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Existen
e and uniqueness for a nonlinearparaboli
/Hamilton-Ja
obi 
oupled system des
ribingthe dynami
s of dislo
ation densitiesHassan IBRAHIM∗Mar
h 27, 2007Abstra
tWe study a mathemati
al model des
ribing the dynami
s of dislo
ation densities in 
rystals. Thismodel is expressed as a one-dimensional system of a paraboli
 equation and a �rst order Hamilton-Ja
obi equation that are 
oupled together. We show the existen
e and uniqueness of a vis
osity solutionamong those assuming a lower-bound on their gradient for all time in
luding the initial data. Moreover,we show the existen
e of a vis
osity solution when we have no su
h restri
tion on the initial data. Wealso state a result of existen
e and uniqueness of an entropy solution of the system obtained by spatialderivation. The uniqueness of this entropy solution holds in the 
lass of �bounded from below� solutions.In order to prove these results, we use a relation between s
alar 
onservation laws and Hamilton-Ja
obiequations, mainly to get some gradient estimates. This study will take pla
e in R, and on a boundeddomain with suitable boundary 
onditions. ResuméNous étudions un modèle mathématique dé
rivant la dynamique de densités de dislo
ations dans les
ristaux. Ce modèle s'é
rit 
omme un système 1D 
ouplant une équation parabolique et une équationde Hamilton-Ja
obi du premier ordre. On montre l'existen
e et l'uni
ité d'une solution de vis
osité dansla 
lasse des fon
tions ayant un gradient minoré pour tout temps ainsi qu'au temps initial. De plus, onmontre l'existen
e d'une solution de vis
osité sans 
ette 
ondition sur la donnée initiale. On présenteégalement un résultat d'existen
e et d'uni
ité pour une solution entropique d'un système obtenu pardérivation spatiale. L'uni
ité de 
ette solution entropique a lieu dans la 
lasse des solutions minorées.Pour montrer 
es résultats, on utilise une relation entre les lois de 
onservation s
alaire et les équationsde Hamilton-Ja
obi, prin
ipalement pour obtenir des 
ontr�les du gradient. Cette étude a lieu dans Ret dans un domaine borné ave
 des 
onditions aux bords appropriées.AMS Classi�
ation: 70H20, 35L65, 49L25, 54C70, 74H20, 74H25.Key words: Hamilton-Ja
obi equations, s
alar 
onservation laws, vis
osity solutions, entropy solu-tions, dynami
s of dislo
ation densities.
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1 Introdu
tion1.1 Physi
al motivationA dislo
ation is a defe
t, or irregularity within a 
rystal stru
ture that 
an be observed byele
tron mi
ros
opy. The theory was originally developed by Vito Volterra in 1905. Dislo
a-tions are a non-stationary phenomena and their motion is the main explanation of the plasti
deformation in metalli
 
rystals (see [28, 19℄ for a re
ent and mathemati
al presentation).Geometri
ally, ea
h dislo
ation is 
hara
terized by a physi
al quantity 
alled the Burgersve
tor, whi
h is responsible for its orientation and magnitude. Dislo
ations are 
lassi�ed asbeing positive or negative due to the orientation of its Burgers ve
tor, and they 
an move in
ertain 
rystallographi
 dire
tions.Starting from the motion of individual dislo
ations, a 
ontinuum des
ription 
an be derivedby adopting a formulation of dislo
ation dynami
s in terms of appropriately de�ned dislo
a-tion densities, namely the density of positive and negative dislo
ations. In this paper we areinterested in the model des
ribed by Groma, Csikor and Zaiser [18℄, that sheads light on theevolution of the dynami
s of the �two type� densities of a system of straight parallel dislo
ations,taking into 
onsideration the in�uen
e of the short range dislo
ation-dislo
ation intera
tions.The model was originally presented in R
2 × (0, T ) as follows:







∂θ+

∂t
+ b · ∂

∂r

[

θ+

{

(τsc + τeff ) −AD
b

(θ+ + θ−)
· ∂
∂r

(
θ+ − θ−

)
}]

= 0,

∂θ−

∂t
− b · ∂

∂r

[

θ−
{

(τsc + τeff ) −AD
b

(θ+ + θ−)
· ∂
∂r

(
θ+ − θ−

)
}]

= 0.

(1.1)Where T > 0, r = (x, y) represents the spatial variable, b is the burger's ve
tor, θ+(r, t)and θ−(r, t) denote the densities of the positive and negative dislo
ations respe
tively. Thequantity A is de�ned by the formula A = µ/[2π(1 − ν)], where µ is the shear modulus and νis the Poisson ratio. D is a non-dimensional 
onstant. Stress �elds are represented throughthe self-
onsistent stress τsc(r, t), and the e�e
tive stress τeff (r, t). ∂
∂r denotes the gradientwith respe
t to the 
oordinate ve
tor r. An earlier investigation of the 
ontinuum des
riptionof the dynami
s of dislo
ation densities has been done in [17℄. However, a major drawba
kof these investigations is that the short range dislo
ation-dislo
ation 
orrelations have beennegle
ted and dislo
ation-dislo
ation intera
tions were des
ribed only by the long-range termwhi
h is the self-
onsistent stress �eld. Moreover, for the model des
ribed in [17℄, we refer thereader to [11, 12℄ for a one-dimensional mathemati
al and numeri
al study, and to [4℄ for atwo-dimensional existen
e result.In our work, we are interested in a parti
ular setting of (1.1) where we make the followingassumptions:(a1) the quantities in equations (1.1) are independent of y,(a2) b = (1, 0), and the 
onstants A and D are set to be 1,(a3) the e�e
tive stress is assumed to be zero.Remark 1.1 (a1) gives that the self-
onsistent stress τsc is null; this is a 
onsequen
e of thede�nition of τsc (see [18℄). 2



Assumptions (a1)-(a2)-(a3) permit rewriting the original model as a 1D problem in R× (0, T ):






θ+
t (x, t) −

(

θ+(x, t)

(
θ+
x (x, t) − θ−x (x, t)

θ+(x, t) + θ−(x, t)

))

x

= 0,

θ−t (x, t) +

(

θ−(x, t)

(
θ+
x (x, t) − θ−x (x, t)

θ+(x, t) + θ−(x, t)

))

x

= 0.

(1.2)We 
onsider an integrated form of (1.2) and we let:
ρ±x = θ±, θ = θ+ + θ−, ρ = ρ+ − ρ− and κ = ρ+ + ρ−, (1.3)in order to obtain, for spe
ial values of the 
onstants of integration, the following system ofPDEs in terms of ρ and κ :

{

κtκx = ρtρx in QT = R × (0, T ),

κ(x, 0) = κ0(x) in R,
(1.4)and {

ρt = ρxx in QT ,

ρ(x, 0) = ρ0(x) in R,
(1.5)where T > 0 is a �xed 
onstant. Enough regularity on the initial data will be given in order toimpose the physi
ally relevant 
ondition,

κ0
x ≥ |ρ0

x| . (1.6)This 
ondition is natural: it indi
ates nothing but the positivity of the dislo
ation densities
θ±(x, 0) at the initial time (see (1.3)).1.2 Main resultsIn this paper, we show the existen
e and uniqueness of a vis
osity solution κ of (1.4) in the
lass of all Lips
hitz 
ontinuousvis
osity solutions having spe
ial �bounded from below� spatialgradients. However, we show the existen
e of a Lips
hitz 
ontinuousvis
osity solution of (1.4)when this restri
tion is relaxed. A relation between s
alar 
onservation laws and Hamilton-Ja
obi equations will be exploited to get almost all our gradient 
ontrols of κ. This relation,that will be made pre
ise later, will also lead to a result of existen
e and uniqueness of abounded entropy solution of the following equation:







θt =
(ρxρxx

θ

)

x
in QT ,

θ(x, 0) = θ0(x) in R,
(1.7)whi
h is dedu
ed formally by taking a spatial derivation of (1.4). The uniqueness of thisentropy solution is always restri
ted to the 
lass of bounded entropy solutions with a spe
iallower-bound.Let Lip(R) denotes:

Lip(R) = {f : R 7→ R; f is a Lips
hitz 
ontinuous fun
tion}.We prove the following theorems: 3



Theorem 1.2 (Existen
e and uniqueness of a vis
osity solution)Let T > 0. Take κ0 ∈ Lip(R) and ρ0 ∈ C∞
0 (R) as initial data that satisfy:

κ0
x ≥

√

(ρ0
x)

2 + ǫ2 a.e. in R, (1.8)for some 
onstant ǫ > 0. Then, given the solution ρ of (1.5), there exists a vis
osity solution
κ ∈ Lip(Q̄T ) of (1.4), unique among the vis
osity solutions satisfying:

κx ≥
√

ρ2
x + ǫ2 a.e. in Q̄T .Theorem 1.3 (Existen
e and uniqueness of an entropy solution)Let T > 0. Take θ0 ∈ L∞(R) and ρ0 ∈ C∞
0 (R) su
h that,

θ0 ≥
√

(ρ0
x)

2 + ǫ2 a.e. in R,for some 
onstant ǫ > 0. Then, there exists an entropy solution θ ∈ L∞(Q̄T ) of (1.7), uniqueamong the entropy solutions satisfying:
θ ≥

√

ρ2
x + ǫ2 a.e. in Q̄T .Moreover, we have θ = κx, where κ is the solution given by Theorem 1.2.The notion of vis
osity solutions and entropy solutions will be re
alled in Se
tion 2. We nowrelate these results to our one-dimensional problem (1.2). Remarking that ρx = θ+ − θ− and

κx = θ+ + θ−, we have as a 
onsequen
e:Corollary 1.4 (Existen
e and uniqueness for problem (1.2))Let T > 0. Let θ+
0 and θ−0 be two given fun
tions representing the initial positive and negativedislo
ation densities respe
tively. If the following 
onditions are satis�ed:(1) θ+

0 − θ−0 ∈ C∞
0 (R),(2) θ+

0 , θ−0 ∈ L∞(R),together with,
θ+
0 + θ−0 ≥

√

(θ+
0 − θ−0 )2 + ǫ2 a.e. in R,then there exists a solution (θ+, θ−) ∈ (L∞(QT ))2 to the system (1.2), in the sense of Theorems1.2 and 1.3, unique among those satisfying:

θ+ + θ− ≥
√

(θ+ − θ−)2 + ǫ2 a.e. in Q̄T .Remark 1.5 Conditions (1) and (2) are su�
ient requirements for the 
ompatibility with theregularity of ρ0 and κ0 previously stated.Theorem 1.6 (Existen
e of a vis
osity solution, 
ase ǫ = 0)Let T > 0, κ0 ∈ Lip(R) and ρ0 ∈ C∞
0 (R). If the 
ondition (1.6) is satis�ed a.e. in R, thenthere exists a vis
osity solution κ ∈ Lip(Q̄T ) of (1.4) satisfying:

κx ≥ |ρx| a.e. in Q̄T . (1.9)4



Remark 1.7 In the limit 
ase where ǫ = 0, we remark that having (1.9) was intuitively expe
teddue to the positivity of the dislo
ation densities θ+ and θ−. This re�e
ts in some way the well-posedness of the model (1.2) of the dynami
s of dislo
ation densities. We also remark that ourresult of existen
e of a solution of (1.4) under (1.9) still holds if we start with κ0
x = ρ0

x = 0 onsome interval of the real line. In other words, we 
an imagine that we start with the probabilityof the formation of no dislo
ation zones.Problem with boundary 
onditions.We 
onsider on
e again problem (1.4), similar results to that announ
ed above will be shownon a bounded interval of the real line with Diri
hlet boundary 
onditions (see Se
tion 5). Thisproblem 
orresponds physi
ally to the study of the dynami
s of dislo
ation densities in a partof a material with the geometry of a slab (see [18℄).1.3 Organization of the paperThe paper is organized as follows. In Se
tion 2, we start by stating the de�nition of vis
osityand entropy solutions with some of their properties. In Se
tion 3, we prove the existen
e anduniqueness of a vis
osity solution to an approximated problem of (1.4), namely Proposition3.1, and we move on, giving additional properties of our approximated solution (Proposition3.2) and 
onsequently proving Theorems 1.2 and 1.3. In Se
tion 4, we present the proof ofTheorem 1.6. Se
tion 5 is devoted to the study of problem (1.4) on a bounded domain withsuitable boundary 
onditions. Finally, Se
tion 6 is an appendix 
ontaining a sket
h of the proofto the 
lassi
al 
omparison prin
iple of s
alar 
onservation laws adapted to our equation withlow regularity.2 Notations and PreliminariesWe �rst �x some notations. If Ω is an open subset of R
n, k is a positive integer, we denoteby Ck(Ω) the spa
e of all real valued k times 
ontinuously di�erentiable fun
tions. Ck0 (Ω) isthe subspa
e of Ck(Ω) 
onsisting of fun
tion of 
ompa
t support in Ω, and Ckb (Ω) = Ck(Ω) ∩

W k,∞(Ω) where W k,∞(Ω) is de�ned below. Furthermore, let UC(Ω) and Lip(Ω) denote thespa
es of uniformly 
ontinuous fun
tions and Lips
hitz 
ontinuousfun
tions on Ω respe
tively.The sobolev spa
e Wm,p(Ω) with m ≥ 1 an integer and p : 1 ≤ p ≤ ∞ a real, is de�ned by
W n,p(Ω) =






u ∈ Lp(Ω)

∣
∣
∣
∣
∣
∣

∀α with |α| ≤ n ∃fα ∈ Lp(Ω) su
h that
∫

Ω
uDαφ = (−1)|α|

∫

Ω
fαφ ∀φ ∈ C∞

0 (Ω)






