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Abstract

We consider impulse control problems in finite horizon for diffusions with decision
lag and execution delay. The new feature is that our general framework deals with
the important case when several consecutive orders may be decided before the effective
execution of the first one. This is motivated by financial applications in the trading
of illiquid assets such as hedge funds. We show that the value functions for such
control problems satisfy a suitable version of dynamic programming principle in finite
dimension, which takes into account the past dependence of state process through
the pending orders. The corresponding Bellman partial differential equations (PDE)
system is derived, and exhibit some peculiarities on the coupled equations, domains and
boundary conditions. We prove a unique characterization of the value functions to this
nonstandard PDE system by means of viscosity solutions. We then provide an algorithm
to find the value functions and the optimal control. This easily implementable algorithm
involves backward and forward iterations on the domains and the value functions, which
appear in turn as original arguments in the proofs for the boundary conditions and
uniqueness results.

Key words : Impulse control, execution delay, diffusion processes, dynamic programming,
viscosity solutions, comparison principle.
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1 Introduction

In this paper, we consider a general impulse control problem in finite horizon of a diffusion
process X, with intervention lag and execution delay. This means that we may intervene
on the diffusion system at any times 7; separated at least by some fixed positive lag h,
by giving some impulse & based on the information at 7;. However, the execution of the
impulse decided at 7; is carried out with delay mh, m > 1, i.e. it is implemented at
time 7; + mh, moving the system from X, {pn)- to I'(X(7, 4mn)-, &) The objective is to
maximize over impulse controls (7;,&;); the expected total profit on finite horizon T', of the

form

T
E[/ f(Xyp)dt + g(X7) + Z C(X(Tierh)_agi) :

0 Ti4mh<T
Such formulations appear naturally in decision-making problems in economics and finance.
In many situations, firms or investors face regulatory delays (delivery lag), which may be
significant, and thus need to be taken into account when management strategies are decided
in an uncertain environment. Problems where firm’s investment are subject to delivery
lag can be found in the real options literature, for example in [{] and [[]. In financial
market context, execution delay is related to liquidity risk (see e.g. [[f]), and occurs with
transaction, which requires heavy preparatory work as for hedge funds. Indeed, hedge
funds frequently hold illiquid assets, and need some time to find a counterpart to buy
or sell them. Furthermore, this notice period gives the hedge fund manager a reasonable
investement horizon.

From a mathematical viewpoint, it is well-known that impulse control problems without
delay, i.e. m = 0, lead to variational partial differential equations (PDE), see e.g. the books
[l and [[[1]]. Impulse control problems in the presence of delay were studied in [[[4] for m
= 1, that is when no more than one pending order is allowed at any time. In this case,
it is shown that the delay problem may be transformed into a no-delay impulse control
problem. The paper [[] also considers the case m = 1, but when the value of the impulse
is chosen at the time of execution, and on infinite horizon, and these two conditions are
crucial in the proposed probabilistic resolution. We mention also the works [[J] and recently
12|, which study impulse problems in infinite horizon with arbitrary number of pending
orders, but under restrictive assumptions on the controlled state process, like (geometric)
Lévy process for X and (multiplicative) additive intervention operator I'. In this case,
the problem is reduced to a finite-dimensional one where the value functions with pending
orders are directly related to the value function without order.

The main contribution of this paper is to provide a theory of impulse control problems
with delay on finite horizon in a fairly general diffusion framework that deals with the im-
portant case in applications when the number of pending orders is finite, but not restricted
to one, i.e. m > 1. Our chief goal is to obtain a unique tractable PDE characterization
of the value functions for such problems. As usual in stochastic control problems, the first
step is the derivation of a dynamic programming principle (DPP). We show a suitable
version of DPP, which takes into account the past dependence of the controlled diffusion
via the finite number of pending orders. The corresponding Bellman PDE system reveals



some nonstandard features both on the form of the differential operators and their domains,
and on the boundary conditions. Following the modern approach to stochastic control, we
prove that the value functions are viscosity solutions to this Bellman PDE system, and
we also state comparison principles, which allows to obtain a unique PDE characterization.
From this PDE representation, we provide an easily implemented algorithm to compute the
value functions, and so as byproducts the optimal impulse control. This algorithm involves
forward and backward iterations on the value functions and on the domains, and appear
actually as original arguments in the proofs for the boundary conditions and comparison
principles.

The rest of the paper is organized as follows. In Section 2, we formulate the control
problem and introduce the associated value functions. Section 3 deals with the dynamic
programming principle in this general framework. We then state in Section 4 the unique
PDE viscosity characterization for the value functions. In Section 5, we provide an algo-
rithm for computing the value functions and the optimal impulse control. Finally, Section
6 is devoted to the proofs of results in this paper.

2 Problem formulation

2.1 The control problem

Let (€2, F,P) be a complete probability space equipped with a filtration F = (F}):>0 satis-
fying the usual conditions, and W = (W});>0 a standard n-dimensional Brownian motion.

An impulse control is a double sequence a = (7;,(;)i>1, where (7;) is an increasing
sequence of F-stopping times, and ¢; are F,,-measurable random variables valued in E. We
require that 7,41 — 7 > h a.s., where h > 0 is a fixed time lag between two decision times,
and we assume that F, the set of impulse values, is a compact subset of R?. We denote by
A this set of impulse controls.

In absence of impulse executions, the system valued in R? evolves according to :

dX, = b(X,)ds+ o(X,)dWs, (2.1)

where b : R? — R% and ¢ — R¥™ are Borel functions on R?, satisfying usual Lipschitz
conditions. The interventions are decided at times 7; with impulse values & based on
the information at these dates, however they are executed with delay at times 7; + mh,
moving the system from X, 1mn)- t0 X(rpmn) = U(X(7,4mn)-» &) Here I' is a mapping
from R? x F into R%, and we assume that I" is continuous, and satisfies the linear growth
condition :

Dz, e)|

sup ———- < oo (2.2)
(z,e)ERIXE 1+|£C|

Given an impulse control a = (7;,&;)i>1 € A, and an initial condition Xy € R?, the controlled
process X is then defined as the solution to the s.d.e. :

Xo = Kot [ W0tk [Co(dWat Y (&) = Xy )23

Ti+mh<s



We now fix a finite horizon 7" < oo, and in order to avoid trivialities, we assume 7" — mh
> 0. Using standard arguments based on Burkholder-Davis-Gundy’s inequality, Gronwall’s
lemma and (R.3), we easily check that

El[sup|XJ]] < oc. (2.4)
s<T

Given an impulse control a = (7;,&;)i>1 € ‘A, we consider the total profit at horizon T,
defined by :

T
Ma) = [ FODds 49X+ Y X6
0 Ti+mh<T

and we assume that the running profit function f, the terminal profit function g, and the
executed cost function ¢ are continuous, and satisfy the linear growth condition :

wp  M@LH@ el (25)

(z,)ERIXE 1+ ’1“

This ensures with (B-4) that II(«) is integrable, and we can define the control problem :

Vo = supE[l(e)]. (2.6)
acA
Financial example
Consider a financial market consisting of a money market account yielding a constant
interest rate r, and a risky asset (stock) of price process (S;); governed by :

dSy = B(St)dt +v(St)dWr.

We denote by Y; the number of shares in the stock, and by Z; the amount of money (cash
holdings) held by the investor at time ¢. We assume that the investor can only trade
discretely, and her orders are executed with delay. This is modelled through an impulse
control a = (74, &;)i>1 € A, where 7; are the decision times, and &; are the numbers of stock
purchased if £ > 0 or selled if & < 0 decided at 7;, but executed at times 7; + mh. The
dynamics of Y is then given by

Y, = Yo+ Y. &

Ti+mh<t

which means that discrete trading AY; := Y; — Y- = &; occur at times s = 7, + mh, i > 1.
In absence of trading, the cash holdings Z grows deterministically at rate r : dZ; = rZdt.
When a discrete trading AY; occurs, this results in a variation of cash holdings by AZ; :=
Zy — Zy- = —(AY;)Sy, from the self-financing condition. In other words, the dynamics of
Z is given by

t
7y = o+ / r Zudu — Z &Sy pmh-
0

Ti+mh<t



The wealth process is equal to L(S, Yy, Z;) = Z;+Y:S;. This financial example corresponds
to the general model (-3) with X = (S,Y,Z),b= (80r), 0 = (y00), and

s
I(s,y,z,e) = e

Z — €S

Fix now some contingent claim characterized by its payoff at time T : H(Sp) for some
measurable function H. The two following hedging and valuation criteria are very popular
in finance, and may be embedded in our general framework :

e Shortfall risk hedging. The investor is looking for a trading strategy that minimizes the
shortfall risk of the P& L between her contingent claim and her terminal wealth,

inf E [(H(ST) — L(Sr, Yr, ZT)>+] .

o Utility indifference price. Given an utility function U for the investor, an initial capital
z in cash, zero in stock, and x > 0 units of contingent claims, define the expected utility
under optimal trading

Vo(z.k) = supE|U(L(Sr, Y, Zr) - kH(Sp))|.
acA

The utility indifference ask price m,(k, 2) is the price at which the investor is indifferent

(in the sense that her expected utility is unchanged under optimal trading) between paying

nothing and not having the claim, and receiving 7, (k, z) now to deliver x units of claim at

time 7. It is then defined as the solution to

Vo(z + ma(k,2),6) = Vo(z,0).

2.2 Value functions

In order to provide an analytic characterization of the control problem (R.f), we need as
usual to extend the definition of this control problem to general initial conditions. However,
in contrast with classical control problems without execution delay, the diffusion process
solution to (R.J) is not Markovian. Actually, given an impulse control, we see that the
state of the system is not only defined by its current state value at time ¢ but also by the
pending orders, that is the orders not yet executed, i.e. decided between time ¢ — mh and
t. Notice that the number of pending orders is less or equal to m. Let us then introduce
the following definitions and notations. For any t € [0,T], k = 0,...,m, we denote by

Pt(k:) = {p:(ti,ei)lging([O,T]XE)k :ti—tl;lzh, iZQ,...,kj,
t—mh<ti§t,z’:1,...,k¢},

the set of k pending orders not yet executed before time ¢, with the convention that P;(0)
= (. For any p = (t;,€i)1<i<x € Pi(k), t € [0,T], k = 0,...,m, we denote

Ay = {o=(6)iz €A (1,€) = (ler), i =1k and 71 > £},

6



the set of admissible impulse controls with pending orders p before time ¢.
For any (¢t,2) € [0,T] xR%, p € Pi(k), k=0,...,m, and o € Ay, we denote by X4%:P:e
the solution to (P-J) for ¢t < s < T, with initial data X; = x, and pending orders p, i.e.

