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SAMPLING METHOD. PART I: SENSITIVITY TO STATISTICAL

AND TECHNICAL CHARACTERISTICS
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and R. DELMAS1
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France; 2INRA – Bioclimatologie, BP 81, 33883 Villenave d’Ornon, France

Abstract. The relaxed eddy accumulation (REA), method based on the conditional sampling

concept, has received increasing attention over the past few years as it can be used to measure

surface fluxes of a wide variety of trace gases for which fast response analysers are not

available. In the REA method, a turbulent flux is simply expressed as the product of the

standard deviation of vertical wind velocity, the difference between mean scalar concentration

in the updrafts and downdrafts and an empirical coefficient, b (about 0.63 as based on sim-

ulations with a Gaussian distribution, and 0.58 as derived from experimental data). A simu-

lation technique is developed here to evaluate the performance of a ground-based REA

system. This analysis uses generated series whose internal structure can be controlled to a large

extent. They are stationary and their characteristics are similar to those of physical turbulence.

In a first step the influence of some statistical characteristics of vertical velocity and scalar

concentration series is investigated. The effect of the third- and fourth-order moments can

explain to some degree the difference between calculated and measured b values. The impact of

a threshold on the vertical velocity is then considered, and its effect on b is quantified. The

influence of the time lag between w and the effective scalar sampling, and the consequences of

lowpass filtering of the w signal are also investigated. The simulation technique presented in

this study can be used to develop elaborate algorithms for near real-time conditional sampling,

based on the statistical characteristics of the previous sample.

Keywords: Atmosphere-surface exchange, Conditional sampling, Flux measurement, Relaxed

eddy accumulation, Turbulent functions.

1. Introduction

In the last decade, increasing concern about global climate change and the

enhanced greenhouse effect has required accurate assessment of surface

sources and sinks of chemical compounds (e.g., CO2, CH4, O3, N2O, NOx,

volatile organic compounds, VOC) and determination of the energy balance

over various surfaces. Natural ecosystems can be both sources and sinks of a

great variety of trace gases. Biosphere–atmosphere exchanges of energy and
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mass are controlled by turbulent transfer in the surface boundary layer and the

micrometeorological methods developed for measuring energy fluxes can also

be applied to trace gas fluxes. The most direct technique to measure turbulent

fluxes is the eddy correlation (EC) method by which a vertical flux is deter-

mined as the covariance between the fluctuations in the vertical velocity (w)

and scalar concentration (X). The EC method requires fast-response sensors

(at least 10Hz) that are not available for many trace gases, thereby limiting its

application. However, EC has been successfully used for measuring both en-

ergy fluxes (sensible and latent heat) and the fluxes of more conventional trace

gases such as CO2 and CH4 (Beverland et al., 1996a, b) or VOC (Baker et al.,

1999; Pattey et al., 1999; Christensen et al., 2000; Gallagher et al., 2000).

The relaxed eddy accumulation (REA), initially proposed by Businger and

Oncley (1990), provides an alternative approach in the absence of fast-re-

sponse sensors. It involves sampling the air at a constant flow rate and

dividing the stream into two different reservoirs, depending on the sign of the

vertical wind velocity. At the end of the sampling period the air accumulated

in each reservoir is analysed with slow response instruments. The mean scalar

flux is then assumed proportional to the concentration difference between the

two reservoirs and is given by

UwX ¼ brwðXþ � X�Þ ¼ brwDX; ð1Þ

where rw is the standard deviation of the vertical velocity (m s�1) during the

sampling period, Xþ and X� are the mean concentrations of the scalar in

updrafts (w > 0) and downdrafts (w < 0), respectively, and b is a dimen-

sionless empirical coefficient. Considering the bi-dimensional distribution of

the w and scalar values and making some simple assumptions (normal distri-

bution ofw and linearity in the regression ofX versusw), Baker et al. (1992) and

Baker (2000) estimated the value of b as 0.627.Katul et al. (1994, 1996) andNie

et al. (1995) simplified this statistical analysis by taking into account the

properties of vertical wind velocity alone and estimated b as about 0.63 (0.625

and 0.63, respectively). However, lower values (ranging between 0.56 and 0.60)

have been obtainedby simulating theREAmethod from realw andX turbulent

time series (Businger and Oncley, 1990; MacPherson and Desjardins, 1991;

Baker et al., 1992; Majewski et al., 1993; Pattey et al., 1993; Gao, 1995; Bev-

erland et al., 1996a; Katul et al., 1996). Baker et al. (1992) and Katul et al.

(1996) attributed this difference in the b values to the departure of the w dis-

tribution from aGaussian one. Katul et al. (1996) andMilne et al. (1999, 2001)

discussed the impact of the statistical moments of w and X on b. For instance

Katul et al. (1996), using experimental time series for w and estimating b by a

model originally proposed by Baker et al. (1992), found that b increases with

the kurtosis of w. Hence, according to them, the fact that measured b are less

than 0.62 cannot be attributed to the effect of thew kurtosis.Milne et al. (1999,

2001) investigated the role of the higher-order cross-moments on the b values,
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using experimental data and a Gram–Charlier two-dimensional probability

distribution analysis. An analytical solution for b is presented in terms of two

fourth-order moments: w04 and X0w03=r where r is the correlation coefficient

between the two functionsX andw).Milne et al. (2001) found a b value of 0.557

using experimental values of the fourth-ordermoments.Otherworks suggested

that b is not significantly influenced by atmospheric stability (Businger and

Oncley, 1990;MacPherson andDesjardins, 1991; Baker et al., 1992;Gao, 1995;

Beverland et al., 1996a,b; Katul et al., 1996) and is relatively insensitive to the

turbulence intensity (Baker et al., 1992). However, Andreas et al. (1998)

showed that the b coefficient calculated from momentum fluxes depends on

surface-layer stability expressed in terms of z=L, z being the measurement

height, and L the Obukhov length. It varies from 0.56 to 0.58 under unstable

conditions and has a value of 0.63 in neutral conditions. They also found that

the b values derived from sensible and latent heat flux depend on stability,

though more weakly than in the previous case. Other specific approaches have

been conducted, showing that b could be sensitive to the measurement height

within and above a forest canopy (Gao, 1995).