,where we denote Dαu = fα. This spa
e equipped with the norm

||u||Wn,p =
∑

0≤|α|≤n

||Dαu||Lpis a Bana
h spa
e. In what follows, T > 0. A map m : [0,∞) 7→ [0,∞) that satisfy
• m is 
ontinuous and non-de
reasing;
• lim
x→0+

m(x) = 0; 5



• m(a+ b) ≤ m(a) +m(b) for a, b ≥ 0;is said to be �a modulus�, and UCx(Ω× [0, T ]) denotes the spa
e of those u ∈ C(Ω× [0, T ]) forwhi
h there is a modulus m and r > 0 su
h that
|u(x, t) − u(y, t)| ≤ m(|x− y|) for x, y ∈ Ω, |x− y| ≤ r and t ∈ [0, T ].We will deal with two types of equations:1. Hamilton-Ja
obi equation:

{

ut + F (x, t, ux) = 0 in QT ,

u(x, 0) = u0(x) in R,
(2.1)2. S
alar 
onservation laws:

{

vt + (F (x, t, v))x = 0 in QT ,

v(x, 0) = v0(x) in R,
(2.2)where

F : R × [0, T ] × R → R

(x, t, u) 7→ F (x, t, u)is 
alled the Hamiltonian in the Hamilton-Ja
obi equations and the �ux fun
tion in the s
alar
onservation laws. We will agree on the 
ontinuity of this fun
tion, while additional and spe
i�
regularity will be given when it is needed.Remark 2.1 We will use the fun
tion F as a notation for the Hamiltonian/�ux fun
tion.Although F might di�er from one equation to another, it will be 
lari�ed in all what follows.Remark 2.2 The major part of this work 
on
erns a Hamiltonian/�ux fun
tion of a spe
ialform, namely:
F (x, t, u) = g(x, t)f(u), (2.3)where su
h forms often arise in problems of physi
al interest in
luding tra�
 �ow [31℄ andtwo-phase �ow in porous media [16℄.We start by de�ning the notion of vis
osity solution to Hamilton-Ja
obi equations (2.1),and entropy solution to s
alar 
onservation laws (2.2) with a �ux fun
tion given by Remark 2.2,as well as some results about existen
e, uniqueness, and regularity properties of these solutions.We will end by a 
lassi
al relation between these two problems. These results will be neededthroughout this paper, pre
ise referen
es for the proofs will be mentioned later on.2.1 Vis
osity solution: de�nition and propertiesDe�nition 2.3 ([10℄, Vis
osity solution: non-stationary 
ase)1) A fun
tion u ∈ C(QT ; R) is a vis
osity sub-solution of

ut + F (x, t, ux) = 0 in QT , (2.4)6



if for every φ ∈ C1(QT ), whenever u− φ attains a lo
al maximum at (x0, t0) ∈ QT , then
φt(x0, t0) + F (x0, t0, φx(x0, t0)) ≤ 0.2) A fun
tion u ∈ C(QT ; R) is a vis
osity super-solution of (2.4) if for every φ ∈ C1(QT ),whenever u− φ attains a lo
al minimum at (x0, t0) ∈ QT , then
φt(x0, t0) + F (x0, t0, φx(x0, t0)) ≥ 0.3) A fun
tion u ∈ C(QT ; R) is a vis
osity solution of (2.4) if it is both a vis
osity sub- andsuper-solution of (2.4).4) A fun
tion u ∈ C(Q̄T ; R) is a vis
osity solution of the initial value problem (2.1) if u is avis
osity solution of (2.4) and u(x, 0) = u0(x) in R.It is worth mentioning here that if a vis
osity solution of a Hamilton-Ja
obi equation is dif-ferentiable at a 
ertain point, then it solves the equation there (see [10, Corollary I.6℄). Anequivalent de�nition depending on the sub- and super-di�erential of a 
ontinuous fun
tion isnow presented. This de�nition will be used for the demonstration of Proposition 2.10. Let usre
all that the sub- and the super-di�erential of a 
ontinuous fun
tion u ∈ C(Rn × (0, T )), ata point (x, t) ∈ R

n × (0, T ), are de�ned as the 
losed 
onvex sets:
D1,−u(x, t) =

{

(p, α) ∈ R
n × R :

lim inf
(y,s)→(x,t)

u(y, s) − u(x, t) − (p · (y − x) + α · (s− t))

|y − x| + |s− t| ≥ 0
}

,and
D1,+u(x, t) =

{

(p, α) ∈ R
n × R :

lim sup
(y,s)→(x,t)

u(y, s) − u(x, t) − (p · (y − x) + α · (s− t))

|y − x| + |s− t| ≤ 0
}

,respe
tively.De�nition 2.4 (Equivalent de�nition of vis
osity solution)1) A fun
tion u ∈ C(Rn × (0, T )) is a vis
osity super-solution of (2.1) if and only if, for every
(x, t) ∈ R

n × (0, T ):
∀(p, α) ∈ D1,−u(x, t), α+ F (x, t, p) ≥ 0. (2.5)2) A fun
tion u ∈ C(Rn × (0, T )) is a vis
osity sub-solution of (2.1) if and only if, for every

(x, t) ∈ R
n × (0, T ):

∀(p, α) ∈ D1,+u(x, t), α+ F (x, t, p) ≤ 0. (2.6)This de�nition is more lo
al, for it permits veri�
ation that a given expli
it fun
tion is a vis
ositysolution in a more 
lassi
al way, i.e. using the derivative 
al
ulus. A similar de�nition, thatwill be used later, 
ould be given in the stationary 
ase. Let Ω ⊂ R
n be an open domain, and
onsider the PDE

F (x, u(x),∇u(x)) = 0, ∀x ∈ Ω, (2.7)where F : Ω × R × R
n 7→ R is a 
ontinuous mapping.7



De�nition 2.5 (Vis
osity solution: stationary 
ase)A 
ontinuous fun
tion u : Ω 7→ R is a vis
osity sub-solution of the PDE (2.7) if for any
ontinuously di�erentiable fun
tion φ : Ω 7→ R and any lo
al maximum x0 ∈ Ω of u − φ, onehas
F (x0, u(x0),∇φ(x0)) ≤ 0.Similarly, if at any lo
al minimum point x0 ∈ Ω of u− φ, one has
F (x0, u(x0),∇φ(x0)) ≥ 0,then u is a vis
osity super-solution. Finally, if u is both a vis
osity sub-solution and a vis
ositysuper-solution, then u is 
alled a vis
osity solution.In fa
t, this de�nition is used for interpreting solutions of (1.4) in the vis
osity sense. Further-more, we say that u is a vis
osity solution of the Diri
hlet problem (2.7) with u = ζ ∈ C(∂Ω)if:(1) u ∈ C(Ω̄),(2) u is a vis
osity solution of (2.7) in Ω,(3) u = ζ on ∂Ω.For a better understanding of the vis
osity interpretation of boundary 
onditions of Hamilton-Ja
obi equations, we refer the reader to [2, Se
tion 4.2℄.Now, we will pro
eed by giving the main results 
on
erning vis
osity solutions of (2.1). Inorder to have existen
e and uniqueness, the Hamiltonian F will be restri
ted by the following
onditions :

(F0) F ∈ C(R × [0, T ] × R);
(F1) for ea
h R > 0 there is a 
onstant CR su
h that for all (x, t, p), (y, t, q) ∈ R × [0, T ] ×
[−R,R],

|F (x, t, p) − F (y, t, q) | ≤ CR( |p − q| + |x− y|);
(F2) there is a 
onstant CF su
h that for all (t, p) ∈ [0, T ] × R and all x, y ∈ R,

|F (x, t, p) − F (y, t, p) | ≤ CF |x− y|(1 + |p|).We use these 
onditions to write down some results on vis
osity solutions.Theorem 2.6 (Comparison, [9, Theorem 1℄)Let F satisfy (F0)-(F1)-(F2). If u, ū ∈ UCx(Q̄T ) are two vis
osity sub- and super-solution ofthe Hamilton-Ja
obi equation (2.1) respe
tively, with
u(x, 0) ≤ ū(x, 0) in R,then u ≤ ū in Q̄T .Theorem 2.7 (Existen
e, [9, Theorem 1℄)Let F satisfy (F0)-(F1)-(F2). If u0 ∈ UC(R), then (2.1) has a vis
osity solution u ∈ UCx(Q̄T ).Remark 2.8 The �
omparison� theorem stated above gives the uniqueness of the vis
osity so-lution. 8



Remark 2.9 In the 
ase where the Hamiltonian has the form
F (x, t, u) = g(x, t)f(u),the following 
onditions:

(V0) f ∈ C1
b (R; R),

(V1) g ∈ Cb(Q̄T ; R),

(V2) gx ∈ L∞(Q̄T ),imply (F0)-(F1)-(F2) together with the boundedness of the Hamiltonian.The next proposition re�e
ts the behavior of vis
osity solutions under additional regularityassumptions on u0 and F .Proposition 2.10 (Additional regularity of the vis
osity solution)Let F = gf satisfy (V0)-(V1)-(V2). If u0 ∈ Lip(R) and u ∈ UCx(Q̄T ) is the unique vis
ositysolution of (2.1), then u ∈ Lip(Q̄T ).Proof. Consider the fun
tion uε de�ned on R × [0, T ] by:
uε(x, t) = sup

y∈R

{

u(y, t) − ekt
|x− y|2

2ε

}

.By [20, Theorem 3℄, the fun
tion u satis�es,
|u(x, t)| ≤ c∗(|x| + 1) for (x, t) ∈ R × [0, T ],where c and c∗ are two positive 
onstants. Therefore, u is a sublinear fun
tion for everytime t ∈ [0, T ]. The fun
tion uε is de�ned via a supremum whi
h is attained be
ause of thesublinearity of the fun
tion u (a quadrati
 fun
tion always 
ontrol a linear one); the supremum
an be a
hieved at several points; let xε be one of them, so we 
an write

uε(x, t) = u(xε, t) − ekt
|x− xε|2

2ε
.We are going to prove that for (p, α) ∈ R × R, we have:

(p, α) ∈ D1,+uε(x, t) ⇒
(

p, α+ kekt
|x− xε|2

2ε

)

∈ D1,+u(xε, t). (2.8)Sin
e (p, α) ∈ D1,+uε(x, t), then we 
an write for (y, s) ∼ (x, t) that,
L = uε(y, s) ≤ uε(x, t) + α(s − t) + p(y − x) + o(|s − t| + |y − x|) = R, (2.9)where the left side L of (2.9) satis�es,

L ≥ u(z, s) − eks
|z − y|2

2ε
, z ∈ R, (2.10)9



and the right side R of (2.9) satis�es,
R ≤ u(xε, t) − ekt

|x− xε|2
2ε

+ α(s − t) + p(y − x) + o(|s− t| + |y − x|). (2.11)Choose z su
h that z − y = xε − x, then
z = xε + (y − x) ∼ xε, sin
e y ∼ x. (2.12)Combining (2.9), (2.10), (2.11) and (2.12) together, we get

u(xε + (y − x), s) − eks
|x− xε|2

2ε
≤

u(xε, t) − ekt
|x− xε|2

2ε
+ α(s − t) + p(z − xε) + o(|s − t| + |z − xε|),and hen
e,

u(z, s) ≤ u(xε, t) + (eks − ekt)
|x− xε|2

2ε

+α(s − t) + p(z − xε) + o(|s − t| + |z − xε|). (2.13)We have
(eks − ekt)

|x− xε|2
2ε

= kekt
|x− xε|2

2ε
(s− t) + o(|s− t|),then using inequality (2.13), we get

u(z, s) ≤ u(xε, t) +

(

α+ kekt
|x− xε|2

2ε

)

(s− t)

+p(z − xε) + o(|s − t| + |z − xε|),whi
h proves that
(

α+ kekt
|x− xε|2

2ε
, p

)

∈ D1,+u(xε, t),and hen
e statement (2.8) is true. Sin
e u is a vis
osity sub-solution of (2.1), we have
α+ kekt

|x− xε|2
2ε

+ F (xε, t, p) ≤ 0.We use 
ondition (F1) with p = q, to get
α+ kekt

|x− xε|2
2ε

+ F (x, t, p) ≤ F (x, t, p) − F (xε, t, p),

≤ C|x− xε|,therefore,
α+ F (x, t, p) ≤ C|x− xε| − kekt

|x− xε|2
2ε

,

≤ Crε − k
r2ε
2ε
,

≤ sup
r>0

(

Cr − kr2

2ε

)

,10



where rε = |x− xε|. At the maximum r̄, we have C = kr̄
ε . By 
hoosing k = C2

2 , we get
α+ F (x, t, p) ≤ ε.This inequality shows that vε = uε − εt is a vis
osity sub-solution of (2.1) with vε(x, 0) =

uε(x, 0). By the 
omparison prin
iple, we have
vε(x, t) − u(x, t) ≤ sup

x∈R

(vε(x, 0) − u0(x)),

≤ sup
x∈R

(uε(x, 0) − u0(x)),

≤ sup
x∈R

(

sup
y∈R

{

u0(y) − |x− y|2
2ε

}

− u0(x)

)

,

≤ sup
x,y∈R

(

γ|x− y| − |x− y|2
2ε

)

,

≤ sup
r≥0

(

γr − r2

2ε

)

=
γ2ε

2
,where γ is the Lips
hitz 
onstant of the fun
tion u0, and r = |x − y|. This altogether showsthe following inequality for x, y ∈ R:

u(y, t) − ekt
|x− y|2

2ε
≤ uε(x, t) ≤ u(x, t) + εt+

γ2ε

2
. (2.14)Remark here that k is a �xed; previously 
hosen 
onstant. Inequality (2.14) yields:

u(y, t) − u(x, t) ≤ ekt
|x− y|2

2ε
+

(

t+
γ2

2

)

