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Pseudo-3D modeling of a surface-bonded Lamb wave source (L)

Emmanuel Moulin,
a�

 Sébastien Grondel, Mustapha Baouahi, and Jamal Assaad 
IEMN, UMR CNRS 8520, OAE Department, Université de Valenciennes et du Hainaut Cambrésis,

Le Mont Houy, 59313 Valenciennes Cedex 9, France

In this paper, a simple technique allowing the prediction of the Lamb wave field excited in an isotropic plate

by a transducer of finite dimensions is presented. The basic idea is to separate the problem into two

uncoupled parts. First, the Lamb wave excitation problem, in the plane defined by the thickness and width

directions of the transducer, is treated. Then the source diffraction effects in the plane of the plate can be

quantitatively estimated. The subsequent formulation thus offers a simple way of developing three-

dimensional �3D� solutions from a two-dimensional �2D� modeling. Compared to a heavy full-3D numerical

modeling, this technique appears to be a very satisfying alternative.

I. INTRODUCTION

For several years, Lamb wave testing has been seen as a

promising technique for health monitoring of civil or aero-

space structures. In order to make such monitoring faster,

less expensive, and effortless, the integration of piezoelectric

patches to the material has been considered.
1,2

The behavior

of such an integrated transducer and the type of waves emit-

ted depend strongly on the nature of the host material and the

insertion conditions. Then a proper modeling tool, allowing

to take into account the whole complexity of the problem, is

required.

In this context, previous works have focused on the de-

velopment of a 2D hybrid technique for the modeling of

plates containing integrated sources.
3–5

The imposed plane-

strain condition implied the infiniteness along one dimen-

sion, which is only a rough approximation of a bar-shaped

transducer. In order to account for the finite length of an

actual transducer, a 3D modeling is required. However, in-

stead of developing unpractical full 3D numerical models,

the idea suggested here is to uncouple the divergence effects

in the plane of the plate from the mode characteristics with

respect to the plate thickness.

This concept has already been presented in a previous

paper
6

and applied to multi-element sources for Lamb wave

beam-steering.
7

However, the simplistic approach used then

only provided qualitative results. This paper aims at extend-

ing these works so that quantitative results are accessible,

allowing direct comparison to experimental or 3D numerical

results.

Up to now, only a very small number of works have

dealt with 3D modeling of Lamb wave excitation by finite

sources. Among them, a recent paper by Rose et al.
8

is par-

ticularly noticeable. Based on Mindlin plate theory, the au-

thors derived analytical solutions for point forces and bend-

ing moments and then deduced solutions for circular-or

rectangular-shaped surface-mounted sources by spatial inte-

gration. However, the formulation is relatively delicate to

handle and since Mindlin theory is an approximate plate

model, a number of physical aspects are not correctly de-

scribed �symmetric modes, higher order antisymmetric

modes,¼�.
The modeling method proposed here is based on line-

and point-source solutions derived from the works by Vik-

torov and Ditri, respectively.
9,10

A remarkable synthesis and

useful applications of these works have been presented by

Wilcox.
11

Though not fundamentally different in nature, the

formulation introduced in the present paper is more suited to

the objective. As will be seen indeed, the link established

with the normal mode expansion method
12

results in a very

versatile and lightweight pseudo-3D modeling technique.

II. MODELING PRINCIPLE

A. Finite length excitation

Let us consider an isotropic plate with thickness d, ex-

cited by a given harmonic stress applied to a localized area

of its upper surface �Fig. 1�. The excitation area S is sup-

posed to be rectangular shaped, with length L and width W.

The applied stress profile is described by a function �0�x ,y�
defined over S and representing the action of a transducer. In

order to simplify the notations, all the derivations presenteda�
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below will consider the normal component of the displace-

ment on the plate surface only. If required, expressions for

the transverse displacement or the displacement inside the

plate thickness could be derived exactly the same way.

Assuming that a single Lamb wave is generated in the

plate �this assumption can be released afterwards�, the nor-

mal displacement du excited at a given point P of the plate

upper surface by a small part dS with coordinates �x ,y� of

the actuation area can be deduced from the axisymmetric

solution proposed by Ditri et al.
10

This can be written in a

compact form as

du =
j�0�x,y�

4�

�k

��
H0

�1��kr0�e−j�tdS , �1�

where r0 is the distance from the excitation point, k is the

wave number of the considered Lamb wave, and � and � are

functions depending on k and the material properties. They

are representative of eigenmode-related features. Their com-

plete expressions can be found in the literature
10

whenever

needed and thus will not be reminded here. The prime �

denotes derivation with respect to k. H
0

�1�
represents the

zeroth-order Hankel function of the first kind. For concise-

ness, the term e−j�t will be omitted in the next equations.

