
HAL Id: hal-00138457
https://hal.science/hal-00138457

Submitted on 26 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistics for low-lying zeros of symmetric power
L-functions in the level aspect

Guillaume Ricotta, Emmanuel Royer

To cite this version:
Guillaume Ricotta, Emmanuel Royer. Statistics for low-lying zeros of symmetric power L-functions
in the level aspect. Forum Mathematicum, 2011, 23 (5), pp.969-1028. �hal-00138457�

https://hal.science/hal-00138457
https://hal.archives-ouvertes.fr


ha
l-

00
13

84
57

, v
er

si
on

 1
 -

 2
6 

M
ar

 2
00

7
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2 G. RICOTTA AND E. ROYER6.1. One some useful ombinatorial identity 356.2. Proof of the �rst bullet of proposition 6.1 356.3. Proof of the third bullet of proposition 6.1 376.4. Proof of the seond bullet of proposition 6.1 40Appendix A. Analyti and arithmeti toolbox 44A.1. On smooth dyadi partitions of unity 44A.2. On Bessel funtions 45A.3. Basi fats on Kloosterman sums 46Referenes 46Aknowledgements� This work began while both authors shared the hospitalityof Centre de Reherhes Mathématiques (Montréal) during the theme year"Analysis in Number Theory" (�rst semester of 2006). We would like tothank C. David, H. Darmon and A. Granville for their invitation. Thiswork was essentially ompleted in september 2006 in CIRM (Luminy) at theoasion of J.-M. Deshouillers' sixtieth birthday. We would like to wish himthe best. 1. Introdution and statement of the results1.1. Desription of the families of L-funtions studied. The purposeof this paper is to ompute various statistis assoiated to low-lying zerosof several families of symmetri power L-funtions in the level aspet. Firstof all, we give a short desription of these families. To any primitive holo-morphi usp form f of prime level q and even weight1 κ > 2 (see � 2.1for the automorphi bakground) say f ∈ H∗
κ(q), one an assoiate its r-thsymmetri power L-funtion denoted by L(Symr f, s) for any integer r > 1.It is given by an expliit absolutely onvergent Euler produt of degree r+1on ℜe s > 1 (see � 2.1.4). The ompleted L-funtion is de�ned by

Λ(Symr f, s) := (qr)s/2 L∞(Symr f, s)L(Symr f, s)where L∞(Symr f, s) is a produt of r+1 expliit ΓR-fators (see � 2.1.4) and
qr is the arithmeti ondutor. We will need some ontrol on the analytibehaviour of this funtion. Unfortunately, suh information is not urrentlyknown in all generality. We sum up our main assumption in the followingstatement.Hypothesis Nice(r, f)� The funtion Λ (Symr f, s) is a ompleted L-funtionin the sense that it satis�es the following nie analyti properties:

• it an be extended to an holomorphi funtion of order 1 on C,
• it satis�es a funtional equation of the shape

Λ(Symr f, s) = ε (Symr f)Λ(Symr f, 1 − s)1In this paper, the weight κ is a �xed even integer and the level q goes to in�nity amongthe prime numbers.



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 3where the sign ε (Symr f) = ±1 of the funtional equation is given by
ε (Symr f) :=

{
+1 if r is even,
εf (q) × ε(κ, r) otherwise (1.1)with

ε(κ, r) := i(
r+1
2 )

2
(κ−1)+ r+1

2 =






iκ if r ≡ 1 (mod 8),
−1 if r ≡ 3 (mod 8),

−iκ if r ≡ 5 (mod 8),

+1 if r ≡ 7 (mod 8)and εf (q) = ±1 is de�ned in (2.15) and only depends on f and q.Remark 1� Hypothesis Nice(r, f) is known for r = 1 (E. Heke [10�12℄), r = 2thanks to the work of S. Gelbart and H. Jaquet [8℄ and r = 3, 4 from theworks of H. Kim and F. Shahidi [20�22℄.We aim at studying the low-lying zeros for the family of L-funtions givenby
Fr :=

⋃

q prime {L(Symr f, s), f ∈ H∗
κ(q)}for any integer r > 1. Note that when r is even, the sign of the funtionalequation of any L(Symr f, s) is onstant of value +1 but when r is odd, thisis de�nitely not the ase. As a onsequene, it is very natural to understandthe low-lying zeros for the subfamilies given by

Fε
r :=

⋃

q prime {L(Symr f, s), f ∈ H∗
κ(q), ε (Symr f) = ε}for any odd integer r > 1 and for ε = ±1.1.2. Symmetry type of these families. One of the purpose of this workis to determine the symmetry type of the families Fr and Fε

r for ε = ±1 andfor any integer r > 1 (see � 4.1 for the bakground on symmetry types). Thefollowing theorem is a quik summary of the symmetry types obtained.Theorem A� Let r > 1 be any integer and ε = ±1. We assume that hypoth-esis Nice(r, f) holds for any prime number q and any primitive holomorphiusp form of level q and even weight κ > 2. The symmetry group G(Fr) of
Fr is given by

G(Fr) =

{
Sp if r is even,
O otherwise.If r is odd then the symmetry group G(Fε

r ) of Fε
r is given by

G(Fε
r ) =

{
SO(even) if ε = +1,
SO(odd) otherwise.Remark 2� It follows in partiular from the value of ε (Symr f) given in (1.1)that, if r is even, then Symr f has not the same symmetry type than f and,if r is odd, then f and Symr f have the same symmetry type if and only if

r ≡ 1 (mod 8) and κ ≡ 0 (mod 4)



4 G. RICOTTA AND E. ROYERor
r ≡ 5 (mod 8) and κ ≡ 2 (mod 4)or

r ≡ 7 (mod 8).Remark 3� Note that we do not assume any Generalised Riemann Hypothesisfor the symmetri power L-funtions.In order to prove theorem A, we ompute either the (signed) asymptotiexpetation of the one-level density or the (signed) asymptoti expetation ofthe two-level density. The results are given in the next two setions in whih
ε = ±1, ν will always be a positive real number, Φ,Φ1 and Φ2 will alwaysstand for even Shwartz funtions whose Fourier transforms Φ̂, Φ̂1 and Φ̂2 areompatly supported in [−ν,+ν] and f will always be a primitive holomor-phi usp form of prime level q and even weight κ > 2 for whih hypothesis
Nice(r, f) holds. We refer to � 2.2 for the probabilisti bakground.1.2.1. (Signed) asymptoti expetation of the one-level density. The one-leveldensity (relatively to Φ) of Symr f is de�ned by

D1,q[Φ; r](f) :=
∑

ρ, Λ(Symr f,ρ)=0

Φ

(
log (qr)

2iπ

(
ℜe ρ− 1

2
+ iℑmρ

))where the sum is over the non-trivial zeros ρ of L(Symr f, s) with multipli-ities. The asymptoti expetation of the one-level density is by de�nition
lim

q prime
q→+∞

[r]
∑

f∈H∗
κ(q)

ωq(f)D1,q[Φ; r](f)where ωq(f) is the harmoni weight de�ned in (2.7) and similarly the signedasymptoti expetation of the one-level density is by de�nition
lim

q prime
q→+∞

2[r]
∑

f∈H∗
κ(q)

ε(Symr f)=ε

ωq(f)D1,q[Φ; r](f)when r is odd.Theorem B� Let r > 1 be any integer and ε = ±1. We assume that hypoth-esis Nice(r, f) holds for any prime number q and any primitive holomorphiusp form of level q and even weight κ > 2 and also that θ is admissible (seehypothesis H2(θ) page 17). Let
ν1,max(r, κ, θ) :=

(
1 − 1

2(κ − 2θ)

)
2

r2
.If ν < ν1,max(r, κ, θ) then the asymptoti expetation of the one-level densityis

Φ̂(0) +
(−1)r+1

2
Φ(0).Let

νε
1,max(r, κ, θ) := inf

(
ν1,max(r, κ, θ),

3

r(r + 2)

)
.



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 5If r is odd and ν < νε
1,max(r, κ, θ) then the signed asymptoti expetation ofthe one-level density is

Φ̂(0) +
(−1)r+1

2
Φ(0).Remark 4� The �rst part of Theorem B reveals that the symmetry type of

Fr is
G(Fr) =






Sp if r is even,
O if r = 1,
SO(even) or O or SO(odd) if r > 3 is odd.We annot deide between the three orthogonal groups when r > 3 is oddsine in this ase ν1,max(r, κ, θ) < 1 but the omputation of the two-leveldensities will enable us to deide. Note also that we go beyond the support

[−1, 1] when r = 1 as Iwanie, Luo & Sarnak [18℄ (Theorem 1.1) but withoutdoing any subtle arithmeti analysis of Kloosterman sums. Also, A. Gülogluin [9, Theorem 1.2℄ established some density result for the same family of
L-funtions but when the weight κ goes to in�nity and the level q is �xed.It turns out that we reover the same onstraint on ν when r is even but weget a better result when r is odd. This an be explained by the fat that theanalyti ondutor of any L(Symr f, s) with f in H∗

κ(q) whih is of size
qr ×

{
κr if r is even
κr+1 otherwiseis slightly larger in his ase than in ours when r is odd.Remark 5� The seond part of Theorem B reveals that if r is odd and ε = ±1then the symmetry type of Fε

r is
G(Fε

r ) = SO(even) or O or SO(odd).Here ν is always stritly smaller than one and we are not able to reover theresult of [18, Theorem 1.1℄ without doing some arithmeti on Kloostermansums.1.2.2. Sketh of the proof. We give here a sketh of the proof of the �rst partof Theorem B namely we brie�y explain how to determine the asymptotiexpetation of the one-level density assuming that hypothesis Nice(r, f) holdsfor any prime number q and any primitive holomorphi usp form of level
q and even weight κ > 2 and also that θ is admissible. The �rst steponsists in transforming the sum over the zeros of Λ(Symr f, s) whih oursin D1,q[Φ; r](f) into a sum over primes. This is done via some Riemann'sexpliit formula for symmetri power L-funtions stated in Proposition 3.8whih leads to
D1,q[Φ; r](f) = Φ̂(0)+

(−1)r+1

2
Φ(0)+P 1

q [Φ; r](f)+

r−1∑

m=0

(−1)mP 2
q [Φ; r,m](f)+o(1)where

P 1
q [Φ; r](f) := − 2

log (qr)

∑

p∈P
p∤q

λf (pr)
log p√
p

Φ̂

(
log p

log (qr)

)
. (1.2)



6 G. RICOTTA AND E. ROYERThe terms P 2
q [Φ; r,m](f) are also sums over primes whih look like P 1

q [Φ; r](f)but an be forgotten in �rst approximation sine they an be thought as sumsover squares of primes whih are easier to deal with. The seond step on-sists in averaging over all the f in H∗
κ(q). While doing this, the asymptotiexpetation of the one-level density

Φ̂(0) +
(−1)r+1

2
Φ(0)naturally appears and we need to show that

− 2

log (qr)

∑

p∈P
p∤q




∑

f∈H∗
κ(q)

ωq(f)λf (pr)



 log p√
p

Φ̂

(
log p

log (qr)

)is a remainder term provided that the support ν of Φ is small enough. Weapply some suitable trae formula given in Proposition 2.2 in order to expressthe previous average of Heke eigenvalues. We annot diretly apply Peter-son's trae formula sine there may be some old forms of level q espeiallywhen the weight κ is large. Nevertheless, these old forms are automatiallyof level 1 sine q is prime and their ontribution remains negligible. So, wehave to bound
− 4πiκ

log (qr)

∑

p∈P
p∤q

∑

c>1
q|c

S(1, pr; c)

c
Jκ−1

(
4π

√
pr

c

)
log p√
p

Φ̂

(
log p

log (qr)

)where S(1, pr; c) is a Kloosterman sum and whih an be written as
− 4πiκ

log (qr)

∑

c>1
q|c

∑

m>1

am
S(1,m; c)

c
g(m; c)where

am := 1[1,qr2ν ]
(m)

logm

rm1/(2r)
×
{

1 if m = pr for some prime p 6= q,

0 otherwiseand
g(m; c) := Jκ−1

(
4π

√
m

c

)
Φ̂

(
logm

r log (qr)

)
.We apply the large sieve inequality for Kloosterman sums given in proposi-tion 3.4. It entails that if ν 6 2/r2 then suh quantity is bounded by

≪ε q
(κ−1

2
−θ)(r2ν−2)+ε + q(

κ
2
−θ)r2ν−(κ− 1

2
−2θ)+ε.This is an admissible error term if ν < ν1,max(r, κ, θ). We fous on the fatthat we did any arithmeti analysis of Kloosterman sums to get this result.Of ourse, the power of spetral theory of automorphi forms is hidden inthe large sieve inequalities for Kloosterman sums.



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 71.2.3. (Signed) asymptoti expetation of the two-level density. The two-leveldensity of Symr f (relatively to Φ1 and Φ2) is de�ned by
D2,q[Φ1,Φ2; r](f) :=

∑

(j1,j2)∈E(f,r)2

j1 6=±j2

Φ1

(
ρ̂
(j1)
f,r

)
Φ2

(
ρ̂
(j2)
f,r

)
.For more preision on the numbering of the zeros, we refer to � 3.2. Theasymptoti expetation of the two-level density is by de�nition

lim
q prime
q→+∞

[r]
∑

f∈H∗
κ(q)

ωq(f)D2,q[Φ1,Φ2; r](f)and similarly the signed asymptoti expetation of the two-level density is byde�nition
lim

q prime
q→+∞

2[r]
∑

f∈H∗
κ(q)

ε(Symr f)=ε

ωq(f)D2,q[Φ1,Φ2; r](f)when r is odd and ε = ±1.Theorem C� Let r > 1 be any integer and ε = ±1. We assume that hypoth-esis Nice(r, f) holds for any prime number q and any primitive holomorphiusp form of level q and even weight κ > 2. If ν < 1/r2 then the asymptotiexpetation of the two-level density is
[
Φ̂1(0) +

(−1)r+1

2
Φ1(0)

] [
Φ̂2(0) +

(−1)r+1

2
Φ2(0)

]

+ 2

∫

R
|u|Φ̂1(u)Φ̂2(u) du− 2Φ̂1Φ2(0) +

(
(−1)r +

12N+1(r)

2

)
Φ1(0)Φ2(0).If r is odd and ν < 1/(2r(r + 2)) then the signed asymptoti expetation ofthe two-level density is

[
Φ̂1(0) +

1

2
Φ1(0)

] [
Φ̂2(0) +

1

2
Φ2(0)

]

+ 2

∫

R
|u|Φ̂1(u)Φ̂2(u) du− 2Φ̂1Φ2(0) − Φ1(0)Φ2(0)

+ 1{−1}(ε)Φ1(0)Φ2(0).Remark 6� We have just seen that the omputation of the one-level densityalready reveals that the symmetry type of Fr is Sp when r is even. Theasymptoti expetation of the two-level density also oinides with the oneof Sp (see [19, Theorem A.D.2.2℄ or [26, Theorem 3.3℄). When r > 3 isodd, the �rst part of Theorem C together with a result of Katz & Sarnak(see [19, Theorem A.D.2.2℄ or [26, Theorem 3.2℄) imply that the symmetrytype of Fr is O.Remark 7� The seond part of Theorem C and a result of Katz & Sarnak(see [19, Theorem A.D.2.2℄ or [26, Theorem 3.2℄) imply that the symmetrytype of Fε
r is as in Theorem A for any odd integer r > 1 and ε = ±1.



