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Suboptimality of Penalized Empirical Risk Minimization in Classification

Let F be a set of M classification procedures with values in [-1, 1]. Given a loss function, we want to construct a procedure which mimics at the best possible rate the best procedure in F. This fastest rate is called optimal rate of aggregation. Considering a continuous scale of loss functions with various types of convexity, we prove that optimal rates of aggregation can be either ((log M )/n) 1/2 or (log M )/n. We prove that, if all the M classifiers are binary, the (penalized) Empirical Risk Minimization procedures are suboptimal (even under the margin/low noise condition) when the loss function is somewhat more than convex, whereas, in that case, aggregation procedures with exponential weights achieve the optimal rate of aggregation.

Introduction

Consider the problem of binary classification. Let (X , A) be a measurable space. Let (X, Y ) be a couple of random variables, where X takes its values in X and Y is a random label taking values in {-1, 1}. We denote by π the probability distribution of (X, Y ). For any function φ : R -→ R, define the φ-risk of a real valued classifier f : X -→ R by

A φ (f ) = E[φ(Y f (X))].
Many different losses have been discussed in the literature along the last decade (cf. [START_REF] Cortes | Support-vector networks[END_REF][START_REF] Freund | A decision-theoric generalization of on-line learning and an application to boosting[END_REF][START_REF] Lugosi | On the Bayes-risk consistency of regularized boosting methods[END_REF][START_REF] Friedman | Additive logistic regression: a statistical view of boosting[END_REF][START_REF] Bühlmann | Analyzing bagging[END_REF]), for instance:

φ 0 (x) = 1I (x≤0)
classical loss or 0 -1 loss φ 1 (x) = max(0, 1 -x) hinge loss (SVM loss) x -→ log 2 (1 + exp(-x)) logit-boosting loss x -→ exp(-x) exponential boosting loss x -→ (1 -x) 2 squared loss x -→ max(0, 1 -x) 2 2-norm soft margin loss

We will be especially interested in losses having convex properties as it is considered in the following definition (cf. [START_REF] Juditsky | Learning by mirror averaging[END_REF]).

⋆⋆ Paper to be considered for the Mark Fulk Award for the "best student paper".

Definition 1. Let φ : R -→ R be a function and β be a positive number. We say that φ is β-convex on [-1, 1] when

[φ ′ (x)] 2 ≤ βφ ′′ (x), ∀|x| ≤ 1.
For example, logit-boosting loss is (e/ log 2)-convex, exponential boosting loss is e-convex, squared and 2-norm soft margin losses are 2-convex. We denote by f * φ a function from X to R which minimizes A φ over all realvalued functions and by A φ * def = A φ (f * φ ) the minimal φ-risk. In most of the cases studied f * φ or its sign is equal to the Bayes classifier

f * (x) = sign(2η(x) -1),
where η is the conditional probability function x -→ P(Y = 1|X = x) defined on X (cf. [START_REF] Bartlett | Convexity, classification, and risk bounds[END_REF][START_REF] Lugosi | On the Bayes-risk consistency of regularized boosting methods[END_REF][START_REF] Zhang | Statistical behavior and consistency of classification methods based on convex risk minimization[END_REF]). The Bayes classifier f * is a minimizer of the φ 0 -risk (cf. [START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF]).

Our framework is the same as the one considered, among others, by [START_REF] Nemirovski | Topics in Non-parametric Statistics[END_REF][START_REF] Yang | Mixing strategies for density estimation[END_REF][START_REF] Catoni | Statistical Learning Theory and Stochastic Optimization[END_REF]] and [START_REF] Tsybakov | Optimal rates of aggregation[END_REF][START_REF] Juditsky | Learning by mirror averaging[END_REF]. We have a family F of M classifiers f 1 , . . . , f M and a loss function φ. Our goal is to mimic the oracle min f ∈F (A φ (f ) -A φ * ) based on a sample D n of n i.i.d. observations (X 1 , Y 1 ), . . . , (X n , Y n ) of (X, Y ). These classifiers may have been constructed from a previous sample or they can belong to a dictionary of simple prediction rules like decision stumps. The problem is to find a strategy which mimics as fast as possible the best classifier in F . Such strategies can then be used to construct efficient adaptive estimators (cf. [START_REF] Nemirovski | Topics in Non-parametric Statistics[END_REF][START_REF] Lecué | Simultaneous adaptation to the margin and to complexity in classification[END_REF][START_REF] Lecué | Optimal oracle inequality for aggregation of classifiers under low noise condition[END_REF][START_REF] Chesneau | Adapting to unknown smoothness by aggregation of thresholded wavelet estimators[END_REF]). We consider the following definition, which is inspired by the one given in [START_REF] Tsybakov | Optimal rates of aggregation[END_REF] for the regression model. Definition 2. Let φ be a loss function. The remainder term γ(n, M ) is called optimal rate of aggregation for the φ-risk, if the following two inequalities hold. i) For any finite set F of M functions from X to [-1, 1], there exists a statistic fn such that for any underlying probability measure π and any integer n ≥ 1,