ε = ζ/ε+ βε, (2.15)where ζ = ekt |x−y|
2

2 and β =
(

t+ γ2

2

). We minimize inequality (2.15) over ε to obtain,
u(y, t) − u(x, t) ≤ 2

√

ζβ,

≤ e
kt
2

√
2

√

t+
γ2

2
|x− y|.Sin
e this inequality holds ∀x, y ∈ R, ex
hanging x with y yields,

|u(x, t) − u(y, t)| ≤ C(F, u0)|x− y| ∀x, y ∈ R and t ∈ [0, T ].This shows that the fun
tion u is Lips
hitz 
ontinuous in x, uniformly in time t. To prove theLips
hitz 
ontinuity in time, we mainly use the result of [20, Theorem 3℄) with the fa
t that
ut = −F (x, t, ux), and the boundedness of the Hamiltonian. 2Remark 2.11 It is worth mentioning that the spa
e Lips
hitz 
onstant of the fun
tion u de-pends on C, where C appears in (F1) for p = q, and on the Lips
hitz 
onstant γ of the fun
tion
u0. While the time Lips
hitz 
onstant depends on the bound of the Hamiltonian.11



2.2 Entropy solution: de�nition and propertiesDe�nition 2.12 (Entropy sub-/super-solution)Let F (x, t, v) = g(x, t)f(v) with g, gx ∈ L∞
loc(QT ; R) and f ∈ C1(R; R). A fun
tion v ∈

L∞(QT ; R) is an entropy sub-solution of (2.2) with bounded initial data v0 ∈ L∞(R) if itsatis�es: ∫

QT

[

ηi(v(x, t))φt(x, t) + Φ(v(x, t))g(x, t)φx(x, t)+

h(v(x, t))gx(x, t)φ(x, t)
]

dxdt +

∫

R

ηi(v
0(x))φ(x, 0)dx ≥ 0,

(2.16)
∀φ ∈ C1

0 (R × [0, T ); R+), for any non-de
reasing 
onvex fun
tion ηi ∈ C1(R; R), Φ ∈ C1(R; R)su
h that:
Φ

′

= f
′

η
′

i, and h = Φ − fη
′

i. (2.17)An entropy super-solution of (2.2) is de�ned by repla
ing in (2.16) ηi with ηd; a non-in
reasing
onvex fun
tion. An entropy solution is de�ned as being both entropy sub- and super-solution.In other words, it veri�es (2.16) for any 
onvex fun
tion η ∈ C1(R; R).A well know 
hara
terization of the entropy solution is that:Proposition 2.13 A fun
tion v ∈ L∞(QT ) is an entropy sub-solution of (2.2) if and only if
∀k ∈ R, φ ∈ C1

0 (R × [0, T ); R+), one has:
∫

QT

[

(v(x, t) − k)+φt(x, t) + sgn+(v(x, t) − k)(f(v(x, t)) − f(k))g(x, t)φx(x, t)−sgn+(v(x, t) − k)f(k)gx(x, t)φ(x, t)
]

dxdt+

∫

R
(v0(x) − k)+φ(x, 0)dx ≥ 0, (2.18)Where a± = 1

2(|a| ± a) and sgn±(x) = 1
2 (sgn(x) ± 1). An entropy super-solution of (2.2) isde�ned repla
ing in (2.18) (·)+, sgn+ by (·)−, sgn−.This 
hara
terization 
an be dedu
ed from (2.16), by using regularizations of the fun
tion

(·−k)+. Also (2.16) may be obtained from (2.18) by approximating any non-de
reasing 
onvexfun
tion ηi ∈ C1(R; R) by a sequen
e of fun
tions of the form: η(n)
i (·) =

∑n
1 β

(n)
i (· − k

(n)
i )+,with β(n)

i ≥ 0.Entropy solution was �rst introdu
ed by Kružkov [22℄ as the only physi
ally admissiblesolution among all weak (distributional) solutions to s
alar 
onservation laws. These weaksolutions la
k the fa
t of being unique for it is easy to 
onstru
t multiple weak solutions toCau
hy problems (2.2), see [25℄.Our next de�nition 
on
erns 
lassi
al sub-/super-solution to s
alar 
onservation laws. Thiskind of solutions are shown to be entropy solutions, for the details see lemma 3.3.De�nition 2.14 (Classi
al solution to s
alar 
onservation laws)Let F (x, t, v) = g(x, t)f(v) with g, gx ∈ L∞
loc(QT ; R) and f ∈ C1(R; R). A fun
tion v ∈

W 1,∞(QT ) is said to be a 
lassi
al sub-solution of (2.2) with v0(x) = v(x, 0) if it satis�es
vt(x, t) + (F (x, t, v(x, t)))x ≤ 0 a.e. in QT . (2.19)Classi
al super-solutions are de�ned by repla
ing �≤� with �≥� in (2.19), and 
lassi
al solutionsare de�ned to be both 
lassi
al sub- and super-solutions.12



We move now to some results on entropy solutions depi
ted from [22℄.Theorem 2.15 (Kružkov's Existen
e Theorem)Let F , v0 be given by De�nition 2.12, and the following 
onditions hold:
(E0) f ∈ C1

b (R),

(E1) g, gx ∈ Cb(Q̄T ),

(E2) gxx ∈ C(Q̄T ),then there exists an entropy solution v ∈ L∞(QT ) of (2.2).In fa
t, Kružkov's 
onditions for existen
e were given for a general �ux fun
tion [22, Se
tion4℄. However, in Subse
tion 5.4 of the same paper, a weak version of these 
onditions, that
an be easily 
he
ked in the 
ase F (x, t, v) = g(x, t)f(v) and (E0)-(E1)-(E2), is presented.Furthermore, uniqueness follows from the following 
omparison prin
iple.Theorem 2.16 (Comparison Prin
iple)Let F be given by De�nition 2.12 with f satisfying (E0), and g satis�es,
(E3) g ∈W 1,∞(Q̄T ).Let u(x, t), v(x, t) ∈ L∞(QT ) be two entropy sub-/super-solutions of (2.2) with initial data
u0, v0 ∈ L∞(R). Suppose that,

u0(x) ≤ v0(x) a.e. in R,then
u(x, t) ≤ v(x, t) a.e. in Q̄T .Proof. See Se
tion 6, Appendix. 2It is worth noti
ing that in [22℄, the proof of the existen
e of entropy solutions of (2.2) ismade through a paraboli
 regularization of (2.2) and passing to the limit, with respe
t to the

L1 
onvergen
e on 
ompa
ts, in a 
onvenient spa
e.At this stage, we are ready to present a relation that sometimes hold between s
alar 
on-servation laws and Hamilton-Ja
obi equations in one-dimensional spa
e.2.3 Entropy-Vis
osity relationFormally, by di�erentiating (2.1) with respe
t to x and de�ning v = ux, we see that (2.1) isequivalent to the s
alar 
onservation law (2.2) with v0 = u0
x and the same F . This equivalen
eof the two problems has been exploited in order to translate some numeri
al methods forhyperboli
 
onservation laws to methods for Hamilton-Ja
obi equations. Moreover, severalproofs were given in the one dimensional 
ase. The usual proof of this relation depends stronglyon the known results about existen
e and uniqueness of the solutions of the two problemstogether with the 
onvergen
e of the vis
osity method (see [8, 23, 27℄). Another proof of this13



relation 
ould be found in [5℄ via the de�nion of vis
osity/entropy inequalities, while a dire
tproof 
ould also be found in [21℄ using the front tra
king method. The 
ase of a Hamiltonianof the form (2.3) is also treated even when g(x, t) is allowed to be dis
ontinuous in the (x, t)plane along a �nite number of (possibly interse
ted) 
urves, see [29℄.In our work, the above stated relation will be su

essfully used to get some gradient es-timates of κ. Although several approa
hes were given to establish this 
onne
tion, we willpresent for the reader's 
onvenien
e, a proof similar to that given in [8, Theorem 2.2℄. Forevery Hamiltionian/�ux fun
tion F = gf and every u0 ∈ Lip(R), let
EV = {(V0), (V1), (V2), (E0), (E1), (E2), (E3)},in other words,

EV =

∣
∣
∣
∣
∣
∣
∣
∣
∣

The set of all 
onditions on f and g ensuring theexisten
e and uniqueness of a Lips
hitz 
ontinuous vis
ositysolution u ∈ Lip(Q̄T ) of (2.1), and of an entropysolution v ∈ L∞(QT ) of (2.2), with v0 = u0
x ∈ L∞(R).Theorem 2.17 (A link between vis
osity and entropy solutions)Let F = gf with g ∈ C2(Q̄T ), u0 ∈ Lip(R) and EV satis�ed. Then,

v = ux a.e. in QT .Sket
h of the proof. Let ε > 0 and δ > 0. We start the prove by making a paraboli
regularization of equation (2.1) and a smooth regularization of u0 and we solve the followingparaboli
 equation:
{

uε,δt + F (x, t, uε,δx ) = ǫuε,δxx in R × (0, T ),

uε,δ(x, 0) = u0,δ(x) in R.
(2.20)For the sake of simpli
ity, we will denote uε,δ by w and u0,δ by w0. Note that the �rst equationof (2.20) 
an be viewed as the heat equation with a sour
e term F . Thus, we have:

{

wt − εwxx = F [w](x, t) in QT ,

w(x, 0) = w0 in R,
(2.21)with F [w](x, t) = F (x, t, wx(x, t)). From the 
lassi
al theory of heat equations, sin
e F [w] ∈

Lploc(QT ) and w0 ∈W 1,p
loc (R), there exists a unique solution w of (2.21) su
h that

w ∈W 2,1
p (Ω) ∀Ω ⊂⊂ QT and 1 < p <∞.Here the spa
e W 2,1

p (Ω), p ≥ 1 is the Bana
h spa
e 
onsisting of all fun
tions w ∈ Lp(Ω)having generalized derivatives of the form wt and wxx in Lp(Ω). For more details, see [24,Theorem 9.1℄. We also noti
e that the spa
e W 2,1
p (Ω) is 
ontinuously inje
ted in the Hölderspa
e Cα,α/2(Ω) for α = 2 − 3

p and p > 3
2 , see [24℄. We use now a bootstrap argument toin
rease the regularity of w, taking in ea
h stage, the new regularity of F [w] and the regularityof w0. Finally, we get that w ∈ C3,1(R × [0, T )) (three times 
ontinuously di�erentiable in14



spa
e and one time 
ontinuously di�erentiable in time). From the maximum prin
iple and the
Lp-estimates of the heat equation, see [24, 3℄, it follows the uniform bound of uε,δ in W 1,p

loc (QT ),for p > 2. Therefore, we get as δ → 0 and ε→ 0 that:
uε,δ → u in C(R × [0, T )),with u(x, 0) = u0. We now make use of the stability theorem, [2, Théorème 2.3℄, twi
e on theequation (2.20) to get that the limit u is the unique vis
osity solution of (2.1). Hen
e, we havefor any φ ∈ C∞

0 (QT )

lim
ε→0, δ→0

∫ T

0

∫

R

uε,δx φdx dt = − lim
ε→0, δ→0

∫ T

0

∫

R

uε,δφx dx dt

= −
∫ T

0

∫

R

uφx dx dt =

∫ T

0

∫

R

uxφdx dt.The appearan
e of ux follows sin
e u ∈ Lip(Q̄T ). Moreover, as a regular solution, the fun
tion
vε,δ = uε,δx solves the derived problem

{

vε,δt + (F (x, t, vε,δ))x = ǫvε,δxx in R × (0, T ),

vε,δ(x, 0) = u0,δ
x (x) in R,

(2.22)and, a

ording to [22, Theorem 4℄, the sequen
e vε,δ 
onverge in L1
loc(Q̄T ), as ε→ 0 and δ → 0,to the entropy solution v of (2.2). Then, for any φ ∈ C∞

0 (QT ),
lim

ε→0 δ→0

∫ T

0

∫

R

vε,δφdx dt =

∫ T

0

∫

R

vφ dx dt.Consequently,
∫ T

0

∫

R

uxφdx dt =

∫ T

0

∫

R

vφ dx dt,and ux = v a.e. in QT . 2Remark 2.18 The 
onverse of the previous theorem holds under 
ertain assumptions (see [21,7℄).Remark 2.19 In the multidimensional 
ase this one-to-one 
orresponden
e no longer exists,instead the gradient v = ∇u satis�es formally a non-stri
t hyperboli
 system of 
onservationlaws (see [27, 23℄).Throughout Se
tions 3 and 4, ρ will always be the solution of the heat equation (1.5). Theproperties of the solution of the heat equation with su
h a regular initial data will be frequentlyused, we refer the reader to [3, 13℄ for details.3 The approximate problemIn this se
tion, we approximate (1.4) and we pose a more restri
tive 
ondition (see 
ondition(1.8)) on the gradient of the initial data than of the physi
aly relevent one (1.6). We prove15



a result of existen
e and uniqueness of this approximate problem, namely Theorem 1.2, andthe reader will noti
e at the end of this se
tion that this restri
tive 
ondition is satis�ed for alltime, and this what 
an
els the approximation in the stru
ture of (1.4) and returns it to itsoriginal one. Finaly we present the proof of Theorem 1.3.For every a > 0, we build up an approximation fun
tion fa ∈ C1
b (R) of the fun
tion 1

xde�ned by:
fa(x) =







1

x
if x ≥ a,

2a− x

a2 + a2(x− a)2
otherwise. (3.1)Proposition 3.1 For any a > 0, let fa be de�ned by (3.1) and H ∈ C1(R) be a s
alar-valuedfun
tion. If