8 G. RICOTTA AND E. ROYERIn order to prove Theorem C, we need to determine the asymptoti vari-ane of the one-level density whih is de�ned by
lim

q prime
q→+∞

[r]
∑

f∈H∗
κ(q)

ωq(f)



D1,q[Φ; r](f) −
∑

g∈H∗
κ(q)

ωq(g)D1,q [Φ; r](g)




2and the signed asymptoti variane of the one-level density whih is similarlyde�ned by

lim
q prime
q→+∞

2[r]
∑

f∈H∗
κ(q)

ε(Symr f)=ε

ωq(f)


D1,q[Φ; r](f) − 2[r]

∑

g∈H∗
κ(q)

ε(Symr g)=ε

ωq(g)D1,q[Φ; r](g)




2

when r is odd and ε = ±1.Theorem D� Let r > 1 be any integer and ε = ±1. We assume that hypoth-esis Nice(r, f) holds for any prime number q and any primitive holomorphiusp form of level q and even weight κ > 2. If ν < 1/r2 then the asymptotivariane of the one-level density is
2

∫

R
|u|Φ̂2(u) du.If r is odd and ν < 1/(2r(r + 2)) then the signed asymptoti variane of theone-level density is

2

∫

R
|u|Φ̂2(u) du.1.3. Asymptoti moments of the one-level density. Last but not least,we ompute the asymptoti m-th moment of the one-level density whih isde�ned by

lim
q prime
q→+∞

[r]
∑

f∈H∗
κ(q)

ωq(f)



D1,q[Φ; r](f) −
∑

g∈H∗
κ(q)

ωq(g)D1,q[Φ; r](g)




mfor any integer m > 1.Theorem E� Let r > 1 be any integer and ε = ±1. We assume that hypoth-esis Nice(r, f) holds for any prime number q and any primitive holomorphiusp form of level q and even weight κ > 2. If mν < 4 /(r(r + 2)) then theasymptoti m-th moment of the one-level density is

{
0 if m is odd,
2
∫

R|u|Φ̂2(u) du× m!
2m/2(m

2 )!
otherwise.Remark 8� This result is another evidene for mok-Gaussian behaviour (see[13�15℄ for instane).Remark 9� We ompute the �rst asymptoti moments of the one-level density.These omputations allow to ompute the asymptoti expetation of the�rst level-densities [13, �1.2℄. We will use the spei� ase of the asymptotiexpetation of the two-level density and the asymptoti variane in � 5.1.



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 9Let us sketh the proof of Theorem E by explaining the origin of the mainterm. We have to evaluate
∑

06ℓ6m
06α6ℓ

(
m

ℓ

)(
ℓ

α

)
R(q)ℓ−α Eh

q

(
P 1

q [Φ; r]m−ℓP 2
q [Φ; r]α

) (1.3)where P 1
q [Φ; r] has been de�ned in (1.2),

P 2
q [Φ; r](f) = − 2

log(qr)

r∑

j=1

(−1)r−j
∑

p∈P
p∤q

λf

(
p2j
) log p

p
Φ̂

(
2 log p

log(qr)

)and R(q) satis�es
R(q) = O

(
1

log q

)
.The main term omes from the ontribution ℓ = 0 in the sum (1.3). Using aombinatorial lemma, we rewrite this main ontribution as

(−2)m

logm (qr)

m∑

s=1

∑

σ∈P (m,s)

∑

i1,...,isdistintEh
q

(
s∏

u=1

λf

(
p̂r

iu

)̟(σ)
u

)where P (m, s) is the set of surjetive funtions
σ : {1, . . . , α} ։ {1, . . . , s}suh that for any j ∈ {1, . . . , s}, either σ(j) = 1 or there exists k < j suhthat σ(j) = σ(k) + 1 and for any j ∈ {1, . . . , s}

̟
(σ)
j := #σ−1({j}).

(p̂i)i>1 stands for the inreasing sequene of prime numbers di�erent from q.Linearising eah λf

(
p̂r

iu

)̟(σ)
u in terms of λf

(
p̂ju

iu

) with ju runs over integersin [0, r̟
(σ)
u ] and using a trae formula to prove that the only σ ∈ P (m, s)leading to a prinipal ontribution satisfy ̟(σ)

j = 2 for any j ∈ {1, . . . , s},we have to estimate
(−2)m

logm (qr)

m∑

s=1

∑

σ∈P (m,s)

∀j∈{1,...,s},̟(σ)
j =2

∑

i1,...,isdistint s∏

u=1

log2 (p̂iu)

p̂iu

Φ̂2

(
log p̂iu

log (qr)

)
. (1.4)This sum vanishes if m is odd sine

s∑

j=1

̟
(σ)
j = mand it remains to prove the formula for m even. In this ase, and sine wealready omputed the moment for m = 2, we dedue from (1.4) that themain ontribution is

Eh
q (P

1
q [Φ; r]2) × #

{
σ ∈ P (m,m/2): ̟

(σ)
j = 2 (∀j)

}



10 G. RICOTTA AND E. ROYERand we onlude by omputing
#
{
σ ∈ P (m,m/2): ̟

(σ)
j = 2 (∀j)

}
=

m!

2m/2
(

m
2

)
!
.Proving that the other terms lead to error terms is done by implementingsimilar ideas, but requires � espeially for the double produts (namely termsimplying both P 1

q and P 2
q ) � muh more ombinatorial tehnialities.1.4. Organisation of the paper. Setion 2 ontains the automorphi andprobabilisti bakground whih is needed to be able to read this paper.In partiular, we give here the aurate de�nition of symmetri power L-funtions and the properties of Chebyshev polynomials useful in setion 6.In setion 3, we desribe the main tehnial ingredients of this work namelylarge sieve inequalities for Kloosterman sums and Riemann's expliit for-mula for symmetri power L-funtions. In setion 4, some standard fatsabout symmetry groups are given and the omputation of the (signed) as-ymptoti expetation of the one-level density is done. The omputationsof the (signed) asymptoti expetation, ovariane and variane of the two-level density are done in setion 5 whereas the omputation of the asymptotimoments of the one-level density is provided in setion 6. Some well-knownfats about Kloosterman sums are realled in appendix A.Notation� We write P for the set of prime numbers and the main parameterin this paper is a prime number q, whose name is the level, whih goes toin�nity among P. Thus, if f and g are some C-valued funtions of the realvariable then the notations f(q) ≪A g(q) or f(q) = OA(g(q)) mean that

|f(q)| is smaller than a "onstant" whih only depends on A times g(q) atleast for q a large enough prime number and similarly, f(q) = o(1) meansthat f(q) → 0 as q goes to in�nity among the prime numbers. We will denoteby ε an absolute positive onstant whose de�nition may vary from one lineto the next one. The harateristi funtion of a set S will be denoted 1S.2. Automorphi and probabilisti bakground2.1. Automorphi bakground.2.1.1. Overview of holomorphi usp forms. In this setion, we reall generalfats about holomorphi usp forms. A referene is [16℄.Generalities � We write Γ0(q) for the ongruene subgroup of level q whihats on the upper-half plane H. A holomorphi funtion f : H 7→ C whihsatis�es
∀
(
a b
c d

)
∈ Γ0(q),∀z ∈ H, f

(
az + b

cz + d

)
= (cz + d)κf(z)and vanishes at the usps of Γ0(q) is a holomorphi usp form of level q,even weight κ > 2. We denote by Sκ(q) this spae of holomorphi uspforms whih is equipped with the Peterson inner produt

〈f1, f2〉q :=

∫

Γ0(q)\H
yκf1(z)f2(z)

dxdy

y2
.



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 11The Fourier expansion at the usp ∞ of any suh holomorphi usp form fis given by
∀z ∈ H, f(z) =

∑

n>1

ψf (n)n(κ−1)/2e(nz)where e(z) := exp (2iπz) for any omplex number z. The Heke operatorsat on Sκ(q) by
Tℓ(f)(z) :=

1√
ℓ

∑

ad=ℓ
(a,q)=1

∑

06b<d

f

(
az + b

d

)for any z ∈ H. If f is an eigenvetor of Tℓ, we write λf (ℓ) the orrespondingeigenvalue. We an prove that Tℓ is hermitian if ℓ > 1 is any integer oprimewith q and that
Tℓ1 ◦ Tℓ2 =

∑

d|(ℓ1,ℓ2)
(d,q)=1

Tℓ1ℓ2/d2 (2.1)for any integers ℓ1, ℓ2 > 1. By Atkin & Lehner theory [1℄, we get a splittingof Sκ(q) into So
κ(q) ⊕⊥〈·,·〉q Sn

κ(q) where
So

κ(q) := VectC {f(qz), f ∈ Sκ(1)} ∪ Sκ(1),

Sn
κ(q) := (So

κ(q))⊥〈·,·〉qwhere "o" stands for "old" and "n" for "new". Note that So
κ(q) = {0} if

κ < 12 or κ = 14. These two spaes are Tℓ-invariant for any integer ℓ > 1oprime with q. A primitive usp form f ∈ Sn
κ(q) is an eigenfuntion of anyoperator Tℓ for any integer ℓ > 1 oprime with q whih is new and arith-metially normalised namely ψf (1) = 1. Suh an element f is automatiallyan eigenfuntion of the other Heke operators and satis�es ψf (ℓ) = λf (ℓ) forany integer ℓ > 1. Moreover, if p is a prime number, de�ne αf (p), βf (p) asthe omplex roots of the quadrati equation

X2 − λf (p)X + εq(p) = 0 (2.2)where εq denotes the trivial Dirihlet harater of modulus q. Then it followsfrom the work of Eihler, Shimura, Igusa and Deligne that
|αf (p)|, |βf (p)| 6 1for any prime number p and so

∀ℓ > 1, |λf (ℓ)| 6 τ(ℓ). (2.3)The set of primitive usp forms is denoted by H∗
κ(q). It is an orthogonalbasis of Sn

κ(q). Let f be a holomorphi usp form with Heke eigenvalues
(λf (ℓ))(ℓ,q)=1. The omposition property (2.1) entails that for any integer
ℓ1 > 1 and for any integer ℓ2 > 1 oprime with q the following multipliative



12 G. RICOTTA AND E. ROYERrelations hold:
ψf (ℓ1)λf (ℓ2) =

∑

d|(ℓ1,ℓ2)
(d,q)=1

ψf

(
ℓ1ℓ2

/
d2
)
, (2.4)

ψf (ℓ1ℓ2) =
∑

d|(ℓ1,ℓ2)
(d,q)=1

µ(d)ψf (ℓ1/d) λf (ℓ2/d) (2.5)and these relations hold for any integers ℓ1, ℓ2 > 1 if f is primitive. Theadjointness relation is
λf (ℓ) = λf (ℓ), ψf (ℓ) = ψf (ℓ) (2.6)for any integer ℓ > 1 oprime with q and this remains true for any integer

ℓ > 1 if f is primitive.Trae formulas � We need two de�nitions. The harmoni weight assoiatedto any f in Sκ(q) is de�ned by
ωq(f) :=

Γ(κ− 1)

(4π)κ−1〈f, f〉q
. (2.7)For any natural integer m and n, the ∆q-symbol is given by

∆q(m,n) := δm,n + 2πiκ
∑

c>1
q|c

S(m,n; c)

c
Jκ−1

(
4π

√
mn

c

) (2.8)where S(m,n; c) is a Kloosterman sum de�ned in appendix A.3 and Jκ−1 isa Bessel funtion of �rst kind de�ned in appendix A.2.The following propo-sition is Peterson's trae formula.Proposition 2.1� If Hκ(q) is any orthogonal basis of Sκ(q) then
∑

f∈Hκ(q)

ωq(f)ψf (m)ψf (n) = ∆q(m,n) (2.9)for any integers m and n.H. Iwanie, W. Luo & P. Sarnak proved in [18℄ a useful variation of Pe-terson's trae formula whih is an average over only primitive usp forms.This is more onvenient when there are some old forms whih is the ase forinstane when the weight κ is large. Let ν be the arithmeti funtion de�nedby
ν(n) := n

∏

p|n
(1 + 1/p)for any integer n > 1.Proposition 2.2 (H. Iwanie, W. Luo & P. Sarnak (2001))� If (n, q2) | q and

q ∤ m then
∑

f∈H∗
κ(q)

ωq(f)λf (m)λf (n) = ∆q(m,n) − 1

qν((n, q))

∑

ℓ|q∞

1

ℓ
∆1

(
mℓ2, n

)
.(2.10)



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 13Remark 2.3� The �rst term in (2.10) is exatly the term whih appears in(2.9) whereas the seond term in (2.10) will be usually very small as an oldform omes from a form of level 1! Thus, everything works in pratie as ifthere were no old forms in Sκ(q).2.1.2. Chebyshev polynomials and Heke eigenvalues. Let p 6= q a primenumber and f ∈ H∗
κ(q). The multipliativity relation (2.4) leads to
∑

r>0

λf (pr)tr =
1

1 − λf (p)t+ t2
.It follows that

λf (pr) = Xr (λf (p)) (2.11)where the polynomials Xr are de�ned by their generating series
∑

r>0

Xr(x)t
r =

1

1 − xt+ t2
.They are also de�ned by

Xr(2 cos θ) =
sin ((r + 1)θ)

sin (θ)
.These polynomials are known as the Chebyshev polynomials of seond kind.Eah Xr has degree r, is even if r is even and odd otherwise. The family

