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STATISTICS FOR LOW-LYING ZEROS OF SYMMETRIC
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POWER L-FUNCTIONS IN THE LEVEL ASPECT

GUILLAUME RICOTTA AND EMMANUEL ROYER

ABsTrRACT. We study one-level and two-level densities for low lying
zeros of symmetric power L-functions in the level aspect. It allows us to
completely determine the symmetry types of some families of symmetric
power L-functions with prescribed sign of functional equation. We also
compute the moments of one-level density and exhibit mock-Gaussian
behavior discovered by Hughes & Rudnick.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

1.1. Description of the families of L-functions studied. The purpose
of this paper is to compute various statistics associated to low-lying zeros
of several families of symmetric power L-functions in the level aspect. First
of all, we give a short description of these families. To any primitive holo-
morphic cusp form f of prime level ¢ and even weight! £ > 2 (see § 2.1
for the automorphic background) say f € H}(q), one can associate its r-th
symmetric power L-function denoted by L(Sym” f,s) for any integer r > 1.
It is given by an explicit absolutely convergent Euler product of degree r 41
on Res > 1 (see § 2.1.4). The completed L-function is defined by

A(Sym” f,5) = (¢")*/? Loo(Sym” f,s)L(Sym" f,s)

where Lo (Sym” f, s) is a product of 41 explicit ['r-factors (see § 2.1.4) and
q" is the arithmetic conductor. We will need some control on the analytic
behaviour of this function. Unfortunately, such information is not currently
known in all generality. We sum up our main assumption in the following
statement.

Hypothesis Nice(r, f)— The function A (Sym” f, s) is a completed L-function
in the sense that it satisfies the following nice analytic properties:

e it can be extended to an holomorphic function of order 1 on C,
e it satisfies a functional equation of the shape

A(Sym” f,s) = = (Sym” f) A(Sym” f,1 - s)

"n this paper, the weight & is a fized even integer and the level ¢ goes to infinity among
the prime numbers.
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where the sign e (Sym” f) = +1 of the functional equation is given by

£ (Sym” f) = {—H if v is even, (1.1)

ef(q) x e(k,7) otherwise

with
i if r=1 (mod 8),
e(k,r) = (Y et ) if =3 (mod 8),
o —i% if r=5 (mod 8),
)

+1 4fr =7 (mod 8
and £7(q) = 1 is defined in (2.15) and only depends on f and q.

Remark 1- Hypothesis Nice(r, f) is known for » = 1 (E. Hecke [10-12]), r = 2
thanks to the work of S. Gelbart and H. Jacquet [8] and r = 3,4 from the
works of H. Kim and F. Shahidi [20-22].

We aim at studying the low-lying zeros for the family of L-functions given

by
Fri=|J {LGSym" f,s),f € H:(q)}
q prime

for any integer » > 1. Note that when r is even, the sign of the functional
equation of any L(Sym” f, s) is constant of value +1 but when r is odd, this
is definitely not the case. As a consequence, it is very natural to understand
the low-lying zeros for the subfamilies given by

Fo= |J {LSym" f.5), f € Hi(g).e(Sym" f) =}

q prime

for any odd integer r > 1 and for ¢ = £1.

1.2. Symmetry type of these families. One of the purpose of this work
is to determine the symmetry type of the families 7, and F; for ¢ = £1 and
for any integer r > 1 (see § 4.1 for the background on symmetry types). The
following theorem is a quick summary of the symmetry types obtained.

Theorem A— Let v > 1 be any integer and ¢ = +1. We assume that hypoth-
esis Nice(r, ) holds for any prime number q and any primitive holomorphic
cusp form of level ¢ and even weight k > 2. The symmetry group G(F,) of
Fr s given by

Sp if r is even,

0] otherwise.

G(]:r) = {

If r is odd then the symmetry group G(F:) of F: is given by

s s

)= {SO(even) if e = +1,

G(F;
( SO(odd)  otherwise.

s

Remark 2— 1t follows in particular from the value of ¢ (Sym" f) given in (1.1)
that, if  is even, then Sym” f has not the same symmetry type than f and,
if r is odd, then f and Sym” f have the same symmetry type if and only if

r=1 (mod8) and k=0 (mod 4)
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or
r=5 (mod8) and k=2 (mod 4)

or
r=7 (mod 8).

Remark 3— Note that we do not assume any Generalised Riemann Hypothesis
for the symmetric power L-functions.

In order to prove theorem A, we compute either the (signed) asymptotic
expectation of the one-level density or the (signed) asymptotic expectation of
the two-level density. The results are given in the next two sections in which
e = +1, v will always be a positive real number, ®, ®; and <1>2 will always
stand for even Schwartz functions whose Fourier transforms (I> (I>1 and <I>2 are
compactly supported in [—v,+v] and f will always be a primitive holomor-
phic cusp form of prime level ¢ and even weight x > 2 for which hypothesis
Nice(r, f) holds. We refer to § 2.2 for the probabilistic background.

1.2.1. (Signed) asymptotic expectation of the one-level density. The one-level
density (relatively to ®) of Sym” f is defined by

Dl = ¥ o (B (rep- g iam))

A(Sym" f,p)=0

where the sum is over the non-trivial zeros p of L(Sym" f, s) with multiplic-
ities. The asymptotic expectation of the one-level density is by definition

q%)lrrlrrlne[r] Z wq(f)D1,41®;7](f)

g—+oo  fEH:(q)
where wg(f) is the harmonic weight defined in (2.7) and similarly the signed
asymptotic expectation of the one-level density is by definition

lim 2[r] > wy(f)D1,g[®;7](f)

q prime
q—+o0 feH(q)
e(Sym" f)=e

when r is odd.

Theorem B— Let v > 1 be any integer and ¢ = +1. We assume that hypoth-
esis Nice(r, f) holds for any prime number q and any primitive holomorphic

cusp form of level g and even weight k > 2 and also that 0 is admissible (see
hypothesis Ha(0) page 17). Let

1 2
max\T, R, =(l-—Fs )] -
Y max (1 K, 0) ( 2(k — 29)> r2

If v < V1 max(1, K, 0) then the asymptotic expectation of the one-level density
18
R (_1)r+1

B(0) + ——5—2(0).

Let

3
V§ max (75 K, 0) := inf (I/l,max(T, K, 0), 77“(7“ n 2)> .
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If r is odd and v < Vimax(r, k,0) then the signed asymptotic expectation of
the one-level density is

(_1)r+1
2

Remark 4— The first part of Theorem B reveals that the symmetry type of
Fr is

®(0) + ®(0).

Sp if r is even,
G(F) =40 it =1,
SO(even) or O or SO(odd) if r > 3 is odd.

We cannot decide between the three orthogonal groups when r > 3 is odd
since in this case Vi max(r,K,0) < 1 but the computation of the two-level
densities will enable us to decide. Note also that we go beyond the support
[—1,1] when r = 1 as Iwaniec, Luo & Sarnak [18] (Theorem 1.1) but without
doing any subtle arithmetic analysis of Kloosterman sums. Also, A. Giiloglu
in [9, Theorem 1.2| established some density result for the same family of
L-functions but when the weight s goes to infinity and the level ¢ is fixed.
It turns out that we recover the same constraint on v when r is even but we
get a better result when r is odd. This can be explained by the fact that the
analytic conductor of any L(Sym" f,s) with f in H}(q) which is of size

. K" if 7 is even
q" x . .
k"1 otherwise

is slightly larger in his case than in ours when r is odd.

Remark 5— The second part of Theorem B reveals that if 7 is odd and ¢ = +1
then the symmetry type of F: is

G(F;) = SO(even) or O or SO(odd).

Here v is always strictly smaller than one and we are not able to recover the
result of [18, Theorem 1.1] without doing some arithmetic on Kloosterman
sums.

1.2.2. Sketch of the proof. We give here a sketch of the proof of the first part
of Theorem B namely we briefly explain how to determine the asymptotic
expectation of the one-level density assuming that hypothesis Nice(r, f) holds
for any prime number ¢ and any primitive holomorphic cusp form of level
g and even weight x > 2 and also that 6 is admissible. The first step
consists in transforming the sum over the zeros of A(Sym” f, s) which occurs
in Dy 4[®;7](f) into a sum over primes. This is done via some Riemann’s
explicit formula for symmetric power L-functions stated in Proposition 3.8
which leads to

. _1\r+1 r—1
Drgf#:r)() = B0+ S 00+ P11+ 3 (—1)" P2 () o)
m=0
where
1 o . _L r logp/\ logp
Fal®irl(f): log(qr)z%;)\f ) VP v <10g(q7")>' 2

piq
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The terms P2[®; r,m](f) are also sums over primes which look like Py [®; r](f)
but can be forgotten in first approximation since they can be thought as sums
over squares of primes which are easier to deal with. The second step con-
sists in averaging over all the f in H(q). While doing this, the asymptotic
expectation of the one-level density

. (_1)r+1

B(0) + ~——®(0)

naturally appears and we need to show that
2 e (" log p % log p
_log (qr) Z Z w‘l(f) f(p ) \/ﬁ 10g (qr)

pEP \fEH(q)
piq

is a remainder term provided that the support v of ® is small enough. We
apply some suitable trace formula given in Proposition 2.2 in order to express
the previous average of Hecke eigenvalues. We cannot directly apply Peter-
son’s trace formula since there may be some old forms of level ¢ especially
when the weight k is large. Nevertheless, these old forms are automatically
of level 1 since ¢ is prime and their contribution remains negligible. So, we
have to bound

4t ZZ 1p c) (47‘('\/—) logp(b( log p )
_1 r
10g pE'P 1 VP log (¢")
plg dle

where S(1,p";¢) is a Kloosterman sum and which can be written as

104gm ZZ a 1mcg(mc)

c>1 m>1
gle

m 7= 1y gr2 (m)irml/(%) X

logm 1 if m = p" for some prime p # q,
0 otherwise

and

g(msc) i= Ju <@> v <T11%ZZT)> '

We apply the large sieve inequality for Kloosterman sums given in proposi-
tion 3.4. Tt entails that if v < 2/r? then such quantity is bounded by

<. q( 5t —0)(r?v— 2)+€+q( €)r2u—(nf%f2€)+€.

This is an admissible error term if v < V| max(7, K, 0). We focus on the fact
that we did any arithmetic analysis of Kloosterman sums to get this result.
Of course, the power of spectral theory of automorphic forms is hidden in
the large sieve inequalities for Kloosterman sums.
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1.2.3. (Signed) asymptotic expectation of the two-level density. The two-level
density of Sym” f (relatively to ®; and ®9) is defined by

Dog[®1,@0;7](f) = Y, </3§5i)> 0 (/7%?) :
(1,52)EE(fr)?
n#F+je
For more precision on the numbering of the zeros, we refer to § 3.2. The
asymptotic expectation of the two-level density is by definition

lim [r] Z wq(f)D2,q[®1, Po;7](f)

(245 feHi()
and similarly the signed asymptotic expectation of the two-level density is by
definition

lim 2[r] > wy(f)Daogl®1, Pa;r](f)

q prime
q—+00 feH(q)
e(Sym” f)=e

when r is odd and € = +1.

