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Existence and uniqueness for a nonlinear
parabolic/Hamilton-Jacobi coupled system describing
the dynamics of dislocation densities

HassaN IBRAHIM*

March 27, 2007

Abstract
We study a mathematical model describing the dynamics of dislocation densities in crystals. This
model is expressed as a one-dimensional system of a parabolic equation and a first order Hamilton-
Jacobi equation that are coupled together. We show the existence and uniqueness of a viscosity solution
among those assuming a lower-bound on their gradient for all time including the initial data. Moreover,
we show the existence of a viscosity solution when we have no such restriction on the initial data. We
also state a result of existence and uniqueness of an entropy solution of the system obtained by spatial
derivation. The uniqueness of this entropy solution holds in the class of “bounded from below” solutions.
In order to prove these results, we use a relation between scalar conservation laws and Hamilton-Jacobi
equations, mainly to get some gradient estimates. This study will take place in R, and on a bounded
domain with suitable boundary conditions.
Resumé

Nous étudions un modéle mathématique décrivant la dynamique de densités de dislocations dans les
cristaux. Ce modéle s’écrit comme un systéme 1D couplant une équation parabolique et une équation
de Hamilton-Jacobi du premier ordre. On montre I'existence et I'unicité d’une solution de viscosité dans
la classe des fonctions ayant un gradient minoré pour tout temps ainsi qu’au temps initial. De plus, on
montre 'existence d’une solution de viscosité sans cette condition sur la donnée initiale. On présente
également un résultat d’existence et d’unicité pour une solution entropique d’un systéme obtenu par
dérivation spatiale. L’unicité de cette solution entropique a lieu dans la classe des solutions minorées.
Pour montrer ces résultats, on utilise une relation entre les lois de conservation scalaire et les équations
de Hamilton-Jacobi, principalement pour obtenir des controles du gradient. Cette étude a lieu dans R
et dans un domaine borné avec des conditions aux bords appropriées.
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1 Introduction

1.1 Physical motivation

A dislocation is a defect, or irregularity within a crystal structure that can be observed by
electron microscopy. The theory was originally developed by Vito Volterra in 1905. Disloca-
tions are a non-stationary phenomena and their motion is the main explanation of the plastic
deformation in metallic crystals (see [28, 19] for a recent and mathematical presentation).

Geometrically, each dislocation is characterized by a physical quantity called the Burgers
vector, which is responsible for its orientation and magnitude. Dislocations are classified as
being positive or negative due to the orientation of its Burgers vector, and they can move in
certain crystallographic directions.

Starting from the motion of individual dislocations, a continuum description can be derived
by adopting a formulation of dislocation dynamics in terms of appropriately defined disloca-
tion densities, namely the density of positive and negative dislocations. In this paper we are
interested in the model described by Groma, Csikor and Zaiser [18], that sheads light on the
evolution of the dynamics of the “two type” densities of a system of straight parallel dislocations,
taking into consideration the influence of the short range dislocation-dislocation interactions.
The model was originally presented in R? x (0,7 as follows:

06+ 0 b 0

= 4b-— |0t (e + Tepf) —AD—— . — (6 —07) | =

or " ar[ {(T o) = APy )H R
00~ 0 '

S b [0— {(TSC+Teff) _AD(9+74[:9—) : % (o* —9—)}} = 0.

Where T' > 0, r = (z,y) represents the spatial variable, b is the burger’s vector, 67 (r,t)
and 6~ (r,t) denote the densities of the positive and negative dislocations respectively. The
quantity A is defined by the formula A = p/[27(1 — v)], where u is the shear modulus and v
is the Poisson ratio. D is a non-dimensional constant. Stress fields are represented through
the self-consistent stress 7y.(r,t), and the effective stress 7.7¢(r,?). % denotes the gradient
with respect to the coordinate vector r. An earlier investigation of the continuum description
of the dynamics of dislocation densities has been done in [17]. However, a major drawback
of these investigations is that the short range dislocation-dislocation correlations have been
neglected and dislocation-dislocation interactions were described only by the long-range term
which is the self-consistent stress field. Moreover, for the model described in [17], we refer the
reader to [11, 12] for a one-dimensional mathematical and numerical study, and to [4] for a
two-dimensional existence result.

In our work, we are interested in a particular setting of (1.1) where we make the following
assumptions:

(al) the quantities in equations (1.1) are independent of y,
(a2) b =(1,0), and the constants A and D are set to be 1,

(a3) the effective stress is assumed to be zero.

Remark 1.1 (al) gives that the self-consistent stress Ts. is null; this is a consequence of the

definition of Ts. (see [18]).



Assumptions (al)-(a2)-(a3) permit rewriting the original model as a 1D problem in R x (0,7):

Jr
0 (2,1) — (0% (2, 1) 9 (2,t) =0 (@, )\ _
0% (x,t) + 0~ (x,1)
()~ 0@ 0\ Y 1
x x
07 (2,t) + (0 (.t D e =
e+ (e (FRETEER)) -0
We consider an integrated form of (1.2) and we let:
pr=0%, 0=60"+0", p=p"—p  and k=p"+p, (1.3)

in order to obtain, for special values of the constants of integration, the following system of
PDEs in terms of p and & :

{ Kika = PP in Qr =R x(0,7), (1.4)
k(x,0) = £9(2) in R, -
and
{Pt = Pax in Qr, (L.5)
p3,0)= %) i R |

where T' > 0 is a fixed constant. Enough regularity on the initial data will be given in order to
impose the physically relevant condition,

KO > P2 . (1.6)

This condition is natural: it indicates nothing but the positivity of the dislocation densities
6*(x,0) at the initial time (see (1.3)).

1.2 Main results

In this paper, we show the existence and uniqueness of a viscosity solution x of (1.4) in the
class of all Lipschitz continuousviscosity solutions having special “bounded from below” spatial
gradients. However, we show the existence of a Lipschitz continuousviscosity solution of (1.4)
when this restriction is relaxed. A relation between scalar conservation laws and Hamilton-
Jacobi equations will be exploited to get almost all our gradient controls of k. This relation,
that will be made precise later, will also lead to a result of existence and uniqueness of a
bounded entropy solution of the following equation:

9, = <ngm>$ in Qr,

0(x,0) = 6°(x) in R,

(1.7)

which is deduced formally by taking a spatial derivation of (1.4). The uniqueness of this
entropy solution is always restricted to the class of bounded entropy solutions with a special
lower-bound.

Let Lip(R) denotes:

Lip(R) = {f : R— R; fis a Lipschitz continuous function}.

We prove the following theorems:



Theorem 1.2 (Existence and uniqueness of a viscosity solution)
Let T > 0. Take x° € Lip(R) and p° € C$°(R) as initial data that satisfy:

K>V (09)2+€  ae in R, (1.8)

for some constant € > 0. Then, given the solution p of (1.5), there exists a viscosity solution
k € Lip(Qr) of (1.4), unique among the viscosity solutions satisfying:

Ke > \/p2+e  ae in  Qr.

Theorem 1.3 (Existence and uniqueness of an entropy solution)
Let T > 0. Take 0° € L®(R) and p° € C°(R) such that,

0°>(p9)2+e2  ae in R,

for some constant € > 0. Then, there ezists an entropy solution § € L>(Qr) of (1.7), unique
among the entropy solutions satisfying:

0>/p2+e ae in Qr.

Moreover, we have 0 = k., where k is the solution given by Theorem 1.2.

The notion of viscosity solutions and entropy solutions will be recalled in Section 2. We now
relate these results to our one-dimensional problem (1.2). Remarking that p, = 6t — 6~ and
Kz = 0T + 607, we have as a consequence:

Corollary 1.4 (Existence and uniqueness for problem (1.2))
LetT > 0. Let HSL and 8 be two given functions representing the initial positive and negative
dislocation densities respectively. If the following conditions are satisfied:

(1) 65 — 65 € C°(R),
(2) 65 05 € L(R),

together with,

(98_4-00_2\/(08——00_)24-62 a.e. in R,

then there exists a solution (0F,07) € (L=(Q1))? to the system (1.2), in the sense of Theorems
1.2 and 1.8, unique among those satisfying:

07 +67 > /(0T —0-)2+€e ae in Qr.

Remark 1.5 Conditions (1) and (2) are sufficient requirements for the compatibility with the
reqularity of p° and k0 previously stated.

Theorem 1.6 (Existence of a viscosity solution, case ¢ = 0)
Let T > 0, k¥ € Lip(R) and p° € C(R). If the condition (1.6) is satisfied a.e. in R, then
there exists a wviscosity solution k € Lip(Qr) of (1.4) satisfying:

Ke > |pe|  ae in Q. (1.9)



Remark 1.7 In the limit case where ¢ = 0, we remark that having (1.9) was intuitively expected
due to the positivity of the dislocation densities 0 and 0~. This reflects in some way the well-
posedness of the model (1.2) of the dynamics of dislocation densities. We also remark that our
result of existence of a solution of (1.4) under (1.9) still holds if we start with k% = p = 0 on
some interval of the real line. In other words, we can imagine that we start with the probability
of the formation of no dislocation zones.

Problem with boundary conditions.

We consider once again problem (1.4), similar results to that announced above will be shown
on a bounded interval of the real line with Dirichlet boundary conditions (see Section 5). This
problem corresponds physically to the study of the dynamics of dislocation densities in a part
of a material with the geometry of a slab (see [18]).

1.3 Organization of the paper

The paper is organized as follows. In Section 2, we start by stating the definition of viscosity
and entropy solutions with some of their properties. In Section 3, we prove the existence and
uniqueness of a viscosity solution to an approximated problem of (1.4), namely Proposition
3.1, and we move on, giving additional properties of our approximated solution (Proposition
3.2) and consequently proving Theorems 1.2 and 1.3. In Section 4, we present the proof of
Theorem 1.6. Section 5 is devoted to the study of problem (1.4) on a bounded domain with
suitable boundary conditions. Finally, Section 6 is an appendix containing a sketch of the proof
to the classical comparison principle of scalar conservation laws adapted to our equation with
low regularity.

