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61 avenue du Président Wilson, F-94235 Cachan Cedex, France.

bLaboratoire d’Optique Physique, ESPCI / CNRS-UPR A0005, 10 rue Vauquelin,

F-75005 Paris, France.

Preprint submitted to Elsevier Science 25 March 2007



Abstract

A method is introduced to identify simultaneously elastic properties and loading

fields from a measured displacement field. Since the mechanical behavior of micro-

electro-mechanical systems (MEMS) is governed by surface effects, this type of iden-

tification tool is thought to be of major interest. However, increasing the number

of parameters to retrieve affects the redundancy necessary for an accurate identifi-

cation. A finite-element formulation of a distance between measured and statically

admissible (SA) displacement fields is shown to be equivalent to a standard least-

squares distance to kinematically admissible (KA) fields if the used modeling is

suitable. Any deviation from this equivalence is then the signature of a modeling

error. Balancing the distance to KA and SA displacement fields allows one to re-

trieve unknown modeling parameters. This method is detailed on heterogeneous

Euler-Bernoulli beams submitted to an unknown loading field and applied to ex-

perimental displacement fields of micro-cantilevers obtained with an electrostatic

set-up. An elastic property field and a parameterized loading field are then identi-

fied, and the quality of the identification is assessed.
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1 Introduction

The increasing interest for micro-electro-mechanical systems (MEMS) has en-

couraged the development of many robust and accurate experimental tech-

niques to deal with structures whose characteristic dimension lies within the

1-100 micrometer range (for a review, see Refs. [1–4]). These techniques may

be divided into off-chip [5] and on-chip testing methods [6]. On the one hand,

off-chip methods require to manipulate micrometer sized objects, and may be-

come a challenging task. On the other hand, on-chip methods combine both

micromachined specimen and actuation, and then require an accurate model-

ing of the whole device. Most of them involve a global kinematic measurement,

translating at the micrometer scale some well known macroscopic set-ups [7].

A few of these techniques involve local displacement measurements [8], while

full-field kinematic measurements are available at a macroscale [9]. More flex-

ible actuation systems involve micro- and nano-indentation systems [10]. One

of the main difficulty to perform full-field measurements at the micrometer

scale is then the size of the set-up used to prescribe a mechanical point load.

In general, a tip hides a large part of the field of view when the object is seen

in reflection microscopy, creating an obstacle for local measurements. One way

is to develop homogeneous tests at the microscale, where the observed area is

different from the loading area [11]. Another way allowing for measurements

is to use non-contact loading, namely by magnetic or electrostatic means.

However, these techniques do not provide object-independent loadings, since

the latter are subject to sharp edge effects. Consequently, heterogeneous tests

require to identify both elastic property and loading fields.

Different techniques have been proposed to identify elastic properties using
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redundant or full-field kinematic data. A first class is derived from the consti-

tutive equation error, initially proposed in Refs. [12,13], applied to dynamic

model updating [14] and elastic property or damage field identification [15].

It can also be used to deduce elastic properties by analyzing a heterogeneous

test [16]. The virtual fields method represents another class, which has been

used to identify homogeneous and anisotropic elastic properties of compos-

ites [17,18]. The reciprocity gap [19] is an alternative technique needing both

kinematic and static quantities at the same location of the body boundary. It

was used to identify elastic property fields or to locate cracks in elastic bod-

ies [20]. Last, the elastic inversion [21] and the equilibrium gap methods [22]

are both based on the equilibrium conditions written at the nodes of a finite-

element model where the displacement is measured, both using the fact that

there is no loading at the inner nodes of the structure. All these identification

methods usually consist in retrieving a finite number of modeling parameters,

resolving uniqueness issues [23], but requiring an a priori mechanical modeling

of the test under consideration.

Since the MEMS behavior is driven by surface effects (e.g., electrostatic, mag-

netic, chemical) whose homogeneity is very difficult to control, a method to

identify both loading and elastic property fields from displacement fields is

presented in Section 2. It is mainly based on a distance between measured

and SA displacement fields, which is used to assess the identification quality.

This distance to SA displacement fields is shown to be equivalent to a standard

least-squares distance to KA fields, thus providing a modeling test, and thus al-

lowing for the identification of modeling parameters. Compared to Lesnic [24],

who demonstrated the difficulty of identifying the flexural rigidity field of a

beam from deflection measurements using a continuum formulation, the case of
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retrieving both flexural rigidity and loading fields of an Euler-Bernoulli beam

is solved by using the described weak formulation of the problem and trying

to minimize the equilibrium gap between elements. The main results and a

sensitivity study to measurement noise are derived in Section 3. As the above

mentioned methods, the present one is dependent on assumptions made on

the elastic property fields and the loading field. If an assumption is not valid,

this will yield an additional contribution to the residual equilibrium gap. This

partition of the equilibrium gap is utilized to find a solution of the complete

problem (i.e., recovering both elastic property, and loading fields following an

improved description of the structure under consideration) as both a distance

to SA fields (related to the equilibrium gap) and KA fields. Last, the proposed

procedure is applied to experimental data in Section 4.

2 Identification problem

Since the main objective of this work is to deal with structures experiencing

a non-contact (i.e., electrostatic, magnetic or chemical) loading, one has to

identify both an elastic property field and a loading field from kinematic mea-

surements. This contrasts with the above recalled methods, which are mainly

devoted to the elastic property field identification for plane specimens loaded

on a well-defined part of their boundaries.
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2.1 Identification methods

2.1.1 Direct problem

Let us consider a solid body Ω. Each point M of Ω is located by x. The

material is assumed to be linear elastic, and the elastic property field C(x)

is assumed to be known at each point x of Ω. The boundaries of Ω may be

decomposed such that:

• displacements ud(M) are prescribed on Su;

• the stress vector Td(M,n), where n is orthogonal to the surface at the point

M , is prescribed on St;

• their intersection Su ∩ St is usually not empty, and two cases should then

be distinguished:

· the mixed boundary conditions are not overlapping on Su ∩ St;

· the boundary conditions result in an over-constrained set of equations.

