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OPTIMAL RATES AND ADAPTATION IN THE

SINGLE-INDEX MODEL USING AGGREGATION

By Stéphane Gäıffas and Guillaume Lecué

Université Paris 6

We want to recover the regression function in the single-index
model. Using an aggregation algorithm with local polynomial estima-
tors, we answer in particular to Question 2 from Stone (1982) [17] on
the optimal convergence rate within this model. The procedure con-
structed here has strong adaptation properties: it adapts both to the
smoothness of the link function and to the unknown index. Moreover,
the procedure locally adapts to the distribution of the data, which
allows to prove the results for a fairly general design. The behavior
of this algorithm is studied through numerical simulations. In par-
ticular, we show empirically that it improves strongly empirical risk
minimization.

1. Introduction. The single-index model is standard in statistical lit-
erature. It is widely used in several fields, since it provides a simple trade-off
between purely nonparametric and purely parametric approaches. Moreover,
it is well-known that it allows to deal with the so-called “curse of dimen-
sionality” phenomenon. Within the minimax theory, this phenomenon is
explained by the fact that the minimax rate linked to this model (which is
multivariate, in the sense that the number of explanatory variables is larger
than 1) is the same as in the univariate model. Indeed, if n is the sam-
ple size, the minimax rate over an isotropic s-Hölder ball is n−2s/(2s+d) for
mean integrated square error (MISE) in the d-dimensional regression model
without the single-index constraint, while in the single-index model, this
rate is conjectured to be n−2s/(2s+1) by [17]. Hence, even for small values
of d (larger than 2), the dimension has a strong impact on the quality of
estimation when no prior assumption on the structure of the multivariate
regression function is made. In this sense, the single-index model provides a
simple way to reduce the dimension of the problem.

Let (X,Y ) ∈ R
d × R be a random variable satisfying

Y = g(X) + σ(X)ε, (1.1)
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where ε is independent of X with law N(0, 1) and where σ(·) is such that
σ0 < σ(X) ≤ σ1 a.s. for some σ0 > 0 and a known σ1 > 0. We denote by
P the probability distribution of (X,Y ) and by PX the margin law in X or
design law. In the single-index model, the regression function as a particular
structure. Indeed, we assume that g can be written has

g(x) = f(ϑ⊤x) (1.2)

for all x ∈ R
d, where f : R → R is the link function and where the direction

ϑ ∈ R
d, or index, belongs to the half-unit sphere

Sd−1
+ =

{

v ∈ R
d | ‖v‖2 = 1 and vd ≥ 0

}

,

where ‖·‖2 is the Euclidean norm over R
d. The assumption ϑ ∈ Sd−1

+ entails
the unicity of (f, ϑ) in (1.2) and thus the identifiability of the model. We
assume that the available data

Dn := [(Xi, Yi); 1 ≤ i ≤ n] (1.3)

is a sample of n i.i.d. copies of (X,Y ) satisfying (1.1) and (1.2). In this
model, we can focus on the estimation of the index ϑ based on Dn when
the link function f is unknown, or we can focus on the estimation of the
regression g when both f and ϑ are unknown. In this paper, we consider the
latter problem. It is assumed below that f belongs to some family of Hölder
balls, that is, we do not suppose its smoothness to be known.

Statistical literature on this model is wide. Among many other references,
see [9] for applications in econometrics, an application in medical science can
be found in [22], see also [3], [4] and the survey paper by [7]. For the estima-
tion of the index, see for instance [10]; for testing the parametric versus the
nonparametric single-index assumption, see [18]. See also a chapter in [8]
which is devoted to dimension reduction techniques in the bounded regres-
sion model. While the literature on single-index modelling is vast, several
problems remain open. For instance, Question 2 from [17] concerning the
minimax rate over Hölder balls in model (1.1),(1.2) is still open.