Let us now consider the case of an excitation repre-

sented by separable variable functions:

�0�x,y� = �0x�x��0y�y� . �2�

Here �0x will be supposed to depend on W only and �0y on L

only. In the case of an actual transducer, such an assumption

is acceptable provided L and W are different enough to allow

the length and width vibration modes to be uncoupled.
6

Considering a location far enough from the source so

that r�L, W yields

r0 � r − x cos � − y sin � . �3�

Then, by integrating Eq. �1� over the excitation area S

and using the far-field asymptotical approximation of the

Hankel function along with Eq. �3�, the total normal dis-

placement at a point P with polar coordinates �r ,�� can be

expressed as

u�r,�� =
j�1 − j��

4�����
�k

r
e jkr�

−L/2

L/2

�0y�y�e−jky sin � dy

	 �
−W/2

W/2

�0x�x�e−jkx cos � dx . �4�

B. Infinite length excitation

Let us now consider the same plate, subject to an exci-

tation defined by the same width W and the same applied

stress function �0x as in the previous section. This case, how-

ever, will significantly differ from the previous one in that

the length L will be considered infinite. In that case, a two-

dimensional, plane-strain formulation is valid. Then the dis-

placement at a given point, located at a distance r from the

source, can be obtained by integration of a line-source solu-

tion. Such a solution can be derived from the work by Vik-

torov on wedge transducer excitation,
9

which had also been

applied by Wilcox.
11

This yields an expression of the form

u2D�r� =
j�

2���
e jkr�

−W/2

W/2

�0x�x�e−jkx dx , �5�

where � and � are the same as in Eqs. �1� and �4�.
By introducing the modal amplitude Am for the given

Lamb mode, derived from the 2D normal mode

formalism,
3,12

this displacement can also be written as

u2D�r� = Amume jkr, �6�

where um is the modal displacement field �eigen vector� for

the considered mode.

C. Connection of the 2D and 3D problems

Equations �4� and �5� are independently established from

two geometrically different excitation cases. However, since

the propagation medium �the solid plate� is supposed to be

the same in both cases, it is no surprise that some eigenmode

terms remain identical in both equations. This is indeed the

case with � and �, as written above. Besides, the integrals

over x are the same in Eqs. �4� and �5� if either the source

width W is small compared to the wavelength or � is small,

or a combination of both.

In those conditions, comparison of these two equations

and substitution of the above-mentioned identical terms yield

the following relation between the finite-length and the 2D

infinite-length solutions:

u�r,�� =
�1 − j�

2��
�k

r
u2D�r��

−L/2

L/2

�0y�y�e−jky sin � dy �7�

Then, by invoking Eq. �6�, the finite-length displacement

can finally be expressed as

u�r,�� =
�1 − j�

2��
�k

r
Amume jkr�

−L/2

L/2

�0y�y�e−jky sin � dy �8�

In the case of an actual rectangular shaped surface-

mounted transducer, it has been shown in a previous work
6

that the excitation �0y�y� could be considered uniform over

the transducer length L, provided the condition W /L
0.4 is

ensured. In that case, Eq. �8� can be simplified as

u�r,�� =
�1 − j�

��
�k

r
Amum

sin�k�L/2�sin ��

k sin �
e jkr. �9�

This equation is similar to the general formulation given

in Ref. 6. In this previous work, however, the directivity

FIG. 1. Description of the problem geometry.
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relation was obtained by merely using a basic scalar diffrac-

tion model, which constituted quite a rough approximation.

This resulted in rather satisfying qualitative directivity pre-

dictions but an undetermined, frequency- and mode-

dependent amplitude term remained. This made direct com-

parison to 3D numerical modeling or experimental results

impossible. On the contrary, Eq. �9� of the present paper

allows the displacement waveforms to be correctly predicted,

even in the multi-mode case.

The first step of the pseudo-3D modeling scheme is the

treatment of the 2D plane-strain problem �assuming L infi-

nite�. This provides the modal amplitudes Am for the consid-

ered transducer width W. It should be noted that the actual

transducer thickness and piezoelectric characteristics can

also be taken into account if required. A complete description

of the procedure can be found in previous works.
3–5

There-

fore, it will not be repeated here. Then, the third dimension is

introduced by using Eq. �9�. Hence, wave radiation in the

�x ,y� plane can be quantitatively characterized for each

propagating mode. Finally, if required, summation of all

mode contributions can be performed in order to obtain the

total 3D displacement field in the plate.

III. APPLICATION TO A KNOWN EXCITATION

A. Problem description

In order to verify its pertinence and predicting ability,

the modeling procedure will be applied to a simple case. We

will consider a 3-mm-thick aluminum plate subject to a uni-

form pressure p0 over the excitation area S as described in

Fig. 1.

In such a simple situation, solution to the related 2D

problem can be processed analytically. Details of the deriva-

tion can be found in Refs. 3 and 5. This yields

Am =
j�p0umz

*

2kPmm

sin� kW

2
	 �10�

with

Pmm =
�

2
Im
�

−d/2

d/2

�umx
* �mxx + umz

* �mxz�dz� , �11�

where Im and * denote the imaginary part and the complex

conjugate, respectively. um and �m are the modal displace-

ment and stress tensors for the considered Lamb mode.