Ω may also be submitted to a body-force distribution f(x). The local equilib-

rium conditions (static mode) read

div(σ(x)) + f(x) = 0 (1)

where σ(x) is the Cauchy stress tensor. On the boundary

σ(x)n = Td ∀x ∈ St (2)

One has to find the fields (u(x), σ(x)) satisfying

u(x) ∈ UAD
σ(x) ∈ SAD (3)
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where

UAD =
{

u(x) ∈ H1(Ω) \ u(x) = ud ∀x ∈ Su

}

(4)

SAD =
{

σ(x) ∈ H1(Ω) \ σ(x)n = Td ∀x ∈ St, div(σ(x)) + f(x) = 0 ∀x ∈ Ω
}

(5)

and satisfying the constitutive equation

σ(x) = C(x)ǫ[u(x)] ∀x ∈ Ω (6)

In the small perturbations framework, the infinitesimal strain tensor reads

ǫ(x) =
1

2

[

∇u(x) + ∇ut(x)
]

(7)

Except when the boundary conditions are over-constrained, one is able to

prove the existence and uniqueness of a solution to the above problem, thus

satisfying three different equation sets:

• kinematic conditions (4);

• equilibrium conditions (5);

• constitutive equation (6).

However, a few closed form solutions exist [25] and the direct problem has to be

solved using variational principles. Satisfying both the virtual work principle

and the constitutive equation error leads to the potential energy ∆u of the

structure

∀ut ∈ UAD

∆u(ut) =
1

2

∫

Ω

ǫ[ut] : C : ǫ[ut]dV −
∫

Ω

f .utdV −
∫

St

Td.utdS (8)
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which has to be minimized with respect to the trial displacement field ut to

provide an approximation to the solution of the direct problem, that is the

displacement field usol.

2.1.2 Inverse problem

The purpose of the identification problems is to retrieve some of mechanical

parameters (known for the direct problem) from kinematic measurements,

that is to find the description of a direct problem that would result in the

measured displacement field. The available identification methods may use

similar equation sets to retrieve the mechanical parameters under scrutiny,

namely:

• kinematic conditions (4);

• equilibrium conditions (5);

• constitutive law (6).

Since the measurement noise corrupting the used displacement field is unavoid-

able, the above equation sets have to be over-determined to provide a reliable

solution. To achieve this necessary redundancy, some assumptions are made to

decrease the number of unknowns in the identification problem, thus increas-

ing the inversion robustness wrt. the measurement noise. A global formulation

of the identification problem is to find the displacement field U minimizing ϕ2

ϕ2 = KKA‖U − Um‖KA + KSA‖U − USA‖SA + KCE‖U − UCE‖CE (9)

that is matching “at best” the measured displacement field (i.e., the kinematic

conditions, first term), and satisfying equilibrium conditions (second term)

as well as the constitutive law (third term). If the experimental information
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is sufficient, various strategies, corresponding to different sets of the triplet

(KKA, KSA, KCE) and different minimization procedures, are then available.

For example, finite-element updating methods [26] define the search space by

enforcing the equilibrium equations and the constitutive law to be satisfied

(in a weak form), and then intend to minimize ϕ2 with KSA = KCE = 0.

Alternatively, the methods primarily based on the use of equilibrium equations

consist in minimizing ϕ2 in a two-step process:

• the virtual fields method has been implemented using different kinds of

measurement set-ups. The minimization of the first term is then performed

to provide a projection of the displacement field on a suitable functions

basis (KKA 6= 0 and KSA = 0). Afterwards, elastic properties are identified

by satisfying the equilibrium equations obtained by using the constitutive

equation in the virtual work principle (KKA = 0 and KSA 6= 0).

• the equilibrium gap method has been implemented with displacement fields

obtained for digital image correlation measurements, that is after the min-

imization of a functional describing the optical flow conservation principle

to find the expansion of the displacement field on a user-defined functional

basis (KKA 6= 0 and KSA = 0). The mechanical parameters are then de-

duced by satisfying “at best” the equilibrium conditions at the nodes of the

structure (KKA = 0 and KSA 6= 0).

The method based on the constitutive equation error presented in Ref. [15] con-

sists also in minimizing ϕ2 in a two-step process : the measured displacement

field is first obtained with KKA 6= 0 and KSA = KCE = 0. The mechanical

parameters are then obtained by minimizing a chosen functional (proved to

be separately convex with respect to the stress tensor and the elastic tensor),

with KCE 6= 0 and KSA = KKA = 0. A relaxation algorithm is then used
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to exploit the separate convexity. The equilibrium conditions are enforced by

defining the functional on SA stress fields.

In both cases, these two-step procedures highlight the major central compro-

mise one has to deal with to save the equations redundancy and get reliable

identified parameters, namely, one has to spatially average the measured quan-

tities to reduce the effect of noise corrupting them, therefore having to balance

this effect with the subsequent decrease in the independent measured quanti-

ties amount. Consequently, one has to deal with the mechanical counterpart

of this unavoidable filtering process, by formulating the identification problem

for discretized bodies.

2.2 The equilibrium gap method

The equilibrium gap method (EGM) has been primary formulated as this

mechanical counterpart. Assuming the existence of a mesh of Ne elements

describing the structure, a finite number of parameters, concatenated in the

vector Q, have to be identified. In the present case, the vector Q may contain

elastic, as well as loading parameters. Referring to Eq. (8), let us assume that

the trial displacement field ut is expanded over a user-defined functions basis

concatenated in the matrix Mφ

ut = MφU (10)

where U is vector of the nodal displacement field. The minimization conditions

of the potential energy ∆u read

∂∆u(Q,U)

∂U
= 0 (11)
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Contrary to the resolution of the direct problem, the nodal displacement field

U is here considered as “almost” known (i.e., measured)

U ≃ Um (12)

whereas the vector Q is to be determined. Assuming that the elastic properties

are piecewise homogeneous and that the inner nodes of the structure do not

experience any external force, Claire et al. [22] obtained a system (11) of the

form

MQ = 0 (13)

where the matrix M depends upon the measured nodal displacements and

the chosen shape functions φi(x). The above mentioned assumptions result in

an over-determined linear system, which is found to provide reliable solutions

even when the measured displacement field is submitted to significative noise

levels. The solution Qsol does not exactly satisfy the system (13), and then

one defines the residual Fr

M(Um)Qsol = Fr (14)

It is worth noting that this equilibrium equations match the standard form

M(Um)Qsol = S(Qsol)Um − F(Qsol) = Fr (15)

where S is the identified stiffness matrix. If Um is SA, then the residual equi-

librium gap is Fr = 0. The projection USA of the measured displacement field

Um is then obtained (up to a rigid body motion) by solving

S(Qsol)USA − F(Qsol) = 0 (16)
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Any norm of the residual Fr then provides a distance between the measured

displacement field and its projection USA onto a statically admissible basis.