This paper provides new minimax results about the single-index model,
which answer in particular to latter question. Indeed, we prove that in
model (1.1),(1.2), we can achieve the rate n−2s/(2s+1) for a link function
in a whole family of Hölder balls with smothness s, see Theorem 1. The
optimality of this rate is proved in Theorem 2. To prove the upper bound,
we use an estimator which adapts both to the index parameter and to the
smoothness of the link function. This result is stated under fairly general
assumptions on the design, which include any “non-pathological” law for
PX . Moreover, this estimator has a nice “design-adaptation” property, since
it does not depend within its construction on PX .
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2. Construction of the procedure. The procedure developed here
for recovering the regression does not use a plugin estimator by direct esti-
mation of the index. Instead, it adapts to it, by aggregating several univariate
estimators based on projected samples

Dm(v) := [(v⊤Xi, Yi), 1 ≤ i ≤ m], (2.1)

where m < n, for several v in a regular lattice of Sd−1
+ . This “adaptation to

the direction” uses a split of the sample. We split the whole sample Dn into
a training sample

Dm := [(Xi, Yi); 1 ≤ i ≤ m]

and a learning sample

D(m) := [(Xi, Yi);m + 1 ≤ i ≤ n].

The choice of the split size can be quite general (see Section 3 for details).
In the numerical study (conducted in Section 4 below), we consider simply
m = 3n/4 (the learning sample size is a quarter of the whole sample), which
provides good results, but other splits can be considered as well.

Using the training sample, we compute a family {ḡ(λ) ; λ ∈ Λ} of linear
(or weak) estimators of the regression g. Each of these estimators depend on
a parameter λ = (v, s) which make them work based on the data “as if” the
true underlying index were v and “as if” the smoothness of the link function
were s (in the Hölder sense, see Section 3).

Then, using the learning sample, we compute a weight w(ḡ) ∈ [0, 1] for
each ḡ ∈ {ḡ(λ) ; λ ∈ Λ}, satisfying

∑

λ∈Λ w(ḡ(λ)) = 1. These weights give a
level of significance to each weak estimator. Finally, the adaptive, or aggre-
gated estimator, is simply the convex combination of the weak estimators:

ĝ :=
∑

λ∈Λ

w(ḡ(λ))ḡ(λ).

The family of weak estimators consists of univariate local polynomial esti-
mators (LPE), with a data-driven bandwidth that fits locally to the amount
of data. In the next section the parameter λ = (v, s) is fixed and known: we
contruct a univariate LPE based on the sample Dm(v) = [(Zi, Yi); 1 ≤ i ≤
m] = [(v⊤Xi, Yi); 1 ≤ i ≤ m].

2.1. Weak estimators: univariate LPE. The LPE is standard in statis-
tical literature, see for instance [5, 6], among many others. We construct
an estimator f̄ of f based on i.i.d. copies [(Zi, Yi); 1 ≤ i ≤ m] of a couple
(Z, Y ) ∈ R × R such that

Y = f(Z) + σ(Z)ǫ, (2.2)
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where ǫ is standard Gaussian noise independent of Z, σ : R → [σ0, σ1] ⊂
(0,+∞) and f ∈ H(s, L) where H(s, L) is the set of s-Hölderian functions
such that

|f (⌊s⌋)(z1) − f (⌊s⌋)(z2)| ≤ L|z1 − z2|s−⌊s⌋

for any z1, z2 ∈ R, where L > 0 and ⌊s⌋ stands for the largest integer smaller
than s. This Hölder assumption is standard in nonparametric literature.

Let r ∈ N and h > 0 be fixed. If z is fixed, we consider the polynomial
P̄(z,h) ∈ Polr (the set of real polynomials with degree at most r) which
minimizes in P :

m
∑

i=1

(

Yi − P (Zi − z)
)2

1Zi∈I(z,h), (2.3)

where I(z, h) := [z − h, z + h] and we define the LPE at z by

f̄(z, h) := P̄(z,h)(0).

The polynomial P̄(z,h) is well-defined and unique when the symmetrical ma-
trix Z̄m(z, h), with entries

(Z̄m(z, h))a,b :=
1

mP̄Z [I(z, h)]

m
∑

i=1

(Zi − z

h

)a+b
1Zi∈I(z,h) (2.4)

for (a, b) ∈ {0, . . . , R}2, is definite positive, where P̄Z is the empirical distri-
bution of (Zi)1≤i≤m, given by

P̄Z [A] :=
1

m

m
∑

i=1

1Zi∈A (2.5)

for any A ⊂ R. When Z̄m(z, h) is degenerate, we simply take f̄(z, h) := 0.
The tuning parameter h > 0, which is called bandwidth, localizes the least
square problem around the point z in (2.3). Of course, the choice of h is of
first importance in this estimation method (as with any linear method). An
important remark is then about the design law. Indeed, the law of Z = v⊤X
varies with v strongly: even if PX is very simple (for instance uniform over
some subset of R

d with positive Lebesgue measure), Pv⊤X can be “far” from
the uniform law, namely with a density that can vanish at the boundaries of
its support, or inside the support, see the examples in Figure 1. This remark
motivates the following choice for the bandwidth.

