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L-FUNCTIONS OF AUTOMORPHIC FORMS
AND COMBINATORICS: DYCK PATHS

by Laurent HABSIEGER (*) and Emmanuel ROYER

Introduction.

Since Chowla [Cho34], the behavior of the values at the edge of the
critical strip (we shall normalize L-functions such that the critical strip
is 0  9le s  1) of the Dirichlet L-functions have been widely studied.
Recent results are due to Montgomery &#x26; Vaughan [MV99] and Granville
&#x26; Soundararajan [GS02]. The work on these values is motivated by the
algebraic interpretation via Dirichlet’s class number formula. On the other
hand, the study of values at 1 for the higher degree L-functions is much
more recent. It seems to have begun with the work of Luo [Luo99] who
deduced from the study of L(sym 2f, 1) (when f is a Maass form) results
in the deformation theory of modular forms. The experimental study of
the values L(sym2 f ,1 ) has also been developped by Watkins [Wat02] and
Delaunay [De103].

The Euler product of an higher degree L-function being greater than
1, the corresponding Dirichlet coefficients are not completely multiplicative.
It follows that the precise combinatorial behavior of the values at 1 is

(*) The first author is partially supported by the European Community IHRP Program,
within the Research Training Network "Algebraic Combinatorics in Europe", grant
HPRN-CT-2001-00272.

Keywords: Symmetric square - modular form - L-function - Dyck path - Combinatorics
- Narayana number
Math. classification: llfll - IlF12 - llF67 - llM41 - 05A15 - 05A19 - llB75 - llB83
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intricate and actually reveals interesting combinatorial structures. The
combinatorial study of the asymptotic negative moments of f - L( f,1)
and f - L (sym2 f 1) (where f is a primitive form, the parameter being the
level of f ) has been done by the second author in [Roy03]. The underlying
combinatorial structures were paths in 7~2, mainly the Dyck and Riordan
paths. Our aim in this paper is to extend the corresponding result to
positive moments, and even to positive moments of these values twisted by
eigenvalues of Hecke operators. The combinatorial study is more difficult
since the asymptotic moments are free of the Mobius function which was
fundamental in the proofs in [Roy03]. The combinatorial structures we
enlighten are Dyck paths with multivariate statistics (such as return steps,
doublerises and last descent steps, see §2).

Let us be more explicit. Let p be the Mobius function and P- (N)
the smallest prime factor of the integer N. One defines

and

Let H~ (N) be the (finite) set of primitive forms of weight over the group
ro(N) and w(f) be the usual harmonic factor (see §1 for the modular
background). One defines

for every integer n &#x3E; 0. We proved in [Roy01] ] (and actually a more precise
result is given in [RW04]) that

where

with
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for every integer r &#x3E; 1 and

for every b E N~. We used the following notations: boldfont letters such as
cx are devoted to vectors; their coordinates are numbered by the index in
subscript; the determinant - denoted by det - of a vector is the product
of its coordinates; the greatest common divisor of two integers a and b is
denoted by (a, b). The same method (see also [CM04]) implies that

where

with

for every integer r &#x3E; 1 and

for every b E N . Denoting by P the set of prime numbers, our first result
is

THEOREM A. - Let n be a nonnegative integer, then

and

The function sn is a polynomial, related to Narayana numbers. More
precisely, let Nn be the Narayana polynomial
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then,

(see lemma 5). The function in is also a polynomial related to Riordan
numbers. For every nonnegative integer m, define the Riordan number Rum
of order m by

(see [Roy03, §1.2]) then

We do remark that the obtained eulerian products are polynomials. The
result is similar to the one obtained for negative moments: if n ~ 3, then

and

Using integral representations of the polynomials sn and in, we get
asymptotic expansions of Hn and Mn.