However, this is no longer possible when the number of parameters to be

identified (i.e., the size of Q) increases to reach the number of measured

nodal displacements.

To overcome this limitation, let us note that since the problem is solved in the

small perturbations framework, the behavior of the structure is assumed to be

linear. If X is a solution to system (13), then hX is a solution too ∀h ∈ ℜ∗.

Consequently, a singular value decomposition of M is used

M = HJKt (17)

where J is a diagonal matrix, H and K are Nu × Nu orthogonal matrices

in the considered limit case, where the number of parameters to retrieve is

equal to the number of degrees of freedom. The diagonal elements of J are

the singular values of M. The columns of K (resp. H) are the right (resp. left)

singular vectors [27]. The non-trivial solution Qsol is proportional to the right

singular vector associated with the least singular value of M, which should

be approximately equal to 0, within the machine precision. As a result, the

solution is

Qsol = ϑk0 (18)

where k0 is the column of K (i.e., the right singular vector) corresponding

to the least singular value [27]. The sign of ϑ is prescribed by the constraint

that the total strain energy of the structure Es should be positive: Es > 0.

The mechanical loading and the elastic property fields are identified up to
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a multiplicative constant (ϑ), since only kinematic data are considered. The

results extracted from Qsol will then be referred to as loading and elastic

property contrasts. If the singular value decomposition is performed with a

high relative accuracy algorithm [28], it is possible to compute the residuals

Fr

Mk0 = Fr (19)

These residuals are a measure of the equilibrium gap and also local error

estimators. To measure the quality of the identification, a global estimator

Wr can be defined as the work of the residuals in the local displacement field

Um± (i.e., the measured displacement field from which the rigid body motion

of the two considered elements has been removed)

Wr =
Nu
∑

i=1

|Fr(i)Um±(i)| (20)

Since this indicator includes the stress scale, this estimator needs to be com-

pared to the total strain energy of the structure Es

wr =
Wr

Es

(21)

The estimator wr is independent of the stress scale and evaluates the overall

quality of the identification. It therefore enables for a measure of the distance

between the measured displacement field and its projection onto a statically

admissible basis, as defined by Eq. (15), and shown in Eq. (9). One may also

compute the contribution of each element to the global indicator wr, thus

providing a local error indicator.
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One may outline that using only the equilibrium conditions (13) in the present

case, where the number of parameters to retrieve is equal to the number of

measured kinematic parameters, would lead to a square linear system. This

lack of redundancy would then yield a highly sensitive to noise solution. There-

fore, as each condition is satisfied, it is no longer possible to get an error indi-

cator, and then to assess the identification quality. The key point is then that

assuming a linear behavior for the whole structure, one is then able to solve

the identification problem and to associate an equilibrium gap to the solution,

even if the number of parameters to retrieve (including both loading and elas-

tic parameters) is equal to the number of measured nodal displacements. This

improvement is of major interest to retrieve the most meaningful mechani-

cal parameters from a measured (i.e., corrupted) displacement field since it

increases the number of parameters one can retrieve from a fixed number of

kinematic parameters.

One can also note that this identification procedure may be corrupted by many

different errors. One usually uses an idealized geometrical description, as well

as one assumes a linear elastic material. Moreover, an idealized loading pattern

as well as a too coarse discretization may induce additional errors. Since these

errors result in non-satisfied stationarity conditions of the potential energy,

they will induce an additional error gap. The next subsections are then devoted

to the modeling improvement through the equilibrium gap minimization. The

special case of a loading pattern error is detailed and the specificity of the

latter error is emphasized.
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2.3 Equivalence between static and kinematic criteria

Let us first consider that the modeling used to describe the structure is suit-

able. The aim of this section is then to assess the consequences of a noise

corrupting the measured displacement field, resulting in a nodal displacement

perturbation δU. Thanks to the ideas proposed in Ref. [30], one is able to com-

pute in a semi-analytical way the Jacobian of the singular value decomposition

with respect to any parameter used to build the matrix M. In particular, one

is then able to compute the Jacobian of the equilibrium gap Fr with respect

to the displacement field U from the singular value decomposition of M (see

Appendix A). One can also show that this Jacobian is described by a single

non-singular vector Up near the solution, that is when the least singular value

of M is close to 0. The non-singular direction remains unique as long as the

zero singular value of M remains unique. This non-singular direction is also

defined by

Up = H0
tS (22)

where H0 is the last column of H and S is the stiffness matrix of the structure

(see Appendix B). As a consequence, if the nodal displacement field used

to build the matrix M is subjected to a perturbation δU orthogonal to the

direction Up, the equilibrium gap is not significantly modified since the first

order term is equal to 0

Up.δU = 0 (23)

∂Fr

∂U
.δU = 0 (24)
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When computing the projection U of the displacement field u onto a kinemat-

ically admissible basis Mφ, one usually minimizes the least-squares criterion

‖U − Um‖KA = υ2 = (MφU − u)t(MφU − u) (25)

with respect to the trial displacement field U. Let us then assume that the

measured field u(p) is subjected at point p to a Gaussian uncorrelated noise

b(p), with zero mean and σ2 variance. Let us also recall that the modeling

used to describe the structure is assumed to be suitable. It means that the

discretization level is high enough to describe the measured displacement field,

therefore only the noise defines the minimum value of υ2 (see Appendix C,a)

E[υ2
min] = σ2 (Np − Nu) (26)

where E[¦] denotes the expectation for the scalar ¦, Np the number of mea-

surement points and Nu the number of nodal displacements in U. υ2
min is then

a measure of the measurement noise.

As a consequence of the previous discussion on the non-singular direction Up,

let us consider the projection of the displacement perturbation δU onto the

non-singular direction Up, and denote κ the scalar

κ = δUtUp (27)

The equilibrium gap Fr is then proportional to the scalar κ. The expectation

for the scalar κ2 is found to be proportional to σ2, and the coefficient is found

to depend on the used shape functions (see Appendix C,b). Therefore, the

squared 2-norm of the equilibrium gap Fr
tFr is proportional to the noise level

σ2 if the used modeling is suitable, and the multiplicative constant between
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them depends on both the stiffness matrix of the structure and the used shape

functions. Dealing with load and elastic property contrasts, its range is ob-

tained only from the used shape functions. The kinematic and static terms

in Eq. (9) are then proportional to each other if the used modeling is suit-

able to the measured displacement field. Any deviation from this relationship

provides a simple criterion to detect an unsuitable modeling, and this can be

easily assessed if the noise level is experimentally known.

