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Introduction

About 100 years ago, Lorentz [START_REF] Lorentz | Le mouvement des électrons dans les métaux[END_REF] proposed the following linear kinetic equation to describe the motion of electrons in a metal:

(1.1) (∂ t + v • ∇ x + 1 m F (t, x) • ∇ v )f (t, x, v) = N at r 2 at |v|C(f (t, x, •))(v)
where f (t, x, v) is the (phase space) density of electrons which, at time t, are located at x and have velocity v. In Eq. (1.1), F is the electric force field, m the mass of the electron, while N at and r at designate respectively the number of metallic atoms per unit volume and the radius of each such atom. Finally C(f ) is the collision integral: it acts on the velocity variable only, and is given, for all continuous φ ≡ φ(v) by the formula In the case where F ≡ 0, Gallavotti [START_REF] Gallavotti | Divergences and approach to equilibrium in the Lorentz and the Wind-tree models[END_REF][START_REF] Gallavotti | Nota int. no. 358[END_REF] proved that Eq. (1.1) describes the Boltzmann-Grad limit of a gas of point particles undergoing elastic collisions on a random (Poisson) configuration of spherical obstacles. His result was successively strengthened by Spohn [START_REF] Spohn | The Lorentz process converges to a random flight process[END_REF], and by Boldrighini-Bunimovich-Sinai [START_REF] Boldrighini | On the Boltzmann equation for the Lorentz gas[END_REF].

(1.2) C(φ)(v) = |ω|=1,v•ω>0 φ(v -2(v • ω)ω) -φ(v) cos(v, ω)dω .
In the presence of an external, non-zero electric force F and for the same random configuration of absorbing obstacles as in [START_REF] Gallavotti | Divergences and approach to equilibrium in the Lorentz and the Wind-tree models[END_REF][START_REF] Gallavotti | Nota int. no. 358[END_REF], Desvillettes-Ricci [START_REF] Desvillettes | Nonmarkovianity of the Boltzmann-Grad limit of a system of random obstacles in a given force field[END_REF] proved recently that the Boltzmann-Grad limit of a gas of point particles leads to a non-Markovian equation -see also an earlier, similar observation by Bobylev-Hansen-Piasecki-Hauge [START_REF] Bobylev | From the Liouville equation to the generalized Boltzmann equation for magnetotransport in the 2D Lorentz model[END_REF].

The case of periodic configuration of obstacles, perhaps closer to Lorentz's original ideas, completely differs from the random case. In the case of absorbing obstacles, and without external force F , several results suggest that the Boltzmann-Grad limit is non-Markovian [START_REF] Bourgain | On the distribution of free path lengths for the periodic Lorentz gas[END_REF][START_REF] Golse | On the distribution of free path lengths for the periodic Lorentz gas II. M2AN Modél[END_REF][START_REF] Caglioti | On the distribution of free path lengths for the periodic Lorentz gas III[END_REF]. However, all these results are based on explicit computations that are possible only in the case of absorbing obstacles.

In the present note, we show that neither equation (1.1) nor any variant thereof can describe the Boltzmann-Grad limit of the periodic Lorentz gas with no external force (F ≡ 0) and in the case of reflecting obstacles.

The crucial observation (already made in [START_REF] Bourgain | On the distribution of free path lengths for the periodic Lorentz gas[END_REF][START_REF] Golse | On the distribution of free path lengths for the periodic Lorentz gas II. M2AN Modél[END_REF]) is that the distribution of first hitting times satisfies, in the periodic case, an inequality stated below as Theorem 2.1 that prevents these first hitting times from begin exponentially distributed. The probabilistic representation of equation (1.1) by a jump process with exponentially distributed jump times plus a drift (see for instance [START_REF] Papanicolaou | Asymptotic analysis of transport processes[END_REF]) suggests that the Boltzmann-Grad limit of the periodic Lorentz gas with reflecting obstacles cannot be described by (1.1).