{Xr}r>0 is a basis for Q[X], orthonormal with respet to the inner produt
〈P,Q〉ST :=

1

π

∫ 2

−2
P (x)Q(x)

√
1 − x2

4
dx.In partiular, for any integer ̟ > 0 we have

X̟
r =

r∑̟

j=0

x(̟, r, j)Xj (2.12)with
x(̟, r, j) := 〈X̟

r ,Xj〉ST =
2

π

∫ π

0

sin̟ ((r + 1)θ) sin ((j + 1)θ)

sin̟−1 (θ)
dθ. (2.13)The following relations are useful in this paper

x(̟, r, j) =






1 if j = 0 and ̟ is even,
0 if j is odd and r is even,
0 if j = 0, ̟ = 1 and r > 1. (2.14)2.1.3. Overview of L-funtions assoiated to primitive usp forms. Let f in

H∗
κ(q). We de�ne

L(f, s) :=
∑

n>1

λf (n)

ns
=
∏

p∈P

(
1 − αf (p)

ps

)−1(
1 − βf (p)

ps

)−1whih is an absolutely onvergent and non-vanishing Dirihlet series andEuler produt on ℜe s > 1 and also
L∞(f, s) := ΓR (s+ (κ− 1)/2) ΓR (s+ (κ+ 1)/2)



14 G. RICOTTA AND E. ROYERwhere ΓR(s) := π−s/2 Γ (s/2) as usual. The funtion
Λ(f, s) := qs/2L∞(f, s)L(f, s)is a ompleted L-funtion in the sense that it satis�es the following nieanalyti properties:

• the funtion Λ(f, s) an be extended to an holomorphi funtion oforder 1 on C,
• the funtion Λ(f, s) satis�es a funtional equation of the shape

Λ(f, s) = iκεf (q)Λ(f, 1 − s)where
εf (q) = −√

qλf (q) = ±1. (2.15)2.1.4. Overview of symmetri power L-funtions. Let f in H∗
κ(q). For anynatural integer r > 1, the symmetri r-th power assoiated to f is given bythe following Euler produt of degree r + 1

L(Symr f, s) :=
∏

p∈P
Lp(Symr f, s)where

Lp(Symr f, s) :=
r∏

i=0

(
1 − αf (p)iβf (p)r−i

ps

)−1for any prime number p. Let us remark that the loal fators of this Eulerprodut may be written as
Lp(Symr f, s) =

r∏

i=0

(
1 − αf (p)2i−r

ps

)−1for any prime number p 6= q and
Lq(Symr f, s) = 1 − λf (q)r

qs
= 1 − λf (qr)

qsas αf (p) + βf (p) = λf (p) and αf (p)βf (p) = εq(p) for any prime number paording to (2.2). On ℜe s > 1, this Euler produt is absolutely onvergentand non-vanishing. We also de�nes [4, (3.16) and (3.17)℄ a loal fator at ∞whih is given by a produt of r + 1 Gamma fators namely
L∞(Symr f, s) :=

∏

06a6(r−1)/2

ΓR (s+ (2a+ 1)(κ− 1)/2) ΓR (s+ 1 + (2a+ 1)(κ − 1)/2)if r is odd and
L∞(Symr f, s) := ΓR(s+µκ,r)

∏

16a6r/2

ΓR (s+ a(κ− 1)) ΓR (s+ 1 + a(κ− 1))if r is even where
µκ,r :=

{
1 if r(κ− 1)/2 is odd,
0 otherwise.All the loal data appearing in these loal fators are enapsulated in thefollowing ompleted L-funtion

Λ(Symr f, s) := (qr)s/2 L∞(Symr f, s)L(Symr f, s).



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 15Here, qr is alled the arithmeti ondutor of Λ(Symr f, s) and somehowmeasures the size of this funtion. We will need some ontrol on the an-alyti behaviour of this funtion. Unfortunately, suh information is noturrently known in all generality. Our main assumption is given in hypothe-sis Nice(r, f) page 2. Indeed, muh more is expeted to hold as it is disussedin details in [4℄ namely the following assumption is strongly believed to betrue and lies in the spirit of Langlands program.Hypothesis Symr(f)� There exists an automorphi uspidal self-dual repre-sentation, denoted by Symr πf = ⊗′
p∈P∪{∞} Symr πf,p, of GLr+1 (AQ) whoseloal fators L (Symr πf,p, s) agree with the loal fators Lp (Symr f, s) forany p in P ∪ {∞}.Note that the loal fators and the arithmeti ondutor in the de�nitionof Λ (Symr f, s) and also the sign of its funtional equation whih all appearwithout any explanations so far ome from the expliit omputations whihhave been done via the loal Langlands orrespondene by J. Cogdell andP. Mihel in [4℄. Obviously, hypothesis Nice(r, f) is a weak onsequene ofhypothesis Symr(f). For instane, the uspidality ondition in hypothesis

Symr(f) entails the fat that Λ (Symr f, s) is of order 1 whih is ruial forus to state a suitable expliit formula. As we will not exploit the power ofautomorphi theory in this paper, hypothesis Nice(r, f) is enough for ourpurpose. In addition, it may happen that hypothesis Nice(r, f) is knownwhereas hypothesis Symr f is not. Let us overview what has been done sofar. For any f in H∗
κ(q), hypothesis Symr f is known for r = 1 (E. Heke),

r = 2 thanks to the work of S. Gelbart and H. Jaquet [8℄ and r = 3, 4 fromthe works of H. Kim and F. Shahidi [20�22℄.2.2. Probabilisti bakground. The set H∗
κ(q) an be seen as a probabil-ity spae if

• the measurable sets are all its subsets,
• the harmoni probability measure is de�ned by

µh
q (A) :=

∑h

f∈A

1 :=
∑

f∈A

ωq(f)for any subset A of H∗
κ(q).Indeed, there is a slight abuse here as we only know that

lim
q∈P

q→+∞
µh

q (H∗
κ(q)) = 1 (2.16)(see remark 3.12) whih means that µh

q is an �asymptoti� probability mea-sure. If Xq is a measurable omplex-valued funtion on H∗
κ(q) then it is verynatural to ompute its expetation de�ned by

Eh
q (Xq) :=

∑h

f∈H∗
κ(q)

Xq(f),its variane de�ned by
Vh

q (Xq) := Eh
q

((
Xq − Eh

q (Xq)
)2
)



16 G. RICOTTA AND E. ROYERand its m-th moments given by
Mh

q,m (Xq) := Eh
q

((
Xq − Eh

q (Xq)
)m)for any integer m > 1. If X := (Xq)q∈P is a sequene of suh measurableomplex-valued funtions then we may legitimely wonder if the assoiatedomplex sequenes

(
Eh

q (Xq)
)

q∈P
,
(
Vh

q (Xq)
)

q∈P
,
(
Mh

q,m (Xq)
)

q∈Ponverge as q goes to in�nity among the primes. If yes, the following generalnotations will be used for their limits
Eh
∞ (X) , Vh

∞ (X) , Mh
∞,m (X)for any natural integer m. In addition, these potential limits are alledasymptoti expetation, asymptoti variane and asymptoti m-th momentsof X for any natural integer m > 1.For the end of this setion, we assume that r is odd. We may remarkthat the sign of the funtional equations of any L(Symr f, s) when q goes toin�nity among the prime numbers and f ranges over H∗

κ(q) is not onstantas it depends on εf (q). Let
Hε

κ(q) := {f ∈ H∗
κ(q), ε(Symr f) = ε}where ε = ±1. If f ∈ H+1

κ (q), then Symr f is said to be even whereas it issaid to be odd if f ∈ H−1
κ (q). It is well-known that

lim
q∈P

q→+∞
µh

q ({f ∈ H∗
k(q) : εf (q) = ε}) =

1

2
.Sine ε(Symr f) is εq(f) up to a sign depending only on κ and r (by hypoth-esis Nice(r, f)), it follows that

lim
q∈P

q→+∞
µh

q (Hε
κ(q)) =

1

2
. (2.17)For Xq as previous, we an ompute its signed expetation de�ned by

Eh,ε
q (Xq) := 2

∑h

f∈Hε
κ(q)

Xq(f),its signed variane de�ned by
Vh,ε

q (Xq) := Eh,ε
q

((
Xq − Eh,ε

q (Xq)
)2
)and its signed m-th moments given by

Mh,ε
q,m (Xq) := Eh,ε

q

((
Xq − Eh,ε

q (Xq)
)m)for any natural integerm > 1. In ase of existene, we write Eh,ε

∞ (X), Vh,ε
∞ (X)and Mh,ε

∞,m(X) for the limits whih are alled signed asymptoti expetation,



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 17signed asymptoti variane and signed asymptoti moments. The signedexpetation and the expetation are linked through the formula
Eh,ε

q (Xq) = 2
∑h

f∈H∗
κ(q)

1 + ε× ε(Symr f)

2
Xq(f)

= Eh
q (Xq) − ε× ε(κ, r)

√
q
∑h

f∈H∗
κ(q)

λf (q)Xq(f). (2.18)3. Main tehnial ingredients of this work3.1. Large sieve inequalities for Kloosterman sums. One of the mainingredients in this work is some large sieve inequalities for Kloosterman sumswhih have been established by J.-M. Deshouillers & H. Iwanie in [5℄ andthen re�ned by V. Blomer, G. Haros & P. Mihel in [2℄. The proof of theselarge sieve inequalities relies on the spetral theory of automorphi formson GL2 (AQ). In partiular, the authors have to understand the size of theFourier oe�ients of these automorphi usp forms. We have already seenthat the size of the Fourier oe�ients of holomorphi usp forms is wellunderstood (2.3) but we only have partial results on the size of the Fourieroe�ients of Maass usp forms whih do not ome from holomorphi forms.We introdue the following hypothesis whih measures the approximationtowards the Ramanujan-Peterson-Selberg onjeture.Hypothesis H2(θ)� If π := ⊗′
p∈P∪{∞}πp is any automorphi uspidal formon GL2(AQ) with loal Heke parameters α(1)

π (p), α(2)
π (p) at any prime num-ber p and µ(1)

π (∞), µ(2)
π (∞) at in�nity then

∀j ∈ {1, 2}, |α(j)
π (p)| 6 pθfor any prime number p for whih πp is unrami�ed and

∀j ∈ {1, 2}, |ℜe
(
µ(j)

π (∞)
)
| 6 θprovided π∞ is unrami�ed.De�nition 3.1� We say that θ is admissible if H2(θ) is satis�ed.Remark 3.2� The smallest admissible value of θ is urrently θ0 = 7

64 thanksto the works of H. Kim, F. Shahidi and P. Sarnak [20,21℄. The Ramanujan-Peterson-Selberg onjeture asserts that 0 is admissible.De�nition 3.3� Let T : R3 → R+ and (M,N,C) ∈ (R \ {0})3, we say thata smooth funtion h : R3 → R3 satis�es the property P(T ;M,N,C) if thereexists a real number K > 0 suh that
∀(i, j, k) ∈ N3,∀(x1, x2, x3) ∈

[
M

2
, 2M

]
×
[
N

2
, 2N

]
×
[
C

2
, 2C

]
,

xi
1x

j
2x

k
3

∂i+j+kh

∂xi
1∂x

j
2∂x

k
3

(x1, x2, x3) 6 KT (M,N,C)

(
1 +

√
MN

C

)i+j+k

.



18 G. RICOTTA AND E. ROYERWith this de�nition in mind, we are able to write the following proposi-tion whih is speial ase of a large sieve inequality adapted from the one ofDeshouillers & Iwanie [5, Theorem 9℄ by Blomer, Haros & Mihel [2, The-orem 4℄.Proposition 3.4� Let q be some positive integer. Let M,N,C > 1 and g bea smooth funtion satisfying property P(1;M,N,C). Consider two sequenesof omplex numbers (am)m∈[M/2,2M ] and (bn)n∈[N/2,2N ]. If θ is admissibleand MN ≪ C2 then
∑

c>1
q|c

∑

m>1

∑

n>1

ambn
S(m,±n; c)

c
g(m,n; c)

≪ε (qMNC)ε
(
C2

MN

)θ (
1 +

M

q

)1/2 (
1 +

N

q

)1/2

‖a‖2‖b‖2 (3.1)for any ε > 0.We shall use a test funtion. For any ν > 0 let us de�ne Sν(R) as thespae of even Shwartz funtion Φ whose Fourier transform
Φ̂(ξ) := F [x 7→ Φ(x)](ξ) :=

∫

R
Φ(x)e(−xξ) dxis ompatly supported in [−ν,+ν]. Thanks to the Fourier inversion formula:

Φ(x) =

∫

R
Φ̂(ξ)e(xξ) dx = F [ξ 7→ Φ̂(ξ)](−x), (3.2)suh a funtion Φ an be extended to an entire even funtion whih satis�es

∀s ∈ C, Φ(s) ≪n
exp (ν|ℑms|)

(1 + |s|)n (3.3)for any integer n > 0.The version of the large sieve inequality we shall useseveral times in this paper is then the following.Corollary 3.5� Let q be some prime number, k1, k2 > 0 be some integers,
α1, α2, ν be some positive real numbers and Φ ∈ Sν(R). Let h be somesmooth funtion satisfying property P(T ;M,N,C) for any 1 6 M 6 qk1α1ν,
1 6 N 6 qk2α2ν and C > q. Let (ap) p∈P

p6qα1ν
and (bp) p∈P

p6qα2ν
be some omplexnumbers sequenes. If θ is admissible and ν 6 2 /(k1α1 + k2α2) then

∑

c>1
q|c

∑

p1∈P
p1∤q

∑

p2∈P
p2∤q

ap1bp2

S(pk1
1 , p

k2
2 ; c)

c
h
(
pk1
1 , p

k2
2 ; c

)
Φ̂

(
log p1

log(qα1)

)
Φ̂

(
log p2

log(qα2)

)