2.4 Modeling errors correction

Assuming that the used shape functions can describe the measured displace-

ment field, the kinematic term in Eq. (9) arises only from the measurement

noise. Under this assumption, the only way to depart from the above rela-

tionship between the kinematic and static term is to consider that a modeling

error results in an additional contribution to the equilibrium gap. Assuming

small perturbations, we consider an additive decomposition

Fr = Fru(δU
t
mUp) + Frm (28)

where Fru(δU
t
mUp) is the contribution of the measurement noise δUm =

Um−usol to the equilibrium gap, and Frm is the modeling error contribution.

One should highlight that the partition (28) does not specify the origin of the

additional modeling term Frm. Under the previous assumptions, this model-

ing error could arise from a wrong elastic property or loading pattern. The

modeling errors due to a too coarse finite element model are not considered

herein, since these discretization errors induce both an additional kinematic

and static term in Eq. (9). One has also to provide another mechanical de-
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scription to get a residual equilibrium gap matching the estimated noise level.

This new mechanical model may be parameterized to compensate for the best

modeling contribution to the equilibrium gap. Let us then consider the case

of a single modeling parameter β, so that the equilibrium gap corresponding

to the measured displacement field reads

Fr(δUm, β) = Fru(δU
t
mUp) + Frm(β) (29)

where δUm is the displacement perturbation due to measurement uncertain-

ties. The problem consists in looking for the β value that decreases the mod-

eling contribution to the equilibrium gap.

Since only the total equilibrium gap Fr(δUm, β) can be computed, one has

to cancel out both terms in Eq. (29). From Appendix B, it can be inferred

that near the solution, both contributions are proportional to the last column

of the matrix H. As a consequence, one obtains a 1D solution subspace, and

one needs another information to decouple the contributions to the distance

to a statically admissible field arising from the measurement noise and the

modeling error, that is to find the correction displacement field δUsol = −δUm

and the solution modeling parameter βsol so that

Fru

(

(δUm + δUsol)
tUp

)

= 0 (30)

Fr(δUm + δUsol, βsol) = 0 (31)

Only the projection of δUm onto Up needs (and has) to be recovered. It is

worth noting that the two above conditions state that the solution has to

be both kinematically and statically admissible. This additional information

(necessary to decouple the effects) is then naturally deduced from the noise

level σ2, which is assumed to be known, either by the measurement assess-
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ment or by the value of the distance from the measured displacement field

to its projection onto a kinematically admissible basis (see Appendix C.a).

According to Appendix C.b, the probability density for κ2 is deduced from σ2

and the used shape functions, thus providing a probability density of δUsol

satisfying Eq. (30) (i.e., the kinematic condition). Using this probability den-

sity in Eq. (31) leads to restrict the solution space to a part of the above 1D

solution space, and then provides a probability density for βsol. If one con-

siders both a displacement perturbation and Nm modeling parameters to be

identified, the static admissibility provides a single relationship (31) and the

kinematic admissibility provides a probability density, so that if Nm > 1, this

information is useful to reduce the solution space but not sufficient to find a

unique modeling parameters set.

3 Application to cantilever beams

Since the idea is valid for any structure, the above development is applied

to beams of any size. A heterogeneous Euler-Bernoulli beam is discretized

with Ne elements. Let α denote the discretization level of a beam by using

Ne = 2α elements. For instance, a cantilever beam is considered. The elastic

property field is assumed to be heterogeneous, and is modeled with a (multi-

plicative) contrast field C, where EICn is the flexural stiffness of the element

n, n ∈ {1 . . . Ne}. The beam is only subjected to nodal forces F, where Fm

is the force applied on node m, m ∈ {1 . . . Ne} (see Fig. 1). When the nodal

forces and the stiffness field are known, the direct (classical) problem is to find

the nodal displacement field U = (v, θ), where v are the nodal out-of-plane

displacements, and θ are the nodal cross-section rotations. The present aim is
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to solve the identification problem, i.e., when the nodal displacement field is

almost known (since it is measured), to find the stiffness and load fields.

3.1 EGM for Euler-Bernoulli beams

One assumes that the user-defined scale α is able to describe the beam behav-

ior. The available data are the nodal displacement field, that may be derived

from a discrete displacement field, projecting it onto a kinematically admissi-

ble basis. The element length is ℓ. Following the equilibrium gap method [22],

the equilibrium of each node is written as the stationarity of the potential

energy

Ep =
EI

2

Ne
∑

n=1

Cnf(vn−1, vn, θn−1, θn) −
Ne
∑

m=1

Fmvm (32)

where EI is the flexural stiffness, and

f(vn−1, vn, θn−1, θn) = 12

ℓ3
(vn − vn−1)

2 + 4

ℓ
(θ2

n + θ2
n−1 + θn−1θn)

+12

ℓ2
(vn−1θn−1 + vn−1θn − vnθn−1 − vnθn)

(33)

It follows, for the n-th node, that

∂Epn,n+1

∂vi
= EI

2
{Cng− + Cn+1g

+} − Fi = 0

∂Epn,n+1

∂θi
= EI

2
{Cnh− + Cn+1h

+} = 0

(34)
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with

g−(vi, vi−1, θi, θi−1) = 24

ℓ3
(vi − vi−1) −

12

ℓ2
(θi−1 + θi)

g+(vi, vi+1, θi, θi+1) = 24

ℓ3
(vi − vi+1) + 12

ℓ2
(θi + θi+1)

h−(vi, vi−1, θi, θi−1) = 12

ℓ2
(vi−1 − vi) + 4

ℓ
(θi−1 + 2θi)

h+(vi, vi+1, θi, θi+1) = 12

ℓ2
(vi − vi+1) + 4

ℓ
(2θi + θi+1)

(35)

where v and θ are the components of the measured nodal displacement field

Um. In the present case, the field F is unknown, in addition to the contrast

field C. The equilibrium conditions give Nu = 2(Ne + 1) equations with Nu =

2(Ne + 1) unknowns, which reduce to 2Ne independent equations with 2Ne

unknowns if the first node is assumed to be motionless. At the α scale, the

system of 2α+1 + 2 equations becomes

MQ = 0 (36)

with the unknown vector

Qt = [C1, F1, C2, F2, . . . , C2α+1, F2α+1] (37)

where M is a matrix that depends only on the measured nodal fields, which

are obtained from the projection onto cubic Hermite functions (see Appendix

D), on the assumed loading pattern and on the length of the element. Q = 0 is

the trivial solution. The solution Qsol is then obtained from the singular value

decomposition (Eq. (17)), yielding the identified elastic and loading contrasts.
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3.2 Static-kinematic equivalence for suitable models

The following results are all obtained with a beam discretized with 2α elements.