If f ∈ H(s, L) for known s and L, a “natural” bandwidth, which makes
the balance between the bias and the variance of the LPE is given by

Hm(z) := argmin
h∈(0,1)

{

Lhs ≥ σ1

(mP̄Z [I(z, h)])1/2

}

. (2.6)
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Fig 1. Simple design examples

This bandwidth choice stabilizes the LPE, since it fits point-by-point to the
local amount of data. We consider then

f̄(z) := f̄(z,Hm(z)), (2.7)

for any z ∈ R, which is in view of Theorem 3 (see Section 3) a minimax
estimator over H(s, L) in model (2.2).

Remark 1. The reason why we consider local polynomials instead of
some other method (like smoothing splines, for instance) is theoretical. It
is linked with the fact that we need minimax weak estimators under the
general design Assumption (D), so that the aggregated estimator is also
minimax.

2.2. Adaptation by aggregation. If λ := (v, s) is fixed, we consider the
LPE f̄ (λ) given by (2.7), and we take

ḡ(λ)(x) := τQ(f̄ (λ)(ϑ⊤x)), (2.8)

for any x ∈ R
d as an estimator of g, where τQ(f) := max(−Q,min(Q, f)) is

the truncation operator by Q > 0. The reason why we need to truncate the
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weak estimators is related to the theoretical results concerning the aggre-
gation procedure described below, see Theorem 4 in Section 3. In order to
adapt to the index ϑ and to the smoothness s of the link function, we aggre-
gate the weak estimators from the family {ḡ(λ);λ ∈ Λ} with the following
algorithm: we take the convex combination

ĝ :=
∑

λ∈Λ

w(ḡ(λ))ḡ(λ) (2.9)

where for a function ḡ ∈ {ḡ(λ);λ ∈ Λ}, the weight is given by

w(ḡ) :=
exp

( − TR(m)(ḡ)
)

∑

λ∈Λ exp
( − TR(m)(ḡ(λ))

) , (2.10)

with a temperature parameter T > 0 and

R(m)(ḡ) :=
n

∑

i=m+1

(Yi − ḡ(Xi))
2, (2.11)

which is the empirical least squares of ḡ over the training sample (up to a di-
vision by the sample size). This aggregation algorithm (with Gibbs weights)
can be found in [15] in the regression framework, for projection-type weak
estimators. Cumulative versions of this algorithm can be found in [2], [12],
[13], [23]. The set of parameters Λ is given by Λ := S̄ × G, where G is the
grid with step (log n)−1 given by

G :=
{

smin, smin + (log n)−1, smin + 2(log n)−1, . . . , smax
}

. (2.12)

The tuning parameters smin and smax correspond to the minimum and max-
imum “allowed” smoothness for the link function: for this grid choice, the
aggregated estimator converges with the optimal rate for a link function in
H(s, L) for any s ∈ [smin, smax] in view of Theorem 1. The set S̄ = S̄d−1

∆ is
the regular lattice of the half unit-sphere Sd−1

+ with step ∆. Namely, S̄d−1
∆

is such that for any lattitude, any consecutive points in the same lattitude
have distance ∆ (if d ≥ 3, a couple of points in Sd−1

+ belongs to the same
lattitude if they have one common coordinate). The step is taken as

∆ = (n log n)−1/(2smin), (2.13)

which relies on the minimal allowed smoothness of the link function. For
instance, if we want the estimator to be adaptive for link functions at least
Lipschitz, we take ∆ = (n log n)−1/2.
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We can understand this algorithm in the following way: first, we compute
the least squares of each weak estimators. This is the most natural way of
assessing the level of significance of some estimator among the other ones.
Then, we put a Gibbs law over the set of weak estimators. The mass of each
estimator relies on its least squares (over the learning sample). Finally, the
aggregate is simply the mean expected estimator according to this law.