E[A φ ( fn ) -A φ * ] ≤ min f ∈F A φ (f ) -A φ * + C 1 γ(n, M ). (1) 
ii) There exists a finite set F of M functions from X to [-1, 1] such that for any statistic fn there exists a probability distribution π such that for all

n ≥ 1 E A φ ( fn ) -A φ * ≥ min f ∈F A φ (f ) -A φ * + C 2 γ(n, M ). ( 2 
)
Here C 1 and C 2 are absolute positive constants which may depend on φ. Moreover, when the above two properties i) and ii) are satisfied, we say that the procedure fn , appearing in [START_REF] Audibert | A randomized online learning algorithm for better variance control[END_REF], is an optimal aggregation procedure for the φ-risk.

The paper is organized as follows. In the next Section we present three aggregation strategies that will be shown to attain the optimal rates of aggregation. Section 3 presents performance of these procedures. In Section 4 we give some proofs of the optimality of these procedures depending on the loss function. In Section 5 we state a result on suboptimality of the penalized Empirical Risk Minimization procedures and of procedures called selectors. In Section 6 we give some remarks. All the proofs are postponed to the last Section.

Aggregation Procedures

We introduce procedures that will be shown to achieve optimal rates of aggregation depending on the loss function φ : R -→ R. All these procedures are constructed with the empirical version of the φ-risk and the main idea is that a classifier f j with a small empirical φ-risk is likely to have a small φ-risk. We denote by

A φ n (f ) = 1 n n i=1 φ(Y i f (X i ))
the empirical φ-risk of a real-valued classifier f . The Empirical Risk Minimization (ERM) procedure, is defined by

f ERM n ∈ Arg min f ∈F A φ n (f ). (3) 
This is an example of what we call a selector which is an aggregate with values in the family F . Penalized ERM procedures are also examples of selectors.

The Aggregation with Exponential Weights (AEW) procedure is given by

f AEW n = f ∈F w (n) (f )f, (4) 
where the weights w (n) (f ) are defined by

w (n) (f ) = exp -nA φ n (f ) g∈F exp -nA φ n (g) , ∀f ∈ F. (5) 
The Cumulative Aggregation with Exponential Weights (CAEW) procedure, is defined by

f CAEW n,β = 1 n n k=1 f AEW k,β , (6) 
where f AEW k,β is constructed as in (4) based on the sample (X 1 , Y 1 ), . . . , (X k , Y k ) of size k and with the 'temperature' parameter β > 0. Namely,

f AEW k,β = f ∈F w (k) β (f )f, where w (k) β (f ) = exp -β -1 kA φ k (f ) g∈F exp -β -1 kA φ k (g) , ∀f ∈ F.
The idea of the ERM procedure goes to Le Cam and Vapnik. Exponential weights have been discussed, for example, in [START_REF] Barron | Mixture density estimation[END_REF][START_REF] Haussler | Sequential prediction of individual sequences under general loss functions[END_REF][START_REF] Kivinen | Averaging expert predictions[END_REF][START_REF] Yang | Mixing strategies for density estimation[END_REF][START_REF] Catoni | Statistical Learning Theory and Stochastic Optimization[END_REF][START_REF] Leung | Information theory and mixing least-square regressions[END_REF][START_REF] Zhang | Adaptive estimation in Pattern Recognition by combining different procedures[END_REF][START_REF] Audibert | A randomized online learning algorithm for better variance control[END_REF] or in [START_REF] Vovk | Aggregating Strategies[END_REF][START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF] in the on-line prediction setup.

3 Exact Oracle Inequalities.

We now recall some known upper bounds on the excess risk. The first point of the following Theorem goes to [START_REF] Vapnik | Necessary and sufficient conditions for the uniform convergence of empirical means to their true values[END_REF], the second point can be found in [START_REF] Juditsky | Recursive Aggregation of Estimators by Mirror Descent Algorithm with averaging[END_REF] or [START_REF] Chesneau | Adapting to unknown smoothness by aggregation of thresholded wavelet estimators[END_REF] and the last point, dealing with the case of a β-convex loss function, is Corollary 4.4 of [START_REF] Juditsky | Learning by mirror averaging[END_REF].