Theorem C— Let r > 1 be any integer and e = +£1. We assume that hypoth-
esis Nice(r, ) holds for any prime number q and any primitive holomorphic
cusp form of level ¢ and even weight k > 2. If v < 1/r? then the asymptotic
expectation of the two-level density is

(_1)r+1
2

(_1)r+1
2

10+ 2.0)] [ 52000+ 2,00

—~ — — 1
R
If ris odd and v < 1/(2r(r + 2)) then the signed asymptotic expectation of
the two-level density is

F10) + 5010 [F:00) + 5220)

2 /R [l (1) B3 () s — 25,85 (0) — By (0)(0)
+ 1{_1} (E)(I)l (O)CI)Q(O).

Remark 6— We have just seen that the computation of the one-level density
already reveals that the symmetry type of F,. is Sp when r is even. The
asymptotic expectation of the two-level density also coincides with the one
of Sp (see [19, Theorem A.D.2.2] or [26, Theorem 3.3]). When r > 3 is
odd, the first part of Theorem C together with a result of Katz & Sarnak
(see [19, Theorem A.D.2.2| or [26, Theorem 3.2]) imply that the symmetry
type of F, is O.

Remark 7— The second part of Theorem C and a result of Katz & Sarnak
(see [19, Theorem A.D.2.2| or [26, Theorem 3.2|) imply that the symmetry
type of F: is as in Theorem A for any odd integer r > 1 and € = £1.
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In order to prove Theorem C, we need to determine the asymptotic vari-
ance of the one-level density which is defined by
2

lim [r] Y wo(f) | Drgl®irl(f) = D we(9)Dig[®:7](9)

q prime
g—+oo  fEH(q) geH(q)

and the signed asymptotic variance of the one-level density which is similarly
defined by

2

lim 2fr] Y wo(f) | Dugl®ir)(f) =20 Y we(9)Dig[®57](9)

q prime
q—+o00 feEH:(q) gEH: (q)
e(Sym" f)=e e(Sym” g)=¢

when 7 is odd and € = +1.

Theorem D— Let r > 1 be any integer and ¢ = +1. We assume that hypoth-
esis Nice(r, f) holds for any prime number q and any primitive holomorphic
cusp form of level ¢ and even weight k > 2. If v < 1/r? then the asymptotic
variance of the one-level density is

2 / |u|®? (u) du.
R

If ris odd and v < 1/(2r(r + 2)) then the signed asymptotic variance of the
one-level density is

2 / |u|®?(u) du.
R

1.3. Asymptotic moments of the one-level density. Last but not least,
we compute the asymptotic m-th moment of the one-level density which is
defined by

m

lim [r] Z we(f) | D1gl®;r](f) - Z wq(9)D1,4[®;7](9)

q prime
g—+oo  fEH:(q) 9€H(q)

for any integer m > 1.

Theorem E— Let v > 1 be any integer and € = £1. We assume that hypoth-
esis Nice(r, f) holds for any prime number q and any primitive holomorphic
cusp form of level g and even weight k > 2. If mv < 4 /(r(r +2)) then the
asymptotic m-th moment of the one-level density is

0 if m 1s odd,
2fR|u|</I\>2(u) du x ﬁ('m)' otherwise.
)
Remark 8— This result is another evidence for mock-Gaussian behaviour (see
[13-15] for instance).

Remark 9— We compute the first asymptotic moments of the one-level density.
These computations allow to compute the asymptotic expectation of the
first level-densities [13, §1.2]. We will use the specific case of the asymptotic
expectation of the two-level density and the asymptotic variance in § 5.1.



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 9

Let us sketch the proof of Theorem E by explaining the origin of the main
term. We have to evaluate

=, (7) (5 ey (R o) s
0<ast

where P, [®;7] has been defined in (1.2),

T

2Py _ 2 r j 2] 10gp 2logp
PiBirI) = =gz 2 M <1og<qr>)

peEP
plq

Rlg)=0 <10i§q> '

The main term comes from the contribution ¢ = 0 in the sum (1.3). Using a
combinatorial lemma, we rewrite this main contribution as

e > w (T )

s=1 geP(m,s) i1,--,is
distinct

and R(q) satisfies

where P(m, s) is the set of surjective functions

o:{1,...,a} - {1,...,s}

such that for any j € {1,...,s}, either o(j) = 1 or there exists k < j such
that o(j) = o(k) + 1 and for any j € {1,...,s}

@ = #o ({5}
(ﬁi)i>1 stands for the increasing sequence of prime numbers different from q.

(o)
Linearising each Ay (ﬁ;’u)w“ in terms of Ay < :) with j,, runs over integers
(o )]

and using a trace formula to prove that the only o € P(m,s)
leadlng to a principal contribution satisfy w§0) =2 for any j € {1,...,s},

we have to estimate

Z Z Z H log pzu < log Di, ) )
log c€P(m,s) i1yeenyis u=1 10g (qr)
Vjie{l,...;s}, w]a) 5 distinct

n [0, rooy

This sum vanishes if m is odd since
S
(o) _
Z wy =m
j=1

and it remains to prove the formula for m even. In this case, and since we
already computed the moment for m = 2, we deduce from (1.4) that the
main contribution is

ED(PY[®;7]2) x # {a € P(m,m/2): w") =2 (v]’)}
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and we conclude by computing

m!

# {0 € P(m,m/2): w](.o) =2 (Vj)} = W(m)'
2!

Proving that the other terms lead to error terms is done by implementing
similar ideas, but requires — especially for the double products (namely terms
implying both qu and qu) — much more combinatorial technicalities.

1.4. Organisation of the paper. Section 2 contains the automorphic and
probabilistic background which is needed to be able to read this paper.
In particular, we give here the accurate definition of symmetric power L-
functions and the properties of Chebyshev polynomials useful in section 6.
In section 3, we describe the main technical ingredients of this work namely
large sieve inequalities for Kloosterman sums and Riemann’s explicit for-
mula for symmetric power L-functions. In section 4, some standard facts
about symmetry groups are given and the computation of the (signed) as-
ymptotic expectation of the one-level density is done. The computations
of the (signed) asymptotic expectation, covariance and variance of the two-
level density are done in section 5 whereas the computation of the asymptotic
moments of the one-level density is provided in section 6. Some well-known
facts about Kloosterman sums are recalled in appendix A.

Notation— We write P for the set of prime numbers and the main parameter
wn this paper is a prime number q, whose name is the level, which goes to
infinity among P. Thus, if f and g are some C-valued functions of the real
variable then the notations f(q) <a g(q) or f(q) = Oa(g(q)) mean that
|f(q)| is smaller than a "constant” which only depends on A times g(q) at
least for q a large enough prime number and similarly, f(q) = o(1) means
that f(q) — 0 as q goes to infinity among the prime numbers. We will denote
by € an absolute positive constant whose definition may vary from one line
to the next one. The characteristic function of a set S will be denoted 1g.

2. AUTOMORPHIC AND PROBABILISTIC BACKGROUND

2.1. Automorphic background.

2.1.1. Qwerview of holomorphic cusp forms. In this section, we recall general
facts about holomorphic cusp forms. A reference is [16].

Generalities — We write I'y(q) for the congruence subgroup of level ¢ which
acts on the upper-half plane H. A holomorphic function f: H +— C which
satisfies

a b az+b .
v <c d) €Io(q),vzeH, f <cz n d> = (cz+d)" f(2)
and vanishes at the cusps of Iy(q) is a holomorphic cusp form of level g,
even weight x > 2. We denote by Sk(q) this space of holomorphic cusp
forms which is equipped with the Peterson inner product
. ——dzdy
(1, f2)q 3:/ y" [1(2) f2(2) 2
I

(g)\H
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The Fourier expansion at the cusp oo of any such holomorphic cusp form f
is given by

VeeH, f(z)= wrn)ntV e(nz)

n>1

where e(z) := exp (2imz) for any complex number z. The Hecke operators
act on S, (q) by

7(s) Z > f<az+b>

ad=t 0<b<d
(a q)=1

for any z € H. If f is an eigenvector of Ty, we write A;(¢) the corresponding
eigenvalue. We can prove that Ty is hermitian if £ > 1 is any integer coprime
with ¢ and that

Ty 0Ty, = Z Tyy0y)a2 (2.1)
d|(€1,L2)
(d,q)=1
for any integers £1, ¢ > 1. By Atkin & Lehner theory [1], we get a splitting
of S,(q) into S°(q) & S2(g) where

Su(q) := Vecte {f(g2), f € Sx(1)} U Sk(1),
S2(q) = (S2(q)) "¢

where "o" stands for "old" and "n" for "new". Note that S2(¢q) = {0} if
Kk < 12 or kK = 14. These two spaces are Ty-invariant for any integer ¢ > 1
coprime with ¢. A primitive cusp form f € S%(q) is an eigenfunction of any
operator Ty for any integer ¢ > 1 coprime with ¢ which is new and arith-
metically normalised namely ¢¢(1) = 1. Such an element f is automatically
an eigenfunction of the other Hecke operators and satisfies ¢¢(¢) = A¢(¢) for
any integer £ > 1. Moreover, if p is a prime number, define a¢(p), B¢(p) as
the complex roots of the quadratic equation

—Af(P)X +e4(p) =0 (2.2)

where ¢, denotes the trivial Dirichlet character of modulus ¢g. Then it follows
from the work of Eichler, Shimura, Igusa and Deligne that

lay ()], 18 (p) < 1

for any prime number p and so
V21, (0] < T(0). (2.3)

The set of primitive cusp forms is denoted by H(q). It is an orthogonal
basis of S%(q). Let f be a holomorphic cusp form with Hecke eigenvalues
(Ar(2)) (t.g=1- The composition property (2.1) entails that for any integer
1 > 1 and for any integer ¢5 > 1 coprime with ¢ the following multiplicative
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relations hold:

rOAF(l2) = Yty (s [dP), (2.4)
d|(€1,£2)
(d,q)=1
Gp(laila) = Y pld)y (6/d) Ap (fa/d) (2.5)
d|(€1,62)
(d,q)=1
and these relations hold for any integers ¢1,¢5 > 1 if f is primitive. The
adjointness relation is

)\f(@) = )\f(@), wf(E) = 1/Jf(€) (2.6)
for any integer ¢ > 1 coprime with ¢ and this remains true for any integer
¢ > 1if f is primitive.

Trace formulas — We need two definitions. The harmonic weight associated
to any f in Sk(q) is defined by

I'(k—1)
@, g

For any natural integer m and n, the A,-symbol is given by

; 47/
Aq(m, n) = 6m7n + 27TZH Z S(m;n7 C) Jnfl ( T cmn> (28)

cz1
qle

we(f) == (2.7)

where S(m,n;c) is a Kloosterman sum defined in appendix A.3 and J,,_; is
a Bessel function of first kind defined in appendix A.2.The following propo-
sition is Peterson’s trace formula.

