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The following appendices accompany the article

Appendix 1. Lagrangian versus Eulerian advection-diffusion simulations

A simulation of passive advection-diffusion tracers based on
the Lagrangian stochastic approach is compared with the
Eulerian approach based on the turbulent viscosity concept.
Eulerian simulations consisted of injecting a tracer concen-
tration at 1 mesh point in the southern bay on 18 March
1999 from 12:00 to 23:50 h with a fixed concentration of
1000. The time and spatial evolution of the tracer concen-
tration C is computed over the entire domain solving the
following advection-diffusion equation:

(A1)

where Kx,Ky are the horizontal and vertical turbulent diffu-
sivities, vt is the vertical one, t is time, and x, y, z are the
3D space variables. Eq. (A1) is solved using an upwind
discretization scheme for horizontal advection terms to
avoid numerical instabilities while reducing computation
durations. Using an upwind scheme is the same as using a
centred scheme for advection terms to which are added
‘numerical’ horizontal diffusion terms with diffusivities of
the form Kx = u Δx/2 and Ky = v Δ y/2. For a 100 m horizon-
tal grid size (Δx or Δy) and with typical horizontal current
(u or v) value of 0.2 m s–1, ‘numerical’ diffusivity is about
10 m2 s–1, which is already a large value. Thus, no extra
horizontal diffusion is added in Eq. (A1) and we take Kx =
Ky = 0.

Lagrangian simulations consisted in releasing a number
N of passive particles, i.e. the individual larva’s velocity

with X = (x, y, z) the 3D space location, every
10 min, from the mesh point where the concentration was
injected and over the same period. Their dispersal is com-
puted solving Eq. (1) with and without turbulence. N should
be large enough to ensure stable dispersal patterns. Pre-

liminary tests showed that dispersal patterns obtained for N
= 10 and N = 30 are very similar. Thus, N was set to 30.
Finally, concentration fields are derived from particles
positions by weighting the 8 neighbouring mesh points
according to their distance from the particle.

Fig. A1 shows concentration fields obtained by solving Eq.
(A1) (Eulerian, Fig. A1a) at various times within 3 d after the
injection began. In Fig. A1b, the particle positions are plot-
ted at the same times, obtained by solving the Lagrangian
Eq. (1) without (black) and with (grey) turbulence. Fig. A1c
shows concentration fields derived from particle positions at
the same times. First, these computations clearly show that
dispersal is dramatically enhanced by turbulence and that
turbulence should be accounted for in Lagrangian dispersal
models (Fig. A1b). Second, concentration fields assuming
isotropic turbulence for Lagrangian dispersal agree rather
well with the Eulerian concentration fields, although a
stronger horizontal smearing occurs in the Eulerian compu-
tations. Indeed, the ‘numerical’ horizontal diffusivity, associ-
ated with the low time consuming upwind numerical
scheme is larger than vertical diffusivity. This explains the
discrepancies between the isotropic Lagrangian simulations
and the Eulerian ones. It can be assumed that such ‘numer-
ical’ horizontal diffusivity without physical grounds would
differ from the effective physical horizontal diffusion. How-
ever, up to now, no field measurements of turbulence have
been available to discriminate between the 2 computational
results.

Although the Lagrangian approach can be limited by data
storage requirements, it is expected to describe advection-
diffusion dispersal more realistically, avoiding the extra
computing cost of minimizing numerical diffusion in the
discretisation of advection terms in the Eulerian approach.
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Appendix 1 (continued)
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Fig. A1. (a) Time evolution of Eulerian advected-diffused concentration; (b) Lagrangian particle dispersals with isotropic turbulence
in red and without in green; R: spawning locations; (c) concentration derived from Lagrangian particle dispersals. Particles and con-
centration are released from the same point from 12:00 to 23:50 h on 18 March 1999. Concentrations are non-dimensional, ranging 

between 0 and 1. Dates are d/mo/yr
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Appendix 2. Open boundaries and nesting procedure

Open boundaries conditions

Let us consider 2 lateral open boundaries located at x = 0
and x = L (0 < L) where L is the width of the computational
grid between the 2 open boundaries. The boundary con-
dition suggested by Oey & Chen (1992) gives a rela-
tion between the sea surface elevation η and the current
transport normal to the boundary –u:

where g is gravity and H the water depth. The right hand
side term is preceded by + (or –) for x = L (or x = 0). The
index F stands for the external forcings that can be derived
from a larger grid or a climatology. A zero gradient condi-
tion is applied to the current transport tangent to the bound-
ary and to baroclinic mode components. External tempera-
ture and salinity fields are advected into the numerical
domain under inflow conditions.