Theorem 1. Let φ : R -→ R be a bounded loss function. Let F be a family of

M functions f 1 , . . . , f M with values in [-1, 1], where M ≥ 2 is an integer. i) The Empirical Risk Minimization procedure fn = f ERM n satisfies E[A φ ( fn ) -A φ * ] ≤ min f ∈F (A φ (f ) -A φ * ) + C log M n , (7) 
where C > 0 is a constant depending only on φ. ii) If φ is convex, then the CAEW procedure fn = f CAEW n with "temperature parameter" β = 1 and the AEW procedure fn = f AEW n satisfy [START_REF] Catoni | Statistical Learning Theory and Stochastic Optimization[END_REF]. iii) If φ is β-convex for a positive number β, then the CAEW procedure with "temperature parameter" β, satisfies

E[A φ ( f CAEW n,β ) -A φ * ] ≤ min f ∈F (A φ (f ) -A φ * ) + β log M n .
4 Optimal Rates of Aggregation.

To understand how behaves the optimal rate of aggregation depending on the loss we introduce a "continuous scale" of loss functions indexed by a non negative number h,

φ h (x) = hφ 1 (x) + (1 -h)φ 0 (x) if 0 ≤ h ≤ 1 (h -1)x 2 -x + 1 if h > 1,
defined for any x ∈ R, where φ 0 is the 0 -1 loss and φ 1 is the hinge loss. This set of losses is representative enough since it describes different type of convexity: for any

h > 1, φ h is β-convex on [-1, 1] with β ≥ β h def = (2h - 1) 2 /(2(h -1)) ≥ 2, for h = 1 the loss is linear and for h < 1, φ h is non-convex. For h ≥ 0, we consider A h (f ) def = A φ h (f ), f * h def = f * φ h and A * h def = A φ h * = A φ h (f * h ).
Theorem 2. Let M ≥ 2 be an integer. Assume that the space X is infinite. If 0 ≤ h < 1, then the optimal rate of aggregation for the φ h -risk is achieved by the ERM procedure and is equal to log M n .

For h = 1, the optimal rate of aggregation for the φ 1 -risk is achieved by the ERM, the AEW and the CAEW (with 'temperature' parameter β = 1) procedures and is equal to log M n .

If h > 1 then, the optimal rate of aggregation for the φ h -risk is achieved by the CAEW, with 'temperature' parameter β h and is equal to

log M n .
5 Suboptimality of Penalized ERM Procedures.

In this Section we prove a lower bound under the margin assumption for any selector and we give a more precise lower bound for penalized ERM procedures. First, we recall the definition of the margin assumption introduced in [START_REF] Tsybakov | Optimal aggregation of classifiers in statistical learning[END_REF].

Margin Assumption(MA): The probability measure π satisfies the margin assumption MA(κ), where κ ≥ 1 if we have

E[|f (X) -f * (X)|] ≤ c(A 0 (f ) -A * 0 ) 1/κ , (8) 
for any measurable function f with values in {-1, 1} We denote by P κ the set of all probability distribution π satisfying MA(κ).

Theorem 3. Let M ≥ 2 be an integer, κ ≥ 1 be a real number, X be infinite and φ : R -→ R be a loss function such that a φ def = φ(-1) -φ(1) > 0. There exists a family F of M classifiers with values in {-1, 1} satisfying the following.

Let fn be a selector with values in F . Assume that (log M )/n ≤ 1/2. There exists a probability measure π ∈ P κ and an absolute constant C 3 > 0 such that fn satisfies

E A φ ( fn ) -A φ * ≥ min f ∈F A φ (f ) -A φ * + C 3 log M n κ 2κ-1 . ( 9 
)
Consider the penalized ERM procedure f pERM n associated with F , defined by

f pERM n ∈ Arg min f ∈F (A φ n (f ) + pen(f ))
where the penalty function pen(•) satisfies |pen(f

)| ≤ C (log M )/n, ∀f ∈ F, with 0 ≤ C < √ 2/3. Assume that 1188πC 2 M 9C 2 log M ≤ n. If κ > 1 then, there
exists a probability measure π ∈ P κ and an absolute constant C 4 > 0 such that the penalized ERM procedure f pERM n satisfies

E A φ ( f pERM n ) -A φ * ≥ min f ∈F A φ (f ) -A φ * + C 4 log M n .
Remark 1 Inspection of the proof shows that Theorem 3 is valid for any family F of classifiers f 1 , . . . , f M , with values in {-1, 1}, such that there exist points

x 1 , . . . , x 2 M in X satisfying (f 1 (x j ), . . . , f M (x j )) : j = 1, . . . , 2 M = {-1, 1} M .
Remark 2 If we use a penalty function such that |pen(f

)| ≤ γn -1/2 , ∀f ∈ F,
where γ > 0 is an absolute constant (i.e. 0 ≤ C ≤ γ(log M ) -1/2 ), then the condition "1188πC 2 M 9C 2 log M ≤ n" of Theorem 3 is equivalent to "n greater than a constant".