In the present paper, we give a complete proof of this fact (see Theorem 4.1 below), which by the way does not appeal to the probabilistic representation of (1.1). In addition, the method of proof used here provides an explicit estimate of the difference between the single particle phase space density for the periodic Lorentz gas in the Boltzmann-Grad limit and the solution of the Lorentz kinetic equation (1.1) -see the inequality (4.18) and the discussion thereafter. This result has been announced in [START_REF] Golse | On the statistics of free-path lengths for the periodic Lorentz gas[END_REF] Recently, Ricci and Wennberg [START_REF] Ricci | On the derivation of a linear Boltzmann equation from a periodic lattice gas[END_REF] have considered the following interesting variant of the periodic Lorentz gas studied here. Their microscopic model consists of gas of point particles in a periodic configuration of obstacles that are bigger than in the Boltzmann-Grad scaling considered in the present paper. However, some of these obstacles are removed with a probability carefully chosen in terms of the obstacle radius so that the mean collision time remains of order one. They proved that the expected single-particle phase-space density so obtained converges to a solution of the Lorentz kinetic equation (1.1). This result suggests that the failure of (1.1) to capture the Boltzmann-Grad limit of the periodic Lorentz gas is a very unstable phenomenon that is specific to the periodic setting and likely to disappear whenever some amount of randomness is injected in the microscopic system.

The periodic Lorentz gas

Let D ∈ N, D ≥ 2. For each r ∈ (0, 1 2 ), we consider the domain

Z r = {x ∈ R D | dist(x, Z D ) > r} ,
which is usually referred to as "the billiard table".

The Lorentz gas is the dynamical system corresponding to a cloud of point particles that move freely in Z r -collisions between particles being neglected -and are specularly reflected at the boundary of each obstacle -the obstacles being the balls of radius r centered at the lattice points, i.e. the connected components of Z c r . Since collisions between particles are neglected, one can equivalently consider a single particle whose initial position and velocity are appropriately distributed in Y r × S D-1 . In this dynamical system, a particularly important notion is that of "free path length": see the review article by Bunimovich [START_REF] Bunimovich | Billiards and other hyperbolic systems[END_REF], pp.

221-222.

The free path length -or "(forward) exit time" -for a particle starting from x ∈ Z r in the direction v ∈ S D-1 is defined as

(2.1) τ r (x, v) = inf{t > 0 | x + tv ∈ ∂Z r } .
The function τ r is then extended by continuity to the non-characteristic part of the boundary of the phase-space, i.e. to

{(x, v) ∈ ∂Z r × S D-1 | v • n x = 0} ,
where n x designates the inward unit normal field on ∂Z r (pointing toward Z r , i.e. outside of the scatterers). Because Z r is invariant under Z D -translations, one has

τ r (x + k, v) = τ r (x, v) for each (x, v) ∈ Z r × S D-1 and k ∈ Z D .
Hence τ r can be seen as a [0, +∞]-valued function defined on Y r × S D-1 (and a.e. on Y r × S D-1 ), where Y r = Z r /Z D .
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Figure 1. The billiard table Z r and the punctured torus Y r

Whenever the components of v ∈ S D-1 are rationally independent

-i.e. if k • v = 0 for each k ∈ Z D \ {0} -each orbit of the linear flow x → x + tv is dense on T D = R D /Z D , and thus τ r (x, v) < +∞ for each x ∈ Z r .
On the measurable space Y r ×S D-1 equipped with its Borel σ-algebra, we define µ r as the probability measure proportional to the Lebesgue measure on Y r × S D-1 : in other words

1 dµ r (y, v) = dydv |Y r ||S D-1 | .
Define the distribution of τ r under µ r by the usual formula

