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ABSTRACT

It is now accepted that accretion on to classical T Tauri stars is controlled by the stellar

magnetosphere, yet to date most accretion models have assumed that their magnetic fields are

dipolar. By considering a simple steady state accretion model with both dipolar and complex

magnetic fields, we find a correlation between mass accretion rate and stellar mass of the form

Ṁ ∝ Mα
∗ , with our results consistent within observed scatter. For any particular stellar mass

there can be several orders of magnitude difference in the mass accretion rate, with accretion

filling factors of a few per cent. We demonstrate that the field geometry has a significant effect

in controlling the location and distribution of hotspots, formed on the stellar surface from

the high velocity impact of accreting material. We find that hotspots are often at mid to low

latitudes, in contrast to what is expected for accretion to dipolar fields, and that particularly

for higher mass stars, the accretion flow is predominantly carried by open field lines.

Key words: stars: coronae – stars: formation – stars: low-mass, brown dwarfs – stars: magnetic

fields – stars: pre-main-sequence – stars: spots.

1 I N T RO D U C T I O N

Classical T Tauri stars (CTTSs) are young, low mass, pre-main-

sequence stars that are actively accreting from a surrounding disc

which is the eventual birthplace of planets. Uchida & Shibata (1984)

suggested that the magnetic field of a CTTS disrupts the inner disc.

In the early 1990s several magnetospheric accretion models were

developed (Königl 1991; Collier Cameron & Campbell 1993; Shu

et al. 1994) where material is lifted from the disc plane and is chan-

nelled along dipolar magnetic field lines on to the star, terminating

in a shock at the photosphere. In an idealized model of a CTTS’s

magnetic field there are closed field lines close to the star that con-

tain the X-ray emitting corona, whilst at larger radii, there are closed

field lines which thread the circumstellar disc. It is along this latter

set of field lines that accretion may proceed. There are also regions

of open field which carry outflows in the form of a wind, and in

some cases, as large collimated bipolar jets.

Magnetospheric accretion models assume that CTTSs possess

magnetic fields that are strong enough to disrupt the disc at a dis-

tance of a few stellar radii. Such strong fields have been detected in

a number of systems using a variety of techniques. Average surface

fields of 1-3 kG have been detected most successfully by exploiting

the Zeeman effect, both through Zeeman broadening (e.g. Johns-

Krull, Valenti & Koresko 1999b) and from the circular polarization

of lines which are sensitive to the presence of a magnetic field (e.g.

�E-mail: sg64@st-andrews.ac.uk

Johns-Krull et al. 1999a; Symington et al. 2005; Daou, Johns-Krull

& Valenti 2006). Field detections have also been made from the

increase in line equivalent width (Basri, Marcy & Valenti 1992;

Guenther et al. 1999) and also from electron cyclotron maser emis-

sion, a coherent emission process from mildly relativistic electrons

trapped inside flux tubes close to the star (Smith et al. 2003). The

mean magnetic field strengths detected so far appear to be roughly

constant across all stars (Valenti & Johns-Krull 2004).

Traditionally magnetospheric accretion models have assumed the

CTTSs have dipolar magnetic fields. Dipole fields (or inclined dipole

fields) have been successively used to explain some of the observa-

tions of CTTSs (e.g. the photopolarimetric variability of AA Tau;

O’Sullivan et al. 2005), but fail to account for others. Valenti &

Johns-Krull (2004) present magnetic field measurements for a num-

ber of stars, and despite detecting strong average surface fields from

Zeeman broadening, often measurements of the longitudinal (line-

of-sight) field component (obtained from photospheric lines) are

consistent with no net circular polarization. This can be interpreted

as there being many regions of opposite polarity on the stellar sur-

face, giving rise to oppositely polarized signals which cancel each

other out giving a net polarization signal of zero. This suggests that

CTTSs have magnetic fields which are highly complex, particularly

close to the stellar surface; however, as Valenti & Johns-Krull (2004)

point out, as the higher order multipole field components will drop

off quickly with distance from the star, the dipole component may

still remain dominant at the inner edge of the disc. Also their mea-

surements of the circular polarization of the He I 5876 Å emission

line (believed to form in the base of accretion columns) are well
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fitted by a simple model of a single magnetic spot on the surface

of the star, suggesting that the accreting field may be well ordered,

despite the surface field being complex.

The fractional surface area of a CTTS which is covered in

hotspots, the accretion filling factor facc, is inferred from obser-

vations to be small; typically of order of 1 per cent (Muzerolle

et al. 2003, 2005; Calvet et al. 2004; Valenti & Johns-Krull 2004;

Symington et al. 2005). Dipolar magnetic field models predict ac-

cretion filling factors which are too large. This, combined with the

polarization results, led Johns-Krull & Gafford (2002) to generalize

the Shu X-wind model (Shu et al. 1994) to include multipolar, rather

than dipolar, magnetic fields. With the assumption that the average

surface field strength does not vary much from star to star the gener-

alized Shu X-wind model predicts a correlation between the stellar

and accretion parameters of the form R2
∗ facc ∝ (M∗ Ṁ Prot)

1/2, a

prediction that matches observations reasonably well.

In this paper we present a model of the accretion process using

both dipolar and complex magnetic fields. We apply our model to a

large sample of pre-main-sequence stars obtained from the Chandra

Orion Ultradeep Project (COUP; Getman et al. 2005), in order to

test if our model can reproduce the observed correlation between

mass accretion rate and stellar mass. An increase in Ṁ with M∗ was

originally noted by Rebull et al. (2000) and subsequently by White

& Ghez (2001) and Rebull et al. (2002). The correlation was then

found to extend to very low mass objects and accreting brown dwarfs

by White & Basri (2003) and Muzerolle et al. (2003), and to the

higher mass, intermediate-mass T Tauri stars, by Calvet et al. (2004).

Further low-mass data have recently been added by Natta et al.

(2004), Mohanty, Jayawardhana & Basri (2005) and by Muzerolle

et al. (2005) who obtain a correlation of the form Ṁ ∝ M2.1
∗ , with

as much as three orders of magnitude scatter in the measured mass

accretion rate at any particular stellar mass. However, Calvet et al.

(2004) point out that due to a bias against the detection of higher

mass stars with lower mass accretion rates, the power may be less

than 2.1. Further data for accreting stars in the ρ-Ophiuchus star-

forming region have recently been added by Natta, Testi & Randich

(2006).

The physical origin of the correlation between M∗ and Ṁ , and

the large scatter in measured Ṁ values, is not clear; however, sev-

eral ideas have been put forward. First, increased X-ray emission

in higher mass T Tauri stars (Preibisch et al. 2005; Jardine et al.

2006) may cause an increase in disc ionization, leading to a more

efficient magnetorotational instability and therefore a higher mass

accretion rate (Calvet et al. 2004). Second, Padoan et al. (2005)

argue that the correlation Ṁ ∝ M2
∗ arises from Bondi–Hoyle accre-

tion, with the star–disc system gathering mass as it moves through

the parent cloud. In their model the observed scatter in Ṁ arises

from variations in stellar velocities, gas densities and sound speeds.

Mohanty et al. (2005) provide a detailed discussion of both of these

suggestions. Third, Alexander & Armitage (2006) suggest that the

correlation may arise from variations in the disc initial conditions

combined with the resulting viscous evolution of the disc. In their

model they assume that the initial disc mass scales linearly with

the stellar mass, Md ∝ M∗, which, upon making this assumption,

eventually leads them to the conclusion that brown dwarfs (the low-

est mass accretors) should have discs which are larger than higher

mass accretors. However, if it is the case that the initial disc mass

increases more steeply with stellar mass, Md ∝ M2
∗, then the stel-

lar mass–accretion rate correlation can be reproduced with smaller

brown dwarf discs of low mass (of order one Jupiter mass). Thus

the Alexander & Armitage (2006) suggestion, if correct, will soon

be directly verifiable by observations. Fourth, Natta et al. (2006)

suggest that the large scatter in the correlation between Ṁ and M∗
may arise from the influence of close companion stars, or by time

variable accretion. It should however be noted that Clarke & Pringle

(2006) take a more conservative view by demonstrating that a steep

correlation between Ṁ and M∗ may arise as a consequence of de-

tection/selection limitations, and as such Ṁ ∝ M2
∗ is perhaps not a

true representation of the correlation between Ṁ and M∗.

In Section 2 we describe how magnetic fields are extrapolated

from observed surface magnetograms. In Section 3 we consider ac-

cretion on to an aligned, and then a tilted dipole field, to develop a

simple steady state accretion model and to investigate how tilting

the field affects the mass accretion rate. In Section 4 these ideas are

extended by considering magnetic fields with a realistic degree of

complexity and we apply our accretion model to study the correla-

tion between mass accretion rate and stellar mass, whilst Section 5

contains our conclusions.