THEOREM B. - Let n &#x3E; 3 be a integer. Then

and

Remark that the first term is managable by more elementary (even
not obvious) tools - see [Roy0l, §3.2.3] - but the combinatorial method has
the advantage to give the second term with no additional difficulty and to
be more general as applying also to negative moments.
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The way we obtain theorem 1 is to relate the moments to sums of

powers. More precisely, let n be a nonnegative integer and q a real number,
define

and

where N = f 0, 1, ... I is the set of nonnegative integers . We show that

and

Relating these sums to Dyck paths with statistics "doublerises" and "return
step" - see § 2 - we prove the

PROPOSITION A. - Let n be a nonnegative integer and q a real
number, then

and

These results are proved in §§ 3.1 and 4.1.

We next give a unified hypergeometrical formula for the negative and
positive moments, valid for both Hn and M~ . Let a, b and c be three
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complex numbers such that 9le c &#x3E; 9le b &#x3E; 0, and z a complex number not
in the real segment [1, -1-00 ~. One defines

For every n E Z and a ~ {2,3}, define

One then has the

PROPOSITION B. - Let n E Z and a E ~2, 3~. Then

Remark. - In the case a = 2, the formula can be simplified in

[GROO, 9.134.3].

Finally, we give a combinatorial interpretation of the moments twisted

by the eigenvalue Af (m) of the m-th Hecke operator (one normalizes the
Hecke operators such that 2 for every prime number p). Denote by
Dn the set of Dyck paths of semilength n. If D E Dn, let RET (D), DBR (D)
and LD (D) be (respectively) the number of return steps, of doublerises and
of last descent steps - see §2. Then define

For q E]O, 1[ and a &#x3E; 0, one defines £n [a] (q) by the generating function

One then has the
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THEOREM C. - Let n be a nonnegative integer. Define

Then

Similary, define by

One then has the

THEOREM D. - Let n be a nonnegative integer. Define

Then

Remark. - Motivated by the results of this paper, Cogdell &#x26; Michel

developped in [CM04] the analytical view point for the values at 1 of all

the symmetric power L-functions. Their results show that our theorem 2
extends to higher degrees. They also obtain an interesting probabilistic
interpretation.

Acknowledgement. - The authors want to express their gratitude
to Etienne Fouvry who had the idea to bring them together. The second
author thanks Fabrice Philippe for its valuable comments.
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1. A skim through L-functions.

The aim of this section is to fix the notations used for modular forms.
For more details on the modular background, one refers to §2 of [RW04].
The space of newforms of weight k and level N is a Hilbert space with
respect to the Petersson product

where Do (N) is a fundamental domain of ro(N). The harmonic weight of
f E is

Denote by HZ (N) the (finite) set of primitive forms of weight k and
squarefree level N. This is the orthogonal basis of the space of newforms of
weight over the modular subgroup ro(TV), consisting of Hecke eigenforms
with first Fourier coefficient equal to 1. The harmonic factor may be

considered as an averaging factor since

If f E HZ (N), one writes its Fourier development as

If p is a prime number, the coefficient Af (p) admits the decomposition
A f (p) = + where a f (p) and flf (p) have a norm smaller than 1
(and equal to 1 for all except a finite number of primes).

The L function of a primitive form f E is defined for s &#x3E; 1

by

Define
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then the function

is entire and satisfies the functional equation

is ~ 1.

The symmetric square L function of a primitive form f E is

defined for 9Be s &#x3E; 1 by

Define

then the function

is entire and satisfies the functional equation

2. Dyck paths of statistics (RET, DBR, LD )
and Narayana numbers.

Let n &#x3E; 0 be an integer. A Dyck path(’) of semilength n is a path
in Z2 relying (o, 0) to (n, n), with steps (l, 0) or (0, 1) (one names these
steps, respectively horizontal and vertical steps) and never going below the
first diagonal. One denotes by Dn the set of Dyck path of semilength n. A

(1) Actually, this is the same as what has been untraditionally called "chemin de
Catalan de longeur 2n" in [Roy03].
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Dyck path D is entirely defined by the sequence of abscissas of the starting
points of its vertical steps so that there is a bijection between Dn and

Given i E [0, n - 1], the number di is then the abscissa of the starting point
of the vertical step number i + 1. The "empty Dyck path" is the point
(o, 0) . One denotes the set consisting of this only path by Do. For n &#x3E; 0,
the number of Dyck paths of semilength n is the nth Catalan number,
denoted by Cn.