The conditional sampling technique, as in all other ‘turbulence’ methods,

is limited by different constraints related to homogeneity and stationarity. It

also requires horizontally homogeneous and flat surfaces with a sufficient

fetch to achieve fluxes representative of an homogeneous ecosystem. On top

of this, REA behaves like a ‘black box’, since air sampling, driven by the

vertical velocity signal, is performed in real time. Thus, it is not possible to

further monitor the sampling process in real time. However, if the w function

is recorded, its statistical characteristics can be taken into account a posteriori

in the flux calculation. On the contrary, the time variation of the scalar

function is not available and only the assumption of similarity with other

scalar fluxes (such as the water vapour flux) can allow one to inspect a

posteriori the estimated scalar flux values.

The necessity to quantify the impact of w and scalar properties on flux

estimation by REA is therefore obvious. In order to define or test algorithms

of air selection (threshold, signal filtering, etc.), to study the impact of sta-

tistical characteristics of the turbulent functions and to define the application

domain of the method, preliminary studies were made using both generated

times series and experimental data.

Experimental functions allow the influence of atmospheric stability to be

analysed and, through spectral analysis, provide more information than a

relatively simple statistical analysis of turbulent moments. Additionally, using

experimental data, we can go further into the turbulence statistics, either using

functions characterised by a singular coupling of the third- and fourth-order

moments or by studying the chronological succession of turbulent events and

the asymmetry between the length scales of turbulent upward and downward

motions. Simulated turbulence series present two advantages: (i) they can be
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perfectly homogeneous and stationary, as compared with experimental

functions and (ii) they allow one to perfectly control and systematically

explore a large range of their statistical characteristics (i.e., skewness and

kurtosis), presumed to have an impact on the REA measurement. Although

simulated series miss the diversity of the physical ones, the way turbulent

series are represented (canonical form or Fourier spectrum) allows their

spectral structure and mainly their energy (variance) to be controlled. They

are therefore well suited to sensitivity analysis of a whole range of factors.

This paper uses simulations with generated series in order to investigate a

wide range of variables. The performed simulations give information about the

impacts of statistical characteristics of the functions or technical choices over the

flux value and then, how the b value should be adapted. As this study intends to

be a practical help to those whomake measurements, all the variables tested are

deliberately chosen to be easily calculated. The study has three main objectives:

(i) to investigate the sensitivity of b to the correlation between vertical velocity

and scalar function, (ii) to quantify the impact of statistical characteristics

(third- and fourth-order moments) of w and scalars on a ground-based REA

system and (iii) to test the sensitivity of the method to a threshold onw, lowpass

filtering of the w signal and time lags between w and the scalar concentration.

In a companion paper (Part II), a methodological approach for the analysis

of experimental data will be developed. This analysis is based on a number of

criteria defined so as to allow a quality control of the REA measurements.

2. Simulated Turbulent Series

Two kinds of series, coherent and incoherent, were generated to carry out the

simulations. The main difference between the two consists in the presence or

the absence of an internal correlation scale. Incoherent series are easier to

generate and are suitable for studying the sensitivity of the method to various

statistical characteristics of the series. On the contrary, testing of the selection

algorithms (such as filtering or thresholds) requires series presenting an

internal correlation scale. Both kinds of generated series can have a Gaussian

distribution. If non-Gaussian statistics are needed, the series can be further

manipulated so as to meet any pre-defined criterion. As only the results

obtained with coherent series are analysed here, the method to generate

incoherent series is not presented.

2.1. SERIES GENERATION

Series are generated from an analytical energy spectrum whose characteris-

tics are very close to those of physical turbulence. More specifically, this

model spectrum has an inertial subrange described by a �5/3 power-law. The
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frequency corresponding to the scale of energy production (spectral peak), is

pre-defined. It can be shifted to low frequencies in order to simulate the

presence of larger-scale processes in the turbulent functions. Application of

an inverse Fourier transform allows turbulent series to be generated, with

their phases randomly chosen. Coherent series are generated by (w;X ) pairs

with a given correlation. This is achieved by making their phases dependent

on each other in a particular frequency band Df ¼ fmax�fmin, which cor-

responds to the chosen energetic domain of the cospectra. After the phase

function of wððuw) is randomly chosen, the phase of X;uX; is defined by

uX ¼ /ð f Þ � uw þ ð1� /ð f ÞÞ � R; ð2Þ

whereR is a frequency random function and/ð f Þ, a function of the frequency,
which is equal to zero, apart from the frequency band Df. In the range of

Df; /ð f Þ is symmetric. The correlation degree depends on the width of the

common frequency band and its relative position in the frequency domain.