≪ qε
∑♯

16M6qνα1k1

16N6qνα2k2

C>q/2

(
1 +

√
M

q

)(
1 +

√
N

q

)(
C2

MN

)θ

T (M,N,C)‖a‖2‖b‖2(3.4)where ♯ indiates that the sum is on powers of √2. The onstant implied bythe symbol ≪ depends at most on ε, k1, k2, α1, α2 and ν.
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n∈N

and g(m,n; c) by
âm := am1/k1 1Pk1 (m) 1[1,qνα1k1 ](m) (3.5)
b̂n := bn1/k1 1Pk1 (n) 1[1,qνα1k1 ](n) (3.6)

g(m,n; c) := h(m,n, c)Φ̂

(
logm

log(qα1k1)

)
Φ̂

(
log n

log(qα2k2)

)
. (3.7)Using a smooth partition of unity, as detailed in � A.1, we need to evaluate

∑♯

16M6qνα1k1

16N6qνα2k2

C>q/2

T (M,N,C)
∑

c>1
q|c

∑

m>1

∑

n>1

âmb̂n
S(m,n; c)

c

gM,N,C(m,n; c)

T (M,N,C)
. (3.8)Sine ν 6 2 /(α1k1 + α2k2) , the �rst summation is restrited to MN ≪ C2hene, using proposition 3.4, the quantity in (3.8) is

≪ ‖a‖2‖b‖2q
ε

∑♯

16M6qνα1k1

16N6qνα2k2

C>q/2

T (M,N,C)

(
1 +

√
M

q

)(
1 +

√
N

q

)(
C2

MN

)θ

.(3.9)
�3.2. Riemann's expliit formula for symmetri power L-funtions.In this setion, we give an analog of Riemann-von Mangoldt's expliit formulafor symmetri power L-funtions. Before that, let us reall some preliminaryfats on zeros of symmetri power L-funtions whih an be found in setion5.3 of [17℄. Let r > 1 and f ∈ H∗

κ(q) for whih hypothesis Nice(r, f) holds.All the zeros of Λ(Symr f, s) are in the ritial strip {s ∈ C : 0 < ℜe s < 1}.The multiset of the zeros of Λ(Symr f, s) ounted with multipliities is givenby {
ρ
(j)
f,r = β

(j)
f,r + iγ

(j)
f,r : j ∈ E(f, r)

}where
E(f, r) :=

{
Z if Symr f is odd
Z \ {0} if Symr f is even.and
β

(j)
f,r = ℜe ρ(j)

f,r,

γ
(j)
f,r = ℑmρ

(j)
f,rfor any j ∈ E(f, r). We enumerate the zeros suh that(1) the sequene j 7→ γ

(j)
f,r is inreasing(2) we have j > 0 if and only if γ(j)

f,r > 0(3) we have ρ(−j)
f,r = 1 − ρ

(j)
f,r.Note that if ρ(j)

f,r is a zero of Λ(Symr f, s) then ρ(j)
f,r, 1− ρ

(j)
f,r and 1− ρ

(j)
f,r arealso some zeros of Λ(Symr f, s). In addition, remember that if Symr f is oddthen the funtional equation of L(Symr f, s) evaluated at the ritial point
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s = 1/2 provides a trivial zero denoted by ρ(0)

f,r. It an be shown [17, Theorem5.8℄ that the number of zeros Λ(Symr f, s) satisfying |γ(j)
f,r | 6 T is

T

π
log

(
qrT r+1

(2πe)r+1

)
+O (log(qT )) (3.10)as T > 1 goes to in�nity. We state now the Generalised Riemann Hypothesiswhih is the main onjeture about the horizontal distribution of the zerosof Λ(Symr f, s) in the ritial strip.Hypothesis GRH(r)� For any prime number q and any f in H∗

κ(q), allthe zeros of Λ(Symr f, s) lie on the ritial line {s ∈ C : ℜe s = 1/2} namely
β

(j)
r,f = 1/2 for any j ∈ E(f, r).Remark 3.6� We do not use this hypothesis in our proofs.Under hypothesis GRH(r), it an be shown that the number of zeros ofthe funtion Λ(Symr f, s) satisfying |γ(j)

f,r | 6 1 is given by
1

π
log (qr)(1 + o(1))as q goes to in�nity. Thus, the spaing between two onseutive zeros withimaginary part in [0, 1] is roughly of size

2π

log (qr)
. (3.11)We aim at studying the loal distribution of the zeros of Λ(Symr f, s) in aneighborhood of the real axis of size 1/ log qr sine in suh a neighborhood,we expet to ath only few zeros (but without being able to say that weath only one2). Hene, we normalise the zeros by de�ning

ρ̂
(j)
f,r :=

log (qr)

2iπ

(
β

(j)
f,r −

1

2
+ iγ

(j)
f,r

)
.Note that

ρ̂
(−j)
f,r = −ρ̂(j)

f,r.De�nition 3.7� Let f ∈ H∗
κ(q) for whih hypothesis Nice(r, f) holds and let

Φ ∈ Sν(R). The one-level density (relatively to Φ) of Symr f is
D1,q[Φ; r](f) :=

∑

j∈E(f,r)

Φ
(
ρ̂
(j)
f,r

)
. (3.12)To study D1,q[Φ; r](f) for any Φ ∈ Sν(R), we transform this sum overzeros into a sum over primes in the next proposition. In other words, weestablish an expliit formula for symmetri power L-funtions. Sine theproof is lassial, we refer to [18, �4℄ or [9, �2.2℄ whih present a method thathas just to be adapted to our setting.2We refer to Miller [25℄ and Omar [27℄ for works related to the ��rst� zero.
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κ(q) for whih hypothesis Nice(r, f)holds and let Φ ∈ Sν(R). We have

D1,q[Φ; r](f) = E[Φ; r]+P 1
q [Φ; r](f)+

r−1∑

m=0

(−1)mP 2
q [Φ; r,m](f)+O

(
1

log (qr)

)where
E[Φ; r] := Φ̂(0) +

(−1)r+1

2
Φ(0),

P 1
q [Φ; r](f) := − 2

log (qr)

∑

p∈P
p∤q

λf (pr)
log p√
p

Φ̂

(
log p

log (qr)

)
,

P 2
q [Φ; r,m](f) := − 2

log (qr)

∑

p∈P
p∤q

λf

(
p2(r−m)

) log p

p
Φ̂

(
2 log p

log (qr)

)for any integer m ∈ {0, . . . , r − 1}.3.3. Contribution of the old forms. In this short setion, we prove thefollowing useful lemmas.Lemma 3.9� Let p1 and p2 6= q be some prime numbers and a1, a2, a besome nonnegative integers. Then
∑

ℓ|q∞

∆1(ℓ
2pa1

1 , p
a2
2 q

a)

ℓ
≪ 1

qa/2the implied onstant depending only on a1 and a2.Proof. Using proposition 2.1 and the fat that Hκ(1) = H∗
κ(1), we write

∆1(ℓ
2pa1

1 , p
a2
2 q

a) =
∑h

f∈H∗
κ(1)

λf (ℓ2pa1
1 )λf (pa2

2 q
a) (3.13)

≪
∑h

f∈H∗
κ(1)

|λf (ℓ2pa1
1 )| · |λf (pa2

2 )| · |λf (qa)|. (3.14)By Deligne's bound (2.3) we have
|λf (ℓ2pa1

1 )| · |λf (pa2
2 )| 6 τ(ℓ2pa1

1 )τ(pa2
2 ) 6 (a1 + 1)(a2 + 2)τ(ℓ2). (3.15)By the multipliativity relation (2.4) and the value of the sign of the fun-tional equation (2.15), we have

|λf (qa)| ≪ 1

qa/2
. (3.16)We obtain the result by reporting (3.16) and (3.15) in (3.14) and by using(2.16) and

∑

ℓ|q∞

τ(ℓ2)

ℓ
=

1 + 1/q

(1 − 1/q)2
≪ 1.

�



22 G. RICOTTA AND E. ROYERLemma 3.10� Let m,n > 1 be some oprime integers. Then,
∆q(m,n) − δ(m,n) ≪






(mn)1/4

q log
(

mn
q2

) if mn > q2

(mn)(κ−1)/2

qκ−1/2 6
(mn)1/4

q if mn 6 q2.Proof. This is a diret onsequene of the Weil-Estermann bound (A.6) andlemma A.1. �Corollary 3.11� For any prime number q, we have
√
q
∑h

f∈H∗
κ(q)

λf (q) ≪ 1

qδκwhere
δκ :=

{
κ−1
2 if κ 6 10 or κ = 14

5
2 otherwise.Proof of orollary 3.11. Let K = {κ ∈ 2N : 2 6 κ 6 14, κ 6= 12}. By propo-sition 2.2, we have

∑h

f∈H∗
κ(q)

λf (q) = ∆q(1, q) −
δ(κ /∈ K)

qν(q)

∑

ℓ|q∞

∆1(ℓ
2, q)

ℓ
. (3.17)The term δ(κ /∈ K) omes from proposition 2.1 with the fat that there is nousp forms of weight κ ∈ K and level 1. Lemma 3.10 gives

∆q(1, q) ≪
1

qκ/2
(3.18)and lemma 3.9 gives

∑

ℓ|q∞

∆1(ℓ
2, q)

ℓ
≪ 1√

q
. (3.19)Sine ν(q) > q, the result follows from reporting (3.18) and (3.19) in (3.17).

�Remark 3.12� In a very similar fashion, one an prove that
µh

q (H∗
κ(q)) = Eh

q(1) = 1 +O

(
1

qγκ

)
. (3.20)where

γκ :=

{
κ− 1

2 if κ 6 10 or κ = 14

1 otherwise.Corollary 3.11, (3.20) and (2.18) imply
Eh,ε

q (1) = 1 +O

(
1

qβκ

) (3.21)where
βκ :=

{
κ−1

2 if κ 6 10 or κ = 14

1 otherwise.A diret onsequene of lemma 3.9 is the following one.



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 23Lemma 3.13� Let α1, α2, β1, β2, γ1, γ2, w be some nonnegative real numbers.Let Φ1 and Φ2 be in Sν(R). Then,
∑

p1∈P
p1∤q

∑

p2∈P
p2∤q

log p1

pα1
1

log p2

pα2
2

Φ̂1

(
log p1

log (qβ1)

)
Φ̂2

(
log p2

log (qβ2)

)∑

ℓ|q∞

∆1(ℓ
2pγ1

1 , p
γ2
2 q

w)

ℓ

≪ qδν−w/2+εwith δ given in table 1.4. Linear statistis for low-lying zeros4.1. Density results for families of L-funtions. We brie�y reall somewell-known features that an be found in [18℄. Let F be a family of L-funtions indexed by the arithmeti ondutor namely
F =

⋃

Q>1

F(Q)where the arithmeti ondutor of any L-funtion in F(Q) is of order Q inthe logarithmi sale. It is expeted that there is a symmetry group G(F)of matries of large rank endowed with a probability measure whih anbe assoiated to F suh that the low-lying zeros of the L-funtions in Fnamely the non-trivial zeros of height less than 1/ logQ are distributed likethe eigenvalues of the matries in G(F). In other words, there should exista symmetry group G(F) suh that for any ν > 0 and any Φ ∈ Sν(R),
lim

Q→+∞
1

F(Q)

∑

π∈F(Q)

∑

06βπ61
γπ∈R

L(π,βπ+iγπ)=0

Φ

(
logQ

2iπ

(
βπ − 1

2
+ iγπ

))

=

∫

R
Φ(x)W1(G(F))(x) dxwhere W1(G(F)) is the one-level density of the eigenvalues of G(F). In thisase, F is said to be of symmetry type G(F) and we said that we proveda density result for F . For instane, the following densities are determinedin [19℄:

W1(SO(even))(x) = 1 +
sin (2πx)

2πx
,

W1(O)(x) = 1 +
1

2
δ0(x),

W1(SO(odd))(x) = 1 − sin (2πx)

2πx
+ δ0(x),

W1(Sp)(x) = 1 − sin (2πx)

2πxwhere δ0 is the Dira distribution at 0. Aording to Planherel's formula,
∫

R
Φ(x)W1(G(F))(x) dx =

∫

R
Φ̂(x)Ŵ1(G(F))(x) dx
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Ŵ1(SO(even))(x) = δ0(x) +

1

2
η(x),

Ŵ1(O)(x) = δ0(x) +
1

2
,

Ŵ1(SO(odd))(x) = δ0(x) −
1

2
η(x) + 1,

Ŵ1(Sp)(x) = δ0(x) −
1

2
η(x)where

η(x) :=






1 if |x| < 1,
1
2 if x = ±1,
0 otherwise.As a onsequene, if we an only prove a density result for ν 6 1, the threeorthogonal densities are indistinguishable although they are distinguishablefrom Sp. Thus, the hallenge is to pass the natural barrier ν = 1.4.2. Asymptoti expetation of the one-level density. The aim of thispart is to prove a density result for the family

Fr :=
⋃

q∈P
{L(Symr f, s), f ∈ H∗

κ(q)}for any r > 1 whih onsists in proving the existene and omputing theasymptoti expetation Eh
∞ (D1[Φ; r]) of D1[Φ; r] := (D1,q[Φ; r])q∈P for any

r > 1 and for Φ in Sν(R) with ν > 0 as large as possible in order to be ableto distinguish between the three orthogonal densities if r is small enough.Reall that E[Φ; r] has been de�ned in proposition 3.8.Theorem 4.1� Let r > 1 and Φ ∈ Sν(R). We assume that hypothesis
Nice(r, f) holds for any prime number q and any f ∈ H∗

κ(q) and also that θis admissible. Let
ν1,max(r, κ, θ) :=

(
1 − 1

2(κ − 2θ)

)
2

r2
.If ν < ν1,max(r, κ, θ) then

Eh
∞ (D1[Φ; r]) = E[Φ; r].Remark 4.2� We remark that

ν1,max(r, κ, θ0) =

(
1 − 16

32κ− 7

)
2

r2
>

82

57r2
, (4.1)

ν1,max(r, κ, 0) =

(
1 − 1

2κ

)
2

r2
>

3

2r2
(4.2)and thus ν1,max(1, κ, θ0) > 1 whereas ν1,max(r, κ, θ0) 6 1 for any r > 2.Remark 4.3� Note that

E[Φ; r] =

∫

R
Φ̂(x)

(
δ0(x) +

(−1)r+1

2

)
dx.