2 R E A L I S T I C M AG N E T I C F I E L D S

From Zeeman–Doppler images it is possible to extrapolate stellar

magnetic fields by assuming that the field is potential. At the mo-

ment we do not have the necessary observations of CTTSs, but

we do have for the solar-like stars LQ Hya and AB Dor (Donati

& Collier Cameron 1997; Donati et al. 1997; Donati et al. 1999,

2003; Donati 1999), which have different field topologies (Hussain

et al. 2002; Jardine, Collier Cameron & Donati 2002a; McIvor et

al. 2003, 2004). Using their field structures as an example we can

adjust the stellar parameters (mass, radius and rotation period) to

construct a simple model of a CTTS, surrounded by a thin accretion

disc.

The method for extrapolating magnetic fields follows that em-

ployed by Jardine et al. (2002a). Assuming the magnetic field B is

potential, or current free, then ∇ × B = 0. This condition is satisfied

by writing the field in terms of a scalar flux function �, such that

B = −∇�. Thus in order to ensure that the field is divergence

free (∇ · B = 0), � must satisfy Laplace’s equation, ∇2� =
0; the solution of which is a linear combination of spherical

harmonics,

� =
N∑

l=1

l∑
m=−l

[
almrl + blmr−(l+1)

]
Plm(θ )eimφ, (1)

where Plm denote the associated Legendre functions. It then follows

that the magnetic field components at any point (r, θ , φ) are

Br = −
N∑

l=1

l∑
m=−l

[
lalmr l−1 − (l + 1)blmr−(l+2)

]
Plm(θ )eimφ, (2)

Bθ = −
N∑

l=1

l∑
m=−l

[
almrl−1 + blmr−(l+2)

] d

dθ
Plm(θ )eimφ, (3)

Bφ = −
N∑

l=1

l∑
m=−l

[
almrl−1 + blmr−(l+2)

] Plm(θ )

sin θ
imeimφ. (4)

The coefficients alm and blm are determined from the radial field at

the stellar surface obtained from Zeeman–Doppler maps and also

by assuming that at some height Rs above the surface (known as

the source surface) the field becomes radial and hence Bθ (Rs) = 0,

emulating the effect of the corona blowing open field lines to form

a stellar wind (Altschuler & Newkirk 1969). In order to extrapolate
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the field we used a modified version of a code originally developed

by van Ballegooijen, Cartledge & Priest (1998).

2.1 Coronal extent

We determine the maximum possible extent of the corona (which

is the extent of the source surface) by determining the maximum

radius at which a magnetic field could contain the coronal gas. Since

a dipole field falls off with radius most slowly, we use this to set

the source surface. For a given surface magnetogram we calculate

the dipole field that has the same average field strength. We then

need to calculate the hydrostatic pressure along each field line. For

an isothermal corona and assuming that the plasma along the field

is in hydrostatic equilibrium then

ps = p0 exp

(
1

c2
s

∮
s

gs ds

)
, (5)

where cs is the isothermal sound speed and gs the component of the

effective gravity along the field line such that gs = g · B/|B|, p0

is the gas pressure at a field line foot point and ps the pressure at

some point along the field line. The effective gravity in spherical

coordinates for a star with rotation rate ω is

g (r , θ, φ) =
(

− G M∗
r 2

+ ω2r sin2 θ, ω2r sin θ cos θ, 0

)
. (6)

We can then calculate how the plasma β, the ratio of gas to mag-

netic pressure, changes along each field line. If at any point along

a field line β > 1 then we assume that the field line is blown open.

This effect is incorporated into our model by setting the coronal

(gas) pressure to zero whenever it exceeds the magnetic pressure

(β > 1). We also set the coronal pressure to zero for open field

lines, which have one foot point on the star and one at infinity. The

gas pressure, and therefore the plasma β, is dependent upon the

choice of p0 which is a free parameter of our model. Jardine et al.

(2006) provide a detailed explanation of how p0, the coronal base

(gas) pressure, can be scaled to the magnetic pressure at a field line

foot point, so we provide only an outline here. We assume that the

base pressure is proportional to the magnetic pressure then p0 =
KB2

0, a technique which has been used successfully to calculate

mean coronal densities and X-ray emission measures for the Sun

and other main-sequence stars (Jardine et al. 2002a, 2002b). By

varying the constant K we can raise or lower the overall gas pres-

sure along field line loops. If the value of K is large many field lines

would be blown open and the corona would be compact, whilst if

the value of K is small then the magnetic field is able to contain

more of the coronal gas. The extent of the corona therefore depends

both on the value of K and also on B0 which is determined directly

from surface magnetograms. For an observed surface magnetogram

the base magnetic pressure B0 varies across the stellar surface, and

as such so does the base pressure p0 at field line foot points. By

considering stars from the COUP data set Jardine et al. (2006) ob-

tain the value of K which results in the best fit to observed X-ray

emission measures, for a given surface magnetogram (see their

table 1). We have adopted the same values in this paper. We then

make a conservative estimate of the size of a star’s corona by calcu-

lating the largest radial distance at which a dipole field line would

remain closed, which we refer to as the source surface Rs.

2.2 Coronal stripping

Lower mass stars, which have small surface gravities and therefore

large pressure scale heights, typically have more extended coronae

which would naturally extend beyond the corotation radius. Closed

field lines threading the disc beyond corotation would quickly be

wrapped up and sheared open. Therefore, if the maximum extent of

a star’s corona is greater than the corotation radius then we set it to

be the corotation radius instead. Higher mass stars, with their larger

surface gravities, typically have more compact coronae which may

not extend as far as the corotation radius. Therefore, if we assume

that the disc is truncated at corotation, then accretion proceeds from

the inner edge of the disc along radial open field lines. Jardine et

al. (2006) provide a discussion about the extent of T Tauri coronae

relative to corotation radii. It is also worth noting that Safier (1998)

criticizes current magnetospheric accretion models for not includ-

ing the effects of a stellar corona. He argues that the inclusion of a

realistic corona blows open most of the closed field with the even-

tual net effect being that the disc would extend closer to the star.

However, in our model there are open field lines threading the disc

at corotation and it is therefore reasonable to assume that they are

able to carry accretion flows.

2.3 Field extrapolations

The initial field extrapolation yields regions of open and closed field

lines. Of these, some intersect the disc and may be actively accreting.

For closed field lines which do not intersect the disc it is possible

to calculate the X-ray emission measure in the same way as Jardine

et al. (2006). To determine if a field line can accrete we find where it

threads the disc and calculate if the effective gravity along the path

of the field line points inwards, towards the star. From this subset of

field lines we select those which have β < 1 along their length. In

other words, for any given solid angle we assume that accretion can

occur along the first field line within the corotation radius which is

able to contain the coronal plasma. We assume that the loading of

disc material on to the field lines is infinitely efficient, such that the

first field line at any azimuth which satisfies the accretion conditions

will accrete, and that field lines interior to this are shielded from the

accretion flow. We also assume that the accreting field is static and

is therefore not distorted by the disc or by the process of accretion.

In Section 3.3 we consider in more detail how to determine which

field lines are able to support accretion flows, in order to calculate

mass accretion rates and accretion filling factors.

Fig. 1 shows the first set of field lines which may be accreting,

obtained by surrounding the field extrapolations of LQ Hya and

AB Dor with a thin wedge-shaped accretion disc, with an opening

angle of approximately 10◦. In Section 3 we develop a model for

isothermal accretion flows where material leaves the disc at a low

subsonic speed, but arrives at the star with a large supersonic speed.

Not all of the field lines in Fig. 1 are capable of supporting such

accretion flows, and instead represent the maximum possible set of

field lines which may be accreting. We assume a coronal temperature

of 10 MK and obtain the gas pressure at the base of each field line

as discussed in Section 2.1 and by Jardine et al. (2006). The natural

extent of the corona of DF Tau would be beyond the corotation

radius and therefore accretion occurs along a mixture of closed and

open field lines from corotation. One suggestion for how accretion

may proceed along open field lines is that an open field line which

stretches out into the disc, may reconnect with another open field

line for long enough for accretion to occur, only to be sheared open

once again. This is of particular importance for the higher mass

stars, such as CY Tau, where in some cases we find that the inner

edge of the disc is sitting in a reservoir of radial open field lines.

This may have important implications for the transfer of torques
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1002 S. G. Gregory et al.