Fa(x, t, u) = −H(ρx(x, t))ρxx(x, t)fa(u) (3.2)and κ0 ∈ Lip(R), then the Hamilton-Ja
obi equation
{

κt + Fa(x, t, κx) = 0 in QT ,

κ(x, 0) = κ0(x) in R,
(3.3)has a unique vis
osity solution κ ∈ Lip(Q̄T ).Proof. The proof is easily 
on
luded from Theorems 2.6, 2.7 and Proposition 2.10, after
he
king that the 
onditions (V0)-(V1)-(V2) are satis�ed with

g(x, t) = −H(ρx(x, t))ρxx(x, t). (3.4)The 
ondition (V0) is trivial, while for (V1), we just use the fa
t thatH is bounded on 
ompa
tsand the fa
t that |ρx(x, t)| ≤ ||ρ0
x||L∞(R) in Q̄T . For the 
ondition (V2), the regularity of ρ and

H permits to 
ompute the spatial derivative of g in Q̄T , thus we have:
gx = −(H

′

(ρx)ρ
2
xx +H(ρx)ρxxx).The uniform bound of the spatial derivatives, up to the third order, of the solution of the heatequation, and the boundedness of H ′ on 
ompa
ts gives immediately (V2). 2In the following proposition, we show a lower-bound estimate for the gradient of κ obtainedin Proposition 3.1. It is worth mentioning that a result of lower-bound gradient estimatesfor �rst-order Hamilton-Ja
obi equations 
ould be found in [26, Theorem 4.2℄. However, thisresult holds for Hamiltonians F (x, t, u) that are 
onvex in the u-variable, using only the vis
ositytheory te
hniques. This is not the 
ase here, and in order to obtain our lower-bound estimates,we need to use the vis
osity/entropy theory te
hniques. In parti
ular, we have the following:Proposition 3.2 Let G ∈ C3(R; R) satisfying the following 
onditions:(G1) G(x) ≥ G(0) > 0,(G2) G′′ ≥ 0. 16



Moreover, let
H = GG

′ and 0 < a ≤ G(0).If κ0 satis�es:
κ0
x(x) ≥ G(ρ0

x(x)), a.e. in R,then the solution κ obtained from Proposition 3.1 satis�es:
κx(x, t) ≥ G(ρx(x, t)) a.e. in Q̄T . (3.5)In order to prove Proposition 3.2, we �rst show that G(ρx) is an entropy sub-solution of
{

ωt + (F (x, t, ω))x = 0 in QT ,

ω(x, 0) = ω0(x) in R,
(3.6)with w0 = G(ρ0

x) and F is the same as in (3.2). Before going further, we will pause to prove alemma whi
h makes it easier to rea
h our goal.Lemma 3.3 (Classi
al sub-solutions are entropy sub-solutions)Let v ∈W 1,∞(QT ) be a 
lassi
al sub-solution of (2.2) with v0(x) = v(x, 0), then v is an entropysub-solution.Proof. Let ηi, Φ, h and φ be given by De�nition 2.12. Multiplying inequality (2.19) by η′

i(v)φdoes not 
hange its sign. Hen
e, after developing, we have:
η
′

i(v)vtφ+ η
′

i(v)gxf(v)φ+ η
′

i(v)gf
′

(v)vxφ ≤ 0, a.e. in QT , (3.7)and sin
e v is Lips
hitz 
ontinuous, we use the 
hain-rule formula together with (2.17) to rewrite(3.7) as:
(ηi(v))t φ+ gxf(v)η

′

i(v)φ + g(Φ(v))x φ ≤ 0, a.e. in QT . (3.8)Upon integrating (3.8) over QT and transferring derivatives with respe
t to t and x to the testfun
tion, we obtain:∫

QT

[

ηi(v(x, t))φt(x, t) + Φ(v(x, t))g(x, t)φx(x, t)+

h(v(x, t))gx(x, t)φ(x, t)
]

dxdt+

∫

R

ηi(v
0(x))φ(x, 0)dx ≥ 0, (3.9)whi
h ends the proof. 2Following same arguments, 
lassi
al super-solutions are shown to entropy super-solutions. Wereturn now to the fun
tion G(ρx) and we are ready to show that it is indeed an entropy sub-solution of (3.6). In parti
ular, we have the following:Lemma 3.4 The fun
tion G(ρx) de�ned on QT is a 
lassi
al sub-solution of (3.6) with initialdata G(ρ0

x), hen
e an entropy sub-solution.
17



Proof of Lemma 3.4. First, it is easily seen that G(ρx) ∈ W 1,∞(QT ). De�ne the s
alarvalued quantity B on QT by:
B(x, t) = ∂t(G(ρx(x, t))) + ∂x(F (x, t,G(ρx(x, t)))).Sin
e 0 < a ≤ G(0), we use (G1) to get fa(G(ρx)) = 1/G(ρx) and we observe that,

B = G
′

(ρx)ρxt − ∂x

(
H(ρx)ρxx
G(ρx)

)

= G
′

(ρx)ρxxx −
(

G(ρx)[H
′

(ρx)ρ
2
xx +H(ρx)ρxxx] − (G

′

(ρx)ρ
2
xxH(ρx))

G2(ρx)

)

=
G(ρx)ρxxx(G(ρx)G

′

(ρx) −H(ρx)) − ρ2
xx(H

′

(ρx)G(ρx) −H(ρx)G
′

(ρx))

G2(ρx)

= −ρ2
xxG

′′

(ρx).The 
ondition (G2) gives immediately that B ≤ 0. This proves that G(ρx) is a 
lassi
al sub-solution of equation (3.6) and hen
e an entropy sub-solution. 2Proof of Proposition 3.2. From the de�nition of H and the properties of ρ, it is easy to
he
k that g ∈ C2(Q̄T ) and that EV is fully satis�ed. Hen
e, we are in the framework ofTheorem 2.17 with u0 = κ0. This theorem gives that κx is the unique entropy solution of (3.6)with w0 = κ0
x. Moreover, by the previous lemma, G(ρx) is an entropy sub-solution of (3.6).Sin
e

κ0
x ≥ G(ρ0

x), a.e. in R,we 
an apply the Comparison Theorem 2.16 to get the desired result. 2It is worth notable here that we do not know how to obtain the lower-bound on the spatialgradient κx using the vis
osity framework dire
tly. However, for the 
ase of the upper-bound,we 
an do so (see Remark 4.1). At this stage, �x some ǫ > 0, and let
Gǫ(x) =

√

x2 + ǫ2 and a = Gǫ(0) = ǫ.It is 
lear that Gǫ(x) satis�es the 
onditions (G1)-(G2) with
Hǫ(x) = x,and the Hamiltonian F from (3.2) takes now the following shape:

Fǫ(x, t, u) = −ρx(x, t)ρxx(x, t)fǫ(u). (3.10)Moreover, we have the following 
orollary whi
h is is an immediate 
onsequen
e of Propositions3.1 and 3.2.Corollary 3.5 There exists a unique vis
osity solution κ ∈ Lip(Q̄T ) of
{

κt + Fǫ(x, t, κx) = 0 in QT ,

κ(x, 0) = κ0 ∈ Lip(R) in R,
(3.11)18



with κ0
x satis�es:

κ0
x ≥

√

(ρ0
x)

2 + ǫ2 a.e. in R. (3.12)Moreover, this solution κ satis�es:
κx ≥

√

ρ2
x + ǫ2 a.e. in Q̄T . (3.13)The following lamma will be used in the proof of Theorem 1.2.Lemma 3.6 Let c̄ be an arbitrary real 
onstant and take ψ ∈ Lip(R; R) satisfying:

ψx ≥ c̄ a.e. in R.If ζ ∈ C1(R; R) is su
h that ψ−ζ has a lo
al maximum or lo
al minimum at some point x0 ∈ R,then
ζx(x0) ≥ c̄.Proof. Suppose that ψ − ζ has a lo
al minimum at the point x0; this ensures the existen
e ofa 
ertain r > 0 su
h that

(ψ − ζ)(x) ≥ (ψ − ζ)(x0) ∀x; |x− x0| < r.We argue by 
ontradi
tion. Assuming ζx(x0) < c̄ leads, from the 
ontinuity of ζx, to theexisten
e of r′ ∈ (0, r) su
h that
ζx(x) < c̄ ∀x; |x− x0| < r

′

. (3.14)Let y0 be a point su
h that |y0 − x0| < r
′ and y0 < x0. Reexpressing (3.14), we get

(ζ − c̄x)x(x) < 0 ∀x ∈ (y0, x0),and hen
e ∫ x0

y0

[(ψ − c̄x)x(x) − (ζ − c̄x)x(x)]dx > 0,whi
h implies that
(ψ − ζ)(x0) > (ψ − ζ)(y0),and hen
e a 
ontradi
tion. We remark that the 
ase of a lo
al maximum 
an be treated in asimilar way. 2Now, we are ready to present the proofs of the �rst two theorems announ
ed in Se
tion 1.Proof of Theorem 1.2. Let κ ∈ Lip(Q̄T ) be the solution of (3.11) obtained in Corollary3.5. Let us show that it is the unique vis
osity solution of (1.4) among those verifying (3.13).To do this, we 
onsider a test fun
tion φ ∈ C1(QT ) su
h that κ − φ has a lo
al minimum atsome point (x0, t0) ∈ QT . Proposition 2.10, together with inequality (3.13) gives that

κ(., t0) ∈ Lip(R) and κx(., t0) ≥ ǫ a.e. in R.We make use of Lemma 3.6 with ψ(.) = κ(., t0) and ζ(.) = φ(., t0) to get
φx(x0, t0) ≥ ǫ. (3.15)19



Sin
e κ is a vis
osity super-solution of
κt − fǫ(κx)ρxρxx = 0 in QT ,we have

φt(x0, t0) − fǫ(φx(x0, t0))ρx(x0, t0)ρxx(x0, t0) ≥ 0.However, from (3.15), we get
φt(x0, t0)φx(x0, t0) − ρx(x0, t0)ρxx(x0, t0) ≥ 0,and hen
e κ is a vis
osity super-solution of

κtκx = ρxρxx in QT .In the same way, we 
an show that κ is a vis
osity sub-solution of the above equation and hen
ea vis
osity solution. The uniqueness of this solution 
omes from the uniqueness of the vis
ositysolution of (3.11) by reversing the above reasoning. 2Remark 3.7 Noti
e that the �rst equation of (1.4) 
an be viewed as a Hamilton-Ja
obi equationof the type
F (X,∇κ) = 0 in QT ,where F : QT × R

2 7→ R de�ned by:
F (X, p) = p1p2 − ρx(X)ρxx(X),with X = (x, t) and p = (p1, p2).Proof of Theorem 1.3. Let θ = κx. By Theorem 2.17, θ is the unique entropy solution of

{

θt = (ρxρxxfǫ(θ))x in QT ,

θ(x, 0) = θ0(x) in R,with
θ0(x) = κ0

x(x) ≥
√

(ρ0
x)

2 + ǫ2, a.e. in R.Moreover, from Corollary 3.5, we have
θ ≥

√

ρ2
x + ǫ2 a.e. in Q̄T ,from whi
h we dedu
e that fǫ(θ) = 1

θ and hen
e our theorem holds. 24 Proof of Theorem 1.6We turn our attention now to Theorem 1.6. Let 0 < ǫ < 1 be a �xed 
onstant and take
κ0,ǫ(x) = κ0(x) + ǫx. (4.1)20



It is easy to 
he
k that the fun
tion κ0,ǫ belongs to Lip(R), and by 
ondition (1.6) we get fora.e. x ∈ R,
κ0,ǫ
x (x) = κ0

x(x) + ǫ,

≥
√

(ρ0
x(x))

2 + ǫ2.From Theorem 1.2, there exists a family of vis
osity solutions κǫ ∈ Lip(Q̄T ) to the initial valueproblem (1.4) that satisfy:
κǫx ≥

√

ρ2
x + ǫ2 a.e. in Q̄T .We will try to extra
t a subsequen
e of κǫ that 
onverges, in a suitable spa
e, to the desiredsolution4.1 Gradient estimates.Uniform bounds for the spa
e-time gradients of κǫ will play an essential role in the determina-tion of our subsequen
e.I. ǫ-uniform upper-bound for κǫt.Starting with the time gradient, we have for a.e. (x, t) ∈ QT :

κǫt(x, t)κ
ǫ
x(x, t) = ρx(x, t)ρxx(x, t), (4.2)and

κǫx(x, t) ≥
√

ρ2
x(x, t) + ǫ2 > 0 a.e. in Q̄T . (4.3)If ρx(x, t) = 0 for some Lebesgue point (x, t) of κǫx and κǫt, it follows from (4.2) and (4.3) that

κǫt(x, t) = 0. Otherwise, and sin
e by (4.3) κǫx ≥ |ρx|, we 
on
lude that:
|κǫt | ≤ ||ρ0

xx||L∞(R) a.e. in QT , (4.4)and hen
e we obtain an ǫ-uniform bound of κǫt .For the spa
e gradient, we argue in a slightly di�erent way. The key point for obtainingthe uniform bound of κǫt was the minoration of κǫx by |ρx| so, roughly speaking, if we want tofollow the same previous steps using the symmetry of (4.2) in κǫt and κǫx, one should also havean appropriate minoration of |κǫt| by a well 
ontrolled fun
tion whi
h no longer exists.II. Formal 
al
ulus and best 
andidate.We seek to �nd the best 
andidate to be an upper-bound of κǫx. For this reason, we regardformally what is happening at the maximum of κǫx. Dividing both sides of (4.2) by κǫx anddi�erentiating with respe
t to the spatial variable, we get:
κǫxt =