Xo = o [0t [ o)W+ S (O )~ Xy
t t t<T;+mh<s
Using standard arguments based on Burkholder-Davis-Gundy’s inequality, Gronwall’s lemma

and (B.3), we easily check that

E[ sup [XE"P92] < C(1+[af?), (2.7)
t<s<T

for some positive constant C' depending only on b, o, I' and T. We then consider the

following performance criterion :
4 t t
Ktopa) = E[ [ pxEeds s g(xpry Y axinn, 6],
¢ t<Ti+mh<T
for (t,z) € [0,T] xR, p € P(k), k=0,...,m, a = (1;,&); € A;p, and the corresponding

value functions :

up(t,z,p) = Seljlp Jp(t,z,p,), k=0,...,m, (t,x,p) € Dy,
«@ t,p

where D;, is the definition domain of vy, :
Dy = {(t,z,p) : (t,z) €[0,T] xR’ pe P(k)}.

For k = 0, P;(0) = ), and we write by convention vg(t,z) = vo(t,z,0), Dy = [0,T] x R so
that the original control problem in (P.6) is given by Vo = (0, Xo). Notice from (R.5) and
(B) that the functions vy, satisfy the linear growth condition on Dy :

"Uk(t,l’,p)’

< o0, k=0,...,m. (2.8)

3 Dynamic programming

In this section, we state the dynamic programming relation on the value functions of our
control problem with delay execution. For any ¢ € [0,T], a = (74, &)i>1 € A, we denote :

t,a) = inf{i>1 :7>t—mh} -1 € NU{oo}, (3.1)
k(t,a) = card{i>1 :t—mh<7 <t} € {0,...,m}, (3.2)
plt,a) = (Titu(t,a) Sitilta))i<i<k(ta) € Pi(k(t,a)). (3.3)

Theorem 3.1 The value functions satisfy the dynamic programming principle : for all k
= 07"'7m7 (t7x7p) 6 ,Dk7

0
Ve (t’ x, p) = sup E { / f(X;’m’p’a)dS + Z C(Xé;ff;:h)_ s 5@)
aEALp t Ti+mh<0
+ Oy, (6 X5 p(0, )] (3.4)
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where 6 is any stopping time valued in [t,T], possibly depending on o in (B4). This means
(1) for all @ € Ay, for all @ stopping time valued in [t, T,

0
wltap) = B[ [ foxeradss 3 X, 6)
t

t<1;+mh<0
+ k) (0, X577, p(6, ). (3.5)

(i1) for all e > 0, there exists o € Ay such that for all @ stopping time valued in [t,T],

0
w(tap)—c < B[ [ pmraass Y X, 6
t t<Ti+mh<60

+ Uk(@,a) (07 X£7x’p’a7p(67 Ck)) . (36)

We now give an explicit consequence of the above dynamic programming that will be
useful in the derivation of the corresponding analytic characterization. We introduce some
additional notations. For all ¢t € [0,7T], we denote by Z; the set of pairs (7,£) where 7 is a
stopping time, ¢t < 7 a.s., and £ is a F,-measurable random variable valued in F. For any p
= (ti,ei)1<i<k € Pi(k), we denote p_ = (t;, €;)2<i<k With the convention that p_ = () when
k=1

When no impulse control is applied to the system, we denote by X5"9 the solution to
(B1)) with initial data X; = x, and by £ the associated infinitesimal generator :

Lo = b(x).Dyp+ %tr(aa'(m)Dgcp).
For k € {1,...,m}, we partition the set P;(k) into P;(k) = P}(k) U P?(k) where
Pl(k) = {p = (i, e)1<i<k € Pi(k) ity >t — h}
Pi(k) = {P = (ti,ei)1<i<k € Pp(k) 1t <t— h}.

We easily see from the lag constraint on the pending orders that P?(k) = 0 iff k = m, and
so Py(m) = P(m).
Corollary 3.1 Let (t,z) € [0,T) x R%.

(1) For k € {1,...,m}, and p = (t;,€i)1<i<k € PL(k) such that t; + mh < T, we have for
any stopping time 6 valued in [t, (t + h) A (t1 +mh)) :

0
vp(t,z,p) = E[/t f(Xz’m’O)ds—|—vk(«9,X§’$’0,p)]. (3.7)

(2) Fork € {0,...,m—1}, and p = (t;,;)1<i<. € P?(k) such that t1 +mh < T, with the
convention that P?(k) = 0 and t; +mh = T when k = 0, we have for any stopping time 0
valued in [t, (t; +mh) A (t+h)) :

0
’Uk(t, xap) = sSup E |:/ f(Xg,x,O)dS + ’Uk(e, X;7x7oap)10<’r (38)
(T, €)€Ls t

+ ’Uk+1(9, ng’Oap U (T’ 5))1T§9] )



Interpretation and remarks

(1) P!(k) represents the set of k pending orders where the last order is within the period
(t — h, t] of nonintervention before ¢. Hence, from time ¢ and until time (¢ + h) A (t1 +mh),
we cannot intervene on the diffusion system and no pending order will be executed during
this time period. This is mathematically formalized by relation (B.7).
(2) P2(k) represents the set of k pending orders where the last order is out of the period of
nonintervention before t. Hence, at time ¢, one has two possible decisions : either one lets
continue the system or one immediately intervene. In this latter case, this order adds to
the previous ones. The mathematical formalization of these two choices is translated into
relation (B.g).

In the next sections, we show how one can exploit these dynamic programming relations
in order to characterize analytically the value functions by means of partial differential
equations, and then to provide an algorithm for computing the value functions.

4 PDE system viscosity characterization
For k = 1,...,m, let us introduce the subspace Oy of [0, T]" :
o, = {t(’“) = (t)1<ich € [0, Tty —ty <mh, t; —ti1 > h, i=2,.. k}

We shall write, by misuse of notation, p = (t;,€i)i<i<k = (t®), e®)), for any t*) =
(ti)i<i<k € Op, elk) = (ei)i<i<k € E*. By convention, we set O, = EF = () for k =
0. Notice that for all t € [0, 7], and p = (t*) e®)) € @, x E¥, k = 0,...,m, we have

p € P(k) < teTy(k),
where T),(k) is the time domain in [0, 7] defined by :
Tp(k) = [tk t1 +mh) 0 [t T].

By convention, we set T, (k) = [0,T] for k = 0. We can then rewrite the domain D}, of the

value function v in terms of union of time-space domains :
Dy = {(t,x,p) s (t,x) € Ty(k) xR, p € O x Ek}

Therefore, the determination of the value function vy, £ = 0,...,m, is equivalent to the
determination of the function wvg(.,.,p) on Tp(k) x R? for all p € O x Ej;. The main goal
of this paper is to provide an analytic characterization of these functions by means of the
dynamic programming principle stated in the previous section.

For £k =1,...,m, we denote

@km = {t(k) = (ti)lﬁigk € ®k : tl —+ mh S T}, @k(m) = @k \ @Zl,
and we define the “m-interior” of Dy by :

Dt = {(t,x,p)eDk :pGG)ZLxEk}.

9



For k = 0, we set Dy* = [0,T) x R%. For p = (t;,¢;)1<i<k € O x E¥, we partition the time
domain T, (k) into Ty (k) = Tj(k) U T2(k) where

T (k) {t e Ty(k) :t<ty+ h} = [te, (s + h) A (t1 +mh))

To (k)

{teTyk) t=te+n} = [t +h b +mh),

with the convention that [s,t) = 0 if s > ¢t. We then partition D} into D}* = D,ﬁ’m U Di’m
where

DI = {(ta,p)€DP ite T;,(k)}

D" = {(t,z,p) € D' :te']r,%(k:)}.

Notice that for k = 1,...,m, and any p € O] x EF, ']I'Il)(k:) is never empty. In particular,
Di’m # (. For k = m, and any p = (t;,€;)1<i<m € Om X E™, we have t,,, + h > t; + mh,
and so T5(m) = . Hence, D™ = () and D™ = D"

The PDE system to our control problem is formally derived by sending 6 to t < t1 +mh
into dynamic programming relations (B.7)-(B-§). This provides equations for the value
functions v, on D}, which take the following nonstandard form, and are divided into :

8?}k

—E(t,x,p)—Evk(t,x,p)—f(x) = 0 on Dé’m, E=1,...,m, (4.1)

min{ - %(t,m,p) — Lo (t,z,p) — f(x),

vg(t, z,p) — sup vgy1 (¢, z,p U (¢, 6))} =0 on DZ’m, E=0,...,m—1, (4.2)
ecE

with the convention that Dg’m =Dy =[0,T) x R4

As usual, the value functions need not be smooth, and even not known to be continuous
a priori, and we shall work with the notion of (discontinuous) viscosity solutions (see [[j] or
[f] for classical references on the subject), which we adapt in our context as follows. For
a locally bounded function wy on D}, we denote wy (resp. wy) its lower semicontinuous
(resp. upper-semicontinuous) envelope, i.e.
wi(t,z,p) = liminf — wi(t, 2, p),
— (2" ,p")—=(t,:z,p)
wg(t,x,p) = limsup — wg(t,2',p"), (t,z,p) € D, k=0,...,m.
(#" 2" ,p")—=(t,:z,p)
Definition 4.1 We say that a family of locally bounded functions wy, on D", k =0,...,m,
is a viscosity supersolution (resp. subsolution) of (EA)-([HD) on D, k = 0,...,m, if :
(i) for all k = 1,...,m, (to,x0,p0) € D;’m, and ¢ € CZ(Di’m), which realizes a local
mianimum of wy, — ¢ (resp. mazimum of Wy, — ¢ ), we have

0
—a—f(to,ﬂfo,l?o)—ESD(fo,SUO)—f(l“o) > 0 (resp. < 0).

10



(ii) for all k = 0,...,m — 1, (to,z0,po) € DZ’m, and ¢ € CQ(DZ’m), which realizes a local
mianimum of wy — ¢ (resp. mazimum of Wy, — ), we have

. 0
min { — a—f(to,iﬂo,Po) — Lo(to, xo,po) — f(zo) ,

wi(to, To, po) — sup wey1(to, 2o, po U (to,€))} > 0

ecE
(resp.
min { — g—f(to,wo,po) — L(to, x0,po) — f(x0) ,
W (to, o, po) — zggm(toaﬁﬂoapo U(to,e))} < 0)
We say that a family of locally bounded functions wy on D}*, k = 0,...,m, is a viscosity

solution of ([EA)-([lA) if it is a viscosity supersolution and subsolution of (J.1])-(f.).

We then state the viscosity property of the value functions to our control problem.

Proposition 4.1 (Viscosity property)
The family of value functions v, k = 0,...,m, is a viscosity solution to (f1])-([E3D). More-
over, for allk = 0,...,m—1, (t,z,p) € D, p = (ti, €i)1<i<k witht =t + h, we have :
vk(t, z,p) > supvgy1(t, z,p U (t,e)). (4.3)
eceE
In order to have a complete characterization of the value functions, and so of our control
problem, we need to determine the suitable boundary conditions. These concern for k =
1,...,m the time-boundary of D}*, i.e. the points (t; +mh,x,p) for x € R?, p = (t;, €i)1<i<k
€ O x E* and also the complement set of D™ in Dy,. For a locally bounded function wy,
on D", k =1,...,m, we denote
Wi (t1 + mh,z,p) = lim sup wy(t, 2, p),
(t,z',p") = (t1 + mh, z,p)
(t,z’,p') € DI
wy(t1 +mh,z,p) = lim inf vp(t, 2 p'), = €RL p=(t;,e)i1<i<k € OF,

(t,a',p') — (t1 + mh, z,p)
(t,a',p") € D

and if these two limits are equal, we set
wi((t1 +mh)”,xz,p) = Wg(t1 +mh,x,p) = wi(ti +mh,z,p).
We also denote for a locally bounded function wg on [0,T) x R :

wo(T,z) = limsup wo(t,2'), wo(T,z) = lim inf wo(t,z'), zeRY,
t/Tax'—x t/Tx'—x

and if these two limits are equal, we set wo(T~,x) = Wo(T, ) = wo (T, ). The complement
set of D' in Dy, is

Di(m) = D\ Dy = {(t,,p) € Dy :pE@k(m)xEk}.