Figure 1. Field lines which could support accretion flows for a model of a CTTS with a field topology that resembles (a) LQ Hya, obtained using the DF Tau

parameters from Table 1, and (b) AB Dor, using the CY Tau parameters. The stellar surface is coloured to show the strength of the radial component of the field,

with red representing 1 kG and black represent −1 kG. Field lines have been drawn from the corotation radius. For the lower mass star, DF Tau, the natural

extent of its corona would be beyond corotation and therefore there is a mixture of open and closed field lines threading the disc at Rco. The higher mass star,

CY Tau, has a more compact corona and material flows along open field lines from corotation.

between the disc and star. However, more work is needed here in

order to develop models for accretion along open field lines.

These field extrapolations suggest that accretion may occur along

field lines that have very different geometries. Indeed, a substantial

fraction of the total mass accretion rate may be carried on open

field lines. Before developing a detailed model of the mass accretion

process, however, we first consider the simple case of a tilted dipole.

While this is an idealization of the true stellar field it allows us to

clarify the role that the geometry of the field may have in governing

the mass accretion process.

3 AC C R E T I O N TO A D I P O L E

We have constructed two simple analytic models as sketched in

Fig. 2. The first case is for a star with a dipolar field with the dipole

momentμ aligned with the stellar rotation axis Ω. In standard spher-

ical coordinates this field may be described as

B =
(

2μ

r 3
cos θ,

μ

r 3
sin θ, 0

)
, (7)

a scenario that allows us to model accretion flows along field lines in

the star’s meridional plane. If we then take this field structure and tilt

it by π/2 radians such that μ now lies in the star’s equatorial plane,

perpendicular to Ω, then those field lines which ran north–south in

Figure 2. An aligned and tilted dipole field geometry. The aligned dipole

(left) with a field line in the star’s meridional plane, with the dipole moment

μ aligned with the stellar rotation axisΩ, and the perpendicular dipole (right)

with a field line in the star’s equatorial plane, with μ perpendicular to Ω.

The average surface field strength matches that considered by Jardine et al.

(2006) with yellow (blue) representing the positive (negative) magnetic pole.

the meridional plane, now lie east–west in the equatorial plane, with

B =
(

2μ

r 3
cos φ, 0,

μ

r 3
sin φ

)
. (8)

Throughout we shall refer to these cases as the perpendicular dipole
for the tilted dipole field and the aligned dipole for the aligned dipole

field. To do this we consider steady isothermal accretion flows from

a thin accretion disc oriented such that the disc normal is parallel

to the stellar rotation axis. An initial sonic Mach number, M, is

ascribed to the accreting material. We then calculate the pressure

and velocity profiles, relative to arbitrary initial conditions defined

at the disc plane. We calculate the ratio of pressure p at each point

along a field line, relative to that at the disc, pd; and then from this

we calculate how the Mach number of the flow changes along the

field.

The path of a field line may be described by

Br

dr
= Bθ

rdθ
= Bφ

r sin θdφ
. (9)

For the perpendicular dipole, where θ = π/2 for all field lines that

pass through the disc, it is quickly established that

sin2 φ = �r , (10)

where � is a constant along a particular field line, such that different

values of � correspond to different field lines. For the perpendicular

dipole case, at r = Rd, the maximum radial extent of the field line,

φ = π/2; thus, � = 1/Rd. Using this result the magnitude of the

magnetic field at a point along a field line a distance r from the

centre of the star, relative to that at the disc, may be obtained from

(8),

B

Bd

=
(

Rd

r

)3
√(

4 − 3r

Rd

)
, (11)

where Bd = B (r = Rd). An identical expression can be derived for

the aligned dipole case.

3.1 Steady isothermal accretion flows

The momentum equation for a steady inviscid flow along a flux tube

is

ρ (v · ∇)v = −∇
(

p + B2

2μ

)
+ 1

μ
(B · ∇) B + ρgeff − 2ρω × v,

(12)
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where the symbols have their usual meaning with geff being the

sum of the gravitational and centrifugal accelerations. In a frame of

reference rotating with the star the effective gravity is

geff = g − ω × (ω × r ) . (13)

The component of the momentum equation along a field line is then

ρ
d

ds

(
v2

2

)
= −dp

ds
+ ρgeff · ŝ, (14)

since the Coriolis term (−2ρω × v) does not contribute for flows

along the field, and where ŝ(r ) is a unit vector along the path of the

field line. Throughout terms with a subscript d will denote quantities

defined at the disc; for example ρd, pd, vd and Bd are, respectively,

the density, pressure, velocity along the field and the magnetic field

strength as defined at the plane of the disc, a radial distance Rd from

the centre of the star. Integrating equation (14) from the disc plane

to some position along the field line at a distance r from the stellar

centre, and using the isothermal equation of state for an ideal gas, p
= ρc2

s , gives

ln

(
p

pd

)
= 1

c2
s

[
−1

2

(
v2 − v2

d

) +
∫

geff · ŝds

]
, (15)

where cs is the isothermal sound speed. If we assume that both mass

and magnetic flux are conserved along each flux tube (of cross-

sectional area A), then the flow must satisfy

d

ds
(ρvA) = 0, (16)

d

ds
(B A) = 0, (17)

which may be expressed equivalently as

pv

B
= pdvd

Bd

= const. (18)

By combining (15) with (18) a relation for the pressure structure

along an accreting field line can be established,

ln

(
p

pd

)
+ 1

2
M2

(
pd

p

B

Bd

)2

− 1

2
M2 − 1

c2
s

∫
geff · ŝ ds = 0,

(19)

and also directly from (18) an expression for the velocity structure,

v

cs

= M pd

p

B

Bd

, (20)

where in both cases M = vd/cs denotes the initial sonic Mach

number at which the accretion flow leaves the plane of the disc. It

is then possible to find the pressure at each point along a field line,

relative to the pressure at the disc (p/pd), by finding the roots of

(19). Once these roots have been found the velocity profile can be

obtained from (20) by calculating how the Mach number of the flow

varies as material moves from the disc to the star.

3.2 Pressure and velocity profiles

For the perpendicular dipole, in the star’s equatorial plane, the ef-

fective gravity has only a radial component,

geff =
(

− G M∗
r 2

+ ω2r

)
r̂ . (21)

Taking the component of the effective gravity along the field, that

is along a path parametrized by ŝ = B/B, substituting into (19),

and using (11) gives an expression for the pressure structure along

equatorial field lines,

ln

(
p

pd

)
+ 1

2
M2

(
Rd

r

)6 (
4 − 3r

Rd

)(
pd

p

)2

− 1

2
M2

+ 
g

(
1

Rd

− 1

r

)
+ 
c

(
R2

d − r 2
) = 0, (22)

where both r and Rd are measured in units of the stellar radius R∗ and


g and 
c are the surface ratios of the gravitational and centrifugal

energies to the thermal energies,


g = G M∗
R∗c2

s

, (23)


c = 1

2

(
ωR∗

cs

)2

. (24)

The roots of (22) give the pressure at some point along a field line

loop which is a radial distance r from the stellar centre.

For the aligned dipole, in the star’s meridional plane, the effective

gravity has both an r and θ component,

geff =
(

− G M∗
r 2

+ ω2r sin2 θ

)
r̂ + (

ω2r sin θ cos θ
)
θ̂. (25)

Following an identical argument to that above it can be established

that for accretion in the star’s meridional plane, the pressure function

(19) becomes

ln

(
p

pd

)
+ 1

2
M2

(
Rd

r

)6 (
4 − 3r

Rd

)(
pd

p

)2

− 1

2
M2

+
g

(
1

Rd

− 1

r

)
+ 
c

(
R2

d − r 3

Rd

)
= 0. (26)

The only difference from the perpendicular dipole is in the final

term.

For a CTTS with a mass of 0.5 M�, radius 2 R� and a rotation

period of 7 d, we have calculated the pressure and velocity structure

along accreting dipole field lines, for a range of accretion flow tem-

peratures, starting radii and initial sonic Mach numbers. Figs 3(a)

and (b) show a typical pressure and velocity profile for the perpen-

dicular dipole, whilst those for the aligned dipole are qualitatively

similar. The pressure profile shows how the ratio p/pd, where p is

the pressure along the field line and pd the pressure at the disc, varies

as the flow moves from the disc to the star (plotted logarithmically

for clarity). The velocity profile shows how the Mach number of

the flow changes along the field line. For different accretion flow

temperatures and starting radii the resulting profiles are similar, ex-

cept in a few select cases, as discussed in the next section. Fig. 3

is for an accretion flow leaving the disc at Rd = 6.0R∗, which is

approximately the equatorial corotation radius Rco where

Rco =
(

G M∗
ω2

)1/3

, (27)

and for an accretion flow temperature of 105 K. This is at least one

order of magnitude higher than what is believed to be typical for

accretion in CTTSs, but a higher temperature has been selected here

in order to clearly illustrate the various types of solutions labelled in

Fig. 3(b). At lower temperatures the form of the velocity solutions

is similar.

