ≤ K(ρ,π) λ ′ + E Z n 1 1 λ ′ log E g ′ ∼π e λ ′ [
R(g ′ )-Eg∼ρ R(g)-r(g ′ )-Eg∼ρ r(g)] ≤ K(ρ,π) λ ′ + 1 λ ′ log E g ′ ∼π E Z n 1 e λ ′ [R(g ′ )-Eg∼ρ R(g)-r(g ′ )-Eg∼ρ r(g)] ≤ K(ρ,π)

λ ′ + λ ′ (b-a) 2 2n .
This proved that for any λ > 0, the generalization error of the algorithm which draws its prediction function according to the Gibbs distribution π -λΣn/2 satisfies

E Z n 1 E g ′ ∼π -λΣn/2 R(g ′ ) ≤ min ρ∈M E g∼ρ R(g) + 2 λ(b-a) 2 8 + K(ρ,π) λn ,
where we use the change of variable λ = 2λ ′ /n in order to underline the difference with (6.4).

C Proof of Inequality (10.16)

To prove (10.16), we need to uniformly control the difference between the tail of the sum of i.i.d. random variables and the gaussian approximate. This is done by the following result. From now on, we consider that the pairs Z i = (X i , Y i ) are generated by P -, so that EW i and Var W i simply denote the expectation and variance of W i when (X i , Y i ) is drawn according to P -1,1,...,1 . Define the normalized quantity

U i (W i -EW i )/ √ Var W i .
We have P -(S n > 0) = P -n -1/2 n i=1 U i > t n where t n - From (C.3), we get that P -(S n > 0) -P(N > t n ) converges to zero when nw goes to infinity and ξ goes to zero. Now the previous convergence also holds when '>' is replaced with '≥' (since it suffices to consider the random variables -U i in Theorem C.1). Using both convergence and (C.2), we obtain 2. For any i ∈ {1, . . . , n}, iteratively define S i (g) S i-1 (g) + L(Z i , g) + δ λ i (Z i , g, ĝi-1 ) for any g ∈ G. (D.1) and ρi π(π -λ i+1 S i ) in the sense of the variance inequality (p.7) and draw a function ĝi according to the distribution ρi .

3. Predict with a function drawn according to the uniform distribution on the finite set {ĝ 0 , . . . , ĝn }. Conditionally to the training set, the distribution of the output prediction function will be denoted μa . 

D Towards adaptivity for the temperature parameter

Once the distribution π is fixed, an appropriate choice for the parameter λ of the SeqRand algorithm is the minimizer of the r.h.s. of (3.2). This minimizer is unknown by the statistician. This section proposes to modify the λ during the iterations so that it automatically fits to a value close to this minimizer. The adaptive SeqRand algorithm is described in Figure 7. The idea of incremental updating of the temperature parameter to solve the adaptivity problem has been successfully developed in [10, Section 2] and [30, Lemma 3]. Here we improve the argument by using Lemma D.2.

The following theorem upper bounds the generalization error of the adaptive SeqRand algorithm.

Theorem D.1. Let ∆ λ (g, g ′ ) E Z∼P δ λ (Z, g, g ′ ) for g ∈ G and g ′ ∈ Ḡ, where we recall that δ λ is a function satisfying the variance inequality (see p.7). The expected risk of the adaptive SeqRand algorithm satisfies Proof. Let E denote the expected risk of the adaptive SeqRand algorithm:

E Z n 1 E g ′ ∼μa R(g ′ ) ≤ min
E E Z n 1 E g∼μa R(g) = 1 n+1 n i=0 E Z i 1 E ĝi 0 ∼Ωi R(ĝ i
). We recall that Z n+1 is a random variable independent of the training set Z n 1 and with the same distribution P . Define S n+1 by (D.1) for i = n + 1. To shorten formulae, let πi π -λi+1Si so that by definition we have ρi = π(π i ). The variance inequality implies that E g ′ ∼π(ρ) R(g ′ ) ≤ -1 λi+1 E Z E g ′ ∼π(ρ) log E g∼ρ e -λi+1[L(Z,g)+δ λ i+1 (Z,g,g ′ )] .