11



Proposition 4.2 (Boundary data)
(i) Fork =1,...,m, p = (t;,e;)1<i<k € O x E¥, x € RY, vi((t1 +mh)~,z,p) exists and :

vp((t1 +mh)”,z,p) = c(z,e1) +vp_1(t1 + mh,I'(x,e1),p-). (4.4)

(ii) For k = 1,...,m, we have :
T t,x,0
wtap) = B[ [ F050)ds 49005, (tap) €Dim). (45)
t

We can now state the unique PDE characterization result for our control delay problem.

Theorem 4.1 The family of value functions vi, k = 0,...,m, is the unique viscosity

solution to ([1))-(L2), which satisfy (L), the boundary data (EA)-({H), and the linear
growth condition (R.8). Moreover, vy, is continuous on D and on Dg(m), k = 0,...,m.

Remark 4.1 (Case m = 1)

In the particular case where the execution delay is equal to the intervention lag, i.e. m =
1, we have two value functions vy and vy, and the system ([L1))-([.3) may be significantly
simplified. Actually, from the linear PDE ([i.1]) and the boundary data ([£4) for k = m =
1, we have the Feynman-Kac representation :

t1+h
vi(t,z, (t,e1)) = E[ / FXE"0)ds + e(X]270, €) + volty + h,P(Xf;ﬁg,e))} (4.6)
t

for all (t1,e1) € [0,T — h] x E, (t,z) € [t1,t1 + h) x R%. By plugging (.4) for t = ¢; into
(D) for k = 0, we obtain the variational inequality satisfied by v :

avo
0= ’{———E —f, 47
min o vo— f (4.7)
t+h
vy — SupE[ f(XE=0Yds + C(X:f,’LO, e) +vo(t + h, F(X:f,;o, e))} } on [0,T —h] x R,
eck t

together with the terminal condition for k& = 0 (see (p.1)) :
T
wit,z) = E[ / F(XE®0)ds + g(X;va)}, (t,x) € (T —h,T] x RY.  (4.8)
¢

Therefore, in the case m = 1, and as observed in [[I4], the original problem is reduced to
a no-delay impulse control problem ([.7) for vg, and vy is explicitly related to vy by (f.6).
Equations ([.7)-(f.§) can be solved by iterated optimal stopping problems, see the details
in the next section in the more general case m > 1.

Remark 4.2 In the general case m > 1, we point out the peculiarities of the PDE char-
acterization for our control delay problem.

1. The dynamic programming coupled system ([.1))-(.J) has a nonstandard form. For
fixed k, there is a discontinuity on the differential operator of the equation satisfied by vy
on D;*. Indeed, the PDE is divided into a linear equation on the subdomain Di"m, and
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a variational inequality with obstacle involving the value function vg1; on the subdomain
Dz’m. Moreover, the time domain T, (k) of D} for vy(.,z,p) depends on the argument p €
©7". With respect to usual comparison principle of nonlinear PDE, we state an uniqueness
result for viscosity solutions satisfying in addition the inequality (f.J) at the discontinuity
of the differential operator.

2. The boundary data also present some specificities. For fixed k, the condition in ([.4)
concerns as usual data on the time-boundary of the domain D} on which the value function
vy, satisfies a PDE. However, it involves data on the value function vy_1, which is a priori not
known. The condition in (JL.5) for v concerns the complement set of D', and is explicitly
known. Notice also that we do not need to specify in Theorem [£.1] the boundary data for
vg. Actually, this will be derived in (B.]]) as a direct consequence of (L.H) for £ = 1 and the
PDE equation ({3) for k = 0.

3. The continuity property of the value functions v on D} is not at all obvious a priori from
the very definitions of vy, and is proved actually as consequences of comparison principles
and boundary data for the system (f.1)-(B.9), see Proposition [.4. The continuity of vy,
on Dy (m) is obvious from the boundary data (f.5). We mention, however, that the value
functions vg, k > 1, are not continuous in general on their whole domain Dj, : there is
a discontinuity at points (T, z,p) with p = (t;,€i)1<i<k € Ok s.t. t1 +mh = T. Indeed,
from the very definition of the value functions, we have for such points v (T, z,p) = g(x)
(and also vo(T,x) = g(x)), while from ([.4), we have vy (T, z,p) = c(x,e1) + g(x). Hence,
(T, z,p) # vi(T ™, z,p) once c(z,e1) # 0.

The PDE characterization in Theorem [I.] means that the value functions are in theory
completely determined by the resolution of the PDE system ([1))-(.9) together with the
boundary data (f.4)-(l.3). We show in the next section how to solve this system and
compute in practice these value functions and the associated optimal impulse controls.

5 An algorithm to compute the value functions and the op-
timal control

5.1 Computation of the value functions

We first make the following observation. Let us denote by Fy the function defined on
[0,T] x R? by

Fo(t,l') = Supvl(tama (tae))
eck

From ([L.H) for & = 1, we deduce that for all e € E,

T
Fo(t,z) = vi(t,a, (te)) = E[ /t FXE=0)ds + g(X%x’O)], (t,x) € (T — mh,T] x R

F
This function Fy clearly satisfies the linear PDE : —% — LFy — f = 0. Hence, with (f.9)
for k = 0, this shows that
vo(t,x) = Fo(t,x), (t,x) € (T —mh,T] x RY, (5.1)
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and in particular, vo(T~,z) = Fy(T,x) = g(x). Together with the PDE ({£3) for k = 0,
and a standard uniqueness result for the corresponding free-boundary problem, this proves
that vg may also be represented as the solution to the optimal stopping problem :

UO(t’x) = 2171_13 E[FO(T’ Xftr7m70)]a (t,:ﬂ) € [O’T] X Rd’ (52)
7€,

where 7; 7 denotes the set of stopping times 7 valued in [t,T]. Hence, the value function
vg is completely determined once we can compute vy.

We show how one can compute vg(.,.,p) on T, (k) x Réforallpe OpxEF k=1,...,m
and v on [0, 7] x R4

For kK =1,...,m, and any n > 1, we denote :
Ok(n) = {t(k) = (ti)1<i<k €O t1 >T — nh},
N = inf{n>1 :T —nh <0},

so that O(n) is strictly included in Og(n+1) forn =1,...,N —1, and Ox(N) = O. We
also denote for k = 0, and n > 1, T"(0) = (T' —nh,T] N [0,T] so that T"(0) = (T'— nh, T]
is increasing with n = 1,..., N — 1, and TV (0) = [0, T]. We assumed T —mh > 0 to avoid
trivialities so that N > m. We denote for K =0,...,m,and n = m,..., N,

Di(n) = {(ta.p) € D :p€Okn) x B},

DI'(n) = De(m)NDF = {(t,2,p) € Dy :p e OF(n) x B*}, OF () = O(n) \ Ox(m)

>,
ESISE
3
G
I

Di(n) NDE™ = {(t,x,p) eDMn) :te T;‘,(k)}, i=1,2,

with the convention that Dg(n) = T™(0) x R%, so that Dy (n) is strictly included in Dy (n+1)
forn=1,...,N — 1, and Dx(N) = Di. We shall compute vy on Di(n), k = 0,...,m, by
forward induction on n = m,..., N and backward induction on k.

» Initialization phase : n = m. From ([LJ) and (b.1)), we know the values of vy on
Di(m), k=10,...,m:

witap) = B[ [ 7K g5,

» Stepn — n+1forn € {m,...,N —1}. Suppose we know the values of vy on Dg(n),
k =0,...,m. In order to determine v on Di(n + 1), k = 0,...,m, it suffices to compute
Vg(+y . p) on Ty(k) x R for all p € O (n+1) x EX, k= 1,...,m, and vy on T"1(0) x RY.
We shall argue by backward induction on k = m,...,0.

e Let k = m, and take some arbitrary p = (¢;, €i)1<i<m € O (n+1) x E™. Recall that
T2(m) is always empty so that Ty(m) = Ty(m) = [tm,t1 + mh). From (E4) for k =
m, we have v, ((t1 +mh)™,z,p) = c(x,e1) + vm_1(t1 + mh,T'(z,e1),p-) for all z €
R?, which is known from step n since either p_ € Om_1(n) x E™ 1 when m > 1, or
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t1+mh € T"(0) when m — 1 = 0. We then solve vp,(.,.,p) on ']I'Il)(m) x R? from ([1])
for k = m, which gives :

t1+mh £2.0
wtan) = B[ [ FE s oKL )

+ vp—1(t1 + mh, P(Xfl’”i?nh, e1),p—)}-

We have then computed the value of vy, (.,.,p) on T,(m) x RZ.

From k+1 — k for k = m —1,...,1. (This step is empty when m = 1). Suppose
we know the values of vg41(.,.,p) on Ty(k +1) x R? for all p € O, | (n 4 1) x EFFL
Take now some arbitrary p = (t;,€;)1<i<x € OF(n + 1) x E¥. We shall compute
(-, -, p) successively on T2 (k) x R (if it is not empty) and then on T} (k) x R?, and
we distinguish the two cases :

(i) T2(k) = 0. This means tj, + h > t; +mh, and so Ty(k) = T,(k) = [ty t1 +mh).
We then compute v(.,.,p) on T,(k) x R? as above for k = m :

t1+mh £.2.0
wtap) = B[ [ X005+ (X[ 001
t
+ vp_1(t1 + mh,I’(X:ﬁ?nh, €1),p—)|,
where the r.h.s. is known from step n since either p_ € ©;_1(n) x E¥~! when k > 1,
or t; +mh € T"(0) when k — 1 = 0.
(ii) T2(k) # 0. This means tj, + h < t1 + mh, and so T}(k) = [ty tx + k), Ta(k) =
[tk + h,ty +mh). For all (t,z) € Ty(k) x R, and e € E, we have p’ = pU (t,e) €
01 (n+1)x E*1 and (t,x) € Ty (k+1) x RY. Hence, from the induction hypothesis

at order k + 1, we know the value of the function :

Fpp(t,z) = supvepa(tz,pU(te), (t,x)€ Th(k) x RY
eclF

We also know from step n the value of the function :
Grplz) = c(z,e1) +vp_1(t1 +mh,T(z,e1),p-), z€R™L

Then, from the PDE (Jt.9) and the terminal condition ({.4) at k, we compute v (., ., p)
on Tf,(k) x R? as the solution to an optimal stopping problem with obstacle F}, , and
terminal condition Gy, :

Uk (tv z, p) = sup E[Fk,p(7—7 Xftr7$70)17—<t1+mh

TET 11 +mh

+ Grp(XP7 O cpmnl,  (t2) € T2(k) x R

In particular, by continuity of vx(., ., p) on T,(k), we know the value of limy ¢, 44 v (t, 2, p)
= vi(tx + h,p). We then compute vg(.,.,p) on ']I‘Ilj(k:) x R from ([1)) :

tr+h
we(t,z,p) = E[ / FXE"0)ds + vp(ty + h,Xf};ﬁ%,p)].
t
We have then computed the value of vy(.,.,p) on Tp(k) x R,
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e From £k = 1 — k = 0. From the above item, we know the value of v(.,.,p) on
T,(1) x R for all p € ©1(n + 1) x E. Hence, we know the value of :
Fy(t,x) = supwi(t,x, (te)), V(t,x) € T"(0) x R%
eck

From (F-3), we then compute vg on T""1(0) x R? as an optimal stopping problem
with obstacle Fj.