At the critical radius rc either the flow velocity equals the sound

speed, v = cs, or dv/ds = 0. There are several distinct velocity so-

lutions labelled in Fig. 3(b). For very small subsonic initial Mach
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(a) (b)

Figure 3. The resulting pressure and velocity profiles for accretion along equatorial dipole field lines. The inner edge of the disc is at Rd = 6.0R∗ which is

approximately the corotation radius. Different lines represent different initial velocities.

numbers (curve A) the flow remains subsonic all the way to the star,

and for large supersonic initial Mach numbers, it remains supersonic

from the disc to the star (curve B). There is also a range of initial

Mach numbers (curves C) where the flow will not reach the star, and

one value of M that results in a transonic solution – where the flow

leaves the disc at a subsonic speed and accelerates hitting the star

at a supersonic speed (curve E). Observations of the widths of line

profiles suggest that the accreting material reaches the stellar sur-

face at several hundred km s−1, certainly at supersonic speeds (e.g.

Edwards et al. 1994). The velocity profiles indicate that it is possi-

ble to have accretion flows which leave the disc at a low subsonic

velocity but which arrive at the star with a large supersonic velocity.

In Fig. 3(b) the transonic solution arrives at the star with a Mach

number of 6.54, which at a temperature of 105 K corresponds to an

in-fall velocity of 243 km s−1. For a realistic accretion temperature

of 104 K the in-fall velocity is 259 km s−1.

Models of funnel flows have been studied using an isothermal

equation of state (Li & Wilson 1999) and for a polytropic flow

(Koldoba et al. 2002), with the latter demonstrating that transonic

accretion flows are only possible for a range of starting radii around

the corotation radius. Magnetohydrodynamics simulations by

Romanova et al. (2002) also indicate that accretion flows can ar-

rive at the star with large supersonic velocities. However, our aim

here is to determine whether or not the magnetic field geometry has

any affect on accretion; in particular, how the field structure affects

the mass accretion rate, rather than to discuss the types of veloc-

ity solutions that we would expect to observe. In Appendix A we

discuss an efficient algorithm which allows us to determine both

the location of the sonic point on a field line and the initial Mach

number required to give a smooth transonic solution. This algorithm

may be applied to accretion flows along field lines of any size, shape

and inclination, even in the absence of analytic descriptions of the

magnetic field and effective gravity.

3.3 Mass accretion rates and filling factors

For accretion to occur the effective gravity at the point where a field

line threads the disc must point inwards towards the star. From this

subset of field lines we select those which are able to contain the

corona and support transonic accretion flows. We further check to

ensure that the plasma beta resulting from accretion remains <1

along their length. Therefore, at any particular azimuth, accretion

occurs along the first field line at, or slightly within, the corotation

radius; the field line must be able to contain the coronal plasma and

have a sonic point along its length. In order to determine if a field

line can support a transonic accretion flow, the first step is to find

the pressure and velocity structure its length, which will be similar

to those described in Section 3.2. To do this we need to determine

the initial Mach number that would produce an accretion flow. We

can achieve this by determining if a field line has a sonic point as

discussed in Appendix A.

To calculate a mass accretion rate we require the velocity and

density of each accretion flow at the stellar surface, and also the

surface area of the star covered in hotspots. For an assumed accretion

flow temperature we determine the initial Mach number required

to generate a transonic velocity profile, along each field line, and

determine the in-fall velocity from (20). At every point along a field

line we know the ratio of pressure at that point, to that at the disc,

p/pd. For an isothermal equation of state p ∝ ρ, so we also know

the ratio of densities ρ/ρd at every point along the accreting field

line. Thus for a given disc midplane density ρd, we can estimate the

density at the stellar surface ρ∗. Throughout we assume a constant

disc midplane density of ρd = 5.0 × 10−9 g cm−3, a reasonable

value at the corotation radius for T Tauri stars (e.g. Boss 1996). The

mass accretion rate may be expressed in terms of quantities defined

at the disc plane, with Ṁ ∝ ρd. Therefore, raising or lowering

ρd directly increases or decreases Ṁ . We estimate the total surface

area of the star covered in accretion hotspots by summing the area of

individual grid cells which contain accreting field line foot points.

For each grid cell i (of area Ai ) on the stellar surface we obtain

the average in-fall velocity v̄∗ and average density ρ̄∗ of material

accreting into that cell. Most grid cells do not contain any accreting

field line foot points and therefore do not contribute to the mass

accretion rate. The mass accretion rate is then the sum over all cells

i containing accreting field line foot points,

Ṁ =
∑

i

Ṁi =
∑

i

[Av̄∗ρ̄∗]i . (28)

The mass accretion rate can be expressed equivalently as Ṁ =
ρdvd Ad, where Ad is the surface area of the disc that contributes

to accretion (which depends on the radial extent of accreting field

lines within the disc). Using the surface area of grid cells within the
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Table 1. Data for CTTSs from Valenti & Johns-Krull (2004).

Star M∗(M�) R∗(R�) Prot (d) Rco (R∗)

DF Tau 0.17 3.9 8.5 2.47

CY Tau 0.58 1.4 7.5 9.55

disc which contain accreting field lines to estimate Ad, we obtain Ṁ
values that are comparable to those calculated from (28). Therefore,

it makes little difference which formulation for Ṁ is used. The

accretion filling factor facc, the fractional surface area of the star

covered in hotspots, is then calculated from

facc =
∑

i Ai

4πR2∗
. (29)

We have calculated the total mass accretion rate that dipole fields

can support for isothermal accretion flow temperatures of between

103 and 104 K; for values of β from 0◦ to 90◦, where β is the obliquity

of the dipole (the angle between the dipole moment and the stellar

rotation axis); for the DF Tau parameters in Table 1 and for a coronal

temperature of 10 MK (see Fig. 4). β = 0◦ and β = 90◦ correspond

to the aligned and perpendicular dipoles, respectively.

For dipolar accretion we obtain typical mass accretion rates of

Ṁ ≈ 10−9–10−8 M� yr−1. The mass accretion rate increases with

(a) (b)

(c) (d)

Figure 4. (a) The change in mass accretion rate and (b) the accretion filling factor as a function of β, for accretion to dipole fields where β is the obliquity –

the angle between the rotation and magnetic poles, for accretion flow temperatures of 1000 K (solid), 2500 K (dotted), 5000 K (short dash), 7500 K (long dash)

and 10 000 K (dash–dot). (c) and (d) show how the contribution to the accretion filling factor from accreting closed and open field changes with β. The DF Tau

parameters from Table 1 have been used. There are no open accreting field lines for the Tacc = 1000 K case.

temperature in all cases, but at low accretion temperatures Tacc, there

is little difference in Ṁ for all values of β (see Fig. 4a). For higher

Tacc values, the aligned dipole field can support mass accretion rates

which are a factor of two times less than those fields with large

values of β. This, in part, can be attributed to the increase in the

amount of open field lines which thread the disc, and are able to

support accretion as β is increased (see Fig. 4d). As the dipole

is tilted from β = 0◦ to 10◦ the mass accretion rate is reduced (see

Fig. 4a). This can be understood by the changing shape of the closed

field lines as β is increased. For accretion along aligned dipole field

lines, accreting material may flow along two identical paths from

the disc to the star; that is it may accrete on to either the northern, or

the southern hemisphere. Once the dipole has been tilted through a

small angle, the path along the field on to each hemisphere changes,

with one segment of the closed field line loop being shallower than

before and curved towards the star, and the other being longer. This

longer segment bulges out slightly, so that material flowing along

such field lines follows a path which initially curves away from the

star, before looping back around to the stellar surface. This creates

a difference in initial Mach numbers necessary to create transonic

accretion flows along the different field line segments, with the net

result that some closed field line segments are no longer able to

accrete transonically when β = 10◦ (see Fig. 4c). As the dipole is

tilted further from β = 10◦ to ≈ 30◦–40◦ the mass accretion rate

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 371, 999–1013

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/371/2/999/1034185 by guest on 05 June 2021



1006 S. G. Gregory et al.

increases in all but the lowest Tacc cases. This is because once the

dipole has been tilted far enough the open field lines (those that have

foot points at latitudes closer to the magnetic axis) begin to intersect

the disc (see Fig. 4d). There are therefore more possible paths that

material can take from the disc to the star, causing an increase in Ṁ
(again in all but the lower Tacc cases). As β is further increased the

amount of accreting closed field lines continues to reduce, whilst the

amount of open field lines threading the disc reaches a maximum,

and we therefore see a trend of falling mass accretion rates towards

the largest values of β.