Φ r (t) := µ r {(y, v) ∈ Y r × S D-1 | τ r (y, v) ≥ t ) . Theorem 2.1. Let D ≥ 2.
There exist two positive constants C 1 and C 2 such that, for each r ∈ (0, 1 2 )

and each t > 1/r D-1 C 1 tr D-1 ≤ Φ r (t) ≤ C 2 tr D-1 .
In the theorem above, the lower bound in the case D = 2 and the upper bound for all D ≥ 2 were proved by Bourgain-Golse-Wennberg [START_REF] Bourgain | On the distribution of free path lengths for the periodic Lorentz gas[END_REF]; the lower bound was extended to the case of any D ≥ 2 by Golse-Wennberg [START_REF] Golse | On the distribution of free path lengths for the periodic Lorentz gas II. M2AN Modél[END_REF]. More precise results concerning Φ r (t/r) in space dimension D = 2 have recently been obtained by Caglioti-Golse [START_REF] Caglioti | On the distribution of free path lengths for the periodic Lorentz gas III[END_REF] and Boca-Zaharescu [START_REF] Boca | The distribution of the free path lengths in the periodic two-dimensional Lorentz gas in the small-scatterer limit[END_REF]; however, only the result above (Theorem 2.1) is used in the present paper.

The linear Boltzmann equation

The linear Boltzmann equation for a free2 gas of particles moving at speed 1 is

(3.1) (∂ t + v • ∇ x )f (t, x, v) = C(f (t, x, •))(v)
where f ≡ f (t, x, v) is the single particle phase-space density, also known as "distribution function". In other words, f (t, x, v) is the density of particles which, at time t, are located at x ∈ R D and move in the direction v ∈ S D-1 . The term C(f ) is the collision integral; specifically, C is an integral operator of the form

(3.2) C(φ)(v) = σ S D-1 k(v, w)(φ(w) -φ(v))dw
where σ > 0 and k ∈ C(S D-1 × S D-1 ) satisfies the following properties

(3.3) k(v, w) = k(w, v) > 0 , S D-1 k(v, w)dv = 1 , for all v, w ∈ S D-1 .

Changing variables according to

ω → w = v -2(v • ω)ω in the Lorentz collision integral for D = 3 shows that 1 π ω∈S 2 ,v•ω>0 φ(v -2(v • ω)ω) -φ(v) cos(v, ω)dω = S 2 k(v, w)(φ(w) -φ(v))dw with k(v, w) ≡ 1 4π .
Hence, the Lorentz kinetic model (1.1)-(1.2) is a special case of the linear Boltzmann equation (3.1)-(3.2).

In the sequel, we shall restrict our attention to the case where the linear Boltzmann equation is posed in a periodic box. Without loss of generality, we assume that this periodic box has size 1, and that S D-1 is endowed with its rotationally invariant unit measure, henceforth denoted by dv. Finally we denote by • the average with respect to both variables x and v:

(3.4) φ = T D ×S D-1 φ(x, v)dxdv .
Consider then the unbounded operator A on L 2 (T D × S D-1 ) defined by

(Aφ)(x, v) = -v • ∇ x φ(x, v) -σφ(x, v) + σ S D-1 k(v, w)φ(x, w)dw with domain D(A) = {φ ∈ L 2 (T D × S D-1 ) | v • ∇ x φ ∈ L 2 (T D × S D-1 )} .
We recall the following result, originally proved in [START_REF] Ukai | Sur la solution globale du problème mixte de l'équation de Boltzmann nonlinéaire[END_REF] for the more complicated case of the linearization of Boltzmann's equation at a uniform Maxwellian state. Theorem 3.1. Let σ > 0 and k ∈ C(S D-1 × S D-1 ) satisfy the assumptions (3.3). Then the operator A generates a strongly continuous contraction semigroup on L 2 (R D ×S D-1 ), and there exists positive constants c and γ such that

e tA φ -φ L 2 (T D ×S D-1 ) ≤ ce -γt φ L 2 (T D ×S D-1 ) , t ≥ 0 , for each φ ∈ L 2 (T D × S D-1 ).

The non-convergence result

Throughout this section, we denote by ǫ the sequence (1/n) n∈N * . For some given r * ∈ (0, 1 2 ), we set r = r * ǫ 1/(D-1) , and we denote by Ω ǫ the open subset ǫZ r with this particular choice of r. 