2 Notations and Preliminaries

We first fix some notations. If Q is an open subset of R, k is a positive integer, we denote
by C¥(Q) the space of all real valued k times continuously differentiable functions. C¥(Q) is
the subspace of C*(f2) consisting of function of compact support in €2, and CF(Q) = C*(Q) N
WH(Q) where W#>°(Q) is defined below. Furthermore, let UC(Q) and Lip(Q) denote the
spaces of uniformly continuous functions and Lipschitz continuousfunctions on €2 respectively.
The sobolev space WP () with m > 1 an integer and p: 1 < p < oo a real, is defined by

Va with |of <n 3f, € LP(Q) such that

WhR(Q) = 4 u e Q) /QuD%Z (1)l /Qfagb Ve @) [

where we denote D%u = f,. This space equipped with the norm

[ullwns = [1D%l|Ls

0<|a|<n
is a Banach space. In what follows, 7> 0. A map m : [0,00) — [0, 00) that satisfy
e m is continuous and non-decreasing;

e lim m(x)=0;
z—0t ( )



e m(a+b) <m(a)+ m(b) for a,b > 0;

is said to be “a modulus”, and UC,(€2 x [0,T]) denotes the space of those u € C'(£2 x [0,T7) for
which there is a modulus m and r > 0 such that

lu(z,t) —u(y,t)] < m(|lz —y|) for 2,y € Q, |z —y| <rand t € [0,T].
We will deal with two types of equations:

1. Hamilton-Jacobi equation:

u + F(x,t,u,) =0 in Qr, @2.1)
u(z,0) = u®(z) in R, '
2. Scalar conservation laws:
v+ (F(x,t,0)), =0 in ,
¢+ (F( ; )z | Qr 2.2)
v(z,0) =v°(x) in R,

where
F:Rx[0,T]xR — R

(x,t, u) —  F(z,t,u)
is called the Hamiltonian in the Hamilton-Jacobi equations and the flux function in the scalar

conservation laws. We will agree on the continuity of this function, while additional and specific
regularity will be given when it is needed.

Remark 2.1 We will use the function F as a notation for the Hamiltonian/fluz function.
Although F might differ from one equation to another, it will be clarified in all what follows.

Remark 2.2 The major part of this work concerns a Hamiltonian/flux function of a special
form, namely:

F(w,t,u) = g(w,t)f(u), (2-3)

where such forms often arise in problems of physical interest including traffic flow [31] and
two-phase flow in porous media [16].

We start by defining the notion of viscosity solution to Hamilton-Jacobi equations (2.1),
and entropy solution to scalar conservation laws (2.2) with a flux function given by Remark 2.2,
as well as some results about existence, uniqueness, and regularity properties of these solutions.
We will end by a classical relation between these two problems. These results will be needed
throughout this paper, precise references for the proofs will be mentioned later on.

2.1 Viscosity solution: definition and properties

Definition 2.3 ([10], Viscosity solution: non-stationary case)
1) A function u € C(Qr;R) is a viscosity sub-solution of

ug + F(x,t,uy) =0 in Qr, (2.4)



if for every ¢ € CY(Qr1), whenever u — ¢ attains a local mazimum at (zo,to) € Q, then

ét(x0,t0) + F(x0, to, 2 (x0,10)) < 0.

2) A function u € C(Qr;R) is a viscosity super-solution of (2.4) if for every ¢ € CH(Qr),
whenever u — ¢ attains a local minimum at (zg,to) € Qr, then

ét(x0,t0) + F(x0, to, o= (x0,10)) > 0.

3) A function u € C(Qr;R) is a viscosity solution of (2.4) if it is both a wviscosity sub- and
super-solution of (2.4).

4) A function u € C(Qr;R) is a viscosity solution of the initial value problem (2.1) if u is a
viscosity solution of (2.4) and u(x,0) = u°(x) in R.

It is worth mentioning here that if a viscosity solution of a Hamilton-Jacobi equation is dif-
ferentiable at a certain point, then it solves the equation there (see [10, Corollary 1.6]). An
equivalent definition depending on the sub- and super-differential of a continuous function is
now presented. This definition will be used for the demonstration of Proposition 2.10. Let us
recall that the sub- and the super-differential of a continuous function u € C(R™ x (0,T)), at
a point (x,t) € R™ x (0,T), are defined as the closed convex sets:

DYz, t) = {(p, a) e R" xR:

(y,5)— (1) ly — x| +[s — ]
and
DY u(x,t) = {(p, a) eR" xR
oy M) Ul = o) ba(20) )
(y,5)— (1) ly — x| +[s — ¢t
respectively.

Definition 2.4 (Equivalent definition of viscosity solution)
1) A function u € C(R™ x (0,T)) is a viscosity super-solution of (2.1) if and only if, for every
(x,t) e R™ x (0,T):

V(p,a) € DV ~u(a,t), a+ F(z,t,p) > 0. (2.5)

2) A function u € C(R™ x (0,T)) is a viscosity sub-solution of (2.1) if and only if, for every
(x,t) e R™ x (0,T):
Y(p,a) € DV u(x,t), a+ F(z,t,p) <O0. (2.6)

This definition is more local, for it permits verification that a given explicit function is a viscosity
solution in a more classical way, i.e. using the derivative calculus. A similar definition, that
will be used later, could be given in the stationary case. Let 2 C R™ be an open domain, and
consider the PDE

F(z,u(x),Vu(z)) =0, Yz e, (2.7)

where F': ) x R x R" — R is a continuous mapping.



Definition 2.5 (Viscosity solution: stationary case)
A continuous function u :  — R is a viscosity sub-solution of the PDE (2.7) if for any
continuously differentiable function ¢ : Q +— R and any local mazimum xy € Q of u — ¢, one
has

F(zg,u(xo), Vo(xp)) < 0.

Simalarly, if at any local minimum point o € Q0 of u — ¢, one has
F(.%'o,u(wo)7 V(ﬁ(‘ro)) >0,

then u is a viscosity super-solution. Finally, if u is both a viscosity sub-solution and a viscosity
super-solution, then wu is called a viscosity solution.

In fact, this definition is used for interpreting solutions of (1.4) in the viscosity sense. Further-
more, we say that u is a viscosity solution of the Dirichlet problem (2.7) with v = { € C(99)
if:
(1) ue C(Q),
(2) w is a viscosity solution of (2.7) in €,
(3) u = ¢ on 09.
For a better understanding of the viscosity interpretation of boundary conditions of Hamilton-
Jacobi equations, we refer the reader to |2, Section 4.2].

Now, we will proceed by giving the main results concerning viscosity solutions of (2.1). In
order to have existence and uniqueness, the Hamiltonian F' will be restricted by the following
conditions :

(FO) F € C(R x [0,T] x R);

(F1) for each R > 0 there is a constant Cg such that for all (z,¢,p), (y,t,q) € R x [0,T] x
[_R7 R]?
| F(z,t,p) = F(y,t,q) | < Cr(lp —ql + [z — y|);
(F2) there is a constant Cr such that for all (¢,p) € [0,7] x R and all z, y € R,
| F(x,t,p) = F(y,t,p) | < Crle —y|(1 + |p]).

We use these conditions to write down some results on viscosity solutions.

Theorem 2.6 (Comparison, [9, Theorem 1])
Let F satisfy (FO)-(F1)-(F2). If u, i € UC,(Qr) are two viscosity sub- and super-solution of
the Hamilton-Jacobi equation (2.1) respectively, with

u(z,0) <u(x,0) in R,
then u < @ in Qr.

Theorem 2.7 (Existence, [9, Theorem 1])
Let F satisfy (FO)-(F1)-(F2). Ifu® € UC(R), then (2.1) has a viscosity solution u € UC(Qr).

Remark 2.8 The “comparison” theorem stated above gives the uniqueness of the viscosity so-
lution.



Remark 2.9 In the case where the Hamiltonian has the form
F(z,t,u) = g(z,t) f(u),

the following conditions:
(VO) f € Cj(R;R),
(V1) g € Cy(Qr;R),
(V2) g, € L®(Qr),

imply (FO)-(F1)-(F2) together with the boundedness of the Hamiltonian.

The next proposition reflects the behavior of viscosity solutions under additional regularity
assumptions on u° and F.

Proposition 2.10 (Additional regularity of the viscosity solution)
Let F = gf satisfy (V0)-(V1)-(V2). If u® € Lip(R) and u € UC,(Q7) is the unique viscosity
solution of (2.1), then u € Lip(Qr).

Proof. Consider the function u® defined on R x [0, 7] by:
ke [z —yI?
u®(x,t) = sup < u(y,t) — e —"—>%.
yeR 2¢e
By |20, Theorem 3|, the function u satisfies,
[u(e,6)] < ¢zl + 1) for (5,1) € R x [0,7],

where ¢ and ¢* are two positive constants. Therefore, u is a sublinear function for every
time ¢ € [0,7]. The function u® is defined via a supremum which is attained because of the
sublinearity of the function u (a quadratic function always control a linear one); the supremum
can be achieved at several points; let z. be one of them, so we can write

2
T—
ut(x,t) = u(xe, t) — ekt%.
We are going to prove that for (p,a) € R x R, we have:
|2
(p,a) € DYl (2,t) = (p,oz - ke’“%) € DY u(ae, t). (2.8)

Since (p,a) € DY uf(x,t), then we can write for (y,s) ~ (x,t) that,
L=u(y,s) <u(z,t) +a(s —t) +ply — ) +olls —t| + |y — z[) = R, (2.9)
where the left side L of (2.9) satisfies,

eks |Z _ y|2

L>u(z,s)— 5
e

Z€R, (2.10)



and the right side R of (2.9) satisfies,

_ ot |z — x|
2e

Choose z such that z — y = . — x, then

R < u(we,t) +a(s—t)+ply —x)+o(ls —t| + |y — z|). (2.11)

2=+ (y — x) ~ xc, since y ~ . (2.12)
Combining (2.9), (2.10), (2.11) and (2.12) together, we get

_ eks’x — .%'5‘2 <

u(ze + (y -~ 2),5) <

_ okt |z — 2]

u(ze, t) 5

+a(s —t)+p(z — ) +o(|s —t| + |z — zc]),

and hence,
2
ekt)‘x .%'5‘
2e
+a(s —t) +p(z —z:) +o(|s —t| + |z — z¢]). (2.13)

u(z,s) <wu(xe,t) + (eks —

We have

_ 2 o 2
R L R R

then using inequality (2.13), we get

2
Mzﬁéuwaﬂ+<a+%mﬁ3§i>$—ﬂ

+p(z —x:) +o(ls — t| + |z — ),
which proves that

2e

and hence statement (2.8) is true. Since u is a viscosity sub-solution of (2.1), we have

_ 2
Ql+kﬁmhl—ﬂiwp><5DL+U@%J%

Kt |7 — $€|2
2¢e

We use condition (F1) with p = ¢, to get

a+ ke + F(zc,t,p) <0.

2
ot kekt%im + F(z,t,p) < F(x,t,p) — F(z.,t,p),
€
< Ol — ],
therefore,
a+ F(z,t,p) < Clo—w|- kekt|x _2:€| ’
2
r
< Ore—k=
= YTe 2¢’
L 2
< sup (C’r - L) )
r>0 2e



where r. = |z — z.|. At the maximum 7, we have C' = g By choosing k = %2, we get
a+ F(x,t,p) <e.