The larger the common band is, the higher the correlation between the two

series is, provided that the spectral peak belongs to this band. Figure la shows

two spectrum models with different peak frequencies. Solid and dashed line

spectra are used to generate the w and X series respectively, shown in Figure

1b. It is clear here that the dashed line spectrum, whose maximum has been

shifted to lower frequencies, provides a series that contains events with more

low-frequency energy. The relation between the width of the common band

frequency and the correlation coefficient between the two series is illustrated in

Figure la. The low ( fmin) and high ( fmax) frequency limits of the band are

indicated by the vertical dashed line and the bar symbols, respectively. As

mentioned above, changing the width of the common band by shifting either

the dotted line or the bar symbol allows control of the degree of correlation

between the two series. The bar ordinate (y-axis on the right) corresponds to

the correlation coefficient of the series. In the case of Figure 1a, the common

frequency band has been widened by shifting f max towards the high fre-

quencies, implying an increase of the correlation coefficient from 0.24 to 0.69.

The correlation between the two coherent series illustrated in Figure 1b is 0.42.

To sum up, the generated series have similar spectral characteristics to

measured functions ones, since the pre-defined spectrum verifies the main

characteristics as the observed ones. Concerning the individual statistical

moments, their values are very closed to a Gaussian function. At last, the

correlation coefficient between the two generated series is under control.

2.2. ESTIMATION OF b

A set of 300 pairs (w and X ) of time series, with 4000 points each, was

generated. The correlation coefficient varies from 0 to nearly 0.8. For each
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pair, the mean vertical turbulent flux of a scalar can be expressed as in the EC

method. This gives

UwX ¼ w0X0 ¼ rwXrwrX; ð3Þ

Figure 1. (a) Example of the energy spectrum used to generate coherent series. The ordinate

units are arbitrary. The vertical dashed line indicates the low limit frequency limit of the

common band. The abscissa bar symbols show the high frequency limit. The distance between

the dashed line and the bar symbol corresponds to the bandwidth (horizontal grey lines). The

bar ordinate (y-axis on the right) indicates the correlation between the two generated functions

(numbers in brackets). (b) Example of a couple of coherent functions, with a correlation of

about 0.42. Both w and X values are normalised.
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where w0 and X0 are the vertical wind velocity and scalar fluctuations

respectively, rwX is the correlation coefficient between w and X, and rw and rX
are the standard deviations of the vertical velocity and scalar concentrations,

respectively. By combining (1) and (3), we obtain

b ¼
1

DX
rwXrX: ð4Þ

This is the basis for the calculation of individual b values.

The mean value of b is preferably estimated from the slope of the linear

regression of DX=rX against rwX, performed over the whole dataset of 300

time series. Figure 2 illustrates the relation between DX=rX and rwX. All data

points are equally distributed around the regression line within the whole

correlation range. The mean b value obtained through this generation pro-

cess is 0.627� 0.027 (0.027 being the mean normalised distance of the points

to the regression line). As has already been mentioned in the introduction,

identical (Baker et al., 1992; Baker, 2000) or similar (Katul et al., 1994, 1996;

Nie et al., 1995) values for b have been reported in other works based on

studies limited to Gaussian statistics and first-order cross-moments between

variables.

This dataset can then be used to evaluate the dependence of b, as estimated

by Equation (3), on a series of parameters such as the statistical moments, a

threshold on vertical velocity, the time lag between w and X, etc. In most of

the following cases, the variables used to represent the results are normalised

by a reference value. It should be noted that, except for our study of the

impact of the statistical moments on the REA method (Sections 3.2 and 3.3),

the generated series have a Gaussian distribution (the skewness is zero and

the kurtosis is 3).

Figure 2. Concentration difference normalised by the standard deviation versus the correla-

tion between w and scalar concentration. The solid line is the estimated linear regression curve.

The inverse of the slope is equal to b.
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3. Sensitivity to Statistical Characteristics of the Turbulent Series

3.1. SENSITIVITY OF b TO THE w–X CORRELATION

Figure 3 shows the variation of b with the w–X correlation. It can be seen

that for correlation coefficients larger than about 0.2–0.3 the scatter is fairly

low; the mean values of b (diamonds), averaged over correlation bands of

width 0.2, are nearly constant and close to 0.627. Below 0.2–0.3 the scatter

increases significantly.

The accuracy reached in the estimation of a statistical moment depends on

how and how rapidly the integral by which it is estimated converges to a limit

value. For turbulent series this accuracy increases with the integration time,

provided that the series used are stationary. For a given location of the spectral

peak, the longer the integration time, the better the parameter converges to its

limit value. For perfectly stationary series the integral converges monotoni-

cally but usually the convergence is not monotonic: the integral oscillates

around the limit value. The same remarks hold for the calculation of b.

In order to study the convergence of b as a function of the integration

time, its value is estimated from series of varying length. As the peak in the w

spectrum is not always located at the same frequency, the series length (L) is

normalised by the wavelength (k) corresponding to the peak in the w spec-

trum. This allows comparisons between various generated series to be per-

Figure 3. Values of b computed by Equation (3) for each ðw;XÞ couple versus the correlation
between w and X. The solid line corresponds to the mean value (0.62) and diamond symbols

represent the mean b value for each range of correlation defined by the vertical lines.
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formed in similar conditions. Indeed, the integration time has to be signifi-

cantly larger than the integral length scale in order to ensure a good enough

statistical representation of the largest eddies.

Figure 4a and b show examples of how b converges for a w–X correlation

of 0.35 and 0.75, respectively. In each case, 20 series whose normalised length

increases up to 15 are plotted. It can be seen that in the case of strong

correlation b values converge more rapidly and are less scattered around their

mean value. Additionally, once the convergence is reached, for L=k > 10, the

residual noise is less important.