Theorem 3 states that the ERM procedure (and even penalized ERM procedures) cannot mimic the best classifier in F with rates faster than ((log M )/n) 1/2 if the basis classifiers in F are different enough, under a very mild condition on the loss φ. If there is no margin assumption (which corresponds to the case κ = +∞), the result of Theorem 3 can be easily deduced from the lower bound in Chapter 7 of [START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF]. The main message of Theorem 3 is that such a negative statement remains true even under the margin assumption MA(κ). Selectors aggregate cannot mimic the oracle faster than ((log M )/n) 1/2 in general. Under MA(κ), they cannot mimic the best classifier in F with rates faster than ((log M )/n) κ/(2κ-1) (which is greater than (log M )/n when κ > 1). We know, according to Theorem 1, that the CAEW procedure mimics the best classifier in F at the rate (log M )/n if the loss is β-convex. Thus, penalized ERM procedures (and more generally, selectors) are suboptimal aggregation procedures when the loss function is β-convex even if we add the constraint that π satisfies MA(κ).

We can extend Theorem 3 to a more general framework [START_REF] Lecué | Suboptimality of Penalized Empirical Risk Minimization[END_REF] and we obtain that, if the loss function associated with a risk is somewhat more than convex then it is better to use aggregation procedures with exponential weights instead of selectors (in particular penalized ERM or pure ERM). We do not know whether the lower bound ( 9) is sharp, i.e., whether there exists a selector attaining the reverse inequality with the same rate.

6 Discussion.

We proved in Theorem 2 that the ERM procedure is optimal only for non-convex losses and for the borderline case of the hinge loss. But, for non-convex losses, the implementation of the ERM procedure requires minimization of a function which is not convex. This is hard to implement and not efficient from a practical point of view. In conclusion, the ERM procedure is theoretically optimal only for non-convex losses but in that case it is practically inefficient and it is practically efficient only for the cases where ERM is theoretically suboptimal.

For any convex loss φ, we have

1 n n k=1 A φ ( f AEW k,β ) ≤ A φ ( f CAEW β ). Next, less observations are used for the construction of f AEW k,β , 1 ≤ k ≤ n -1, than for the construction of f AEW n,β
. We can therefore expect the φ-risk of f AEW n,β to be smaller than the φ-risk of f AEW k,β for all 1 ≤ k ≤ n -1 and hence smaller than the φ-risk of f CAEW n,β . Thus, the AEW procedure is likely to be an optimal aggregation procedure for the convex loss functions.

The hinge loss happens to be really hinge for different reasons. For losses "between" the 0 -1 loss and the hinge loss (0 ≤ h ≤ 1), the ERM is an optimal aggregation procedure and the optimal rate of aggregation is (log M )/n. For losses "over" the hinge loss (h > 1), the ERM procedure is suboptimal and (log M )/n is the optimal rate of aggregation. Thus, there is a breakdown point in the optimal rate of aggregation just after the hinge loss. This breakdown can be explained by the concept of margin : this argument has not been introduced here by the lack of space, but can be found in [START_REF] Lecué | Suboptimality of Penalized Empirical Risk Minimization[END_REF]. Moreover for the hinge loss we get, by linearity min

f ∈C A 1 (f ) -A * 1 = min f ∈F A 1 (f ) -A * 1 ,
where C is the convex hull of F . Thus, for the particular case of the hinge loss, "model selection" aggregation and "convex" aggregation are identical problems (cf. [START_REF] Lecué | Optimal rates of aggregation in classification[END_REF] for more details).

7 Proofs.

Proof of Theorem 2: The optimal rates of aggregation of Theorem 2 are achieved by the procedures introduced in Section 2. Depending on the value of h, Theorem 1 provides the exact oracle inequalities required by the point (1) of Definition 2. To show optimality of these rates of aggregation, we need only to prove the corresponding lower bounds. We consider two cases: 0 ≤ h ≤ 1 and h > 1. Denote by P the set of all probability distributions on X × {-1, 1}. Let 0 ≤ h ≤ 1. It is easy to check that the Bayes rule f * is a minimizer of the φ h -risk. Moreover, using the inequality A 1 (f ) -A * 1 ≥ A 0 (f ) -A * 0 , which holds for any real-valued function f (cf. [START_REF] Zhang | Statistical behavior and consistency of classification methods based on convex risk minimization[END_REF]), we have for any prediction rules f 1 , . . . , f M (with values in {-1, 1}) and for any finite set F of M real valued functions,

