Pascal Auscher 
email: pascal.auscher@math.u-psud.fr
  
Jos É Mar 
  
Í A Martell 
  
José María Martell 
  
WEIGHTED NORM INEQUALITIES FOR FRACTIONAL OPERATORS

Keywords: Mathematics Subject Classification. 42B25, 35J15 Muckenhoupt weights, elliptic operators in divergence form, fractional operators, commutators with bounded mean oscillation functions, good-λ inequalities

We prove weighted norm inequalities for fractional powers of elliptic operators together with their commutators with BMO functions, encompassing what is known for the classical Riesz potentials and elliptic operators with Gaussian domination by the classical heat operator. The method relies upon a good-λ method that does not use any size or smoothness estimates for the kernels.

Introduction

In [MW] Muckenhoupt and Wheeden resolve the one-weight problem for the classical fractional integrals I α = (-∆) -α/2 and fractional maximal operators M α in R n defined by

M α f (x) = sup r(B) α - B |f (y)| dy,
where the supremum is taken over all balls B of R n that contain x.

Theorem 1.1 ( [MW]). Let w be a weight. Let 0 < α < n, 1 ≤ p < n α and q = n p n-α p , that is, 1/p -1/q = α/n. If p > 1, M α is bounded from L p (w p ) to L q (w q ) if and only if w ∈ A p,q . If p = 1, M α is bounded from L 1 (w) to L q,∞ (w q ) if and only if w ∈ A 1,q . Furthermore, the same estimates for the Riesz potential I α are characterized by the classes A p,q .

The class A p,q , whose definition is recalled below, can be equivalently written as A 1+1/p ′ ∩ RH q where A p and RH q are the standard Muckenhoupt and reverse Hölder classes. These two operators have intimate relations and the estimates for I α follow from the ones for M α . First there is a pointwise domination M α f I α (|f |) and second, although the pointwise converse does not hold, by means of a good-λ inequality, one has for all 0 < p < ∞ and w ∈ A ∞ :

R n |I α f | p w dx R n (M α f ) p w dx (1.1)
and also its corresponding L 1,∞ -L 1,∞ version. Different authors have studied the commutators of the fractional integrals with BMO functions. Unweighted estimates were considered in [Cha] and the weighted estimates were established in [ST] by means of extrapolation. Another proof based on the sharp maximal function was given in [CF].

Here, we consider operators with the same scaling properties as fractional integrals but which may not be representable by kernels with good estimates and that we call fractional operators. We wish to generalize the part of the theorem concerning I α but a direct comparison to M α will not work because we will have a limited range of α. Hence, we are looking for some other technique which could also provide another proof of the sufficiency part of Muckenhoupt-Wheeden theorem for I α .

Our main example is the fractional power of an elliptic operator L on R n , given formally by

L -α/2 = 1 Γ(α/2) ∞ 0 t α/2 e -t L dt t ,
with α > 0 and Lf = -div(A ∇f ), where A is an elliptic n×n matrix of complex and L ∞ -valued coefficients (see Section 3.1 for the precise definition). The operator -L generates a C 0 -semigroup {e -t L } t>0 of contractions on L 2 (dx) = L 2 (R n , dx). There exist p -= p -(L) and p + = p + (L), 1 ≤ p -< 2 < p + ≤ ∞ such that the semigroup {e -t L } t>0 is uniformly bounded on L p (dx) for every p -< p < p + (see Proposition 3.1 below). The unweighted estimate states as follows.

Theorem 1.2 ( [Aus]). Let p -< p < q < p + and α/n = 1/p -1/q. Then L -α/2 is bounded from L p (dx) to L q (dx).

Let us observe that the range of α's in Theorem 1.2 is 0 < α < n/p --n/p + . By (e) in Proposition 3.1 below, for n = 1 or n = 2 or when L has real coefficients, we have pointwise Gaussian domination of the semigroup, hence 0 < α < n. In general, by (f ) in Proposition 3.1 the range of α's always contains the interval (0, 2].

Our first main result in this paper gives sufficient conditions for the weighted norm inequalities of L -α/2 . Theorem 1.3. Let p -< p < q < p + and α/n = 1/p -1/q. Then L -α/2 is bounded from L p (w p ) to L q (w q ) for w ∈ A 1+ 1 p --1 p ∩ RH q ( p + q ) ′ . Notice that if p -= 1 and p + = ∞ (for instance, when L = -∆ or under Gaussian domination), then the condition on w becomes w ∈ A 1+1/p ′ ∩ RH q , that is, w ∈ A p,q (see Proposition 2.1), and our result agrees with that by Muckenhoupt and Wheeden (see Theorem 1.1).

We also obtain estimates for commutators with bounded mean oscillation functions: 

Let b ∈ BMO, that is, b BMO = sup B -B |b(x) -b B | dx < ∞,
B. Given f ∈ L ∞ c (dx), set (L -α/2 ) 0 b f = L -α/2 f , and for k ≥ 1, the k-th order commutator (L -α/2 ) k b f (x) = L -α/2 (b(x) -b) k f (x)
. These commutators can be also defined by recurrence:

(L -α/2 ) k b = [b, (L -α/2 ) k-1 b ] where [b, T ]f (x) = b(x) T f (x) -T (b f )(x).
We obtain the following weighted estimates:

Theorem 1.4. Let p -< p < q < p + and α/n = 1/p -1/q. Given k ∈ N, b ∈ BMO and w ∈ A 1+ 1 p - -1 p ∩ RH q ( p + q ) ′ we have (L -α/2 ) k b f L q (w q ) ≤ C b k BMO f L p (w p
) . In the particular case k = 1 and under Gaussian kernel bounds (as in (e) of Proposition 3.1 below) the unweighted estimates were studied in [DY] using the sharp maximal function introduced in [Mar]. A simpler proof, that also yields the weighted estimates, was obtained in [CMP]: a discretization method inspired by [START_REF] Pérez | Sharp L p -weighted Sobolev inequalities[END_REF] allows the authors to extend (1.1) to (L -α/2 ) k b f which is controlled by M L log L,α f (see the definition below) and then use the weighted estimates for the latter which are studied in [CF].

Theorems 1.3 and 1.4 will be proved in Section 3. They depend on a general statement (Theorem 2.2), interesting on its own, based itself upon a good-λ method in [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights[END_REF] developed for operators with the same scaling properties as singular integral operators. This was used in [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part III: Harmonic analysis of elliptic operators[END_REF] for the same class of elliptic operators and also for the Riesz transforms on Riemannian manifolds in [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part IV: Riesz transforms on manifolds and weights[END_REF], and we shall see that the very same tools apply as well for fractional operators.

In Section 4 we present a variant of Theorem 2.2 extending earlier results from [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights[END_REF] and [She] to the context of fractional operators.

While the good-λ method in [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights[END_REF] is valid in all spaces of homogeneous type, the application to fractional operators can be adapted only to those spaces with polynomial growth from below. We comment on this in Section 5.