We have then calculated wvy(.,.,p) on Tp(k) x R? for all p € O (n+1) x E* and v
on T"*1(0) x R?, and step n + 1 is stated. Finally, at step n = N, the computation
of the value functions is completed since Dx(N) = Dy, k = 0,...,m.

5.2 Description of the optimal impulse control

In view of the above dynamic programming relations, and the general theory of optimal
stopping (see [§]), we can describe the structure of the optimal impulse control for V =

v0(0, Xo) in terms of the value functions. Let us define the following quantities :

» Initialization : n = 0
e given an initial pending order number k = 0, we define

?1(0) = inf{t>0 : vo(t, X&) = supwy (t, X&°, (t,e)} AT,
ecl

~(0) -(0 £, (0)
eg € argrgleaé(vl(ﬁ(), ‘;1(0),(7'1( ,€)).

If ?1(0) 4+ mh > T, we stop the induction at n = 0, otherwise continue to the next
item :
e Pending orders number k — k + 1 (this step is empty when m = 1) from k =1 :
?,g(_?l = inf {t > ﬁgo) +h
ot X = sup o (6, X7 (7, 67) o U (L)} AT,

eck

© HOIFON

= ~(0) a* ~(0)
€rt1 c arg maXUk+1(Tk+17 X~(0) ’ ( i € )i<i<n U (Tk+17 e)).
ecE Tr41 - =

As long as ﬂgo) < ~1(0) + mh, increment k — k+1 : 7~_}§0) — %k()(jr)l’ until

ko = sup {k : %Igo) < 7:1(0) +mh} € {1,...,m},
and increment the induction on n by the following step :
»n —n+1:

e given an initial pending orders number k = k,, — 1, we define

7Y = b {e > (7Y 4 mh) v (7Y +h)
v, (XY pa-) = supu,, (t, X Pu-U(t.e)} AT,
ec

~(n+1) ~n+l ya* ~n+1
€, € argrgleaéwkn(ﬁ 7X7~_1n+17pn—U(Tkn ,e)),
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where we set p,,- = (%Z-(n), égn))%igkn. We denote %1(n+1) = 7~_2(n) if k, > 1, and %1(n+1)
= %5:1 if k, =1. If 7~_1(n+1) + mh > T, we stop the induction at n + 1, otherwise

continue to the next item :

e Pending orders number k — k + 1 (this step is empty when m = 1) from k = k, :

7:,&1—;1) = inf {t > 7~_]§n+1) +h
* * ~ 1 - 1
ol X77) = sup gt X7, fy- U FrD Y Ute) AT
ec
~(n+1 ~(n+1 * ~ ~(n+1) ~(n+1 ~(n+1
el(:kl ) € argmax Uk+1(7'1$1 )a ix(n-kl),pn_ U (Tz(n )’ egn ))kngigk U (7—]4(;11 )’ 6))
ecl Trt1
As long as 7~_]§n+1) < ~1(n+1) + mh, increment k — k+1 : 7~_]§n+1) — %,gr_:l), until
kny1 = sup {k: : 7~_]§n+1) < ~1(n+1) +mh} € {1,...,m},

and continue the induction on n : n — n + 1 until %1(n+1) +mh >T.

) é(n)) _
s CL kn_1<k<kn,T =
0,...,N}, where N = inf{n >0 : ?1(") +mh > T}, and we set by convention k_; = 1.

The optimal impulse control is given by the finite sequence {(ﬂgn

6 Proofs of main results

6.1 Dynamic programming principle

From the dynamics (E) of the controlled process, we derive easily the following properties
(recall the notations (B.1)-(B-2)-(B.3)) :

e Markov property of the pair (X%, p(.,«)) for any a € A, in the sense that

E|o(X5)|Fo | = E|o(X3,)|(X8,p(01,0),

for any bounded measurable function ¢, and stopping times #; < 05 a.s.

e Causality of the control, in the sense that for any a = (7,§)i>1 € A, and 0 stopping
time,

ol e Agpo,a), and p(0,a) € k(f,a) a.s.

) 0 __
where we set @’ = (Tiy,(9,a), Site(0,0))i>1-

e Pathwise uniqueness of the state process,
t,,p,0 0
xbtrpa _ x0.X, p(0e),a” 0,7,

for any (t,z,p) € Dy, k =0,...,m, o € Ay, and 0 € T; 1 the set of stopping times valued
in [¢,T].

From the above properties, we deduce by usual arguments the inequality (@) of the
dynamic programming principle, which can be formulated equivalently in
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Proposition 6.1 For allk =0,...,m, (t,z,p) € Dk, we have

0
wtap) < swp b B[ [ foimreyds s 3 dxfinn, 6)
ac€Asp 0cTer ¢ t<T;+mh<0

+ Uk(e,a)(av Xg,x,p,a7p(67 O‘))} :

Proof. Fix (t,z,p) € Dy, k = 0,...,m, and take arbitrary a € A;,, § € Ty 7. From
the definitions of the performance criterion and the value functions, the law of iterated
conditional expectations, Markov property, pathwise uniqueness, and causality features of
our model, we get the successive relations

0
Jk (t, L, P, Oé) = E |:/ f(X§7$7p7a)d5 + § : C(Xé;ff;:h)— ’ 5@)
t

t<tT;+mh<60

T
+E[ [ e 1 g -3 X, 6)
o 0<t;+mh<T

0
= B[ rxeass Y dxi, 6

t<71;+mh<6

+ Jio (6, X577, p(6, ), 0”)]

7

0
< B[ [ foxreyise 3 X, 6)
t t<ti+mh<60
t7 b ol
+ Vk(6,0) (0, Xy e, (b, a))] :
Since # and « are arbitrary, we obtain the required inequality. O

As usual, the inequality (B.§) of the dynamic programming principle requires in addi-
tion to the Markov, causality and pathwise uniqueness properties, a measurable selection
theorem. This inequality can be formulated equivalently in

Proposition 6.2 For allk = 0,...,m, (t,z,p) € Dy, we have

0
wtap) = swp swp B[ [ fxereyds s 3 xfenn, 6)
CVG.At,p 967;&7T t t<n-+mh§9

+ Vk(0,0) (95 X;,I,p,a,p(e’ O[))i| :

Proof. Fix (t,z,p) € Dy, k =0,...,m, and arbitrary a € A;,, § € 7, 7. By definition of
the value functions, for any € > 0 and w € (2, there exists a:w € Ag(w) p(9(w),a(w)), Which is
an e-optimal control for vy(g(w),a(w)) at (H,Xé’x’p’a,p(ﬁ, a))(w). By a measurable selection

theorem (see e.g. Chapter 7 in [fJ]), there exists a. € Agpg,a) 5t. Qc(w) = acw(w) as.,

and so
Vk(8,a) (9, Xé,m,p,a,p(e’ Oé)) —e < Jk(@,a) (Ha X;,x,p,a,p(e’ a)’ 5‘8) a.s. (61)

Now, we define by concatenation the impulse control & consisting of the impulse control
components of « until (including eventually) time 7, and the impulse control components
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of a. strictly after time 7. By construction, & € Ay, XH%P% = X2 on [t, 0], k(0,a) =
k(0,a), p(0,a) = p(6,a), and &’ = a.. Hence, similarly as in Proposition [.1], by using law
of iterated conditional expectations, Markov property, pathwise uniqueness, and causality
features of our model, we get

6
Itopa) = B[ [ poceradse 3 X, 6
¢ t<Ti+mh<0

+ Jk(g,a) (9, X57$7p70£’ p(e, OZ), dE)] .

Together with (B.1]), this implies

0
wltap) = Jtopa) = B[ [ foceradse 3 X, 6
¢ t<ti+mh<60

+ Vk(0,0) (07 Xé7$7p7a7 p((g? Oé)):| —¢&.

From the arbitrariness of €, «, and 6, this proves the required result. O
We end this paragraph by proving Corollary B.1.

Proof of Corollary B.1].

(i) Fix k € {1,...,m}, (t,z) € [0,T] x RY, p = (i, ei)1<i< € P(k) such that t; + mh <
T, and 6 stopping time valued in [¢, (t; + h) A (t1 + mh)). Then, we observe that for all «
= (15,&)i>1 € App, Xb0PY = X5®0 on [t 0], 7, +mh > 0, k(0,a) = k, and p(f,a) = p a.s.
Hence, relation (B.7) follows immediately from (B.4).

(ii) For k € {0,...,m—1}, p = (t;,e:)1<i<k € P2(k) such that t; + mh < T, and 6 stopping
time valued in [¢, (t; +mh) A (t+h)). Let a = (73,&;)i>1 be some arbitrary element in Ay p,
and set T = 741, & = &1 Notice that (7,€) € Z;. Then, we see that X5%P@ = X0 on
[t,0], i +mh > 0, k(0,a) =k, p(0,a) =pif @ < 7,and k(0,a) = k+1, p(0,a) = pU(7,§)
if & > 7. We deduce from (B.F) that

(%
w(tz,p) > E| / FXE"0)ds +vp(0, X" p)1g<sr
t
+ UkJrl(av X;w’Oap U (T7 g))lTS‘g] ’

and this inequality holds for any (7,&) € Z; by arbitrariness of a. Furthermore, from (B.6),
for all € > 0, there exists (7,&) € Z; s.t.

0
wltap) —e < B[ [ FXE0ds +oul6, X5 p)loer
t
‘|‘ Uk—l—l(a’ X57m70’p U (Ta 5))1T§9} :

The two previous inequalities give the required relation

0
vk(t, xap) = sup E[/ f(Xg,x,O)dS + vk(ea X;7x70ap)19<’r
(T,8)€L: t

+ ’Uk+1(9, ng’Oap U (T’ 5))1T§9] :
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6.2 Viscosity properties

In this paragraph, we prove the viscosity property stated in Proposition [L.]. We first state
an auxiliary result, which can be proved similarly as in Lemma 5.1 in [[[(]. For any locally
bounded function v on D, 1, k = 0,...,m — 1, we define the locally bounded function Hu
on DZ’m by Hu(t,z,p) = sup.cpu(t,z,pU (t,e)).