In order to provide more quantitative results, several parameters have

been calculated for six different w–X correlations (0.25, 0.35, 0.45, 0.55, 0.65

and 0.75) (Figure 4c): (i) the standard deviation of b (statistics over 20 series)

for L=k equal to 2.5 (r�2.5), 5 (r�5), 10 (r�10) and 15 (r�15); (ii) the

standard deviations of b ðrconv) for each of the 20 series, for L=k varying

between 10 and 15; (iii) the mean value (ra�conv of the 20 rconv) values. In fact,

the first standard deviations quantify the scatter of b around its mean value

and the second ones quantify the residual noise of b once convergence is

reached. Figure 4c shows the variation of these parameters with the w–X

correlation. It is clear that all standard deviations exhibit a logarithmic de-

crease with the correlation. In other words, the error on the flux increases

logarithmically with decreasing correlation. The residual convergence noise

(ra�conv) has a maximum of 0.009 for a correlation coefficient of 0.25. This

value represents an error of only 0.14%, which cannot have an important

effect on the flux. Besides, Figure 4c confirms the fact that the scatter of b

around its mean value increases when L=k decreases. In the best case for

convergence (L=k ¼ 15) the scatter in b values (r� 15) is of order 0.3 for a

w–X correlation of 0.25 (a correlation commonly obtained between w and

scalar physical functions). This means that a non-negligible statistical error of

about 14.5% can be introduced in the flux estimation. When L=k is lower

than 15, the resulting error increases logarithmically with L=k.
To sum up, the scatter in b increases logarithmically with a decrease in

the w–X correlation coefficient and a decrease in the normalised length of the

simulated series. Even if the mean b value is not affected (Figure 3), the

statistical convergence error introduced on a given sample is not negligible.

3.2. SENSITIVITY OF b TO THE THIRD-ORDER MOMENT

Physical functions are often skewed due to convective instability in the

atmospheric boundary layer. The logarithmic wind profile in the surface layer

is also a source of asymmetry in turbulent functions. To analyse the possible

influence on b of a non-Gaussian probability distribution of w, it is desirable

to investigate the relation between b and the third- and fourth-order

9



Figure 4. (a) Examples of variation in the b convergence as a function of the integration length

normalised by the wavelength corresponding to the spectral peak, for a w–X correlation of

0.35. (b) Same as for (a) for a w–X correlation of 0.75. (c) Standard deviations of b conver-

gence (in log scale) defined for series of different length, with respect to w–X correlation.

Standard deviations r)2.5, r)5, r)10 and r)15 correspond to L=k equal to 2.5, 5, 10 and 15,

respectively. rconv represents the standard deviation of b for each of the 20 series, for L=k in

the range 10–15. ra�conv is the mean value of rconv.

10



moments (Figures 5 and 6). These moments are expressed by the dimen-

sionless skewness and kurtosis parameters, respectively. In order to perform

this analysis, the probability distribution of the (initially Gaussian) generated

series is modified. After the inverse Fourier transform, the series skewness is

modified through an exponential operator. A skewed distribution is no

longer characterised by a kurtosis of 3. Consequently, when the skewness is

modified, the kurtosis is automatically modified. The results presented have

been obtained using a large number of generated series.

Kurtosis follows an exponential evolution when the skewness of the sim-

ulated series is modified from 0 to 2. The kurtosis does not exceed 5 for a

skewness lower than 1.2 and reaches 10 when the skewness is set to 2. The

effect of the coupled skewness–kurtosis on b is different depending on

whether w or the scalar series is considered. Figure 5 illustrates, in the

two-dimensional (2D) form, the impact of the skewness (in the range 0 to 3)

of both w and the scalar series on b (keeping in mind that the kurtosis also

change). If only the skewness and kurtosis of w is taken into account, b

decreases on average from 0.62 to 0.53. On the contrary, scalar skewness and

kurtosis induces a slight increase in b from 0.62 to 0.63 on average, for a zero

w skewness (and a w kurtosis of 3). In the case where both w and scalar series

are asymmetrical, b decreases from 0.62 to 0.56. In the 2D diagram the most

important variation of b is observed along the secondary diagonal [(skew-

w ¼ 0, skew-X ¼ 3), (skew-w =3, skew-X ¼ 0)] where b varies from 0.63 to

0.53. Extreme values obtained from the simulations range from 0.46 to 0.72.

Considering that the skewness of physical turbulence functions usually varies

between 0 and 1, values of the order of 3 can be considered extreme. Indeed,

one of the advantages of simulations is that they allow one to explore such

extreme values of statistical properties of the functions. For this range of

Figure 5. Variation of b with the skewness of w (x-axis) and X (y-axis).
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values the reduction in b is only about 4%, which does not entirely explain

the difference between ‘theoretical-simulated’ and ‘experimental’ value of b.

3.3. SENSITIVITY OF b TO THE FOURTH-ORDER MOMENT

Contrary to the third-order moments, the fourth-order moment can be

modified without changing the skewness value. The impact on b of the

kurtosis of the vertical velocity and the scalar concentration is presented in a

two-dimensional form (Figure 6). The kurtosis varies from 3 to 9, which

means that only series with a sharp bell shape are considered. It can be seen

that b slightly decreases with an increase in the w kurtosis, whereas it in-

creases very little with the scalar kurtosis. As a result, b remains practically

constant when the coupled effect of w and X kurtosis is considered. The

maximum variation of b over the whole range of kurtosis [(kurt-w ¼ 9, kurt-

X ¼ 3), (kurt-w ¼ 3, kurt-X ¼ 9)] is low and does not exceed 3%. The result

concerning the impact of the w kurtosis on b is not in agreement with Katul

et al. (1996) who found experimentally that b increases with the w kurtosis.