S ǫ t : Ω ǫ × S D-1 ∋ (x, v) → (X ǫ t (x, v), V ǫ t (x, v)) ∈ Ω ǫ × S D-1
and defined in the following manner:

• S ǫ 0 (x, v) = (x, v), x* n x* X (x,v) t (x,v) t V v x Figure 2. The billiard dynamics on Ω ǫ • if t is such that X ǫ t (x, v) / ∈ ∂Ω ǫ , then S ǫ t (x, v)
is smooth in the time variable near that particular value of t and one has

(4.2) d dt X ǫ t (x, v) = V ǫ t (x, v) , d dt V ǫ t (x, v) = 0 ; • if t is such that X ǫ t (x, v) = x * ∈ ∂Ω ǫ , then S ǫ t (x, v
) has the following jump discontinuity (in the velocity component only)

(4.3) X ǫ t+0 (x, v) = X ǫ t-0 (x, v) , V ǫ t+0 (x, v) = R(n x * )V ǫ t-0 (x, v)
, where R(n x * ) is the symmetry with respect to the hyperplane orthogonal to the inner unit normal n x * at x * ∈ ∂Ω ǫ : in other words

(4.4) R(n x * )ξ = ξ -2(ξ • n x * )n x * , ξ ∈ R D .
Notice that this dynamics is mechanically reversible, i.e. for all t ∈ R, one has

S ǫ -t (x, v) = S ǫ t (x, -v) , (x, v) ∈ Ω ǫ × S D-1 .
For each t ∈ R, the map S ǫ t is invariant under Z D -translations, in the following sense: for all k ∈ Z D and (x, v) ∈ Ω ǫ × S D-1 , one has

S ǫ t (x + k, v) = (X ǫ t (x, v) + k, V ǫ t (x, v)) = S ǫ t (x, v) + (k, 0) . F. GOLSE
Hence S ǫ t defines a one-parameter group -still denoted by S ǫ t -on the quotient space Υ ǫ × S D-1 , where Υ ǫ = Ω ǫ /Z D , and the restriction of the measure dxdv (defined on T D × S D-1 ) to Υ ǫ × S D-1 is invariant under S ǫ t . Starting from the billiard flow S ǫ t on Υ ǫ × S D-1 , we define a unitary group Ŝǫ t on L 2 (Υ ǫ × S D-1 , dxdv) by the formula

(4.5) Ŝǫ t f (x, v) = f (S ǫ -t (x, v)) , (x, v) ∈ Υ ǫ × S D-1 , t ∈ R .
Next we turn to the case of the same billiard table, but with absorbing obstacles. By this, we mean that whenever a particle hits the boundary of Ω ǫ , it disappears. Equivalently, one may think of Ω ǫ as a sieve, with particles falling into the holes (the components of Ω c ǫ ). The analogue of Ŝǫ t in the case of absorbing obstacles is the contraction semigroup T ǫ t defined on L 2 (Υ ǫ × S D-1 , dxdv) by the formula

(4.6) T ǫ t g(x, v) = g(x -tv, v)1 τr(x/ǫ,-v)>t/ǫ , (x, v) ∈ Υ ǫ × S D-1 , t ∈ R ,
where τ r is the free path length defined in (2.1) -recall that r * ǫ 1/(D-1) . Finally, L 2 (Υ ǫ × S D-1 , dxdv) can be embedded as a subspace of L 2 (T D × S D-1 , dxdv), identifying each function defined a.e. on Υ ǫ × S D-1 with its extension by 0 in the complement of Υ ǫ × S D-1 .

The maps Ŝǫ t and T ǫ t are related by the following elementary inequality: for each f ∈ L 2 (Υ ǫ × S D-1 , dxdv) and each t ≥ 0, (4.7)

f ≥ 0 a.e. implies that Ŝǫ t f (x, v) ≥ T ǫ t f (x, v) a.e.

on Υ ǫ × S D-1 . Indeed, the formulas (4.6), (4.5), and (4.2) imply that

T ǫ t f (x, v) = f (x -tv, v)1 τr(x/ǫ,-v)>t/ǫ = f (S ǫ -t (x, v))1 τr(x/ǫ,-v)>t/ǫ ≤ f (S ǫ -t (x, v)) = Ŝǫ t f (x, v) .
Finally, we give the PDE interpretation of the operators Ŝǫ t and