Weighted estimates for general operators

We introduce some notation and recall known facts on weights. We work in R n . Given a ball B, we write

- B h dx = 1 |B| B h(x) dx.
2.1. Muckenhoupt Weights. Let w be a weight (that is, a non negative locally integrable function) on R n . We say that w ∈ A p , 1 < p < ∞, if there exists a constant C such that for every ball

B ⊂ R n , - B w dx - B w 1-p ′ dx p-1 ≤ C. For p = 1, we say that w ∈ A 1 if there is a constant C such that for every ball B ⊂ R n , - B w dx ≤ C w(y), for a.e. y ∈ B. Finally, A ∞ = ∪ p≥1 A p .
The reverse Hölder classes are defined in the following way: w ∈ RH q , 1 < q < ∞, if there is a constant C such that for any ball B,

- B w q dx 1 q ≤ C - B w dx.
The endpoint q = ∞ is given by the condition w ∈ RH ∞ whenever there is a constant C such that for any ball B,

w(y) ≤ C - B w dx,
for a.e. y ∈ B.

We introduce the classes A p,q that characterize the weighted estimates for the fractional operators (see Theorem 1.1). Given 1 ≤ p ≤ q < ∞ we say that w ∈ A p,q if there exists a constant C such that every ball B ⊂ R n ,

- B w q dx 1 q - B w -p ′ dx 1 p ′ ≤ C, when 1 < p < ∞, and - B w q dx 1 q ≤ C w(x),
for a.e. x ∈ B, when p = 1. We summarize some properties about weights (see [GR], [Gra] and [JN]).

Proposition 2.1.

(i) A 1 ⊂ A p ⊂ A q for 1 ≤ p ≤ q < ∞. (ii) RH ∞ ⊂ RH q ⊂ RH p for 1 < p ≤ q ≤ ∞.
(iii) If w ∈ A p , 1 < p < ∞, then there exists 1 < q < p such that w ∈ A q .

(iv) If w ∈ RH q , 1 < q < ∞, then there exists q < p < ∞ such that w ∈ RH p .

(v) A ∞ = 1≤p<∞ A p = 1<q≤∞ RH q (vi) If 1 < p < ∞, w ∈ A p if and only if w 1-p ′ ∈ A p ′ .
(vii) If 1 ≤ p ≤ ∞ and 1 < q < ∞, then w ∈ A p ∩RH q if and only if w q ∈ A q (p-1)+1 .

(viii) If 1 ≤ p ≤ q < ∞, then w ∈ A p,q if and only if w q ∈ A 1+q/p ′ if and only if w ∈ A 1+1/p ′ ∩ RH q .

(ix) If 1 ≤ p < q < ∞ and α/n = 1/p -1/q then w ∈ A p,q if and only if w q ∈ A q/1 * α where 1 * α = n/(n -α). 2.2. The general statement. Our main statement is based on unweighted estimates relating the fractional operators and their commutators with the corresponding fractional maximal functions.

We introduce some notation in order to state our general result in a way that is valid also for sublinear operators. Given a sublinear operator T and b ∈ BMO, for any k ∈ N we define the k-th order commutator as

T k b f (x) = T (b(x) -b) k f (x), f ∈ L ∞ c (dx), x ∈ R n . Note that T 0 b = T . We claim that if T is bounded from L p 0 (dx) to L s 0 (dx) for some 1 ≤ p 0 ≤ s 0 ≤ ∞ then T k
b f is well defined in L q loc for any 0 < q < s 0 and for any f ∈ L ∞ c (dx): take a cube Q containing the support of f and observe that by sublinearity, for a.e. x ∈ R n ,

|T k b f (x)| ≤ k m=0 C m,k |b(x) -b Q | k-m T (b -b Q ) m f (x) .
John-Nirenberg's inequality implies

Q |b(y) -b Q | m p 0 |f (y)| p 0 dy ≤ C f L ∞ b m p 0 BMO |Q| < +∞.
Hence, T (b-b Q ) m f ∈ L s 0 (dx) and the claim follows by using again John-Nirenberg's inequality.

Theorem 2.2. Let 0 < α < n, 1 ≤ p 0 < s 0 < q 0 ≤ ∞ such that 1/p 0 -1/s 0 = α/n. Suppose that T is a sublinear operator bounded from L p 0 (dx) to L s 0 (dx) and that {A r } r>0 is a family of operators acting from L ∞ c (dx) into L p 0 (dx). Assume that

- B |T (I -A r(B) )f | s 0 dx 1 s 0 ≤ ∞ j=1 α j r(2 j+1 B) α - 2 j+1 B |f | p 0 dx 1 p 0 , (2.1)
and

- B |T A r(B) f | q 0 dx 1 q 0 ≤ ∞ j=1 α j - 2 j+1 B |T f | s 0 dx 1 s 0 , (2.2)
for all f ∈ L ∞ c and all balls B, where r(B) denotes the radius of B. Let p 0 < p < q < q 0 be such that 1/p -1/q = α/n and w

∈ A 1+ 1 p 0 -1 p ∩ RH q ( q 0 q ) ′ . (a) If j≥1 α j < ∞ then T is bounded from L p (w p ) to L q (w q ). (b) Given k ∈ N and b ∈ BMO, if j≥1 j k α j < ∞ then for every f ∈ L ∞ c (dx) we have T k b f L q (w q ) ≤ C b k BMO f L p (w p ) .
(2.3)

The case q 0 = ∞ is understood in the sense that the L q 0 -average in (2.2) is indeed an essential supremum. Thus, the condition for w turns out to be w

∈ A 1+ 1 p 0 -1 p ∩ RH q for p > p 0 . Similarly, if (2.
2) is satisfied for all q 0 < ∞ then the conclusions hold for all p 0 < p < ∞ and w

∈ A 1+ 1 p 0 -1 p ∩ RH q .
Remark 2.3. In case (a) the hypotheses can be slightly relaxed. Namely, instead of (2.1) and (2.2), it suffices that

- B |T (I -A r(B) )f | s 0 dx 1 s 0 ≤ C M α p 0 |f | p 0 dx (x) 1 p 0 , ∀ x ∈ B, (2.4) - B |T A r(B) f | q 0 1 q 0 ≤ C M |T f | s 0 (x) 1 s 0 , ∀ x ∈ B. (2.5)
It is clear that these estimates follow from (2.1) and (2.2) provided j α j < ∞. We prove (a) below (which corresponds to (b) with k = 0) by using these weaker conditions. The proof also shows that the right hand side of (2.5) can be weakened to

C M |T f | s 0 (x) 1 s 0 + C M α p 0 |f | p 0 (x) 1 p 0 where x ∈ B is also arbitrary. Remark 2.4. Equivalent ways to write the condition w ∈ A 1+ 1 p 0 -1 p ∩ RH q ( q 0 q ) ′ are w q ∈ A 1+ q/p 0 (p/p 0 ) ′
∩RH (q 0 /q) ′ or w q ∈ A q/(p 0 ) * α ∩RH (q 0 /q) ′ where (p 0 ) * α = n p 0 /(n-α p 0 ), or w p 0 ∈ A p/p 0 ,q/p 0 and w q ∈ RH (q 0 /q) ′ (see (viii) and (ix) in Proposition 2.1). Note that when p 0 = 1 and q 0 = ∞, then this reduces to w ∈ A 1+1/p ′ ∩ RH q which is equivalent to w ∈ A p,q by (viii) in Proposition 2.1.