So for any i ∈ {0, . . . , n}, for fixed ĝi-1 0 = (ĝ 0 , . . . , ĝi-1 ) and fixed Z i 1 , we have

E g ′ ∼ ρi R(g ′ ) ≤ -1
λi+1 E Zi+1 E g ′ ∼ ρi log E g∼πi e -λi+1[L(Zi+1,g)+δ λ i+1 (Zi+1,g,g ′ )]

Taking the expectations w.r.t. (Z i 1 , ĝi-1 0 ), we get

E Z i 1 E ĝi 0 R(ĝ i ) = E Z i 1 E ĝi-1 0 E g ′ ∼ ρi R(g ′ ) ≤ -E Z i+1 1 E ĝi 0 1
λi+1 log E g∼πi e -λi+1[L(Zi+1,g)+δ λ i+1 (Zi+1,g,ĝi)] . Consequently, by the chain rule (i.e. cancellation in the sum of logarithmic terms; [START_REF] Barron | Are bayes rules consistent in information?[END_REF]) and by intensive use of Fubini's theorem, we get

E = 1 n+1 n i=0 E Z i 1 E ĝi 0 R(ĝ i ) ≤ -1 n+1 n i=0 E Z i+1 1 E ĝi 0 1
λi+1 log E g∼πi e -λi+1[L(Zi+1,g)+δ λ i+1 (Zi+1,g,ĝi)] = 1 n+1 E Z n+1 1 E ĝn 0 n i=0 a i , (D.3) with a i = -1 λi+1 log E g∼πi e -λi+1[L(Zi+1,g)+δ λ i+1 (Zi+1,g,ĝi)] . Introduce the function φ i (λ) = 1

λ log E g∼π e -λSi(g) . Let us now concentrate on the last sum. Eg∼π e -λ i+1 S i+1 (g) Eg∼π e -λ i+1 S i (g)

= -1 λn+1 log E g∼π e -λn+1Sn+1(g)

+ n i=0 [φ i (λ i+1 ) -φ i (λ i )] ≤ -1
λn+1 log E g∼π e -λn+1Sn+1(g) , (D.4) where the last inequality uses that λ i+1 ≤ λ i and that the functions φ i are nondecreasing according to the following lemma.

Lemma D.2. Let W be a real-valued measurable function defined on the space A and let µ be a probability distribution on A. The mapping λ → 1

λ log E a∼µ e -λW(a) is nondecreasing on the interval on which it is defined.

Proof of Lemma D.2. It is easy to check that the function is welldefined on an interval (possibly empty), and is smooth on the interior of this interval. The derivative of this function is 
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 44 Let Y = [a; b]. We consider a non-regularized loss function, i.e. a loss function such that L(Z, g) = ℓ[Y, g(X)] for any Z = (X, Y ) ∈ Z and some function ℓ : Y × Y → R. For any y ∈ Y, let ℓ y be the function y ′ → ℓ(y, y ′ ) . If for any y ∈ Y • ℓ y is continuous on Y • ℓ y decreases on [a; y], increases on [y; b] and ℓ y (y) = 0 • ℓ y is twice differentiable on the open set (a; y) ∪ (y; b), then (4.1) is satisfied for c = 1 and

Figure 2 :Theorem 4 . 6 .

 246 Figure 2: The online SeqRand algorithm

  2 and Theorem 6.1, the algorithm considered in Theorem 6.1 satisfies ER(ĝ)-min g∈G R(g) ≤ 2λb 2 + log |G| λ(n+1) , which gives the desired result by taking λ = log |G| 2b 2 (n+1) .

Theorem 7 . 2 .

 72 Assume that sup g∈G,x∈X |g(x)| ≤ b for some b > 0, and that the output space is Y = R. Let B ≥ b. Consider a loss function L which can be written as L[(x, y), g] = ℓ[y, g(x)], where the function ℓ : R × R → R satisfies: there exists λ 0 > 0 such that for any y ∈ [-B; B], the function y ′ → e -λ0ℓ(y,y ′ ) is concave on [-b; b]. Let ∆(y) = sup |α|≤b,|β|≤b ℓ(y, α)ℓ(y, β) .

Theorem 7 .