T ǫ t . The function F ǫ (t, x, v) = Ŝǫ t f (x, v) is the solution of ∂ t F ǫ + v • ∇ x F ǫ = 0 , (x, v) ∈ Υ ǫ × S D-1 , F ǫ (t, x, v) = F ǫ (t, x, R(n x )v) , (x, v) ∈ ∂Υ ǫ × S D-1 , F ǫ t=0 = f ,
(where R(n x ) designates the reflection with respect to the hyperplane orthogonal to n x : see fla. (4.4)), while the function

G ǫ (t, x, v) = T ǫ t g(x, v) is the solution of ∂ t G ǫ + v • ∇ x G ǫ = 0 , (x, v) ∈ Υ ǫ × S D-1 , G ǫ (t, x, v) = 0 , x ∈ ∂Υ ǫ , v • n x > 0 , G ǫ t=0 = g . 4.
2. Main result. The paper by Lorentz [START_REF] Lorentz | Le mouvement des électrons dans les métaux[END_REF] described in the introduction suggests the following question, in the case of space dimension

D = 3: "Let f in ∈ L 2 (T 3 × S 2 ). Does Ŝǫ t (f in 1 Υǫ×S 2 ) (or any subsequence thereof) converge in L ∞ ((0, +∞) × T 3 × S 2
) weak-* as ǫ → 0 to the solution f of (1.1) on T 3 × S 2 with N at = 1, r at = r * , and with initial data f in ?"

The answer to that question is negative, as shown by the following theorem.

Theorem 4.1. Assume that the space dimension satisfies D ≥ 2. There exist initial data f in ∈ L 2 (T D × S D-1 ) such that, for any σ > 0 and any function k

∈ C(S D-1 × S D-1 ) satisfying (3.3), no subsequence of Ŝǫ t (f in 1 Υǫ×S D-1 ) converges in L ∞ ((0, +∞) × T D × S D-1 ) weak-* to the solution of (4.8) (∂ t +v•∇ x )f (t, x, v) = σ S D-1 k(v, w) (f (t, x, w) -f (t, x, v)) dw on T D × S D-1 , with initial data (4.9) f t=0 = f in . 4.3. Proof of Theorem 4.1. We define Φ ǫ (t, x, v) = 1 ǫτr(x/ǫ,-v)>t . Since 0 ≤ Φ ǫ ≤ 1, the sequence Φ ǫ is relatively weakly-* compact in L ∞ (R + × T D × S D-1
). From now on, we consider a subsequence of

ǫ = 1/n, denoted ǫ ′ , so that Φ ǫ ′ → Φ in L ∞ (R + × T D × S D-1
) weak-*, and denote r ′ = r * ǫ ′ 1/D-1 . Then, the function Φ is independent of x, i.e. Lemma 4.2. Let Z be a separable locally compact metric space, endowed with a Borel measure m. Let u n (x, z) ≡ U n (nx, z), where (U n ) n≥1 is a bounded sequence of elements of L ∞ (T D × Z). Any weak-* limit point of the sequence (u n ) n≥1 as n → +∞ is a function of z alone (i.e. independent of x).

We postpone the proof of Lemma 4.2 until the end of this section.

In the sequel, we consider an arbitrary initial data ρ ≡ ρ(x) ∈ L ∞ (T D ) that is independent of v and a.e. nonnegative. We define

(4.11) f ǫ (t, x, v) = Ŝǫ t (ρ1 Υǫ×S D-1 ) = ρ(X ǫ -t (x, v))1 Υǫ (x) and (4.12) g ǫ (t, x, v) = T ǫ t (ρ1 Υǫ×S D-1 ) = ρ(x -tv)Φ ǫ (t, x, v)1 Υǫ (x) . Since 1 Υǫ → 1 a.e. on T D ×S D-1 and |1 Υǫ | ≤ 1, one has, by dominated convergence, (4.13) g ǫ ′ → ρ(x -tv)Φ(t, v) in L ∞ (R + × T D × S D-1 ) weak-* .
On the other hand, (4.11) shows that f ǫ L ∞ ≤ ρ L ∞ ; therefore, possibly after extraction of a subsequence (still denoted ǫ ′ ), one has

f ǫ ′ → f in L ∞ (R + × T D × S D-1
) weak-*. We recall that ρ ≥ 0 a.e. on T D . Therefore, because of the inequality (4.7) and of the weak-* limit (4.13), one has