inf fn sup π∈P E A h ( fn ) -A * h -min f ∈F (A h (f ) -A * h ) (10) 
≥ inf fn sup π∈P f * ∈{f1,...,fM } E A h ( fn ) -A * h ≥ inf fn sup π∈P f * ∈{f1,...,fM } E A 0 ( fn ) -A * 0 .
Let N be an integer such that 2 N -1 ≤ M , x 1 , . . . , x N be N distinct points of X and w be a positive number satisfying (N -1)w ≤ 1. Denote by P X the probability measure on X such that P X ({x j }) = w, for j = 1, . . . , N -1 and P X ({x N }) = 1 -(N -1)w. We consider the cube Ω = {-1, 1} N -1 . Let 0 < h < 1. For all σ = (σ 1 , . . . , σ N -1 ) ∈ Ω we consider

η σ (x) = (1 + σ j h)/2 if x = x 1 , . . . , x N -1 , 1 if x = x N .
For all σ ∈ Ω we denote by π σ the probability measure on X × {-1, 1} defined by its marginal P X on X and its conditional probability function η σ . We denote by ρ the Hamming distance on Ω. Let σ, σ ′ ∈ Ω such that ρ(σ, σ ′ ) = 1. Denote by H the Hellinger's distance. Since H 2 π ⊗n σ , π ⊗n

σ ′ = 2 1 -1 -H 2 (π σ , π σ ′ )/2 n and H 2 (π σ , π σ ′ ) = 2w(1 -1 -h 2 )
, then, the Hellinger's distance between the measures π ⊗n σ and π ⊗n σ ′ satisfies

H 2 π ⊗n σ , π ⊗n σ ′ = 2 1 -(1 -w(1 -1 -h 2 )) n .
Take w and h such that w(1

-1 -h 2 ) ≤ n -1 . Then, H 2 π ⊗n σ , π ⊗n σ ′ ≤ 2(1 -e -1
) < 2 for any integer n.

Let σ ∈ Ω and fn be an estimator with values in {-1, 1} (only the sign of a statistic is used when we work with the 0 -1 loss). For π = π σ , we have

E πσ [A 0 ( fn ) -A * 0 ] ≥ hwE πσ N -1 j=1 | fn (x j ) -σ j | .
Using Assouad's Lemma (cf. Lemma 1), we obtain inf

fn sup σ∈Ω E πσ A 0 ( fn ) -A * 0 ≥ hw N -1 4e 2 . ( 11 
)
Take now w = (nh 2 ) -1 , N = ⌈log M/ log 2⌉, h = n -1 ⌈log M/ log 2⌉ 1/2 . We complete the proof by replacing w, h and N in ( 11) and ( 10) by their values.

For the case h > 1, we consider an integer N such that 2 N -1 ≤ M , N -1 different points x 1 , . . . , x N of X and a positive number w such that (N -1)w ≤ 1. We denote by P X the probability measure on X such that P X ({x j }) = w for j = 1, . . . , N -1 and P X ({x N }) = 1 -(N -1)w. Denote by Ω the cube {-1, 1} N -1 . For any σ ∈ Ω and h > 1, we consider the conditional probability function η σ in two different cases. If 2(h -1) ≤ 1 we take

η σ (x) = (1 + 2σ j (h -1))/2 if x = x 1 , . . . , x N -1 2(h -1) if x = x N ,
and if 2(h -1) > 1 we take

η σ (x) = (1 + σ j )/2 if x = x 1 , . . . , x N -1 1 if x = x N .
For all σ ∈ Ω we denote by π σ the probability measure on X × {-1, 1} with the marginal P X on X and the conditional probability function η σ of Y knowing X.

Consider

ρ(h) = 1 if 2(h -1) ≤ 1 (4(h -1)) -1 if 2(h -1) > 1 and g * σ (x) = σ j if x = x 1 , . . . , x N -1 1 if x = x N .
A minimizer of the φ h -risk when the underlying distribution is π σ is given by

f * h,σ def = 2η σ (x) -1 2(h -1) = ρ(h)g * σ (x), ∀x ∈ X ,
for any h > 1 and σ ∈ Ω.