Lemma 6.1 Let u be a locally bounded function on D}, k = 0,...,m — 1. Then, Hu is

upper-semicontinuous, and Hu < Hu.

Proof. Fix some (t,z,p) € Di’m, and let (¢, Zn, pn)n>1 be a sequence in Di’m converging
to (t,x,p) as n goes to infinity. Since w is upper-semicontinuous, and E is compact, there

exists a sequence (e,), valued in E, such that
Hﬂ(trw xrupn) - ﬂ(trw xnapn U (tna en))7 n Z 1
The sequence (ey,), converges, up to a subsequence, to some é € F, and so

Hﬂ(t, xap) Z ﬂ(t? x,p U (t’ é)) 2 hm Supﬂ(tn’ T, Pn U (tn’ en)) = hm Sup Hﬂ(tn, xnapn)a
n—oo n—oo
which shows that Hu is upper-semicontinuous.
On the other hand, fix some (t,z,p) € Dz’m, and let (t,,2n,pn)n>1 be a sequence in
Dz’m converging to (t,z,p) s.t. Hu(t,, Tn,pn) converges to Hu(t, z,p). Then, we have

Hu(t7x7p) = lim Hu(trwxnapn) S thUPHﬂ(tnaxmpn) S Hﬂ(t7x7p)7

n—0oo n—oo
which shows that Hu < Hu. O
Now, we prove the sub and supersolution property of the family vi, £ = 0,...,m.

There is no difficulty on the domain D,ﬁ’m since locally no impulse control is possible.
Hence, in this case, the viscosity properties can be derived as for an uncontrolled state
process, and the proof is standard from the dynamic programming principle (B.7), see e.g.
[[3. Notice that since the domain T}(k) is of the form [ty, (tx + h) A (t1 + mh)), we have
no problem at the boundary. Indeed, this set is open at (t; + h) A (t1 + mh), which is
the usual situation, and the closedness at t; does not introduce difficulties, as the value
function is not defined before f;. Hence, when taking approximations of the upper and
lower semicontinous envelopes of v, we only need to consider points of the domain such
that ¢ > t5, where the dynamic programming relation (B.7) holds. The proof of the viscosity
property of the value functions vy, to (.3) on DZ’m is more subtle. Indeed, in addition to the
specific form of equation ([.9), we have to carefully address the discontinuity of the PDE
system ([L1)-(E2) on the left boundary of Tg(k‘). In the sequel, we focus on the domain
D™k =0,...,m— 1.

Proof of the supersolution property on Dz’m.

We first prove that for k = 0,...,m — 1, (to, zo,po) € Di’m :

v (to, o, po) > sup V41 (to, 2o, po U (to, €)). (6.2)
ec
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By definition of vy, there exists a sequence (t,, Z,pn)n>1 € Dj' such that :

Uk(tn,ﬂ?n,pn) - U_k(thanpo) with (tnaxn,pn) - (tO,xO,pO)- (6'3)

We set pg = (t?, 6?)1§i§k7 pn = (t', e')1<i<k, and we distinguish the two following cases :

o If tg > 9 + h, then, for n sufficiently large, we have t, > % + h, i.e. p, € an (k).
Hence, from the dynamic programming principle by making an immediate impulse
control, i.e. by applying (B.§) to vi(tn, n,pn) with § = 7 = t,,, and e € E, we have

Uk(tnaCUnapn) > Ulc—i—l(tn,xnapn U (tnae)) > Ulc—l—l(tn,xnapn U (tnye))-

By sending n to infinity with (.3), and since vg 1 is lower-semicontinuous, we obtain
the required relation (B.g) from the arbitrariness of e in E.

o if tyg = t% + h, we apply the dynamic programming principle by making an impulse
control as soon as possible. This means that in relation (BH) for vg(ty, xn,ppn), we
choose av = (73, &)i>1 € Aty pny 0 = Thp1 = On =t V(£ + 1), 41 = e € E, so that :

On
Ot opa) = E| [ F(XDds+ YD X &)

tn tn <Ti+mh<0,
+ Uk-i—l(ena Xann,pn U (en’ e))] :

Here X" := X'®n0_ Since t,,, 6,, — to, Pn — Po, Xg — xo a.s., as n goes to infinity,
and from estimate (R.7)) and the linear growth condition on f, ¢, vpy1, we can use the
dominated convergence theorem to obtain :

vk(to, 0, Po) > vit1(to, zo, po U (to,€)),
which implies (.3) from the arbitrariness of e € E.

Finaly, in order to complete the viscosity supersolution property of v to () on Dz’m, it
remains to show that vy is a supersolution to :

8?}k

—E(t,x,p)—Evk(t,ﬂ:,p)—f(:c) > Oa

on Dz’m. This proof is standard by using the dynamic programming relation (B.§) with 7
= oo and Itd’s formula, see [[J] for the details. O

Proof of the subsolution property on Di’m.

We follow arguments in [[[q]. Let (to, 2o, po) € Dz’m and ¢ € C12 (Dz’m) such that v (tg, o, po)
= ¢(to, 0, po) and ¢ > T on Di’m. If ©%(to, 0, po) < HUgt1(to,xo,p0), then the subso-
lution inequality holds trivially. Now, if vg(to, zo,po) > HUk11(to, Zo,p0), We argue by
contradiction by assuming on the contrary that

0
n = —a—f(to,xo,po)—£§0(t071’0=p0)_f(x0) > 0.
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We set pg = (¢? eo)lgigk- By continuity of ¢ and its derivatives, there exists some d > 0

17

with o + 8 < (£ + mh) A T such that :

|

|

|
[

|
~
vV

|3

5. on ((to—d.to +0) x B(xo,0) x B(po,6)) N1 D" (6.4)

From the definition of Ty, there exists a sequence (t,, Zn, Pn)n>1 € ((to—9,to+0) x B(xo, d) X
B(pg,0)) N Di’m such that (t,, xn,pn) — (to,zo,po) and vg(tn, Tn, Pn) — Vr(to, o, po) as
n — oo0. By continuity of ¢ we also have that v, := vi(tn, Tn,Pn) — @(tn, Tn, pr) converges
to 0 as n — oo. We set p, = (t7, €")1<i<k. From the dynamic programming principle (B.§),
for each n > 1, there exists a control (7",£") € Z;, such that

On,
Uk(tnaxnapn) - gén S E |: f(Xg)dS + Uk(anannapn)1€n<Tn
tn
+ UkJrl(ana X€n7pn U (Tn7 gn))lTnSGn] . (65)

Here X" := X'®n0 we choose 0, = U, A (tn, +6y,), with 9, = inf{s > t,, : X? ¢ B(xn, 3)},
and (0,,), is a strictly positive sequence such that

On the other hand, from Lemma [.1], we have

Hug41(to, o, p0) < HUgri(to, To,p0) < Tg(to,zo,po) < @(to,xo,po).

Hence, since Hvgy1 is u.s.c. and ¢ is continuous, the inequality Hvg11 < ¢ holds in a
neighborhood of (g, zg, po), and so for sufficiently large n, we get :

vk+1(6naX5Lnapn U (Tnagn))lTnSGn S @(07HXglnapn)1Tn§9n a.s.

Together with (B.), this yields :

On
@(tnaxmpn) + Y — g(sn < E |: ] f(Xg)dS + (P(enann7pn):| .

By applying It6’s formula to (s, X7, p,) between s = t,, and s = 6,,, and dividing by 9,
we then get :

Yoo 1) 1 b [0y n N | On —tn
—_ < — —_ < —= .
5, 4 = 5nE [/tn <8t +Eg0+f> (S,Xs,pn)d8:| < QE[ 5 , (6.6)

from (f.4). Now, from the growth linear condition on b, o, Burkholder-Davis-Gundy in-

equality and Gronwall’s lemma, we have the standard estimate : E[supsc, 1,45, | XD —x,|%]
— 0, so that by Chebichev inequality, P[,, < t,+d,] — 0, as n goes to infinity, and therefore
by definition of 6, :

On —tn

] > P, >t,+d,] — 1, as n— oc.
By sending n to infinity into (B.6), we obtain the required contradiction : —% < —%. O
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6.3 Sequential comparison results

In this paragraph, we prove sequential comparison results. We consider the sets O(n),
T"(0), Di(n), D' (n), Dy (n), introduced in Section f] for k =0,...,m,andn =m,..., M
and we define sequential viscosity solutions as follows.

) )

Definition 6.1 Letn € {m+1,...,N}. We say that a family of locally bounded functions
wy on D*(n), k = 0,...,m, is a viscosity supersolution (resp. subsolution) of (f.1)-(E-2)
at step n if :

(i) for all k = 1,...,m, (to,x0,po) € D,ﬁ’m(n), and ¢ € Cl’Z(D,ﬁ’m(n)), which realizes a
local minimum of wy, — ¢ (resp. mazimum of Wy — ¢), we have

0
—a—f(to,l“o,po)—ESO(to,SUo,po)—f(%) > 0 (resp. < 0).

(ii) for allk = 0,...,m —1, (to,z0,po) € DZ’m(n), and ¢ € CLQ(Dz’m(n)), which realizes
a local minimum of wy, — ¢ (resp. maximum of Wy — ¢), we have

. 0
min { — a—f(to,iﬂo,Po) — Lo(to, xo,po) — f(zo) ,

(t07x07p0)_SUPwarl(thanpOU to,e))} > 0

eckE
(resp.
. Op
min { — E(towo’po) Lp(to, zo,po) — f(20)
W (to, 20, po) — sup Wr+1(to, 2o, po U (to,€))} < 0).
eck
We say that a family of locally bounded functions wy, on D*(n), k = 0,...,m, is a viscosity

solution of (E1))-([ED) at step n if it is a viscosity supersolution and subsolution of ([.1])-(f£2)
at step n.

We then prove the following comparison principle at step n.

Proposition 6.3 Letn € {m+1,...,N}. Let uy (resp. wg), k =0,...,m, be a family of
viscosity subsolution (resp. supersolution) of (E)-(lQ) at step n satisfying growth condition
(R.8). Suppose also that wy, satisfies (£.J). If us, and wy are such that for all x € R?

U (t1 +mh,z,p) < wi(ts +mh,z,p), p=(t;,e)i<i<k € OF(n) x B, k> 1,
ug(T,x) < wo(T, ).

Then, tu < wy on D*(n), k =0,...,m.

Remark 6.1 We recall some basic definitions and properties in viscosity solutions theory,
which shall be used in the proof of the above proposition. Consider the general PDE

F(t,z,w w

B ,Dyw,D?>w) = 0 on [tg,t1) x O, (6.7)
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where tg < t1, and O is an open set in R?. There is an equivalent definition of viscosity
solutions to (f.7) in terms of semi-jets J?Tw(t,z) and J?~w(t,z) associated respectively
to an upper-semicontinuous (u.s.c.) and lower-semicontinuous (Ls.c.) function w (see [ff]
or [l for the definition of semi-jets) : an w.s.c. (resp. ls.c.) function w is a viscosity
subsolution (resp. supersolution) to (p.4) if and only if for all (¢,z) € [tg,t1) x O,

F(t,z,w(t,z),r,q,A) < (resp. >) 0, VY(r,q,A) € J>Tw(t,z) (resp. J> w(t,x)).
For n > 0, we say that w" is a viscosity 7-strict supersolution to (@), if w" is a viscosity
supersolution to

ow"
F(t7x7wn7 8—?127wan7D3:wn) 2 m, on [t07t1) X O

n
%7Dl‘wn7Dgwn) -n= 07

in the sense that it is a viscosity supersolution to F'(t,z,w",
on [to,tl) x O.