The accretion flow temperature is important in determining

whether open field lines are able to support transonic accretion flows.

From Figs 4(c) and (d) it is clear that the contribution to accretion

from the closed field is constant for all values of Tacc, whereas the

contribution from the open field depends strongly on Tacc, with more

open field lines accreting at higher accretion flow temperatures. At

the lowest accretion flow temperature which we consider (1000 K),

there are no open field lines able to support transonic accretion,

even for the large values of β where there are many such field lines

passing through the disc. This can be understood as follows. For

transonic accretion a sonic point must exist on a field line. At a

sonic point v = cs; applying this to (20), substituting into (19) and

rearranging gives

1

v

dv

ds

(
v2 − c2

s

) = geff · ŝ − c2
s

B

dB

ds
, (30)

from which it can be seen that there exists some critical radius rc

where either v = cs or dv/ds = 0. Clearly at this critical radius the

two terms on the right-hand side (RHS) of (30) must be equal,

c2
s

B

dB

ds
= geff · ŝ, (31)

where all the terms are evaluated at rc. It should be noted that (31)

may also be obtained by finding the maximum turning point of (A5),

consistent with our argument in Appendix A.

The condition for a sonic point to exist on any field line, open or

closed, may be expressed as equation (31). ŝ is a unit vector along

the path of the field which may be written as ŝ = B/B, which we

can use to rewrite (31) as

c2
s

dB

ds
= geff · B. (32)

From this it can be seen that the condition for a sonic point to

exist depends on three things: first, the path that a field line takes

through the star’s gravitational potential well; second, how quickly

the strength of the magnetic field varies as the flow moves along

the field line; and third, the accretion flow temperature which enters

through the sound speed, where for isothermal accretion c2
s ∝ T . It

is the interplay between all three of these factors which determines

if a sonic point exists.

For low accretion temperatures the sound speed cs is small, whilst

for open field lines the geff · B on the RHS of (32) is usually larger

than for closed field lines. This can be seen by considering the

simple example of a closed dipolar field line and a radial open field

line threading the disc at the same point Rd. For both field lines the

effective gravity vector geff at Rd is the same. For the radial open

field line the magnetic field vector B is aligned with geff, whereas

for the closed dipolar field line, which threads the disc at a large

angle, there is some angle θ between it and B. Hence the scalar

product geff · B = gB cos θ is larger for the open field line. Thus for

open field lines the RHS of (32) is larger compared to closed field

lines, and therefore a higher accretion flow temperature is required

to create the necessary high value of cs in order to balance the

two sides of equation (32). Of course, for reasons discussed above,

dB/ds is larger for the radial field line, but it is not large enough to

compensate for the geff · B term being so small. At higher values

of the accretion flow temperature more open field lines are able

to accrete, thus helping to increase the mass accretion rate even

though the number of closed accreting field lines is significantly

less compared to an aligned dipole field.

The aligned dipole field has an accretion filling factor of just under

4 per cent (see Fig. 4b), with the β = 15◦ case having the largest

filling factor due to the shape of the closed field lines threading the

disc, which allows material to be channelled on to a larger area of

the stellar surface. More accreting open field lines means a larger

fraction of the star is covered in accreting field line foot points thus

increasing the facc at large accretion flow temperatures. However,

when β becomes larger as we tilt the dipole further on to its side, facc

decreases. As the field is tilted fewer closed field lines are available

for accretion as they no longer intersect the disc (see Fig. 4c), leading

to a decrease in the filling factor (see Fig. 4b). The accretion filling

factor is smallest for the perpendicular dipole where material is

accreted on to bars about the star’s equator (see Fig. 5), compared to

the accretion rings about the poles obtained with the aligned dipole.

We therefore conclude that by considering accretion to tilted dipo-

lar magnetic fields both the mass accretion rate and the accretion

filling factor are dependent on the balance between the number of

closed and open field lines threading the disc. If there are many

open field lines threading the disc, then a higher accretion flow tem-

perature is required in order for the open field to contribute to Ṁ .

At high accretion flow temperatures there is at most a factor of 2

difference between the mass accretion rate that the aligned dipole

can support compared to the tilted dipoles with large values of β.

It appears as though the structure of the magnetic field has only a

small role to play in determining the mass accretion rate, at least for

purely dipolar fields, however, as is discussed in the next section,

the magnetic field geometry is of crucial importance in controlling

the location and distribution of hotspots.

4 AC C R E T I O N TO C O M P L E X

M AG N E T I C F I E L D S

4.1 Distribution of hotspots

Brightness modulations have long been interpreted as evidence for

hotspots on CTTSs (e.g. Bouvier et al. 1995). Hotspots are a pre-

diction of magnetospheric accretion models and arise from chan-

nelled in-falling material impacting the star at large velocity. The

distribution of accretion hotspots and their subsequent effects on

photometric variability have been studied by several authors, how-

ever, only with dipolar magnetic fields (Wood et al. 1996; Mahdavi

& Kenyon 1998; Stassun & Wood 1999; Romanova et al. 2004).

We find that complex magnetic field geometries have a large effect

on the location of hotspots. The accreting field line foot points are

shown in Fig. 6, which represent those field lines in Fig. 1 which

satisfy the accretion conditions discussed in Section 3.3. These give

an indication of how different field geometries control the shape,

location and distribution of hotspots. We find a series of discrete

hotspots which span a range of latitudes and longitudes with typical

accretion filling factors of around 2 per cent. This is quite different

to what we would expect for accretion to an aligned dipole field,

where the accreting field line foot points would be at high latitudes,

towards the poles. With the complex magnetic fields presented here

hotspots can be at high latitudes, but also often at low latitudes

close to the star’s equator. The existence of low latitude hotspots
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(a) (b)

(c) (d)

Figure 5. The stellar surface with white (black) points indicating the closed (open) accreting field line foot points for accretion to a dipole with obliquity (a)

β = 0◦, the aligned dipole, where accretion proceeds on to two rings in opposite hemispheres; (b) β = 15◦ where the accretion rings have been distorted and

open field lines produce the small bands centred on 180◦ and 360◦ longitude; (c) β = 45◦ where accretion occurs predominantly along the open field lines; (d)

β = 90◦, the perpendicular dipole, where accretion occurs in bars around the star’s equator. All are for an accretion flow temperature of 104 K. The average

surface field strength matches that considered by Jardine et al. (2006) with yellow (blue) representing the positive (negative) magnetic pole.

(a) (b)

Figure 6. Surface magnetograms as used in Fig. 1 for (a) the LQ Hya-like and (b) the AB Dor-like magnetic fields, coloured to show the strength of the radial

component of the field with red representing 1 kG and black representing −1 kG. White points are the accreting field line foot points and give an indication of

the location of hotspots. Hotspots span a range of latitudes and longitudes; this is in contrast for accretion to a dipole field where the accreting field line foot

points would be at high latitudes towards the poles. The accretion filling factor is about 2 per cent in both examples.

has also been predicted by von Rekowski & Brandenburg (2006)

who consider accretion along dynamo generated stellar field lines

rather than along dipolar field lines. It is worth noting that the line-

of-sight field components inferred from polarization measurements

made using the He I 5876 Å emission line by Valenti & Johns-Krull

(2004) are well matched by a simple model of a single hotspot at

different latitudes dependent on the particular star. Such observa-

tions already suggest that low latitude hotspots may be a common

feature of CTTSs.

4.2 In-fall velocities

In Appendix A we discuss an analytic method for calculating the

location of the critical radius. This allows us to determine which of

the field lines from Fig. 1 have sonic points, and then find a transonic

velocity solution, where material leaves the disc at a low subsonic

speed but arrives at the stellar surface with a large supersonic speed.

The accreting field geometry obtained when considering complex

magnetic fields is such that there are many field lines of different

size and shape which are able to support accretion flows. This re-

sults in a distribution of in-fall speeds, rather than a discrete in-fall

speed that would be expected for accretion along aligned dipole

field lines. Fig. 7 shows the distributions of in-fall velocities for our

two accreting field geometries, and for each set of stellar parameters

listed in Table 1, for an accretion flow temperature of 104 K and a

coronal temperature of 10 MK. In both cases the in-fall speeds are

large enough to produce hotspots on the stellar surface. We obtain

larger in-fall velocities when using the CY Tau parameters, which
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(a) (b)

Figure 7. Histograms showing the distribution of in-fall velocities assuming steady state accretion flows at 104 K, using the field extrapolations in Fig. 1,

corresponding to (a) the LQ Hya-like field and (b) the AB Dor-like field using the DF Tau (solid) and CY Tau (dots) stellar parameters listed in Table 1.

is a higher mass star, compared to the DF Tau parameters. Material

accreting on to larger mass stars will experience a steeper gravita-

tional potential than for accretion on to lower mass stars, and this

combined with the larger corotation radii for the larger mass stars,

naturally leads to greater in-fall speeds.