However, the small variation of b illustrated in Figure 6 allows us to con-

clude, as Katul et al. (1996) did, that the kurtosis of the turbulence functions

cannot justify by itself why measured b values are lower than 0.62. However,

the combined effects of skewness and kurtosis, as shown in Figure 5, imply

more important b variations. It should be pointed out that the sensitivity of b

to higher-order cross-moments is not quantified here, although these mo-

ments are certainly modified. Up to this point we have studied the sensitivity

of the REA method to statistical characteristics of w and scalar functions. In

what follows, the effect on the REA method of several choices related either

to the selection algorithm (threshold on w signal) or to technical character-

istics of a REA system (time lag and w filtering) is investigated.

Figure 6. Variation of b with the kurtosis of w (x-axis) and X (y-axis).
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4. Sensitivity to Technical Choices

In the following sections, simulated Gaussian series are used. The aim of the

simulations is to quantify the relative variation of b according to the

technical choices, and consequently to determine to what extent the fluxes

could be overestimated or underestimated.

4.1. SENSITIVITY OF b TO THE VERTICAL VELOCITY THRESHOLD

In order to avoid sampling air for small vertical velocities ( �w � 0), which is

likely to induce background noise, a threshold can be imposed on the w signal,

defining a deadband. The latter is generally symmetrical aroundw ¼ 0, and air

is not sampled (or is diverted to a third reservoir) within this velocity range. The

threshold is usually defined as a fraction of rw. Since scalar concentration is

correlated with w, the introduction of a threshold results in an increase of the

scalar concentration difference between the updraft and downdraft reservoirs.

This occurs because only the larger eddies (thosewith sufficient vertical velocity

to exceed the threshold), which move air from further along the vertical con-

centration gradient and contribute strongly to the scalar flux, are taken into

account. Hence, sampled air ‘carries’ more extreme events and leads to larger

concentration differences. This allows fluxes to be measured with greater

accuracy when the resolution of the analyser is limited.

In Figures 7a and b the impact of the threshold on REA sampling is

illustrated for various cases of higher-order moments. Four generated series of

w with different statistical characteristics are presented: one with a Gaussian

probability distribution, an asymmetrical series with high positive skewness, a

series with platykurtic distribution (kurtosis< 3) and a series with leptokurtic

distribution (kurtosis> 3). In Figure 7a, the cumulative distribution of each

series (or integral curve) is represented from 0% to 100%. Figure 7b shows an

enlargement of the central part of Figure 7a (rw ¼ � 1, cumulative distri-

bution from 20% to 80%). The vertical lines define the rejection band. In this

type of representation, the rejected values correspond to the central domain of

the cumulative distribution while the fluctuations considered for the analysis

belong to the (positive and negative) tails of the distribution.

Table I summarises for each series the percentage of retained (‘negative’

and ‘positive’ tails) and rejected (central band) fluctuations, for a threshold

velocity of �0.4 rw. The proportion of retained points varies with the type of

series. For a Gaussian series 68% of the points are conserved and are equally

distributed in the two tails. A large (positive) skewness introduces a large

asymmetry in the distribution of the points retained: 40% of the values are

conserved in the ‘negative’ tail, and only 28% in the ‘positive’ tail. In other

words the same percentage as for the Gaussian distribution is retained (68%)
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but updrafts and downdrafts are not equally represented in the statistics.

When the kurtosis is lower than 3, the introduction of a threshold eliminates

a large number of points (52%) since the latter are grouped around the centre

of the distribution. On the contrary, when the kurtosis is larger than 3 the

threshold is not as efficient (only 24% of the points are rejected). The pro-

portion of retained data, 76% for kurtosis< 3 and 48% for kurtosis> 3,

differs significantly from the Gaussian one (68%).

These examples illustrate the role of a vertical velocity threshold and

demonstrate the effect of a symmetrical threshold on the percentage of re-

jected values, in concert with the effect of higher-order moments of the w

series. When the threshold is imposed on a skewed series, the distribution of

Figure 7. (a) Cumulative distribution of four generated series with different statistical char-

acteristics: Gaussian series, a series with large positive skewness, a series with kurtosis> 3 and

a series with kurtosis< 3. Cumulative distribution is drawn from 0% to 100%. (b) A zoom on

the central part of the integral curves corresponding to the events eliminated by the threshold

(represented by the vertical lines).
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the ‘positive’ and ‘negative’ events retained is modified, whereas when it is

applied to series with a kurtosis different from the Gaussian value, it changes

significantly the number of retained points. Considering that experimental w

functions are usually skewed or have a kurtosis different from 3, these results

suggest that a fixed, symmetrical threshold may not be the most appropriate

choice. Therefore, for a more equitable representation of the data points, the

threshold should be adapted to higher-order moments (i.e., it should be

variable and asymmetrical). Bowling et al. (1999) used a hyperbolic threshold

(symmetric and asymmetrical) and found that the concentration difference

can increase up to a factor of 2.7, as compared with a conventional REA

method. Using an asymmetrical threshold should allow the statistical char-

acteristics of the w function to be taken into account. However, these sta-

tistical moments should be known at the time of the sampling itself, which is

impossible since the w statistics can only be computed at the end of the

integration period. One solution could be to use the skewness and kurtosis of

the previous sample, at least in relatively stationary atmospheric conditions.