As usual when dealing with variational inequalities, we begin the proof of the comparison
principle by showing the existence of viscosity n-strict supersolutions for equation (f£.1))-

E3).

Lemma 6.2 Let wy, k = 0,...,m, be a family of viscosity supersolutions of (E1))-({.9)
satisfying [(.3). Then, for anyn > 0, there exists a family of viscosity n-strict supersolutions

w] of (EA))-(BD) such that for k =0,...,m :
wi(t,2,p) +nCilz* < wit,z,p) < wilt,z,p) +0Co(1+ [2]), (t,2,p) € DI'(6.8)

for some positive constants Cp, Cy independent on n. Moreover, for k = 0,...,m — 1,
(t,z,p) € DI, p = (ti, €i)1<i<k with t =t + h, we have :

wl(t,z,p) > sup w4 (tz,pU(te)) +1. (6.9)
- ec
Proof. For n > 0, consider the functions :

’U)Z(t, x7p) - wk(ta xap) + W(ﬁl,k(t) + 77¢2(t7 1’), ¢1,k(t) - [(T - t) + (m - k)] )
1
o(t,x) = EeL(Tft) (1+]2)),
with L a positive constant to be determined later. It is clear that w) satisfies (B.§) with Cy

=1/2 and Cy = T +m + €T /2. Moreover, we easily show that wy + n¢y . is a viscosity
supersolution to

O(wy, + nd1.1)

- SO L+ ndne) —f = (6.10)
- . 091k B o .
This is derived from the fact that — TR Lo1 ) = 1, and wy, is a viscosity supersolution
0
to —% — Lwg — f > 0. We now show that ¢ is a supersolution to
Do
-———-L > 0. 6.11
5 P2 = (6.11)
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This is done by calculating this quantity explicitely. Indeed, we have

0 L _ -
%(f,x) — —EeL(T DA+ |23, Lpa(t,z) =T (b(a).a + tr (00 (2))).
Since b and o are of linear growth, we thus obtain :
00,

L TL
- (t,z) — Loo(t,z) > T 5(1+ym\2)—0(1+\x1+\x12) ,

for some constant C' independent of ¢,x. Therefore, by taking L sufficiently large, we

get the required inequality (6.11), which shows together with (6.1() that w} is a viscosity
supersolution to

-2 —Lw!—-f > 7. (6.12)
Moreover, since

wy(t,z,p) —sup w4y (t,z,pU(t,e)) > 0,
- ecl

we immediately get
’U}Z(t, .%',p) — sup wz+1(t7 x,pU (t7 6))
— ccE——

= wi(t,z,p) + o1 x(t) — Sug w1 (t,z,pU (L, €)) — NP1 p41(t)
ec

> noLe(t) —norei(t) > 0.

Together with ([.19), this proves the required viscosity 7-strict supersolution property for

wy! to EI)-ED. O

The main step in the proof of Proposition [6. consists in the comparison principle for
n-strict supersolutions. Notice from (p.§) that once wy, satisfies a linear growth condition,
then wz satisfies the quadratic growth lower-bound condition :

nCy x> —Cy < w)(t,z,p), (t,z,p) € D}, (6.13)
for some positive constants C7, Cs.

Lemma 6.3 Letn € {m+1,...,N} and n > 0. Let uy (resp. wg), k = 0,...,m, be a
family of viscosity subsolution (resp. n-strict supersolution) of (L.1])-(f.2) at step n, with uy,
satisfying the linear growth condition (B.8) and wy satisfying the quadratic growth condition

(B-13). Suppose that for all x € RY,

u_k(tl + mh7x7p) < %(tl + mh,l’,p), p= (tlael)lglgk € @;gn(n) X Ekak > 17(614)
T(T,0) < w(T,z). (6.15)
wy(tg + h,z,m) > supwgyy (g + h,2,pU (6 + h,e)) + 1, (6.16)
eckE
p= (ti,ei)lgigk € @ZL(TL) X Ek, kE<m-—1.
Then, Uy < wy on Di*(n), k =0,...,m.
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Proof. From the linear growth of ug, and from the quadratic growth lower-bound of wy,

we have
u_k(t,x,p)—%(t,x,p) < Cl (1+|£C|)—C2|$|2, kZO""am’ (t,x’p)e’l);ﬁn(n),

for some positive constants C1, Co. Thus, for all k, the supremum of the u.s.c function
uy, — wy, is attained on a compact set that only depends on C7 and Cs. Hence, one can find
ko € {0,...,m}, (to,wo,p0) € Dy (n) such that :

M o= s [mtap) - wlt o))
ke{0,..., m}
(t,2,p) € D' (n)
Uk, (t0, 0, Po) — Wy (to, Zo, Po), (6.17)

and we have to show that M < 0. We set pg = (£! 60)1§i§k0, and we distinguish the five

177
possible cases concerning (ko, to, o, po) :

° Case]:ko#o,tozt(f—i—mh.

o Case 2 : kg =0,tg=T.

o Case 3 : ko # 0, tg € T}, (ko).

e Case J : kg =0,1t)€1[0,T) orkg € {1,...,m—1}, tg ET?)O(R‘O), to 7ét20+h.
o Case5:k06{1,...,m—1},t0:t20+h.

» Cases 1 and 2 : these two cases imply directly from (6.14) (resp. (6.15)) that M < 0.

» Cases 3 and 4 : we focus only on case 4, as case 3 involves similar (and simpler)
arguments. We follow general viscosity solution technique based on the Ishii technique and
work towards a contradiction. To this end, let us consider the following function :

@e(t,t/,x,x/,p,p/) = u—ko(tagﬂap) _%(t/,x/’p/) - ¢€(t,t/,x,x/,p,p/),
with
/ / / 1 2 2 1 4
¢5(t,t,1',[13,p,p) = §Ut_t0‘ +‘p_p0‘ ]+Z’x_x0‘

1
toz [t =1+ e =2+ p = PP

By the positiveness of the function 1., we notice that (to,xo,pp) is a strict maximizer of
(t,x,p) — ®.(t,t,z,2,p,p). Hence, by Proposition 3.7 in [ff], there exists a sequence of
maximizers (te,t., re, ¥, pe, pl) of ®. such that :

(teat;axeax{g,peaplg) - (thtO,‘TO,‘TO,pO’pO)? (618)
u—ko(teaxeape) —%(fé,:ﬂ;,p;) - u—ko(t(]ax(]ap(]) _%(t(]a:ﬂ(]ap(])a (619)

1
—[lte = 1L+ ae = all* +Ipe —pLP] — 0 as € 0. (6.20)
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By applying Theorem 3.2 in [[ to the sequence of maximizers (tc,t.,xc, 2L, pe,p.) of ®.,
we get the existence of two symmetric matrices A., AL such that :

—24+___
(Tg, q€7 A ) € J uko (t&‘a x67p€) (621)
(L gL, AL) € T° wpy (1L, L, pl), (6.22)
where
A 1
Te = 8; (755, t;’ Te, xfgape,pfg) = g(te - t;) + (te - 750)’ (6'23)
A 1
T:; = - 8t,6 (teat;axeyx;’p€7p;) = g(te _t;‘) (624)
oy 1
qE 8.%.6 (t&‘a t{«;a 1’5, 57p67p5) - g(x&‘ - x;) + ‘x&‘ - xO‘Q (.%'5 - .%'0) 9 (625)
8¢ 1
q:; - 8 f(t€7t57x67 57p67p5) - g(x&‘ _x;)a (626)
and
AE 0 §Id—Q(1‘5—1‘0) —§Id
, < € 3% , (6.27)
0 —A 3, 3,
with

Qz) = 2rx@ax+ |z,

I, the identity matrix of dimension d x d, and for = (z;)1<i<q € R?, 2@ z is the tensorial
product defined by z ® x = ('Iixj)i,jE{l..d}2' Here, to alleviate notations, and since there
is no derivatives with respect to the variable p in the PDE, the semi-jets are defined with
respect to the variables (¢, x), and we omitted the terms Corresponding to the derivatives
of 1. with respect to p. We set p. = (£, €5 )1<i<k,, and p. = (t;a, e )1<i<k,- From (p.1§),
we deduce that for & small enough, t. € Tp (ko) and t. # t5 + h. From (b.21)-(6.29), and
the formulation of viscosity subsolution of ug, to (.3) and n-strict viscosity supersolution
of wy, to ({.d) by means of semi-jets, we have for all & small enough :

min {—rg —b(ze)ge — %tr (o0’ (x2)Ae) — fla2),

u_ko(t67 x&ape) - Sug ukoJrl(t&‘a Le, Pe U (t&‘a 6))} S 07 (628)
ec
. 1
min { =12~ bt 51n (o0 (@) A1) — £ (a2,
Wy (t 1'57175) SUEP wkoJrl(t 1'57175 (tfsv 6))} > n (6'29)
ec

We then distinguish the following two possibilities in (.29) :

e (i) for all € small enough,

u_ko(t67x67p6) - Sug uko+1(t€7m67p€ U (t&‘a e)) < 0.
ec
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Then, for all € small enough, there exists e. € E such that :

VRS

u_k‘o(teyxeaPE) < uko—l—l(tsaxe,ps U (755, 65)) +

Moreover, by (b.29), we have

wko(tlmxe,svp/e) > wkoJrl(tlmxe,svp/e U (tlev 66)) +n.

Combining the two above inequalities, we deduce that for all £ small enough,

u—ko(tsa CEe,pg) — Wk, (tfsa Cﬂé,pé)

N3

S uk0+1(t€a$e,p€ U (tEa 66)) - wk0+1(t;,xé’p; U (tglg, 68)) -

Since E is compact, there exists some ¢ € E s.t. e. — e up to a subsequence. From
(.19)-(p.19), and since ug,, —wy, are u.s.c., we obtain by sending € to zero :

u—ko(to’ anPO) - %(fo, anPO)

< Tprlto @o,po U (to,€) — wig1(fo, 20, po U (to, ) = 3,
which contradicts (b.17).
(ii) for all € small enough,
e — b(z)ge — %tr (00' (@) Ac) — f(z2) < 0.
Combining with (p.29), we then get
n < re =i+ b(re)ge — b(at)q:
+ 5t (00 (22) A — 00 (2)AL) + f(z) — fGL). (6.30)

We now analyze the convergence of the r.h.s. of (5.30) as & goes to zero. First, we see
from (6.1§) and (6.23)-(6.24) that r. — r’ converge to zero. We also immediately see
from the continuity of f and (6.1§) that f(z.)— f () converge to zero. It is also clear
from the Lipschitz property of b, (5.18), (6.20), and (6.27)-(6.24) that b(z.)q. —b(z~)q.

converge to zero. Finally, from (5.27), we have
3
tr(00'(@e)Ae — 00 (@) A) < —tr ((o(2e) — o(a))(0(x2) — o(a)))
— tr (00’ (2)Q(2e — 20)) ,
and the r.h.s. of the above inequality converges to zero from the Lipschitz property

of o, (b.19) and (6.20)). Therefore, by sending ¢ to zero into (.3(]), we obtain the
required contradiction : n < 0.