If T is small, the weights (2.10) are close to the uniform law over the set
of weak estimators, and of course, the resulting aggregate is inaccurate. If
T is large, only one weight will equal 1, and the others equal to 0: in this
situation, the aggregate is equal to the estimator obtained by empirical risk
minimization (ERM). This behavior can be also explained by equation (5.10)
in the proof of Theorem 4. Indeed, the exponential weights (2.10) realize
an optimal tradeoff between the ERM procedure and the uniform weights
procedure. Hence, T is somehow a regularization parameter of this tradeoff.

The ERM already gives good results, but if T is chosen carefully, we
expect to obtain an estimator which outperforms the ERM. It has been
proved theoretically in [14] that an aggregation procedure outperforms the
ERM in the regression framework. This fact is confirmed by the numeri-
cal study conducted in Section 4, where the choice of T is done using a
simple leave-one-out cross-validation algorithm over the whole sample for
aggregates obtained with several T . Namely, we consider the temperature

T̂ := argmin
T∈T

n
∑

j=1

∑

i6=j

(

Yi − ĝ
(T )
−i (Xi)

)2
, (2.14)

where ĝ
(T )
−i is the aggregated estimator (2.9) with temperature T , based on

the sample D−i
n = [(Xj , Yj); j 6= i], and where T is some set of temperatures

(in Section 4, we take T = {0.1, 0.2, . . . , 4.9, 5}).

2.3. Reduction of the complexity of the algorithm. The adaptive proce-
dure described previously requires the computation of the LPE for each
parameter λ ∈ Λ̃ := Λ × L (actually, we do also a grid L over the radius
parameter L in the simulations). Hence, there are |S̄d−1

∆ | × |G| × |L| LPE to
compute. Namely, this is (π/∆)d−1×|G|×|L|, which equals, if |G| = |L| = 4
and ∆ = (n log n)−1/2 (see Section 4) to 1079 when d = 2 and to 72722 when
d = 3, which is much too large. Hence, the complexity of this procedure must
be reduced: we propose a recursive algorithm which improves strongly the
complexity of the estimator. Actually, the coefficients w(ḡ(λ)) are very close
to zero (see Figures 6 and 7 in Section 4) when λ = (v, s) is such that v is
“far” from the true index ϑ. Hence, these coefficients should not be com-
puted at all, since the corresponding weak estimators do not contribute to
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the aggregated estimator (2.9). Thus, instead of using a lattice of the whole
half unit-sphere for detecting the index, we only build a part of it, which
corresponds to the coefficients which are the most significative. This is done
with the following iterative algorithm, which makes a preselection of weak
estimators to aggregate (Bd(v, δ) stands for the ball in (Rd, ‖ · ‖2) centered
at v with radius δ and R(m)(ḡ) is given by (2.11)).

1. Define ∆ = (n log n)−1/2 and ∆0 = (2dn)−1/(2(d−1)) ;
2. compute the lattice Ŝ = S̄d−1

∆0
and put Λ̂ := Ŝ × G;

3. find the point v̂ such that (v̂, ŝ) = λ̂ = argminλ∈Λ̂ R(m)(ḡ
(λ));

4. ∆0 := ∆0/2;
5. put Ŝ = S̄d−1

∆0
∩ Bd(v̂, 2∆0) and Λ̂ := Ŝ × G;

6. stop if ∆0 ≤ ∆, otherwise continue with step 3.

When the algorithm exits, Ŝ is a section of the lattice S̄d−1
∆ centered at v̂

with radius 2d−1∆, which contains (with a high probability) the points v ∈
S̄d−1

∆ corresponding to the largest coefficients w(ḡ(λ)) where λ = (v, s, L) ∈
S̄d−1

∆ × G × L. The aggegate is then computed for a set of parameters Λ̂ =

Ŝ×G×L using (2.9) with weights (2.10). The parameter ∆0 is chosen so that
the surface of Bd(v,∆0) is Cd(2dn)−1/2: n is not a power of d. Moreover, the
number of iterations is O(log n), thus the complexity is much smaller than
the full aggregation algorithm. This procedure gives nice empirical results,
see Section 4. We show the iterative construction of Ŝ in Figure 2.