Let D be a Dyck path of semilength n. A doublerise of D is an integer
i such that di = The number of doublerises of D is then

One also defines RET (D) to be the number of return steps, by what one
means vertical steps with starting point on the diagonal,

Finally, LD (D) is the number of horizontal steps that end the path D, that
is

Figure 1.
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We call LD (D) the number of last descent steps. The empty path is
supposed to have DBR, RET and LD all equal to 0. For example, figure 1
represents the Dyck path D of semilength n = 5, defined by the sequence
(o,1, l, 2, 3). It satisfies DBR (D) = 1, RET (D) = 2 and LD (D) = 2.

For n a nonnegative integer, one denotes by y, z) the generating
function of Dyck paths of semilength n and statistics (RET , DBR, LD ) and
the generating function of these functions is y, z ; t):

The generating function K(x, y, z; t) is computed in the

LEMMA 1. - Let the functions N, Dl and D2 be defined by

and

then

Proof. Let us denote by bn (d, r, R) the number of Dyck paths
D E Dn satisfying
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Then

Let D E Dn be a path with RET (D) &#x3E; 2. Cutting at the return point of
greater abscissa, one sees that this path is the concatenation of a path Di
satisfying

and a path D2 with RET (D2) = 1 and LD (D2) = LD (D) - see figure 2

Figure 2.

then obtains,

One deduces

Let n &#x3E; 2 and D a path in Dn satisfying RET (D) = 1. This path is the
concatenation of its first step (necessarily vertical), of a path D’ in 
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with DBR (D’) = DBR (D) - 1 and LD (D’) = LD (D) - 1, and of its last
step (necessarily horizontal) - see figure 3. Thus

Figure 3.

and

Reporting (2) in (1) thus gives

Evaluating (3) at x = 1, one finds

and
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Evaluating (5) at z = 1 leads then to

Reporting (6) in (5) gives

Evaluating (4) at z = 1 gives a second order equation in y, 1; t) whose
solutions are

From the convergence at yt = 0, one deduces

so that (7) gives the announced expression of K(x, y, z ; t). 0

For n a nonnegative integer, one denotes by the generating
function of Dyck paths of semilength n and statistics (RET, DBR) and
A(x, y; t) the generating function of these functions:

These functions are specializations at z = 1 of the preceding ones. One
deduces from lemma 1 the

LEMMA 2. - One has

As a consequence of lemma 2.1, one has the
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COROLLARY 3. - Let n be a nonnegative integer and x a real number
such that Ixl  1. Then

Proof. Considering the generating series of both sides, one is led
to prove

which is a straightforward consequence of lemma 2.

One then introduces the special case

and evaluates it in the

PROPOSITION 4. - Let n be a nonnegative integer and x a real
number. Then

The number is the Narayana number of index

(n, m). By definition, one has

so that, the Narayana number of index (n, m) counts the number of Dyck
paths of semilength n with m doublerises. One extracts proposition 2.4
from [Su198].

Finally, we end the section with an integral expression for the poly-
nomial Nn .

LEMMA 5. - Let n -&#x3E; 1 be a nonnegative integer and x a real number.
Define 

,_
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Then,

Proof. Writing

gives

Then, Cauchy integral formula gives

Evaluating the real part gives

The result follows then by integration by parts and changes of variables. D

3. Moments of L(sym 2f, 1).

3.1. A sum of powers related to L(sym 2f, 1).

The purpose of this section is to relate the sum
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to Dyck paths. This sum is a specialization of the sum

which satisfies

(9)

and the recursion

Let q E~ 0,1 be a real number. One defines an endomorphism on C[a]
by setting, for every integer r &#x3E; 0,

with

One then has the

LEMMA 6. - Let q E] 0, 1 be a real number, for every couple (r, a) of
nonnegative integers,

From this lemma, one deduces the

LEMMA 7. - Let q e]0, 1[ be a real number, for every nonnegative
integer n, there exists a polynomial 6n,q of degree n - 1 verifying
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such that

for every nonnegative integer a.