Remark 2.5. In the limiting case α = 0, this result corresponds to a special case of [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights[END_REF]Theorems 3.7 and 3.16]. In such a case, we have p = q and the weight w q turns out to be in A p/p 0 ∩ RH (q 0 /p) ′ . This condition arises naturally when proving weighted norm inequalities for operators with the same scaling properties as singular integral operators -such as those appearing in the functional calculus associated with L, see [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part III: Harmonic analysis of elliptic operators[END_REF]-whose range of unweighted L p boundedness is (p 0 , q 0 ). Also, these classes of weights admit a variant of the Rubio de Francia extrapolation theorem that is valid for the limited range of exponents (p 0 , q 0 ), see [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights[END_REF] .

2.3. The technical result. The proof of Theorem 2.2 is a consequence of the following result which appears in a more general form in [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights[END_REF] and is based on a two-parameter good-λ inequality.

Theorem 2.6 ([AM1]). Fix 1 < r ≤ ∞, a ≥ 1 and w ∈ RH s ′ , 1 ≤ s < ∞. Let 1 < p < r s . Assume that F ∈ L 1 (dx), G, H
1 and H 2 are non-negative measurable functions on R n such that for any cube Q there exist non-negative functions G Q and

H Q with F (x) ≤ G Q (x) + H Q (x) for a.e. x ∈ Q and - Q H r Q dx 1 r ≤ a MF (x) + MH 1 (x) + H 2 (x) , ∀ x, x ∈ Q; (2.6)
and

- Q G Q dx ≤ G(x), ∀ x ∈ Q. (2.7)
Then, there exists a constant C = C(p, r, n, a, w, s) such that

MF L p (w) ≤ C G L p (w) + MH 1 L p (w) + H 2 L p (w) .
(2.8)

Note that the assumption F ∈ L 1 (dx) is not used quantitatively. The case r = ∞ is the standard one: the L r -average appearing in the hypothesis is understood as an essential supremum and the L p (w) estimate holds for any 1 < p < ∞, no matter the value of s, that is, for any w ∈ A ∞ .

2.4. Proof of Theorem 2.2, Part (a). As mentioned in Remark 2.3, we can relax the hypotheses by assuming (2.4) and (2.5), which we do. We consider the case q 0 < ∞, the other one is left to the reader.

Let f ∈ L ∞ c (dx), so F = |T f | s 0 ∈ L 1 (dx)
. We fix a cube Q (we switch to cubes for the proof). As T is sublinear, we have

F ≤ G Q + H Q ≡ 2 s 0 -1 |T (I -A r(Q) )f | s 0 + 2 s 0 -1 |T A r(Q) f | s 0 .
Then (2.4) and (2.5) yield respectively (2.7) and (2.6) with r = q 0 /s 0 ,

H 1 = H 2 ≡ 0, a = 2 s 0 -1 C s 0 and G = 2 s 0 -1 C s 0 M α p 0 |f | p 0 s 0 /p 0 .
By Remark 2.4, w q ∈ RH (q 0 /q) ′ and one can pick 1 < s < q 0 /q so that w q ∈ RH s ′ . Thus, Theorem 2.6 with q/s 0 in place of p (notice that 1 < q/s 0 < r/s) yields

T f s 0 L q (w q ) ≤ MF L q s 0 (w q ) ≤ C G L q s 0 (w q ) = C M α p 0 |f | p 0 s 0 p 0 L q p 0 ((w p 0 ) q/p 0 ) ≤ C |f | p 0 s 0 p 0 L p p 0 ((w p 0 ) p/p 0 ) = C f s 0 L p (w p ) .
In the last estimate we have used that M α p 0 maps L p p 0 ((w p 0 ) p/p 0 )) into L q p 0 ((w p 0 ) q/p 0 )) by Theorem 1.1 from w p 0 ∈ A p/p 0 ,q/p 0 (see Remark 2.4) and the easily checked conditions 0 < α p 0 < n, 1 < p/p 0 < n/(α p 0 ) and 1/(p/p 0 ) -1/(q/p 0 ) = α p 0 /n. 2.5. Proof of Theorem 2.2, Part (b). Before starting the proof, let us introduce some notation (see [BS] for more details). Let φ be a Young function:

φ : [0, ∞) -→ [0, ∞) is continuous, convex, increasing and satisfies φ(0+) = 0, φ(∞) = ∞. Given a cube Q we define the localized Luxemburg norm f φ,Q = inf λ > 0 : - Q φ |f | λ ≤ 1 ,
and then the maximal operator

M φ f (x) = sup Q∋x f φ,Q .
In the definition of • φ,Q , if the probability measure dx/|Q| is replaced by dx and Q by R n , then one has the Luxemburg norm • φ which allows one to define the Orlicz space L φ . Some specific examples needed here are φ(t) ≈ e t r for t ≥ 1 which gives the classical space expL r and φ(t) = t (1 + log + t) α with α > 0 that gives the space L (log L) α . In the particular case α

= k -1 with k ≥ 1, it is well known that M L(log L) k-1 f ≈ M k f where M k is the k-iteration of M.
We also need fractional maximal operators associated with an Orlicz space: given 0 < α < n we define

M φ,α f (x) = sup Q∋x ℓ(Q) α f φ,Q .
John-Nirenberg's inequality implies that for any function b ∈ BMO and any cube

Q we have b -b Q expL,Q
b BMO . This yields the following estimates: First, for each cube Q and x ∈ Q

- Q |b -b Q | k s 0 |f | s 0 ≤ b -b Q k s 0 expL,Q |f | s 0 L (log L) k s 0 ,Q b k s 0 BMO M L (log L) k s 0 |f | s 0 )(x) b k s 0 BMO M [k s 0 ]+2 |f | s 0 )(x), (2.9) where [s] is the integer part of s (if k s 0 ∈ N, one can take M [k s 0 ]+1 ). Second, for each j ≥ 1 and each Q, b -b 2 Q expL,2 j Q ≤ b -b 2 j Q expL,2 j Q + |b 2 j Q -b 2 Q | b BMO + j-1 l=1 |b 2 l+1 Q -b 2 l Q | b BMO + j-1 l=1 - 2 l+1 Q |b -b 2 l+1 Q | j b BMO .
(2.10)

The following auxiliary result allows us to assume further that b ∈ L ∞ (dx). The proof is postponed until the end of this section.