3. Main results. The error of estimation is measured with the L2(PX)-
norm, defined by

‖f‖L2(PX) :=
(

∫

Rd
f(x)2PX(dx)

)1/2
,

where we recall that PX is the design law. We consider the set HQ(s, L) :=
H(s, L) ∩ {f | ‖f‖∞ := supx |f(x)| ≤ Q}. Since we want the adaptive
procedure to work whatever ϑ ∈ Sd−1

+ is, we need to work with as general
assumptions on the law of ϑ⊤X as possible. The following assumption gener-
alizes the usual assumptions on random designs (when PX has a density with
respect to the Lebesgue measure) that can be met in literature. Namely, we
do not assume that the density of Pv⊤X is bounded away from zero. Indeed,
even with a very simple PX , this assumption holds for specific v only (see
Figure 1). We say that a real random variable Z satisfies Assumption (D) if:

Assumption (D). There is a density µ of PZ with respect to the Lebesgue
measure which is continuous. Moreover, we assume that
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Fig 2. Iterative construction of the set Ŝ of preselectioned weak estimators indexes. Weak

estimators are aggregated only for v ∈ Ŝ (bottom right), which is concentrated around the

true index.

• µ is compactly supported ;
• There is a finite number of z in the support of µ such that µ(z) = 0;
• For any such z, there is an interval Iz = [z − az, z + bz] such that µ is

decreasing over [z − az, z] and increasing over [z, z + bz];
• There is β ≥ 0 and γ > 0 such that

PZ [I] ≥ γ|I|β+1

for any I, where |I| stands for the length of I.

This assumption includes any design with continuous density with respect
to the Lebesgue measure that can vanish at several points, but not faster
than some power function.

3.1. Upper and lower bounds. The next Theorem provides an upper
bound for the adaptive estimator constructed in Section 2. This upper bound
holds for quite general tuning parameters. The temperature T > 0 can be
arbitrary (but not in practice of course). The training sample size is given
by

m = [n(1 − ℓn)], (3.1)

where [x] is the integral part of x, and where ℓn is a positive sequence such
that for all n, (log n)−α ≤ ℓn < 1 with α > 0. Note that in methods involving
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data splitting, the optimal choice of the split size is open. The degree r of
the LPE and the grid choice G must be such that smax ≤ r + 1.

The upper bound below shows that the estimator converges with the
optimal rate for a link function in a whole family of Hölder classes, and for
any index. In what follows, En stands for the expectation with respect to
the joint law Pn of the whole sample Dn.

Theorem 1. Let ĝ be the aggregated estimator given by (2.9) with the
weights (2.10). If for all ϑ ∈ Sd−1

+ , ϑ⊤X satisfies Assumption (D), we have

sup
ϑ∈Sd−1

+

sup
f∈HQ(s,L)

En‖ĝ − g‖2
L2(PX) ≤ Cn−2s/(2s+1),

for any s ∈ [smin, smax] when n is large enough, where we recall that g(·) =
f(ϑ⊤·). The constant C > 0 depends on σ1, L, smin, smax and PX only.

Note that ĝ does not depend within its construction on the index ϑ, nor
the smoothness s of the link function f , nor the design law PX . In Theorem 2
below, we prove in our setting (when Assumption (D) holds on the design)
that n−2s/(2s+1) is a lower bound for a link function in H(s, L) in the single-
index model.

Theorem 2. Let s, L,Q > 0 and ϑ ∈ Sd−1
+ be such that ϑ⊤X satisfies

Assumption (D). We have

inf
g̃

sup
f∈HQ(s,L)

En‖g̃ − g‖2
L2(PX) ≥ C ′n−2s/(2s+1),

where the infimum is taken among all estimators based on data from (1.1),(1.2),
and where C ′ > 0 is a constant depending on σ1, s, L and Pϑ⊤X only.

Theorem 1 and Theorem 2 together entail that n−2s/(2s+1) is the minimax
rate for the estimation of g in model (1.1) under the constraint (1.2) when
the link function belongs to an s-Hölder class. It answers in particular to
Question 2 from [17].