Proof of lemma 6. - Denoting by E the left hand side sum of

lemma 6, one has

Using [GROO, 0.15.1~

one deduces

From the Chu-Vandermonde formula

one obtains

using
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Proof of lemma 7. - One proceeds by recurrence on n. If

then, by (10)

using lemma 6. The result finally follows from (9). D

COROLLARY 8. - Let q G]0, 1 be a real number, for every nonnega-
tive integer n, one has

Proof. From lemma 6 and (9), one deduces
defines

One

Then
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In particular,

thus

Taking di = i - r2, one obtains

the sum being q, q2). D

We end this section with the following integral expression of Sn+2(0; q) :

LEMMA 9. - Let n be a nonnegative integer, then
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with

Proof. Define _ and

The announced equality is equivalent to

By corollary 8, one has

for

By (12), it follows that

The last line (obtained by [Roy03, lemme 6]) gives (14).
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3.2. Combinatorial expression of the positive moments
of L(sym 2f, ,1 ) .

In this section, we shall prove the

PROPOSITION 10. - Let n be a nonnegative integer, then

By lemma 9, it is equivalent to

LEMMA 11. - Let n &#x3E;, 2 be an integer, then

Proof. By multiplicativity, it suffices to prove

One has

Defining a E N" by

by

one gets
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such that it suffices to prove

In the case cxi, equation (17) follows from

In the case ai+l  cxi, equation (17) follows from

3.3. Asymptotic expansion of the positive moments

of L ( sym2 f ,1 ) .

In this section, one proves the

PROPOSITION 12. - Let n &#x3E; 3, then

Proof. For z x 1 /3, one verifies 0, £§§ (z) &#x3E; 0 and ££ (0) = 0
so that ~ has a minimum on ~ - oo, 1/3] at 0. This minimum is = 1.

One also has ( 1 - 3x) n for 0 and

if

and
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If n &#x3E;- 5 and - 2 n  3nx  - 3 one deduces

One the other hand, if -1  nx - 0, one has

which gives

(20)

Defining

one has nyp &#x3E; 1 if and only if p , n. From (18) and (20) one obtains

and

As in [Roy03, §2.4.], one then finds

Writing

and using Mertens formula [Ten95, theoreme 1.11]
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one obtains

Reporting this expansion in (21), one finally finds

4. Moments of L( f,1).

4.1. A sum of powers related to L( f,1).

Consider

The aim of this section is to relate S,, (0; q) to Dyck paths. One proves the

PROPOSITION 13. - Let q E]O, 1[ be a real number, for every nonneg-
ative integer n, one has

The second equality of proposition 13 is a consequence of the corol-

lary 3 and of the definition (8). The proof of the first equality is the same
as the one given for corollary 8 in § 3.1. The only significant difference is
that one replaces Tq by T’ defined by
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with

Lemma 6 has then to be replaced by the following one

LEMMA 14. - Let q e]0, 1 be a real number, for every couple (r, a)
of nonnegative integers,

Proof. Denoting by E the left hand side sum of lemma 14, one
has

The end of the proof is similar to the one of lemma 6. 0

We end the section with the following integral expression of S,’,+2 (0; q),
obtained from proposition 13 and lemma 5.

LEMMA 15. - Let n be a nonnegative integer, then

4.2. Combinatorial expression of the positive moments

of L(f, 1).

In this section, we shall prove the

PROPOSITION 16. - Let n be a nonnegative integer. Then
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By lemma 15 it is equivalent to

LEMMA 17. - Let rt be a nonnegative integer. Then

Proof. By multiplicativity, it suffices to prove

One has

Defining a E N" by

and /3 E I~n, ~ E Nn-1 by

one gets

such that it suffices to prove

This is done as in the proof of lemma 11.
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4.3. Asymptotic expansion of the positive moments
of L(f, 1).