Proposition 2.1— If H,(q) is any orthogonal basis of S, (q) then
> wgopm)gp(n) = Ag(m,n) (2.9)

fEHK(q)

for any integers m and n.

H. Iwaniec, W. Luo & P. Sarnak proved in [18] a useful variation of Pe-
terson’s trace formula which is an average over only primitive cusp forms.
This is more convenient when there are some old forms which is the case for
instance when the weight x is large. Let v be the arithmetic function defined
by

vn) = n [ (1 +1/p)
pln
for any integer n > 1.

Proposition 2.2 (H. lwaniec, W. Luo & P. Sarnak (2001))- If (n,q¢?) | ¢ and
q1m then

T (I( ))\f( ))\f( ) CI( ) ) qy((n’ q)) et /¢ 1 ( l 9 )
(2.10)
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Remark 2.3— The first term in (2.10) is exactly the term which appears in
(2.9) whereas the second term in (2.10) will be usually very small as an old
form comes from a form of level 1! Thus, everything works in practice as if
there were no old forms in Sk (q).

2.1.2. Chebyshev polynomials and Hecke eigenvalues. Let p # ¢ a prime
number and f € H}(q). The multiplicativity relation (2.4) leads to

1
T tT’ — .
2 M) 1— X\ (p)t+12

>0
It follows that
Ar(p") = Xi (Ar(p) (2.11)
where the polynomials X, are defined by their generating series
1
X (o)t = ——.
é () 1 —xt + ¢
They are also defined by
sin ((r + 1)0)
sin(9)
These polynomials are known as the Chebyshev polynomials of second kind.

Each X, has degree r, is even if r is even and odd otherwise. The family
{X;}r>0 is a basis for Q[X], orthonormal with respect to the inner product

2 XT
(P, Q)sr = %/2 P()Q()/1 - ;dx.

In particular, for any integer w > 0 we have

X, (2cos0) =

rw

X2 =3 (@, )X; (2.12)
=0

with

2 [T sin® ((r + 1)8) sin ((j + 1)8)
/0 9. (2.13)

IR) ) = XwaX = _
z(w,r,j) = (X7, Xj)st - 0= 1(0)
The following relations are useful in this paper
1 if j =0 and w is even,
z(w,r,j) =< 0 if jis odd and 7 is even, (2.14)
0 ifj=0,w=1andr > 1.

2.1.3. Owerview of L-functions associated to primitive cusp forms. Let f in

H}(q). We define

L) =Y A ] (1—%@) (“ﬁﬁT@)

n>1 peEP

which is an absolutely convergent and non-vanishing Dirichlet series and
Euler product on Res > 1 and also

Loo(f;8) :=Tr (s +(k—1)/2)Tr (s + (k +1)/2)
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where T'r(s) := 7~%/2T (s/2) as usual. The function

A(f,5) = 0*/*Loo(f,5)L(f. 5)
is a completed L-function in the sense that it satisfies the following nice
analytic properties:
e the function A(f,s) can be extended to an holomorphic function of
order 1 on C,
e the function A(f,s) satisfies a functional equation of the shape

A(f7 3) = Z‘Hfff(q)A(f? 1- S)
where

e4(a) = —Varp(a) = %1, (2.15)

2.1.4. Owverview of symmetric power L-functions. Let f in H}(q). For any
natural integer r > 1, the symmetric r-th power associated to f is given by
the following Euler product of degree r + 1

L(Sym" f,s) := H L,(Sym" f,s)
peEP
where .
, 4 o
ar(p)Br(p)
L,(Sym" f,s) := H (1 - %
i=0
for any prime number p. Let us remark that the local factors of this Euler
product may be written as

bt 10 =TT 1422

S
i=0 p
for any prime number p # ¢ and

Ar(@)" Ar(q")

Lg(Sym" f,s) =1— fqis =1- fqis

as af(p) + Br(p) = A\¢(p) and ay(p)Br(p) = eq(p) for any prime number p
according to (2.2). On Re s > 1, this Euler product is absolutely convergent
and non-vanishing. We also defines [4, (3.16) and (3.17)] a local factor at co

which is given by a product of r + 1 Gamma factors namely
Loo(Sym” f,s) := H Ir(s+ 2a+1)(k—1)/2)Tr(s+ 14+ (2a +1)(k — 1)/2)
0<a<(r—1)/2
if r is odd and
Loo(Sym” f,s) := T'r(S+1s,r) H Tr(s+alk—1)Tr(s+1+a(k—1))
1<a<r/2
if r is even where

_J1 ifr(k—1)/2is odd,
Hrr = 0 otherwise.

All the local data appearing in these local factors are encapsulated in the
following completed L-function

A(Sym” £, ) == (¢")*/? Loo(Sym” f, s)L(Sym" f, s).
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Here, ¢" is called the arithmetic conductor of A(Sym” f,s) and somehow
measures the size of this function. We will need some control on the an-
alytic behaviour of this function. Unfortunately, such information is not
currently known in all generality. Our main assumption is given in hypothe-
sis Nice(r, f) page 2. Indeed, much more is expected to hold as it is discussed
in details in [4] namely the following assumption is strongly believed to be
true and lies in the spirit of Langlands program.

Hypothesis Sym" (f)— There exists an automorphic cuspidal self-dual repre-
sentation, denoted by Sym” 7wy = ®;)€’PU{00} Sym" s ,, of GLr11 (Ag) whose
local factors L (Sym" 7y ,,s) agree with the local factors L, (Sym" f,s) for

any p in P U {oo}.

Note that the local factors and the arithmetic conductor in the definition
of A (Sym” f,s) and also the sign of its functional equation which all appear
without any explanations so far come from the explicit computations which
have been done wvia the local Langlands correspondence by J. Cogdell and
P. Michel in [4]. Obviously, hypothesis Nice(r, f) is a weak consequence of
hypothesis Sym”(f). For instance, the cuspidality condition in hypothesis
Sym”(f) entails the fact that A (Sym” f,s) is of order 1 which is crucial for
us to state a suitable explicit formula. As we will not exploit the power of
automorphic theory in this paper, hypothesis Nice(r, f) is enough for our
purpose. In addition, it may happen that hypothesis Nice(r, f) is known
whereas hypothesis Sym” f is not. Let us overview what has been done so
far. For any f in H}(q), hypothesis Sym” f is known for » = 1 (E. Hecke),
r = 2 thanks to the work of S. Gelbart and H. Jacquet [8] and r = 3,4 from
the works of H. Kim and F. Shahidi [20-22].

2.2. Probabilistic background. The set H}(¢) can be seen as a probabil-
ity space if

e the measurable sets are all its subsets,

e the harmonic probability measure is defined by

h
)= 3= S ()
feEA feA
for any subset A of H(q).

Indeed, there is a slight abuse here as we only know that

lim p! (H:(q)) =1 2.16

lim g (H(q)) (2.16)

g—+o0

(see remark 3.12) which means that ,ug is an “asymptotic” probability mea-

sure. If X, is a measurable complex-valued function on H};(q) then it is very
natural to compute its expectation defined by

B ()= S X,(f),
feH:(q)

its wariance defined by
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and its m-th moments given by
m
Mf},m (Xq) = Ef} <<Xq - Ef} (Xq)> )

for any integer m > 1. If X := (X¢) p is a sequence of such measurable
complex-valued functions then we may legitimely wonder if the associated
complex sequences

E&) o (i) . (M. (X))

converge as ¢ goes to infinity among the primes. If yes, the following general
notations will be used for their limits

Ex (X), VL (X), Mg, (X)

qeEP

for any natural integer m. In addition, these potential limits are called
asymptotic expectation, asymptotic variance and asymptotic m-th moments
of X for any natural integer m > 1.

For the end of this section, we assume that r is odd. We may remark
that the sign of the functional equations of any L(Sym” f,s) when ¢ goes to
infinity among the prime numbers and f ranges over H}(q) is not constant
as it depends on €¢(q). Let

Hi(q) == {f € Hi(q),e(Sym" f) = ¢}

where ¢ = £1. If f € H'(q), then Sym” f is said to be even whereas it is
said to be odd if f € H_'(q). Tt is well-known that

liy s (F € Hila): 2rla) =<}) = 5.
q—+oo

Since e(Sym” f) is g4(f) up to a sign depending only on  and r (by hypoth-
esis Nice(r, f)), it follows that

1
li h(HE(q) = =. 2.17
qlerlr; 1q (Hi(q)) = 5 (2.17)
g—+oo

For X, as previous, we can compute its signed expectation defined by

B (X) =2 S X,(),

feH:(q)

its signed variance defined by
2
Vie (Xy) = Epe <(Xq — Ebe (Xq)> )
and its signed m-th moments given by
M, (X,) = Ebe (X, — Ebe (X)) ")

for any natural integer m > 1. In case of existence, we write B (X)), VA (X)
and M};gfm(X ) for the limits which are called signed asymptotic expectation,
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signed asymptotic variance and signed asymptotic moments. The signed
expectation and the expectation are linked through the formula

h 14¢exe(Sym” f
B (X) =2 Y B ) )
et (q)

S ENX,) —ex (a3 Ap(@) X (f): (2.18)

feH(q)

3. MAIN TECHNICAT, INGREDIENTS OF THIS WORK

3.1. Large sieve inequalities for Kloosterman sums. One of the main
ingredients in this work is some large sieve inequalities for Kloosterman sums
which have been established by J.-M. Deshouillers & H. Iwaniec in [5] and
then refined by V. Blomer, G. Harcos & P. Michel in [2]. The proof of these
large sieve inequalities relies on the spectral theory of automorphic forms
on GLy (Ag). In particular, the authors have to understand the size of the
Fourier coefficients of these automorphic cusp forms. We have already seen
that the size of the Fourier coefficients of holomorphic cusp forms is well
understood (2.3) but we only have partial results on the size of the Fourier
coefficients of Maass cusp forms which do not come from holomorphic forms.
We introduce the following hypothesis which measures the approximation
towards the Ramanujan-Peterson-Selberg conjecture.

Hypothesis Hy(0)- If 7 := ® Tp 1s any automorphic cuspidal form

;)EPU{OO}
on GLa(Ag) with local Hecke parameters agrl)(p), al? (p) at any prime num-

ber p and /M(Tl)(oo), ugg)(oo) at infinity then

vjie (L2 |of ()| <p’
for any prime number p for which m, is unramified and
vie {2l |Re (1))l <0
provided Tso 1S unramified.
Definition 3.1- We say that 0 is admissible if Hy(0) is satisfied.

Remark 3.2— The smallest admissible value of 0 is currently 6y = 614 thanks
to the works of H. Kim, F. Shahidi and P. Sarnak [20,21]. The Ramanujan-
Peterson-Selberg conjecture asserts that 0 is admissible.