Lemma 2.7. Let 1 ≤ p 0 < s 0 < ∞, p 0 < p < q < ∞, k ∈ N and w q ∈ A ∞ . Let T be a sublinear operator bounded from L p 0 (dx) to L s 0 (dx). (i) If b ∈ BMO ∩ L ∞ (dx) and f ∈ L ∞ c (dx), then T k b f ∈ L s 0 (dx). (ii) Assume that for any b ∈ BMO ∩ L ∞ (dx) and for any f ∈ L ∞ c (dx) we have that T k b f L q (w q ) ≤ C 0 b k BMO f L p (w p ) , (2.11)
where C 0 does not depend on b and f . Then for all b ∈ BMO, (2.11) holds with constant 2 k C 0 instead of C 0 .

Part (ii) in this result ensures that it suffices to consider the case b ∈ L ∞ (dx) (provided the constants obtained do not depend on b). So from now on we assume that b ∈ L ∞ (dx) and obtain (2.11) with C 0 independent of b and f . Note that by homogeneity we can also assume that b BMO = 1.

We proceed by induction. Note that the case k = 0 corresponds to (a). We write the case k = 1 in full detail and indicate how to pass from k -1 to k as the argument is essentially the same. Let us fix p 0 < p < q 0 and w q ∈ A 1+ q/p 0 (p/p 0 ) ′ ∩ RH (q 0 /q) ′ (see Remark 2.4). We assume that q 0 < ∞, for q 0 = ∞ the main ideas are the same and details are left to the interested reader.

Case k = 1: We use the ideas in [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights[END_REF] (see also [START_REF] Pérez | Endpoint estimates for commutators of singular integral operators[END_REF]). Let f ∈ L ∞ c (dx) and set

F = |T 1 b f | s 0 . Note that F ∈ L 1 (dx) by (i) in Lemma 2.7 (this is the only place in this step where we use that b ∈ L ∞ (dx)). Given a cube Q, we set f Q,b = (b 4 Q -b) f and decompose T 1 b as follows: |T 1 b f (x)| = |T (b(x) -b) f (x)| ≤ |b(x) -b 4 Q | |T f (x)| + |T (b 4 Q -b) f (x)| ≤ |b(x) -b 4 Q | |T f (x)| + |T (I -A r(Q) )f Q,b (x)| + |T A r(Q) f Q,b (x)|.
With the notation of Theorem 2.6, we observe that

F ≤ G Q + H Q where G Q = 4 s 0 -1 G Q,1 + G Q,2 = 4 s 0 -1 |b -b 4 Q | s 0 |T f | s 0 + |T (I -A r(Q) )f Q,b | s 0 and H Q = 2 s 0 -1 |T A r(Q) f Q,b | s 0 .
We first estimate the average of G Q on Q. Fix any x ∈ Q. By (2.9) with k = 1,

- Q G Q,1 = - Q |b -b 4 Q | s 0 |T f | s 0 b s 0 BMO M [s 0 ]+2 |T f | s 0 )(x).
Using (2.1), (2.9) and (2.10),

- Q G Q,2 1 s 0 = - Q |T (I -A r(Q) )f Q,b | s 0 1 s 0 ∞ j=1 α j ℓ(2 j+1 Q) α - 2 j+1 Q |f Q,b | p 0 1 p 0 ≤ ∞ j=1 α j b -b 4 Q expL,2 j+1 Q M L (log L) p 0 ,α p 0 |f | p 0 ) 1 p 0 (x) b BMO M L (log L) p 0 ,α p 0 |f | p 0 )(x) 1 p 0 ∞ j=1 α j j M L (log L) p 0 ,α p 0 |f | p 0 ) 1 p 0 (x), since j α j j < ∞. Hence, for any x ∈ Q - Q G Q ≤ C M [s 0 ]+2 |T f | s 0 )(x) + M L (log L) p 0 ,α p 0 |f | p 0 )(x) s 0 p 0 ≡ G(x).
We next estimate the average of H r Q on Q with r = q 0 /s 0 . Using (2.2) and proceeding as before

- Q H r Q 1 q 0 = 2 (s 0 -1)/s 0 - Q |T A r(Q) f Q,b | q 0 1 q 0 ∞ j=1 α j - 2 j+1 Q |T f Q,b | s 0 1 s 0 ≤ ∞ j=1 α j - 2 j+1 Q |T 1 b f | s 0 1 s 0 + j≥1 α j - 2 j+1 Q |b -b 4 Q | s 0 |T f | s 0 1 s 0 (MF ) 1 s 0 (x) + ∞ j=1 α j b -b 4 Q expL,2 j+1 Q M [s 0 ]+2 |T f | s 0 ) 1 s 0 (x) (MF ) 1 s 0 (x) + M [s 0 ]+2 |T f | s 0 ) 1 s 0 (x) ∞ j=1 α j j (MF ) 1 s 0 (x) + M [s 0 ]+2 |T f | s 0 ) 1 s 0 (x),
for any x, x ∈ Q, where we have used that j α j j < ∞. Thus we have obtained

- Q H r Q 1 r ≤ C MF (x) + M [s 0 ]+2 |T f | s 0 )(x) ≡ C MF (x) + H 2 (x) .
As mentioned before F ∈ L 1 . Since w q ∈ RH (q 0 /q) ′ , we can choose 1 < s < q 0 /q so that w q ∈ RH s ′ . Thus, Theorem 2.6 with q/s 0 in place of p (notice that 1 < q/s 0 < r/s) yields

T 1 b f s 0 L q (w q ) ≤ MF L q s 0 (w q ) G L q s 0 (w q ) + H 2 L q s 0 (w q ) M L (log L) p 0 ,α p 0 |f | p 0 ) s 0 p 0 L q s 0 (w q ) + M [s 0 ]+2 |T f | s 0 L q s 0 (w q ) I + II.
We estimate each term in turn. For I, we claim that M L (log L) p 0 ,α p 0 maps L p p 0 (w p ) into L q p 0 (w q ). This implies that

I = M L (log L) p 0 ,α p 0 |f | p 0 ) s 0 p 0 L q p 0 (w q ) f s 0 L p (w p ) .
Let us show our claim. We observe that 1 + q/p 0 (p/p 0 ) ′ = q s 0 = q ( 1 p 0 -α n ). Then, by (iii) in Proposition 2.1, there exists 1 < s < p/p 0 so that w q ∈ A q ( 1 s p 0 -α n ) . Let us observe that the choice of s guarantees that q ( 1 s p 0 -α n ) > 1. We set α = s p 0 α, p = p/(p 0 s) and q = q/(p 0 s). Let us observe that 0 < α < n, 1 < p < n/ α and 1/p -1/q = α/n. Besides by (ix) of Proposition 2.1 we have that w = w p 0 s ∈ A p,q . Therefore, by Theorem 1.1 it follows that M α maps L p( wp ) into L q( wq ).