When we choose {f * h,σ : σ ∈ Ω} for the set

F = {f 1 , . . . , f M } of basis functions, we obtain sup {f1,...,fM } inf fn sup π∈P E A h ( fn ) -A * h -min j=1,...,M (A h (f j ) -A * h ) ≥ inf fn sup π∈P: f * h ∈{f * h,σ :σ∈Ω} E A h ( fn ) -A * h .
Let σ be an element of Ω. Under the probability distribution π σ , we have

A h (f )- A * h = (h -1)E[(f (X) -f * h,σ (X)) 2 ]
, for any real-valued function f on X . Thus, for a real valued estimator fn based on D n , we have

A h ( fn ) -A * h ≥ (h -1)w N -1 j=1 ( fn (x j ) -ρ(h)σ j ) 2 .
We consider the projection function ψ h (x) = ψ(x/ρ(h)) for any x ∈ X , where ψ(y) = max(-1, min(1, y)), ∀y ∈ R. We have

E σ [A h ( fn ) -A * h ] ≥ w(h -1) N -1 j=1 E σ (ψ h ( fn (x j )) -ρ(h)σ j ) 2 ≥ w(h -1)(ρ(h)) 2 N -1 j=1 E σ (ψ( fn (x j )) -σ j ) 2 ≥ 4w(h -1)(ρ(h)) 2 inf σ∈[0,1] N -1 max σ∈Ω E σ   N -1 j=1 |σ j -σ j | 2   ,
where the infimum inf σ∈[0,1] N -1 is taken over all estimators σ based on one observation from the statistical experience {π ⊗n σ |σ ∈ Ω} and with values in [0, 1] N -1 . For any σ, σ ′ ∈ Ω such that ρ(σ, σ ′ ) = 1, the Hellinger's distance between the measures π ⊗n σ and π ⊗n σ ′ satisfies

H 2 π ⊗n σ , π ⊗n σ ′ = 2 1 -(1 -2w(1 - √ 1 -h 2 )) n if 2(h -1) < 1 2 1 -(1 -2w(1 -3/4)) n if 2(h -1) ≥ 1 .
We take

w = (2n(h -1) 2 ) if 2(h -1) < 1 8n -1 if 2(h -1) ≥ 1.
Thus, we have for any σ, σ ′ ∈ Ω such that ρ(σ, σ ′ ) = 1,

H 2 π ⊗n σ , π ⊗n σ ′ ≤ 2(1 -e -1
).

To complete the proof we apply Lemma 1 with N = ⌈(log M )/n⌉. Proof of Theorem 3:

Consider F a family of classifiers f 1 , . . . , f M , with values in {-1, 1}, such that there exist 2 M points x 1 , . . . , x 2 M in X satisfying (f 1 (x j ), . . . , f M (x j )) : j = 1, . . . , 2 M = {-1, 1} M def = S M .
Consider the lexicographic order on S M : (-1, . . . , -1) (-1, . . . , -1, 1) (-1, . . . , -1, 1, -1) . . . (1, . . . , 1). Take j in {1, . . . , 2 M } and denote by x ′ j the element in {x 1 , . . . ,

x 2 M } such that (f 1 (x ′ j ), . . . , f M (x ′ j )
) is the j-th element of S M for the lexicographic order. We denote by ϕ the bijection between S M and {x 1 , . . . , x 2 M } such that the value of ϕ at the j-th element of S M is x ′ j . By using the bijection ϕ we can work independently either on the set S M or on {x 1 , . . . , x 2 M }. Without any assumption on the space X , we consider, in what follows, functions and probability measures on S M . Remark that for the bijection ϕ we have

f j (ϕ(x)) = x j , ∀x = (x 1 , . . . , x M ) ∈ S M , ∀j ∈ {1, . . . , M }.
With a slight abuse of notation, we still denote by F the set of functions f 1 , . . . , f M defined by f j (x) = x j , for any j = 1, . . . , M.

First remark that for any f, g from X to {-1, 1}, using

E[φ(Y f (X))|X] = E[φ(Y )|X]1I (f (X)=1) + E[φ(-Y )|X]1I (f (X)=-1) , we have E[φ(Y f (X))|X] -E[φ(Y g(X))|X] = a φ (1/2 -η(X))(f (X) -g(X)).
Hence, we obtain A φ (f ) -A φ (g) = a φ (A 0 (f ) -A 0 (g)). So, we have for any j = 1, . . . , M, A φ (f j ) -A φ (f * ) = a φ (A 0 (f j ) -A * 0 ). Moreover, for any f : S M -→ {-1, 1} we have A φ n (f ) = φ(1) + a φ A φ0 n (f ) and a φ > 0 by assumption, hence,

f pERM n ∈ Arg min f ∈F (A φ0 n (f ) + pen(f )).
Thus, it suffices to prove Theorem 3, when the loss function φ is the classical 0 -1 loss function φ 0 . We denote by S M+1 the set {-1, 1} M+1 and by X 0 , . . . , X M , M + 1 independent random variables with values in {-1, 1} such that X 0 is distributed according to a Bernoulli B(w, 1) with parameter w (that is P(X 0 = 1) = w and P(X 0 = -1) = 1 -w) and the M other variables X 1 , . . . , X M are distributed according to a Bernoulli B(1/2, 1). The parameter 0 ≤ w ≤ 1 will be chosen wisely in what follows.