ρ2
xx + ρxρxxx

κǫx
− κǫxxρxρxx

(κǫx)
2

. (4.5)Noti
e that κǫxx = 0 at the maximum of κǫx. Multiplying equality (4.5) by κǫx and integratingbetween 0 and t, we obtain:
∫ t

0

d

dτ

(
1

2
(κǫx)

2

)

dτ =

∫ t

0
(ρ2
xx + ρxρxxx)dτ,21



then
(κǫx(x, t))

2 = (κ0,ǫ
x (x))2 + 2

∫ t

0
(ρ2
xx(x, t) + ρx(x, t)ρxxx(x, t))dτ,and hen
e,

|κǫx| ≤
√

2c1t+ c2,where
c1 = ||(ρ0

xx)
2||L∞(R) + ||ρ0

x||L∞(R)||ρ0
xxx||L∞(R),and

c2 = (||κ0
x||L∞(R) + 1)2.The reason of taking c2 as above easily follows sin
e κ0,ǫ

x = κ0
x + ǫ, by taking ǫ small enough,namely less than 1.III. ǫ-uniform upper-bound for κǫx.De�ne the fun
tion S by:

S(x, t) =
√

2c1t+ c2.Let us show that S is an entropy super-solution of (3.6) with F given by (3.10) and w0(x) =
S(x, 0). Indeed, it remark that S ∈ W 1,∞(QT ), and we know that for every (x, t) ∈ QT wehave,

S(x, t) ≥ √
c2 = ||κ0

x||L∞(R) + 1 ≥ ǫ,then
fǫ(S(x, t)) =

1

S(x, t)
∀(x, t) ∈ QT . (4.6)The regularity of the fun
tion S permits to inje
t it dire
tly into the �rst equation of (3.6).Therefore, using (4.6), we have

St −
(ρxρxx

S

)

x
=

c1√
2c1t+ c2

− ρ2
xx + ρxρxxx√

2c1t+ c2
,

=
c1 − (ρ2

xx + ρxρxxx)√
2c1t+ c2

,

≥ 0,whi
h proves, by Lemma 3.3, that S is an entropy super-solution of (3.6). From the dis
ussionof the proof of Proposition 3.2, we know that κǫx is an entropy solution of (3.6) hen
e an entropysub-solution. Sin
e for ǫ < 1 and a.e. x ∈ R, we have,
κ0,ǫ
x (x) = κ0

x(x) + ǫ,

≤ ||κ0
x||L∞(R) + 1,

≤ √
c2 = S(x, 0),then we 
an use the Comparison Theorem 2.16 of s
alar 
onservation laws to obtain:

κǫx(x, t) ≤
√
c1t+ c2 ≤

√

c1T + c2 a.e. in Q̄T , (4.7)and hen
e we get an ǫ-uniform bound for κǫx. 22



Remark 4.1 We were able to obtain this ǫ-uniform upper-bound of κǫx by using the vis
ositytheory te
hniques. In fa
t, we 
laim that ζ1,ǫ(x, y, t) = κǫ(x, t) − κǫ(y, t) and ζ2(x, y, t) =
(x− y)S(t) are two vis
osity sub-/super-solutions of the following Hamilton-Ja
obi equation:

∂w

∂t
= F (x, t, wx) − F (y, t,−wy) in D = {(x, y, t); x > y and t > 0}with initial data ζ1,ǫ(x, y, 0) = κ0,ǫ(x)− κ0,ǫ(y) and ζ2(x, y, 0) = (x− y)S(0) respe
tively. Here

F is given by (3.10). The 
laim is easy for ζ2, and we refer to [9℄ when κǫ is a 
ontinuousvis
osity solution of (3.11). We also noti
e that: ζ1,ǫ(x, y, 0) ≤ ζ2(x, y, 0) ∀(x, y, 0) ∈ D, and
ζ1,ǫ(x, y, t) = ζ2(x, y, t) = 0 for x = y, t ≥ 0. Moreover, sin
e ζ1,ǫ and ζ2 are 
ontinuousfun
tions, we use the 
omparison prin
iple of vis
osity solutions (see [2℄) to obtain:

κǫ(x, t) − κǫ(y, t) ≤ (x− y)S(t) ∀(x, y, t) ∈ D̄,hen
e, the estimate (4.7) holds.4.2 Lo
al boundedness in W
1,∞.We now show that the family (κǫ)0<ǫ<1 is lo
ally bounded in W 1,∞(QT ). Let K⊂⊂ QT be a
ompa
tly 
ontained subset of QT , and (x, t) ∈ K. Sin
e κǫ is Lips
hitz 
ontinuous, we 
anwrite,

|κǫ(x, t) − κ0,ǫ(0)| ≤ Cǫlip |(x, t)|,where Cǫlip is the Lips
hitz 
onstant of κǫ whi
h is independent of ǫ from the previous estimates,namely (4.4) and (4.7). Call this 
onstant C̄. From the de�nition of κ0,ǫ(0) given by (4.1), itfollows that,
|κǫ(x, t)| ≤ C̄ |(x, t)| + |κ0(0)|,

≤ C̄ max
(y,τ)∈K

|(y, τ)| + |κ0(0)|,whi
h is �nite sin
e K is bounded and hen
e, (κǫ)0<ǫ<1 is uniformly bounded in C(K). This,together with the uniform gradient estimates, gives the lo
al boundedness of κǫ in W 1,∞(Q̄T ).4.3 Proof of theorem 1.6At this point, we have the ne
essary tools to give the proof of Theorem 1.6. We �rst re
allthat κǫ is a vis
osity solution of an equation of the type (4.2), with a Hamiltonian independentof ǫ (see Remark 3.7) and κ0,ǫ → κ0 lo
ally uniformly in R. By As
oli's Theorem, there isa subsequen
e, 
alled again κǫ, that 
onverges to κ ∈ Lip(Q̄T ) lo
ally uniformly, and by thestability theorem (see [2, Theorem 2.3℄), κ is a vis
osity solution of the initial value problem
{

κtκx = ρxρxx in QT ,

κ(x, 0) = κ0(x) in R.
(4.8)To end the proof, we still have to show the inequality

κx ≥ |ρx| a.e. in Q̄T .23



Again by Theorem 1.2, our κǫ veri�es for a.e. (x, t) ∈ Q̄T ,
κǫx(x, t) ≥

√

ρ2
x(x, t) + ǫ2

> |ρx(x, t)|,then for (y, t), (x, t) ∈ QT 
lose enough, with ρx a 
ontinuous fun
tion, the following inequalityhold
κǫ(y, t) − κǫ(x, t)

x− y
> |ρx(x, t)|.Using the lo
al uniform 
onvergen
e of κǫ to κ, we get a similar inequality with κǫ repla
edwith κ and hen
e

κx ≥ |ρx| a.e. in Q̄T .

25 Problem with boundary 
onditionsIn this part of the paper, we deal with the same problem stru
ture but with boundary 
onditionsof the Diri
hlet type. This sort of boundary 
onditions arises naturally in a spe
ial model ofdislo
ation dynami
s and will be explained in the following subse
tion. Our notations are keptuntou
hed; the terms θ+, θ−, ρ and κ still have the same physi
al meaning, while the domainis 
hanged into the open and bounded interval
I = (0, 1),of the real line. Although this problem seems to be an independent one, we will try to bene�tthe results of the previous se
tions by 
onsidering a tri
k of extension and restri
tion, in orderto apply some of the previous results of the whole spa
e problem.5.1 Brief physi
al motivationTo illustrate some physi
al motivations of the boundary value problem, we 
onsider a 
on-strained 
hannel deforming in simple shear (see [18℄). A 
hannel of width 1 in the x-dire
tionand in�nite extension in the y-dire
tion is bounded by walls that are impenetrable for dislo
a-tions (see Figure 1). The motion of the positive and negative dislo
ations 
orresponds to the

x-dire
tion. This is a simpli�ed version of a system studied by Van der Giessen and 
oworkers[6℄, where the simpli�
ations stem from the fa
t that:
• only a single slip system is assumed to be a
tive, su
h that rea
tions between dislo
ationsof di�erent type need not be 
onsidered;
• the boundary 
onditions redu
e to "no �ux" 
onditions for the dislo
ation �uxes at theboundary walls.The mathemati
al formulation of this model, as expressed in [18℄, is the system (1.2) posed on

I × (0, T ):






∂tθ
+(x, t) − ∂x

(

θ+(x, t)

(
θ+
x (x, t) − θ−x (x, t)

θ+(x, t) + θ−(x, t)

))

= 0,

∂tθ
−(x, t) + ∂x

(

θ−(x, t)

(
θ+
x (x, t) − θ−x (x, t)

θ+(x, t) + θ−(x, t)

))

= 0.

(5.1)24



Figure 1: Geometry of a 
onstrained 
hannelTo formulate heuristi
ally the boundary 
onditions at the walls lo
ated at x = 0 and x = 1, wenote that the dislo
ation �uxes at the walls must be zero, whi
h requires that
Φ

︷ ︸︸ ︷

∂x(θ
+ − θ−) = 0, at x ∈ {0, 1}. (5.2)Rewriting system (5.1) in a spe
ial integrated form in terms of ρ, κ and Φ, we get

{

κt = (ρx/κx)Φ,

ρt = Φ.
(5.3)Using (5.2) into the system (5.3), we 
an formally dedu
e that ρ and κ are 
onstants along theboundary walls. Therefore, the remaining of this paper fo
uses attention on the study of thefollowing 
oupled Diri
hlet boundary problems:







ρt = ρxx, in I × (0,∞),

ρ(x, 0) = ρ0(x), in I,

ρ(0, t) = ρ(1, t) = 0, ∀t ∈ [0,∞),

(5.4)and 





κtκx = ρtρx, in I × (0, T ),

κ(x, 0) = κ0(x), in I,

κ(0, t) = κ(0, 0) and κ(1, t) = κ(1, 0), ∀t ∈ [0, T ].

(5.5)Denote IT by:
IT = I × (0, T ).There are two natural assumptions 
on
erning ρ0 and κ0, the �rst one is again the positivity ofthe dislo
ation densities θ+ and θ− at the initial time, whi
h yields to the following 
ondition:

κ0
x ≥ |ρ0

x|, (5.6)25



and the se
ond one has to do with the balan
e of the physi
al model that starts with the samenumber of positive and negative dislo
ations. In other words, if n+ and n− are the total numberof positive and negative dislo
ations respe
tively at t = 0 then:
ρ0(1) − ρ0(0) =

∫ 1

0
ρ0
x(x) dx,

=

∫ 1

0
(θ+(x, 0) − θ−(x, 0)) dx,

= n+ − n− = 0,this shows that ρ0(1) = ρ0(0) and this is what appears in (5.4). Up to now, formal relationsbetween the initial 
onditions are only expressed. Whereas, required regularity, together withthe announ
ement of the main results will be stated in the next subse
tion.5.2 Statement of the main results on a bounded intervalFrom now on, the reader should not be 
onfused with the term ρ that will always be the uniquesolution of the 
lassi
al heat equation (5.4). The two main theorems that we are going to proveare:Theorem 5.1 (Existen
e and uniqueness of a vis
osity solution)Let T > 0 and ǫ > 0 be two 
onstants. Take κ0 ∈ Lip(I) and ρ0 ∈ C∞
0 (I) satisfying:

κ0
x ≥ G(ρ0

x) a.e. in I,where
G(x) =

√

x2 + ǫ2,then there exists a vis
osity solution κ ∈ Lip(ĪT ) of (5.5), unique among those satisfying:
κx ≥ G(ρx) a.e. in ĪT . (5.7)Theorem 5.2 (Existen
e of a vis
osity solution)Let T > 0 and κ0 ∈ Lip(I). Under the 
ondition (5.6) satis�ed a.e. in I, there exists a vis
ositysolution κ ∈ Lip(ĪT ) of (5.5) satisfying:
κx ≥ |ρx|, a.e. in ĪT .5.3 Preliminary resultsBefore pro
eeding with the proof of our theorems, we have to introdu
e some essential toolsthat are the 
ore of the "extension and restri
tion" method that we are going to use.Extension of ρ over R × [0, T ].Consider the fun
tion ρ̂ de�ned on [0, 2] × [0, T ] by

ρ̂(x, t) =

{

ρ(x, t) if (x, t) ∈ ĪT ,

− ρ(2 − x, t) otherwise, (5.8)26



this is just a C1 antisymmetry of ρ with respe
t to the line x = 1. The 
ontinuation of ρ̂to R × [0, T ] is made by spatial periodi
ity of period 2. A simple 
omputation yields, for
(x, t) ∈ (1, 2) × (0, T ):

ρ̂t(x, t) = −ρt(2 − x, t) and ρ̂xx(x, t) = −ρxx(2 − x, t),and hen
e it is easy to verify that ρ̂ |[1,2]×[0,T ] solves (5.4) with I repla
ed with the interval (1, 2)and ρ0 repla
ed with its symmetry with respe
t to the point x = 1; the boundary 
onditionsare un
hanged and the regularity of the initial 
ondition is 
onserved. To be more pre
ise, wewrite down some useful properties of ρ̂.Regularity properties of ρ̂.Let r and s are two positive integers su
h that s ≤ 2. From the 
onstru
tion of ρ̂ and the abovedis
ussion, we get the following:i) ρ̂t and ρ̂x are in C(R × [0, T ]),ii) ρ̂ = 0 on Z × [0, T ],iii) ρ̂t = ρ̂xx on (R \ Z) × (0, T ),iv) ||∂rt ∂sxρ̂(., t)||L∞(R) ≤ C, ∀t ∈ [0, T ],