Definition 3.3— Let T: R3 — RT and (M,N,C) € (R\ {0})3, we say that
a smooth function h: R® — R3 satisfies the property P(T; M, N,C) if there
exists a real number K > 0 such that

27 27 )

—MN > it+j+k

V(i,j,k) €N3,V(x1,a:2,x3) S [%,2M:| X |:E QN] X [g 2C

aiJerrkh

i 9.0 A0k
0z 05073

($1,$2,$3)<KT(M,N,C) <1+ C
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With this definition in mind, we are able to write the following proposi-
tion which is special case of a large sieve inequality adapted from the one of
Deshouillers & Iwaniec |5, Theorem 9| by Blomer, Harcos & Michel [2, The-
orem 4.

Proposition 3.4— Let q be some positive integer. Let M, N,C > 1 and g be
a smooth function satisfying property P(1; M, N, C). Consider two sequences
of complex numbers (am)men/2,201) and (bn)nenyo,ony- If 0 is admissible
and MN < C? then

ZZZam n S(m, £n; C)g(m,n;c)

c2l m>21n>1

gle
o2\’ M\ 12 A /2
8 —_ —_— —_
<oy (577) (1+5) (145) lalalbl )

for any e > 0.

We shall use a test function. For any v > 0 let us define S, (R) as the
space of even Schwartz function ® whose Fourier transform

@O:wa¢@M%=AM@%%OM

is compactly supported in [—v, +v]. Thanks to the Fourier inversion formula:

B(z) = [ Beat) da = FIE = BO) () (3.2

such a function ® can be extended to an entire even function which satisfies
exp (v[Sm s])

(L+[sh™
for any integer n > 0.The version of the large sieve inequality we shall use
several times in this paper is then the following.

VseC, P(s) <y (3.3)

Corollary 3.5— Let q be some prime number, ki,ko > 0 be some integers,
ay, e, v be some positive real numbers and ® € S,(R). Let h be some
smooth function satisfying property P(T; M,N,C) for any 1 < M < ¢,

1< N < g2 and C > q. Let (ay) pep and (by) pep be some complex
pgqalu < Oé2l/
numbers sequences. If 0 is admissible and v < 2/(k1a1 + koag) then

S(pkl ) ka; C) = lOg P1 ~ log P2
Z Z Z aplbp2%h <plf17p§2;c> ¢ 70{1) d 7@2)

c>1 piEP peP log(q log(q
dle pitg pafq

# M N C? o
¥ <1+,L_><1+,L—><Kﬂv)zmMchmabmm
1<M<qua1k1 q q

1<N<qua2k2
C>q/2

(3.4)

where § indicates that the sum is on powers of /2. The constant implied by
the symbol < depends at most on €, ki, ko, a1, g and v.
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Proof. Define (@y,),,cn (gn) N and g(m,n;c) by
ne

Uy = Apo1/ky 1pky (m) 1[1,q”a1k1}(m) (3.5)
/I;n = bnl/h 1pk (n) 1[1,q”a1k1}(n) (3-6)
L ~ logm ~ logn

Using a smooth partition of unity, as detailed in § A.1, we need to evaluate

SN, S S S(m, nic) gM](VAj’%’ Z)C). (3.8)

1<M <gre1k e>1m>1n>1
1SN gra2ke dle
C>q/2

Since v < 2 /(aik; + agks), the first summation is restricted to MN < C?
hence, using proposition 3.4, the quantity in (3.8) is

# M N 02 0
< llallblad 3 T(M,N,C)<1+1/—> <1+ /_> (&)
1<M<graik q q

1<N<qua2 ko
C2q/2

(3.9)
O

3.2. Riemann’s explicit formula for symmetric power L-functions.
In this section, we give an analog of Riemann-von Mangoldt’s explicit formula
for symmetric power L-functions. Before that, let us recall some preliminary
facts on zeros of symmetric power L-functions which can be found in section
5.3 of [17]. Let » > 1 and f € H}(q) for which hypothesis Nice(r, f) holds.
All the zeros of A(Sym" f,s) are in the critical strip {s € C: 0 < Res < 1}.
The multiset of the zeros of A(Sym” f, s) counted with multiplicities is given
by

{60 =87 +inf): jeetsn}

where
7 if Sym” f is odd
E(f,r) = it Sy’ 7
Z\ {0} if Sym" f is even.
and
) = ).
=)

for any j € £(f,r). We enumerate the zeros such that
the sequence j — vy ) is increasin
1 the sequene -+ 1) incrnsin
(2) we have j >'0 if and ogly if 71(372 >0
(3) we have pgfj) =1- pgf)

Note that if pgc) is a zero of A(Sym” f,s) then pgfz, 1-— pgfz and 1 — ;) are
also some zeros of A(Sym” f,s). In addition, remember that if Sym” f is odd

then the functional equation of L(Sym” f,s) evaluated at the critical point
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s = 1/2 provides a trivial zero denoted by pgcoz. It can be shown [17, Theorem

5.8] that the number of zeros A(Sym” f, s) satisfying ]'y(jz\ <Tis

rr+1
Ttog () + 0 llon(aT) (3.10)

as T > 1 goes to infinity. We state now the Generalised Riemann Hypothesis
which is the main conjecture about the horizontal distribution of the zeros
of A(Sym” f,s) in the critical strip.

Hypothesis GRH(r)— For any prime number q and any f in HZ(q), all
the zeros of A(Sym" f, s) lie on the critical line {s € C: Res = 1/2} namely
ﬁg} =1/2 for any j € E(f,r).

Remark 3.6— We do not use this hypothesis in our proofs.

Under hypothesis GRH(r), it can be shown that the number of zeros of
the function A(Sym” f, s) satisfying |71(£]72| < 1 is given by

1

~log (¢")(1 + o(1)
as ¢ goes to infinity. Thus, the spacing between two consecutive zeros with
imaginary part in [0, 1] is roughly of size

27
log (¢")

We aim at studying the local distribution of the zeros of A(Sym” f,s) in a
neighborhood of the real axis of size 1/log ¢" since in such a neighborhood,

we expect to catch only few zeros (but without being able to say that we
catch only one?). Hence, we normalise the zeros by defining

. log (¢" . 1 7
) =B () - 5+ ).

(3.11)

fr ™ 94
Note that
4 =8

Definition 3.7— Let f € H}(q) for which hypothesis Nice(r, f) holds and let
® € S,(R). The one-level density (relatively to ®) of Sym” f is

Dig[®;7](f) = ) <I>(,§]?;Z). (3.12)

JEE(f.r)

To study D 4[®;7](f) for any ® € S,(R), we transform this sum over
zeros into a sum over primes in the next proposition. In other words, we
establish an explicit formula for symmetric power L-functions. Since the
proof is classical, we refer to [18, §4] or [9, §2.2] which present a method that
has just to be adapted to our setting.

2We refer to Miller [25] and Omar [27] for works related to the “first” zero.
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Proposition 3.8— Let r > 1 and f € H}(q) for which hypothesis Nice(r, f)
holds and let ® € S,(R). We have

Dl,q[cb;rm:E[<I>;r]+P;[<I>;r]<f>+2<—1>mP3[<1>;r,m]<f>+o( ! )

2 log (¢")
where
B[] = 8(0) + 12)T+1<1>(0),
. a ) ~ logp~ ( logp
Py [®s;7](f) := _W,;Af @) VB <1og (qr)> ’
rtq
' B 2 ) logp = ( 2logp
Pq2[‘I>,T, m](f) T _log (qr) ;;D)\f (p2( )> P ¢ (10g (qr)>
rtq

for any integer m € {0,...,r —1}.

3.3. Contribution of the old forms. In this short section, we prove the
following useful lemmas.

Lemma 3.9— Let p1 and po # q be some prime numbers and ay, az, a be
some nonnegative integers. Then

A (£2p(111’p(212qa) 1
Z Vi < qa/2

g

the implied constant depending only on a1 and as.

Proof. Using proposition 2.1 and the fact that H.(1) = H}(1), we write

h

ALCpIp3a®) = > A(CpI)A(p52q”) (3.13)
feH:(1)

< Z I (pII)] - A (052)] - 1A F (g%)]- (3.14)
FEHZ(D)

By Deligne’s bound (2.3) we have
NPT I (057)] < T(EpT)7(p5°) < (a1 + 1) (az + 2)7(6%).  (3.15)

By the multiplicativity relation (2.4) and the value of the sign of the func-
tional equation (2.15), we have
a 1
|>\f(q )| < an (316)

We obtain the result by reporting (3.16) and (3.15) in (3.14) and by using
(2.16) and

7'(52)_ 1+1/q
D S VO

g
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Lemma 3.10— Let m,n > 1 be some coprime integers. Then,

(mn)!/* 4 mn if mn > ¢*
Aq(m,n) —d(m,n) < (k—1)/2 I 1/4
- < ifmn < g2,

Proof. This is a direct consequence of the Weil-Estermann bound (A.6) and
lemma A.1. O

Corollary 3.11— For any prime number ¢, we have
h 1
Va Z Ar(g) < pre
feH:(q)
where
“T_l if k <10 or k = 14
% otherwise.

Proof of corollary 3.11. Let K = {k € 2N: 2 < k < 14, k # 12}. By propo-
sition 2.2, we have

K 2
" M) = Ag(Lg) - 5(qjq;q > Al(i 0), (3.17)
feH:(q) Al

The term d(x ¢ K) comes from proposition 2.1 with the fact that there is no
cusp forms of weight x € K and level 1. Lemma 3.10 gives

Aq(1,q) < PE) (3.18)
and lemma 3.9 gives
Ay (2 1
> ¥ < —. (3.19)
g‘qoo \/a
Since v(q) > ¢, the result follows from reporting (3.18) and (3.19) in (3.17).
O
Remark 3.12— In a very similar fashion, one can prove that
1
h * h
u (E0) = B3 = 1+0 (). (3.20)
where
o /{—% fk<10ork=14
e 1 otherwise.
Corollary 3.11, (3.20) and (2.18) imply
1
Ey<(1)=1+0 <qﬁﬁ> (3.21)

where

5. il if k<10 0r k=14
AR otherwise.

A direct consequence of lemma 3.9 is the following one.
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Lemma 3.13— Let oy, s, B1, 82,71, V2, w be some nonnegative real numbers.
Let ®1 and @4 be in S,(R). Then,

V2w

Z Z 10gp1 logp2 log p1 & log po Z A1 (CPp]t, pPq®)
log (¢%1) 2 log (¢72) l

p1EP p2€P 1 £]g>®
pifqg patq

< qéufw/2+€

with § given in table 1.