The accretion flow temperature has a negligible effect on the

average in-fall velocity, for any magnetic field structure. We find that

the average in-fall speed remains almost constant as the accretion

flow temperature is varied, changing by only a few km s−1. As the

temperature is increased the sonic point of the accretion flow is

further from the disc, which reduces the final Mach number by

which material is arriving at the star. However, this reduction in the

final Mach number is caused almost exclusively by the increase in

the sound speed at higher temperature, whilst the average in-fall

velocity remains constant.

There is a broader distribution of in-fall velocities when con-

sidering the CY Tau stellar parameters compared to the narrow

distribution for DF Tau, which is more strongly peaked about a

single in-fall velocity (see Fig. 7). We calculate the natural radial

extent of DF Tau’s corona Rs to be larger than the corotation radius

(Rs = 2.5R∗ for the AB Dor-like field and 2.7R∗ for the LQ Hya-like

field compared to Rco = 2.47R∗) and therefore accretion proceeds

along a mixture of open and closed field lines which thread the disc

at corotation. It can be seen from Fig. 1(a) that accretion occurs

almost exclusively from the corotation radius with a small range of

azimuths where there are neither open nor closed field lines thread-

ing the disc at corotation, and therefore the disc extends closer to

the star. This effect is much greater for the CY Tau parameters as

its corotation radius is beyond the natural extent of the corona (Rs

= 2.7R∗ for the AB Dor-like field and 2.9R∗ for the LQ Hya-like

field compared to Rco = 9.55R∗). Most of the accretion occurs along

radial field lines from corotation. However, at some azimuths there

are no open field lines stretching out through the disc at corotation,

and therefore the inner disc at those azimuths is much closer to

the star, with accretion occurring along the closed field lines loops

which constitute the star’s corona. A more complete model would

take account of the torques resulting from allowing accretion to oc-

cur from well within the corotation radius. We do not account for

this in our model, however, this only occurs for a very small number

of field lines, with the bulk of accretion occurring from corotation.

The number of field lines accreting at lower velocity from within

corotation is small compared to those accreting from Rco, with the

resulting distribution of in-fall speeds instead reflecting variations

in the size and shape of field lines accreting from corotation.

We have found that the structure of these complex magnetic fields

and more importantly the stellar parameters (mass, radius, rotation

period, coronal temperature) are critical in controlling the distribu-

tion of in-fall velocities. Consequently this will affect mass accretion

rates, which we discuss below, and also spectral line profiles, which

will be the subject of future work.

4.3 Mass accretion rates and stellar mass

To investigate the correlation between mass accretion rate and stel-

lar mass, we require a large sample of accreting stars with estimates

of stellar mass, radius, rotation period and coronal temperature. The

X-ray emission from young stars in the Orion Nebula has been stud-

ied by COUP, which provides a vast amount of data on accreting stars

with estimates of all the parameters required by our model to calcu-

late mass accretion rates. Getman et al. (2005) provide an overview

of the observations, and the COUP data set, which is available from

ftp://ftp.astro.psu.edu/pub/gkosta/COUP PUBLIC/

Rebull et al. (2000) first noted that the apparent increase in mass

accretion rate with stellar mass and that the lack of low-mass stars

with high Ṁ was a real effect for stars in the Orion flanking fields.

White & Ghez (2001) also noted an apparent Ṁ–M∗ correlation

for stars in Taurus–Auriga, with a large scatter in Ṁ values, with

Rebull et al. (2002) reporting that the correlation also existed for

stars in NGC 2264. The correlation was then found to extend across

several orders of magnitude in mass with the detection of accretion

in low-mass T Tauri stars and brown dwarfs (White & Basri 2003)

with Muzerolle et al. (2003) being the first to suggest that Ṁ ∝ M2
∗ .

Subsequent observations by Calvet et al. (2004) indicated that this

correlation extended to the higher mass, intermediate-mass T Tauri

stars with several authors adding data at lower masses from vari-

ous star-forming regions (Natta et al. 2004; Mohanty et al. 2005;

Muzerolle et al. 2005), with Natta et al. (2006) adding data from

ρ-Ophiuchus. There can be as much as three orders of magnitude

scatter in the measured mass accretion rate at any particular stellar

mass. It should also be noted that mass accretion rate measure-

ments for stars in the Trapezium cluster are not consistent with the

Ṁ ∝ M2
∗ correlation. Robberto et al. (2004) report Ṁ values for

the Trapezium cluster which are significantly lower than those ob-

tained for stars in Taurus and the Orion flanking fields and suggest
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(a) (b)

Figure 8. (a) The correlation between mass accretion rate and stellar mass. Previously published values (points) are taken from Rebull et al. (2000, 2002),

Mohanty et al. (2005), Muzerolle et al. (2005) and Natta et al. (2006) which is a collection of data from Gullbring et al. (1998), White & Ghez (2001), Muzerolle

et al. (2003), White & Basri (2003), Calvet et al. (2004) and Natta et al. (2004). Using data from the COUP sample of accreting stars (Getman et al. 2005) our

accretion model yields mass accretion rates (large circles) that are consistent within the observed scatter. Open circles are values calculated from COUP stars

with estimates of R∗, M∗, Prot, coronal temperature and a Ca II equivalent width measurement, whilst the filled circles are values calculated for stars which are

regarded as strongly accreting with W(Ca II)<−1 Å. All quantities have been calculated using the LQ Hya surface map and the higher coronal temperatures

derived from the COUP data. (b) Shows only those stars which are regarded as strongly accreting with the dashed lines indicating the range in mass covered

by such COUP stars.

that the probable cause is that the discs of lower mass stars are be-

ing disrupted by ultraviolet radiation from the Trapezium OB stars,

causing a large drop in mass accretion rates. Also, Calvet et al.

(2004) point out that there is a strong bias against the detection of

intermediate-mass T Tauri stars (M∗ = 1.5–4 M�) with lower mass

accretion rates, therefore, the exponent of the Ṁ–M∗ correlation

may be less than 2. Further, Clarke & Pringle (2006) demonstrate

that currently available data are limited by selection effects at high

Ṁ values (whereby accretion rates cannot be determined when ac-

cretion luminosity is greater than stellar luminosity) and also by a

lower bound defined by the upper limits of non-detections. Their

work therefore suggests that the steep correlation between Ṁ and

M∗ is a natural consequence of detection/selection limitations, and

that the true Ṁ–M∗ correlation may be different.

Using the complex magnetic fields discussed above and assuming

an accretion flow temperature of 104 K, we have calculated mass

accretion rates and accretion filling factors for the COUP sample

of stars which have estimates of M∗, R∗, Prot, coronal temperature

and measurements of the Ca II 8542 Å line, using the lower coronal

temperature, and, for those stars with spectra fitted with a two-

temperature model, using the higher coronal temperature as well.

We have looked for a correlation between the mass accretion rate

and stellar mass of the form Ṁ ∝ Mα
∗ , where α is a constant. In

Fig. 8(a) we have plotted our calculated mass accretion rates from the

COUP stars as a function of stellar mass, overplotted on published

values, for the LQ Hya-like magnetic field using the higher coronal

temperatures. Preibisch et al. (2005) describe how the equivalent

width of the Ca II 8542 Å line is used as an indicator of accretion for

stars in the COUP data set. They follow the classification discussed

by Flaccomio et al. (2003), who assume that stars are strongly ac-

creting if the Ca II line is seen in emission with W(Ca II)<−1 Å. Stars

with W(Ca II)>1 Å are assumed to be either weak or non-accretors.

However, it should be noted that many of the stars in the COUP

data set have W(Ca II) = 0 Å, and as such cannot be identified as

either accreting or non-accreting. Stassun et al. (2006) discuss, with

particular reference to the COUP, how some stars can show clear

accretion signatures in Hα but without showing evidence for ac-

cretion in Ca II. Therefore, the sample of COUP stars considered

in Fig. 8(a) may not be restricted to actively accreting CTTSs and

could also include other non-accreting young stars, such as weak

line T Tauri stars, where the disc is rarefied or non-existent, and

stars which are surrounded by discs but are not actively accreting at

this time. However, we consider all of the available stellar parame-

ters from the COUP data set in order to demonstrate that our model

produces a similar amount of scatter in calculated Ṁ values. In

Fig. 8(b) we have only plotted those COUP stars which are re-

garded as strongly accreting based on the equivalent width of the

Ca II 8542 Å line.