In order to illustrate the effect of an asymmetrical threshold, we again

consider the four previous series. This time, the threshold values are

appropriately chosen according to the w statistical moments, in such a way

that the retained points are symmetrical in the two distribution tails (Table

II), and equal to half the total number of points retained in the Gaussian case

(i.e., 34% for a threshold of 0.4rw). Table II shows the values of positive and

negative threshold required to achieve this goal for the four series. It can be

seen that the thresholds vary from 0.2 to 0.52 rw.

Figure 8 illustrates the effect of the velocity threshold on the normalised

concentration difference DX=rX. In this case we only used simulated series

with Gaussian distributions, and a symmetrical threshold around w ¼ 0. It is

obvious from Figure 8, where the threshold is normalised by rw, that the

difference in the concentrations measured in the reservoirs increases signifi-

cantly with the threshold, implying a more precise flux estimation. This

TABLE I

Percentage of points retained and rejected by a symmetrical threshold of ±0.4rw for each

function of Figure 7a.

% of points

‘Negative’ tail

(w < threshold)

‘Positive’ tail

(w > threshold)

Rejected points

Gaussian 34 34 32

Skewness > 0 40 28 32

Kurtosis < 3 38 38 24

Kurtosis > 3 24 24 52
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increase must be compensated by a decrease in b, illustrated in Figure 9 for a

range of thresholds from 0 to 1 rw, where b is normalised by its reference

value (i.e. with no threshold). The resulting curve can be described by the

following exponential function:

b

b0
¼ e�0:67ðw0=rwÞ ð6Þ

with w0 ¼ threshold. Similar results were reported by Businger and Oncley

(1990), Pattey et al. (1993) and Katul et al. (1996) for experimental temper-

TABLE II

Threshold values required to get the same percentage of data points (34%) in each distribution

tail.

Negative threshold/rw Positive threshold/rw

Gaussian 0.40 0.40

Skewness > 0 0.50 0.21

Kurtosis < 3 0.52 0.52

Kurtosis > 3 0.20 0.20

Figure 8. Impact of the threshold on the mean concentration of updrafts (diamonds) and

downdrafts (circles). Concentration and threshold are normalised by the standard deviation of

the scalar and w series, respectively. Note that since X is centered, downdrafts are associated

with negative X.
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ature, water vapour and CO2 data. Some of their results are also illustrated in

Figure 9. For threshold values lower than 0.3 rw all models give similar

estimates for b. For instance, for threshold of 0.1 rw and 0.2 rw typically used

in operational REA systems, b has to be reduced by about 8% and 15%,

respectively. Deviations between the three models for the high values of the

threshold can be explained by the statistical characteristics of the w series

(different departures from the Gaussian distribution).

From a technical point of view, it has been suggested that a threshold can

be used to extend the life of the valves by limiting their switching frequency

(Pattey et al., 1993). Indeed, the use of a threshold leads to a decrease in the

percentage of the total time of updraft and downdraft sampling (Figure 10).

In order to investigate the role of the threshold on valve operation, the

number of valve switchings is counted for different thresholds. Six types of

switching are defined. Firstly, two switchings called ‘direct’ represent tran-

sitions from positive to negative w values and vice versa, and secondly four

‘indirect’ switchings correspond to transitions to and from the deadband. As

the simulated series have, by construction, perfectly Gaussian distributions,

indirect transitions are equally probable and their curves are identical. In

Figure 11 all indirect transitions are therefore represented by just one curve

Figure 9. Sensitivity of b to the threshold. Diamond symbols represent our results derived

from simulations with generated Gaussian series. Square and circle symbols show the b values

resulting from the models of Businger and Oncley (1990) and Pattey et al. (1993), respectively.

b is normalised by its reference value, corresponding to zero threshold.
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(square symbols). The same holds for direct transitions (circles). The line with

diamonds represents the total number of transitions. As expected, Figure 11

shows that the number of direct transitions decreases monotonically when

the threshold increases, whereas the number of indirect transitions and the

total number of transitions first increase up to a threshold of 0.5 rw and 0.4

rw, respectively, then decrease. However, even for a large threshold (1.0 rw),

the total number of transitions remains greater than that corresponding to a

zero threshold. A limitation in the number of transitions could be achieved

for higher values of the threshold (outside the range represented in Figure 11)

but the number of rejected values would become too important. Therefore,

the use of a threshold does not really contribute to optimise, in terms of

decrease, the switching frequency of the valves.

To conclude, it should be pointed out that using a threshold allows flux

measurements to be performed when the concentration difference is small rel-

ative to the accuracy of the analyser. However, it does not reduce the total

number of valve switchings. Also, there is potential advantage in using an

asymmetrical threshold, because when a symmetrical threshold is applied to

skewed and flattened series the risk of reducing significantly the effective sam-

pling duration (by eliminating a large number of air samples) is not negligible.