4. LINEAR STATISTICS FOR LOW-LYING ZEROS

4.1. Density results for families of L-functions. We briefly recall some
well-known features that can be found in [18]. Let F be a family of L-
functions indexed by the arithmetic conductor namely

r=Ur@

Q=1

where the arithmetic conductor of any L-function in F(Q) is of order @ in
the logarithmic scale. It is expected that there is a symmetry group G(F)
of matrices of large rank endowed with a probability measure which can
be associated to F such that the low-lying zeros of the L-functions in F
namely the non-trivial zeros of height less than 1/log @ are distributed like
the eigenvalues of the matrices in G(F). In other words, there should exist
a symmetry group G(F) such that for any v > 0 and any ® € S,(R),

log Q 1
Q%oof Z 2. (I)<2m (ﬁ”_TL”’T))
T€F(Q)  0<Bx<1

Y ER
(7‘-76#“’»@'7#):0

_ /R ()WL (G(F))(x) da

where W1 (G(F)) is the one-level density of the eigenvalues of G(F). In this
case, F is said to be of symmetry type G(F) and we said that we proved
a density result for F. For instance, the following densities are determined
in [19]:

sin (27z)

W1(SO(even))(x) =1+

orx

Wi(0)(x) = 1+ 5o(),

Wy (SO(0dd)) () = 1 — % + do(2),
Wi(Sp)(e) =1 - T2

where &g is the Dirac distribution at 0. According to Plancherel’s formula,

| 2@WACE) @) do = [ $@)T(G(F) (@) da

R
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and we can check that

W1 (SO(evem)) () = dofx) + 5n().
W1(0)(#) = dof) + 3.
W1(50(0dd))(x) = bo(x) — gu(x) +1,
W1(5p)(x) = do(z) — g(x)
where
1 if 2| < 1,
n(z) == % if © =41,
0 otherwise.

As a consequence, if we can only prove a density result for v < 1, the three
orthogonal densities are indistinguishable although they are distinguishable
from Sp. Thus, the challenge is to pass the natural barrier v = 1.

4.2. Asymptotic expectation of the one-level density. The aim of this
part is to prove a density result for the family

Foi= | {LSym" £.9), f € H(q)}
qeP

for any r > 1 which consists in proving the existence and computing the
asymptotic expectation EL (D1[®;7]) of Dy[®;7] := (D1 4[®; r]),ep for any
r > 1 and for ® in S, (R) with v > 0 as large as possible in order to be able
to distinguish between the three orthogonal densities if r is small enough.
Recall that E[®;r]| has been defined in proposition 3.8.

Theorem 4.1— Let r > 1 and ® € S,(R). We assume that hypothesis
Nice(r, f) holds for any prime number q and any f € H}(q) and also that 0
1s admissible. Let

V1 max(Ts K, 0) == <1 - m) 7“32
If v < Vi max(7, K, 0) then
ES, (Di[®;7]) = B[®;7].
Remark 4.2— We remark that

16 2 82
X 9 50 - 1 — aA = _> — o 4]_
V1,max(r £ 60) < 32k — 7> r2” 57r2 (4.1)
1 2 3
Vl,max(?’} ff, O) = <1 — %> ﬁ 2 ﬁ (42)

and thus v1 max(1, K, 6p) > 1 whereas vy max (7, K, 00) < 1 for any r > 2.

Remark 4.3— Note that

E[®;r] = /Ri(m) (50(96) + (_12)”1) dz.
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Thus, this theorem reveals that the symmetry type of F, is

Sp if r is even,
G(F) =40 it =1,
SO(even) or O or SO(odd) if r > 3 is odd.

Some additional comments are given in remark 4 page 5.

Proof of theorem 4.1. The proof is detailed and will be a model for the next
density results. According to proposition 3.8 and (3.20) , we have

El (D1,4[®;7]) = E[®;7] + B} (PI[®;7])

- _1\m zh 2 rom 1
+mzo( D™ E, (P/[®;r, ])+O<log(q7")>' (4.3)

The first term in (4.3) is the main term given in the theorem. We now
estimate the second term of (4.3) wvia the trace formula given in proposition
2.2.

By (P [®57]) = Py ey [®57] + By 14 [®; 7] (4.4)
where
P! [®;7] = —72 ZA (p" 1)10gp;1\)< log p >
g,new L= IOg (qr) = q ’ \/ﬁ IOg (qr) )
pla
logp log p
Pl al®: 7] Z Z Ar(p"2,1 ( :
q,old
qlog ) i pﬁp f log (¢")
plq

Let us estimate the new part which can be written as

logp S(p", 1;¢)
i [@:r] = — ZZ( 1 w())#
q,new q’[p (1,q ]
log c>1 oo /P c
T <M> % ( log p > _
c log (¢")
Thanks to (A.3), the function

gle
o) = 11 (M0

satisfies hypothesis P(T; M, 1,C) with

1/2—k K—1
T(M,l,m:(H@) <@> |

C
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Hence, if v < 2/7? then corollary 3.5 leads to

Kk—1-20
Pl el®;7] <c g Zﬁ (1 + \/%) (g) (4.5)

1<M <"
C>q/2
K—1 K
¢ Mz 0 Mz2?
g
e d Z <qn—1—26 + k—L1_90 (46)
2 q 2
1<M <L

thanks to (A.2). Summing over M wvia (A.1) leads to
Pé new[q>;r] <. q(%fG)(r2uf2)+s + q(%fG)r2uf(n7%f2€)+s (47)
which is an admissible error term if v < vy max (7, K,6). According to lemma
3.13 (with ay = 4+00) we have
Pl al®;r] <o g2 1t (4.8)
which is an admissible error term if v < 2/r. Reporting (4.7) and (4.8) in
(4.4) we obtain

1
Ey (P)[®;7]) < p (4.9)
for some §; > 0 (depending on v and r) as soon as v < V| max(7, K,0). We
now estimate the third term of (4.3). If 0 < m < r—1 then the trace formula

given in proposition 2.2 implies that

EE (Pq2 [‘1)7 T, m]) PZ new [(I)a T m] + IP)g,old [(I)a T, m] (410)
where
2 _ logp~ ( log (pz)
P2new (I);T,m = - A p2(r m)al ¢ s
anew| ] log (q7) Z a ( ) P log (q")
peEP
plq
logp ~ ( log (p*)
P2 L q[®;7,m] = ——— Z ZA (r=m)g2 1 <1>< .
q,Old 7 1 T
qlog ) i ppip < ) p o \log(q")
q

Let us estimate the new part which can be written as

1 S (p2r=m) 1;¢
P?} new[q);r’m - ZZ ng(squ ( ) ( )
log c>1 = } c
q\c

The function

h(m’c) = Jr—1 <
satisfies hypothesis P(T; M, 1,C') with

1/2—k K—1
VM VM 1
T(M,1,C) = <1+—C c VG

4W¢m> 1

c ) ae—my)
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Hence, if v < 2/7? then corollary 3.5 leads to

§ 1 \/M k—1-260 Iv;
2 . /
PQ,HGW [@7 T? m] <<5 qE Z (M)l/(4r—4m) ( C ) (1 + ?) .

ngu'r(rfm)
C>q/2

This is smaller than the bound given in (4.5) and hence is an admissible
error term if v < vy max (7, K, ). According to lemma 3.13, we have

P2 al®; 7] <c g e (4.11)
We obtain )
EY (P2[®;7,m]) < s (4.12)

for some do > 0 (depending on v and r) as soon as v < Vi max (7, £, 6). Finally,
reporting (4.12) and (4.9) in (4.3), we get
1

EY (D1,4[®;7]) = E[®;7] + O <@> . (4.13)

O

4.3. Signed asymptotic expectation of the one-level density. In this
part, we prove some density results for subfamilies of F,. on which the sign of
the functional equation remains constant. The two subfamilies are defined
by

Feo= | J{L(Sym" f,5), f € H(q)} -

qeP

Indeed, we compute the asymptotic expectation ELE (D1[®;7]).

Theorem 4.4— Let v > 1 be an odd integer, ¢ = +1 and ® € S,(R). We
assume that hypothesis Nice(r, f) holds for any prime number q and any
f € H:(q) and also that 6 is admissible. Let

3
V§ max (7 K, 0) := inf <I/17max(7“, K, 0), 77“(7“ n 2)> .

If v < Vf s (7, 5, 0) then
RS (D1[@;7]) = E[@;r].
Some comments are given in remark 5 page 5.
Proof of theorem 4.4. By (2.18), we have
E€ (D1,4[®;7]) = Bl (Dy,4[®;7]) —exe(k, ) /TEL (A.(q) D1,g[®;7]) . (4.14)

The first term is the main term of the theorem thanks to theorem 4.1. Ac-
cording to proposition 3.8 and corollary 3.11, the second term (without the
epsilon factors) is given by

VAED (X (q) P [®;7])

+ /4 i (=)™ E2 ()\_(q)PqQ[(I); r,m]) + O <
m=0

Tog (qr)> . (4.15)
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Let us focus on the first term in (4.15) knowing that the same discussion
holds for the second term with even better results on v. We have

\/aEg ()‘(Q) [ ]) \/_Pq new[q); T] + \/apé,old[q); T] (4.16)
where
P! [®;7] = __2 ZA (P q,1) logp(’f)< log p >
e log (¢") e \log(q) )
peEP
piq
logpA logp
P! [qm«]: Z ZA (p" %, q <1>< >
g,oldL=> "
log €|q pi’P \/Z_j log (q )
plq

Lemma 3.13 implies
VAP, al®; 7] < g2 (4.17)
which is an admissible error term if v < 4/r. The new part is given by

B = 2270 ZzlogpSpq,l,c)Jnl<47r\é_> <log(pr))>.

10g c>1 o NG log (q
gle afp

and can be written as

where

~ . 0 if ¢t m or m # p"q for some p # ¢ in P,
Am = 11y grer?) k’% if m = p"q for some p # ¢ in P.

Thus, if v < 1/r? then we obtain

Kk—1-20
A ¢ (VM M
Py el ®imm] <2 gf > 2 (T e

M<q1+7/'r
C2q/2

as in the proof of corollary 3.5. Summing over C via (A.2) gives

K—1 K
¢ M=z 9 Mzt
1
Pq new| 57, m] < g7 Z (q””120 + k—L-20 |~
M<q1+r2u q 2

Summing over M wvia (A.1) leads to

2 1

B 57, ] o g(CF 05 (5055 e (415

q,new

which is an admissible error term if v < TLQ <1 — n—120)' O
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5. QUADRATIC STATISTICS FOR LOW-LYING ZEROS

5.1. Asymptotic expectation of the two-level density and asymp-
totic variance.

Definition 5.1- Let f € H;(q) and ®1, @9 in S,(R). The two-level density
(relatively to ®1 and ®2) of Sym” f is

D2,q[(1>17 (132;7”](f) = Z d, <ﬁ(fj;)> D, (’p‘(ﬁi)) .
(J1.42)€E(fr)?
J1#+j2

Remark 5.2—In this definition, it is important to note that the condition

j1 # jo does not imply that ﬁ(fji) + ﬁﬁcji) It only implies this if the zeros

are simple. Recall however that some L-functions of elliptic curves (hence of
modular forms) have multiple zeros at the critical point [3,24].