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 25Thus, this theorem reveals that the symmetry type of Fr is
G(Fr) =






Sp if r is even,
O if r = 1,
SO(even) or O or SO(odd) if r > 3 is odd.Some additional omments are given in remark 4 page 5.Proof of theorem 4.1. The proof is detailed and will be a model for the nextdensity results. Aording to proposition 3.8 and (3.20) , we have

Eh
q (D1,q[Φ; r]) = E[Φ; r] + Eh

q

(
P 1

q [Φ; r]
)

+

r−1∑

m=0

(−1)m Eh
q

(
P 2

q [Φ; r,m]
)

+O

(
1

log (qr)

)
. (4.3)The �rst term in (4.3) is the main term given in the theorem. We nowestimate the seond term of (4.3) via the trae formula given in proposition2.2.

Eh
q

(
P 1

q [Φ; r]
)

= P1
q,new[Φ; r] + P1

q,old[Φ; r] (4.4)where
P1

q,new[Φ; r] = − 2

log (qr)

∑

p∈P
p∤q

∆q(p
r, 1)

log p√
p

Φ̂

(
log p

log (qr)

)
,

P1
q,old[Φ; r] =

2

q log (qr)

∑

ℓ|q∞

1

ℓ

∑

p∈P
p∤q

∆1(p
rℓ2, 1)

log p√
p

Φ̂

(
log p

log (qr)

)
.Let us estimate the new part whih an be written as

P1
q,new[Φ; r] = −2(2πiκ)

log (qr)

∑

c>1
q|c

∑

p∈P

(
log p√
p
δq∤p 1[1,qrν ](p)

)
S(pr, 1; c)

c

× Jκ−1

(
4π

√
pr

c

)
Φ̂

(
log p

log (qr)

)
.Thanks to (A.3), the funtion

h(m; c) := Jκ−1

(
4π

√
m

c

)satis�es hypothesis P(T ;M, 1, C) with
T (M, 1, C) =

(
1 +

√
M

C

)1/2−κ(√
M

C

)κ−1

.



26 G. RICOTTA AND E. ROYERHene, if ν 6 2/r2 then orollary 3.5 leads to
P1

q,new[Φ; r] ≪ε q
ε

∑♯

16M6qνr2

C>q/2

(
1 +

√
M

q

)(√
M

C

)κ−1−2θ (4.5)
≪ε q

ε
∑♯

16M6qνr2

(
M

κ−1
2

−θ

qκ−1−2θ
+

M
κ
2
−θ

qκ− 1
2
−2θ

) (4.6)thanks to (A.2). Summing over M via (A.1) leads to
P1

q,new[Φ; r] ≪ε q
(κ−1

2
−θ)(r2ν−2)+ε + q(

κ
2
−θ)r2ν−(κ− 1

2
−2θ)+ε (4.7)whih is an admissible error term if ν < ν1,max(r, κ, θ). Aording to lemma3.13 (with α2 = +∞) we have

P1
q,old[Φ; r] ≪ε q

rν
2
−1+ε (4.8)whih is an admissible error term if ν < 2/r. Reporting (4.7) and (4.8) in(4.4) we obtain

Eh
q

(
P 1

q [Φ; r]
)
≪ 1

qδ1
(4.9)for some δ1 > 0 (depending on ν and r) as soon as ν < ν1,max(r, κ, θ). Wenow estimate the third term of (4.3). If 0 6 m 6 r−1 then the trae formulagiven in proposition 2.2 implies that

Eh
q

(
P 2

q [Φ; r,m]
)

= P2
q,new[Φ; r,m] + P2

q,old[Φ; r,m] (4.10)where
P2

q,new[Φ; r,m] = − 2

log (qr)

∑

p∈P
p∤q

∆q

(
p2(r−m), 1

) log p

p
Φ̂

(
log
(
p2
)

log (qr)

)
,

P2
q,old[Φ; r,m] =

2

q log (qr)

∑

ℓ|q∞

1

ℓ

∑

p∈P
p∤q

∆1

(
p2(r−m)ℓ2, 1

) log p

p
Φ̂

(
log
(
p2
)

log (qr)

)
.Let us estimate the new part whih an be written as

P2
q,new[Φ; r,m] = −2(2πiκ)

log (qr)

∑

c>1
q|c

∑

p∈P

(
log p√
p
δq∤p 1[

1,q
rν
2

](p)

)
S
(
p2(r−m), 1; c

)

c

× 1√
p
Jκ−1

(
4π
√
p2(r−m)

c

)
Φ̂

(
log p

log qr/2

)
.The funtion

h(m, c) := Jκ−1

(
4π

√
m

c

)
× 1

m1/(4(r−m))satis�es hypothesis P(T ;M, 1, C) with
T (M, 1, C) =

(
1 +

√
M

C

)1/2−κ(√
M

C

)κ−1
1

M1/(4(r−m))
.
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P2

q,new[Φ; r,m] ≪ε q
ε

∑♯

M6qνr(r−m)

C>q/2

1

(M)1/(4r−4m)

(√
M

C

)κ−1−2θ(
1 +

√
M

q

)
.This is smaller than the bound given in (4.5) and hene is an admissibleerror term if ν < ν1,max(r, κ, θ). Aording to lemma 3.13, we have

P2
q,old[Φ; r] ≪ε q

−1+ε. (4.11)We obtain
Eh

q

(
P 2

q [Φ; r,m]
)
≪ 1

qδ2
(4.12)for some δ2 > 0 (depending on ν and r) as soon as ν < ν1,max(r, κ, θ). Finally,reporting (4.12) and (4.9) in (4.3), we get

Eh
q (D1,q[Φ; r]) = E[Φ; r] +O

(
1

log q

)
. (4.13)

�4.3. Signed asymptoti expetation of the one-level density. In thispart, we prove some density results for subfamilies of Fr on whih the sign ofthe funtional equation remains onstant. The two subfamilies are de�nedby
Fε

r :=
⋃

q∈P
{L(Symr f, s), f ∈ Hε

κ(q)} .Indeed, we ompute the asymptoti expetation Eh,ε
∞ (D1[Φ; r]).Theorem 4.4� Let r > 1 be an odd integer, ε = ±1 and Φ ∈ Sν(R). Weassume that hypothesis Nice(r, f) holds for any prime number q and any

f ∈ H∗
κ(q) and also that θ is admissible. Let

νε
1,max(r, κ, θ) := inf

(
ν1,max(r, κ, θ),

3

r(r + 2)

)
.If ν < νε

1,max(r, κ, θ) then
Eh,ε
∞ (D1[Φ; r]) = E[Φ; r].Some omments are given in remark 5 page 5.Proof of theorem 4.4. By (2.18), we have

Eh,ε
q (D1,q[Φ; r]) = Eh

q (D1,q[Φ; r])−ε×ε(k, r)√q Eh
q (λ.(q)D1,q[Φ; r]) . (4.14)The �rst term is the main term of the theorem thanks to theorem 4.1. A-ording to proposition 3.8 and orollary 3.11, the seond term (without theepsilon fators) is given by

√
q Eh

q

(
λ.(q)P

1
q [Φ; r]

)

+
√
q

r−1∑

m=0

(−1)m Eh
q

(
λ.(q)P

2
q [Φ; r,m]

)
+O

(
1

log (qr)

)
. (4.15)



28 G. RICOTTA AND E. ROYERLet us fous on the �rst term in (4.15) knowing that the same disussionholds for the seond term with even better results on ν. We have
√
q Eh

q

(
λ.(q)P

1
q [Φ; r]

)
=

√
q P1

q,new[Φ; r] +
√
q P1

q,old[Φ; r] (4.16)where
P1

q,new[Φ; r] = − 2

log (qr)

∑

p∈P
p∤q

∆q (prq, 1)
log p√
p

Φ̂

(
log p

log (qr)

)
,

P1
q,old[Φ; r] =

2

qν(q) log (qr)

∑

ℓ|q∞

1

ℓ

∑

p∈P
p∤q

∆1

(
prℓ2, q

) log p√
p

Φ̂

(
log p

log (qr)

)
.Lemma 3.13 implies

√
q P1

q,old[Φ; r] ≪ q(νr−4)/2 (4.17)whih is an admissible error term if ν < 4/r. The new part is given by
P1

q,new[Φ; r] = −2(2πiκ)

log (qr)

∑

c>1
q|c

∑

p∈P
q∤p

log p√
p

S (prq, 1; c)

c
Jκ−1

(
4π

√
prq

c

)
Φ̂

(
log (p)

log (qr)

)
.and an be written as

−2(2πiκ)

log (qr)

∑

c>1
q|c

∑

m>1

âm
S(m, 1; c)

c
Jκ−1

(
4π

√
m

c

)
Φ̂

(
log (m/q)

log (qr2)

)wherê
am := 1[1,q1+νr2 ]

{
0 if q ∤ m or m 6= prq for some p 6= q in P ,
log p√

p if m = prq for some p 6= q in P.Thus, if ν 6 1/r2 then we obtain
P1

q,new[Φ; r,m] ≪ε q
ε

∑♯

M6q1+νr2

C>q/2

(√
M

C

)κ−1−2θ(
1 +

√
M

q

)

as in the proof of orollary 3.5. Summing over C via (A.2) gives
P1

q,new[Φ; r,m] ≪ε q
ε

∑♯

M6q1+r2ν

(
M

κ−1
2

−θ

qκ−1−2θ
+

M
κ
2
−θ

qκ− 1
2
−2θ

)
.Summing over M via (A.1) leads to

P1
q,new[Φ; r,m] ≪ε q

(κ−1
2

−θ)r2ν−(κ−1
2

−θ)+ε + q(
κ
2
−θ)r2ν−(κ−1

2
−θ)+ε (4.18)whih is an admissible error term if ν < 1

r2

(
1 − 1

κ−2θ

). �



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 295. Quadrati statistis for low-lying zeros5.1. Asymptoti expetation of the two-level density and asymp-toti variane.De�nition 5.1� Let f ∈ H∗
κ(q) and Φ1, Φ2 in Sν(R). The two-level density(relatively to Φ1 and Φ2) of Symr f is

D2,q[Φ1,Φ2; r](f) :=
∑

(j1,j2)∈E(f,r)2

j1 6=±j2

Φ1

(
ρ̂
(j1)
f,r

)
Φ2

(
ρ̂
(j2)
f,r

)
.Remark 5.2� In this de�nition, it is important to note that the ondition

j1 6= j2 does not imply that ρ̂(j1)
f,r 6= ρ̂

(j2)
f,r . It only implies this if the zerosare simple. Reall however that some L-funtions of ellipti urves (hene ofmodular forms) have multiple zeros at the ritial point [3, 24℄.The following lemma is an immediate onsequene of de�nition 5.1.Lemma 5.3� Let f ∈ H∗

κ(q) and Φ1, Φ2 in Sν(R). Then,
D2,q[Φ1,Φ2; r](f) = D1,q[Φ1; r](f)D1,q[Φ2; r](f) − 2D1,q[Φ1Φ2; r](f)

+ 1H−1
κ (q)(f) × Φ1(0)Φ2(0).We �rst evaluate the produt of one-level statistis on average.Lemma 5.4� Let r > 1. Let Φ1 and Φ2 in Sν(R). We assume that hypothesis

Nice(r, f) holds for any prime number q and any f ∈ H∗
κ(q) and also that θis admissible. If ν < 1/r2 then

Eh
∞ (D1[Φ1; r]D1[Φ2; r]) = E[Φ1; r]E[Φ2; r] + 2

∫

R
|u|Φ̂1(u)Φ̂2(u) du.Remark 5.5� Sine theorem 4.1 implies that

Eh
∞ (D1[Φ1; r]D1[Φ2; r]) − E[Φ1; r]E[Φ2; r] =

Eh
∞ (D1[Φ1; r]D1[Φ2; r]) − Eh

∞ (D1[Φ1; r]) Eh
∞ (D1[Φ2; r]) ,lemma 5.4 reveals that the term

Ch
∞ (D1[Φ1; r],D1[Φ2; r]) := 2

∫

R
|u|Φ̂1(u)Φ̂2(u) dumeasures the dependene between D1[Φ1; r] and D1[Φ2; r]. This term isthe asymptoti ovariane of D1[Φ1; r] and D1[Φ2; r]. In partiular, taking

Φ1 = Φ2, we obtain the asymptoti variane.Theorem 5.6� Let Φ ∈ Sν(R). If ν < 1/r2 then the asymptoti variane ofthe random variable D1,q[Φ; r] is
Vh
∞ (D1[Φ; r]) = 2

∫

R
|u|Φ̂2(u) du.