(5.9)Where C is a 
ertain 
onstant and the limitation s ≤ 2 
omes from the spatial antisymmetry.These 
onditions are valid thanks to the way of 
onstru
tion of the fun
tion ρ̂ and to the max-imum prin
iple of the solution of the heat equation on bounded domains (see [3, 13℄).Let
ĝ(x, t) = −ρ̂t(x, t)ρ̂x(x, t). (5.10)From the above dis
ussion, it is worth noti
ing that this fun
tion is a Lips
hitz 
ontinuousfun
tion in the x-variable.The following three lemmas will be used in the proof of Theorem 5.1.Lemma 5.3 (Entropy sub-solution)The fun
tion G(ρ̂x) is an entropy sub-solution of

{

wt + (ĝfǫ(w))x = 0, in QT ,

w(x, 0) = w0(x) in R,
(5.11)where fǫ is given by (3.1), and w0(x) = G(ρ̂x(x, 0)).Proof. Similar to Lemma 3.4. 2Lemma 5.4 (Di�erentiability property)Let u(x, t) be a di�erentiable fun
tion with respe
t to (x, t) a.e. in QT . De�ne the set M by:

M = {x ∈ R; u is di�erentiable a.e. in {x} × (0, T )} ,then M is dense in R. 27



Proof. De�ne Ln, n ∈ N to be the Lebesgue n-dimensional measure. Let N ⊂ QT be the setde�ned by:
N = {(x, t) ∈ QT ; u is not di�erentiable on (x, t)} ,and let IN be the 
hara
teristi
 fun
tion of the set N . Sin
e L2(N) = 0, we 
an write,

∫

QT

IN (x, t)dxdt = 0.Using Fubini's theorem we get
∫

R

g(x)dx = 0, with g(x) =

(∫ T

0
IN (x, t)dt

)

≥ 0,then
g = 0 a.e. in Rand 
onsequently

J = {x; g(x) 6= 0} veri�es L1(J) = 0.In other words,
∀x ∈ R \ J, u(x, ·) is di�erentiable with respe
t to (x, t) a.e. in (0, T ),hen
e R \ J ⊂M whi
h implies our lemma. 2In the next lemma, we show a lower-bound estimate for the gradient of κ̂ analogue to(5.7). This was previously done for κx in the 
ase where g is a twi
e 
ontinuously di�erentiablefun
tion using mainly Theorems 2.17 and 2.16. Here, the way of extending the fun
tion ρ over

Q̄T makes ĝ loose some of the regularity stated in Theorem 2.17. However, the following lemmashows that a similar result holds in the 
ase ĝ ∈W 1,∞(Q̄T ).Lemma 5.5 The fun
tion κ̂x ∈ L∞(QT ) is an entropy solution of (5.11) with initial data
w0 = κ̂0

x ∈ L∞(R).Proof of Lemma 5.5. Let g̃ be an extension of the fun
tion ĝ on R
2 de�ned by:

g̃(x, t) =







ĝ(x, t) if (x, t) ∈ Q̄T ,

ĝ(x, T ) if t > T,

ĝ(x, 0) if t < 0.

(5.12)Consider a sequen
e of molli�ers ξn in R
2 and let g̃n = g̃ ∗ ξn. Remark that, from the standardproperties of the molli�er sequen
e, we have g̃n ∈ C∞(R2) and:

g̃n → ĝ uniformly on 
ompa
ts in Q̄T , (5.13)and
g̃nx → ĝx in Lploc(QT ), 1 ≤ p <∞, (5.14)together with the following estimates:

||∂rt ∂sxg̃n||L∞(Q̄T ) ≤ ||∂rt ∂sxĝ||L∞(Q̄T ) for r, s ∈ N, r + s ≤ 1. (5.15)28



Now, take again the Hamilton-Ja
obi equation (5.27) with ĝ repla
ed with g̃n:
{

ut + g̃nfǫ(ux) = 0 in R × (0, T ),

u(x, 0) = κ̂0(x) in R,
(5.16)and noti
e that the above properties of the fun
tion g̃n enters us into the framework of Theorem2.17. Thus, we have a unique vis
osity solution κ̃n ∈ Lip(Q̄T ) of (5.16) with initial 
ondition

κ̂0 whose spatial derivative κ̃nx ∈ L∞(QT ) is an entropy solution of the 
orresponding derivedequation with initial data κ̂0
x. From Remark 2.11 and (5.15), we dedu
e that the sequen
e

(κ̃n)n≥1 is lo
ally uniformly bounded in W 1,∞(Q̄T ) and that:
||κ̃nx ||L∞(QT ) ≤ ||κ̂0

x||L∞(R) + T ||ĝx||L∞(QT )||fǫ||L∞(R). (5.17)Moreover, from (5.13), we use again the Stability Theorem of vis
osity solutions [2, Theorem2.3℄, and we obtain:
κ̃n → κ̂ lo
ally uniformly in Q̄T . (5.18)Ba
k to the entropy solution, we write down the entropy inequality (see De�nition 2.12) satis�edby κ̃nx:

∫

QT

(

η(κ̃nx)φt + Φ(κ̃nx)g̃
nφx + h(κ̃nx)g̃

n
xφ
)

dxdt+

∫

R

η(κ̂0
x)φ(x, 0)dx ≥ 0, (5.19)where η, Φ, h and φ are given by De�nition 2.12. Taking (5.17) into 
onsideration, we usea property of bounded sequen
es in L∞(QT ) (see [14, Proposition 3℄) that guarantees theexisten
e of a subsequen
e (
all it again κ̃nx) so that, for any fun
tion ψ ∈ C(R; R),

ψ(κ̃nx) → Uψ weak−⋆ in L∞(QT ). (5.20)Furthermore, there exists µ ∈ L∞(QT × (0, 1)) su
h that:
∫ 1

0
ψ(µ(x, t, α))dα = Uψ(x, t), for a.e. (x, t) ∈ QT . (5.21)Applying (5.20) with ψ repla
ed with η, Φ and h respe
tively, and using (5.21), we get:







η(κ̃nx(.)) →
∫ 1

0
η(µ(., α))dα weak−⋆ in L∞(QT ),

Φ(κ̃nx(.)) →
∫ 1

0
Φ(µ(., α))dα weak−⋆ in L∞(QT ),

h(κ̃nx(.)) →
∫ 1

0
h(µ(., α))dα weak−⋆ in L∞(QT ).

(5.22)This, together with (5.13), (5.14) permits to pass to the limit in (5.19) in the distributionalsense, hen
e we get:
∫

QT

∫ 1

0

(

η(µ(., α))φt + Φ(µ(., α))ĝφx + h(µ(., α))ĝxφ
)

dxdtdα+

∫

R

η(κ̂0
x)φ(x, 0)dx ≥ 0.

(5.23)29



In [14, Theorem 3℄, the fun
tion µ satisfying (5.23) is 
alled an entropy pro
ess solution. Ithas been proved to be unique and independent of α. Although this result in [14℄ was for adivergen
e-free fun
tion ĝ ∈ C1(Q̄T ), we remark that it 
an be adapted to the 
ase of anyfun
tion ĝ ∈W 1,∞(Q̄T ) (see for instan
e Remark 6.2 and the proof of [14, Theorem 3℄). Usingthis, we infer the existen
e of a fun
tion z ∈ L∞(QT ) su
h that:
z(x, t) = µ(x, t, α), for a.e. (x, t, α) ∈ QT × (0, 1), (5.24)hen
e, z is an entropy solution of (5.11). We now make use of (5.24) and we apply equality(5.21) for ψ(x) = x to obtain,

z = weak−⋆ lim
n→∞

κ̃nx in L∞(QT ). (5.25)From (5.25) and (5.18) we dedu
e that,
z(x, t) = κ̂x(x, t) a.e. in QT ,whi
h 
ompletes the proof of Lemma 5.5. 25.4 Proofs of Theorems 5.1, 5.2Proof of Theorem 5.1. We extend the fun
tion κ0 to κ̂0 ∈ Lip(R) in the following way:

κ̂0(x) =







κ0(x) if x ∈ [0, 1],

(||ρ0
x||L∞(I) + ǫ)(x− 1) + κ0(1) if x ≥ 1,

(||ρ0
x||L∞(I) + ǫ)x+ κ0(0) if x ≤ 0.

(5.26)Consider the initial value problem de�ned by:
{

ut + ĝfǫ(ux) = 0 in R × (0, T ),

u(x, 0) = κ̂0(x) in R.
(5.27)This is a Hamilton-Ja
obi equation with a Hamiltonian F ∈ C(Q̄T × R) de�ned by:

F (x, t, u) = ĝ(x, t)fǫ(u).From the regularity properties of ρ̂, we 
an dire
tly see that (V0)-(V1)-(V2) are satis�ed;this is quite similar to what was done in Proposition 3.1. Sin
e κ̂0 is a Lips
hitz 
ontinuousfun
tion, we dedu
e from Theorems 2.6, 2.7 and Proposition 2.10 the existen
e and uniquenessof a vis
osity solution κ̂ ∈ Lip(Q̄T ) of (5.27). Moreover, in order to re
over the boundary
onditions given by (5.5) on ∂I × [0, T ], we pro
eed as follows. Let M be the set de�ned byLemma 5.4 and let x ∈M . For every t ∈ [0, T ], we write:
|κ̂(x, t)−κ̂(x, 0)| ≤

∫ t

0
|κ̂s(x, s)|ds ≤

∫ t

0
|F (x, s, κ̂x(x, s))|ds ≤

∫ t

0
(|F (0, s, κ̂x(x, s))| + C|x|) ds.In these inequalities we have used the fa
t that κ̂ is a Lips
hitz 
ontinuous vis
osity solutionof (5.27) and hen
e it veri�es the equation in QT at the points where it is di�erentiable (see30



for instan
e [2℄). Also, we have used the 
ondition (F1) with p = q and CR = C, a 
onstantindependant of R. Now from (5.9)-(ii), we dedu
e that:
|F (0, s, κ̂x(x, s))| = |ρ̂x(0, s)ρ̂t(0, s)fǫ(κ̂x(x, s))| = 0, for a.e. s ∈ (0, t),and hen
e we get

|κ̂(x, t) − κ̂(x, 0)| ≤ C|x|t. (5.28)Sin
e M is a dense subset of R, we pass to the limit in (5.28) as x→ 0 and the equality
κ̂(0, t) = κ̂(0, 0) = κ0(0) ∀t ∈ [0, T ]holds. Similarly, we 
an verify that κ̂(1, t) = κ̂(1, 0) = κ0(1) for all t ∈ [0, T ].Existen
e. The extension κ̂0 of κ0 outside the interval I is a linear extension of slope ||ρ0

x||L∞(I)+ ǫ,therefore we have,
κ̂0
x(·) ≥

√

(ρ̂0
x(·))2 + ǫ2 = G(ρ̂0

x(·)), a.e. in R. (5.29)From Lemma 5.5, we know that κ̂x is an entropy solution of equation (5.11) and from Lemma5.3, we know that G(ρ̂x) is an entropy sub-solution of (5.11). Sin
e (5.29) holds, we use theComparison Theorem 2.16 to get,
κ̂x(x, t) ≥

√

ρ̂2
x(x, t) + ǫ2 ≥ ǫ > 0, for a.e. (x, t) ∈ Q̄T . (5.30)Take κ to be the restri
tion of κ̂ on ĪT where κ̂0 and ρ̂ have their automati
 repla
ements κ0and ρ respe
tively on this subdomain. It is 
lear that κ ∈ Lip(ĪT ) is a vis
osity solution of:







κt + gfǫ(κx) = 0 in IT ,

κ(x, 0) = κ0(x) in I,

κ(0, t) = κ0(0) and κ(1, t) = κ0(1) ∀ 0 ≤ t ≤ T,

(5.31)where g(x, t) = −ρt(x, t)ρx(x, t) and κx(x, t) ≥ G(ρx(x, t)) for a.e. (x, t) ∈ ĪT . We also noti
ethat κ is a vis
osity solution of (5.5), for it su�
es to follow the same steps of the passage fromthe vis
osity solution of (3.11) to the vis
osity solution of (1.4) (see the proof of Theorem 1.2for details).Uniqueness. Sin
e the fun
tion
H̄(x, t, u) = g(x, t)fǫ(u) ∈ C(ĪT × R)satis�es for a �xed t:

|H̄(x, t, u) − H̄(y, t, u)| ≤ C(|x− y|(1 + |u|)),for every x, y ∈ (0, 1) and u ∈ R, we use [2, Theorem 2.8℄ to show that κ is the unique vis
ositysolution of (5.31). We 
laim that κ is the unique vis
osity solution of (5.5). Indeed, we 
analso follow the same me
hanism as in the proof of Theorem 1.2. 2We now move towards the proof of Theorem 5.2 that has the same �avor of what was donein Se
tion 4. We just need to 
are about the 
hange in the stru
ture of our problem and theboundary 
onditions. Our �rst step will be the following lemma.31



Lemma 5.6 Let c1 and c2 be two positive 
onstants de�ned respe
tively by:
c1 = ||(ρ0

xx)
2||L∞(I) + ||ρ0

x||L∞(I)||ρ0
xxx||L∞(I),and

c2 = (||κ0
x||L∞(I) + 1)2.Then the fun
tion S̄ de�ned on QT by:̄

S(x, t) =
√

2c1t+ c2is an entropy super-solution of (5.11) with
w0(x) = S̄(x, 0) = ||κ0

x||L∞(I) + 1.Proof. See Subse
tion 5.1-III. 2Proof of Theorem 5.2. Let ǫ > 0 be a �xed 
onstant. De�ne κ̂0,ǫ ∈ Lip(R) by:
κ̂0,ǫ(x) =







κ0(x) + ǫx if x ∈ [0, 1],

(||κ0
x||L∞(I) + ǫ)(x− 1) + (κ0(1) + ǫ) if x ≥ 1,

(||κ0
x||L∞(I) + ǫ)x+ κ0(0) if x ≤ 0.