 7 3 improves [21, Theorem 1]. Corollary 7.4. Under the assumptions    sup g∈G,x∈X |g(x)| ≤ b for some b > 0 E|Y | s ≤ A for some s ≥ 2 and A > 0 G finite for λ = C 1 log |G| n 2/(s+2) where C 1 > 0 and π the uniform distribution on G, the expected risk of the algorithm that draws uniformly its prediction function among E g∼π -λΣ 0 g,. . . ,E g∼π -λΣn g is upper bounded by min g∈G R(g) + C log |G| n s/(s+2) (7.4) for a quantity C which depends only on C 1 , b, A and s.

Corollary 7 . 5 .

 75 Let q > 1. Assume that    sup g∈G,x∈X |g(x)| ≤ b for some b > 0 E|Y | s ≤ A

Figure 3 :Remark 8 . 4 .

 384 Figure 3: Representation of a probability distribution of the hypercube.Here the hypercube is a constant and symmetrical one (see Definition 8.2) with m = 8 and the probability distribution is characterized by σ = (+, -, +, -, -, +, +, -).
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 86 Let P be a set of probability distributions containing a hypercube of distributions of characteristic function ψ and representatives P [-] and P [+] . For any training set size n ∈ N * and any estimator ĝ, we have sup P ∈P ER(ĝ)min g R(g) ≥ S ψ P ⊗n [+] , P ⊗n

Figure 4 :Remark 8 . 5 .

 485 Figure 4: Comparison of the r.h.s. of (8.22), (8.23) and (8.24)

  ) and(8.18). Theorem 8.15. Let P be the set of all probability distributions on the data space Z. Let (G n ) n∈N be a family of prediction function spaces of VC-dimension V n ≥ 2 satisfying n/V n → n→+∞ +∞. For any algo-

Proof.

  It suffices to apply Corollary 8.8 to (V n , 1/V n , aV n /n)-hypercubes, use that d I = √ d II /2 and choose the real number a > 0 to maximize the lower bound. The two inequalities, coming from (8.22) and (8.23), simultaneously hold. They only differ by a multiplicative constant.

1

 1 Proof of Theorem 4.4

δ1

  λ [(x, y), g, g ′ ] = δ λ (y) min 0≤ζ≤1 ζ∆(y) + (1-ζ) 2 λ∆ 2 (y) λ∆(y)<1;|y|>B + ∆(y) -1 2λ 1 λ∆(y)≥1;|y|>B . • For any z = (x, y) ∈ Z such that |y| ≤ B, for any probability distribution ρ and for the above values of λ and δ λ , by Jensen's inequality, we have

λ∆ 2 (y) 2 1

 2 λ∆(y)<1;|y|>B + ∆(y) -1 2λ 1 λ∆(y)≥1;|y|>B = min 0≤ζ≤1 ζ∆(y)

. 10 )

 10 The two inequalities in (10.10) are Assouad's argument ([START_REF] Assouad | Deux remarques sur l'estimation[END_REF]). For any x ∈ X , introduce ψx (u) 1 2 (u + 1)ψ p+(x),p-(x),h1(x),h2(x) u u+1 .

  ) of order mwd I , we want to have n w dII ≤ 1/4 where, once more, this last constant is arbitrarily taken. The previous constraints lead us

  ) and(8.21), we obtain supP ∈P ER(ĝ)min g∈G R(g) ≥ CQ 1-q s+2 .

  Z i , g). Hoeffding's inequality applied to the random variableW = E g∼ρ L(Z, g) -L(Z, g ′ ) ∈ [-(ba); ba] for a fixed g ′ gives E Z∼P e η[W -EW ] ≤ e η 2 (b-a) 2 /2

Theorem C. 1 ( 21

 121 Berry[15]-Esseen[START_REF] Esseen | On the Liapounoff limit of error in the theory of probability[END_REF] inequality). Let N be a centered gaussian variable of variance 1. Let U 1 , . . . , U n be real-valued independent identically distributed random variables such that EU 1 = 0, EU 2 1 = 1 and E|U 1 | 3 < +∞. Thensup x∈R P n -1/2 n i=1 U i > x -P(N > x) ≤ Cn -1/2 E|U 1 | 3 (C.1)for some universal positive constant C.To shorten the notation, let P -= P ⊗n [-] and P + = P ⊗n [+] be the n-fold product of the representatives of the hypercube. Since we have p + > 1/2 > p -(by definition of a (m, w, d II )-hypercube (p.33)), the set of sequences Z n 1 for whichP + P -(Z n 1 ) Yi=h1(Xi) -1 1 Xi∈X1 . We have S ∧ (P + , P -) = 1 -P -(E) + P + (E) = 1 -P -(S n < 0) + P + (S n < 0) = P -(S n ≥ 0) + P -(S n > 0).(C.2)W i = 21 Yi=h1(Xi) -1 1 X∈X1 .