The flexural stiffness is homogeneous for each element, and the random con-

trast field follows a uniform probability density between 0.1 and 0.9 (Fig. 2).

The mechanical loading is a homogeneous nodal force field. The displacement

field u is computed, and corrupted with a random white noise. To quantify the

identification error on the sought fields, the error η on the the field Z (with

Z = C or F) is defined by

η(Z) =
1

Ne

Ne
∑

k=1

(

Zid(k)

Zimp(k)
− 1

)2

(38)

The influence of a random white noise added to “FE” measurements on the

identification quality is assessed. The results shown in Fig. 3a are averages over

100 realizations of white noise, with a prescribed noise/signal ratio. When the

noise/signal ratio tends to zero, the identification error vanishes, thereby prov-

ing that the proposed procedure is correct. At a given discretization level, the

identified load field is more sensitive to measurement noise than the elastic

property field. These results also show the effect of discretization on the sen-

sitivity to noise of the kinematically admissible fields. These simulations show

an acceptable noise/signal ratio of almost 1% for 2 elements, which introduces

an error of a few percents on the identified fields. This acceptable noise sig-

nal ratio decreases to 0.1% for 4 elements. All the results are summarized in

Table 1. The estimator wr is independent of the stress scale and evaluates the

overall quality of the identification. This indicator is also related to the identi-

fication error η, as shown in Fig. 3b for the elastic property contrast. Identical

results are obtained using the loading contrast, so that wr is a global error
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estimator to assess the identification results when the used model is suitable.

The relationship between the identification error η and the estimator wr is

consistent with the results of Appendix C.b and is then single-valued, so that

in the latter case, the quantity wr is a measure of the identification error.

3.3 Modeling errors

In Section 3.2 the way in which the loading is applied on the structure is

assumed to be well known, and is utilized to build the equilibrium matrix

M. In a practical case, full-field measurements provide enough information

to allow for testing the chosen mechanical modeling, especially regarding the

loading. This is tested on “FE” measurements, generated in the same way as

in Section 3.2, but an additional nodal moment Cend proportional to the nodal

forces Fend, is applied on the last node (see Fig. 1)

Cend = βsolFend (39)

with βsol 6= 0. The aim of this section is then to exhibit the consequences of an

unknown loading pattern on the identification and to illustrate the proposed

identification procedure to retrieve the loading pattern, i.e., the unknown

value for β.

3.3.1 Sensitivity of the equilibrium gap to the loading pattern

The partition (29) states that, close to the solution, the equilibrium gap de-

pends on two scalar parameter. Thus, dealing with a single modeling param-

eter, one is able to plot a 2-D map of the norm of the equilibrium gap versus

β−βsol and κ = δUtUp. Such a map, obtained with noisy computer-generated
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displacement fields, is plotted in Fig. 4. One can note a deep and narrow valley,

which corresponds to a zero-gradient direction in the (β, κ) plane. Let us de-

note by λ this zero-gradient direction, and λ⊥ the orthogonal one. Then, using

the static criterion ‖Fr‖ = 0 restricts the solution subspace to a single line,

whose direction is λ, thereby proving that a static criterion is not sufficient to

find a unique solution for β.

3.3.2 Kinematic noise criterion

To find a unique value for β, one has also to find the value of κ, where δU

is the kinematically admissible projection of the true noise field b corrupting

the measured displacement field u. If one makes the assumption that the

measurement is shot-noise limited and that this noise is uncorrelated, one

can derive an expression for the projection of this noise onto a kinematically

admissible basis. Since the noise is assumed to be uncorrelated, the correlation

coefficients between its projections onto the basis functions can be derived

analytically and this allows one to compute the probability density for κ2 (see

Appendix B). This probability density defines a confidence region along the κ

axis, in which the solution satisfying Eq. (30) should lie. Figure 5a shows the

value of this criterion in the vicinity of the solution, and its complementarity to

the equilibrium gap, when choosing a probability density to find the solution

at a given point along the λ axis.

3.3.3 Combining both criteria

From the previous analyses, one is able to locate a confidence region in the

(β, κ) plane when combining the static criterion ‖Fr‖ = 0 (which sets the
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position along the λ⊥ direction) and the computed probability density that

defines a confidence region along the λ axis. Last, one gets a probability density

for the parameter β (see Fig. 5b), which may be integrated to give error

bounds.

4 Application to experimental results

4.1 Electrostatic loading

The set-up uses the fact that the present MEMS (Fig. 6a) is covered by a

conducting gold layer, which can be utilized as an electrode of a capacitor.

The other plate is a stamped aluminum sheet put almost 1 mm above the

cantilevers. The parallelism between the two plates is adjusted thanks to visual

inspection. As the air gap is quite big (1 mm), this provides a good enough

parallelism. This plate has a 0.6 mm diameter hole, which allows one to observe

the sample with a microscope (Fig. 7), since this hole is placed above the

observed cantilever. If one prescribes a potential gap V1 − V2 between the

armatures of a plane capacitor, an electric field Ef = −∇V appears. Each

plate yields a surface charge ±σq defined by

σq = Efεe (40)

where εe is the dielectric constant of the medium. The armatures will attract

each other, independently of the sign of (V1 − V2). This displacement will not

significantly modify the electric field itself until it remains small compared

with the gap between the armatures. For a small surface element dS, the force
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dF applied to it is given by

dF =
σ2

q

2εe

dS (41)

Since the MEMS surface is an equipotential, the electric field and the force

dF are orthogonal to the surface. Consequently, this mechanical loading can

be described by a pressure field

p =
σ2

q

2εe

(42)

However, the used capacitor does not lead to a homogeneous electric field

between the armatures since the upper one has a hole, and the lower one has

many edges. Consequently, one cannot make any assumption concerning the

homogeneity of the applied pressure field.