The following lemma is an immediate consequence of definition 5.1.
Lemma 5.3— Let f € H(q) and ®1, ® in S,(R). Then,
D3q[®1, @2;7)(f) = D1,g[®1;7](f) D1,g[®2; 7] (f) — 2D1,[®1P2;7](f)
+ 1H;1(q)(f) x ©1(0)®2(0).
We first evaluate the product of one-level statistics on average.

Lemma55.4— Letr > 1. Let @1 and ®4 in S, (R). We assume that hypothesis
Nice(r, f) holds for any prime number q and any f € H}(q) and also that 0
is admissible. If v < 1/r? then

EM (D1 [®1;7]D1[®o;7]) = E[®1; 7| E[®o;7] + 2/|u|<1?1(u)<1?2(u) du.
R
Remark 5.5— Since theorem 4.1 implies that
EL (D1 [®1;7]D1[®2;7]) — E[®1;7]E[®y; 7] =
EL, (D1[®1;7)D1 [®2;7]) — EX, (D1[®1;7]) EX, (D1[®2;7])
lemma 5.4 reveals that the term

Ch (D1[®1;7], D1 [®o;7]) = 2/|u|c1?1(u)q?2(u) du
R

measures the dependence between Dp[®;;r| and D;[®9;r]. This term is
the asymptotic covariance of Dy[®q;r] and D1[®9;r]. In particular, taking
®; = ¥y, we obtain the asymptotic variance.

Theorem 5.6— Let ® € S, (R). If v < 1/r? then the asymptotic variance of
the random variable Dy 4[®;7] is

h ;1)) = u|®2 (u) du.
V(D [;7]) 2/R\ B2(u)d
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Proof of lemma 5.4. From proposition 3.8, we obtain

EY (Dy,q[®@157] D1 4[®2; 7 ])ZE[‘IH; r|E[®g;7] + Ch

+ ) Z ED (PY®; 7] P2[®;7,m))

(i.5)e{1,2}2 m=0

i#]
r—1 r—1 1
i h 9 . 2 .
+ Z Z (—1)mme IEq (Pq [(I)lar’ml]Pq (@257, m2]) o <10g (qr)>
m1=0m2=0
(5.1)

with

Ch =K (P)[®1;7]P) [P2;7]) -
The error term is evaluated by use of theorem 4.1 and equations (2.16),
(4.9) and (4.12). We first compute (Cg. Using proposition 2.2, we compute
Cl = E" — 4E° with

log p1 logpzA ( log p1 >A ( log p2 >
E": Z Z =) P2 o ) Ag(pl,ph)
1og ) Sop oo VP VP2 \log(d) log (¢")
pifq p21q
and
o ,__ 1
qlog® (¢")
logm logpgA log p1 logpz 1 (02 pl,pz
x>, D, 1 1 Z
og (q") og (¢
P1EP p2€P q>
pifq p21q

By definition of the A-symbol, we write E" = EJ + :Wz )Eg with

4 log?p /—~—~ log p
En = ) (<1>1q>2> _O8P
p 2
log™(q") 2= P log (¢")
plq

Z Z Z logp1 logmA < log p1 ></I>\2 < log po >
os(@7) (s @)
qlc pitq p2iq

and

C C

. SLpsic) B <4W\/p§p§) .

We remove the condition p t ¢ from E} at an admissible cost and obtain,
after integration by parts,

BN = 2/R\uyci>\1(u)@(u) du+ O (@) . (5.2)

Using corollary 3.5, we get

1
E! <« —— (5.3)
log? (q")
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as soon as v < 1/r2. Finally, using lemma 3.13, we see that E° is an
admissible error term for v < 1/r so that equations (5.2) and (5.3) lead to

o~ e~ 1
Ch = 2/ |u| @y (u)Po(u) du + O <7> . (5.4)
I R log® (¢")
Let {4, 7} = {1,2}. We prove next that each E} (P}[®;;r]P2[®;;7,m]) is an
error term when v < 1/r2. Using proposition 2.2 and lemma 3.13 we have

Z Z Z log p1 IOgP2A< log p1 )
c>1 P1LEP p2€P \/_1 p2 log (qr)
qlC pitq pa2fq

><c1>j< logp2)>5(p1,p2 ,C)J VP +O< 1 ) .

log (q"/? o log (¢")

h (Pl 1 P2 .. _
Eg (P, [®i; 7] P [®j;7,m]) = log

C C

We use corollary 3.5 to conclude that

Ey (P [®:;7] P @) m,m]) < o g (5.5)
when v < 1/r2. Finally, EE (Pg[fbl;r,ml]Pg[@g;r, mQ]) is shown to be an
error term in the same way. O

Using lemmas 5.3 and 5.4, theorem 4.1, hypothesis Nice(r, f) and re-
mark 3.12, we prove the following theorem.

Theorem 5.7— Let r > 1. Let ®1 and ®3 in S, (R). We assume that hypoth-
esis Nice(r, f) holds for any prime number q and any f € H}(q) and also
that 6 is admissible. If v < Vg max(r, k,8) then

h - —1)rt
Eoo (D2[®1, Pos7]) = [q)l(o) t— ‘I>1(0)] [%(0) +

—~ — — . 1 r
2/\uyq>1(u)q>2(u) du — 28, 05(0) + ((—1) + M) &1 (0)®4(0).
R
Some comments are given in remark 6 page 7.

5.2. Signed asymptotic expectation of the two-level density and
signed asymptotic variance. In this part, r is odd.

Lemma 5.8— Let ®1 and ®5 in S,(R). If v < 1/(2r?) then
EME (Dy[®1;7] Dy [®0;7]) = E[®1; r] E[®0; 7] + 2/ |u| D7 (1) s (u) du.
R
Remark 5.9- By theorem 4.4 and lemma 5.8 we have
ELE (D1 [®1; 7] Dy [®o; 7)) — E[®1; 7] E[®g; 7] =
ELE (D1 [®1;7]D1[@2;7]) — ELS (D1 [@1;7]) EXF (Dy[@2;7])
Thus,
Che (Dy[®1;7], Dy [®o;7]) = 2 / |u| D1 (u) @2 (u) du
R
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is the signed asymptotic covariance of D1[®1;7| and Dq[®9;r]. In particular,
taking ®; = ®5, we obtain the signed asymptotic variance.

Theorem 5.10— Let ® € S,(R). If v < 1/(2r?) then the signed asymptotic
variance of D1[®;r] is

VR (Dy[®;1]) = z/yuﬁﬂ(u) du
R
Proof of lemma 5.8. From proposition 3.8 and (3.21), we obtain
Eg® (D1,4[®1;7] D14 [®s; ]) = E[®1;1]E[®g; 7] + Cy°

+ ) Z MENE (P @ r| P2 D5, m])
(i,4)€{1,2}> m=0
i#£]
r—1 r—1 1
+ Z Z (—1)ma+mz Egﬁ (Pj[@ﬁr,mﬂPq?[@Q;?“, mz]) + 0 <10g (qr)>
m1=0 mo=0
(5.6)

with

(C}ql’e = EE’E (qu [<I>1;T]Pq1 [<I>2;T]) .
Assume that v < 1/r2. Then equations (2.18), (5.4) and proposition 2.2 lead
to

Che = 2/|u|<1?1(u)<1?2(u) du — e x e(k, r)(G" — 4G°) (5.7)
R
with
logm logpzA logpr \ —~ [ logps
G = Z > ¢ 5 ) Aa (P1g,p2)
log ) Sohop log (¢") log (¢")
pifqg p21q
and
o ,__ 1
Valog? (q")
log p1 logpgA ( log p1 ) —~ ( log po > Ag (Cpt, phq)
X o, —a\ FD A
p;jggp log (¢") log (¢7) % ¢
pifq  p2fq
(5.8)

Lemma 3.10 implies that if v < 1/(272) then
qur[r(ﬁfl)+1]/2

G" <
g1/

(5.9)

hence G™ is an error term as soon as v < 1/(2r?). Lemma 3.13 implies
GO << q—3/2+l/7’+6 (510)

which is an error term. Reporting equations (5.9) and (5.10) in (5.7) we
obtain

Che = 2/|u|c1?1(u)q?2(u) du (5.11)
R



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 33

for v < 1/(2r(r +2)). Next, we prove that each Ef* (P} [®; 7| P25, m))
is an error term as soon as v < 1/(2r?). From equations (2.18) and (5.5),
we obtain

Eb© (P} [®4; 7| P2 (@557, m]) =

1
—exe(r,m)\/q Z At(q) @Z,T]Pg[®j;r,m]+0<@>. (5.12)

feH}(q)

We use proposition 2.2 and lemmas 3.13 and 3.10 to have

Z )\f Py r] P @5 m,m] <
fEH*
qur(Zr—m+2)/4—1/4 q(ur—l)/Q—i—e
5 + (5.13)
log” q log ¢

It follows from (5.13) and (5.12) that
ELE (P)[@s; 7| P2[@5;m,m]) = 0 (5.14)
for v < 1/(2r(r+1)). In the same way, we have, for v in the previous range,
ELE (P2 @157, ma] P2 [®g; 7, ma]) = 0. (5.15)
Reporting (5.11), (5.14) and (5.15) in (5.6), we have the announced result.
(]

Using lemmas 5.3, 5.8, theorem 4.4, hypothesis Nice(r, f) and (3.21), we
prove the following theorem.

Theorem 5.11- Let f € H}(q) and ®1, @2 in Sy(R). If v < 1/(2r(r + 1))
then

L (Dafon, 02ir]) = [8100) + 5010 8200 + 50200

2 /R [l (1) B3 () s — 25,85 (0) — By (0)(0)

+ 1{_1} (E)(I)l (0)‘132(0)

Remark 5.12— Remark 4.3 together with theorem 5.11 and a result of Katz
& Sarnak (see [19, Theorem A.D.2.2] or [26, Theorem 3.2]) imply that the
symmetry type of F: is as in table 2. Some additional comments are given
in remark 2 page 3.

6. FIRST ASYMPTOTIC MOMENTS OF THE ONE-LEVEIL DENSITY

In this section, we compute the asymptotic m-th moment of the one level
density namely

U (Drgl@57]) =l 12}, (D f051)
qi—l—oo

where

M, (D1,gf®37]) = B} ((D1g[@57] ~ ER(D1[@57))) ")
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for m small enough (regarding to the size of the support of ®). The end of
this section is devoted to the proof of theorem E. Note that we can assume
that m > 3 since the work has already been done for m = 1 and m = 2.
Thanks to equation (4.13) and proposition 3.8, we have

Mg, (D1,4[®;7]) = i <7Z> E, <Pq1[q)5r]mz <P2[ +o <IOQQ>>Z>

(=0
(6.1)
(6.2)
_ m\ (¢ t—agh ( plig. 1 1m—E p2[p-: 1]o
- 5 ()t oo
0<a<t
(6.3)
where
2 I F) e 2 r_l_ j 2(r—j)\ o8Pz [ 2logp
Falerlif)- log(q") ]ZO( b ;ff <p ) p q)<10g(qr)) (64)
pla
— 2 - 7" J 2] 10gp 210gp
- 1og(q7")jzl( I;;A <10g(q7‘)> 0
piq

and R is a positive function satisfying

R(g) <

logq

Thus, an asymptotic formula for M2, (D1 4[®;r]) directly follows from the
next proposition.