(5.32)Sin
e κ0
x ≥ |ρ0

x| a.e. in I, it is 
lear that for a.e. x ∈ R we have
κ̂0,ǫ
x ≥ G(ρ̂0

x),and hen
e, from the dis
ussion of the proof of Theorem 5.1, there exists a unique vis
ositysolution κ̂ǫ ∈ Lip(Q̄T ) of
{

κ̂ǫtκ̂
ǫ
x = ρ̂tρ̂x in QT ,

κ̂ǫ(x, 0) = κ̂0,ǫ(x) ∈ Lip(R) in R,
(5.33)unique among those satisfying:

κ̂ǫx ≥ G(ρ̂x) a.e. in Q̄T . (5.34)Assume without loss of generality that ǫ < 1. The ǫ-uniform bound for κ̂ǫt is trivial, it su�
esto use dire
tly the equation satis�ed by κ̂ǫ together with (5.34). And the ǫ-uniform bound for
κ̂ǫx follows from Lemma 5.6 and Theorem 2.16 sin
e

κ̂ǫx(x, 0) ≤ ||κ0
x||L∞(I) + ǫ ≤ ||κ0

x||L∞(I) + 1 =
√
c2 = S̄(x, 0).Following exa
tly the same te
hni
 of Se
tion 4, namely the proof of Theorem 1.6, we get thatthe sequen
e κ̂ǫ 
onverges lo
ally uniformly to κ̂ in Q̄T with κ̂ ∈ Lip(Q̄T ) satis�es,

κ̂x ≥ |ρ̂x| a.e. in Q̄T (5.35)and
κ̂(x, 0) = κ̂0(x) in R, (5.36)32



where κ̂0 is the uniform limit of the sequen
e κ̂0,ǫ in R. Theorem 5.1 guarantees that
κ̂ǫ(0, t) = κ̂0,ǫ(0) = κ0(0), (5.37)and

κ̂ǫ(1, t) = κ̂0,ǫ(1) = κ0(1) + ǫ, (5.38)for all t ∈ [0, T ]. From (5.37), (5.38) and the pointwise 
onvergen
e, up to a subsequen
e, of κ̂ǫto κ̂, we dedu
e that
κ̂(0, t) = lim

ǫ→0
κ̂ǫ(0, t) = κ0(0), ∀t ∈ [0, T ], (5.39)and

κ̂(1, t) = lim
ǫ→0

κ̂ǫ(1, t) = lim
ǫ→0

(κ0(1) + ǫ) = κ0(1) ∀t ∈ [0, T ]. (5.40)Take κ to be the restri
tion of κ̂ over ĪT ; ρ̂ and κ̂0 have their automati
 repla
ements ρ and κ0respe
tively on this restri
ted domain. From (5.35), (5.36), (5.39) and (5.40), we dedu
e that
κ is the required solution. 26 Appendix: Proof of Theorem 2.16We will work on the entropy inequality (2.18) satis�ed by u and its analogue satis�ed by v,using the dedoubling variable te
hnique of Kruzhkov (see [22℄) and following the same stepsof [14, Theorem 3℄, taking into 
onsideration the new modi�
ations arising from the fa
t thatwe are dealing with sub-/super-entropy solutions and the fa
t that g ∈ W 1,∞(Q̄T ) is not agradient-free fun
tion.The proof 
an be divided into three steps. Denote Br by Br = {x ∈ R; |x| ≤ r} for any r > 0,
F±(u, v) = sgn±(u− v)(f(u) − f(v)),

y∞ = ||y||L∞(QT ) for every y ∈ L∞(QT ) (6.1)and
Mf = max

|x|≤max(u∞,v∞)
|f ′

(x)|. (6.2)In step 1, we prove that the initial 
onditions u0, v0 satisfy for any a > 0:
lim
τ→0

1

τ

∫ τ

0

∫

Ba

(u(x, t) − u0(x))+dxdt = 0, (6.3)
lim
τ→0

1

τ

∫ τ

0

∫

Ba

(v(x, t) − v0(x))−dxdt = 0, (6.4)respe
tively.In step 2, The following relation between u and v is shown:
∫

QT

[
(u(x, t) − v(x, t))+ψt + F+(u(x, t), v(x, t))g(x, t)ψx

]
dxdt ≥ 0, (6.5)
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for every ψ ∈ C1
0 (R × (0, T ); R+).After that, we de�ne A(t) for 0 < t < min(T, aω ) and ω = g∞Mf , by:

A(t) =

∫

Ba−ωt

(u(x, t) − v(x, t))+ dx. (6.6)In step 3, we show that A is non-in
reasing a.e. in (0,min(T, aω )) and we dedu
e that
u(x, t) ≤ v(x, t) a.e. in QT .Step 1: Proof of (6.3), (6.4).Let ξn be a sequen
e of molli�ers in R with ξ1 = ξ. Re
all that the fun
tion ξ ∈ C∞

0 (R)satis�es the following properties:supp(ξ) = {x ∈ R, ξ(x) 6= 0} ⊂ B1;

ξ ≥ 0, ξ(−x) = ξ(x);
∫

B1

ξ(x)dx = 1;

ξn(x) = nξ(nx).

(6.7)Let τ ∈ R su
h that 0 < τ < T and de�ne the fun
tion γ by:
γ(t) =







τ − t

τ
if 0 ≤ t ≤ τ,

0 if t > τ.
(6.8)Take a > 0 and a test fun
tion ψ ∈ C∞

0 (R; R+) su
h that,
ψ(x) = 1 for x ∈ Ba.Let y ∈ R be a Lebesgue point of u0 and we make use of inequality (2.18) with k = u0(y)and the test fun
tion φ(x, t) = ψ(x)γ(t)ξn(x− y) (this is possible sin
e φ is a permissible testfun
tion). Integrating the resulting inequality with respe
t to y over R yields:

T1(n, τ) + T2(n, τ) + T3(n, τ) + T4(n) ≥ 0, (6.9)with
T1(n, τ) = −1

τ

∫ τ

0

∫

R2

(u(x, t) − u0(y))+ψ(x)ξn(x− y) dxdydt, (6.10)
T2(n, τ) =

∫ τ

0

∫

R2

F+(u(x, t), u0(y))g(x, t)γ(t)(ψ(x)ξn(x− y))xdxdydt, (6.11)
T3(n, τ) = −

∫ τ

0

∫

R2

sgn+(u(x, t) − u0(y))f(u0(y))

gx(x, t)γ(t)ψ(x)ξn(x− y)dxdydt (6.12)and
T4(n) =

∫

R2

(u0(x) − u0(y))+ψ(x)ξn(x− y)dxdy. (6.13)34



Using the 
hange of variables: x = x
′ , y = x

′ − y
′

n in (6.10), and denoting again by (x, y) thenew variables (x
′

, y
′

) yields:
T1(n, τ) = −1

τ

∫ τ

0

∫

B1

∫

R

(

u(x, t) − u0
(

x− y

n

))+
ψ(x)ξ(y) dxdydt, (6.14)Using that,

(u− v)+ − (u− w)+ ≤ (w − v)+ ∀u, v,w ∈ R, (6.15)we infer that:
T1(n, τ) +

T ∗(τ)
︷ ︸︸ ︷

1

τ

∫ τ

0

∫

R

(u(x, t) − u0(x))+ψ(x)dxdt ≤

ψ∞

∫

Kψ

∫

B1

∣
∣
∣u0
(

x− y

n

)

− u0(x)
∣
∣
∣ ξ(y)dydx, (6.16)where Kψ is the support of ψ. Same upper-bound, independent of τ , 
ould be obtained for

T4(n). Furthermore, sin
e u0 ∈ L∞(R), thus integrable over Kψ, we use the Lebesgue di�eren-tiation Theorem to show that the right side of (6.16) tends to 0 when n be
omes large. Now,let ǫ > 0, ∃n0 su
h that
T1(n0, τ) + T ∗(τ) <

ǫ

4
and T4(n0) <

ǫ

4
, ∀τ > 0. (6.17)We also remark that the integrands of the right hand sides of (6.11) and (6.12) are boundedand hen
e, for this parti
ular n0 we 
an 
hoose some τ0 su
h that ∀ 0 < τ < τ0, we have:

T2(n0, τ) <
ǫ

4
and T3(n0, τ) <

ǫ

4
. (6.18)From (6.17), (6.18) and (6.9), we infer that,

0 < T ∗(τ) < ǫ, ∀0 < τ < τ0.Sin
e ψ(x) = 1 over Ba, (6.3) is proven. Arguing in the same way, we 
an prove (6.4). Theslight di�eren
e is using a similar inequality of (6.15) with (·)+ repla
ed with (·)−.Step 2: Proof of (6.5).It su�
es to prove (6.5) for any fun
tion ψ ∈ C∞
0 (QT ; R+). We may also assume, withoutloss of generality, that there is some c > 0 su
h that ψ(x, t) = 0 for t ∈ (0, c) ∪ (T − c, T ). For

n > 1
c , let ξn be the usual molli�er sequen
e in R and 
onsider the fun
tion φ(x, t, y, s) de�nedfor (x, t) ∈ QT and (y, s) ∈ QT by,

φ(x, t, y, s) = ψ

(
x+ y

2
,
t+ s

2

)

ξn(x− y)ξn(t− s).The fun
tion φ hen
e satis�es
φ(., ., y, s) ∈ C∞

0 (QT ; R+) and φ(x, t, ., .) ∈ C∞
0 (QT ; R+).35



Fix some (y, s) ∈ QT for whi
h the fun
tion v is well de�ned (this is valid almost everywhere).Sin
e u is an entropy sub-solution of (2.2), we 
onsider the relation (2.18) satis�ed by u with
k = v(y, s) and the test fun
tion φ(., ., y, s). Upon integrating this inequality with respe
t to
(y, s) over QT , we get:

∫

Q2
T

{
(u(x, t) − v(y, s))+φt(x, t, y, s) + F+(u(x, t), v(y, s))g(x, t)φx(x, t, y, s)

−sgn+(u(x, t) − v(y, s))f(v(y, s))gx(x, t)φ(x, t, y, s)
}
dxdtdyds ≥ 0. (6.19)Similar inequality 
ould be obtained sin
e v is an entropy super-solution of (2.2). We just swap

+, u and (x, t) with −, v and (y, s) respe
tively, hen
e:
∫

Q2
T

{
(v(y, s) − u(x, t))−φs(x, t, y, s) + F−(v(y, s), u(x, t))g(y, s)φy (x, t, y, s)

−sgn−(v(y, s) − u(x, t))f(u(x, t))gx(y, s)φ(x, t, y, s)
}
dxdtdyds ≥ 0. (6.20)Summing (6.19) and (6.20) and using the elementary identities:

x− = (−x)+ and sgn−(x) = −sgn+(−x), ∀x ∈ R,we get, for u = u(x, t) and v = v(y, s),
Z1 + Z2 + Z3 ≥ 0, (6.21)with:

Z1 =

∫

Q2
T

(u− v)+(φt + φs)(x, y, t, s)dxdtdyds, (6.22)
Z2 =

∫

Q2
T

F+(u, v)[g(x, t)φx(x, y, t, s) + g(y, s)φy(x, y, t, s)]dxdtdyds, (6.23)
Z3 =

∫

Q2
T

sgn+(u− v)[f(u)gx(y, s) − f(v)gx(x, t)]φ(x, y, t, s)dxdtdyds. (6.24)We now 
ompute the �rst partial derivatives of the fun
tion φ. For (x, t, y, s) ∈ QT ×QT , wehave:
φt(x, t, y, s) = ξn(x− y)

(
1

2
ψt

(
x+ y

2
,
t+ s

2

)

ξn(t− s)

+ψ

(
x+ y

2
,
t+ s

2

)

ξn
′

(t− s)

)

, (6.25)
φs(x, t, y, s) = ξn(x− y)

(
1

2
ψt

(
x+ y

2
,
t+ s

2

)

ξn(t− s)

−ψ
(
x+ y

2
,
t+ s

2

)

ξn
′

(t− s)

)

, (6.26)
φx(x, t, y, s) = ξn(t− s)

(
1

2
ψx

(
x+ y

2
,
t+ s

2

)

ξn(x− y)36



+ψ

(
x+ y

2
,
t+ s

2

)

ξn
′

(x− y)

)

, (6.27)
φy(x, t, y, s) = ξn(t− s)

(
1

2
ψx

(
x+ y

2
,
t+ s

2

)

ξn(x− y)

−ψ
(
x+ y

2
,
t+ s

2

)

ξn
′

(x− y)

)

. (6.28)Using these relations in (6.21) and performing the following 
hange of variables,
x

′

= (x+ y)/2, y
′

= n(x− y), t
′

= (t+ s)/2, s
′

= n(t− s);denote the new variables x′ , t′ , y′ , s′ by x, t, y, s and Q4 = QT ×B2
1 . Also, for the simpli
ityof expressions, denote

x+ = x+
y

2n
, t+ = t+

s

2n
, x− = x− y

2n
, t− = t− s

2n
.This altogether yields:

X1 + X2 + X3 + X4 ≥ 0, (6.29)with:
X1 =

∫

Q4

(u(x+, t+) − v(x−, t−))+ψt(x, t)ξ(y)ξ(s)dxdtdyds, (6.30)
X2 =

1

2

∫

Q4

F+(u(x+, t+), v(x−, t−))(g(x+, t+) + g(x−, t−))×

ψx(x, t)ξ(y)ξ(s)dxdtdyds,

(6.31)
X3 =

∫

Q4

F+(u(x+, t+), v(x−, t−))(g(x+, t+) − g(x−, t−))×

ψ(x, t)nξ
′

(y)ξ(s)dxdtdyds,

(6.32)
X4 =

∫

Q4

sgn+(u(x+, t+) − v(x−, t−))
[
f(u(x+, t+))gx(x

−, t−)−

f(v(x−, t−))gx(x
+, t+)

]
ψ(x, t)ξ(y)ξ(s)dxdtdyds.