Notice that as s > 1 we have that t (1 + log + t) p 0 t s for every t ≥ 1. Thus,

M L (log L) p 0 ,α p 0 g(x) = sup Q∋x ℓ(Q) α p 0 g L (log L) p 0 ,Q sup Q∋x ℓ(Q) α p 0 g L s ,Q = M α p 0 s |g| s )(x) 1 s = M α |g| s )(x) 1 s ,
and therefore we conclude the desired estimate

M L (log L) p 0 ,α p 0 g L q p 0 (w q ) M α |g| s ) 1 s L q p 0 (w q ) = M α |g| s ) 1 s L q ( w q ) |g| s 1 s L p( w p) = g L p p 0 (w p )
.

For II as before we observe that 1 + q/p 0 (p/p 0 ) ′ = q s 0 . Besides, 1/p -1/q = α/n = 1/p 0 -1/s 0 implies that 1/s 0 -1/q = 1/p 0 -1/p > 0 and therefore q/s 0 > 1. Consequently, M (hence, M 2 , M 3 , . . . ) is bounded on L q s 0 (w q ) which gives

II = M [s 0 ]+2 |T f | s 0 L q s 0 (w q ) T f s 0 L q (w q ) f s 0 L p (w p ) ,
where in the last inequality we have used (a) (which is the case k = 0). Collecting the obtained estimates for I and II we conclude as desired

T 1 b f s 0 L q (w q ) f s 0 L p (w p ) .
Case k: We now sketch the induction argument. Assume that we have already proved the cases m = 0, . .

. , k -1. Let f ∈ L ∞ c (dx). Given a cube Q, write f Q,b = (b 4 Q -b) k f and decompose T k b as follows: |T k b f (x)| = |T (b(x) -b) k f (x)| ≤ k-1 m=0 C k,m |b(x) -b 4 Q | k-m |T m b f (x)| + |T (b 4 Q -b) k f (x)| k-1 m=0 |b(x) -b 4 Q | k-m |T m b f (x)| + |T (I -A r(Q) )f Q,b (x)| + |T A r(Q) f Q,b (x)|.
Following the notation of Theorem 2.6, we set

F = |T k b f | s 0 ∈ L 1 (dx) by (i) in Lemma 2.7. Observe that F ≤ G Q + H Q where G Q = 4 s 0 -1 C k-1 m=0 |b -b 4 Q | k-m |T m b f | s 0 + |T (I -A r(Q) )f Q,b | s 0 and H Q = 2 s 0 -1 |T A r(Q) f Q,b | s 0 .
Proceeding as before we obtain for any

x ∈ Q - Q G Q ≤ C k-1 m=0 M [(k-m) s 0 ]+2 |T m b f | s 0 )(x) + M L (log L) k p 0 ,α p 0 |f | p 0 )(x) s 0 p 0 ≡ G(x),
and for r = q 0 /s 0

- Q H r Q 1 r ≤ C MF (x) + k-1 m=0 M [(k-m) s 0 ]+2 |T m b f | s 0 (x) ≡ C MF (x) + H 2 (x) .
Therefore, as F ∈ L 1 , Theorem 2.6 gives us as before

T k b f s 0 L q (w q ) ≤ MF L q s 0 (w q ) G L q s 0 (w q ) + H 2 L q s 0 (w q ) M L (log L) k p 0 ,α p 0 |f | p 0 ) s 0 p 0 L q s 0 (w q ) + k-1 m=0 M [(k-m) s 0 ]+2 |T m b f | s 0 L q s 0 (w q ) f s 0 L p (w p ) + k-1 m=0 T m b f s 0 L q (w q ) f s 0 L p (w p ) ,
where have proceeded as in the estimates of I and II in the case k = 1 and we have used the induction hypothesis on T m b , m = 0, . . . , k -1. Let us point out again that none of the constants involved in the proof depend on b and f . Proof of Lemma 2.7. We use an argument similar to that in [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights[END_REF] (see also [START_REF] Pérez | Endpoint estimates for commutators of singular integral operators[END_REF]). Fix f ∈ L ∞ c (dx). Note that (i) follows easily observing that

|T k b f (x)| k m=0 |b(x)| m-k |T (b m f )(x)| ≤ k m=0 b m-k L ∞ |T (b m f )(x)| ∈ L s 0 (dx), since b ∈ L ∞ (dx), f ∈ L ∞ c (dx) imply that b m f ∈ L ∞ c (dx) ⊂ L p 0 (dx) and, by assump- tion, T (b m f ) ∈ L s 0 (dx).
To obtain (ii), we fix b ∈ BMO and f ∈ L ∞ c (dx). Let Q 0 be a cube such that supp f ⊂ Q 0 . We may assume that b 

N (x) = b(x) when -N ≤ b(x) ≤ N, b N (x) = N when b(x) > N and b(x) = -N when b(x) < -N. Then, it is immediate to see that |b N (x) -b N (y)| ≤ |b(x) -b(y)| for all x, y. Thus, b N BMO ≤ 2 b BMO . As b N ∈ L ∞ (dx)
we can use (2.11) and

T k b N f L q (w q ) ≤ C 0 b N k BMO f L p (w p ) ≤ C 0 2 k b k BMO f L p (w p ) < ∞.
To conclude, by Fatou's lemma, it suffices to show that

|T b N j f (x)| -→ |T k b f (x)
| for a.e. x ∈ R n and for some subsequence {N j } j such that N j → ∞.

As

|b N | ≤ |b| ∈ L p (Q 0 ) for any 1 ≤ p < ∞, the dominated convergence theorem yields that (b N ) m f -→ b m f in L p 0 (dx) as N → ∞ for all m = 0, . . . , k. Therefore, the fact that T is bounded from L p 0 (dx) to L s 0 (dx) yields T (b N ) m f -b m f -→ 0 in L s 0 (dx). Thus, there exists a subsequence N j → ∞ such that T (b N j ) m f - b m f (x) -→ 0 for a.e.
x ∈ R n and for all m = 1, . . . , k. In this way we obtain

|T k b N j f (x)| -|T k b f (x)| T (b N j (x) -b N j ) k -(b(x) -b) k f (x) k m=0 |b N j (x)| k-m T (b N j ) m f -b m f (x) + b N j (x) k-m -b(x) k-m T (b m f )(x) ,
and as desired we get that

|T b N j f (x)| -→ |T k b f (x)| for a.e. x ∈ R n .
3. Proof of Theorems 1.3 and 1.4

We first introduce our class of elliptic operators and state some needed properties. Then we present an auxiliary lemma which leads us to prove the weighted estimates for L -α/2 and the corresponding commutators.

3.1. The Class of Elliptic Operators. Let A be an n×n matrix of complex and L ∞valued coefficients defined on R n . We assume that this matrix satisfies the following ellipticity (or "accretivity") condition: there exist 0 < λ ≤ Λ < ∞ such that

λ |ξ| 2 ≤ Re A(x) ξ • ξ and |A(x) ξ • ζ| ≤ Λ |ξ| |ζ|,
for all ξ, ζ ∈ C n and almost every x ∈ R n . We have used the notation ξ

• ζ = ξ 1 ζ 1 + • • • + ξ n ζ n and therefore ξ • ζ is the usual inner product in C n . Note that then A(x) ξ • ζ = j,k a j,k (x) ξ k ζj .
Associated with this matrix we define the second order divergence form operator Lf = -div(A ∇f ), which is understood in the standard weak sense as a maximal-accretive operator on L 2 (dx) with domain D(L) by means of a sesquilinear form.