This inequality shows that v = u® — et is a viscosity sub-solution of (2.1) with v*(z,0) =
u®(z,0). By the comparison principle, we have

v (z,t) —u(x,t) < 21€1£(v6(x, 0) — uo(az)),

< sup(u(,0) — (@),

_ 2
< sup sup{u%y)——'x el }—u%c) ,
z€R \ yER 2e

2
r—y
< sw (w—yr—u),

z,yeR 2e
2 2

r 3

< sup <W - 2—) =L
r>0 9 2

where 7 is the Lipschitz constant of the function u°, and r = |z — y|. This altogether shows
the following inequality for z,y € R:

— ul? 2
kelr — o <u(z,t) <wu(z,t)+et + e (2.14)

t —
u(y7 ) e 28 2

Remark here that & is a fixed; previously chosen constant. Inequality (2.14) yields:

() —ulant) < U (14 %) e=CJe+ e, (215)

where ¢ = ekt% and 3 = (t + g) We minimize inequality (2.15) over ¢ to obtain,

uy,t) —ulz,t) < 2/CB,

2
eIVt + %]w -yl

IN

Since this inequality holds Vz,y € R, exchanging x with y yields,
lu(z,t) — u(y,t)| < C(F,up)|lr —y| Vz,y R and t € [0,T].

This shows that the function w is Lipschitz continuous in x, uniformly in time t. To prove the
Lipschitz continuity in time, we mainly use the result of [20, Theorem 3]|) with the fact that
up = —F(x,t,u;), and the boundedness of the Hamiltonian. O

Remark 2.11 [t is worth mentioning that the space Lipschitz constant of the function u de-
pends on C, where C' appears in (F1) for p = q, and on the Lipschitz constant ~y of the function
ug. While the time Lipschitz constant depends on the bound of the Hamiltonian.

11



2.2 Entropy solution: definition and properties

Definition 2.12 (Entropy sub-/super-solution)
Let F(z,t,0) = g(a.t)f(v) with g, g, € L (QriR) and f € CYR;R). A function v €

L>®(Qr;R) is an entropy sub-solution of (2.2) with bounded initial data v° € L>®(R) if it
satisfies:

| [t 0)61,t) + (ot t)gle 06u w0+
T (2.16)

h(v(m,t))gx(x,t)qﬁ(x,t)}dxdt + /Rm(vo(x))qﬁ(x,O)dx >0,

Vo € CHR x [0,T);Ry), for any non-decreasing convex function n; € CL(R;R), ® € CH(R;R)
such that:
& =fmn, and h=>— fn, (2.17)

An entropy super-solution of (2.2) is defined by replacing in (2.16) n; with ng; a non-increasing
convex function. An entropy solution is defined as being both entropy sub- and super-solution.
In other words, it verifies (2.16) for any convex function n € C1(R;R).

A well know characterization of the entropy solution is that:

Proposition 2.13 A function v € L (Qr) is an entropy sub-solution of (2.2) if and only if
Vk €R, ¢ € CLR x [0,T);R,), one has:

| [0 = % ontet) + son® () = R)(F(wlast) = S0 (. )6 (2. 1)-

T

sgn™ (v(x,t) — k)f(k:)gx(x,t)gb(x,t)]dxdt + /R(vo(x) — k)t é(x,0)dr >0, (2.18)

Where o = 1(|la| £ a) and sgn®(z) = L(sgn(z) £ 1). An entropy super-solution of (2.2) is
defined replacing in (2.18) (-)*, sgn™ by (-)~, sgn™.

This characterization can be deduced from (2.16), by using regularizations of the function
(-—k)*. Also (2.16) may be obtained from (2.18) by approximating any non-decreasing convex
function n; € C(R;R) by a sequence of functions of the form: ni(")(-) =57 ﬁi(")(- - k:gn))*,
with ﬁl(n) > 0.

Entropy solution was first introduced by Kruzkov [22]| as the only physically admissible
solution among all weak (distributional) solutions to scalar conservation laws. These weak
solutions lack the fact of being unique for it is easy to construct multiple weak solutions to
Cauchy problems (2.2), see [25].

Our next definition concerns classical sub-/super-solution to scalar conservation laws. This
kind of solutions are shown to be entropy solutions, for the details see lemma 3.3.

Definition 2.14 (Classical solution to scalar conservation laws)
Let F(z,t,0) = g(a.t)f(v) with g, g, € L (QriR) and f € CYR;R). A function v €

loc

Whe(Qr) is said to be a classical sub-solution of (2.2) with v°(z) = v(z,0) if it satisfies
vi(w,t) + (F(z,t,0(2,)))z <0 ace. in Q. (2.19)

Classical super-solutions are defined by replacing “<” with “>"in (2.19), and classical solutions
are defined to be both classical sub- and super-solutions.
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We move now to some results on entropy solutions depicted from [22].

Theorem 2.15 (Kruzkov’s Existence Theorem)
Let F, v° be given by Definition 2.12, and the following conditions hold:

(E0) f € Cy(R),
(E1) g, g2 € Cy(Qr),

(EZ) Jzx € C(QT)7

then there exists an entropy solution v € L>®(Qr) of (2.2).

In fact, Kruzkov’s conditions for existence were given for a general flux function [22, Section
4]. However, in Subsection 5.4 of the same paper, a weak version of these conditions, that
can be easily checked in the case F(z,t,v) = g(x,t)f(v) and (E0)-(E1)-(E2), is presented.
Furthermore, uniqueness follows from the following comparison principle.

Theorem 2.16 (Comparison Principle)
Let F be given by Definition 2.12 with f satisfying (EOQ), and g satisfies,

(E3) g € WH(Qr).

Let u(z,t), v(z,t) € L>®(Qr) be two entropy sub-/super-solutions of (2.2) with initial data
u®, v¥ € L®(R). Suppose that,

uw(z) <(z) ae in R,

then
u(z,t) <v(z,t) ae in Qp.

Proof. See Section 6, Appendix. O

It is worth noticing that in [22], the proof of the existence of entropy solutions of (2.2) is
made through a parabolic regularization of (2.2) and passing to the limit, with respect to the
L' convergence on compacts, in a convenient space.

At this stage, we are ready to present a relation that sometimes hold between scalar con-
servation laws and Hamilton-Jacobi equations in one-dimensional space.

2.3 Entropy-Viscosity relation

Formally, by differentiating (2.1) with respect to x and defining v = u,, we see that (2.1) is
equivalent to the scalar conservation law (2.2) with v = u? and the same F. This equivalence
of the two problems has been exploited in order to translate some numerical methods for
hyperbolic conservation laws to methods for Hamilton-Jacobi equations. Moreover, several
proofs were given in the one dimensional case. The usual proof of this relation depends strongly
on the known results about existence and uniqueness of the solutions of the two problems
together with the convergence of the viscosity method (see [8, 23, 27]). Another proof of this
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relation could be found in [5] via the definion of viscosity /entropy inequalities, while a direct
proof could also be found in [21] using the front tracking method. The case of a Hamiltonian
of the form (2.3) is also treated even when g(x,t) is allowed to be discontinuous in the (x,t)
plane along a finite number of (possibly intersected) curves, see [29].

In our work, the above stated relation will be successfully used to get some gradient es-
timates of k. Although several approaches were given to establish this connection, we will
present for the reader’s convenience, a proof similar to that given in [8, Theorem 2.2]. For
every Hamiltionian /flux function F = gf and every u° € Lip(R), let

&V = {(V0)7 (V1)7 (V2)7 (E0)7 (E1)7 (E2)7 (E3)},
in other words,

The set of all conditions on f and g ensuring the

£y existence and uniqueness of a Lipschitz continuous viscosity
| solution u € Lip(Qr) of (2.1), and of an entropy

solution v € L™ (Q7) of (2.2), with v* = 4 € L>®(R).

Theorem 2.17 (A link between viscosity and entropy solutions)
Let F = gf with g € C?>(Q7), u® € Lip(R) and EV satisfied. Then,

v=1u; a.e in Qr.

Sketch of the proof. Let ¢ > 0 and § > 0. We start the prove by making a parabolic
regularization of equation (2.1) and a smooth regularization of uy and we solve the following
parabolic equation:

£,0 £,0 €,0 :
u;” 4+ Fx,t,u)’) = eu, in R x(0,7),

w0 (z,0) = u®(x) in R.

For the sake of simplicity, we will denote u° by w and u%? by w®. Note that the first equation
of (2.20) can be viewed as the heat equation with a source term F. Thus, we have:

Wy — EWqp = Flw](x,t in ,
e = [w](z, 1) | Qr (2.21)
w(;p, 0) = w mn R,
with Flw|(x,t) = F(z,t,w,(z,t)). From the classical theory of heat equations, since F[w] €
LY (Qr) and w' € VVli’f(R), there exists a unique solution w of (2.21) such that

we WP (Q) VQCCQr and 1< p< .

Here the space Wy (), p > 1 is the Banach space consisting of all functions w € LP(Q)
having generalized derivatives of the form w; and wy, in LP(Q2). For more details, see [24,
Theorem 9.1]. We also notice that the space Wy (Q) is continuously injected in the Holder
space C*/2(Q) for a = 2 — % and p > %, see [24]. We use now a bootstrap argument to
increase the regularity of w, taking in each stage, the new regularity of F|w] and the regularity
of w’. Finally, we get that w € C*'(R x [0,T)) (three times continuously differentiable in
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space and one time continuously differentiable in time). From the maximum principle and the
LP-estimates of the heat equation, see [24, 3], it follows the uniform bound of u? in Wﬁ’f(QT),
for p > 2. Therefore, we get as § — 0 and € — 0 that:

u? —u in C(Rx[0,T)),

with u(z,0) = u®. We now make use of the stability theorem, [2, Théoréme 2.3], twice on the
equation (2.20) to get that the limit u is the unique viscosity solution of (2.1). Hence, we have
for any ¢ € C§°(Qr)

T T
lim wWlpdrdt = — lim / / w0, dx dt
6%0,5%0/0\ /R e e—0,0—-0 Jo Jr ¢

T T
= —/ /uqﬁzdxdt:/ /ungdazdt.
0 R 0 R

The appearance of u, follows since u € Lip(Qr). Moreover, as a regular solution, the function
059 = 150 solves the derived problem

0 SV 80 :
{vte + (F(z,t,v%%)); = eviy in Rx(0,7), (2.22)

059 (2,0) = u(x) in R,

% converge in L. (Qr),ase — 0 and § — 0,

and, according to [22, Theorem 4], the sequence v Toc

to the entropy solution v of (2.2). Then, for any ¢ € C§°(Qr),

T T
Ml/l/ﬁ%Mﬁ:/(/mwﬁ.
€=06=0Jo Jr o Jr
T T
/ /quﬁdxdt:/ /v(ﬁdaﬂdt,
0 R 0 R

and u, = v a.e. in Qp. O

Consequently,

Remark 2.18 The converse of the previous theorem holds under certain assumptions (see [21,

7).