Var W1 EW 1 . 1 E|W 1 -

 111 By Berry-Esseen's inequality (Theorem C.1), we getP -(S n > 0) -P(N > t n ) ≤ Cn -1/2 E|U 1 | 3 (C.3) Let us now upper bound n -1/2 E|U 1 | 3 . Since we have p + = (1 + ξ)/2 = 1p -for a (m, w, d II )-hypercube (p.33)), the law of W 1 is described by    P(W 1 = 1) = w 1-ξ 2 P(W 1 = 0) = 1w P(W 1 = -1) = w 1+ξ 2where w still denotes µ(X 1 ). We get EW 1 = -wξ, Var W 1 = w(1-wξ 2 ) and since 0 < w ≤ 1 and 0< ξ ≤ EW 1 | 3 = (1w)(wξ) 3 + w 1-ξ 2 (1 + wξ) 3 + w 1+ξ 2 (1wξ) 3 ≤ w + w[1 + 3(wξ) 2 ] ≤ 5w. (C.4) We obtain n -1/2 E|U 1 | 3 ≤ n -1/2 5w [w(1-wξ 2 )] 3/2 ≤ 5 (nw) -1/2 (1-ξ 2 )

S• λ 1 ≥

 1 ∧ (P + , P -) -P(|N | > t n ) λ 2 ≥ • • • ≥ λ n+1 >0 with λ i+1 possibly depending on the values of Z 1 , . . . , Z i • π a distribution on the set G 1. Define ρ0 π(π) in the sense of the variance inequality (p.7) and draw a function ĝ0 according to this distribution. Let S 0 (g) = 0 for any g ∈ G.

Figure 7 :

 7 Figure 7: The adaptive SeqRand algorithm

- 1 λ 1 E ĝn 0 1 λn+1 1 n+1

 1111 2 log E a e -λW(a) -1 λ E a W(a)e -λW(a) E a e -λW(a) = 1 λ 2 K(µ -λW(a) , µ) ≥ 0.Plugging the inequality (D.4) into (D.3) and using Lemma 3.2, we obtainE ≤ -1 n+1 E Z n+1 log E g∼π e -λn+1Sn+1(g) = Z i , g) + δ λi (Z i , g, ĝi-1 ) + K(ρ,π) λn+1 ≤ min ρ∈M E g∼ρ R(g) + E g∼ρ E Z n 1 E ĝn 0 1 n+1 n+1 i=1 ∆ λi (g, ĝi-1 ) + K(ρ,π) λn+1(n+1)

  4.2 for discussion and minimax optimality of the results of this section). Remark 7.3. Corollary 7.5 assumes that the prediction functions in G are uniformly bounded. It is an open problem to have the same kind of results under weaker assumptions such as a finite moment condition similar to the one used in Corollary 7.1.

  us give the associated lower bounds coming from(8.22),(8.23) and(8.24). Theorem 8.16. Let X be an infinite input space. Let A > 0 and P be the set of probability distributions on X × R such that EY 2 ≤ A. There exists a family of prediction function spaces (G n ) n∈N such that any prediction function in these sets is uniformly bounded by b, their sizes at most grows subexponentially, i.e. n/ log |G n | goes to infinity when n goes to infinity, and for any algorithm ĝ

	lim inf n→+∞	n log |Gn| sup

  6, Lemma 8.3 and item 1 of Lemma 8.5, by using ψ(1) = mwd I , we obtain Corollary 10.2. Let P be a set of probability distributions containing a hypercube of distributions of characteristic function ψ and representatives P [-] and P [+] . For any estimator ĝ, we have

	sup P ∈P	ER(ĝ) -min g	R(g)	≥ mwd I S ∧ P ⊗n [+] , P ⊗n [-]