Proposition 6.1— Let v > 1 be any integer. We assume that hypothesis
Nice(r, f) holds for any prime number q and any primitive holomorphic cusp
form of level q and even weight k. Let a > 0 and £ > 0 be any integers.

o If a>1and av < 4/r? then

Ey (P7[®;r]*) = O ( : ) :

log q
elfl<as<i{<m—1and (a+m—Lv<4/(r(r+2)) then

h 1@,  m—L P21F. 1\ 1
By (P} @)~ P2®;r] )_0<1qu .

o If a>1and av <4/(r(r+2)) then

0] <+) if a is odd,

log® (q)
i+ 0 (

EL (PH®;r]Y) = L
o (Fy[®:71%) 2 [olu[®?(u) du x

otherwise.

2“”(% log” (q))



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 35

6.1. One some useful combinatorial identity. In order to use the mul-
tiplicative properties of Hecke eigenvalues in the proof of proposition 6.1, we
want to reorder some sums over many primes to sums over distinct primes.
We follow the work of Hughes & Rudnick [14, §7] (see also [13] and the
work of Soshnikov [28]) to achieve this. Let P(«,s) be the set of surjective
functions

o:{1,...,a} - {1,...,s}

such that for any j € {1,...,a}, either o(j) = 1 or there exists k < j such
that o(j) = o(k) + 1. ThlS can be viewed as the number of partitions of
a set of a elements into s nonempty subsets. By definition, the cardinality
of P(a,s) is the Stirling number of second kind [29, §1.4]. For any j €
{1,...,s}, let

@\ = #o L ({j}).
Note that

w](.o) >1 forany1<j<s and Zw(.o) =aq. (6.6)

The following lemma is lemma 7.3 of [14, §7].

Lemma 6.2— If g is any function of m variables then

RTEIPRES S0 R SPTAR

jlv"'vjm s=1 UEP m 5) 217 7ZS
distinct

6.2. Proof of the first bullet of proposition 6.1. By the definition (6.5),
we have

_9ya -
b (P2l = 2 (—1)er-Grtsti
o ) log™ (¢") 1<j1;:ja<r

x (iljlloip@<l201g0gpz>> (H)\f(zjz)>. (6.7)

P1e-sPa€P
afp1---pa

Writing {p;}i>1 for the increasing sequence of prime numbers except ¢, we
have

5 )< (100)

plv"'7p0467j =1

Q'fplpa
/= 2 4 Og 1 8

i1
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Using lemma 6.2, we rewrite the right sum in (6.8) as

log Dy, 2log D, a .
S %3 (I (M) ) o (1T (2,
s=1 oeP(a,s) k1,...,ks \i=1 ko (i) i=1

distinct

- * [log p; 2log P =i @)
=3 > (e () )= I v G)™
s=1 o€ P(a,s) k1,ks \u=1 N TFu 1<ugs

distinct 1<y<r

where
=#{1<i<a,00)=u,j; =7}

forany 1 < u < sand any 1 < j < r. Now, we show that

a—1 s —~ —~ ol (o)
1 ~ (21 u AN
S5y (TT(fe (2l ) a1 ()
s=1 geP(a,s) k1,....ks \u=1 Pk, elq 1<u<s

distinct 1<i<r

< log® 1 (q). (6.10)

For s < o and 0 € P(a, s), we use (2.3) together with (3.20) to obtain that
the left-hand side of the previous equation is bounded by

(o)

Z DS H(logp’“u\ (21°g€’f)“>y>wu. (6.11)

lo
s=1 oeP(a,s) k1,....ks u=1 Pk, g(q
d1st1nct

(o)

Since s < «, equation (6.6) implies that wy, ’ > 1 for some 1 < u < s. These
values lead to convergent, hence bounded, sums. Let

‘) :z#{léués:w&”)zl}6{0,...,@—1},

then

(o)

YoY% [T (R (A))
s=1 oceP(a,s) k1,....ks u=1 Pk log(qr)
distinct

<<Z > % ﬁ(logp’““ <210gﬁrk)">|><<logal(q). (6.12)

lo
s=1 ceP(a,s) k1,....kqg u=1 Phy g(q
distinct
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We have altogether

E2 (PqQ[CI);T]a) (_2)0 Z (_1)ar—(j1+...+ja)

log” (a7) 1<ty <

7 (10g bk, ~ (21log Pr, h u _2ju,
3 (T (R (3 )) o (o (T2
Eiyonka \u=1 u u=1

distinct
ro(—1) (613)
log q ’

since the only element of P(«,«) is the identity function. By lemmas 3.9
and 3.10, we have

ED (Af (H “2]“>> < - H g 10g i,

hence the first term in the right-hand side of (6.13) is bounded by a negative
power of ¢ as soon as avr? < 4.

6.3. Proof of the third bullet of proposition 6.1. By proposition 3.8,
we have

-2)° “r logpi = <logp@-> :

EX(PL[®;r (=27 > d ED A (0F) ] -

ol g )y Srcp @1 vpi - \logg/ ) % 1:1 )
P1,--Patq

(6.14)
Using lemma 6.2, we rewrite equation (6.14)

«

1 1 Di ..
g = 2N S 3 ([ (R ()

s= 10’€PQS ll, s j=1 Di a(4) 1Og (q
distinct
(6.15)
«
<y {1 (7)) | 619

(o)
a

o log i, 5 (108 i, o
1Og Z Z H(ng (08;17 >>

lo
S=1 geP(a75) ’il,...,is u=1 gq
distinct

(6.17)
s (@)
u=1

(6.18)
It follows from (2.11) and (2.12) that
(o)

(o) T

g ) =3 sty (7).

ju:()
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Since u # v implies that p;, # pi,, equation (6.18) becomes

(o)

* ([ log pi, ~ ( log p;,, > o

EM(PY®; r )

Q( [ ] 10g ; UGPZ(;{ 9 (Zil%;lst E < \/Di., log (¢") >
1Stinc

X Z <f[ (@7, ju) > <)\f <H Aj“)) . (6.19)
Jrrmds  \u=1

0<ju<rwl”)

Using proposition 2.2 and lemmas 3.10 and 3.9, we get

Eg (Af <H @f)) =[] 6j.0+0 < H pllt 10%1%)
u=1 u=1
hence
h 1. 1o\
Eq(Pq [@;7]) = TP+O(TE) (6.20)
with

log i, = (logpi, \\ o
we ey X5 M (e () e

s=1oeP(a,s) i1,.-is u=1 pl“
distinct

and

B Y S (0 e ()

QIOg s=1 g€ P(a,s) i1,--+yis u=1
distinct
(6.22)
We have
«
L - = ( logp _
TE = — — p(r 2)/4 10g2p o < ) < qaru(r+2)/4 1
qlog™ (q") 2 | log (q") |
peEP
plq
(6.23)
so that, TE is an error term as soon as
arv(r+2) < 4. (6.24)

We assume from now on that this condition is satisfied. According to (2.14)
(recall that r > 1), we rewrite (6.21) as

(o)
u

logpi, 5 (loghi, \ ) ,
TP ]og Z Z Z H(ng <1(;)gg(];r)>> x(wqg),r,O)

s=10cP>2(q,s) i1;--.,is u=1 pzu
distinct

(6.25)

where

P?2(a, 5) := {0 € Pla,s):Yue{l,...,s},w'? > 2}.
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Moreover, if for at least one o and at least one u (say ug) we have wl(f) >3,
then

(o)

S T1 (220 (R2))  tin

11,e.0yis u=1 plu log (q

distinct

log’ (p) | T log” (pu)

)|y e

peEP u=1 pUEP w
p<q" uFuo \p,<g"v

< (logq)**~2. (6.26)
But, from (6.6), we deduce
s < E w(,a) =
= J
j=1

hence (log ¢)%*72 < (log ¢)®~2. Reinserting this in (6.26) and the result in
(6.25), we obtain

(o)

P log Z Z Z H(lngzu"<10g]/9\i:>> u x(wq(f),r,())

lo
s=1 g€ P2(,s) i1,--is u=1 pZu &4

distinct
0 <71 ) (6.27)
log? (q) '

P%(a,s) = {0 € Pla,s): Yue{1,...,s}, ol = 2} .

where

From (6.27), (6.23) and (6.20), we deduce

sy Yy e ()

lo
pes oy A e S O3 g (g

distinct
0 <L> (6.28)
log? (q) '

since x(2,r,0) = 1 according to (2.14). Note in particular that, according to
(6.6) the previous sum is zero if « is odd. Thus, we can assume now that «
is even and get

EY (P, [®;7]%)

/2

b plig. oy — (—2)° log” (Pi.) 52 (108 bia
s - 2 50y TR g (el )

O'EPQ(oz a/2) i1, 7Za/2U 1 plu 10g (q

distinct
0 ( ! > (6.29)
log*(¢))




40 G. RICOTTA AND E. ROYER

However, summing over all the possible (i1, ...,i,/2) instead of the one with
distinct indices reintroduces convergent sums that enter the error term be-
cause of the 1/log® (¢") factor. It follows that (6.29) becomes:

/2

b plig. p1o) — 4 10g2(p)/\2 log p 20 o
FalFy i) = log® (qr),;a p <10g(qr)) #E e af2)

10 (@) . (6.30)

Taking m = 2 (we already proved that the second moment is finite, see
section 5.1) and reinserting the result in (6.30) implies that

Eb(P)[®;7]%) = Eb(P)[®;7]))#P%(a, a/2) + O (@) .

We conclude by computing

al
#P*(a,a/2) = ———n.

7 (D)
(see [30, Example 5.2.6 and Exercise 5.43]).