Remark 2.19 In the multidimensional case this one-to-one correspondence no longer exists,
instead the gradient v = Vu satisfies formally a non-strict hyperbolic system of conservation

laws (see [27, 23]).

Throughout Sections 3 and 4, p will always be the solution of the heat equation (1.5). The
properties of the solution of the heat equation with such a regular initial data will be frequently
used, we refer the reader to [3, 13| for details.

3 The approximate problem

In this section, we approximate (1.4) and we pose a more restrictive condition (see condition
(1.8)) on the gradient of the initial data than of the physicaly relevent one (1.6). We prove
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a result of existence and uniqueness of this approximate problem, namely Theorem 1.2, and
the reader will notice at the end of this section that this restrictive condition is satisfied for all
time, and this what cancels the approximation in the structure of (1.4) and returns it to its
original one. Finaly we present the proof of Theorem 1.3.

For every a > 0, we build up an approximation function f, € C{(R) of the function %
defined by:

fa(z) = % — (3.1)
otherwise.
a’?+ a?(x — a)?

1
— if T > a,
x

Proposition 3.1 For any a > 0, let f, be defined by (3.1) and H € C1(R) be a scalar-valued
function. If

Fa(x,t,u) = _H(pﬂﬁ(x?t))pxx(x?t)fa(u) (3-2)
and k0 € Lip(R), then the Hamilton-Jacobi equation

(3.3)

Kt + Fo(x,t, k) =0 in Qr,
k(x,0) = K°(z) in R,

has a unique viscosity solution k € Lip(Qr).

Proof. The proof is easily concluded from Theorems 2.6, 2.7 and Proposition 2.10, after
checking that the conditions (V0)-(V1)-(V2) are satisfied with

g((L‘,t) = _H(px(xvt))parar(xat)- (3-4)

The condition (V0) is trivial, while for (V1), we just use the fact that H is bounded on compacts
and the fact that |pe(z,t)] < |[p2]|ze(r) in Q7. For the condition (V2), the regularity of p and
H permits to compute the spatial derivative of g in @, thus we have:

9z = _(H/(p:v)piz + H(Pz)ﬂzzz)-

The uniform bound of the spatial derivatives, up to the third order, of the solution of the heat
equation, and the boundedness of H " on compacts gives immediately (V2). O

In the following proposition, we show a lower-bound estimate for the gradient of k obtained
in Proposition 3.1. It is worth mentioning that a result of lower-bound gradient estimates
for first-order Hamilton-Jacobi equations could be found in [26, Theorem 4.2]. However, this
result holds for Hamiltonians F'(x,¢,u) that are convex in the u-variable, using only the viscosity
theory techniques. This is not the case here, and in order to obtain our lower-bound estimates,
we need to use the viscosity/entropy theory techniques. In particular, we have the following:

Proposition 3.2 Let G € C3(R;R) satisfying the following conditions:
(G1) G(x) > G(0) > 0,
(G2) G" > 0.
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Moreover, let

H=GG and 0<a<qG0).
If k¥ satisfies:

rp(z) > G(p(2)), ae in R,

then the solution k obtained from Proposition 3.1 satisfies:

Ke(x,t) > G(pe(z,t))  ace. in Q. (3.5)

In order to prove Proposition 3.2, we first show that G(p,) is an entropy sub-solution of

{“’t +(F(r,t,w0))e =0 in Qr, (3.6)

w(z,0) = () in R,

with w® = G(p?) and F is the same as in (3.2). Before going further, we will pause to prove a
lemma which makes it easier to reach our goal.

Lemma 3.3 (Classical sub-solutions are entropy sub-solutions)
Let v € Wh*(Qr) be a classical sub-solution of (2.2) with v°(x) = v(x,0), then v is an entropy
sub-solution.

Proof. Let 7;, ®, h and ¢ be given by Definition 2.12. Multiplying inequality (2.19) by n;(v)é
does not change its sign. Hence, after developing, we have:

m(v)ved + 1;(0)9: () + i (v)gf (V)vs¢ <0, ae. in Qr, (3.7)

and since v is Lipschitz continuous, we use the chain-rule formula together with (2.17) to rewrite
(3.7) as:
(i) @ + ga f (V)1 (V)¢ + 9(B(v))2 ¢ <0, ae. in Qr. (3.8)

Upon integrating (3.8) over Q7 and transferring derivatives with respect to ¢ and z to the test
function, we obtain:

| [t o) + (0t 0)g(e. 00, .+

T

hwmm%@wmmﬁmaaémwmwmmmza (3.9)

which ends the proof. O

Following same arguments, classical super-solutions are shown to entropy super-solutions. We
return now to the function G(p,) and we are ready to show that it is indeed an entropy sub-
solution of (3.6). In particular, we have the following:

Lemma 3.4 The function G(p,) defined on Qr is a classical sub-solution of (3.6) with initial
data G(p%), hence an entropy sub-solution.
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Proof of Lemma 3.4. First, it is easily seen that G(p,) € WH(Q7). Define the scalar
valued quantity B on Qp by:

B(z,t) = 0,(G(pz(2,1))) + 0 (F (2,1, G(pz(2,1)))).
Since 0 < a < G(0), we use (G1) to get fo(G(ps)) = 1/G(p,) and we observe that,

B = G(ps)pat— s (%)

G (r)pase (G(px)[H' ()2 + H(ga;)&zz)a - (& <px>pzzH<px>>>

G(p2) paca(G(p2)G (pz) — H(pz)) — p2.(H (p2)G(pz) — H(pe)G (pa))

G2(pz)
The condition (G2) gives immediately that B < 0. This proves that G(p,) is a classical sub-
solution of equation (3.6) and hence an entropy sub-solution. O

Proof of Proposition 3.2. From the definition of H and the properties of p, it is easy to
check that g € C?(Qr) and that £V is fully satisfied. Hence, we are in the framework of
Theorem 2.17 with u® = x". This theorem gives that x, is the unique entropy solution of (3.6)
with w? = k0. Moreover, by the previous lemma, G(p,) is an entropy sub-solution of (3.6).
Since

k) > G(pY), ae. in R,

we can apply the Comparison Theorem 2.16 to get the desired result. O

It is worth notable here that we do not know how to obtain the lower-bound on the spatial
gradient k, using the viscosity framework directly. However, for the case of the upper-bound,
we can do so (see Remark 4.1). At this stage, fix some € > 0, and let

G(x) = Va2 + ¢ and a= G(0) =e.
It is clear that G¢(x) satisfies the conditions (G1)-(G2) with
H(z) ==z,
and the Hamiltonian F from (3.2) takes now the following shape:
Fu(,t,0) = — (@, )pae (2, . (1), (3.10)

Moreover, we have the following corollary which is is an immediate consequence of Propositions
3.1 and 3.2.

Corollary 3.5 There exists a unique viscosity solution x € Lip(Qr) of

{ Kt + Fe(x,t, k) =0 in Qr,

3.11
k(x,0) = k° € Lip(R) in R, (38.11)
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with kY satisfies:
K>V (p2)2+ €2 ae in R (3.12)

Moreover, this solution k satisfies:
Ke > \/p2+e  ae in Q. (3.13)

The following lamma will be used in the proof of Theorem 1.2.

Lemma 3.6 Let ¢ be an arbitrary real constant and take ¢ € Lip(R;R) satisfying:
Yg > C a.e in R

If ¢ € CY(R;R) is such that 1) —C has a local mazimum or local minimum at some point ro € R,
then

Cz ((L‘Q) > C.

Proof. Suppose that ¢ — ¢ has a local minimum at the point zg; this ensures the existence of
a certain r > 0 such that

(Y —=0)(x) > (¥ = C)(x0) Vs |z — 20| < 7.

We argue by contradiction. Assuming (,(xg) < ¢ leads, from the continuity of (., to the
existence of 7 € (0,r) such that

Co(z) <€ Vay |z —xo| <71 (3.14)
Let yo be a point such that |yg — zg| < 7 and yo < . Reexpressing (3.14), we get

(¢ —cx)z(z) <0 Vz € (yo,0),

and hence

/ 4 — ex)ala) — (€ — ew)a(a))d > 0,

Yo
which implies that
(1 = (o) > (¥ = ¢)(wo),

and hence a contradiction. We remark that the case of a local maximum can be treated in a
similar way. O

Now, we are ready to present the proofs of the first two theorems announced in Section 1.

Proof of Theorem 1.2. Let x € Lip(Qr) be the solution of (3.11) obtained in Corollary
3.5. Let us show that it is the unique viscosity solution of (1.4) among those verifying (3.13).
To do this, we consider a test function ¢ € C(Q7) such that x — ¢ has a local minimum at
some point (zg,tg) € Qp. Proposition 2.10, together with inequality (3.13) gives that

k(. to) € Lip(R) and kyz(.,tp) > € a.e. in R.
We make use of Lemma 3.6 with ¢(.) = k(.,%0) and {(.) = ¢(.,to) to get

¢z(T0,t0) > €. (3.15)
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Since k is a viscosity super-solution of

Kt — fE(K‘x)pl‘piBiB =0 in Qr,

we have
bi(xo,t0) — fe(@z(0,t0))pe (20, t0) pae (0, to) > 0.

However, from (3.15), we get
Pe(wo, to) P (2o, to) — px(@0, to) paa (20, t0) > 0,

and hence k is a viscosity super-solution of

KtKg = PePze N Q7.

In the same way, we can show that k is a viscosity sub-solution of the above equation and hence
a viscosity solution. The uniqueness of this solution comes from the uniqueness of the viscosity
solution of (3.11) by reversing the above reasoning. O

Remark 3.7 Notice that the first equation of (1.4) can be viewed as a Hamilton-Jacobi equation
of the type
F(X,Vk)=0 m Qr,

where F' : Qp x R? — R defined by:
F(X,p) = p1p2 — pu(X)pzz (X)),
with X = (z,t) and p = (p1,p2)-

Proof of Theorem 1.3. Let § = ;. By Theorem 2.17, § is the unique entropy solution of

Ht - (pa:pa:mfs(e))x in QTa
(z,0) = 6°(2) in R,

with
0°(z) = kO(x) > /(09)2 + €2, ae. in R.

Moreover, from Corollary 3.5, we have

0>+/p2+e ae in  Qr,

from which we deduce that f.(0) = % and hence our theorem holds. O

4 Proof of Theorem 1.6

We turn our attention now to Theorem 1.6. Let 0 < € < 1 be a fixed constant and take

kO (x) = K¥(z) + ex. (4.1)
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It is easy to check that the function k%€ belongs to Lip(R), and by condition (1.6) we get for
a.e. r € R,

KO(x) = KO(z) e,
> V(ph(2))? + €.