By fitting a line to the filled circles in Fig. 8(b) we find a corre-

lation of the form Ṁ ∝ M1.1
∗ for COUP stars which are regarded as

strong accretors, using the LQ Hya-like magnetic field. For the AB

Dor-like field we find Ṁ ∝ M1.2
∗ . Therefore, our simple steady state

isothermal accretion model produces an increase in mass accretion

rate with stellar mass, and predicts Ṁ values which are consistent

within the observed scatter, but it underestimates the exponent of 2

obtained from published values. We find similar results when con-

sidering both the lower and higher coronal temperatures. However,

the strongly accreting COUP stars only include stellar masses of

M∗ ≈ 0.1–2.6 M�, and as such do not provide a large enough

range in mass to test if our accretion model can reproduce the ob-

served correlation. Therefore, if we only consider the observational

data in the restricted range of mass provided by the COUP data set

(indicated by the vertical dashed lines in Fig. 8b) then the exponent

of the observed correlation is less than 2, with Ṁ ∝ M1.4
∗ , and if

higher mass stars do exist with lower mass accretion rates, could

even be less than 1.4. Therefore, our simple model, which Jardine

et al. (2006) have successfully used to explain the observed cor-

relation between X-ray emission measure and stellar mass, comes

close to reproducing the stellar mass–mass accretion rate correla-

tion. It is also worth noting that our model produces a correlation in

agreement Clarke & Pringle (2006).

The accretion filling factors are typically around 2.5 per cent for

the sample of COUP stars (see Fig. 9), although it varies from less

than 2 per cent to greater than 4 per cent. There is a slight trend for
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Figure 9. The accretion filling factors are small, and typically around 2.5

per cent for the LQ Hya-like magnetic field. Open and filled circles represent

the same set of stars in Fig. 8.

higher mass stars to have smaller filling factors, that is there is a

slight trend for stars with larger corotation radii to have a smaller

filling factors despite their larger mass accretion rates. For stars

with smaller corotation radii (lower mass) there are many field lines

threading the disc and able to support accretion, and therefore a large

fraction of the stellar surface is covered in accreting field lines foot

points, whereas for stars with larger corotation radii (higher mass)

there are less accreting field lines and therefore smaller filling fac-

tors. However, the higher mass stars are accreting at a larger velocity

therefore producing larger mass accretion rates. The actual accre-

tion filling factor depends on the magnetic field structure. For the

AB Dor-like magnetic field the accretion filling factors are smaller

at around 1.8 per cent.

5 S U M M A RY

By considering accretion to both dipolar and complex magnetic

fields we have constructed a steady state isothermal accretion model

where material leaves the disc at low subsonic speeds, but arrives

at the star at large supersonic speeds. We find in-fall velocities of a

few hundred km s−1 are possible which is consistent with measure-

ments of the redshifted absorption components of inverse P-Cygni

profiles (e.g. Edwards et al. 1994). We found that for accretion along

aligned and perpendicular closed dipole field lines that there was lit-

tle difference in in-fall speeds between the two cases. However, for

tilted dipole fields in general (rather than just considering a single

closed field line loop) there are many open and closed field lines

threading the disc providing different paths that material could flow

along from the disc to the star. The path that a particular field line

takes through the star’s gravitational potential combined with the

strength of magnetic field and how that changes along the field line

path are all important in determining whether or not a field line

can support transonic accretion. At low accretion flow temperatures

open field lines are typically not able to support transonic accretion,

but at higher accretion flow temperatures they can accrete transon-

ically and consequently we see an increase in the mass accretion

rate. We only find a factor of 2–3 difference in Ṁ values for accre-

tion to tilted dipolar magnetic fields suggesting that the geometry of

the field itself is not as significant as the stellar parameters (which

control the position of corotation) in controlling the mass accretion

rate.

The magnetic field geometry is crucial in controlling the location

and distribution of hotspots on the stellar surface. For accretion to

complex magnetic fields we find that hotspots can span a range of

latitudes and longitudes, and are often at low latitudes towards the

star’s equator. We find that the accretion filling factors (the fractional

surface area of a star covered in hotspots) are small and typically

around 2.5 per cent, but they can vary from less than 1 per cent to

over 4 per cent and rarely to larger values. This is consistent with

observations which suggest small accretion filling factors and the

inference of hotspots at various latitudes (Valenti & Johns-Krull

2004).

For accretion with complex magnetic fields there is a distribution

of in-fall speeds, which arises from variations in the size and shape

of accreting field lines. The resulting effect that this will have on line

profiles will be addressed in future work. In our model most of the

accretion occurs from the corotation radius, but at some azimuths the

disc extends closer to the star meaning that a small fraction of field

lines are accreting material at lower velocity. Lower mass stars, with

their lower surface gravities, typically have larger coronae which

would extend out to corotation (Jardine et al. 2006). Therefore, the

lower mass stars are accreting along a mixture of open and closed

field lines from the corotation radius. In contrast higher mass stars,

with their higher surface gravities, have small compact coronae, and

so the star is actively accreting along mainly open field lines from

the corotation radius. However, such open field lines do not thread

the disc at all azimuths, with some accretion instead occurring along

field lines which are much closer to the stellar surface. This gives

rise to a small peak at low velocity in the in-fall velocity distribution.

However, this represents only a small fraction of all accreting field

lines which do not contribute significantly to the resulting mass

accretion rate.

Finally, we applied our accretion model to stars from the COUP

data set which have estimates of the stellar parameters and mea-

surements of the equivalent width of the Ca II 8542 Å line, which is

seen in emission for accreting stars. For the complex magnetic fields

we calculated mass accretion rates and accretion filling factors as

a function of stellar mass. The observed stellar mass–accretion rate

correlation is Ṁ ∝ M2
∗ (Muzerolle et al. 2003; Calvet et al. 2004;

Mohanty et al. 2005; Muzerolle et al. 2005), however, this may be

strongly influenced by detection/selection effects (Clarke & Pringle

2006). By only considering observational data across the range in

mass provided by the COUP sample of accreting stars, the observed

correlation becomes Ṁ ∝ M1.4
∗ . Our steady state isothermal model

gives an exponent of 1.1 for the LQ Hya-like magnetic field and 1.2

for the AB Dor-like field with similar results for both the high and

low coronal temperatures, with the caveat that the observed corre-

lation may be less than 1.4 due to a strong bias against the detection

of higher mass stars with lower mass accretion rates (Calvet et al.

2004). It may be the case that an exponent of 1.2 compared to the

observed 1.4, represents the best value that can be achieved with a

steady state isothermal accretion model. Jardine et al. (2006) have

used this model to reproduce the observed increase in X-ray emis-

sion measure with stellar mass (Preibisch et al. 2005). However, they

find that when using the complex magnetic fields presented here (ex-

trapolated from surface magnetograms of the young main-sequence

stars AB Dor and LQ Hya) they slightly underestimate the emis-

sion measure–mass correlation. When they use dipolar magnetic

fields, which represent the most extended stellar field, they slightly

overestimated the correlation. This suggests that T Tauri stars have
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magnetic fields which are more extended than those of young main

sequence stars, but are more compact than purely dipolar fields.

Also, our model has not been tested across a large enough range

in mass to make the comparison with the observed correlation of

Ṁ ∝ M2
∗ . However, it already compares well with the alternative

suggestion of Clarke & Pringle (2006) that the Ṁ–M∗ correlation

is not as steep with Ṁ ∝ M1.35
∗ . In future we will extend our model

to consider accretion from the lowest mass brown dwarfs, up to

intermediate-mass T Tauri stars. This will require estimates of, in

particular, rotation periods and coronal temperatures.

Our accretion model reproduces a similar amount of scatter in

calculated Ṁ values compared with observations. This can be at-

tributed to different sets stellar parameters changing the structure

of the accreting field. The stellar parameters control the location

of the corotation radius, whilst it is the position of corotation rel-

ative to the natural coronal extent, which determines whether or

not accretion occurs predominantly along the open field. However,

for the moment we are restricted to using surface magnetograms

of young main-sequence stars which may not necessarily represent

the true fields of T Tauri stars. It could be possible that variations

in magnetic field geometry from star to star are responsible for the

observed large scatter in the mass accretion rate at any particular

stellar mass. If there is a large difference in the structure of the ac-

creting field from star to star this could lead to large variations in

mass accretion rates on to different stars. The spectropolarimeter at

the Canada–France–Hawaii Telescope, ESPaDOnS: Echelle Spec-

troPolarimetric Device for the Observation of Stars (Petit et al. 2003;

Donati 2004), will in the near future allow the reconstruction of the

magnetic field topology of CTTSs from Zeeman–Doppler imaging.