  Maximizing the lower bound w.r.t. d II , we choose d II = m 4n ∧ 1 and obtain the announced result.

	that, choosing w = 1/ m, (8.17) gives	√ 2 |h 2 -h 1 | = B dII	√ d II so
	sup P ∈H	ER(ĝ) -min g	R(g)	≥ B	√ d

10.12 Proof of

Theorems 8.11 and 8.12 

We consider a ( m, w, dII )-hypercube (see

Definition 8.3 [p.33]

) with m = ⌊log 2 |G|⌋, h 1 ≡ -B and h 2 ≡ B, and with w and dII to be taken in order to (almost) maximize the bound.

Case q = 1 : From (8.27), we have d I = II 1nd II / m .

  Proof of the first inequality of Theorem 8.14. m = ⌊log 2 |G|⌋. Contrary to other lower bounds obtained in this work, this learning setting requires asymmetrical hypercubes of distributions.

	.28)
	Theorem 8.12 follows from (10.27) and (10.28).
	10.13 Proof of Theorem 8.14
	10.13.1 Let

This Fubini's type result follows from the definition of the integral of non-negative functions on a product space.
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Binary classification. We consider Y = {0; 1} and l(y, y ′ ) = 1 y =y ′ . Since the work of Vapnik-Cervonenkis [START_REF] Vapnik | Theory of Pattern Recognition[END_REF], several lower bounds have been proposed and the most achieved ones are given in [START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF]Chapter 14]. The following theorem provides a significant improvement of the constants of these bounds. Theorem 8.9. Let L ∈ [0; 1/2], n ∈ N and G be a set of prediction functions of VC-dimension V ≥ 2. Consider the set P L of probability distributions on X × {0; 1} such that inf g∈G R(g) = L. For any estimator ĝ:

• when L = 0, there exists P ∈ P 0 for which

• when 0 < L ≤ 1/2, there exists P ∈ P L for which

otherwise .

(8.32) • there exists a probability distribution for which

V n (8.33) Sketch. We have φ y1,y2 (p) = [p ∧ (1p)]1 y1 =y2 and for constant symmetrical hypercubes d I = √ d II /2. Then (8.31) comes from (8.19) and the use of a (V -1, 1/(n+1), 1)-hypercube and a (V, 1/V, 1)-hypercube.

To prove (8.32), from (8.17) and the use of a

which can be weakened into (8.32). Finally, (8.33) comes from the last inequality and by choosing L such that 1

No uniform universal consistency for general losses. This type of results is well known and tells that there is no guarantee of doing well on finite samples. In classification setting, when the input space is infinite, i.e. |X | = +∞, by using a (⌊nα⌋, 1/⌊nα⌋, 1)-hypercube with α tending to infinity, one can recover that: for any training sample size Now using (7.5), we can upper bound (10.9) with min g∈G R(g)

where C depends only on b, A, q and s. So we get

q is equivalent to s ≥ 2q -2. By taking λ of order of the minimum of the r.h.s. (which implies that λ goes to 0 when n/ log |G| goes to infinity), we obtain the desired result.

10.9 Proof of Lemma 8.2

10.10 Proof of Theorem 8.6

The symbols σ 1 , . . . , σ m still denote the coordinates of σ ∈ {-; +} m . For any r ∈ {-; 0; +}, define σj,r (σ 1 , . . . , σ j-1 , r, σ j+1 , . . . , σ m ) as the vector deduced from σ by fixing its j-th coordinate to r. Since σj,+ and σj,-belong to {-; +} m , we have already defined P σj,+ and P σj,-.

Introduce

. The last expectation in (10.10) is

(10.11) so that sup

= m j=1 E X 1 X∈Xj E σ S ψX P ⊗n σj,+ , P ⊗n σj,-

. Now since we consider a hypercube, for any j ∈ {1, . . . , m}, all the terms in the sum are equal. Besides from part 2 of Lemma 8.5, the last f -similarity does not depend on σ, and in particular for j = 1, the f -similarity is equal to

, where we recall that P [+] and P [-] denote the representatives of the hypercube (see Definition 8.2). Therefore we obtain sup

where the second to last equality comes from the second part of Lemma 8.5.