From Theorem 1.2, there exists a family of viscosity solutions x¢ € Lip(Qr) to the initial value

problem (1.4) that satisfy:
K, > \/pi+e  ae in Qr.
We will try to extract a subsequence of k¢ that converges, in a suitable space, to the desired
solution
4.1 Gradient estimates.
Uniform bounds for the space-time gradients of k¢ will play an essential role in the determina-

tion of our subsequence.

I. e-uniform upper-bound for xj.
Starting with the time gradient, we have for a.e. (z,t) € Qr:

Ry (2, )R (2,8) = po (2, 8) paa (2, 1), (4.2)

and
kS (z,t) > V/p2(z,t) +€2 >0 ae in Qr. (4.3)

If py(x,t) = 0 for some Lebesgue point (x,t) of k5 and &g, it follows from (4.2) and (4.3) that
k§(x,t) = 0. Otherwise, and since by (4.3) kS > |pz|, we conclude that:

K| < (1Pl m) ae. in Qr, (4.4)

and hence we obtain an e-uniform bound of «f.

For the space gradient, we argue in a slightly different way. The key point for obtaining
the uniform bound of k§{ was the minoration of s by |p.| so, roughly speaking, if we want to
follow the same previous steps using the symmetry of (4.2) in s§ and k¢, one should also have
an appropriate minoration of |«§| by a well controlled function which no longer exists.

II. Formal calculus and best candidate.

We seek to find the best candidate to be an upper-bound of k. For this reason, we regard
formally what is happening at the maximum of 5. Dividing both sides of (4.2) by ¢ and
differentiating with respect to the spatial variable, we get:

2 €
P + PzPzzx Rz Pz Pz
T S (4.5)

Notice that kS, = 0 at the maximum of 5. Multiplying equality (4.5) by ¢ and integrating
between 0 and ¢, we obtain:

td 1 5 t )
— | (x5 dr = xzzzda
[ (502 )ar = [0t papnnrir
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then
(K (2, )2 = (RO5(2))? + 2 /O (o) + P, D) (2, 1)),

and hence,
|kS] < V2c1t + e,
where
cr = ||(pgz)2||L°°(]R) + ||pg||L°°(R)||szz||L°°(R)a
and

0 2
c2 = (|[rgllLoo®) +1)°
The reason of taking cy as above easily follows since KOE = kY + ¢, by taking e small enough,

namely less than 1.

III. e-uniform upper-bound for x.

Define the function S by:
S(z,t) = 2c1t + co.

Let us show that S is an entropy super-solution of (3.6) with F given by (3.10) and w®(z) =
S(z,0). Indeed, it remark that S € W1 (Qr), and we know that for every (x,t) € Qr we
have,

S(a.t) > ez = K2y +1 €
then

fe(S(z,t)) = V(z,t) € Qr. (4.6)

1
S(x,t)
The regularity of the function S permits to inject it directly into the first equation of (3.6).
Therefore, using (4.6), we have

S, — (pa:pxx) _ C1 B Piz + PxPrrx
t S x V2cit + co V2cit + ¢ ’

c1 — (P2, + PaPoaa)

V2cit + ¢

> 0,

which proves, by Lemma 3.3, that S is an entropy super-solution of (3.6). From the discussion
of the proof of Proposition 3.2, we know that ¢, is an entropy solution of (3.6) hence an entropy
sub-solution. Since for ¢ < 1 and a.e. x € R, we have,

reS(z) = Ro(e) +e
||“2||LOO(R)+1,

Ver = 5(z,0),

then we can use the Comparison Theorem 2.16 of scalar conservation laws to obtain:

kS (2,t) < Vet +ce <vaT +ecx ae in Qr, (4.7)

and hence we get an e-uniform bound for &g,

IA A
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Remark 4.1 We were able to obtain this e-uniform upper-bound of k5, by using the viscosity
theory techniques. In fact, we claim that (Y(x,y,t) = k(x,t) — k(y,t) and (*(x,y,t) =
(x —y)S(t) are two viscosity sub-/super-solutions of the following Hamilton-Jacobi equation:

ow

E :F(x,t,wx)—F(y,t,—wy) mn DZ{(.%',y,t), >y and t>0}

with initial data (V<(x,y,0) = K% (z) — k%(y) and (*(x,y,0) = (x —y)S(0) respectively. Here
F is given by (3.10). The claim is easy for (2, and we refer to [9] when K€ is a continuous
viscosity solution of (3.11). We also notice that: (%(z,y,0) < (*(x,y,0) V(z,y,0) € D, and
CHe(x,y,t) = (x,y,t) = 0 forx =y, t > 0. Moreover, since (&€ and (% are continuous
functions, we use the comparison principle of viscosity solutions (see [2]) to obtain:

(2, 1) = Ky, 1) < (z —y)S(t) V(z,y,t) €D,

hence, the estimate (4.7) holds.

4.2 Local boundedness in W1,

We now show that the family (k¢)g<e<1 is locally bounded in WH*(Qr). Let KCC Qr be a
compactly contained subset of @7, and (z,t) € K. Since k€ is Lipschitz continuous, we can
write,

|K€(,t) = £7(0)] < Gy, |, )],

where C’fip is the Lipschitz constant of k¢ which is independent of € from the previous estimates,
namely (4.4) and (4.7). Call this constant C. From the definition of x%¢(0) given by (4.1), it
follows that,

Kz, )] < Clz, 1)+ |°(0)],
< C max ,T)| + &0 ,
s [(0.7)] +[5°(0)

which is finite since K is bounded and hence, (k)o<c<1 is uniformly bounded in C'(K). This,
together with the uniform gradient estimates, gives the local boundedness of x¢ in W1>°(Qr).

4.3 Proof of theorem 1.6

At this point, we have the necessary tools to give the proof of Theorem 1.6. We first recall
that k€ is a viscosity solution of an equation of the type (4.2), with a Hamiltonian independent
of € (see Remark 3.7) and x%¢ — & locally uniformly in R. By Ascoli’s Theorem, there is
a subsequence, called again k€, that converges to x € Lip(Qr) locally uniformly, and by the
stability theorem (see [2, Theorem 2.3]),  is a viscosity solution of the initial value problem

{ RtRy = PxPxx in QT7 (4 8)

k(x,0) = k%(2) in R
To end the proof, we still have to show the inequality

Ke > |pe]  a.e.in Q.
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Again by Theorem 1.2, our € verifies for a.e. (z,t) € Qr,
Ko(z,t) > \p2(x,t) + ¢
> pa(z, 1),
then for (y,t), (z,t) € Qr close enough, with p, a continuous function, the following inequality
hold
K (y,t) — K (x,t)
r—y

Using the local uniform convergence of € to k, we get a similar inequality with ¢ replaced
with x and hence

> |pa(x,1)].

Ke > |pe] a.e.in Q.

5 Problem with boundary conditions

In this part of the paper, we deal with the same problem structure but with boundary conditions
of the Dirichlet type. This sort of boundary conditions arises naturally in a special model of
dislocation dynamics and will be explained in the following subsection. Our notations are kept
untouched; the terms 6T, #~, p and & still have the same physical meaning, while the domain
is changed into the open and bounded interval

I=1(0,1),

of the real line. Although this problem seems to be an independent one, we will try to benefit
the results of the previous sections by considering a trick of extension and restriction, in order
to apply some of the previous results of the whole space problem.

5.1 Brief physical motivation

To illustrate some physical motivations of the boundary value problem, we consider a con-
strained channel deforming in simple shear (see [18]). A channel of width 1 in the z-direction
and infinite extension in the y-direction is bounded by walls that are impenetrable for disloca-
tions (see Figure 1). The motion of the positive and negative dislocations corresponds to the
x-direction. This is a simplified version of a system studied by Van der Giessen and coworkers
[6], where the simplifications stem from the fact that:

e only a single slip system is assumed to be active, such that reactions between dislocations
of different type need not be considered;

e the boundary conditions reduce to "no flux" conditions for the dislocation fluxes at the
boundary walls.

The mathematical formulation of this model, as expressed in [18], is the system (1.2) posed on

Ix(0,T): X . 0F (z,t) — 07 (z,t)
07 (2,t) — Os <9 (1) <9+(3:,t) +9(:ﬂ,t)>> - (5.1)
007 (,t) + Oy <0(w,t) (gf%ﬁg EZ;E%)) B
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Figure 1: Geometry of a constrained channel

To formulate heuristically the boundary conditions at the walls located at x =0 and z = 1, we
note that the dislocation fluxes at the walls must be zero, which requires that

(07 —67) =0, at  x€{0,1}. (5.2)

Rewriting system (5.1) in a special integrated form in terms of p, k and ®, we get

Ky = Ke)®,
t = (Px/kz) (5.3)
Pt = d.
Using (5.2) into the system (5.3), we can formally deduce that p and k are constants along the
boundary walls. Therefore, the remaining of this paper focuses attention on the study of the
following coupled Dirichlet boundary problems:

Pt = Paz, in I x(0,00),
p(z,0) = p°(z), in I, (5.4)
p(0,t) = p(1,t) =0, vt € [0, 00),
and
Ktke = PPz, in Ix(0,7),
r(z,0) = K°(z), in I, (5.5)

k(0,t) = k(0,0) and k(1,t) =k(1,0), Vtel[0,T].

Denote It by:
Ip=1x(0,7T).

There are two natural assumptions concerning p° and x°, the first one is again the positivity of
the dislocation densities #* and 6~ at the initial time, which yields to the following condition:

K0 > [pd, (5.6)
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and the second one has to do with the balance of the physical model that starts with the same
number of positive and negative dislocations. In other words, if n™ and n~ are the total number
of positive and negative dislocations respectively at ¢ = 0 then:

1
01y _ 0 _ 0 () doe
(1) — 5(0) /Opxud,

this shows that pY(1) = p°(0) and this is what appears in (5.4). Up to now, formal relations
between the initial conditions are only expressed. Whereas, required regularity, together with
the announcement of the main results will be stated in the next subsection.

5.2 Statement of the main results on a bounded interval

From now on, the reader should not be confused with the term p that will always be the unique
solution of the classical heat equation (5.4). The two main theorems that we are going to prove
are:

Theorem 5.1 (Existence and uniqueness of a viscosity solution)
Let T > 0 and € > 0 be two constants. Take k° € Lip(I) and p° € C§°(I) satisfying:

K2 >G(0) ae in I,

where
G(z) = Va? + €2,

then there exists a viscosity solution x € Lip(IT) of (5.5), unique among those satisfying:
ke > G(py) a.e. in Ip. (5.7)

Theorem 5.2 (Existence of a viscosity solution)
Let T > 0 and x° € Lip(I). Under the condition (5.6) satisfied a.e. in I, there exists a viscosity
solution k € Lip(Ir) of (5.5) satisfying:

Ke > |pzl, a.e. in Ip.