This will allow a number of open questions to be addressed about the

nature of the magnetic fields of T Tauri stars and allow us to test if

our accretion model can indeed reproduce the stellar mass–accretion

rate correlation.
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A P P E N D I X A : A L G O R I T H M F O R F I N D I N G A

S O N I C P O I N T A N D T H E I N I T I A L M AC H

N U M B E R R E QU I R E D F O R A S M O OT H

T R A N S O N I C S O L U T I O N

In order to determine the initial Mach number which results in a

transonic accretion flow, we need to understand exactly what the

different solutions in Fig. 3(b) represent. These curves are obtained

from the pressure solutions plotted in Fig. 3(a) using equation (20).

These pressure profiles track how the roots of (19) change as the

flow moves along a field line. The pressure function (19) can be

written in the form

f

(
p

pd

)
= ln

(
p

pd

)
+ a

(
pd

p

)2

+ b = 0, (A1)

where a and b are constants at any fixed point along a field line with

a = 1

2
M2

(
B

Bd

)2

, (A2)

b = −1

2
M2 − 1

c2
s

∫
geff · ŝ ds. (A3)

For a Mach number prescribed to a flow leaving the disc, the

pressure function has two roots, which consequently yield two ve-

locities. One of the roots represents the true physical solution, and

the other is a mathematical solution of no physical significance.

The branches in Fig. 3(b) occur in pairs, with an individual branch

tracking how one of the pressure roots changes as the flow travels

along the field line. For example, suppose we had chosen an ini-

tial (subsonic) Mach number which resulted in a purely subsonic

flow from the disc to the star (curve A in Fig. 3b). Then one of the

roots, the one which gives a subsonic solution everywhere along

the flow, is the true physical one. The second root of (A1) produces

a supersonic solution (curve B), which is of mathematical interest,

but has no physical meaning. Conversely, had we chosen the initial

Mach number which corresponded to the same supersonic branch,

then this purely supersonic branch is the one with physical meaning,

with the other root then generating the purely subsonic branch, the

mathematical artefact. Thus the purely subsonic and supersonic so-

lutions exist provided our pressure function (A1) has two real roots

when evaluated at each point along a field line.

At small values of p/pd the second (p/pd)−2 term in (A1) dom-

inates with f (p/pd) → ∞ as p/pd → 0. At larger values of p/pd

the logarithmic term dominates. Thus (A1) has a minimum which

occurs when

p

pd

= M B

Bd

. (A4)

For this value of p/pd the pressure function reduces to

fc(r ) = ln

(
M B

Bd

)
+ 1

2
− 1

2
M2 − 1

c2
s

∫
geff · ŝ ds, (A5)

which we will refer to as the critical function, fc. In order for two real

roots to exist at some point r along a field line then f c(r) < 0 must

hold. Thus for purely subsonic/supersonic solutions to exist then

f c < 0 at each point along a field line, with fc reaching its highest

value at the critical radius (where the two roots of the pressure func-

tion, and therefore the velocity roots, are closest together). Another

pair of solutions are the discontinuous ones labelled C and D in

Fig. 3(b). For these solutions f c < 0 for r1 < r � Rd and R∗ � r
< r2. However, for the domain r2 < r < r1, f c > 0, and therefore

the pressure function has no real roots, and we cannot satisfy (19);

hence there are no velocity solutions for these values of r. For r
= r1 and r = r2, f c = 0, and at these points the pressure function

has a single repeated root that coincides with the pressure function

minimum.

The final pair of solutions are the transonic ones labelled E and

F in Fig. 3(b). Here f c < 0 for all r, except at the sonic point where

r = rc and f c = 0. Hence, for a transonic solution the maximum

value of the critical function fc is zero at the critical radius rc, but

less than zero at all other points along the field line. This then gives

us a robust method for finding both the critical radius and the initial

Mach number required for a smooth transonic solution (provided

such a solution exists).

At the critical radius the minimum of our pressure function is at

its highest value; that is fc has a maximum turning point. Hence to

determine if a transonic solution exists we select any initial Mach

number M and calculate how fc varies as we move along a field

line from the disc to the star. If a sonic point exists on that field line,

fc will have a distinct maximum at some point. The advantage of

this method is that it is possible to recover the initial Mach number

that would result in a smooth transonic flow, simply by varying

M until f c = 0 at rc; that is we change M until the maximum

value of fc occurs at zero. This algorithm is an efficient method

for quickly determining both the critical radius and the initial Mach

number which results in a transonic accretion flow. Of course, not all

field lines have a sonic point (see Section 3.3) as the critical radius

may either be interior to the star or exterior to the starting radius.

This algorithm may be applied to accretion flows along field lines

of any size, shape and inclination, even in the absence of analytic

descriptions of the magnetic field and effective gravity.

The location of the critical radius (or the sonic point for a tran-

sonic solution) determines the velocity with which material impacts

the stellar photosphere. We have found the critical radius from the

maximum value of fc for both the perpendicular and aligned dipoles

for a CTTS with a mass of 0.5 M�, radius 2 R� and a rotation

period of 7 d. For our two dipole cases the B/Bd and geff · ŝ terms

that contribute to (A5) have analytic forms given, respectively, by

(11) and either (21) for the perpendicular dipole, or (25) for the

aligned dipole; in both cases ŝ = B/B. The location of rc therefore

changes as we vary both the starting radius Rd and also the temper-

ature (which enters through the sound speed). It should be noted,

however, that for certain choices of parameters sometimes fc has no

distinct maximum turning point, indicating that either the critical

radius is interior to the star (rc � R∗), or beyond the starting radius

(rc >Rd). In these cases flows that leave the disc at a subsonic speed

remain subsonic all the way to the star, and likewise supersonic

flows remain supersonic at all points along a field line.

Fig. A1 shows how the critical radius varies for a range of tem-

peratures and starting radii for both the perpendicular and aligned

dipoles. In both cases, the critical radius moves towards the in-

ner edge of the disc with decreasing temperature. In other words

as the accretion flow temperature decreases the sonic point moves

along the field line away from the star, closer to where the flow

leaves the disc. It is straightforward to explain why this should hap-

pen by considering a transonic flow which would leave the disc at

a subsonic speed. As the temperature drops the sound speed de-

creases (cs ∝ √
T ); therefore, a flow leaving the disc does not

have to accelerate for as long to reach its own sound speed and be-

comes supersonic sooner. Thus rc moves closer to Rd with decreasing
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Figure A1. The location of the critical radius rc as a function of accretion

flow temperature Tacc for starting radii Rd about the corotation radius (upper

line, Rd = 7.0R∗, middle line Rd = 6.0R∗ ≈ Rco and lower line Rd = 5.0R∗).

At lower temperatures rc is closer to the inner edge of the disc, and the

difference between the aligned and perpendicular dipoles is larger. Variation

of the starting radius has little effect for the perpendicular dipole, and is of

minor significance for the aligned dipole.

temperature; and for a high enough temperature the critical radius

is interior to the star, and conversely for a low enough temperature

the critical radius is beyond the starting radius. However, at least for

this particular set of stellar parameters, the actual change in critical

radius location with temperature is small.

We also found that as the critical radius moved towards the inner

edge of the disc, the Mach number with which the flow arrived at

the star increased. This would be expected however as the critical

radius moves away from the star due to the sound speed decrease,

which would naturally increase the flow Mach number at the star

(for transonic and purely supersonic flows).

It can be seen from Fig. A1 that for the perpendicular dipole vary-

ing the starting radius of the flow, Rd, has little effect on the location

of the critical radius. Therefore changing the size of equatorial field

lines has a negligible effect on the velocity with which accretion

flows (along the field) reach the star. For the aligned dipole chang-

ing where the field lines thread the disc does have an effect on the

critical radius location and therefore on the final velocity with which

material impacts the star. However, due to the overall small change

in the critical radius location evident in Fig. A1 the in-fall velocity

only varies by around 6 km s−1. It therefore appears that the physical

size of field lines, in a dipole accretion model, is of little importance

for poloidal field lines (aligned north–south in the star’s meridional

plane), and is negligible for equatorial field lines (aligned east–west

in the star’s equatorial plane).

The effect of the field orientation is also of little importance for

closed dipolar field lines. If we have a closed field line in the equa-

torial plane, with a maximum radial extent Rd, then changing the

inclination of that field line so that it now lies in the meridional

plane, has an effect on the critical radius location (see Fig. A1). The

only major difference between the two cases enters through the ef-

fective gravity, which only has a radial component in the equatorial

plane, but both r and θ components in the meridional plane. How-

ever, the difference in in-fall velocities is again very small, at only

a few km s−1. This suggests that for accretion along closed dipolar

field lines, where material is leaving the disc at a fixed radius, the

field geometry has little effect on in-fall velocities; however, as dis-

cussed in Section 4.2, this result does not hold when we consider

more complicated multipolar fields.
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