3.2. A new result for the LPE. In this section, we give upper bounds
for the LPE in the univariate regression model (2.2). Despite the fact that
the literature about LPE is wide, the Theorem below is new. It provides a
minimax optimal upper bound for the L2(PZ)-integrated risk of the LPE
over Hölder balls under Assumption (D), which is a general assumption for
random designs having a density with respect to the Lebesgue measure.
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In this section, the smoothness s is supposed known and fixed, and we
assume that the degree r of the local polynomials satisfies r + 1 ≥ s. First,
we give an upper bound for the pointwise risk conditionally on the design.
Then, we derive from it an upper bound for the L2(PZ)-integrated risk,
using standard tools from empirical process theory (see Appendix). Here,
Em stands for the expectation with respect to the joint law Pm of the
observations [(Zi, Yi); 1 ≤ i ≤ m] from model (2.2). Let us define the matrix

Z̄m(z) := Z̄m(z,Hm(z))

where Z̄m(z, h) is given by (2.4) and Hm(z) is given by (2.6). Let us de-
note by λ(M) the smallest eigenvalue of a matrix M and introduce Zm

1 :=
(Z1, . . . , Zm).

Theorem 3. For any z ∈ SuppPZ , let f̄(z) be given by (2.7). We have
on the event {λ(Z̄m(z)) > 0}:

sup
f∈H(s,L)

Em[

(f̄(z) − f(z))2|Zm
1

] ≤ 2λ(Z̄m(z))−2L2Hm(z)2s. (3.2)

Moreover, if Z satisfies Assumption (D), we have

sup
f∈HQ(s,L)

Em[‖τQ(f̄) − f‖2
L2(PZ)

] ≤ C2m
−2s/(2s+1) (3.3)

for m large enough, where we recall that τQ is the truncation operator by
Q > 0 and where C2 > 0 is a constant depending on s, Q, and PZ only.

Remark 2. While inequality (3.2) in Theorem 3 is stated over {λ(Z̄m(z)) >
0}, which entails the existence and the unicity of a solution to the linear sys-
tem (2.3) (this inequality is stated conditionally on the design), we only need
Assumption (D) for inequality (3.3) to hold.

3.3. Oracle inequality. In this section, we provide an oracle inequality
for the aggregation algorithm (2.9) with weights (2.10). This result, which
is of independent interest, is stated for a general finite set {ḡ(λ);λ ∈ Λ}
of deterministic functions such that ‖ḡ(λ)‖∞ ≤ Q for all λ ∈ Λ. These
functions are for instance weak estimators computed with the training sam-
ple (or frozen sample), which is independent of the learning sample. Let
D := [(Xi, Yi); 1 ≤ i ≤ |D|] (where |D| stands for the cardinality of D)
be an i.i.d. sample of (X,Y ) from the multivariate regression model (1.1),
where no particular structure like (1.2) is assumed.

The aim of aggregation schemes is to mimic (up to an additive residual)
the oracle in {ḡ(λ);λ ∈ Λ}. This aggregation framework has been considered,
among others, by [1], [2], [11], [15], [16], [20] and [23].
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Theorem 4. The aggregation procedure ĝ based on the learning sample
D defined by (2.9) and (2.10) satisfies

ED‖ĝ − g‖2
L2(PX) ≤ (1 + a)min

λ∈Λ
‖ḡ(λ) − g‖2

L2(PX) +
C log |Λ|(log |D|)1/2

|D|

for any a > 0, where |Λ| denotes the cardinality of Λ, where ED stands for
the expectation with respect to the joint law of D, and where C := 3[8Q2(1+
a)2/a + 4(6Q2 + 2σ12

√
2)(1 + a)/3] + 2 + 1/T .

This theorem is a model-selection type oracle inequality for the aggre-
gation procedure given by (2.9) and (2.10). Sharper oracle inequalities for
more general models can be found in [12], where the algorithm used therein
requires an extra cummulative sum.