5.3 Preliminary results

Before proceeding with the proof of our theorems, we have to introduce some essential tools
that are the core of the "extension and restriction" method that we are going to use.

Extension of p over R x [0,7].
Consider the function p defined on [0,2] x [0,7T] by

Aeot) = {p(m,t) if (x,t) € I, (5.8)

—p(2 —x,t) otherwise,
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this is just a C' antisymmetry of p with respect to the line # = 1. The continuation of p
to R x [0,7] is made by spatial periodicity of period 2. A simple computation yields, for
(x,t) € (1,2) x (0,7T):

pe(x,t) = —p(2 —x,t) and  pre(x,t) = —pre(2 — z, 1),

and hence it is easy to verify that p[(1 o)« [0,7] S0lves (5.4) with I replaced with the interval (1,2)
and p® replaced with its symmetry with respect to the point 2 = 1; the boundary conditions
are unchanged and the regularity of the initial condition is conserved. To be more precise, we
write down some useful properties of p.

Regularity properties of p.
Let r and s are two positive integers such that s < 2. From the construction of p and the above
discussion, we get the following:

i) pr and p, are in C(R x [0,T7),
ii)p=0o0n Z x[0,T7],

iii) ot = pra on (R\ Z) x (0,T),

iv) |07 035(. V)| oo () < C, Vit € [0, T,

(5.9)

Where C'is a certain constant and the limitation s < 2 comes from the spatial antisymmetry.
These conditions are valid thanks to the way of construction of the function p and to the max-
imum principle of the solution of the heat equation on bounded domains (see |3, 13]).

Let
g(x’t) = _ﬁt(x’t)ﬁr(xat)' (510)
From the above discussion, it is worth noticing that this function is a Lipschitz continuous

function in the z-variable.
The following three lemmas will be used in the proof of Theorem 5.1.

Lemma 5.3 (Entropy sub-solution)
The function G(p,) is an entropy sub-solution of

w + (§fe(w)), = 0, mn ,
i+ (9 ()]) . Qr (5.11)
w(z,0) = w"(x) in R,
where fe is given by (3.1), and w°(z) = G(p.(z,0)).
Proof. Similar to Lemma 3.4. O

Lemma 5.4 (Differentiability property)
Let u(x,t) be a differentiable function with respect to (x,t) a.e. in Qp. Define the set M by:

M = {x € R; w is differentiable a.e. in{z} x (0,T)},

then M 1is dense in R.
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Proof. Define L™, n € N to be the Lebesgue n-dimensional measure. Let N C Qr be the set
defined by:
N ={(z,t) € Qr; wis not differentiable on (z,t)},

and let Iy be the characteristic function of the set N. Since £2(N) = 0, we can write,

/ In(z,t)dzdt = 0.

T

Using Fubini’s theorem we get

/R g(z)dz =0, with g(z) = < /O T]IN(x,t)dt> >0,

g=0 ae in R

then

and consequently
J={z; g(x) #0} verifies LY(J)=0.

In other words,
Ve € R\ J, u(z,-) is differentiable with respect to (z,t) a.e. in (0,7,

hence R\ J C M which implies our lemma. O

In the next lemma, we show a lower-bound estimate for the gradient of & analogue to
(5.7). This was previously done for k, in the case where g is a twice continuously differentiable
function using mainly Theorems 2.17 and 2.16. Here, the way of extending the function p over

Q1 makes § loose some of the regularity stated in Theorem 2.17. However, the following lemma
shows that a similar result holds in the case § € W1°(Q7).

Lemma 5.5 The function k, € L (Qr) is an entropy solution of (5.11) with initial data
w® = &% € L®(R).

Proof of Lemma 5.5. Let § be an extension of the function § on R? defined by:

( at) if (xat) € QT’
g(x,t) = g( ,T) if t>1T, (5.12)
g(x,0) if ¢<0.

Consider a sequence of mollifiers £ in R? and let §* = §*¢™. Remark that, from the standard
properties of the mollifier sequence, we have §* € C*°(R?) and:

" — ¢ uniformly on compacts in Qr, (5.13)

and
gy — gz in L,(Qr), 1<p< oo, (5.14)

together with the following estimates:

HG{G;Q"HLoo(QT) < HGZG;QHLOO(Q’T) for r,SsE N, r+s<1. (515)
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Now, take again the Hamilton-Jacobi equation (5.27) with g replaced with g™:

{ut + gnfe(jjfoaﬂ) =0 ?n R x (0,7T), (5.16)
u(z,0) = & (z) in R,

and notice that the above properties of the function g" enters us into the framework of Theorem
2.17. Thus, we have a unique viscosity solution " € Lip(Qr) of (5.16) with initial condition
&Y whose spatial derivative &% € L>(Q7) is an entropy solution of the corresponding derived
equation with initial data 4. From Remark 2.11 and (5.15), we deduce that the sequence

T

(R"™)n>1 is locally uniformly bounded in W1°°(Qr) and that:

173 2o (@q) < 1Rl zoo ) + Tllalloe (@) 1 fell oo ) - (5.17)

Moreover, from (5.13), we use again the Stability Theorem of viscosity solutions [2, Theorem
2.3], and we obtain:
i" — & locally uniformly in Q7. (5.18)

Back to the entropy solution, we write down the entropy inequality (see Definition 2.12) satisfied
by RI:

[ (n200+ @600 + n(s)720 Jdadt + [ n(Eote. 0 =0, (.19
T R
where 1, ®, h and ¢ are given by Definition 2.12. Taking (5.17) into consideration, we use

a property of bounded sequences in L*°(Qr) (see [14, Proposition 3]) that guarantees the
existence of a subsequence (call it again R]) so that, for any function ¢ € C'(R;R),

b(ED) — Uy weak—x in L™(Qp). (5.20)

Furthermore, there exists u € L>®(Qr x (0,1)) such that:

1
/0 P(p(z,t,a))do = Uy(x,t), forae. (z,t) € Qr. (5.21)

Applying (5.20) with 1 replaced with 1, ® and h respectively, and using (5.21), we get:
1
WE0) = [ nlu(a)da weak—s in 1%(@Qr)
0

1
@(R:())—)/o O(u(.,a))da  weak—*  in L™(Qr), (5.22)

1
hE () — /O h(u(,a))da  weak—x  in L(Qr).

This, together with (5.13), (5.14) permits to pass to the limit in (5.19) in the distributional
sense, hence we get:

1
L[ (atstcnon + Gt )gen + (.. 0))3.0) dodedact
rJo (5.23)

/ n(R9)é(z, 0)dz > 0.
R
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In [14, Theorem 3|, the function p satisfying (5.23) is called an entropy process solution. It
has been proved to be unique and independent of «. Although this result in [14] was for a
divergence-free function § € C'(Qr), we remark that it can be adapted to the case of any
function § € W1°°(Qr) (see for instance Remark 6.2 and the proof of [14, Theorem 3]). Using
this, we infer the existence of a function z € L*°(Qr) such that:

z(z,t) = p(x,t,a), forae. (x,t,a) € Qr x (0,1), (5.24)

hence, z is an entropy solution of (5.11). We now make use of (5.24) and we apply equality
(5.21) for ¢(x) = z to obtain,
z = weak—* lim R} in L>(Qr). (5.25)

n—0o0

From (5.25) and (5.18) we deduce that,
z(z,t) = Ry(z,t) ae. in Qp,

which completes the proof of Lemma 5.5. |

5.4 Proofs of Theorems 5.1, 5.2
Proof of Theorem 5.1. We extend the function k" to 2 € Lip(R) in the following way:

K2 (x) if x€[0,1],
8@) = { (1001w + @ - ) +R21) i @21, (5.26)
(P8 oo (ry + €)z + £7(0) if z<0.

Consider the initial value problem defined by:

{ut +gfe(uz) =0 in Rx(0,7), (5.27)

u(z,0) = &°(z) in R.

This is a Hamilton-Jacobi equation with a Hamiltonian F' € C(Qr X R) defined by:

F(x,t,u) = g(z,t) fe(u).

From the regularity properties of p, we can directly see that (V0)-(V1)-(V2) are satisfied;
this is quite similar to what was done in Proposition 3.1. Since &° is a Lipschitz continuous
function, we deduce from Theorems 2.6, 2.7 and Proposition 2.10 the existence and uniqueness
of a viscosity solution # € Lip(Qr) of (5.27). Moreover, in order to recover the boundary
conditions given by (5.5) on I x [0,T], we proceed as follows. Let M be the set defined by
Lemma 5.4 and let € M. For every ¢ € [0,T], we write:

]/%(x,t)—/%(x,O)lg/O \/%S(x,s)\dsg/o ]F(w,s,/%x(x,s))\dsg/o (IF(0, 5, (2, 8))| + Cla]) ds.

In these inequalities we have used the fact that £ is a Lipschitz continuous viscosity solution
of (5.27) and hence it verifies the equation in Q7 at the points where it is differentiable (see
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for instance [2]|). Also, we have used the condition (F1) with p = ¢ and Cr = C, a constant
independant of R. Now from (5.9)-(ii), we deduce that:

|F(0,s,ky(x,8))| = |pz(0,5)p(0,8) fe(Ru(x,8)) =0, forae. se(0,t),
and hence we get
|&(z,t) — R(z,0)] < Clz|t. (5.28)
Since M is a dense subset of R, we pass to the limit in (5.28) as z — 0 and the equality
#(0,t) = #(0,0) = k°(0) Vvt € [0,T]

holds. Similarly, we can verify that #(1,t) = &(1,0) = x°(1) for all ¢ € [0, T].
Existence. The extension i” of £ outside the interval I is a linear extension of slope ||p9 || .01+ €,

therefore we have,
() = V()2 + € =G(p(), ae inR. (5.29)

From Lemma 5.5, we know that &, is an entropy solution of equation (5.11) and from Lemma
5.3, we know that G(p,) is an entropy sub-solution of (5.11). Since (5.29) holds, we use the
Comparison Theorem 2.16 to get,

Ro(x,t) > \/p2(z,t) + €2 >e>0, forae. (x,t) € Qr. (5.30)

Take x to be the restriction of 4 on Ir where A° and p have their automatic replacements «°
and p respectively on this subdomain. It is clear that x € Lip(Ir) is a viscosity solution of:

Kt =+ gfe("fx) =0 in I,
K(x,0) = K°(z) in I, (5.31)
k(0,t) = k°(0) and k(1,t) =x°(1) VO<Lt<T,
where g(x,t) = —pi(z,t)pe(z,t) and Ky (z,t) > G(pz(x,t)) for a.e. (z,t) € I7. We also notice
that k is a viscosity solution of (5.5), for it suffices to follow the same steps of the passage from

the viscosity solution of (3.11) to the viscosity solution of (1.4) (see the proof of Theorem 1.2
for details).