In this section, one derives from the combinatorial expression of the

positive moments of L(f, 1) the

PROPOSITION 18. - Let n &#x3E; 3 be an integer, then

Proof. This is a consequence of [Roy03, theoreme B and corollaire
C] that gives

5. A unified formula.

The aim of this section is to give a unified hypergeometrical formula
for the moments, positive and negative, of L(/, 1) and L(sym 2f, 1) proving
the proposition B.

Let a, b and c be three complex numbers such that 9le c &#x3E; 9ie b &#x3E; 0,
and z a complex number not in the real segment [1, ~-oo ~. One defines

One has [GROO, 9.131.1]



2133

For a = 2 and n  0, the result is [Roy03, lemme 23 and th6or6me
B]. For a = 2 and n &#x3E; 0, [Roy03, lemma 23] and proposition 16 gives

The result then follows from (23). For a = 3 and n  0, this is [Roy03,
th6or6me A, lemme 16] and (23). For a = 3 and n &#x3E; 0, [Roy03, lemma 16]
and proposition 10 give

Formula (23) implies the result.

6. Twisted moments.

The work done in the preceding sections easily extends to twisted
moments, which are defined as follows: for put

where Af (n) is the eigenvalue of the n-th Hecke operator. The existence of
this limit may be checked as in [Roy 01]. As before we find

where vp(m) denotes the p-adic valuation of m and

One recall the definition
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so that if a is an integer,

Section 3.1 (and especially equation (13)) then enables us to state the
following theorem.

THEOREM 19. - Let n be a nonnegative integer. Define

Then

Remark 20. - From

one deduces the following combinatorial expression

where Kn has been defined in section 2. Note that the value at t = 0 of the
left hand side of (25) is E~[0](~), which by definition is given by
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This is also the right hand side of (25) since (the
only path with LD = 0 being the empty one).

Remark 21. - Since there is a bijection

with RET (cp(D)) - RET (D) - 1 and DBR (p(D) ) = DBR (D) (remove
the last two steps of paths of D~), one recovers by combinatoric means the
value of 

where

It has to be compared with lemma 11 and corollary 8.

Remark 22. - One interprets theorem 19 in terms of independance
of random variables. From

for N E Ncri (see [RW04, (16) and (30)]) one deduces

In particular (take m = 1) ((2)Mn+i is the moment of order n of the limit
of the random variable f H L(sym 2f, 1). One then describes the moments
of the limit of the random variable / ’2013~ ~y(~). Denote by Xr is the r-th
Chebyshev polynomial of second kind, defined by
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The basis is orthonormal for the scalar product on R[X] defined
by the Sato-Tate measure

A direct computation then leads to the decomposition

with

The multiplicativity of Hecke operators gives

Denote by 1° the characteristic function of squares and by the measure

on ~-2, 2~ given by

Then Selberg trace formula (see [ILSOO, propositions 2.11 and 2.13]) leads
to
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for all r &#x3E; 1, so that J-tm is the equirepartition measure of the family

(see also [Ser97]). By (27) and (28), the system of equalities

is equivalent to the independance of the limits of the random variables

and

Remark 23. - The coefficient Twist2 (n, m) is zero if and only if m is
not a squarefull integer (see (24)). Assume m is a squarefull integer. One
proves that Af (m) does not affect the asymptotic behavior of the moments
of L (sym2 f 1). Let a E N and q E]O, 1[. Equation (24) implies

so that (26) gives

In the proof of lemma 9, one introduced the function

and proved the integral representation

By (24), one has the majoration
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Bijection p - see remark 21 - enables to write

so that (26) gives

Using (30) and (31) one shows

thus

Equations (29) and (32) then imply

Finally

Similarly we also define

We have the counterpart of theorem 19. Recall the definition
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THEOREM 24. - Let n be a nonnegative integer. Define

Then

Remark 25. - From

one deduces the following combinatorial expression

where Kn has been defined in section 2.

Remark 26. - Similary to (27) one has

Then, for m &#x3E; 1, Petersson trace formula leads to

In the probability space where a form f has weight w(f), the independance
of the limit random variables

and
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is equivalent to the system of equalities

Similary to (29) and (32) and using

one has

so that

and
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