4.2 Retrieving the flexural rigidity and the electrostatic pressure field

The described algorithms, validated analytically and by using “FE” measure-

ments, are now applied to fields obtained experimentally with the set-up de-

scribed in Fig 7. The unknowns are the multiplicative contrast parameters

and the pressure applied to each element, which is assumed to be constant

along the element (see Fig. 8, β = 0). The displacement field is obtained

through an interferometric imaging set-up. A typical measured optical phase

field is shown in Fig. 9. Measuring such an optical phase field before and af-

ter applying a mechanical (electrostatic) loading allows one to compute the

displacement field of the cantilever [29]. This displacement field is then aver-

aged across the cantilever width to provide a one-dimensional displacement

field. These fields are obtained under conditions that ensure a reproducibility
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of almost 100 pm. The noise corrupting the measured displacement field is

proven to be spatially uncorrelated [29], thus consistent with the assumptions

of Appendix C. The field of view covers the whole cantilever and a part of the

substrate. As shown in Fig. 3a, the noise/signal ratio limits the discretization

level. Since maximum displacements, obtained under a 800 V potential gap,

are of the order of 30 nm, a 2-element discretization is the maximum value

for the present algorithm. The signal-noise ratio is of the order of one percent.

One would expect a value of wr in the 10−2 range (see Figs. 3a and 3b ) if

the used model is suitable. Figure 11b shows the scaled identified fields when

assuming that the cantilever is subjected only to a pressure field. One can note

a repulsive pressure near the clamped part of the cantilever, and the value of

wr reaches 2.8, thereby proving the poor quality of the identification results.

Since it is quite different from the expected value (Fig. 3), one can assume a

modeling error.

When looking at the measured displacement field in Fig. 11a, one can see a

change in the cantilever curvature near its free end. Consequently one can

assume that unexpected effects are not fully described with the chosen model.

This is also confirmed when looking at the local contributions to wr (Fig. 10a),

which shows that an error arises at the free end of the cantilever. This poor

identification result is confirmed by comparing the measured displacement

field and the best SA displacement field obtained when β = 0 (the rigid body

motion is chosen to minimize ‖USA −Um‖KA). The difference between these

fields is shown in Fig. 10b. A way of improving the solution is to consider

that the electrostatic pressure applies to all the metallic faces of the gold layer

on top of the cantilever, so that the pressure on the end surface will lead to

an extra couple acting at the end of the cantilever (Fig. 8). This moment is
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modeled by a dimensionless parameter β, which is the ratio between the nodal

couple due to the pressure field arising on the last element and this additional

parameter. Considering a single loading level, this assumption does not result

in an extra relationship between loading parameters. This argument illustrates

the fact that the proposed method is not intended to give the physical origin

of the modeling error, but to identify a parameterized modeling frame and

assess its quality with respect to a displacement field.

4.3 Retrieving the β ratio

The problem is to identify the best value for β. To solve this problem, a 3-step

algorithm derived from the discussion of Section 3.3 is used:

• find a rough estimate β0, as the minimizer of ‖Frm‖ with respect to β, using

the measured displacement field,

• using the computed Jacobian and a Newton-Raphson algorithm, move down

the valley of the static criterion,

• define the λ direction, and compute the probability density arising from the

kinematic criterion along it. Projecting this confidence region onto the β

axis returns a probability density for β.

Table 2 shows the resulting values for β, and Fig. 12 displays the final prob-

ability density for β. When integrating it, one can show for example that

P [−1.53 < β < −1.38] = 0.9. Considering only the modeling correction, one

gets (Table 2) a wr value in the expected 10−2 range throughout the confidence

interval, thereby proving the correction quality. When choosing a particular

point in the defined confidence region, one can get some new identified fields,
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which are shown (scaled) in Fig. 11. The pressure field is then attractive ev-

erywhere along the cantilever, which is consistent with what is expected. The

flexural stiffness is found to increase near the motionless part of the can-

tilever. This extra stiffness may be explained by a remaining base under the

cantilever, as a consequence of a silica underetching. This base is partially

found on oblique SEM views of the beam (Fig. 6b). The identification quality

is improved by comparing the corresponding SA and measured displacement

fields (Fig. 13). The agreement also proves that a few, but rich elements are

sufficient to describe complex and highly heterogeneous effects, provided that

a rich modeling can be identified.

If one wants to perform the whole identification procedure with 4 elements,

one should first note that the noise level is too high to get accurate identified

fields (see Fig. 3a). The value of wr reaches 11.7, and the identified stiffness

fields present several negative values, thereby proving the poor quality of the

identification. In this case, the minimization procedure fails to improve the

estimated value β0 = −4.21, corresponding to a value of wr equal to 0.5.

5 Conclusion

An identification procedure is proposed to retrieve both heterogeneous stiff-

ness and loading fields using full-field displacement measurements. This tech-

nique is based on local equilibrium conditions, thus defining a distance from

the measured field to a statically admissible one, assuming some modeling

hypothesis, even if the conditions redundancy is significantly affected by an

increased number of parameters to be identified. Analytical derivations, as

well as numerical simulations have been carried out to control the effect of an
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additive white noise on the identified fields at different discretization levels,

when the modeling hypotheses are satisfied.

Then, a significant gap between the computed value of the estimator and

the expected one is studied as the consequence of a modeling error. Since it

is a key point in the identification process, a strategy is developed to deal

with modeling errors and to retrieve the unknown modeling parameter, when

satisfying both static and (statistical) kinematic criteria.

Last, this procedure was applied to experimental results, providing stiffness

and loading contrasts, and a statistical description of an a priori unknown

modeling parameter, from full-field measurements on a MEMS. Since it is

possible to deal with modeling errors, future analyses will consider the special

case of a discretization error, in order to improve the spatial resolution of the

identified properties.