Uniqueness. Since the function
H(z,t,u) = g(z,t) fe(u) € C(Ir x R)

satisfies for a fixed ¢:

|H(x,t,u) — H(y, t,u)] < C(lz —y|(1+ |ul)),
for every x, y € (0,1) and u € R, we use [2, Theorem 2.8| to show that « is the unique viscosity
solution of (5.31). We claim that  is the unique viscosity solution of (5.5). Indeed, we can
also follow the same mechanism as in the proof of Theorem 1.2. O

We now move towards the proof of Theorem 5.2 that has the same flavor of what was done

in Section 4. We just need to care about the change in the structure of our problem and the
boundary conditions. Our first step will be the following lemma.
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Lemma 5.6 Let ¢; and co be two positive constants defined respectively by:

c1 = ||(sz)2||L°°(I) + ||pg||L°°(I)||szz||L°°(I)a

and
c2 = (Kol poe () + 1)%
Then the function S defined on Qr by:

S(z,t) = V2c1t + co
is an entropy super-solution of (5.11) with
w’(z) = S(,0) = [[K3]| ooy + 1.
Proof. See Subsection 5.1-III. O

Proof of Theorem 5.2. Let ¢ > 0 be a fixed constant. Define #%¢ € Lip(R) by:

K0(z) + ex if zel0,1],
() = (162 peeny + (@ = 1) + (k°(1) + ) if @ >1, (5.32)
(1621 oo (ry + €)z + °(0) if z<o0.

Since k2 > [pY] a.e. in I, it is clear that for a.e. € R we have
20, 50
Ry© > G(py);

and hence, from the discussion of the proof of Theorem 5.1, there exists a unique viscosity
solution ¢ € Lip(Qr) of

RiRS = pip in ,
ths ptpfo | | Qr (5.33)
R(z,0) =R "(x) € Lip(R) in R,
unique among those satisfying:
RS > G(py) ae in Qr. (5.34)

Assume without loss of generality that e < 1. The e-uniform bound for &f is trivial, it suffices
to use directly the equation satisfied by k¢ together with (5.34). And the e-uniform bound for
kS, follows from Lemma 5.6 and Theorem 2.16 since

5 (@, 0) < [I6gllzoe(ry + € < lR3] oo + 1 = v/ez = S(a,0).

Following exactly the same technic of Section 4, namely the proof of Theorem 1.6, we get that
the sequence k¢ converges locally uniformly to & in Qr with & € Lip(Qr) satisfies,

Re > |pe] ae.in Qr (5.35)

and
R(z,0) = ho(z) in R, (5.36)
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0,

where kg is the uniform limit of the sequence #”¢ in R. Theorem 5.1 guarantees that

#€(0,t) = #%¢(0) = k2(0), (5.37)

and
R(1,t) = R%(1) = k°(1) + ¢, (5.38)

for all t € [0, T]. From (5.37), (5.38) and the pointwise convergence, up to a subsequence, of i€
to &, we deduce that

7(0,t) = lim #(0,1) = x2(0), Vtel0,T), (5.39)
and
AL 1) = lim 4°(1,1) = lii%(noa) +¢)=r%1) Vtel0,T]. (5.40)

Take x to be the restriction of 4 over Ir; p and &g have their automatic replacements p and «°
respectively on this restricted domain. From (5.35), (5.36), (5.39) and (5.40), we deduce that
k is the required solution. O

6 Appendix: Proof of Theorem 2.16

We will work on the entropy inequality (2.18) satisfied by w and its analogue satisfied by v,
using the dedoubling variable technique of Kruzhkov (see [22]) and following the same steps
of [14, Theorem 3|, taking into consideration the new modifications arising from the fact that
we are dealing with sub-/super-entropy solutions and the fact that g € W1°°(Q7) is not a
gradient-free function.

The proof can be divided into three steps. Denote B, by B, = {x € R; |z| < r} for any r > 0,

F*(u,v) = sgn*(u — v)(f(u) = f(v)),
¥ = [yllL=(@) forevery ye L™(Qr) (6.1)

and
M; = max |f (z)]. (6.2)

|z|<max(u®,v>°)

0

In step 1, we prove that the initial conditions u°, v° satisfy for any a > 0:

1
lim —
T—0 T

/T/ (u(z,t) — u®(2)) T dedt = 0, (6.3)
0 JBa

i l ’ vz, t) — v(x)) dzdt =
i~ /Ba((’t) () dadt = 0, (6.4)

respectively.

In step 2, The following relation between u and v is shown:

/ [(u(z,t) — v(z, ) by + F (u(z,t),v(z, 1) g(z, )y ] dxdt > 0, (6.5)

T
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for every ¢ € CZ(R x (0,T);R).
After that, we define A(t) for 0 < ¢ < min(7, 2) and w = g*° My, by:

At) = /B (u(z,t) — v(z,t))" da. (6.6)

In step 3, we show that A is non-increasing a.e. in (0,min(7, 2)) and we deduce that

u(z,t) <wv(x,t) ae. in Qp.

Step 1: Proof of (6.3), (6.4).

Let £" be a sequence of mollifiers in R with ¢! = ¢. Recall that the function ¢ € C§°(R)
satisfies the following properties:

supp(§) = {z € R, &(x) # 0} C Bu;

€20, &(-a) = £(a)

E(a)de = 1; 0D
By
§"(z) = n&(nx).
Let 7 € R such that 0 < 7 < T and define the function  by:
Tt o<t<r
W) =9 7 (6.8)
0 if t>71.

Take a > 0 and a test function ¢ € C§°(R;RR;) such that,
Y(x) =1 for =z € B,.

Let y € R be a Lebesgue point of u and we make use of inequality (2.18) with k& = u°(y)
and the test function ¢(z,t) = ¥(x)y(t)£™(x — y) (this is possible since ¢ is a permissible test
function). Integrating the resulting inequality with respect to y over R yields:

Ti(n,7) + Ta(n,7) + T3(n,7) + T4(n) > 0, (6.9)

with
Tinr) = =1 [ e =) o) @ —y) dedya, (6.10)
D) = [ [ ). @)gle. 1O @~ g))adodyde, (611

Tinr) == [ o (utant) = ) £00)

9o (z, )y()Y(2)€" (x — y)dadydt (6.12)

and
Tiw) = [ (0(0) = @) ()" o y)dod. (6.13)

RQ
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Using the change of variables: z =z, y = 2’ — % in (6.10), and denoting again by (z,y) the

new variables (z',y') yields:
I oYW
Tnr) == [ | [ (utet) = (o= L)) " wtw)eto) ey, (6.14
Using that,
(u—v)" = (u—w)t <(w—-v)" Yu,v,w R, (6.15)

we infer that:
T*(7)

i (n,7) +%/OT/R(U(Q;,75) — u(2)) () ddt <

et

where Ky is the support of 1. Same upper-bound, independent of 7, could be obtained for
T1(n). Furthermore, since u® € L°°(R), thus integrable over Ky, we use the Lebesgue differen-
tiation Theorem to show that the right side of (6.16) tends to 0 when n becomes large. Now,
let € > 0, dng such that

u® <w — %) — uo(x)‘ ¢(y)dydex, (6.16)

Ti(no, )+ TH(1) < and Ty(ng) < —, V7 >0. (6.17)

B~ o
NS

We also remark that the integrands of the right hand sides of (6.11) and (6.12) are bounded
and hence, for this particular ng we can choose some 7 such that V0 < 7 < 7, we have:
’TQ(TL(), T ) <

and  73(ng,7) < (6.18)

=~
]

From (6.17), (6.18) and (6.9), we infer that,
0<T*(r)<e, YO<T<T0.

Since 1(x) = 1 over By, (6.3) is proven. Arguing in the same way, we can prove (6.4). The
slight difference is using a similar inequality of (6.15) with (-)* replaced with (-)~.

Step 2: Proof of (6.5).

It suffices to prove (6.5) for any function ¢ € C§°(Qr;R4). We may also assume, without
loss of generality, that there is some ¢ > 0 such that ¢ (z,t) =0 for ¢ € (0,¢) U (T —¢,T). For
n > %, let £™ be the usual mollifier sequence in R and consider the function ¢(z,t,y, s) defined

for (z,t) € Qr and (y,s) € Qr by,

r+y t+s
2 72

Bt ,5) = ¥ ( )s% et —s).

The function ¢ hence satisfies
¢('7 5 Y, 3) S CSO(QTa R-l—) and ¢(x7 i ) S CSO(QTa R-l—)
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Fix some (y, s) € Q7 for which the function v is well defined (this is valid almost everywhere).
Since u is an entropy sub-solution of (2.2), we consider the relation (2.18) satisfied by u with
k = v(y,s) and the test function ¢(.,.,y,s). Upon integrating this inequality with respect to

(y,s) over Qr, we get:

{ —v(y. ) el t,y, 5) + F(u(z,1),0(y, 5))g(2, 1) dr (. 1,9, 5)

—sgn™t(u(z,t) — vy, s))f(v(y, ) gz (2, t)d(z, t,y, s)} dxdtdyds > 0. (6.19)

Similar inequality could be obtained since v is an entropy super-solution of (2.2). We just swap
+, uw and (z,t) with —, v and (y, s) respectively, hence:

- {(v(y,s) = u(z, )" ¢s(x,t,y,8) + F~ (v(y, s),u(z,t)g(y, s)by (x,t,y, s)

—sgn” (v(y, s) — u(z, 1) f(u(z,1))g:(y, 8)d(x, t,y, 5) } dedtdyds > 0. (6.20)
Summing (6.19) and (6.20) and using the elementary identities:

r” = (—x)t and sgn (z) = —sgn'(~x), VreR,

we get, for u = u(x,t) and v = v(y, s),

Z1+ 22+ 23 > 0, (6.21)
with:
2 = /2 (u - v)+(¢t + ¢s)($, Y, t, S)d$dtdyd8, (622)
Z2 = / 2 F+(u’ v)[g(x, t)qu (x, Y, ta 5) + g(y’ S)@y(x, Y t’ 5)]dmdtdyds, (623)
Z3 = / L sgnt (u—=0)[f(w)gx(y, 5) = f(0)ga(w,)]$(w, y, ¢, 5)dxdtdyds. (6.24)

We now compute the first partial derivatives of the function ¢. For (z,t,y,s) € Qr x Qr, we
have:

lotos) =€ =) (o (THL ) -0

= ) BENCEY
bt =€) (50 (LT e —)

_ (fﬂ‘;y t ; S) e (t — s)) , (6.26)



st =€t =) (on (50 5

Using these relations in (6.21) and performing the following change of variables,

v=(r+y)/2 Y =nlz—y), t =(t+5)/2, s =n(t—s);

(6.28)

denote the new variables z', ¢, 3, s by z, t, y, s and Q4 = Qp X B2. Also, for the simplicity

of expressions, denote

S - Y

_ s
, T =T — t =t— —
2n

+ vy o+
—rt L, =t A .
v x+2n’ + on’ 2n

This altogether yields:
with:
X, = / (u(z™,t7) — vz, 7)) Ty (x, £)E(y)E(s)dedtdyds,
Q4

Xy = % o Fru(at ), v, t7)(gla™,tT) + gz, t7))x
wz(x,t)f(y)g(s)dxdtdde,
Xy = o F+(u(x+,t+),v(x_,t_))(g(x+,t+) - g(x_,t_))x

(. t)ng (y)€(s)dudtdyds,
Xy = /Q SgnJr(u(era t+) - v(xiati)) [f(u(er’ t+))gx($7, ti)_

Fo(@™, 7)) ga (@, £4)] (, D€ ()€ (s)dadtdyds.