Remark 3. Inspection of the proof of Theorem 4 shows that the ERM
(which is the estimator minimizing the empirical risk R(m)(g) :=

∑n
i=m+1(Yi−

g(Xi))
2 over all g in {ḡ(λ);λ ∈ Λ}) satisfies the same oracle inequality. Nev-

ertheless, it has been proved in [14] that the ERM is theoretically suboptimal
in this framework, when we want to mimic the oracle without the extra fac-
tor 1 + a in front of the biais term minλ∈Λ ‖ḡ(λ) − g‖2

L2(PX). The simulation

study of Section 4 (especially Figures 3, 4, 5) confirms this suboptimality.

4. Numerical illustrations. We implemented the procedure described
in Section 2 using the R software1. In order to increase computation speed,
we implemented the computation of local polynomials and the bandwidth se-
lection (2.6) in C language. The simulated samples satisfy (1.1),(1.2), where
the noise is centered Gaussian with homoscedastic variance

σ =
[

∑

1≤i≤n

f(ϑ⊤Xi)
2/(n × rsnr)

]1/2
,

where rsnr = 5. We consider the following link functions (see the dashed
lines in Figures 8 and 9):

• oscsine(x) = 4(x + 1) sin(4πx2),
• hardsine(x) = 2 sin(1 + x) sin(2πx2 + 1).

The simulations are done with a uniform design on [−1, 1]d, with dimensions
d ∈ {2, 3, 4} and we consider several indexes ϑ that make Pϑ⊤X not uniform.

In all the computations below, the parameters for the procedure are Λ =
Ŝ×G×L where Ŝ is computed using the algorithm described in Section 2.3

1see http://www.r-project.org/
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and where G = {1, 2, 3, 4} and L = {0.1, 0.5, 1, 1.5}. The degree of the
local polynomials is r = 5. The learning sample has size [n/4], and is chosen
randomly in the whole sample. We do not use a jackknife procedure (that is,
the average of estimators obtained with several learning subsamples), since
the results are stable enough (at least when n ≥ 100) when we consider only
one learning sample.

In Tables 1, 2, 3 and Figures 3, 4, 5, we show the mean MISE for 100 repli-
cations and its standard deviation for several Gibbs temperatures, several
sample sizes and indexes. These results empirically prove that the aggre-
gated estimator outperforms the ERM (which is computed as the aggregated
estimator with a large temperature T = 30) since in each case, the aggre-
gated estimator with cross-validated temperature (aggCVT, given by (2.14),
with T = {0.1, 0.2, . . . , 4.9, 5}), has a MISE much smaller than the MISE
of the ERM. Moreover, aggCVT is more stable than the ERM in view of the
standard deviations (in brackets). Note also that as expected, the dimen-
sion parameter has no impact on the accuracy of estimation: the MISEs are
barely the same when d = 2, 3, 4.

The aim of Figures 6 and 7 is to give an illustration of the aggregation
phenomenon. In these figures, we show the weights obtained for a single
run, using the aggregation procedure with the parameter set Λ = S̄d−1

∆ ×
{3} × {1} (that is, we take s = 3 and L = 1 in the bandwidth choice (2.6)
and we do not use the reduction of complexity algorithm). These figures
motivates the use of the complexity reduction algorithm, since only the
weights corresponding to a point of S̄d−1

∆ which is close to the true index
are significant (at least numerically). Finally, we show typical realisations
for several index functions, indexes and sample sizes in Figures 8, 9, 10, 11.
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Fig 3. MISE against the Gibbs temperature for f = hardsine, ϑ = (1/
√

2, 1/
√

2), n =
200, 400 (solid line = mean of the MISE for 100 replications, dashed line = mean MISE

± standard deviation.)

Fig 4. MISE against the Gibbs temperature for f = hardsine, ϑ =
(2/

√
14, 1/

√
14, 3/

√
14), n = 200, 400 (solid line = mean of the MISE for 100 replica-

tions, dashed line = mean MISE ± standard deviation.)

Fig 5. MISE against the Gibbs temperature for f = hardsine, ϑ =
(2/

√
14, 1/

√
14, 3/

√
14), n = 200, 400.



OPTIMAL RATES AND ADAPTATION IN THE SINGLE-INDEX MODEL 15

Table 1

MISE against the Gibbs temperature (f = hardsine, d = 2, ϑ = (1/
√

2, 1/
√

2).)