30



Appendix A: Computing the Jacobian of the singular value decom-

position

The key ideas of the following derivations were proposed in Ref. [30]. Using

the definition of Eq. (17), one has to compute the Jacobian Dp = ∂K
∂p

where p

stands for a parameter used to build M (i.e., a component of the displacement

field or the loading field). Let us recall that J is diagonal, and that both H

and K are orthogonal Nu × Nu matrices. J is organized so that the singular

values are sorted in decreasing order with respect to the indices. Taking the

derivative of Eq. (17) with respect to p yields

∂M

∂p
=

∂H

∂p
JKt + H

∂J

∂p
Kt + HJ

∂K

∂p

t

(43)

Let us define Mp as ∂M
∂p

. Moreover, the orthogonality condition reads

HtH = I (44)

KtK = I (45)

where I is the identity matrix. By derivation, one gets

∂Ht

∂p
H + Ht ∂H

∂p
= (Ωp

H)t + Ωp
H = 0 (46)

∂Kt

∂p
K + Kt ∂K

∂p
= (Ωp

K)t + Ωp
K = 0 (47)

where Ωp
H and Ωp

K are antisymmetric matrices

Ωp
H = Ht ∂H

∂p
(48)

Ωp
K =

∂Kt

∂p
K (49)
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so that

HtMpK = Ωp
HJ +

∂J

∂p
+ JΩp

K (50)

Let us write Mp

Mp =
Nα
∑

i,j=1

αpijei ⊗ ej (51)

where Nα is the number of terms involved in Mp. Since Ωp
H and Ωp

K are an-

tisymmetric matrices, and recalling that J is diagonal, the diagonal elements

of Ωp
HJ and JΩp

K are also vanishing, thereby yielding the derivatives of the

singular values with respect to p

∂Jrr

∂p
=

Nα
∑

i,j=1

αpijHirKjr (52)

Taking into account the antisymmetry property, the elements of the matrices

Ωp
H and Ωp

K are computed by solving a set of linear systems, which are derived

from the off-diagonal elements of the matrices in Eq. (50)

JssΩ
p
Hrs + JrrΩ

p
Krs =

Nα
∑

i,j=1

αpijHirKjs (53)

JrrΩ
p
Hrs + JssΩ

p
Krs = −

Nα
∑

i,j=1

αpijHisKjr (54)

This system has a unique solution provided Jss 6= Jrr for s 6= r, that is if the

singular value decomposition has a unique solution. Once Ωp
H and Ωp

K have

been computed, one can obtain

Dp =
∂K

∂p
= −KΩp

K (55)
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which is the desired derivative. The derivative with respect to the displacement

field is then easily derived as the concatenation of the derivatives with respect

to each nodal displacement. It is then possible to derive in a semi-analytical

way the Jacobian of the equilibrium gap (14)

∂Fr

∂U
=

∂M

∂U
Q + M

∂Q

∂U
(56)

Noting that the first term is the identified stiffness matrix S (see Eq. (15))

∂M

∂U
Q = S (57)

the Jacobian of the equilibrium gap reads

∂Fr

∂U
= S + M

∂Q

∂U
(58)

Since Q is proportional to the last column of K, the Jacobian of the equilibrium

gap is obtained in a semi-analytical way from the SVD of M.

Appendix B: Equilibrium gap Jacobian singularity near the solution

At the solution, the least singular value is zero

JNN = 0 (59)

where N stands for Nu to avoid multiple subscript. The linear system (53)

becomes

JttΩ
p
KtN =

Nα
∑

i,j=1

αpijHitKjN (60)
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noting that the stiffness matrix is related to the solution by (see Eq. (57))

Sip =
Nα
∑

j=1

αpijKjN (61)

and Eq. (60) is replaced by

Ωp
KtN =

1

Jtt

Nα
∑

l=1

HltSlp (62)

Comparing to Eq. (48), one is able to compute the gradient

∂KrN

∂p
= −

Nα−1
∑

t=1

KrtΩ
p
KtN (63)

and then the Jacobian

∂Fr

∂U

∣

∣

∣

∣

∣

i

= Sip +
Nα
∑

r=1

Mir

∂KrN

∂U

= Sip −
Nα
∑

l=1

Slp

N
∑

r=1

MirLrl (64)

with

Lrl =
N−1
∑

t=1

KrtHlt

Jtt

(65)

so that L corresponds to the definition of the pseudo-inverse of M

L = KJ ⋆Ht (66)

where J ⋆ is deduced from J

J⋆
kk =































1

Jkk
if Jkk > 0

0 otherwise
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The condition JNN = 0 implies that

N
∑

r=1

MirLrl =
N−1
∑

q=1

HiqHlq =
N

∑

q=1

HiqHlq − HiNHlN = δil − HiNHlN (67)

where δil is the Kronecker symbol. Equation (64) can be rewritten as

∂Fr

∂U

∣

∣

∣

∣

∣

i

=

(

Nα
∑

l=1

SlpHlN

)

HiN (68)

Close to the solution, the equilibrium gap arising from a measurement noise

is then proportional to the last column of H. One should underline that this

last result is still valid when considering the equilibrium gap induced by the

modification of any parameter p close to the solution. Let us denote the latter

by H0 and Up the direction defined by

Up = H0
tS (69)

the Jacobian finally reads

∂Fr

∂U
= H0 ⊗ Up (70)

As a consequence, the residuals are not modified if the nodal displacement field

used to build the matrix M is subjected to a perturbation δU orthogonal to

the direction Up

Up.δU = 0 (71)

∂Fr

∂U
.δU = 0 (72)

where Up is then the single non-singular direction of the Jacobian ∂Fr

∂U
. This

non-singular direction remains unique as long as the zero singular value of M

remains unique.
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Appendix C: Definition of the kinematic noise criterion

One assumes that the measured field u(p) is subjected at point p to a Gaussian

uncorrelated noise b(p), with zero mean and σ2 variance.

a Projection onto a kinematically admissible basis

When computing the projection of the displacement field onto a kinematically

admissible basis, on minimizes the scalar

υ2 = (MφU − u)t(MφU − u) (73)

where Mφ is the interpolation matrix, U the sought (nodal) displacement

field, and u the measured one. The stationarity condition reads

Mt
φMφUm = Mt

φu (74)

When u is subjected to measurement noise, it reads

u = u0 + b (75)

where u0 is the true displacement field. The corresponding partition on the

obtained displacement field becomes

Um = U0 + δU (76)

with

MφU0 = u0 (77)
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so that

Mt
φMφδU = Mt

φb (78)

and the minimum value of υ2, υ2
min reads

υ2
min = btb − δUtYδU (79)

with Y = Mt
φMφ. Then

E[υ2
min] = E[btb] − E[δUtYδU] (80)

where E[¦] denotes the expectation for the scalar ¦. If Np is the number of

independent measurement points, E[btb] = Npσ
2 and

E[δUtYδU] = E[btMφY
−1Mt

φb] (81)