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

At this point, it is worth mentioning that we will frequently use the following Lemma from [23].

Lemma 6.1 IfT" € Lip(R) satisfies |T'(u) — T'(v)| < Co|lu — v|, then the function

H(u,v) = sgnt(u —v)(T'(u) — T(v))
satisfies |H (u,v) — H(u',v")| < Co(ju —u'| 4+ [v —v'| (see [22, Lemma 3]).

Consider now (6.30). Since (u — v)T = sgn™(u — v)(u — v), we make use of Lemma 6.1 to

obtain:

- /QT(u(x,t) - ”(x7t))+¢t(x,t)dmdt' <
{/K /32 u(z ™, ¢7) — u(z, )| () € (y)€(s)dwdtdyds
+/Kw /B% (™, t7) — v(x,t)!(¢t)°°§(y)§(s)dmdtdyds},
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where, by the Lebesgue Differentiation/Dominated Theorems, the right hand side of this in-
equality tends to 0 as n — oo, and hence:

X| — (u(z,t) — v(z,t)) o (z, t)dzdt  as n — oo. (6.34)
Qr

Let us now turn to (6.31); using the fact that g € W1°°(Qr) and hence Lipschitz continuous
over the compact Ky, and the fact that F* (u, v) is Lipschitz continuous in u and v (see Lemma
6.1), we get:

Xy — 0 F+(u(w,t),v(w,t))g(w,t)wx(m,t)dxdt‘ <
9 My { Jo ) e ity .

! /Kw /Bg (™, t7) — v(a, t)\&(z;)&(s)} dadtdyds

(g2, (90 (), My, 0, 0%, ),

and also, by the Lebesgue Differentiation/Dominated Theorems, the left hand side of this
inequality tends to 0 as n — oo, hence:

Xy — Fr(u(z,t),v(x,t)g(x, )y (x,t)dzdt  as n — oo. (6.36)
Qr

We now study the two terms X3 and X}'. From the fact that g € Whe(Qr), we remark that
for a.e. (z,t,y,s) € Qr X Qp, we have:

o o o 1
oo t7) = gl ) = gula™ ) () + e )/ o (1))
We also remark that the term g,(x*,¢t") in XJ' could be replaced with g,(z~,¢7), since this
adds a term that approaches 0 as n becomes large. This term will be omitted throughout what
follows and we denote the new X' by Xf*. From these two remarks, we rewrite X3' and X' to
get:

X??:/Q sgn (u(@ ™, t7) —v(@™, 7)) (flul@®, t)) = flu(@,t7)))

(6.37)
(yge(™,t7) + 5. (2™, 7))v(w, )€ (y)é(s)da dt dy ds + L(n),
where £(n) — 0 as n — oo, and
Xy :/Q sgn (u(@ ™, t7) —v(@”, 7)) (flula®,t)) = flu(@,t7)) (6.38)

gr(xi’ ti)lb(x’ t)g(y)g(s)dx dt dy ds.
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The term £(n) will also be omitted for simplification and we denote the new X3 by XJ. Let
X3y = X3 + X, hence:
7
Xy = [ Fru® t7), v, t7))ge (@t )@, ) (Y€ (y)E(s))ydw dt dy ds
Qu (6.39)

2n
X34

+ /Q F(u(a®, t7), (2™, ¢7)))ge (™, ) (1) (6 (y)8(5))yd dt dy ds .

In Xi7' and X2, the term v)(z,t) could be replaced with 1 (x~,¢7), for this also adds a term
gettlng small when n — co. We keep the same notations for X and X27'. Since y&(y)&(s) is
a compactly supported smooth function in Q4, we have:

[ )06 )l ) WS E e drdyds =0, (6.40)
4
Moreover, since F'*(u,v) is Lipschitz continuous, we obtain:

‘Xalf— Fr(u(z™,t7),v(2™,¢7))gala™, ¢ )0(a™,t7) (Y€ ()& (s))ydx dt dy ds
(6.41)
< My(ga °°¢°°/ /32 —u(z™,t7)|dxdtdyds,

where Ky is the support of ). Therefore, by the Lebesgue Differentiation/Dominated Theo-
rems, we deduce that the right hand side of (6.41) tends to 0 as n — oo, hence we have:

X —0 as n— oo. (6.42)
In a similar way we can show that

XZ' -0 as n— oo. (6.43)
From (6.34), (6.36), (6.42) and (6.43), passing to the limit in (6.29) yields (6.5), which con-
cludes the proof of step 2.
Step 3: u(z,t) < wv(zx,t) a.e. in Q7.

Let us first show that the function A(t) defined in (6.6) is non-increasing a.e. in (0, min(7, 2)).

Take a > 0 and recall that w = g*My; let 0 < t1 < tp < min(7,2), 0 < € <

min(¢;, min(7, ¢ — t3), and 6 > 0. Consider the function ¢ € Cj(Ry,[0,1]) such that
¢(zr)=1Vr € [0,(1], $(x) =0Vz € [a+d,00), and ¢ < 0. Define r. by:
(0 if 0<t<t;—e
m if H—e<t<t
€
re(t) =4 1 it <t <ty (6.44)
(tQ + 6) —t

if t9<t<tyg+e

0 if to+e<t<oo.
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One can take in (6.5) the permissible test function

P(x,t) = @(|z] + wt)re(t).

This yields:
E1(6¢)

l t1 (e — olx +b(|x wt\dadi —
e/tle/R((7t) (z,)) T (|| + wt)dzdt

Es (676)

(6.45)

to+e
3/ (u(z, ) — (@, ) (|| +wt)dzdt > E(,¢),

to
with

E(d,¢€) / / —v(z, ) +sgnT ((u(z,t) —v(z,t)))x
(f(u(z,t)) = f(v(z, )))| |
We claim that E(d,€) > 0. Indeed, since # <0 and r. > 0, it suffices to show that

wu(z,t) —v(z, )t + sgn ((u(z,t) — v(z,t)))x

(f(ula,t)) - f(v(fﬂ,t)))%g(w,t) >0 ae in Qr.

Two cases can be considered, either u(x,t) < v(z,t); in this case it is easy to verify (6.47), or
u(z,t) > v(x,t); in this case we use, from the definition of w, the fact that

(f (u(z,t)) = f(v(z, ))), | g(a,t) = —w(u(z,t) — v(z,1)),

/ (6.46)
g(z, )] (|| + wt)re(t)dadt.

(6.47)

hence our claim holds. Relation (6.45) now holds with E(d, €) replaced with 0. We regard the
integrand term of Ej(d,€) in (6.45) and we notice that for t; — e < ¢t < t1, we have:

(u(z,t) — v(z, 1)) o(|z| + wt) = (u(z,t) — v(z, 1) T (2| + wt)lay,
where I A is the characteristic function of the set As defined by:
Ag = {(z,t); t1 —e <t <t, 0<|z|+wt<a+d}.
Remark that the set A:; shrinks, as  becomes small, to
A ={(x,t); 1 —e<t <ty 0<|z|+wt<a}
with ¢(|z] + wt) =1 over A. It is easy now to see that as § — 0
(u(z,t) — v(z, )T o(|z| + wt)]IA; — (u(z,t) —v(z,t)) 14 ae. in Qr.

However, since (u(z,t) —v(z,t))" € L>®(Qr), we use the Lebesgue Dominated Theorem to get:
1M
— —/ / (u(z,t) — v(z,t)) dzdt as 6 — 0, (6.48)
€ t1 Ba—wt
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in other words,
t1

Bie)— = [ A@dt as 5 —0, (6.49)

€ t1—e€

with A(t) given by (6.6). Similar arguments shows that:

1 to—e
Ba(d.¢) — 1 / A(t)dt as 6 — 0. (6.50)

€t2

Note that A € L'(0,T); let ¢; and to be Lebesgue points of the function A such that 0 < ¢; <
ty <min(T, 2), one can easily deduce from (6.49), (6.49) and (6.45) letting € tends to 0 that

A(ty) > Alta),

hence A is a.e. non-increasing. We use this property enjoyed by A to get the comparison
principle. In fact, using the elementary identities:

YV u,v,w € R, we calculate for a.e. (z,t) € Qr :
(u(z,t) = v(z, )" < (u(z, 1) —u®(@)* + (v(@,t) =o' (2)) + (@) — "))
Since u’(x) < v%(z) a.e. in R, we get for a.e. (z,t) € Qr:
(u(z,t) —v(z, 1) " < (u(z,t) —u® (@) + (v(z,t) — (). (6.51)

Using (6.51), for 7 € (0,T), we calculate:

% /OTAW < % /0 ' / (@ t) — vl 1)) dedt <

—/ / (u(z,t) — u®(z)) T dzdt + —/ / (v(z,t) —0%(x)) " dzdt.

T 0 o T 0 o

From (6.3), (6.4) and the passage to the limit as 7 — 0 in (6.52), we deduce that,
1 T
—/ A(t)dt -0 as 17— 0. (6.53)
T Jo

Thus, since A is a.e. non-increasing on (0,7), and A(t) > 0 for a.e. ¢t € (0,min(7,2)), one

then has
A(t) =0 forae te <0,min <T, g)) .

Since a is arbitrary, we deduce that,

u(z,t) <wv(z,t) a.e in Q.

41



Remark 6.2 In [1}], the entropy process solution pu(z,t, ) was proved to be independent of «
for a divergence-free function g € C1(Qr). However, for the case of a general non divergence-
free function g € WH°(Qr), same result can be shown by adapting the same proof as in [14,
Theorem 3] taking into account the slight modifications that could be deduced from the proof of
Theorem (2.16). More precisely, the treatment of the two terms X3 and X' in Step 2.
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