(4.14) f (t, x, v) ≥ ρ(x -tv)Φ(t, v) .
In particular, (

T D ×S D-1 f (t, x, v) 2 dxdv ≥ T D ×S D-1 ρ(x -tv) 2 Φ(t, v) 2 dxdv = T D ρ(y) 2 dy S D-1 Φ(t, v) 2 dv ≥ ρ 2 L 2 S D-1 Φ(t, v)dv 2 , 4.15) 
where the last inequality follows from Jensen's inequality. By assumption, Φ ǫ ′ → Φ in L ∞ (R + × T D × S D-1 ) weak-*; because of (4.10), one has

T D ×S D-1 Φ ǫ ′ (t, x, v)dxdv → S D-1 Φ(t, v)dv in L ∞ (R + ) weak-*.
Furthermore, by Theorem 2.1,

T D ×S D-1 Φ ǫ ′ (t, x, v)dxdv = meas({(x, v) ∈ Υ ǫ ′ × S D-1 | τ r ′ (x/ǫ ′ , -v) > t/ǫ ′ }) = meas({(y, v) ∈ Y r ′ × S D-1 | τ r ′ (y, -v) > t/ǫ ′ }) ≥ C 1 t ǫ ′ r ′ D-1 = C 1 tr D-1 *
, for all t > 1/r D-1 * . Hence, the inequality (4.15) becomes (4.16)

T D ×S D-1 f (t, x, v) 2 dxdv 1/2 ≥ C 1 tr D-1 * ρ L 2 , for all t > 1/r D-1 * .
Assume that f is the solution to (4.8)-(4.9) with f in = ρ. By Theorem 3.1, one has

f (t, •, •) - T D ρ(x)dx L 2 (T D ×S D-1 ) ≤ ce -γt ρ L 2
for all t ≥ 0. In particular, for all t ≥ 0, one has (4.17)

T D ×S D-1 f (t, x, v) 2 dxdv 1/2 ≤ T D ρ(x)dx + ce -γt ρ L 2 .
In conclusion, if f is the solution to (4.8)-(4.9), then the initial data ρ (assuming it is not a.e. 0) must satisfy the inequality (4.18)

C 1 tr D-1 * ≤ ρ L 1 ρ L 2 + ce -γt , for all t > 1/r D-1 * .
At this point, we recall that this inequality holds for any arbitrary ρ ∈ L ∞ (T D ) such that ρ ≥ 0 a.e.: hence the ratio ρ L 1 / ρ L 2 can be made arbitrarily small. For instance, one can choose ρ as follows: pick b, a bump function on

R D satisfying 0 ≤ b ≤ 1 , supp(b) ⊂ [-1 4 , 1 4 ] D .
For m ∈ N * , define ρ to be the unique Z D -periodic function such that

ρ [-1 2 , 1 2 
) D : x → b(mx) . Then ρ L 1 (T D ) = m -D b L 1 (R D ) , ρ L 2 (T D ) = m -D/2 b L 2 (R D ) , so that ρ L 1 (T D ) ρ L 2 (T D ) = m -D/2 → 0 as m → +∞ .
Since the ratio ρ L 1 / ρ L 2 can be made arbitrarily small, the inequality (4.18) would entail

C 1 tr D-1 * ≤ ce -γt , for all t > 1/r D-1 *
, which is manifestly wrong for t large enough -specifically, larger than the unique zero of the function t → C 1 e γt -cr D-1

Hence, the assumption that, for each nonnegative ρ ≡ ρ(x) ∈ L ∞ (T D ), there exists a subsequence of Ŝǫ t (ρ1 Υǫ×S D-1 ) converging in L ∞ weak-* to the solution of (4.8)-(4.9) with f in = ρ is wrong. This concludes the proof of Theorem 4.1, once Lemma 4.2 is proved. 4.4. Proof of Lemma 4.2. Assume that

u nq → u in L ∞ (T D × Z) weak-* as n q → +∞ . For each k ∈ Z D , one has ûnq (k, z) = T D e -i2πk•x u n k (x, z)dx = Ûnq (k, z) if n q |k , = 0 otherwise.
Since the assumed convergence entails

ûnq (k, •) → û(k, •) in L ∞ (Z) weak-* for each k ∈ Z D , this shows that û(k, •) = 0 unless k = 0 .
Hence u is independent of x, as announced.