The operator -L generates a C 0 -semigroup {e -t L } t>0 of contractions on L 2 (dx). Define ϑ ∈ [0, π/2) by,

ϑ = sup arg Lf, f : f ∈ D(L) .
Then the semigroup has an analytic extension to a complex semigroup {e -z L } z∈Σ π/2-ϑ of contractions on L 2 (dx). Here we have written for 0 < θ < π,

Σ θ = {z ∈ C * : | arg z| < θ}.
We need to recall some properties of the generated semigroup {e -t L } t>0 (the reader is referred to [Aus] and [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part II: Off-diagonal estimates on spaces of homogeneous type[END_REF] for more details and complete statements). In what follows we set d(E, F ) = inf{|x -y| : x ∈ E, y ∈ F } where E, F are subsets of R n . Proposition 3.1. Given L as above, there exist p -= p -(L) and p + = p + (L), 1 ≤ p -< 2 < p + ≤ ∞ such that:

(a) The semigroup {e -t L } t>0 is uniformly bounded on L p (dx) for every p -< p < p + .

(b) The semigroup {e -t L } t>0 satisfies L p -L q off-diagonal estimates for every p -< p ≤ q < p + : For 1 ≤ p ≤ q ≤ ∞, L p -L q off-diagonal estimates mean that for some c > 0, for all closed sets E and F , all f and all t > 0 we have

F |e -t L (χ E f )| q dx 1 q t -1 2 ( n p -n q ) e -c d 2 (E,F ) t E |f | p dx 1 p . (3.1) 
(c) For every m ∈ N and 0 < µ < π/2 -ϑ, the complex family {(zL) m e -z L } z∈Σµ is uniformly bounded on L p (dx) for p -< p < p + and satisfies L p -L q off-diagonal estimates for every p -< p ≤ q < p + (in (3.1) one replaces t by |z|).

(d) The interval (p -, p + ) is maximal for any of the properties above up to end-points, that is, none of them can hold outside [p -, p + ].

(e) If n = 1 or 2, or L has real coefficients, then p -= 1 and p + = ∞. In those cases, one has the stronger Gaussian domination |e -tL f | ≤ Ce ct∆ |f | for all f ∈ L 1 (dx)∪ L ∞ (dx) and t > 0 with constants c, C > 0. This implies uniform boundedness and off-diagonal estimates in the whole interval [1, ∞]. Other instances of a Gaussian domination occur for complex, continuous and periodic coefficients in any dimension, see [ERS].

(f ) If n ≥ 3, p -< 2n n+2 and p + > 2n n-2 .
Let us make some relevant comments. In the Gaussian factors of the off-diagonal estimates the value of c is irrelevant as long as it remains positive. When q = ∞ in (3.1), one should adapt the definitions in the usual straightforward way. One can prove that L 1 -L ∞ off-diagonal estimates are equivalent to pointwise Gaussian upper bounds for the kernels of the family (see [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part II: Off-diagonal estimates on spaces of homogeneous type[END_REF]). In dimensions n ≥ 3, it is not clear what happens at the endpoints for either boundedness or off-diagonal estimates.

3.2. Auxiliary Lemma. The proofs of Theorems 1.3 and 1.4 will use the following auxiliary lemma.

Lemma 3.2. Let p -< p 0 < s 0 < q 0 < p + so that 1/p 0 -1/s 0 = α/n. Fix a ball B with radius r. For f ∈ L ∞ c (dx) and m large enough we have

- B |L -α/2 (I -e -r 2 L ) m f | s 0 dx 1 s 0 ≤ ∞ j=1 g 1 (j) (2 j+1 r) α - 2 j+1 B |f | p 0 dx 1 p 0 , (3.2)
and for

1 ≤ l ≤ m - B |L -α/2 e -l r 2 L f | q 0 dx 1 q 0 ≤ ∞ j=1 g 2 (j) - 2 j+1 B |L -α/2 f | s 0 dx 1 s 0 , (3.3) 
where g 1 (j) = C 2 -j (2 m-n/s 0 ) and g 2 (j) = C e -c 4 j .

Proof. We first obtain (3.3). We fix f ∈ L ∞ c (dx) and a ball B. We decompose any given function h as

h = j≥1 h j , h j = h χ C j (B) , (3.4) 
where C j (B) = 2 j+1 B \ 2 j B when j ≥ 2 and C 1 (B) = 4B. Fix 1 ≤ l ≤ m. Since p -< s 0 < q 0 < p + by Proposition 3.1 part (b) we have

- B |e -l r 2 L h j | q 0 dx 1 q 0 r -n q 0 (l r 2 ) -1 2 ( n s 0 -n q 0 ) e - c d 2 (C j (B),B) l r 2 C j (B) |h| s 0 dx 1 s 0 2 j n/s 0 e -c 4 j - 2 j+1 B |h| s 0 dx 1 s 0 e -c 4 j - 2 j+1 B |h| s 0 dx 1 s 0
and by Minkowski's inequality

- B |e -k r 2 L h| q 0 dx 1 q 0 j≥1 g(j) - 2 j+1 B |h| s 0 dx 1 s 0 (3.5)
with g(j) = e -c 4 j for any h ∈ L s 0 (dx). This estimate with h = L -α/2 f ∈ L s 0 (dx) -here we use that f ∈ L ∞ c (dx) and Theorem 1.2-yields (3.3) since, by the commutation rule, L -α/2 e -l r 2 L f = e -l r 2 L h.

Next we obtain (3.2). We decompose f = j≥1 f j as in (3.4). For j = 1, we use that L -α/2 maps L p 0 (dx) into L s 0 (dx) by Theorem 1.2, and that (I -e -r 2 L ) m is bounded on L p 0 uniformly on r by (a) in Proposition 3.1 as p -< p 0 < p + . Hence,

- B |L -α/2 (I -e -r 2 L ) m f 1 | s 0 dx 1 s 0 |B| -1/s 0 R n |(I -e -r 2 L ) m f 1 | p 0 dx 1 p 0 |B| -1/s 0 4 B |f | p 0 dx 1 p 0 (4 r) α - 4 B |f | p 0 dx 1 p 0 .
(3.6)

Next we estimate the terms j ≥ 2. We first write

L -α/2 (1 -e -r 2 L ) m f j = 1 Γ(α/2) ∞ 0 t α/2 e -t L (1 -e -r 2 L ) m f j dt t = 1 Γ(α/2) ∞ 0 t α/2 ϕ(t, L)f j dt t , (3.7) 
where ϕ(t, z) = e -t z (1 -e -r 2 z ) m . The argument will show that the integral in t converges strongly in L s 0 (B). Let µ ∈ (ϑ, π) and assume that ϑ < θ < ν < µ < π/2. Then we have