30 G. RICOTTA AND E. ROYERProof of lemma 5.4. From proposition 3.8, we obtain
Eh

q (D1,q[Φ1; r]D1,q[Φ2; r]) = E[Φ1; r]E[Φ2; r] + Ch
q

+
∑

(i,j)∈{1,2}2

i6=j

r−1∑

m=0

(−1)m Eh
q

(
P 1

q [Φi; r]P
2
q [Φj; r,m]

)

+
r−1∑

m1=0

r−1∑

m2=0

(−1)m1+m2 Eh
q

(
P 2

q [Φ1; r,m1]P
2
q [Φ2; r,m2]

)
+O

(
1

log (qr)

)(5.1)with
Ch

q := Eh
q

(
P 1

q [Φ1; r]P
1
q [Φ2; r]

)
.The error term is evaluated by use of theorem 4.1 and equations (2.16),(4.9) and (4.12). We �rst ompute Ch

q . Using proposition 2.2, we ompute
Ch

q = En − 4Eo with
En :=

4

log2 (qr)

∑

p1∈P
p1∤q

∑

p2∈P
p2∤q

log p1√
p1

log p2√
p2

Φ̂1

(
log p1

log (qr)

)
Φ̂2

(
log p2

log (qr)

)
∆q(p

r
1, p

r
2)and

Eo :=
1

q log2 (qr)

×
∑

p1∈P
p1∤q

∑

p2∈P
p2∤q

log p1√
p1

log p2√
p2

Φ̂1

(
log p1

log (qr)

)
Φ̂2

(
log p2

log (qr)

)∑

ℓ|q∞

∆1(ℓ
2pr

1, p
r
2)

ℓ
.By de�nition of the ∆-symbol, we write En = En

p + 8πiκ

log2 (qr)
En

e with
En

p :=
4

log2 (qr)

∑

p∈P
p∤q

log2 p

p

(
Φ̂1Φ̂2

)( log p

log (qr)

)and
En

e :=
∑

c>1
q|c

∑

p1∈P
p1∤q

∑

p2∈P
p2∤q

log p1√
p1

log p2√
p2

Φ̂1

(
log p1

log (qr)

)
Φ̂2

(
log p2

log (qr)

)

× S(pr
1, p

r
2; c)

c
Jκ−1

(
4π
√
pr
1p

r
2

c

)
.We remove the ondition p ∤ q from En

p at an admissible ost and obtain,after integration by parts,
En

p = 2

∫

R
|u|Φ̂1(u)Φ̂2(u) du+O

(
1

log2 (qr)

)
. (5.2)Using orollary 3.5, we get

En
e ≪ 1

log2 (qr)
(5.3)



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 31as soon as ν 6 1/r2. Finally, using lemma 3.13, we see that Eo is anadmissible error term for ν < 1/r so that equations (5.2) and (5.3) lead to
Ch

q = 2

∫

R
|u|Φ̂1(u)Φ̂2(u) du+O

(
1

log2 (qr)

)
. (5.4)Let {i, j} = {1, 2}. We prove next that eah Eh

q

(
P 1

q [Φi; r]P
2
q [Φj; r,m]

) is anerror term when ν < 1/r2. Using proposition 2.2 and lemma 3.13 we have
Eh

q

(
P 1

q [Φi; r]P
2
q [Φj; r,m]

)
=

8πiκ

log2 (qr)

∑

c>1
q|c

∑

p1∈P
p1∤q

∑

p2∈P
p2∤q

log p1√
p1

log p2

p2
Φ̂i

(
log p1

log (qr)

)

×Φ̂j

(
log p2

log
(
qr/2

)
)
S(pr

1, p
2r−2m
2 ; c)

c
Jκ−1




4π
√
pr
1p

2r−2m
2

c



+O

(
1

log (qr)

)2

.We use orollary 3.5 to onlude that
Eh

q

(
P 1

q [Φi; r]P
2
q [Φj; r,m]

)
≪ 1

log q
(5.5)when ν < 1/r2. Finally, Eh

q

(
P 2

q [Φ1; r,m1]P
2
q [Φ2; r,m2]

) is shown to be anerror term in the same way. �Using lemmas 5.3 and 5.4, theorem 4.1, hypothesis Nice(r, f) and re-mark 3.12, we prove the following theorem.Theorem 5.7� Let r > 1. Let Φ1 and Φ2 in Sν(R). We assume that hypoth-esis Nice(r, f) holds for any prime number q and any f ∈ H∗
κ(q) and alsothat θ is admissible. If ν < ν2,max(r, κ, θ) then

Eh
∞ (D2[Φ1,Φ2; r]) =

[
Φ̂1(0) +

(−1)r+1

2
Φ1(0)

] [
Φ̂2(0) +

(−1)r+1

2
Φ2(0)

]

+ 2

∫

R
|u|Φ̂1(u)Φ̂2(u) du− 2Φ̂1Φ2(0) +

(
(−1)r +

12N+1(r)

2

)
Φ1(0)Φ2(0).Some omments are given in remark 6 page 7.5.2. Signed asymptoti expetation of the two-level density andsigned asymptoti variane. In this part, r is odd.Lemma 5.8� Let Φ1 and Φ2 in Sν(R). If ν < 1/(2r2) then

Eh,ε
∞ (D1[Φ1; r]D1[Φ2; r]) = E[Φ1; r]E[Φ2; r] + 2

∫

R
|u|Φ̂1(u)Φ̂2(u) du.Remark 5.9� By theorem 4.4 and lemma 5.8 we have

Eh,ε
∞ (D1[Φ1; r]D1[Φ2; r]) − E[Φ1; r]E[Φ2; r] =

Eh,ε
∞ (D1[Φ1; r]D1[Φ2; r]) − Eh,ε

∞ (D1[Φ1; r]) Eh,ε
∞ (D1[Φ2; r]) .Thus,

Ch,ε
∞ (D1[Φ1; r],D1[Φ2; r]) := 2

∫

R
|u|Φ̂1(u)Φ̂2(u) du



32 G. RICOTTA AND E. ROYERis the signed asymptoti ovariane of D1[Φ1; r] and D1[Φ2; r]. In partiular,taking Φ1 = Φ2, we obtain the signed asymptoti variane.Theorem 5.10� Let Φ ∈ Sν(R). If ν < 1/(2r2) then the signed asymptotivariane of D1[Φ; r] is
Vh,ε
∞ (D1[Φ; r]) = 2

∫

R
|u|Φ̂2(u) du.Proof of lemma 5.8. From proposition 3.8 and (3.21), we obtain

Eh,ε
q (D1,q[Φ1; r]D1,q[Φ2; r]) = E[Φ1; r]E[Φ2; r] + Ch,ε

q

+
∑

(i,j)∈{1,2}2

i6=j

r−1∑

m=0

(−1)m Eh,ε
q

(
P 1

q [Φi; r]P
2
q [Φj; r,m]

)

+
r−1∑

m1=0

r−1∑

m2=0

(−1)m1+m2 Eh,ε
q

(
P 2

q [Φ1; r,m1]P
2
q [Φ2; r,m2]

)
+O

(
1

log (qr)

)(5.6)with
Ch,ε

q := Eh,ε
q

(
P 1

q [Φ1; r]P
1
q [Φ2; r]

)
.Assume that ν < 1/r2. Then equations (2.18), (5.4) and proposition 2.2 leadto

Ch,ε
q = 2

∫

R
|u|Φ̂1(u)Φ̂2(u) du− ε× ε(κ, r)(Gn − 4Go) (5.7)with

Gn :=
4
√
q

log2 (qr)

∑

p1∈P
p1∤q

∑

p2∈P
p2∤q

log p1√
p1

log p2√
p2

Φ̂1

(
log p1

log (qr)

)
Φ̂2

(
log p2

log (qr)

)
∆q (pr

1q, p
r
2)and

Go :=
1

√
q log2 (qr)

×
∑

p1∈P
p1∤q

∑

p2∈P
p2∤q

log p1√
p1

log p2√
p2

Φ̂1

(
log p1

log (qr)

)
Φ̂2

(
log p2

log (qr)

)∑

ℓ|q∞

∆q

(
ℓ2pr

1, p
r
2q
)

ℓ
.(5.8)Lemma 3.10 implies that if ν < 1/(2r2) then

Gn ≪ qνr[r(κ−1)+1]/2

q(κ−1)/2
(5.9)hene Gn is an error term as soon as ν 6 1/(2r2). Lemma 3.13 implies

Go ≪ q−3/2+νr+ε (5.10)whih is an error term. Reporting equations (5.9) and (5.10) in (5.7) weobtain
Ch,ε
∞ = 2

∫

R
|u|Φ̂1(u)Φ̂2(u) du (5.11)



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 33for ν 6 1/(2r(r + 2)). Next, we prove that eah Eh,ε
q

(
P 1

q [Φi; r]P
2
q [Φj ; r,m]

)is an error term as soon as ν 6 1/(2r2). From equations (2.18) and (5.5),we obtain
Eh,ε

q

(
P 1

q [Φi; r]P
2
q [Φj ; r,m]

)
=

− ε× ε(κ, r)
√
q
∑h

f∈H∗
κ(q)

λf (q)P 1
q [Φi; r]P

2
q [Φj; r,m] +O

(
1

log q)

)
. (5.12)We use proposition 2.2 and lemmas 3.13 and 3.10 to have

√
q
∑h

f∈H∗
κ(q)

λf (q)P 1
q [Φi; r]P

2
q [Φj; r,m] ≪

qνr(2r−m+2)/4−1/4

log2 q
+
q(νr−1)/2+ε

log q
. (5.13)It follows from (5.13) and (5.12) that

Eh,ε
∞
(
P 1

q [Φi; r]P
2
q [Φj ; r,m]

)
= 0 (5.14)for ν 6 1/(2r(r+1)). In the same way, we have, for ν in the previous range,

Eh,ε
∞
(
P 2

q [Φ1; r,m1]P
2
q [Φ2; r,m2]

)
= 0. (5.15)Reporting (5.11), (5.14) and (5.15) in (5.6), we have the announed result.

�Using lemmas 5.3, 5.8, theorem 4.4, hypothesis Nice(r, f) and (3.21), weprove the following theorem.Theorem 5.11� Let f ∈ H∗
κ(q) and Φ1, Φ2 in Sν(R). If ν < 1/(2r(r + 1))then

Eh,ε
∞ (D2[Φ1,Φ2; r]) =

[
Φ̂1(0) +

1

2
Φ1(0)

] [
Φ̂2(0) +

1

2
Φ2(0)

]

+ 2

∫

R
|u|Φ̂1(u)Φ̂2(u) du− 2Φ̂1Φ2(0) − Φ1(0)Φ2(0)

+ 1{−1}(ε)Φ1(0)Φ2(0).Remark 5.12� Remark 4.3 together with theorem 5.11 and a result of Katz& Sarnak (see [19, Theorem A.D.2.2℄ or [26, Theorem 3.2℄) imply that thesymmetry type of Fε
r is as in table 2. Some additional omments are givenin remark 2 page 3.6. First asymptoti moments of the one-level densityIn this setion, we ompute the asymptoti m-th moment of the one leveldensity namely

Mh
∞,m (D1,q[Φ; r]) := lim

q∈P
q→+∞

Mh
q,m (D1,q[Φ; r])where

Mh
q,m (D1,q[Φ; r]) = Eh

q

((
D1,q[Φ; r] − Eh

q (D1,q[Φ; r])
)m)



34 G. RICOTTA AND E. ROYERfor m small enough (regarding to the size of the support of Φ). The end ofthis setion is devoted to the proof of theorem E. Note that we an assumethat m > 3 sine the work has already been done for m = 1 and m = 2.Thanks to equation (4.13) and proposition 3.8, we have
Mh

q,m (D1,q[Φ; r]) =

m∑

ℓ=0

(
m

ℓ

)
Eh

q

(
P 1

q [Φ; r]m−ℓ

(
P 2

q [Φ; r] +O

(
1

log q

))ℓ
)(6.1)(6.2)

=
∑

06ℓ6m
06α6ℓ

(
m

ℓ

)(
ℓ

α

)
R(q)ℓ−α Eh

q

(
P 1

q [Φ; r]m−ℓP 2
q [Φ; r]α

)(6.3)where
P 2

q [Φ; r](f) := − 2

log(qr)

r−1∑

j=0

(−1)j
∑

p∈P
p∤q

λf

(
p2(r−j)

) log p

p
Φ̂

(
2 log p

log(qr)

) (6.4)
= − 2

log(qr)

r∑

j=1

(−1)r−j
∑

p∈P
p∤q

λf

(
p2j
) log p

p
Φ̂

(
2 log p

log(qr)

) (6.5)and R is a positive funtion satisfying
R(q) ≪ 1

log q
.Thus, an asymptoti formula for Mh

q,m (D1,q[Φ; r]) diretly follows from thenext proposition.Proposition 6.1� Let r > 1 be any integer. We assume that hypothesis
Nice(r, f) holds for any prime number q and any primitive holomorphi uspform of level q and even weight κ. Let α > 0 and ℓ > 0 be any integers.

• If α > 1 and αν < 4/r2 then
Eh

q

(
P 2

q [Φ; r]α
)

= O

(
1

log q

)
.

• If 1 6 α 6 ℓ 6 m− 1 and (α+m− ℓ)ν < 4/(r(r + 2)) then
Eh

q

(
P 1

q [Φ; r]m−ℓP 2
q [Φ; r]α

)
= O

(
1

log q

)
.

• If α > 1 and αν < 4/(r(r + 2)) then
Eh

q

(
P 1

q [Φ; r]α
)

=





O
(

1
log2 (q)

) if α is odd,
2
∫

R|u|Φ̂2(u) du× α!
2α/2(α

2 )!
+O

(
1

log2 (q)

) otherwise.