6.4. Proof of the second bullet of proposition 6.1. We mix the two
techniques which have been used to prove the first and third bullets of propo-
sition 6.1. We get following the same lines and thanks to lemma 6.2

(_2)a+m—£ at+m—

Eh (Pl[(I) ]m ZPQ[(I) ]a) _ a+m_£( - Z (_1) -1+ Fja) Z

log @) 1<y ar =1
() (2 SRS )

(Pin) = (logpi, \™" = (2logpi, \ ™"
X Z Z H D) oo 2 - i) S
gEP(at+m—£,8) i1,..,is u=1 /2t log(q ) log(q )
distinct

xElql H

u

=2

H A (5) 7 (6.31)

(0 )

where
wloV = #{ie{1,...,m—L}, o(i) =u},
@™ = #{ie{l,...,a}, o(m—L+1i) = u},
w7 = #{ie{l,....a}, o(m —£+1i) = uand j; = j}

forany 1 <u<s,any 1 <j<randany o € Pla+m—{,s). Note that
these numbers satisfy

S

> (wq(f’l) + @ 2)> =m—I{+« (6.32)
u=1
and
Z ng’?) _ wgﬂ) (6.33)
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for any 1 < w < 7 and any 0 € P(aw+m — £, s) by definition. They also
satisfy

Voe Pla+m—{,s)Yue{l,...,s}, @@ +=z®?>1 (6.34)

u

since any o € P(a+m — ¥, s) is surjective and
Vo€ Pla+m—¢,s),¥i € {1,2},Ju;p € {1,...,s}, @ >1 (6.35)

since « > 1 and m — £ > 1. The strategy is to estimate individually each
term of the o-sum. Thus, we fix some integers ji,...,Jjo in {1,...,r}, some
integer s in {1,...,r} and some application oin Pla+m—{,s).

First case:  Yu e {1,...,s}, s 1)/2+w02)§1.

Let us remark that if wz(f 2) — 1 for some 1 < © < s then there exists a
unique 1 < j;, < r depending on ¢ such that wl(fij =1 and wl(jj’?) =0 for

any 1 < j 7é ],u < r according to (6.33). Thus,

- (1) w7 B )
II > @) H f(57)” = 11 bi,

u=1 1<us
(=) =) =20

- . (0,2)
o 1w o ow m a
iy Ty iy
1<u<s 1<us 1<u<s
(=Y =) =(2,0) (=) =) =(1,0) (=Y =) =0,1)

where the two integers appearing in the right-hand side of the previous equal-
ity are different according to (6.35). Consequently, proposition 2.2 and lem-
mas 3.10 and 3.9 enable us to assert that

il (o,1) r . w(a’.2) 1 lO o
w. ~2 u,J gplu
(T (v T (@)™ ) ) <2 o s
u=1 7j=1 1<us piu “
(=) =) =20
log pi,, log pi,,
x H A*T‘wq(:”l)/él H A*T‘W&U’Q)/2 '
1<us s 1<us s
(= =) =(1,0) (=) =) =(0,1)

Note that, in this first case, the right hand term is
1 H log pi,,
A—r(ar(" D /a4 /2)

hence the contribution of these o’s to EE (qu [®; r]m_quQ[q); 7]*) is bounded
by

m—~ a

‘ 1 1 vr [4[(m—£€)(r+2)+oar]—1+¢
E Z pl/2—r/4 Z 1—r/2 <4q :
p<gr" pgql/r/Q

This is an admissible error term as long as vr/4[(m — £)(r + 2) + ar] < 1.
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Second _case:  Ju, € {1,...,s}, @ 1)/2 —{—w SN

According to (2.11) and (2.12), ifl<u<s and 1 < j < r then

(o,1)

(0,1) Ty k
8 )7 = Y all i (75)
k?u,lzo
and
(0.2) w7 _2k
N 0'2 “w
b ()7 = 5 el dhuse (52)
ku,j,2=0

since a:(w( o:2) 1 2J,kyj2) = 0if kyjo is odd (see (2.14)). Then, one may
remark that

Ky
2k . 20,
H Af <piu 12) = Z Yo, Af (Piu >
1< <r £,=0

for some integers yy, and where K, := leQ kyjo for any 1 <u < s. All
these facts lead to

b 1 Vo (_2)a+m—€(_1)ar _— a+m—~L
. m— . « _ o

By (Pl P@)) = g e Y (e
08 (@) 1 e s=1

(01)+ (0,2) R w(o‘,l) R w(o‘,2

“u (pz )= (logpi, \7* = (2logpi, \ 7"
u (b u (b u
RN (e R

c€P(a+m—~L,s) i1,...,is u=1
distinct

0k 1 <rwi ™) 0k 10<@(GY) 0k o <rwi D) OSASKL

: : : 0<l <K
0<hs 1 <rol” 0ghs12<w(G? 0<horo<rol s

x uﬁ1 x (wz(f”l),r, ku,1> ye. ﬁ (x <wz(:,7}2)’ 2, Qk”vj’2>>

Eq (Af (ﬁﬁf:’l> <HA”>> (6.36)

Proposition 2.2 and lemmas 3.10 and 3.9 enable us to assert that
- : 1 YT st /4400 /2
E2 <>‘f <H pi ) >‘f (H Aﬂu)) = H 5ku,172€u+0 (5 Hpi;’l/ o/ logﬁiu>
u=1 u=1 u=1

and we can write

Eb (qu [@; 7)™ P2[®; r]a> — TP +O(TE) (6.37)
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with
— +m—£
(=2t (—1)er S
= e 2 T L
& T) 1t mjasr s=1
e | (o) A (o1) o _(e®

S 3 H (pzu)q)<1ogpiu>w“ ;1\)<210gpiu)w“
(o 1) (0,2) r r
gEP(at+m—L,8) i1,..,is u=1 [2+@ log(q ) log(q )
distinct

xz...z )3

0<ki12<w(%” 0k <@ 0t <rmin (wgf”l)/z,wgf’ﬂ))

0<ks,1, 2<W(J % 0<ks,r,2 grwg?f) 0<ls <rmin (wgo’l)/Z,wgo’Q))

xH z (=D, 20, ) e H(m( P25, %k52) ) | (638)

and
1
TE := a+m—~
qlog (¢")
a+m—~

X Z Z Z H 10g (cr 1)+w(f’ 2)+1 (plu )p(r/g 1)(w5¢0’1)/2+w1(f’2))

s=1 ogeP(a+m—L,s) i1,...,is u=1
distinct

(o,1) (0,2)

" @(102%@”)‘% 5(210g@'u> o
log(q") log(q")

which is bounded by O. (q(O‘*m*Z)’”’Q/‘l*He) for any € > 0 and is an admis-
sible error term if (o +m — £)v < 4/r%. Estimating TP is possible since we
can assume that o satisfies the following additional property. If w(a 2 =0

for some 1 < u < s then w(o b > 1. Let us assume on the contrary that
wz(f’l) <1 Which entails wz(L D1 according to (6.34). Then,

(6.39)

x <w1(f’1),r, 2€u) =z(1,70)=0

since ¢, = 0 and according to (2.14). Thus, the contribution of the o’s which
do not satisfy this last property vanishes. As a consequence, the sum over



the distinct i1, ...,7s is bounded by

Z H <log2 (i)
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1o 1<u<s Pi,

~ 2
% <1Og Pi. > '
log(q")
distinct (w&o’l),wyﬂ))=(270)

" 11 <logA(ﬁzu) ‘@ <2110g2/9;iu>
1 Zass Pi, og(q")
(=) =) =(0,1)

(o,1)

u

(1)} o (0,2) ®

X H log™* Di.)
PP
1<u<s .

2@V o@D o

3 <10g Di., >
log(q")

lu

dl

21log pi,,
log(q")

which is itself bounded by O (logA" (q)) where the exponent is given by

Ay = 2# {1 <u<s,wm =0and @V /2 + wl"? < 1}

—i—#{l <u<s,@® =1and w®Y/2 + @@ 1} <m—{+a.

The last inequality follows from (see (6.32) and the additional property of

o)

m—Fl+a=A,+ Z <w1(f’1) + wq(f’g)) .

1<us
@Y 24wl >1

.

(o,

u

Thus, the contribution of the TP term of these o’s to B (P [®; 7] P2[®;r]%)

is bounded by O (log™! (¢)).

APPENDIX A. ANALYTIC AND ARITHMETIC TOOLBOX

A.1. On smooth dyadic partitions of unity. Let ¢: R, — R be any

smooth function satisfying

0 ifo<z<l,
w<x)_{1 if x> 2

and 279)(2) <; 1 for any real number z > 0 and any integer j > 0. If

p: Ry — R is the function defined by

() if 0 <z < V2,
p(x) = { .

1—9 <ﬁ> otherwise

then p is a smooth function compactly supported in [1,2] satisfying

o x
27 pW9) (2) <;1 and Zp (—a> =1
a€Z \/5
for any real number x > 0 and any integer j > 0.

If F': R — R is a function of n > 1 real variables then we can decompose

it in

F= Z Z Fa, .. A,

a1€Z an€Z

2)
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1- 1-

| t
1 V2 1 V2 2

(a) Graph of ¢ (b) Graph of p

where A; := /2" and
n
FAlv"'vAn(x17 T 7xn) = HpAi(xi)F(xlv T 7xn)
=1

with pa,(x;) = p(zi/A;) is a smooth function compactly supported in
[A;,24;] satisfying wﬁpsz (i) <; 1 for any real number z; > 0 and any

integer 7 > 0. Let us introduce the following notation for summation over

powers of v/2 :
ST o= (2,

A<SM<B neN
AL2"/2<B

We will use such smooth dyadic partitions of unity several times in this
paper and we will also need these natural estimates in such contexts

Zﬁ M < M (A1)
M<M,
for any a, M7 > 0 and

¢ 1 1
E — L (A.2)
for any a, My > 0.

A.2. On Bessel functions. The Bessel function of first kind and order a
integer k£ > 1 is defined by
(_1)" 2\ k+2n
veC, = Yz
: <(2) nz%)n!(/{—}—n)! 2

It satisfies the following estimate (founded in [23, Lemma C.2]), valid for
any real number x, any integer j > 0 and any integer x > 1:

<1ix>]Jg>(x) j (1:90)% <1ix> (A.3)
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for any real number x, any integer j > 0 and any integer x > 1. The
following useful lemma follows immediately.

Lemma A.1- Let X >0 and k > 1, then

7(d) X X12log X if X > 1,
S == (5 )< :
= Vd d X" if 0<X <1.

A 3. Basic facts on Kloosterman sums. For any integer m,n,c > 1, the
Kloosterman sum is defined by

Stmonie)i= S e (@)

z  mod (c)
(z,0)=1

where T stands for the inverse of  modulo c¢. We recall some basic facts
on these sums. The Chinese remainder theorem implies the following multi-
plicativity relation

S(m,n;qr) = S(mg*,n;r)S(mr, n; q) (A4)

valid as soon as (q,r) = 1. Here, g (resp. T) is the inverse of ¢ (resp. r)
modulo r (resp. ¢). If p and ¢ are two prime numbers, v > 1 and r > 1
then, from (A.4) and [7, (2.312)] we obtain

—S(]ﬂ@ 17T) if (qar) = 1a

S(p7q, 1; = A5
g, Liar) 0 otherwise. (A-5)
The Weil-Estermann inequality [6] is

1S(m,m30)| < v/l m (Ve (A4.6)
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Qo
o 0,1] [1,+00]
10,1] | Bi(1 — 1) + Bo(1 —az) | fo(1 — az)
[1, +00] pi(l —a1) 0
TABLE 1. Values of §
" even odd
€
-1 SO(odd)
1 Sp | SO(even)

TABLE 2. Symmetry type of F¢