4.2. SENSITIVITY OF b TO A TIME LAG BETWEEN w AND X

Another source of uncertainty that should be considered with the conditional

sampling method is the delay in the time response of the REA system to

changes in the sign of w and its consequences on the effective conditional

Figure 10. Impact of the threshold on the total percentage of time for positive sampling

(squares), negative sampling (triangles) and no sampling (circles).
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sampling of air. There are three main causes for this delay: (i) the time lag

between the change in vertical velocity sign and the detection of this change

by the processing system, (ii) the time lag between the detection of this

change and the subsequent actuation of the sampling valves and (iii) the

length of the inlet tubing, which may have an important contribution to the

time lag effect as it takes a finite amount of time for the air sample to travel

through the sample line until it reaches the valves. The total time delay

induces an underestimation of the concentration difference and, conse-

quently, of the estimated flux since a fraction of the updraft and downdraft

air can be routed to the wrong reservoir. This delay can vary from a few

milliseconds to a few seconds and obviously depends on the characteristics of

each system. The underestimation of the concentration difference due to the

time lag is also a function of the valve switching frequency (the mean fre-

quency with which w changes sign) or eddy-reversal frequency as defined by

Baker et al. (1992). In its turn, mean switching frequency directly depends on

the turbulence conditions.

Time lags related to the time response of the instruments also exist in eddy

correlation systems. In this case the time lag is easily estimated through the

calculation of the cross-correlation between w and X, as the time lag for

which the cross-correlation shows a maximum. The flux is then calculated

from the lagged functions. This is not possible for REA measurements since

the sampled air is stored and analysed later. However, the underestimation of

Figure 11. Frequency of valve switchings versus the normalised threshold. Circle and square

symbols represent the direct and indirect transitions, respectively. The diamonds describe the

evolution of the total number of transitions.
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DX can be balanced by adjusting the b coefficient. In order to determine the

appropriate adjustment of b, simulations were made for a time lag ranging

from 0 to 6.4 s, so as to include the internal scale of correlation.

The dependence of some REA parameters on the time lag is illustrated in

Figure 12. The square curve illustrates the variation of the mean ‘positive’

concentration (scalar concentration in the ‘positive’ reservoir corresponding

to updrafts) with the delay. Note that for series with a Gaussian distribution

the mean ‘negative’ concentration curve is exactly symmetrical. Conse-

quently, the positive curve represents the concentration difference between

the two reservoirs, divided by two. Circle and diamond curves represent the

variations in b and the w–X lagged correlation, respectively. These results

represent averages over 20 simulated series, and the error bars on the b curve

represent the corresponding standard deviations. The correlation between w

and X pairs is of the order of 0.5. In order to represent measurements carried

out at a 6-m height, a 30-m spectral length scale is assumed. With a typical

mean horizontal wind of 5m s�1 the peak frequency is then 0.13Hz. Figure

12 shows that the REA parameters are strongly influenced by the time lag.

Indeed, as the time lag increases the concentration difference decreases, along

with a concomitant decrease in the w–X correlation. Such variations result in

a large and rapid increase in b (by 3%, 11% and 26% for a time lag of 0.2, 0.4

and 0.6 s respectively). b values become very large for lags greater than 1 s.

For a long enough delay (4.4 s) the selection sign is reversed, yielding to a flux

Figure 12. Sensitivity of REA parameters to the time lag (in s): correlation between w and X

(diamonds), b (circles) and mean concentration of updrafts (square). The error bars represent

the standard deviation. Sampling rate, 10 Hz.
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of opposite direction. The correlation also changes sign and a point of dis-

continuity appears on b (not shown here), after which it varies almost ran-

domly. The scatter in the b values also increases with the time lag and

becomes infinite when the correlation changes sign. It has to be pointed out

that the percentages in the b increase given above cannot be considered as a

general result because they strongly depend on the correlation degree be-

tween w and scalar series. However, this example allows us to illustrate the

order of magnitude of the uncertainty introduced by the time lag in flux

calculation.

4.3. SENSITIVITY OF b TO LOWPASS FILTERING

Real-time lowpass filtering is a common practice that is applied to smooth

out fluctuations of the vertical velocity signal (Baldocchi et al., 1988; Beier,

1991; Delon et al., 2000) and thus to increase the signal-to-noise ratio. This

ratio may be low due to the presence of noise, resulting mainly from technical

and physical causes: (i) the instruments and acquisition systems used to

measure turbulent fluxes may add digital noise (aliasing) to the w signal; (ii)

in some cases, like nocturnal stable conditions, high-frequency fluctuations

are relatively more important in the turbulence spectra. Lowpass filtering

also allows one to reduce the switching frequency of the valves. Filtering w in

real-time implies using an asymmetrical filter (in time) as only the past history

of the function is known, and introduces a phase shift in the w function which

in turn alters the correlation between w and the scalar concentration, thereby

affecting the calculated flux.

In order to quantify the effect of low-pass filtering on flux calculation,

simulations were carried out using a binomial recursive filter with a variable

cut-off frequency ranging from 5 to 0.4Hz. In Figure 13, three variables are

represented against the logarithm of the cut-off frequency: the correlation

between w and X (line with diamonds), the b coefficient (line with circles) and

the signal delay introduced by filtering w, expressed in seconds (line with

squares). Here again the results represent averages over 20 series, with the

corresponding standard deviations shown as error bars on the b curve. It can

be seen that the effect of lowpass filtering is similar to that of an increasing

time lag. It introduces a delay in w signal detection and an attenuation of the

signal amplitude, which increases with a reduction in the cut-off frequency.

Due to the delay of the w function, the correlation between w and X de-

creases, and b values and their standard deviation rapidly increase as the cut-

off frequency decreases. It increases by 1% and 7% for a cut-off frequency of

5 and 2.5Hz, respectively. This increase becomes huge for a cut-off frequency

lower that 1Hz.
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5. Conclusions

This study focuses first on the sensitivity of the REA method to statistical

characteristics of the turbulent vertical velocity and scalar series, and second

on a number of technical choices associated with the conditional sampling

algorithm. This analysis of the REA methodology was performed using

artificial, generated series.