For any j ∈ {1, . . . , M }, we consider the probability distribution π j = (P X , η (j) ) of a couple of random variables (X, Y ) with values in S M+1 × {-1, 1}, where P X is the probability distribution on S M+1 of X = (X 0 , . . . , X M ) and η (j) (x) is the regression function at the point x ∈ S M+1 , of Y = 1 knowing that X = x, given by

η (j) (x) =    1 if x 0 = 1 1/2 + h/2 if x 0 = -1, x j = -1 1/2 + h if x 0 = -1, x j = 1 , ∀x = (x 0 , x 1 , . . . , x M ) ∈ S M+1 ,
where h > 0 is a parameter chosen wisely in what follows. The Bayes rule f * , associated with the distribution π j = (P X , η (j) ), is identically equal to 1 on S M+1 .

If the probability distribution of (X, Y ) is π j for a j ∈ {1, . . . , M } then, for any 0 < t < 1, we have P[|2η(X) -1| ≤ t] ≤ (1 -w)1I h≤t . Now, we take

1 -w = h 1 κ-1 ,
then, we have P[|2η(X) -1| ≤ t] ≤ t 1 κ-1 and so π j ∈ P κ . We extend the definition of the f j 's to the set S M+1 by f j (x) = x j for any x = (x 0 , . . . , x M ) ∈ S M+1 and j = 1, . . . , M . Consider F = {f 1 , . . . , f M }. Assume that (X, Y ) is distributed according to π j for a j ∈ {1, . . . , M }. For any k ∈ {1, . . . , M } and k = j, we have

A 0 (f k ) -A * 0 = x∈SM+1 |η(x) -1/2||f k (x) -1|P[X = x] = 3h(1 -w) 8 + w 2
and the excess risk of f j is given by A 0 (f j ) -A * 0 = (1 -w)h/4 + w/2. Thus, we have min

f ∈F A 0 (f ) -A * 0 = A 0 (f j ) -A * 0 = (1 -w)h/4 + w/2.
First, we prove the lower bound for any selector. Let fn be a selector with values in F . If the underlying probability measure is π j for a j ∈ {1, . . . , M } then,

E (j) n [A 0 ( fn ) -A * 0 ] = M k=1 (A 0 (f k ) -A * 0 )π ⊗n j [ fn = f k ] = min f ∈F (A 0 (f ) -A * 0 ) + h(1 -w) 8 π ⊗n j [ fn = f j ],
where E

n denotes the expectation w.r.t. the observations D n when (X, Y ) is distributed according to π j . Hence, we have

max 1≤j≤M {E (j) n [A 0 ( fn )-A * 0 ]-min f ∈F (A 0 (f )-A * 0 )} ≥ h(1 -w) 8 inf φn max 1≤j≤M π ⊗n j [ φn = j],
where the infimum inf φn is taken over all tests valued in {1, . . . , M } constructed from one observation in the model (S M+1 × {-1, 1}, A × T , {π 1 , . . . , π M }) ⊗n , where T is the natural σ-algebra on {-1, 1}. Moreover, for any j ∈ {1, . . . , M }, we have

K(π ⊗n j |π ⊗n 1 ) ≤ nh 2 4(1 -h -2h 2 )
,

where K(P |Q) is the Kullback-Leibler divergence between P and Q (that is log(dP/dQ)dP if P << Q and +∞ otherwise). Thus, if we apply Lemma 2 with h = ((log M )/n) (κ-1)/(2κ-1) , we obtain the result.

Second, we prove the lower bound for the pERM procedure fn = f pERM n . Now, we assume that the probability distribution of (X, Y ) is π M and we take

h = C 2 log M n κ-1 2κ . (12) 
We have

E[A 0 ( fn ) -A * 0 ] = min f ∈F (A 0 (f ) -A * 0 ) + h(1 -w) 8 P[ fn = f M ]. Now, we upper bound P[ fn = f M ], conditionally to Y = (Y 1 , . . . , Y n ). We have P[ fn = f M |Y] = P[∀j = 1, . . . , M -1, A φ0 n (f M ) + pen(f M ) ≤ A φ0 n (f j ) + pen(f j )|Y] = P[∀j = 1, . . . , M -1, ν M ≤ ν j + n(pen(f j ) -pen(f M ))|Y],
where ν j = n i=1 1I (YiX j i ≤0) , ∀j = 1, . . . , M and X i = (X j i ) j=0,...,M ∈ S M+1 , ∀i = 1, . . . , n. Moreover, the coordinates X j i , i = 1, . . . , n; j = 0, . . . , M are independent, Y 1 , . . . , Y n are independent of X j i , i = 1, . . . , n; j = 1, . . . , M -1 and |pen(f j )| ≤ h κ/(κ-1) , ∀j = 1, . . . , M . So, we have 2 -4h 2 -3h 1I (Yi=-1) + 1 + h 1/(κ-1) (h/2 -1/2) 1 + h 1/(κ-1) (3h/4 -1/2) 1I (Yi=1) -2nh κ/(κ-1) .