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 356.1. One some useful ombinatorial identity. In order to use the mul-tipliative properties of Heke eigenvalues in the proof of proposition 6.1, wewant to reorder some sums over many primes to sums over distint primes.We follow the work of Hughes & Rudnik [14, �7℄ (see also [13℄ and thework of Soshnikov [28℄) to ahieve this. Let P (α, s) be the set of surjetivefuntions
σ : {1, . . . , α} ։ {1, . . . , s}suh that for any j ∈ {1, . . . , α}, either σ(j) = 1 or there exists k < j suhthat σ(j) = σ(k) + 1. This an be viewed as the number of partitions ofa set of α elements into s nonempty subsets. By de�nition, the ardinalityof P (α, s) is the Stirling number of seond kind [29, �1.4℄. For any j ∈

{1, . . . , s}, let
̟

(σ)
j := #σ−1({j}).Note that

̟
(σ)
j > 1 for any 1 6 j 6 s and s∑

j=1

̟
(σ)
j = α. (6.6)The following lemma is lemma 7.3 of [14, �7℄.Lemma 6.2� If g is any funtion of m variables then

∑

j1,...,jm

g (xj1 , . . . , xjm) =

m∑

s=1

∑

σ∈P (m,s)

∑

i1,...,isdistint g (xiσ(1)
, . . . , xiσ(m)

)
.6.2. Proof of the �rst bullet of proposition 6.1. By the de�nition (6.5),we have

Eh
q

(
P 2

q [Φ; r]α
)

=
(−2)α

logα (qr)

∑

16j1,...,jα6r

(−1)αr−(j1+...+jα)

×
∑

p1,...,pα∈P
q∤p1...pα

(
α∏

i=1

log pi

pi
Φ̂

(
2 log pi

log(qr)

))
Eh

q

(
α∏

i=1

λf

(
p2ji

i

))
. (6.7)Writing {p̂i}i>1 for the inreasing sequene of prime numbers exept q, wehave

∑

p1,...,pα∈P
q∤p1...pα

(
α∏

i=1

log pi

pi
Φ̂

(
2 log pi

log(qr)

))
Eh

q

(
α∏

i=1

λf

(
p2ji

i

))

=
∑

i1,...,iα

(
α∏

ℓ=1

log p̂iℓ

p̂iℓ

Φ̂

(
2 log p̂iℓ

log(qr)

))
Eh

q

(
α∏

ℓ=1

λf

(
p̂2jℓ

iℓ

))
. (6.8)



36 G. RICOTTA AND E. ROYERUsing lemma 6.2, we rewrite the right sum in (6.8) as
α∑

s=1

∑

σ∈P (α,s)

∑

k1,...,ksdistint( α∏

i=1

log p̂kσ(i)

p̂kσ(i)

Φ̂

(
2 log p̂kσ(i)

log(qr)

))
Eh

q

(
α∏

i=1

λf

(
p̂2ji

kσ(i)

))

=

α∑

s=1

∑

σ∈P (α,s)

∑

k1,...,ksdistint s∏

u=1

(
log p̂ku

p̂ku

Φ̂

(
2 log p̂ku

log(qr)

))̟
(σ)
u



Eh
q



∏

16u6s
16j6r

λf

(
p̂2j

ku

)̟
(σ)
u,j


(6.9)where

̟
(σ)
u,j := #{1 6 i 6 α, σ(i) = u, ji = j}for any 1 6 u 6 s and any 1 6 j 6 r. Now, we show that

α−1∑

s=1

∑

σ∈P (α,s)

∑

k1,...,ksdistint s∏

u=1

(
log p̂ku

p̂ku

Φ̂

(
2 log p̂ku

log(qr)

))̟
(σ)
u



Eh
q



∏

16u6s
16j6r

λf

(
p̂2j

ku

)̟
(σ)
u,j




≪ logα−1 (q). (6.10)For s < α and σ ∈ P (α, s), we use (2.3) together with (3.20) to obtain thatthe left-hand side of the previous equation is bounded by
α−1∑

s=1

∑

σ∈P (α,s)

∑

k1,...,ksdistint s∏

u=1

(
log p̂ku

p̂ku

|Φ̂
(

2 log p̂ku

log(qr)

)
|
)̟

(σ)
u

. (6.11)Sine s < α, equation (6.6) implies that ̟(σ)
u > 1 for some 1 6 u 6 s. Thesevalues lead to onvergent, hene bounded, sums. Let

d(σ) := #
{
1 6 u 6 s : ̟(σ)

u = 1
}
∈ {0, . . . , α− 1},then

α−1∑

s=1

∑

σ∈P (α,s)

∑

k1,...,ksdistint s∏

u=1

(
log p̂ku

p̂ku

|Φ̂
(

2 log p̂ku

log(qr)

)
|
)̟

(σ)
u

≪
α−1∑

s=1

∑

σ∈P (α,s)

∑

k1,...,kddistint d(σ)∏

u=1

(
log p̂ku

p̂ku

|Φ̂
(

2 log p̂ku

log(qr)

)
|
)

≪ logα−1 (q). (6.12)
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Eh

q

(
P 2

q [Φ; r]α
)

=
(−2)α

logα (qr)

∑

16j1,...,jα6r

(−1)αr−(j1+...+jα)

×
∑

k1,...,kαdistint ( α∏

u=1

(
log p̂ku

p̂ku

Φ̂

(
2 log p̂ku

log(qr)

)))
Eh

q

(
λf

(
α∏

u=1

p̂2ju

ku

))

+O

(
1

log q

) (6.13)sine the only element of P (α,α) is the identity funtion. By lemmas 3.9and 3.10, we have
Eh

q

(
λf

(
α∏

u=1

p̂2ju

ku

))
≪ 1

q

α∏

u=1

p̂
ju/2
ku

log p̂kuhene the �rst term in the right-hand side of (6.13) is bounded by a negativepower of q as soon as ανr2 < 4.6.3. Proof of the third bullet of proposition 6.1. By proposition 3.8,we have
Eh

q (P
1
q [Φ; r]α) =

(−2)α

logα (qr)

∑

p1,...,pα∈P
p1,...,pα∤q

(
α∏

i=1

log pi√
pi

Φ̂

(
log pi

log qr

))
Eh

q

(
α∏

i=1

λf (pr
i )

)
.(6.14)Using lemma 6.2, we rewrite equation (6.14) as

Eh
q (P

1
q [Φ; r]α) =

(−2)α

logα (qr)

α∑

s=1

∑

σ∈P (α,s)

∑

i1,...,isdistint α∏

j=1



 log p̂iσ(j)√
p̂iσ(j)

Φ̂

(
log p̂iσ(j)

log (qr)

)





(6.15)
× Eh

q




α∏

j=1

λf

(
p̂r

iσ(j)

)


 (6.16)
=

(−2)α

logα (qr)

α∑

s=1

∑

σ∈P (α,s)

∑

i1,...,isdistint s∏

u=1

(
log p̂iu√
p̂iu

Φ̂

(
log p̂iu

log qr

))̟
(σ)
u


(6.17)

× Eh
q

(
s∏

u=1

λf

(
p̂r

iu

)̟(σ)
u

)
.(6.18)It follows from (2.11) and (2.12) that

λf

(
p̂r

iu

)̟(σ)
u =

r̟
(σ)
u∑

ju=0

x(̟(σ)
u , r, ju)λf

(
p̂ju

iu

)
.



38 G. RICOTTA AND E. ROYERSine u 6= v implies that p̂iu 6= p̂iv , equation (6.18) beomes
Eh

q (P
1
q [Φ; r]α) =

(−2)α

logα (qr)

α∑

s=1

∑

σ∈P (α,s)

∑

i1,...,isdistint s∏

u=1

(
log p̂iu√
p̂iu

Φ̂

(
log p̂iu

log (qr)

))̟
(σ)
u




×
∑

j1,...,js

06ju6r̟
(σ)
u

(
s∏

u=1

x(̟(σ)
u , r, ju)

)
Eh

q

(
λf

(
s∏

u=1

p̂ju

iu

))
. (6.19)Using proposition 2.2 and lemmas 3.10 and 3.9, we get

Eh
q

(
λf

(
s∏

u=1

p̂ju

iu

))
=

s∏

u=1

δju,0 +O

(
1

q

s∏

u=1

p̂
ju/4
iu

log p̂iu

)hene
Eh

q (P
1
q [Φ; r]α) = TP+O(TE) (6.20)with

TP :=
(−2)α

logα (qr)

α∑

s=1

∑

σ∈P (α,s)

∑

i1,...,isdistint s∏

u=1

(
log p̂iu√
p̂iu

Φ̂

(
log p̂iu

log (qr)

))̟
(σ)
u

x(̟(σ)
u , r, 0)(6.21)and

TE :=
1

q logα (qr)

α∑

s=1

∑

σ∈P (α,s)

∑

i1,...,isdistint s∏

u=1

(
p̂
(r−2)/4
iu

log2 p̂iu |Φ̂
(

log p̂iu

log (qr)

)
|
)̟

(σ)
u

.(6.22)We have
TE =

1

q logα (qr)



∑

p∈P
p∤q

p(r−2)/4 log2 p|Φ̂
(

log p

log (qr)

)
|




α

≪ qαrν(r+2)/4−1(6.23)so that, TE is an error term as soon as
αrν(r + 2) < 4. (6.24)We assume from now on that this ondition is satis�ed. Aording to (2.14)(reall that r > 1), we rewrite (6.21) as

TP =
(−2)α

logα (qr)

α∑

s=1

∑

σ∈P >2(α,s)

∑

i1,...,isdistint s∏

u=1

(
log p̂iu√
p̂iu

Φ̂

(
log p̂iu

log (qr)

))̟
(σ)
u

x(̟(σ)
u , r, 0)(6.25)where

P>2(α, s) :=
{
σ ∈ P (α, s) : ∀u ∈ {1, . . . , s},̟(σ)

u > 2
}
.



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 39Moreover, if for at least one σ and at least one u (say u0) we have ̟(σ)
u > 3,then

∑

i1,...,isdistint s∏

u=1

(
log p̂iu√
p̂iu

Φ̂

(
log p̂iu

log (qr)

))̟
(σ)
u

x(̟(σ)
u , r, 0)

≪



∑

p∈P
p6qrν

log3 (p)

p3/2




s∏

u=1
u 6=u0



∑

pu∈P
pu6qrν

log2 (pu)

pu




≪ (log q)2s−2. (6.26)But, from (6.6), we dedue
2s 6

s∑

j=1

̟
(σ)
j = αhene (log q)2s−2 ≪ (log q)α−2. Reinserting this in (6.26) and the result in(6.25), we obtain

TP =
(−2)α

logα (qr)

α∑

s=1

∑

σ∈P 2(α,s)

∑

i1,...,isdistint s∏

u=1

(
log p̂iu√
p̂iu

Φ̂

(
log p̂iu

log qr

))̟
(σ)
u

x(̟(σ)
u , r, 0)

+O

(
1

log2 (q)

) (6.27)where
P 2(α, s) :=

{
σ ∈ P (α, s) : ∀u ∈ {1, . . . , s},̟(σ)

u = 2
}
.From (6.27), (6.23) and (6.20), we dedue

Eh
q (P

1
q [Φ; r]α) =

(−2)α

logα (qr)

α∑

s=1

∑

σ∈P 2(α,s)

∑

i1,...,isdistint s∏

u=1

log2 (p̂iu)

p̂iu

Φ̂2

(
log p̂iu

log (qr)

)

+O

(
1

log2 (q)

) (6.28)sine x(2, r, 0) = 1 aording to (2.14). Note in partiular that, aording to(6.6) the previous sum is zero if α is odd. Thus, we an assume now that αis even and get
Eh

q (P
1
q [Φ; r]α) =

(−2)α

logα (qr)

∑

σ∈P 2(α,α/2)

∑

i1,...,iα/2distint α/2∏

u=1

log2 (p̂iu)

p̂iu

Φ̂2

(
log p̂iu

log (qr)

)

+O

(
1

log2 (q)

)
. (6.29)



40 G. RICOTTA AND E. ROYERHowever, summing over all the possible (i1, . . . , iα/2) instead of the one withdistint indies reintrodues onvergent sums that enter the error term be-ause of the 1/ logα (qr) fator. It follows that (6.29) beomes:
Eh

q (P
1
q [Φ; r]α) =



 4

log2 (qr)

∑

p∈P

log2 (p)

p
Φ̂2

(
log p

log (qr)

)


α/2

#P 2(α,α/2)

+O

(
1

log2 (q)

)
. (6.30)Taking m = 2 (we already proved that the seond moment is �nite, seesetion 5.1) and reinserting the result in (6.30) implies that

Eh
q (P

1
q [Φ; r]α) = Eh

q (P
1
q [Φ; r]2)#P 2(α,α/2) +O

(
1

log2 (q)

)
.We onlude by omputing

#P 2(α,α/2) =
α!

2α/2
(

α
2

)
!
.(see [30, Example 5.2.6 and Exerise 5.43℄).6.4. Proof of the seond bullet of proposition 6.1. We mix the twotehniques whih have been used to prove the �rst and third bullets of propo-sition 6.1. We get following the same lines and thanks to lemma 6.2

Eh
q

(
P 1

q [Φ; r]m−ℓP 2
q [Φ; r]α

)
=

(−2)α+m−ℓ

logα+m−ℓ (qr)

∑

16j1,...,jα6r

(−1)αr−(j1+...+jα)
α+m−ℓ∑

s=1

×
∑

σ∈P (α+m−ℓ,s)

∑

i1,...,isdistint s∏

u=1



 log̟
(σ,1)
u +̟

(σ,2)
u (p̂iu)

p̂
̟

(σ,1)
u /2+̟

(σ,2)
u

iu

Φ̂

(
log p̂iu

log(qr)

)̟
(σ,1)
u

Φ̂

(
2 log p̂iu

log(qr)

)̟
(σ,2)
u





× Eh
q




s∏

u=1



λf

(
p̂r

iu

)̟(σ,1)
u

r∏

j=1

λf

(
p̂2j

iu

)̟
(σ,2)
u,j







 (6.31)where
̟(σ,1)

u := # {i ∈ {1, . . . ,m− ℓ} , σ(i) = u} ,
̟(σ,2)

u := # {i ∈ {1, . . . , α} , σ(m− ℓ+ i) = u} ,
̟

(σ,2)
u,j := # {i ∈ {1, . . . , α} , σ(m− ℓ+ i) = u and ji = j}for any 1 6 u 6 s, any 1 6 j 6 r and any σ ∈ P (α +m − ℓ, s). Note thatthese numbers satisfy

s∑

u=1

(
̟(σ,1)

u +̟(σ,2)
u

)
= m− ℓ+ α (6.32)and

r∑

j=1

̟
(σ,2)
u,j = ̟(σ,2)

u (6.33)



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 41for any 1 6 u 6 r and any σ ∈ P (α + m − ℓ, s) by de�nition. They alsosatisfy
∀σ ∈ P (α+m− ℓ, s),∀u ∈ {1, . . . , s} , ̟(σ,1)

u +̟(σ,2)
u > 1 (6.34)sine any σ ∈ P (α +m− ℓ, s) is surjetive and

∀σ ∈ P (α+m− ℓ, s),∀i ∈ {1, 2} ,∃ui,σ ∈ {1, . . . , s} , ̟(σ,i)
ui,σ

> 1 (6.35)sine α > 1 and m − ℓ > 1. The strategy is to estimate individually eahterm of the σ-sum. Thus, we �x some integers j1, . . . , jα in {1, . . . , r}, someinteger s in {1, . . . , r} and some appliation σ in P (α+m− ℓ, s).First ase: ∀u ∈ {1 , . . . , s} , ̟(σ,1 )
u /2 +̟

(σ,2 )
u 6 1 .Let us remark that if ̟(σ,2)

u = 1 for some 1 6 u 6 s then there exists aunique 1 6 jiu 6 r depending on σ suh that ̟(σ,2)
u,jiu

= 1 and ̟(σ,2)
u,j = 0 forany 1 6 j 6= jiu 6 r aording to (6.33). Thus,

s∏

u=1



λf

(
p̂r

iu

)̟(σ,1)
u

r∏

j=1

(
λf

(
p̂2j

iu

)̟
(σ,2)
u,j

)