Proof of Theorem 8.7

First, when the hypercube satisfies p The following lemma and (10.13) imply (8.20).

Lemma 10.4. When the hypercube is symmetrical and constant, we have

Proof. See Section 10.11.2.

Proof of Lemma 10.3

For σ ∈ {-, +}, the conditional law of (X, Y ) knowing X ∈ X 1 , when (X, Y ) follows the law P [σ] , is denoted P X1,σ and is called the restricted representatives of the hypercube. More explicitly, the probability distribution P X1,σ is such that its first marginal P X1,σ (dX) is µ(•|X 1 ) and for any x ∈ X 1

The following lemma relates the similarity between representatives of the hypercube and the similarity between restricted representatives. for any k ∈ {0, . . . , n}, where by convention S ∧ P ⊗0 X1,+ , P ⊗0 X1,-= 1. For any estimator ĝ, we have

Proof. For any points z 1 = (x 1 , y 1 ), . . . , z n = (x n , y n ) in X × {h 1 , h 2 }, let C(z 1 , . . . , z n ) denotes the number of z i for which x i ∈ X 1 . For any k ∈ {0, . . . , n}, let B k = C -1 ({k}) denote the subset of X ×{h 1 , h 2 } n for which exactly k points are in X 1 × {h 1 , h 2 }. We recall that there are n k possibilities of taking k elements among n and the probability of X ∈ X 1 when X is drawn according to µ is w = µ(X 1 ). Let Z 1 = X 1 × {h 1 , h 2 } and let Z c 1 denote the complement of Z 1 . We have S ∧ P ⊗n

[+] , P ⊗n

(10.17) where V is a Binomial distribution with parameters n and w. By Jensen's inequality, we have Eγ(V ) ≥ γ[E(V )] = γ(nw), which ends the proof.

The interest of the previous lemma is to provide a lower bound on the similarity between representatives of the hypercube from a lower bound on the similarity between restricted representatives, restricted representatives being much simpler to study. The following result lower bounds the ∧-similarity between the restricted representatives of the hypercube.

Lemma 10.6. For any non-negative integer k, we have

When the hypercube is symmetrical and constant, for N a centered gaussian random variable with variance 1, we have

Proof. First, we recall that P 0 denotes the base of the hypercube (see Definition 8.2). The conditional law of (X, Y ) knowing X ∈ X 1 , when (X, Y ) is drawn from P 0 , is denoted P X1,0 . For any r ∈ {-, 0, +}, introduce P r,x the probability distribution on the output space such that P r,x (dY ) = P X1,r (dY |X = x). We have

where ⊗ k i=1 P r,Xi , r ∈ {-1; 1} denotes the law of the k-tuple (Y 1 , . . . , Y k ) when the Y i are independently drawn from P r,Xi .

To study divergences (or equivalently similarities) between k-fold product distributions, the standard way is to link the divergence (or similarity) of the product with the ones of base distributions. This lead to tensorization equalities or inequalities. To obtain a tensorization inequality for S ∧ , we introduce the similarity associated with the square root function (which is non-negative and concave):

and use the following lemmas:

Lemma 10.7. For any probability distributions P and Q, we have

Proof. Introduce the variational distance V (P, Q) as the f -divergence associated with the convex function f : u → 1 2 |u -1|. From Scheffé's theorem, we have S ∧ (P, Q) = 1 -V (P, Q) for any distributions P and Q. Introduce the Hellinger distance H, which is defined as H(P, Q) ≥ 0 and 1 -H 2 (P,Q) 2 = S √ (P, Q) for any probability distributions P and Q. The variational and Hellinger distances are known (see e.g. [51, Lemma 2.2]) to be related by

hence the result.

Lemma 10.8. For any distributions P (1) , . . . , P (k) , Q (1) , . . . , Q (k) , we have

= S √ (P (1) ,

Proof. When it exists, the density of

is the product of the densities of P (i) w.r.t. Q (i) , i = 1, . . . , k, hence the desired tensorization equality.

From the last two lemmas, we obtain

From (10.23) and (10.25), we obtain

. Let ⌊x⌋ still denote the largest integer k such that k ≤ x. We get Let θ : u → u/(u + 1) denote the non-negative concave function on which the similarity S • is defined. For any u > 0, we have