A first general conclusion deduced from this study concerns the usefulness

of simulations made with generated series. The technique described here ap-

pears as a powerful tool for methodological development and validation of

new techniques and algorithms aimed at measuring trace gas fluxes. The

spectral characteristics of generated series are similar to those of experimental

functions and easy to deal with. Their statistical characteristics (skewness and

kurtosis) are originally close to the Gaussian ones but can be widely modified.

Apart from the obvious advantage of this kind of simulation (the analysis and

understanding of the functioning mode of the REA method), such series have

the advantage, compared to measured data, to allow us to investigate the

behaviour of the method to extreme values of the parameters. As such, they

provide a nice complement to experimental functions.

Our simulations with Gaussian series provide a mean value of 0.627 for the

b coefficient, with no dependence on the correlation between the vertical

velocity and the scalar concentration. The large scatter obtained for the low

correlation values can be attributed to the relatively slow convergence of the

Figure 13. Sensitivity of b (circles), w–X correlation (diamonds) and w signal delay (squares)

to lowpass filtering. The x-axis represents the logarithm of the cut-off frequency.
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integral leading to the estimate of the mean b value. The convergence to-

wards the mean value is a function of the w–X correlation and also depends

on the integration time (length of the time series, expressed as a function of

L=k,). The convergence is usually reached for L=k > 10. After this limit, the

residual noise depends on the w–X correlation value.

We summarise in Table III the results quantifying the uncertainties

introduced in the flux calculation (and the resulting required adjustment of b)

by (i) the statistical characteristics (third- and fourth-order moments) of w

and scalar functions, (ii) the vertical velocity threshold, (iii) the time lag

between w and the effective sampling and (iv) the lowpass filter applied on the

w signal. The values in italics relate either to cases that can be encountered in

experimental data (skewness and kurtosis), or to cases used in practice

(threshold and filtering). The main conclusions are as follows.

� Positive third- and fourth-order moments of w induce a decrease in b by

about 3–4% on average, for a skewness around 1. A positive scalar

skewness and kurtosis cause a slight increase. Their combined effect results

in a decrease of b.

� The fourth-order moment alone has no major effect on b. A slight de-

crease with an increase in w kurtosis and a slight increase with an increase

in the scalar kurtosis have been found. Kurtosis cannot explain why the

experimentally derived values of b are consistently smaller than 0.62.

� The introduction of a threshold on the vertical velocity enhances themethod

sensitivity by increasing the concentration difference between updrafts and

downdrafts. An exponential relationship describes the impact of the

threshold on b, in agreement with previous studies. The impact on b of the

most common thresholds used in the field has been quantified (Table II). On

the contrary, the switching frequency of the valves first increases with the

threshold, then decreases. The impact of a symmetrical threshold on the

number of rejected air samples, when the turbulent series have non-

Gaussian skewness or kurtosis, is also demonstrated. For a symmetric

threshold of �0:4rw, the percentage of rejected points is 24 for kurtosis

lower than 3, 52 for kurtosis higher than 3, and 32 for a Gaussian or skewed

series.Another test shows howasymmetric the thresholdmust be to keep the

same percentage of data points (34%) in each distribution tail. For a positive

skewness, the normalised negative and positive thresholds are equal to 0.5

and 0.2 respectively.

� The time lag (between changes in w sign and effective air sampling) and

lowpass filtering have similar effects. The correlation between w and X

decreases and b values increase very rapidly. For instance for a delay of

0.2 s, a typical value for a ground-based REA system, b increases by 3%

relative to its value at zero delay (0.62).
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In practice, application of these conclusions to a true REA system, for

instance by using a non-symmetric threshold, would require real-time

calculation of the w statistical characteristics, which is not feasible. The

solution suggested here is to use the statistics inferred from the previous

sampling sequence, which should not be detrimental under usual atmospheric

conditions. It is always possible, and this should be done systematically, to

check this assumption afterwards and, whenever necessary, discard a par-

TABLE III

Errors induced in the flux estimate by the skewness and kurtosis of w and X functions, the

threshold, time lag and lowpass filtering.

Flux error (%)

Skewness of w

1 )3.2

3 )14.5

Skewness of X

1 +0.5

3 +1.8

Skewness of w and X

1 )2.1

3 )9.8

Kurtosis of w

3 0

9 )2.3

Kurtosis of X

3 0

9 +2.6

Kurtosis of w and X

3 0

9 +0.3

Threshold (fraction of rw)

0.1 +8

0.2 +15

0.5 +30

Time lag (s)

0.2 )3

0.4 )11

0.6 )26

Cut-off filtering frequency (Hz)

5.0 )1

2.5 )7
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ticular run if the statistical characteristics of the turbulent time series turn out

to differ by a large extent from those of the previous run.

As mentioned above, generated series allow the separate influence of

various factors to be analysed, and a large range of conditions to be ac-

counted for. Physical functions cannot be used for the same purpose. They

are more complex than artificial ones; in particular, simultaneous time series

such as vertical velocity and scalar series exhibit complex interdependency

patterns that cannot be reproduced with generated series. In other words,

generated series do not replace experimental data but should be considered as

a powerful complement to them. In a companion paper (Fotiadi et al., 2005)

we will go back to the physical world and use a large set of experimental

turbulent time series to further analyse the REA methodology.
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