(6.33)At this point, it is worth mentioning that we will frequently use the following Lemma from [23℄.Lemma 6.1 If Γ ∈ Lip(R) satis�es |Γ(u) − Γ(v)| ≤ C0|u− v|, then the fun
tion
H(u, v) = sgn+(u− v)(Γ(u) − Γ(v))satis�es |H(u, v) −H(u

′

, v
′

)| ≤ C0(|u− u
′ | + |v − v

′ | (see [22, Lemma 3℄).Consider now (6.30). Sin
e (u − v)+ = sgn+(u − v)(u − v), we make use of Lemma 6.1 toobtain: ∣
∣
∣
∣
X1 −

∫

QT

(u(x, t) − v(x, t))+ψt(x, t)dxdt

∣
∣
∣
∣
≤

{
∫

Kψ

∫

B2
1

|u(x+, t+) − u(x, t)|(ψt)∞ξ(y)ξ(s)dxdtdyds

+

∫

Kψ

∫

B2
1

|v(x−, t−) − v(x, t)|(ψt)∞ξ(y)ξ(s)dxdtdyds
}

,37



where, by the Lebesgue Di�erentiation/Dominated Theorems, the right hand side of this in-equality tends to 0 as n→ ∞, and hen
e:
X1 →

∫

QT

(u(x, t) − v(x, t))+ψt(x, t)dxdt as n→ ∞. (6.34)Let us now turn to (6.31); using the fa
t that g ∈ W 1,∞(QT ) and hen
e Lips
hitz 
ontinuousover the 
ompa
t Kψ, and the fa
t that F+(u, v) is Lips
hitz 
ontinuous in u and v (see Lemma6.1), we get:
∣
∣
∣
∣
X2 −

∫

QT

F+(u(x, t), v(x, t))g(x, t)ψx(x, t)dxdt

∣
∣
∣
∣
≤

g∞Mfψ
∞
x

{
∫

Kψ

∫

B2
1

|u(x+, t+) − u(x, t)|ξ(y)ξ(s)dxdtdyds

+

∫

Kψ

∫

B2
1

|v(x−, t−) − v(x, t)|ξ(y)ξ(s)
}

dxdtdyds

+
1

n
C((gx)

∞, (gt)
∞, (ψx)

∞,Mf , u
∞, v∞, T ),

(6.35)
and also, by the Lebesgue Di�erentiation/Dominated Theorems, the left hand side of thisinequality tends to 0 as n→ ∞, hen
e:

X2 →
∫

QT

F+(u(x, t), v(x, t))g(x, t)ψx(x, t)dxdt as n→ ∞. (6.36)We now study the two terms X n
3 and X n

4 . From the fa
t that g ∈ W 1,∞(Q̄T ), we remark thatfor a.e. (x, t, y, s) ∈ QT ×QT , we have:
g(x−, t−) − g(x+, t+) = gx(x

−, t−)(−y/n) + gt(x
−, t−)(−s/n) + o

(
1

n

)

.We also remark that the term gx(x
+, t+) in X n

4 
ould be repla
ed with gx(x−, t−), sin
e thisadds a term that approa
hes 0 as n be
omes large. This term will be omitted throughout whatfollows and we denote the new X n
4 by X̃ n

4 . From these two remarks, we rewrite X n
3 and X̃ n

4 toget:
X n

3 =

∫

Q4

sgn+(u(x+, t+) − v(x−, t−))(f(u(x+, t+)) − f(v(x−, t−)))

(ygx(x
−, t−) + sgt(x

−, t−))ψ(x, t)ξ
′

(y)ξ(s)dx dt dy ds+ L(n),

(6.37)where L(n) → 0 as n→ ∞, and
X̃ n

4 =

∫

Q4

sgn+(u(x+, t+) − v(x−, t−))(f(u(x+, t+)) − f(v(x−, t−)))

gx(x
−, t−)ψ(x, t)ξ(y)ξ(s)dx dt dy ds.

(6.38)
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The term L(n) will also be omitted for simpli�
ation and we denote the new X n
3 by X̃ n

3 . Let
X n

34 = X̃ n
3 + X̃ n

4 , hen
e:
X n

34 =

X 1n
34

︷ ︸︸ ︷∫

Q4

F+(u(x+, t+), v(x−, t−))gx(x
−, t−)ψ(x, t)(yξ(y)ξ(s))ydx dt dy ds

+

X 2n
34

︷ ︸︸ ︷∫

Q4

F+(u(x+, t+), v(x−, t−)))gt(x
−, t−)ψ(x, t)(sξ(y)ξ(s))ydx dt dy ds .

(6.39)
In X 1n

34 and X 2n
34 , the term ψ(x, t) 
ould be repla
ed with ψ(x−, t−), for this also adds a termgetting small when n → ∞. We keep the same notations for X 1n

34 and X 2n
34 . Sin
e yξ(y)ξ(s) isa 
ompa
tly supported smooth fun
tion in Q4, we have:

∫

Q4

F+(u(x−, t−), v(x−, t−))gx(x
−, t−)ψ(x−, t−)(yξ(y)ξ(s))ydx dt dy ds = 0. (6.40)Moreover, sin
e F+(u, v) is Lips
hitz 
ontinuous, we obtain:

∣
∣
∣
∣
X 1n

34 −
∫

Q4

F+(u(x−, t−), v(x−, t−))gx(x
−, t−)ψ(x−, t−)(yξ(y)ξ(s))ydx dt dy ds

∣
∣
∣
∣

≤Mf (gx)
∞ψ∞

∫

Kψ

∫

B2
1

|u(x+, t+) − u(x−, t−)|dx dt dy ds,
(6.41)where Kψ is the support of ψ. Therefore, by the Lebesgue Di�erentiation/Dominated Theo-rems, we dedu
e that the right hand side of (6.41) tends to 0 as n→ ∞, hen
e we have:

X 1n
34 → 0 as n→ ∞. (6.42)In a similar way we 
an show that

X 2n
34 → 0 as n→ ∞. (6.43)From (6.34), (6.36), (6.42) and (6.43), passing to the limit in (6.29) yields (6.5), whi
h 
on-
ludes the proof of step 2.Step 3: u(x, t) ≤ v(x, t) a.e. in QT .Let us �rst show that the fun
tion A(t) de�ned in (6.6) is non-in
reasing a.e. in (0,min(T, aω )).Take a > 0 and re
all that ω = g∞Mf ; let 0 < t1 < t2 < min(T, aω ), 0 < ǫ <

min(t1,min(T, aω − t2), and δ > 0. Consider the fun
tion φ ∈ C1
0 (R+, [0, 1]) su
h that

φ(x) = 1 ∀x ∈ [0, a], φ(x) = 0 ∀x ∈ [a+ δ,∞), and φ′

< 0. De�ne rǫ by:
rǫ(t) =







0 if 0 ≤ t ≤ t1 − ǫ

t− (t1 − ǫ)

ǫ
if t1 − ǫ ≤ t ≤ t1

1 if t1 ≤ t ≤ t2

(t2 + ǫ) − t

ǫ
if t2 ≤ t ≤ t2 + ǫ

0 if t2 + ǫ ≤ t ≤ ∞.

(6.44)
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One 
an take in (6.5) the permissible test fun
tion
ψ(x, t) = φ(|x| + ωt)rǫ(t).This yields:

E1(δ,ǫ)
︷ ︸︸ ︷

1

ǫ

∫ t1

t1−ǫ

∫

R

(u(x, t) − v(x, t))+φ(|x| + ωt)dxdt−

E2(δ,ǫ)
︷ ︸︸ ︷

1

ǫ

∫ t2+ǫ

t2

(u(x, t) − v(x, t))+φ(|x| + ωt)dxdt ≥ E(δ, ǫ),

(6.45)with
E(δ, ǫ) = −

∫ T

0

∫

R

[ω(u(x, t) − v(x, t))+ + sgn+((u(x, t) − v(x, t)))×

(f(u(x, t)) − f(v(x, t)))
x

|x|g(x, t)]φ
′

(|x| + ωt)rǫ(t)dxdt.

(6.46)We 
laim that E(δ, ǫ) ≥ 0. Indeed, sin
e φ′ ≤ 0 and rǫ ≥ 0, it su�
es to show that
ω(u(x, t) − v(x, t))+ + sgn+((u(x, t) − v(x, t)))×
(f(u(x, t)) − f(v(x, t)))

x

|x|g(x, t) ≥ 0 a.e. in QT .
(6.47)Two 
ases 
an be 
onsidered, either u(x, t) ≤ v(x, t); in this 
ase it is easy to verify (6.47), or

u(x, t) > v(x, t); in this 
ase we use, from the de�nition of ω, the fa
t that
(f(u(x, t)) − f(v(x, t)))

x

|x|g(x, t) ≥ −ω(u(x, t) − v(x, t)),hen
e our 
laim holds. Relation (6.45) now holds with E(δ, ǫ) repla
ed with 0. We regard theintegrand term of E1(δ, ǫ) in (6.45) and we noti
e that for t1 − ǫ < t < t1, we have:
(u(x, t) − v(x, t))+φ(|x| + ωt) = (u(x, t) − v(x, t))+φ(|x| + ωt)IAδ ,where IA

′

δ
is the 
hara
teristi
 fun
tion of the set Aδ de�ned by:

A
′

δ = {(x, t); t1 − ǫ < t < t1, 0 < |x| + ωt < a+ δ}.Remark that the set A′

δ shrinks, as δ be
omes small, to
A

′

= {(x, t); t1 − ǫ < t < t1, 0 < |x| + ωt ≤ a}with φ(|x| + ωt) ≡ 1 over A. It is easy now to see that as δ → 0

(u(x, t) − v(x, t))+φ(|x| + ωt)I
A

′

δ
→ (u(x, t) − v(x, t))+IA a.e. in QT .However, sin
e (u(x, t)−v(x, t))+ ∈ L∞(QT ), we use the Lebesgue Dominated Theorem to get:

E1(δ, ǫ) →
1

ǫ

∫ t1

t1−ǫ

∫

Ba−ωt

(u(x, t) − v(x, t))+dxdt as δ → 0, (6.48)40



in other words,
E1(δ, ǫ) →

1

ǫ

∫ t1

t1−ǫ
A(t)dt as δ → 0, (6.49)with A(t) given by (6.6). Similar arguments shows that:

E2(δ, ǫ) →
1

ǫ

∫ t2−ǫ

t2

A(t)dt as δ → 0. (6.50)Note that A ∈ L1(0, T ); let t1 and t2 be Lebesgue points of the fun
tion A su
h that 0 < t1 <
t2 < min(T, aω ), one 
an easily dedu
e from (6.49), (6.49) and (6.45) letting ǫ tends to 0 that

A(t1) ≥ A(t2),hen
e A is a.e. non-in
reasing. We use this property enjoyed by A to get the 
omparisonprin
iple. In fa
t, using the elementary identities:
(u− v)+ ≤ (u− w)+ + (v − w)−

(u− v)− ≤ (u− w)− + (v − w)+

∀ u, v,w ∈ R, we 
al
ulate for a.e. (x, t) ∈ QT :

(u(x, t) − v(x, t))+ ≤ (u(x, t) − u0(x))+ + (v(x, t) − v0(x))− + (u0(x) − v0(x))+.Sin
e u0(x) ≤ v0(x) a.e. in R, we get for a.e. (x, t) ∈ QT :
(u(x, t) − v(x, t))+ ≤ (u(x, t) − u0(x))+ + (v(x, t) − v0(x))−. (6.51)Using (6.51), for τ ∈ (0, T ), we 
al
ulate:

1

τ

∫ τ

0
A(t)dt ≤ 1

τ

∫ τ

0

∫

Ba

(u(x, t) − v(x, t))+dxdt ≤

1

τ

∫ τ

0

∫

Ba

(u(x, t) − u0(x))+dxdt +
1

τ

∫ τ

0

∫

Ba

(v(x, t) − v0(x))−dxdt.

(6.52)From (6.3), (6.4) and the passage to the limit as τ → 0 in (6.52), we dedu
e that,
1

τ

∫ τ

0
A(t)dt → 0 as τ → 0. (6.53)Thus, sin
e A is a.e. non-in
reasing on (0, τ), and A(t) ≥ 0 for a.e. t ∈ (0,min(T, aω )), onethen has

A(t) = 0 for a.e. t ∈
(

0,min
(

T,
a

ω

))

.Sin
e a is arbitrary, we dedu
e that,
u(x, t) ≤ v(x, t) a.e. in QT .
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Remark 6.2 In [14℄, the entropy pro
ess solution µ(x, t, α) was proved to be independent of αfor a divergen
e-free fun
tion g ∈ C1(Q̄T ). However, for the 
ase of a general non divergen
e-free fun
tion g ∈ W 1,∞(Q̄T ), same result 
an be shown by adapting the same proof as in [14,Theorem 3℄ taking into a

ount the slight modi�
ations that 
ould be dedu
ed from the proof ofTheorem (2.16). More pre
isely, the treatment of the two terms X n
3 and X n

4 in Step 2.A
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