» Case 5 : We keep the same notations as in the previous case. The crucial difference is

that g, and wy, may be sub and supersolution to different equations, depending on the

position of ¢ (resp. t.) with respect to th, Th (resp. t;fo +h). Actually, up to a subsequence
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for €, we have three subcases. If t. > ¢} + h and tL > t;fo + h for all € small enough, the
proof of the preceding case applies. If t. < {7 +h, for all € small enough, then we have the
viscosity subsolution (resp. supersolution) property of wg, (resp. %) to the same linear

0
PDE : —% — Lo — f =0, at (te,xe,pe) (vesp. (tL,zL,pl)), and we conclude as in Case 3.

Finally, if ¢. > t7 +h and tL < t;fo + h for all £ small enough, then the viscosity subsolution

property of ug, to (@) at (te, e, pe), and the viscosity n-strict supersolution property of
wy, to (I1)) at (tL, 2L, pl) lead to :

vl b, i (o0 (e AL) ~ FL) > (6.31)

and the following two possibilities :

IN
o

— 1. —b(ze)ge — %tr (aa’(acg)Ag) — f(z2) (6.32)

or

u_ko(tz-:a Te,Pe) — Sug uko-i—l(tea Te,pe U(te,e)) < 0. (6.33)
ec

The first possibility (p.31]), (6.39) is dealt with by the same arguments as in Case /4 (ii).
The second possibility (p.31), (6-33) does not allow to conclude directly. In fact, we use

the additional condition (.14) :

Wy (to, 2o, po) > Sup wky+1(t0, To, po U (to, €)) + 1. (6.34)
ec

Since wy, is lower semicontinuous, this implies by (p.1§) that for all € small enough :

/ /

n
wko(téaxeypg) Z wko(t()ax(]ap(]) - 5
n
> sup Wi,41(to, vo, po U (to, €)) + 5
ecE
Hence, by combining with (f.33), we deduce that
n
Uk, (t€7 x67p6) - wko(t/57 x;aplg) + 5
S sup uko-}—l(tea Le, Pe U (tea 6)) — sup wk:()-i-l(th 0o, Po U (th 6)),
eck ecE

for all € small enough. From (p.19) and Lemma [6.]], we then obtain by sending € to zero :

Uk, (to, Zo, Po) — Wi (to, Zo, Po) + u

2
< supg,+1(to, o, po U (to,€)) — sup wi,+1(to, o, po U (to, €))
ecE ccE—
< sup {Uk0+1(to, xo, po U (to, €)) — wiy+1(to, o, po U (to, 6))} :
ec
This is in contradiction with (B.17). O

Finally, as usual, the comparison theorem for strict supersolutions implies comparison
for supersolutions.
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Proof of Proposition p.3|

For any n > 0, we use Lemma .3 to obtain an n-strict supersolution w] of (I1)-([.9),
which satisfies (£.§), so that wy (¢, z,p) — w](t,z,p) for all (t,z,p) € D}, as n goes to zero.
We then use Lemma 6.3 to deduce that up < wi on D*(n), k = 0,...,m. Thus, letting
n — 0, completes the proof. O

6.4 Boundary data and continuity

In this paragraph, we shall derive by induction the boundary data (f£4)-([£5) in Proposition
1.2, and the continuity of the value functions as byproducts of viscosity properties and
sequential comparison principles.

We first show relation ([£5), which follows easily from the definition of the value func-
tions.

Lemma 6.4 (i) Fork = 1,...,m, p € Oy(m) x E¥, (t,z) € Ty(k) x R?, we have :

T
wtap) = B[ [ F00050)ds + 9005, (6.35)
t
(ii) Relation (6.33) also holds for k = 0, and for all (t,z) € T™(0) x R?. In particular,
vo(T~,x) exists and is equal to vo(T,x) = g(x).

Proof. (i) Fix k = 1,...,m, p = (ti,ei)1<i<k € Or(m) x E¥ and (t,2) € T,(k) x R? =
[tr, T] x RY. By definition of ©4(m), we have t; +mh > T, i = 1,... k. Then, for all o =
(7i,&)i>1 € Atp, we have 7; +mh > T so that from ([£.3), xbrpe = xb0 gt < s < T
We deduce immediately (6.35) from the definition of vy.

(ii) This assertion was already stated in (p.])) as a consequence of (f.3) for k = 1 and (f£9)
for k = 0. O

The derivation of relation (4) is more delicate. We first state the following result,
which is a direct consequence of the dynamic programming principle.

Lemma 6.5 (i) For k =1,...,m, and p = (t;,e;)1<i<k € OF X E*, we have for all x €
R?, and t € TL(k) = [tr, (tx + h) A (t1 + mh)),

(ts+h)A(t1+mh) L .
vg(t,x,p) = E[/ JX9™7)ds + v (te + b, X, )Lty bty 4mn (6.36)
t

+ <C(Xf{i’?nh, e1) + vg—1(t1 +mh, F(Xffﬁ?nh, 61),1?7)) Lty 4mh<ti+h|-

(ii) For k = 1,...,m, and p = (t;,e;)1<i<k, € OF x E*, such that t;, +h < t; + mh, we
have for all z € RY, and t € T2(k) = [ty + h,t1 +mh),

t1+mh
wtap) = B[ [ f(xe0)ds
t
+e(X[ rer) + vpo1(t +mh DX el),pf)} (6.37)
(t1+mh)AT
/Uk‘(ta Z, p) S sup ]E |:/ f(X?m’O)dS + /Uk‘-i-l(T, thjm’(]a P U (T? 5))1T<t1 +mh
t

(m,8)EZy

+ <C(Xfﬁ’?nh, e1) + vp_1(t1 + mh, D(X[%0 | er), p—)) Ly, +mh§7] . (6.38)
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Proof. First, we recall from the dynamic programming principle that by making an im-
mediate impulse control, i.e. by taking in (B.§), = t and 7 = t, £ = e arbitrary in F, we
have for all k = 0,...,m — 1, p = (t;,e;)1<i<k € Ok x E¥, (t,z) € Tp(k) x R? with ¢ >
ty + h,

/Uk(t’ xap) > sup ’Uk+1(t, z,pU (ta 6)) (639)
eckE

(i) Fix k = 1,...,m, p = (t;,ei)1<i<k € OF x EF and (¢,7) € ']T]l)(k) x R?. We distinguish
the two following cases :

e Case 1: ty +h < t; + mh. Then, for all & € A;,, we have from £.3), xbaopa _ xta0
for t < s <ty +h. Hence, by applying (B.4) with § = ¢;, + h, and noting that 7; +mh > 0,
k(0,a) = k, p(0,a) = p for any o = (73,&;) € Arp, we obtain the required relation (p.36),
ie.

teth t,2,0
w(t,z,p) = E[/t FXEO)ds + vty + 1, X155 p)|.

e Case 2: t1+mh < t;+h. Then, for all « € A;,, we have from (P.3), xbore = xbe0 for
t < s <ty+mh, and Xfﬁ’%ﬁl = I’(X: ﬁ—?nh’ 1). Hence, by applying (B.4)) with 6 = ¢; +mh,
and noting that for any o = (7,&;) € Atp, we have either k(0,«) = k — 1, p(6, ) = p_
if 7441 > t1 + mh (which always arises when ¢; +mh < tj, + h), or k(0,a) = k, p(0,a) =

P— U (Tht1,Ek+1) if Thp1 = tx + h = t1 + mh, we obtain

t1+mh 0 t 0
s
wltap) = swp B[ [T fXE0ds +e(X],0)
aEALp t
t ,0
+ vg—1(t1 +mh, (X t ﬁ-mh’ e1), p*)17k+1>t1+mh
t,x,0

+ oty +mh, D(X70 s e1),p— U (Er 4+ mh, k1)) Lny =ty +mh=ty 44 | -

Now, from (5.39), if t1 +mh = t,+h, we have vi(t; +mh, F(Xt{-ﬂmh’ e1),p—U(ti+mh, &ki1))
< vk_1(ty + mh,I( ;i?nh’ 1),p—) for all {1 Fi ymp-measurable valued in E. We then
deduce

t1+mh
vp(t,,p) = E[/ FXE"0)ds + e(X] ﬁ—?nh’ e1) +vg_1(t1 +mh,D(X] ﬁ—?nh’ 1), p_)],
t

which is the required relation (f.34).

(i) Fix k = 1,...,m, p = (ti,ei)1<i<k € OF X EF, st. ty +h < t; +mh, and (t,z) €
T2(k) x R?. Then, for all & € Ay, we have from (B3), Xo™P* = XU fort < s < ty+mbh,
and X;ﬁﬁ%h = I‘(X:lignh, 1). Let o = (73,&;) be some arbitrary element in A ,, and set
T = Tit1, & = &x41. Observe that with 6 = (t1 + mh) A 7, we have a.s. either k(6,a) =
E+1,p0,a) =pU(r,&) if T <ty +mhor k(f,a) =k—1, p(0,a) =p_ if 7 > t; +mh,
or k(6,a) =k, p(0,a) = p_ U (r,&) if 7 = t; +mh. Hence, by applying (B.3) to some o =
(13,&) € Ap s.t. Try1 > t1 +mh as. and with 0 = ¢ + mh, we get the inequality (637).
Furthermore, from (B.g), for all ¢ > 0, there exists a = (7;,&;) € Az, s.t. by setting 7 =
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Tit1, & = Eky1, and with 6 = (¢ +mh) A T,

(t1+mh)AT
Uk(t7 .%',p) —e < E |:/ f(Xg,x,O)dS + UkJrl(T? X?m’(]ap U (T7 g))17<t1+mh
t

t,2,0 t,2,0
+ C(thimh’ 61)1t1+mh§7' + vp—1(t1 + mh, F(thimh’ el)ap*)1t1+mh<’r

+ vt + mh,F(Xf;ﬁ%Lh, e1),p— U (7,5))1r:t1+mh]-

Now, we have vi(t1+mh, F(X:ﬁ—’gmh’ e1),p—U(t1+mh,§)) <wvi_1(t1+mh, F(X:ﬁ?nh’ €1),p-)

from (B.39). Since (7,&) € T, and ¢ is arbitrary, we deduce the required relation (6.3§). O

Proposition 6.4 For all k = 0,...,m, vy is continuous on D}* and Dy(m). Moreover,
forallk =1,...,m,p = (t;, e)1<i<k € OF X EF x e RY,

ve((t1 +mh) ", z,p) = c(z,e1) +vg_1(t1 + mh,T(z,e1),p-).