Though Eq. �9� has a meaning in a harmonic case only,

transient excitations can be very classically dealt with using

Fourier inversion.
5,13

B. Results and comments

The first example corresponds to a two-cycle

rectangular-windowed sinusoid at 150 kHz. At this

frequency-thickness product and considering an out-of-plane

excitation, the first antisymmetric mode A0 is practically the

only excited mode. The excitation area is defined by W

=8 mm and L=20 mm. The resulting normal displacement at

a distance r=45 mm is presented in Fig. 2�a�. The dashed

line represents the 2D solution, derived from the normal

mode formalism. Application of Eq. �9�, corresponding to the

pseudo-3D solution, is represented by the solid line.

A second demonstrative example is presented in Fig.

2�b�. It corresponds to a multi-modal case. The excitation is

a five-cycle sine-windowed sinusoid at 475 kHz and the

source dimensions are W=6 mm and L=20 mm. The consid-

ered propagation distance is r=28 mm. All three modes: A0,

S0 and A1 are excited, though with different modal ampli-

tudes. Here again, the solid and dashed lines represent the 3D

and 2D results, respectively.

As shown here, taking into account the 3D behavior can

lead to significant changes in the received waveforms. This

can be easily interpreted from the form of Eq. �9�. In addition

to a mere amplitude decay proportional to 1/�r and related

to the beam divergence in the �x ,y� plane, the �k factor

disturbs the dispersive effects in the wave propagation. In-

deed, components with low frequencies tend to be attenuated

whereas higher frequency components tend to be amplified.

Therefore the frequential reconstruction of the signal natu-

rally yields modified waveforms. Besides, since S0 and A1

have smaller wave numbers than A0, they appear more at-

tenuated in the 3D case than in the 2D one. This results

logically in a visible modification of the global waveform.

C. Comparison to numerical predictions

For quantitative validation purpose, both examples will

be compared to results from a 3D finite element modeling

�FEM�. The excitation is modelized by applying normal

point forces to the surface nodes in the corresponding area.

The finite element mesh definition is guided by two, rather

contradictory, criteria. First, the lateral dimensions of the

plate have to be large enough so that no reflection pollutes

the incident wave packets. Then, the elements should be nu-

merous enough so that their sizes are smaller than a quarter

of the shorter wavelength.
14

This ordinarily results in a rather

cumbersome 3D mesh and, subsequently, in a huge memory

and time consumption. Therefore, only a limited number of

test cases can be reasonably treated in this way.

The obtained results are shown in Figs. 3�a� and 3�b�.

FIG. 2. Influence of 3D effects on the waveform shape �2D solution in

dashed line, 3D solution in solid line�. �a� Transducer size 8	20 mm, cen-

tral frequency 150 kHz, r=45 mm, �=0°. �b� Transducer size 6	20 mm,

central frequency 475 kHz, r=28 mm, �=0°.
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The dashed lines correspond to the FEM results whereas the

solid lines represent the same pseudo-3D results as in the

previous section.

As can be seen, there is a very good agreement between

the two sets of curves. Both the waveform shapes as well as

the relative mode amplitudes are correctly predicted. Addi-

tionally, in order to provide validation for off-axis predic-

tions, some results for ��0 are presented in Figs. 3�c� and

3�d�. These results correspond to the same excitation cases as

in Figs. 3�a� and 3�b�, respectively. The first curve �Fig. 3�c��
is obtained at r=45 mm, �=50°. The second one �Fig. 3�c��
corresponds to r=12 mm, �=35°. These comparisons clearly

demonstrate the ability of the hybrid pseudo-3D technique to

provide quantitative results with a satisfying accuracy.

IV. CONCLUSION

This work was concerned with the problem of plate

wave generation by a surface-mounted transducer with finite

dimensions. In many practical cases, the 3D source effects

cannot be neglected without leading to significantly errone-

ous results. As it has been verified indeed, both the wave-

form shapes and the mode amplitudes can be strongly af-

fected by the finite length of the emitter.

Relying on existing works, it has been shown how the

3D characterization could be achieved by merely applying a

corrective term to a 2D result. The formulation introduced

allows the use of the normal mode expansion technique for

solving the 2D problem, which results in a very convenient,

polyvalent, and easy-to-use model. Comparison with results

provided by a full-3D finite element computation have dem-

onstrated the quantitative validity of the technique.

Besides, in previous works, a 2D hybrid FEM-normal

mode technique has been successfully applied and has al-

ready been subject to adaptations to physical effects of grow-

ing complexity �anisotropy, attenuation,¼�. Then, the intro-

duction of such effects into the pseudo-3D modeling could

be considered without starting from the basis again.
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