When X = Mt
φb, the previous quantity becomes,

E[δUtYδU] =
∑

i,j

Y−1
ij E[XiXj] (82)

Following its definition,

Xi =
n=Nα
∑

n=1

φi(n)b(n) =
n=Nα
∑

n=1

xi(n) = 〈φi, b〉 (83)

where φi(n) is a shape function, that is the i-th column of Mφ. If the b(n)

components are uncorrelated, the covariance is obtained as a function of the
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shape functions

E[XiXj] =
∑n=Nα

n=1 E[xi(n)xj(n)]

=
∑n=Nα

n=1

∫ ∞
−∞ φi(n)φj(n) x2

σ
√

2π
exp

(

− x2

2σ2

)

dx

= σ2〈φi, φj〉

= σ2Yij

(84)

Then,

E[υ2
min] = σ2

(

Nα − Y−1 : Y
)

= σ2 (Np − Nu) (85)

where Nu is the number of nodal displacements in U. Thus, when the chosen

discretization level is suitable to describe the displacement field, the value of

υ2
min is a measure of the noise level.

b Application to the partition of the projection of a measurement noise onto a

kinematically admissible basis

As explained in Section 3.3.2, the displacement perturbation reads

δU = κUp + Ws (86)

Since Up and the columns of W are obtained from the right singular vectors

of ∂Fr

∂U
, their concatenation yields an orthogonal basis for the kinematically

admissible displacement fields, so that

W tUp = 0 (87)
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W tW = I (88)

Ut
pUp = 1 (89)

The minimization of υ2 (see Eq. (73)) yields

Aκ = Ut
pM

t
φb − Ut

pYWD−1W tMt
φ (90)

when using the following notations

A =Ut
pYUp − Ut

pYWD−1W tYUp (91)

D=W tY tW (92)

Moreover, the displacement partition (86) implies that

δUtδU = Bκ2 −
2

A
btMφFMt

φb (93)

with

B = 1 + Ut
pYT YUp (94)

T =WD−1W tWD−1W t (95)

F =UpU
t
pYT −WD−1W tYUpU

t
pYT + T (96)

Then, the expectation of κ2 reads

E[κ2] = σ2

B

(

Y−1Y−1 + 2

A
F

)

: Y

= σ2
κ

(97)

and the sought quantity becomes,

E [(κ2 − E[κ2])2] =
∫ ∞
−∞

x4

σκ

√
2π

exp
(

− x2

2σ2
κ

)

dx − σ4
κ

= 2σ4
κ

(98)
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Appendix D: Shape functions

Figure 14 describes the used nodal displacements to represent the the defor-

mation of an element of length ℓ. The out-of-plane displacement is denoted

v, and the cross-section rotation is denoted θ. The out-of-plane displacement

field is described by a cubic polynomial, whose coefficients are expressed as a

function of the nodal displacements thanks to the Euler-Bernoulli hypothesis

θ(y) ≃
∂v(y)

∂y
(99)

The displacements field then reads

















v(y)

θ(y)

















=

















1 − 3ỹ2 + 2ỹ3 ℓ(ỹ − 2ỹ2 + ỹ3) (3ỹ2 − 2ỹ3) ℓ(ỹ3 − ỹ2)

6

ℓ
(ỹ2 − ỹ) (3ỹ2 − 4ỹ + 1) −6

ℓ
(ỹ2 − ỹ) (3ỹ2 − 2ỹ)

























































v1

θ1

v2

θ2









































(100)

where

ỹ =
y

ℓ
(101)

The strain energy reads, after neglecting the shear terms

Es =
1

2

y=ℓ
∫

y=0

EI

(

∂2v

∂y2

)2

dy (102)

and with Eq. (100) can be written as

Es = EI
[

12

ℓ3
(v2 − v1)

2 + 4

ℓ
(θ2

2 + θ2
1 + θ1θ2) + 12

ℓ2
(v1θ1 + v1θ2 − v2θ1 − v2θ2)

]

(103)
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Table 1

Value of the acceptable noise/signal ratio for a given root-mean-square error on the

stiffness and a given discretization level.

α = 1 α = 2 α = 3

√

η(D) = 10−2 6 × 10−3 4.2 × 10−5 4.6 × 10−6

√

η(D) = 10−3 5 × 10−4 4.2 × 10−6 4.5 × 10−7

√

η(D) = 10−4 5 × 10−5 5 × 10−7 4.6 × 10−8
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Table 2

Values of the β parameter with 2 elements (β and wr are dimensionless).

δUt
solUp β wr (a.u.)

0 0 2.8

6 × 10−6 -1.45 4 × 10−14

0 -1.38 4 × 10−2

0 -1.53 3.8 × 10−2
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Fig. 1. Description of the discretized test beam and applied loading.

49



Fig. 2. Elastic property field C and shape of the tested beam.
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Fig. 3. a) Errors η(D) and η(F ) vs. amplitude of the added white noise for different

discretization levels. b) Global indicator wr vs. errors η(D) for different discretiza-

tion levels.
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Fig. 4. Norm of the residual equilibrium gap in the vicinity of the solution.

Fig. 5. a) Value of the kinematic noise criterion in the vicinity of the solution. b)

Plot of the probability density for β.
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Fig. 6. a) General SEM view of the used cantilevers. b) SEM view of the base under

the cantilever.

Fig. 7. Schematic view of the electrostatic loading device.
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Fig. 8. Description of the modified discretized beam with an unknown couple.

Fig. 9. Typical measured optical phase field during the electrostatic test.
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Fig. 10. a) Contribution of each element to the error estimator wr when the iden-

tification is performed with β = 0. b) Measured displacement field (dots) and the

best SA displacement field (solid line) obtained with β = 0 (the rigid body motion

is chosen to minimize ‖USA − Um‖KA)
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Fig. 11. a) Measured displacement field. b) Results of the identification with 2

elements and a pure pressure field. c) Results of the identification with an extra

(identified) nodal couple acting on the cantilever.
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Fig. 12. Plot of the probability density for β for the analyzed experimental data.
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Fig. 13. Measured (dots) and SA (solid line) displacement fields for the identified

modeling (the rigid body motion is chosen to minimize ‖USA − Um‖KA)

Fig. 14. Parameters and nodal displacements used to describe the displacement field.
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