Proof. 1. We first easily see from Lemma [.4, continuity and growth condition of f, g,
and dominated convergence theorem, that vy is continuous on Dy(m), for all k = 0,...,m.

2. We shall prove by forward induction on n = m+1,..., N that (Hk)(n), k= 1,...,m,
and (HO)(n) hold, where
(Hk)(n) vy is continuous on Di*(n), and for all p = (t;,e;)1<i<k € OF(n) x B,
vr((t1 +mh) ™, z,p) = c(x,e1) + vp_1(t; + mh,T(z,e1),p_), x € R%
(HO)(n) wp is continuous on T™(0) x R%.
» Initialization : n = m + 1. Let us prove that (Hk)(m+1), £ = 1,...,m, and
(HO) (m+1) are satisfied.
e Take some k = 1,...,m, and fix some arbitrary z € R% and p = (¢;, ei)1<i<k € O)' (m+1)x
EF. Notice that p_ € O_1(m) x E¥~! so that vy_1(.,.,p—) is continuous on T, (k—1) x R?
from part 1. above. Here, to alleviate notations, we used the convention that T, (k — 1)
= T™(0) if £k — 1 = 0. We distinguish two cases :
* Case 1. T2(k) = 0, i.e. ty +mh <ty + h so that Ty(k) = Tj(k) = [tg,t1 + mh). From
(6.30), we then have for all ¢ € T,(k) :

t1+mh
vp(t,,p) = E[/ FXET0)ds + c(Xfl’gi?nh, e1) + vg_1(t1 +mh, F(Xfﬁ?nh, el),p_)].
t

By continuity of vg_1(t1 +mh,.,p_), I'(.,e1), c(.,e1), growth condition on f, ¢, I" and vg_1,
we deduce with the dominated convergence theorem that vg((t1 +mh)™, z,p) exists and

vk((tl + mh)iaﬁﬂ,p) = C('Iael) + vk—l(tl + mh,r(x,el)’p*)'

* Case 2. T2(k) = [ty + h,t1 +mh) # 0, i.e. t; +mh > t; + h (this implies in particular
that & < m and m > 1). From (p.37)-(B-3§), we first prove that

T (t1 + mh, z,p)

max [c(m, e1) + vg—1(t1 + mh,x,p_),sup vgr1(t1 + mh,z,p U (t; + mh, e))](6.40)
eck

IN
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Indeed, consider some sequence (tc,z-,pe)e>0 € D} converging to (t; +mh,x,p) and such
that lim._o vg(te, Te, pe) = Vg(t1 + mh,z,p). For any € > 0, one can find, by (6.3§), some
(72,&) € Iy, s.t.

(t§+mh)A7e 0 . 0
A~ e,Te, 2
Uk(tsa 'Ieape) < E[/ f(ng’xE’ )dS + Uk—l—l(Tsa X{—E ,De U (7'5, 55))17°e<t§+mh
te

(X €) + v (8 + mh T(XETED €6),0e) ) s bomnsr, | + 2,

where we denote p. = (15, €5)1<i<k and p.— = (5, €5 )a<i<k. By setting
t87 570 t57 570
GE - C(Xti_fm}pei) +Uk*1(ti: +mh7P(Xtifmh7e§)ap6—)7

we rewrite the above inequality as

(t5+mh) A L
Uk(t67x67p6) S IE|:/\ f(ng,xE, )dS + G;,_-
te
+ (Uk—l—l(%saX;—z’xE’Oaps U (726?55)) - G€> 17°5<t§+mh] +e. (6.41)

Since p_ € Op_1(m) x EF~!, we have p._ € Op_1(m) x EF~! for ¢ small enough. Hence, by
continuity of vg_1 on Di_1(m) (from part 1.), continuity of I' and ¢, and path-continuity
of the flow X;’m’o, we have

limG. = G := c(z,e1) +vp—1(t1 + mh,I'(z,e1),p—) a.s. (6.42)

e—0

~

Moreover, by compactness of E, the sequence (§.). converges, up to a subsequence, to some
¢ valued in E. We deduce that

3 Al t ) 70 fal £
lim Sélp (UkJrl(Taa X{—i vl pe U (e, &) — Ga) 1%E<t§+mh
E—>

< <vk+1(t1 +mh,z,pU (t; + mh,§)) — G) limsup 17, <4< 4mn
0

E—

< <sup Upt1(t1 +mh,x,pU (t1 +mh,e)) — G) limsup 15, <z ymn a.s. (6.43)
eel e—0

From the linear growth condition on f, ¢, I', vx_1, vk11, and estimate (@), we may use
dominated convergence theorem and send ¢ to zero in (B.41]) to obtain with (6.49)-(5.43) :

%(tl + mh7 x7p)

< E {G + <sup Tpr1(t1 + mh,z,pU (t1 + mh,e)) — G) lim sup 17°5<t§+mh}
ecll e—0

< max [G,supTralty +mh,z,pU (b +mh,e))]
eckE

which is the required inequality (p.40).
We next show that

SUp Ug11(t1 + mh,z,pU (t1 + mh,e)) < c(x,e1)+vp_1(t1 + mh,z,p_). (6.44)
eck
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Indeed, for any arbitrary e € E, consider some sequence (e, T, pe, €c)e>0 € D)' X E converg-
ing to (t; +mh,x,p,e) and such that im. g vg11(te, 2o, pe U (te, €2)) = Vg1 (t1 +mh, z,pU
(t1 +mh,e)). For e small enough, t. +h > t5 +mh, and so from the DPP ([.3d), we have :

t$+mh
Vkg1(te, Te,pe U (te,e2)) = E[/ f(ng’x&O)dS + C(X%frgﬁ& e1)
te

+ gt + b, DX, ), pe U (e, eg))} . (6.45)

Since p_ € O)_1(m) x E¥1 we have p._ € ©;_1(m) x E*~! for e small enough. Hence,
by continuity of vy on Di(m), continuity and growth linear condition of f, I' and ¢, and
path-continuity of the flow X5*°, we send ¢ to zero in (p.44) and get by the dominated
convergence theorem

Ukr1(t1 + mh,x,p U (t1 + mh,e))
= c(x,e1) +vp(ts + mh,I'(z,e1),p— U (t1 + mh,e)). (6.46)
Moreover, from (B.39), we have v,_1(t; +mh,T(z,e1),p_) > vp(t1 +mh,T(z,e1),p_ U (t; +

mh,e)) for all e € E. Plugging into (.46), this proves (6.44).
Finally, we easily see from (f.37) that

v_k(tl +mh,x’p) > C('Iael) +U]<;_1(t1 —i—mh,x,p,). (647)

Indeed, consider some sequence (t., Z., pe)e>0 € D) converging to (t; +mh,x,p) and such
that lim. .o vi(te, zc, pe) = vi(t1 + mh,z,p). From (6.37), we have in particular

t§+mh
vk(t&xeape) > ]E|:/ f(ngyxs,O)dS
te

tE7 570 t57 570
+ C(Xtifmh, e1) + vr—1(t] + mh, F(Xtifmha 6?),])5,)} :

By continuity and linear growth condition of vx_1, ', ¢, f, and estimate (R.7), we get (f.47)
by the dominated convergence theorem, and sending € to zero in the above inequality.
Hence, the inequalities (p.40)-(.44)-(F.47) prove that vy ((t; +mh)™,x,p) exists and is

equal to :

’Uk((tl + mh)_,x,p) = W(tl + mh,:c,p) = v_/ﬁ(tl + mh,x’p) (648)
= c(x,e1) +vp-1(t1 + mh,I'(z,e1),p-).

We have then proved that (6.4§) holds for all k = 1,....m, p = (t;,€;)1<i<k € OF(m +
1) x E¥ and z € R%.

e We know from Proposition [L.]] that the family of value functions vg, k = 0,...,m, is a
viscosity solution to (f1))-([£2), in particular at step n = m+1. We also recall from Lemma
b.4 that 75(7,z) = vo(T,x) = g(z). Together with (b.4§), and the comparison principle
at step n = m + 1 in Proposition .3, this proves 7 < v on D}*(n) for n = m + 1. This
implies the continuity of vy on Dx(m+1), k =0,...,m, and so (Hk)(m+1), k=1,...,m,
and (HO)(m+1) are stated.
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» Stepn - n+1forne {m+1,...,N—1}. Wesuppose that (Hk)(n), k =1,...,m,
and (HO)(n) hold true.

Take some k = 1,...,m, and fix some arbitrary x € R% and p = (t;,¢;)1<i<k € (O (n +
1) x E*. Notice that p_ € Or_1(n) x E¥~!. By same arguments as in step n = m + 1, using
here, instead of part 1., continuity of vy_; on D" ;(n) by the induction hypothesis of step
n, we prove that

’Uk((tl + mh)_,x,p) = W(tl + mh,x,p) = v_/ﬁ(tl + mh,xap)
= c(x,e1) +vg-1(ts + mh,I'(z,e1),p-).
We also have Tg(T,z) = vo(T,z) = g(x). Therefore, from the viscosity property of vy,
kE=0,...,m, to (.0))-(.F) at step n + 1, and the comparison principle in at step n + 1
in Proposition .3, we obtain 7y < v, on Df*(n + 1), which implies the continuity of vy
on D*(n+1), k =0,...,m. Therefore, (Hk)(n+41), £ =1,...,m, and (HO)(n+1) are
proved.
» The proof is completed at step N by recalling that ©,(N) = Oy, D*(N) = D', k =
0,...,m. O

6.5 Proof of Theorem [.7]

In view of the results proved in paragraphs p.9 and .4, it remains to prove the uniqueness
result of Theorem [L.]. Let us then consider another family wy, k = 0,...,m of viscosity

solutions to ([))-(E.J), satisfying growth condition (R.§), and boundary data (f.4)-(E.5) :
fork=1,...,m,p= (ti,ei)lgigk S @ZL X Ek, HARS Rd,

wg((t1 +mh)",z,p) = c(z,e1) + wi—1(t1 + mh,I'(z,e1),p-). (6.49)
and
r t,x,0
untonp) = B[ [ FOX0)ds +g(X")]. (top) € Dlm). (650
t
We shall prove by forward induction on n = m, ..., N that vy = wg on Dg(n).

» Initialization : n = m. Relations ({.5), (6.50) and (B.1)) show that vj, = wy, on Dx(m),
k=0,...,m.

» Step n — n + 1. Suppose that vy = wy on Dg(n), k = 0,...,m. For any k >
L, p = (ti,e)i<i<k € OF(n + 1) x E¥ we notice that p_ € Oy_1(n) x EF~1. Hence
vp_1(t1 +mh,T'(z,e1),p-) = wy_1(t1 +mh,T(z,e1),p_), * € R, and so from ([4), (F-49),

we have
vg((tr +mh)",z,p) = wi((t1 +mh)”,z,p).

We already know that vo(T~,2) = wo(T~,z) (= g(x)). Therefore, from the comparison
principle at step n + 1 in Proposition p.J, we deduce that uy = wy on D} (n + 1), and so
on Di(n+1), k =0,...,m. Finally, the proof is completed since Dy(N) = Dj.
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