ϕ(t, L) = Γ + e -z L η + (t, z) dz + Γ - e -z L η -(t, z) dz, (3.8)
where Γ ± is the half ray R + e ±i (π/2-θ) ,

η ± (t, z) = 1 2 π i γ ± e ζ z ϕ(t, ζ) dζ, z ∈ Γ ± ,
with γ ± being the half-ray R + e ±i ν (the orientation of the paths is not needed in what follows so we do not pay attention to it). It is easy to see (see for instance [Aus]) that

|η ± (t, z)| r 2 m (|z| + t) m+1 , z ∈ Γ ± .
Then, since p -< p 0 < s 0 < p + by (c) in Proposition 3.1 we have

- B Γ + η + (t, z) e -z L f j dz s 0 dx 1 s 0 ≤ Γ + - B |e -z L f j | s 0 dx 1 s 0 |η + (t, z)| |dz| Γ + r -n s 0 |z| -1 2 ( n p 0 -n s 0 ) e -c 4 j r 2 |z| C j (B) |f | p 0 dx 1 p 0 |η + (t, z)| |dz| 2 j n/s 0 - 2 j+1 B |f | p 0 dx 1 p 0 ∞ 0 2 j r √ s α e -c 4 j r 2 s r 2 m (s + t) m+1 ds.
The same is obtained when one deals with the term corresponding to Γ -. We plug both estimates into the representation of ϕ(t, L) and use Minkowski's inequality for the integral in the t variable in (3.7) to obtain

- B |L -α/2 (I -e -r 2 L ) m f j | s 0 dx 1 s 0 2 j n/s 0 - 2 j+1 B |f | p 0 dx 1 p 0 ∞ 0 t α/2 ∞ 0 2 j r √ s α e -c 4 j r 2 s r 2 m (s + t) m+1 ds dt t 2 j n/s 0 4 -j m (2 j+1 r) α - 2 j+1 B |f | p 0 dx 1 p 0 ,
(3.9) since, after changing variables and taking

m + 1 > α/2, ∞ 0 ∞ 0 t α/2 2 j r √ s α e -c 4 j r 2 s r 2 m (s + t) m+1 dt t ds = 2 • 4 -j m (2 j r) α ∞ 0 e -c s 2 s 2 m ds s ∞ 0 t α/2 (1 + t) m+1 dt t 4 -j m (2 j+1 r) α .
Gathering (3.6) and (3.9) it follows that

- B |L -α/2 (I -e -r 2 L ) m f | s 0 dx 1 s 0 j≥1 g(j) (2 j+1 r) α - 2 j+1 B |f | p 0 dx 1 p 0
with g(j) = 2 -j(2 m-n/s 0 ) .

3.3. The proofs. We are going to apply Theorem 2.2 to the linear operator T = L -α/2 . Part (a) yields Theorem 1.3 and part (b) gives the estimates of the commutators in Theorem 1.4. Thus, it suffices to establish (2.1) and (2.2) with a sequence {α j } j that decays fast enough. We fix p -< p < q < p + , α so that α/n = 1/p -1/q, and w ∈ A 1+ 1 p --1 p ∩ RH q ( p + q ) ′ . By (iii) and (iv) in Proposition 2.1 there exist p 0 , q 0 , s 0 such that 1/p 0 -1/s 0 = α/n, p -< p 0 < s 0 < q 0 < p + , p 0 < p < q < q 0 and w ∈ A 1+ 1 p 0 -1 p ∩ RH q ( q 0 q ) ′ . Notice that as 1 ≤ p -< p + ≤ ∞ we have that 1 < p 0 < s 0 < q 0 < ∞. By Theorem 1.2, T = L -α/2 maps L p 0 (dx) into L s 0 (dx). We take A r = I-(I-e -r 2 L ) m where m ≥ 1 is an integer to be chosen. By the property (a) of the semigroup in Proposition 3.1, it follows that the family {A r } r>0 is uniformly bounded on L p 0 (dx) (as p -< p 0 < p + ) and so acts from L ∞ c (dx) into L p 0 (dx). We apply Lemma 3.2. Note that (3.2) is (2.1). Also, (2.2) follows from (3.3) after expanding A r = I -(I -e -r 2 L ) m . Then, we have that j≥1 j k g i (j) < ∞ for i = 1, 2 by choosing 2 m > n/s 0 . Consequently applying Theorem 2.2, part (a) if k = 0 and part (b) otherwise, we conclude that T k b maps L p (w p ) into L q (w q ) as desired.

A variant of Theorem 2.2

The next result is an extension to the context of fractional operators of [AM1, Theorem 3.14], itself inspired greatly by [START_REF] Shen | Bounds of Riesz transforms on L p spaces for second order elliptic operators[END_REF]Theorem 3.1].

Theorem 4.1. Let 0 < α < n, 1 ≤ p 0 < s 0 < q 0 ≤ ∞ such that 1/p 0 -1/s 0 = α/n. Suppose that T is a sublinear operator bounded from L p 0 (dx) to L s 0 (dx). Assume that there exist constants α

2 > α 1 > 1, C > 0 such that - B |T f | q 0 dx 1 q 0 ≤ C - α 1 B |T f | s 0 dx 1 s 0 + M α p 0 |f | p 0 (x) 1 p 0 , (4.1) for all balls B, x ∈ B and all f ∈ L ∞ (dx) with compact support in R n \ α 2 B. Let p 0 < p < q < q 0 with 1/p -1/q = α/n and w ∈ A 1+ 1 p 0 -1 p ∩ RH q ( q 0 q ) ′ . Then, there is a constant C such that T f L q (w q ) ≤ C f L p (w p ) for all f ∈ L ∞ c (dx). Proof.
A straightforward modification of Theorem 2.2 is to replace the family {A r } r>0 indexed by radii of balls by {A B } B indexed by balls. For any ball B, let A B f = (1 -χ α 2 B ) f . With this choice, we check (2.4) and the weakened version of (2.5). Fix

f ∈ L ∞ c (dx), a ball B and x, x ∈ B. Using that T is bounded from L p 0 (dx) to L s 0 (dx) we have - α 1 B |T (I -A B )f | s 0 dx 1 s 0 r(B) α - α 2 B |f | p 0 dx 1 p 0 M α p 0 |f | p 0 (x) 1 p 0 . (4.2)
In particular (2.4) holds since α 1 > 1. Next, by (4.1) and since

|A B f | ≤ |f | we have - B |T A B f | q 0 dx 1 q 0 ≤ C - α 1 B |T A B f | s 0 dx 1 s 0 + M α p 0 |f | p 0 (x) 1 p 0 .
Using (4.2) and the sublinearity of T , it follows that

- B |T A B f | q 0 dx 1 q 0 ≤ C M |T f | s 0 1 s 0 (x) + C M α p 0 |f | p 0 (x) 1 p 0 ,
which is the weakened version of (2.5). We conclude on applying the above mentioned variant of Theorem 2.2.