 = λf




∏

16u6s(
̟

(σ,1)
u ,̟

(σ,2)
u

)
=(2,0)

p̂
r̟

(σ,1)
u /2

iu




×λf




∏

16u6s(
̟

(σ,1)
u ,̟

(σ,2)
u

)
=(2,0)

p̂
r̟

(σ,1)
u /2

iu

∏

16u6s(
̟

(σ,1)
u ,̟

(σ,2)
u

)
=(1,0)

p̂r̟
(σ,1)
u

iu

∏

16u6s(
̟

(σ,1)
u ,̟

(σ,2)
u

)
=(0,1)

p̂
2jiu̟

(σ,2)
u,jiu

iu


where the two integers appearing in the right-hand side of the previous equal-ity are di�erent aording to (6.35). Consequently, proposition 2.2 and lem-mas 3.10 and 3.9 enable us to assert that

Eh
q




s∏

u=1



λf

(
p̂r

iu

)̟(σ,1)
u

r∏

j=1

(
λf

(
p̂2j

iu

)̟
(σ,2)
u,j

)





≪ 1

q

∏

16u6s(
̟

(σ,1)
u ,̟

(σ,2)
u

)
=(2,0)

log p̂iu

p̂
−r̟

(σ,1)
u /4

iu

×
∏

16u6s(
̟

(σ,1)
u ,̟

(σ,2)
u

)
=(1,0)

log p̂iu

p̂
−r̟

(σ,1)
u /4

iu

∏

16u6s(
̟

(σ,1)
u ,̟

(σ,2)
u

)
=(0,1)

log p̂iu

p̂
−r̟

(σ,2)
u /2

iu

.Note that, in this �rst ase, the right hand term is
1

q

s∏

u=1

log p̂iu

p̂
−r(̟

(σ,1)
u /4+̟

(σ,2)
u /2)

iuhene the ontribution of these σ's to Eh
q

(
P 1

q [Φ; r]m−ℓP 2
q [Φ; r]α

) is boundedby
qε

q




∑

p6qνr

1

p1/2−r/4




m−ℓ


∑

p6qνr/2

1

p1−r/2




α

≪ qνr/4[(m−ℓ)(r+2)+αr]−1+ε.This is an admissible error term as long as νr/4[(m− ℓ)(r + 2) + αr] < 1.



42 G. RICOTTA AND E. ROYERSeond ase: ∃uσ ∈ {1 , . . . , s} , ̟(σ,1 )
uσ /2 +̟

(σ,2 )
uσ > 1 .Aording to (2.11) and (2.12), if 1 6 u 6 s and 1 6 j 6 r then

λf

(
p̂r

iu

)̟(σ,1)
u =

r̟
(σ,1)
u∑

ku,1=0

x(̟(σ,1)
u , r, ku,1)λf

(
p̂

ku,1

iu

)and
λf

(
p̂2j

iu

)̟
(σ,2)
u,j

=

j̟
(σ,2)
u,j∑

ku,j,2=0

x(̟
(σ,2)
u,j , 2j, 2ku,j,2)λf

(
p̂
2ku,j,2

iu

)sine x(̟(σ,2)
u,j , 2j, ku,j,2) = 0 if ku,j,2 is odd (see (2.14)). Then, one mayremark that

∏

16j6r

λf

(
p̂
2ku,j,2

iu

)
=

Ku∑

ℓu=0

yℓuλf

(
p̂2ℓu

iu

)for some integers yℓu and where Ku :=
∑

16j6r ku,j,2 for any 1 6 u 6 s. Allthese fats lead to
Eh

q

(
P 1

q [Φ; r]m−ℓP 2
q [Φ; r]α

)
=

(−2)α+m−ℓ(−1)αr

logα+m−ℓ (qr)

∑

16j1,...,jα6r

(−1)j1+...+jα

α+m−ℓ∑

s=1

×
∑

σ∈P (α+m−ℓ,s)

∑

i1,...,isdistint s∏

u=1



 log̟
(σ,1)
u +̟

(σ,2)
u (p̂iu)

p̂
̟

(σ,1)
u /2+̟

(σ,2)
u

iu

Φ̂

(
log p̂iu

log(qr)

)̟
(σ,1)
u

Φ̂

(
2 log p̂iu

log(qr)

)̟
(σ,2)
u





×
∑

06k1,16r̟
(σ,1)
1...

06ks,16r̟
(σ,1)
s

∑

06k1,1,26̟
(σ,2)
1,1...

06ks,1,26̟
(σ,2)
s,1

. . .
∑

06k1,r,26r̟
(σ,2)
1,r...

06ks,r,26r̟
(σ,2)
s,r

∑

06ℓ16K1...
06ℓs6Ks

×
s∏

u=1



x
(
̟(σ,1)

u , r, ku,1

)
yℓu

r∏

j=1

(
x
(
̟

(σ,2)
u,j , 2j, 2ku,j,2

))




× Eh
q

(
λf

(
s∏

u=1

p̂
ku,1

iu

)
λf

(
s∏

u=1

p̂2ℓu
iu

))
. (6.36)Proposition 2.2 and lemmas 3.10 and 3.9 enable us to assert that

Eh
q

(
λf

(
s∏

u=1

p̂
ku,1

iu

)
λf

(
s∏

u=1

p̂2ℓu
iu

))
=

s∏

u=1

δku,1,2ℓu+O

(
1

q

s∏

u=1

p̂
ku,1/4+ℓu/2
iu

log p̂iu

)and we an write
Eh

q

(
P 1

q [Φ; r]m−ℓP 2
q [Φ; r]α

)
= TP+O(TE) (6.37)
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TP :=

(−2)α+m−ℓ(−1)αr

logα+m−ℓ (qr)

∑

16j1,...,jα6r

(−1)j1+...+jα

α+m−ℓ∑

s=1

×
∑

σ∈P (α+m−ℓ,s)

∑

i1,...,isdistint s∏

u=1



 log̟
(σ,1)
u +̟

(σ,2)
u (p̂iu)

p̂
̟

(σ,1)
u /2+̟

(σ,2)
u

iu

Φ̂

(
log p̂iu

log(qr)

)̟
(σ,1)
u

Φ̂

(
2 log p̂iu

log(qr)

)̟
(σ,2)
u





×
∑

06k1,1,26̟
(σ,2)
1,1...

06ks,1,26̟
(σ,2)
s,1

. . .
∑

06k1,r,26r̟
(σ,2)
1,r...

06ks,r,26r̟
(σ,2)
s,r

∑

06ℓ16r min
(
̟

(σ,1)
1 /2,̟

(σ,2)
1

)...
06ℓs6r min

(
̟

(σ,1)
s /2,̟

(σ,2)
s

)

×
s∏

u=1



x
(
̟(σ,1)

u , r, 2ℓu

)
yℓu

r∏

j=1

(
x
(
̟

(σ,2)
u,j , 2j, 2ku,j,2

))


 (6.38)and
TE :=

1

q logα+m−ℓ (qr)

×
α+m−ℓ∑

s=1

∑

σ∈P (α+m−ℓ,s)

∑

i1,...,isdistint s∏

u=1

log̟
(σ,1)
u +̟

(σ,2)
u +1 (p̂iu)p̂

(r/2−1)
(
̟

(σ,1)
u /2+̟

(σ,2)
u

)

iu

×
∣∣∣∣Φ̂
(

log p̂iu

log(qr)

)∣∣∣∣
̟

(σ,1)
u

∣∣∣∣Φ̂
(

2 log p̂iu

log(qr)

)∣∣∣∣
̟

(σ,2)
u (6.39)whih is bounded by Oε

(
q(α+m−ℓ)νr2/4−1+ε

) for any ε > 0 and is an admis-sible error term if (α +m− ℓ)ν < 4/r2. Estimating TP is possible sine wean assume that σ satis�es the following additional property. If ̟(σ,2)
u = 0for some 1 6 u 6 s then ̟

(σ,1)
u > 1. Let us assume on the ontrary that

̟
(σ,1)
u 6 1 whih entails ̟(σ,1)

u = 1 aording to (6.34). Then,
x
(
̟(σ,1)

u , r, 2ℓu

)
= x (1, r, 0) = 0sine ℓu = 0 and aording to (2.14). Thus, the ontribution of the σ's whihdo not satisfy this last property vanishes. As a onsequene, the sum over



44 G. RICOTTA AND E. ROYERthe distint i1, . . . , is is bounded by
∑

i1,...,isdistint ∏

16u6s(
̟

(σ,1)
u ,̟

(σ,2)
u

)
=(2,0)

(
log2 (p̂iu)

p̂iu

∣∣∣∣Φ̂
(

log p̂iu

log(qr)

)∣∣∣∣
2
)

×
∏

16u6s(
̟

(σ,1)
u ,̟

(σ,2)
u

)
=(0,1)

(
log (p̂iu)

p̂iu

∣∣∣∣Φ̂
(

2 log p̂iu

log(qr)

)∣∣∣∣
)

×
∏

16u6s

̟
(σ,1)
u /2+̟

(σ,2)
u >1



 log̟
(σ,1)
u +̟

(σ,2)
u (p̂iu)

p̂
̟

(σ,1)
u /2+̟

(σ,2)
u

iu

∣∣∣∣Φ̂
(

log p̂iu

log(qr)

)∣∣∣∣
̟

(σ,1)
u

∣∣∣∣Φ̂
(

2 log p̂iu

log(qr)

)∣∣∣∣
̟

(σ,2)
u



whih is itself bounded by O (logAσ (q)
) where the exponent is given by

Aσ := 2#
{

1 6 u 6 s,̟(σ,2)
u = 0 and ̟(σ,1)

u /2 +̟(σ,2)
u 6 1

}

+ #
{
1 6 u 6 s,̟(σ,2)

u = 1 and ̟(σ,1)
u /2 +̟(σ,2)

u 6 1
}
< m− ℓ+ α.The last inequality follows from (see (6.32) and the additional property of

σ)
m− ℓ+ α = Aσ +

∑

16u6s

̟
(σ,1)
u /2+̟

(σ,2)
u >1

(
̟(σ,1)

u +̟(σ,2)
u

)
.Thus, the ontribution of the TP term of these σ's to Eh

q

(
P 1

q [Φ; r]m−ℓP 2
q [Φ; r]α

)is bounded by O (log−1 (q)
).Appendix A. Analyti and arithmeti toolboxA.1. On smooth dyadi partitions of unity. Let ψ : R+ → R be anysmooth funtion satisfying

ψ(x) =

{
0 if 0 6 x 6 1,

1 if x > √
2and xjψ(j)(x) ≪j 1 for any real number x > 0 and any integer j > 0. If

ρ : R+ → R is the funtion de�ned by
ρ(x) :=

{
ψ(x) if 0 6 x 6

√
2,

1 − ψ
(

x√
2

) otherwisethen ρ is a smooth funtion ompatly supported in [1, 2] satisfying
xjρ(j)(x) ≪j 1 and ∑

a∈Z

ρ

(
x√
2

a

)
= 1for any real number x > 0 and any integer j > 0.If F : Rn

+ → R is a funtion of n > 1 real variables then we an deomposeit in
F =

∑

a1∈Z

. . .
∑

an∈Z

FA1,··· ,An
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1

1
√

2(a) Graph of ψ

1

1
√

2 2(b) Graph of ρwhere Ai :=
√

2
ai and

FA1,··· ,An(x1, · · · , xn) :=
n∏

i=1

ρAi(xi)F (x1, · · · , xn)with ρAi(xi) := ρ (xi /Ai ) is a smooth funtion ompatly supported in
[Ai, 2Ai] satisfying xj

iρ
(j)
Ai

(xi) ≪j 1 for any real number xi > 0 and anyinteger j > 0. Let us introdue the following notation for summation overpowers of √2 : ∑♯

A6M6B

f(M) :=
∑

n∈N
A62n/26B

f
(
2n/2

)
.We will use suh smooth dyadi partitions of unity several times in thispaper and we will also need these natural estimates in suh ontexts

∑♯

M6M1

Mα ≪Mα
1 (A.1)for any α,M1 > 0 and ∑♯

M>M0

1

Mα
≪ 1

Mα
0

(A.2)for any α,M0 > 0.A.2. On Bessel funtions. The Bessel funtion of �rst kind and order ainteger κ > 1 is de�ned by
∀z ∈ C, Jκ(z) :=

∑

n>0

(−1)n

n!(κ+ n)!

(z
2

)κ+2n
.It satis�es the following estimate (founded in [23, Lemma C.2℄), valid forany real number x, any integer j > 0 and any integer κ > 1:

(
x

1 + x

)j

J (j)
κ (x) ≪j,κ

1

(1 + x)
1
2

(
x

1 + x

)κ (A.3)



46 G. RICOTTA AND E. ROYERfor any real number x, any integer j > 0 and any integer κ > 1. Thefollowing useful lemma follows immediately.Lemma A.1� Let X > 0 and κ > 1, then
∑

d>0

τ(d)√
d
|Jκ

(
X

d

)
| ≪

{
X1/2 logX if X > 1,
Xκ if 0 < X 6 1.A.3. Basi fats on Kloosterman sums. For any integer m,n, c > 1, theKloosterman sum is de�ned by

S(m,n; c) :=
∑

x mod (c)
(x,c)=1

e

(
mx+ nx

c

)where x stands for the inverse of x modulo c. We reall some basi fatson these sums. The Chinese remainder theorem implies the following multi-pliativity relation
S(m,n; qr) = S(mq2, n; r)S(mr2, n; q) (A.4)valid as soon as (q, r) = 1. Here, q (resp. r) is the inverse of q (resp. r)modulo r (resp. q). If p and q are two prime numbers, γ > 1 and r > 1then, from (A.4) and [7, (2.312)℄ we obtain

S (pγq, 1; qr) =

{
−S (pγq, 1; r) if (q, r) = 1,
0 otherwise. (A.5)The Weil-Estermann inequality [6℄ is

|S(m,n; c)| 6
√

(m,n, c)τ(c)
√
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H

H
H

H
HH

α2

α1 ]0, 1] [1,+∞[

]0, 1] β1(1 − α1) + β2(1 − α2) β2(1 − α2)

[1,+∞[ β1(1 − α1) 0Table 1. Values of δ
H

H
H

H
HH

ε
r even odd

−1 SO(odd)

1 Sp SO(even)Table 2. Symmetry type of Fε
r