Final remarks

We have demonstrated the impossibility of representing the Boltzmann-Grad limit of the periodic Lorentz gas by a linear Boltzmann equation.

Notice that this impossibility results solely from the lower bound on the distribution of free path lengths in Theorem 2.1. This is in fact not too surprising since the probabilistic representation of equation (1.1) involves in particular exponentially distributed jump times for the velocity process.

Notice also the choice of initial data in Theorem 4.1. Since one knows that particles moving in appropriately chosen rational directions may not encounter any obstacles on the billiard table Z r , it may seem somewhat surprising that the contradiction in Theorem 4.1 is obtained by considering isotropic initial data (i.e. initial data that are independent of the angle variable) instead of pencils of particles concentrated in phase-space on those rational directions that avoid all obstacles. In fact, the contribution of such rational directions is already taken into account in the lower bound in Theorem 2.1. Besides, the case of isotropic initial densities is somewhat more natural in the context of Theorem 4.1, as it corresponds to local equilibria for the Lorentz kinetic model (1.1).

As for the hydrodynamic (diffusion) limit of the periodic Lorentz gas with finite horizon, it was proved in [START_REF] Bardos | Diffusion approximation for billiards with totally accommodating scatterers[END_REF] that the case of an isotropic reflection law at the surface of each obstacle can be treated by PDE techniques, avoiding the heavy machinery from ergodic theory required to handle the case of specular reflection and developed by Bunimovich-Sinai -see [START_REF] Bunimovich | Statistical properties of Lorentz gas with periodic configuration of scatterers[END_REF], and also [START_REF] Bunimovich | Statistical properties of twodimensional hyperbolic billiards[END_REF].

In the case of the Boltzmann-Grad limit however, changing the collision process does not affect the result in Theorem 4.1, since the obstruction to using the linear Boltzmann equation comes from particles that travel too far before encountering an obstacle for the first time. For such particles, the nature of the collision process is obviously of no importance. Hence Theorem 4.1 holds verbatim if one replaces Ŝǫ t (f in 1 Υǫ×S D-1 ) with the solution of

∂ t f ǫ + v • ∇ x f ǫ = 0 , x ∈ Υ ǫ , v ∈ S D-1 , f ǫ (t) Σ ǫ + = K(f ǫ (t) Σ ǫ - ) , f ǫ t=0 = f in 1 Υǫ×S D-1 ,
where Σ ǫ ± = {(x, v) ∈ ∂Υ ǫ × S D-1 | ± v • n x > 0} and K is any linear operator from L ∞ (Σ ǫ -) to L ∞ (Σ ǫ + ) that preserves the cone of positive functions.

By the same token, the same result as in Theorem 4.1 holds without change if the obstacles are not assumed to be spherical, or even identical, but instead of arbitrary shapes, provided that they can be included in balls of radius r = r * ǫ D/(D-1) centered at the points of ǫZ D .
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4. 1 .

 1 Reflecting vs. absorbing obstacles. First we define the billiard flow on the scaled billard table Ω ǫ . It is a one-parameter group on Ω ǫ × S D-1 denoted by(4.1) 

( 4 .

 4 10) Φ ≡ Φ(t, v) ,as shown by the following classical lemma.

If A is a measurable d-dimensional set in R D (d ≤ D), we denote by |A| its ddimensional volume. Here |Y r | is the Lebesgue measure of any fundamental domain of the quotient space Y r , i.e. of the unit cube with a ball of radius r removed.

I.e. without external force.
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