Spaces of homogeneous type

As Theorem 2.6 passes entirely to spaces of homogeneous type -a (quasi-)metric space (X , d) equipped with a Borel doubling measure µ-one may wonder whether Theorems 2.2 and 4.1 can be extended to this setting.

In the Euclidean setting, the classical Riesz potential I α or the fractional maximal operator M α are bounded from L p (dx) to L q (dx) necessarily when 1/p -1/q = α/n. This is caused by the homogeneity of these operators plus the dilation structure of the Lebesgue measure (that is, |B| = c r(B) n ). Concerning the weighted estimates, the boundedness of M α and I α from L p (w p ) to L q (w q ) are modeled by suitable modifications of the Muckenhoupt conditions which are vacuous unless 1/p -1/q = α/n.

Let (X , d, µ) be an space of homogeneous type where it is assumed that d is a distance (see [MS]). We also impose that µ(B) ≥ c r(B) n for some n > 0 -with this assumption, the fractional operators defined below are bounded with the same restriction in p and q as above. In this setting one can define the classes A p , RH q and A p,q by simply replacing the Lebesgue measure by µ. All the properties in Proposition 2.1 hold (to avoid some technicalities we assume that the weights are doubling). Here and in the sequel we understand that the averages are taken with respect to the measure µ.

We consider the following fractional operators that appear, for instance, in the study of subelliptic equations (see [Nag], [SW], [PW] and the references therein): As mentioned before there is a version of Theorem 2.6 in spaces of homogeneous type. Thus, in order to extend Theorem 2.2 and, therefore, Theorem 4.1, one only needs to study the boundedness of the fractional maximal operators M α defined above.

T α f (x) =
Proposition 5.1. Let 0 < α < n, 1 ≤ p < n/α and 1/q = 1/p -α/n. For every w ∈ A p,q , M α maps L p (w p ) into L q (w q ) if p > 1 and L 1 (w) into L q,∞ (w q ) if p = 1.

Proof. The proof follows the classical scheme in [MW] and we give just a few details. Given α, p, q and w as above, using Hölder's inequality and that w ∈ A p,q one can easily obtain that for every 0 ≤ g ∈ L p (w p ) r(B) α -B g dµ q w q (B) r(B) α q µ(B) q p -1 B g p w p dµ q p B g p w p dµ q p , (5.1)

where in the last estimate we have used that µ(B) r(B) n . Given f ∈ L p (w p ) and λ > 0, Vitali's covering lemma yields

E λ = {x ∈ X : M α f (x) > λ} ⊂ j 5 B j
where {B j } j is a family of pairwise disjoint balls such that r(B j ) α -B j |f | dµ > c λ.

Using (5.1) with B = 5 B j and g = |f | χ B j , and that p < q we obtain w q (E λ ) ≤ j w q (5 B j )

j B j |f | p w p dµ q p r(B j ) α - B j |f | dµ -q λ -q j B j |f | p w p dµ q p ≤ λ -q X |f | p w p dµ q p .
This shows that M α maps L p (w p ) into L q,∞ (w q ) for every w ∈ A p,q . When p = 1, this is the desired estimate.

To conclude that M α is of strong type when p > 1 we use an interpolation argument in [MW]. Having fixed p, q and w ∈ A p,q , we have w = w q ∈ A r with r = 1 + q/p ′ (see (viii) in Proposition 2.1). We define a new operator S α g = M α g wα/n . By Proposition 2.1 part (iii), there exists 1 < p 1 < p such that w ∈ A r 1 where r 1 = 1 + q 1 /p ′ 1 < r and 1/q 1 = 1/p 1 -α/n. Thus, w1/q 1 ∈ A p 1 ,q 1 and the argument above shows that S α is bounded from L p 1 ( w) to L q 1 ,∞ ( w). On the other hand we can find p < p 2 < α/n, then we define 1/q 2 = 1/p 2 -α/n and r 2 = 1+q 2 /p ′ 2 > r and so w ∈ A r 2 . Thus, w1/q 2 ∈ A p 2 ,q 2 and as before we conclude that S α maps L p 2 ( w) into L q 2 ,∞ ( w). By Marcinkiewicz's interpolation theorem, it follows that S α is bounded from L p ( w) into L q ( w) which in turn gives the desired weighted norm inequality M α .

Once we have obtained the weighted norm estimates for M α , the proofs of Theorems 2.2 and 4.1 can be carried out in X . The precise proofs and formulations are left to the interested reader. As a consequence, we show weighted estimates for T α .

Corollary 5.2. Let 0 < α < n, 1 < p < n/α and 1/q = 1/p -α/n. Then, T α maps L p (w p ) into L q (w q ) for all w ∈ A p,q .

Proof. We first notice that it suffices work with the sublinear operator f -→ T α (|f |). Abusing on the notation, we write T α for this new operator. Note that in that case T α f ≥ 0.

We claim that T α maps L p (µ) into L q (µ) for every 1 < p < q < ∞ such that 1/p -1/q = α/n, and also that sup (5.2) for every ball B, and f ∈ L ∞ c with supp f ⊂ X \ 4B. Assuming this, we obtain the desired estimate. Fix p, q, and w ∈ A p,q . Note that w ∈ A 1+1/p ′ ∩ RH q and by (iii) in Proposition 2.1 there exists 1 < p 0 < p such that

  where the supremum is taken over all balls and b B stands for the average of b on

  Q 0 = 0 since otherwise we can work with b = bb Q 0 and observe that T k b = T k b and b BMO = b BMO . Note that for all m = 0, . . . , k, we have that |b m f | and T (b m f ) are finite almost everywhere since |b m f | ∈ L p 0 (dx) and T (b m f ) ∈ L s 0 (dx). Let N > 0 and define b N as follows: b

X

  d(x, y) α µ(B(x, d(x, y))) f (y) dµ(y)for 0 < α < n. The associated maximal operator isM α f (x) = sup B∋x r(B) α -B |f(y)| dµ(y).

  x∈B T α f (x) -B T α f (x) dµ(x)
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A 1+ 1 p 0 -1 p ∩ RH q . We take s 0 so that 1/p 0 -1/s 0 = α/n, and q 0 = ∞. Then, (5.2) clearly implies (4.1) and thus T α is bounded from L p (w p ) to L q (w q ).

To finish we need to show our claims. First, we obtain the boundedness of T α . Fixed p, q, let 0 < s < ∞ to be chosen. Then, as α > 0,

On the other hand, since 1 < p < n/α,

Collecting the obtained estimates and choosing s = f L p (µ) /Mf (x) p/n we conclude

Let us point out that this estimate in the classical setting was shown by Hedberg [Hed]. From here, that T α maps L p (µ) into L q (µ) follows from the boundedness of M on L p (µ).

Next, we show (5.2). Let B be a ball and f supported on X \ 4 B. For every x, z ∈ B and y / ∈ 4 B we have that d(x, y) ≈ d(z, y) and the doubling condition yields µ(B(x, d(x, y)) ≈ µ (B(z, d(z, y)). Therefore T α f (x) ≈ T α f (z) for every x, z ∈ B and this readily leads to (5.2).