P[ fn = f M |Y] = n k=0 P[ν M = k|Y]
Using Einmahl and Masson's concentration inequality (cf. [START_REF] Einmahl | Some Universal Results on the Behavior of Increments of Partial Sums[END_REF]), we obtain P[ν M ≤ k|Y] ≤ exp(-2nh 2κ/(κ-1) ).

Using Berry-Esséen's theorem (cf. p.471 in [START_REF] Bickel | Mathematical Statistics: Basic Ideas and Selected Topics[END_REF]), the fact that Y is independent of (X j i ; 1 ≤ i ≤ n, 1 ≤ j ≤ M -1) and k ≥ n/2 -9nh κ/(κ-1) /4, we get

P[ k ≤ ν 1 + 2nh κ κ-1 |Y] ≤ P n/2 -ν 1 √ n/2 ≤ 6h κ κ-1 √ n ≤ Φ(6h κ κ-1 √ n) + 66 √ n ,
where Φ stands for the standard normal distribution function. Thus, we have

E[A 0 ( fn ) -A * 0 ] ≥ min f ∈F (A 0 (f ) -A * 0 ) (13) 
+ (1 -w)h 8 1 -exp(-2nh 2κ/(κ-1) ) -Φ(6h κ/(κ-1) √ n) + 66/ √ n M-1

.

Next, for any a > 0, by the elementary properties of the tails of normal distribution, we have

1 -Φ(a) = 1 √ 2π +∞ a exp(-t 2 /2)dt ≥ a √ 2π(a 2 + 1) e -a 2 /2 . ( 14 
)
Besides, we have for 0 < C < √ 2/6 (a modification for C = 0 is obvious) and (3376C) 2 (2πM 36C 2 log M ) ≤ n, thus, if we replace h by its value given in [START_REF] Einmahl | Some Universal Results on the Behavior of Increments of Partial Sums[END_REF] and if we apply [START_REF] Friedman | Additive logistic regression: a statistical view of boosting[END_REF] with a = 16C √ log M , then we obtain

Φ(6h κ/(κ-1) √ n) + 66/ √ n M-1 ≤ exp - M 1-18C 2 18C √ 2π log M + 66(M -1) √ n . (15) 
Combining ( 13) and ( 15), we obtain the result with C 4 = (C/4) 1-exp(-8C 2 )exp(-1/(36C √ 2π log 2)) > 0.

The following lemma is used to establish the lower bounds of Theorem 2. It is a version of Assouad's Lemma (cf. [START_REF] Tsybakov | Introduction à l'estimation non-paramétrique[END_REF]). Proof can be found in [START_REF] Lecué | Suboptimality of Penalized Empirical Risk Minimization[END_REF]. Lemma 1. Let (X , A) be a measurable space. Consider a set of probability {P ω /ω ∈ Ω} indexed by the cube Ω = {0, 1} m . Denote by E ω the expectation under P ω . Let θ ≥ 1 be a number. Assume that: ∀ω, ω ′ ∈ Ω/ρ(ω, ω ′ ) = 1, H 2 (P ω , P ω ′ ) ≤ α < 2, then we have

inf ŵ∈[0,1] m max ω∈Ω E ω   m j=1 | ŵj -w j | θ   ≥ m2 -3-θ (2 -α) 2
where the infimum inf ŵ∈[0,1] m is taken over all estimator based on an observation from the statistical experience {P ω |ω ∈ Ω} and with values in [0, 1] m .

M- 1 j=1P 1 ≤

 11 [k ≤ ν j + n(pen(f j ) -pen(f M ))|Y] ≤ n k=0 P[ν M = k|Y] P[k ≤ ν 1 + 2nh κ/(κ-1) |Y] M-P[ν M ≤ k|Y] + P[ k ≤ ν 1 + 2nh κ/(κ-1) |Y] M-1 , where k = E[ν M |Y] -2nh κ/(κ-1) 

We use the following lemma to prove the weakness of selector aggregates. A proof can be found p. 84 in [START_REF] Tsybakov | Introduction à l'estimation non-paramétrique[END_REF].

Lemma 2. Let P 1 , . . . , P M be M probability measures on a measurable space

K(P j |P 1 ) ≤ α log M, where 0 < α < 1/8. We have

where the infimum inf φ is taken over all tests φ with values in {1, . . . , M } constructed from one observation in the statistical model (Z, T , {P 1 , . . . , P M }).