These conditions applied on boundary nodes are combined
with restoring terms added to the right-hand side of the
momentum, temperature and salinity equations inside the
domain over a restoring layer. Next to the x = 0 boundary,
these restoring terms read:

where ϕ stands either for temperature, salinity, baroclinic
velocities or transports and D is the restoring layer horizon-
tal scale. The exponential decay scale factor depends on the
grid size, typically D = L/50. The time scale factor is the time
required for waves to cross the numerical domain, that is
Tres = L/c where c is the mean wave celerity. For barotropic
modes, c = 12222gH and for baroclinic modes, we take c = 1 m s–1

as a first guess that can be empirically adjusted later.
The exponential decay and time scale factor used for the
restoring layer in nested grids are given in Table A1.

Nested meshes

As detailed above, open boundary conditions combine
model variables and external forcing terms. In the nesting
procedure used here, these external forcing terms are pro-

vided by another simulation using a larger, coarser grid
without feedback from the finer grid to the coarser one,
which is a 1-way strategy. The largest grid is run first, peri-
odical outputs being stored and then used to constrain the
run of a nested grid. Due to grid discrepancies, largest grid
outputs have to be interpolated on the finer grid. It is stressed
that the interpolation of the external forcings not only con-
cerns boundary nodes but also the restoring layer and initial
state. In our computations, we use a linear interpolation
scheme although it has been shown that this simple scheme
can produce numerical instabilities at the initial state or near
open boundaries if bottom slopes differ significantly from
one grid to another (Auclair et al. 2000). Hence, with a linear
interpolation scheme, the success of the nesting procedure
will depend on grid matching, and thus the nested grid
bathymetry and coastline must be carefully specified.

Practically, the nested grid bathymetry is constrained to be
close to the larger one, especially where external forcings
play a role, that is, in the restoring layer and at the open
boundaries. Considering the x = 0 boundary, nested bathy-
metry hnested is given by:

hnested = (1 – e–x/D)hfine + e–x/Dhcoarse

where hfine is a first guess of the bathymetry and hcoarse

its corresponding value in the coarser grid and D is the
restoring layer horizontal scale.

High frequency variability at open boundaries is highly
dependent on the time renewal of forcing terms (the smaller
the better) but practical data storage constraints may lead to
some compromises. Since high frequency variability pro-
cesses on the modelled area are mainly near inertial
motions and meteorologically induced circulations, the
period of outputs storage Tsto is given by:

Tsto = min(2π /Pf, Tmeteo)

where Tmeteo is the time renewal of the meteorological
forcings, f is Coriolis parameter and P a factor that controls
the accuracy of inertial oscillations time sampling (p ≥ 4). In
our computations, we use the 3-hourly averaged meteoro-
logical fields outputs of the ALADIN weather forecast model
(METEO FRANCE) and P = 6, which lead to Tsto = 3 h.
Stored fields are averaged over Tsto. Finally, they are lin-
early interpolated in space and time to drive the nested grid.
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Table A1. Nested computational grids resolution and size (numbers of points), horizontal and time scales for restoring layers

Grid Horizontal Number of Grid Restoring layer Barotropic restoring Baroclinic restoring
cell size (m) vertical levels size horizontal scale (m) time scale (d) time scale (d)

Grid 1 1500 26 188 × 145 4500 0.10 0.1
Grid 2 700 21 82 × 150 2100 0.02 0.1
Grid 3 250 19 94 × 140 750 0.05 0.5
Grid 4 100 16 160 × 179 300 0.01 0.1