Temperature 0.1 0.5 0.7 1.0 1.5 2.0 ERM aggCVT

n = 100 0.026 0.017 0.015 0.014 0.014 0.015 0.034 0.015
(.009) (.006) (.006) (.005) (.005) (.006) (.018) (.005)

n = 200 0.015 0.009 0.008 0.008 0.009 0.011 0.027 0.009
(.004) (.002) (.003) (.003) (.005) (.007) (.014) (.004)

n = 400 0.006 0.005 0.004 0.005 0.006 0.007 0.016 0.005
(.001) (.001) (.001) (.001) (.002) (.002) (.003) (.002)

Table 2

MISE against the Gibbs temperature (f = hardsine, d = 3, ϑ = (2/
√

14, 1/
√

14, 3/
√

14)).

Temperature 0.1 0.5 0.7 1.0 1.5 2.0 ERM aggCVT

n = 100 0.029 0.021 0.019 0.018 0.017 0.018 0.037 0.020
(.011) (.008) (.008) (.007) (.008) (.009) (.022) (.008)

n = 200 0.016 0.010 0.010 0.009 0.009 0.010 0.026 0.010
(.005) (.003) (.003) (.002) (.002) (.003) (0.008) (.003)

n = 400 0.007 0.006 0.005 0.005 0.006 0.007 0.017 0.006
(.002) (.001) (.001) (.001) (.001) (.002) (.003) (.001)

Table 3

MISE against the Gibbs temperature (f = hardsine, d = 4,
ϑ = (1/

√
21,−2/

√
21, 0, 4/

√
21))

Temperature 0.1 0.5 0.7 1.0 1.5 2.0 ERM aggCVT

n = 100 0.038 0.027 0.021 0.019 0.017 0.017 0.038 0.020
(.016) (.010) (.009) (.008) (.007) (.007) (.025) (.010)

n = 200 0.019 0.013 0.012 0.012 0.013 0.014 0.031 0.013
(.014) (.009) (.010) (.011) (.012) (.012) (.016) (.010)

n = 400 0.009 0.006 0.005 0.005 0.006 0.007 0.017 0.006
(.002) (.001) (.001) (.001) (.001) (.002) (.004) (.001)
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Fig 6. Weights (for a single run) at each points of the lattice S̄1
∆ for ∆ = 0.03, ϑ =

(1/
√

2, 1/
√

2) and T = 0.05, 0.2, 0.5, 10 (from top to bottom and left to right).
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Fig 7. Weights (for a single run) at each points of the lattice S̄2
∆ for ∆ = 0.07, ϑ = (0, 0, 1),

and T = 0.05, 0.3, 0.5, 10 (from top to bottom and left to right).
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Fig 8. Simulated datasets and aggregated estimators with cross-validated temperature for

f = hardsine, n = 100, and indexes ϑ = (1/
√

2, 1/
√

2), ϑ = (2/
√

14, 1/
√

14, 3/
√

14),
ϑ = (1/

√
21,−2/

√
21, 0, 4/

√
21) from top to bottom.
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Fig 9. Simulated datasets and aggregated estimators with cross-validated temperature for

f = oscsine, n = 100, and indexes ϑ = (1/
√

2, 1/
√

2), ϑ = (2/
√

14, 1/
√

14, 3/
√

14),
ϑ = (1/

√
21,−2/

√
21, 0, 4/

√
21) from top to bottom.
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Fig 10. Simulated datasets and aggregated estimators with cross-validated temperature for

f = hardsine, n = 200, and indexes ϑ = (1/
√

2, 1/
√

2), ϑ = (2/
√

14, 1/
√

14, 3/
√

14),
ϑ = (1/

√
21,−2/

√
21, 0, 4/

√
21) from top to bottom.
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Fig 11. Simulated datasets and aggregated estimators with cross-validated temperature for

f = oscsine, n = 200, and indexes ϑ = (1/
√

2, 1/
√

2), ϑ = (2/
√

14, 1/
√

14, 3/
√

14),
ϑ = (1/

√
21,−2/

√
21, 0, 4/

√
21) from top to bottom.
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5. Proofs.

Proof of Theorem 1. The functions ḡ(λ) are given by (2.8). They are com-
puted based on the training (or “frozen”) sample Dm, which is independent
of the learning sample D(m). If E(m) denotes the integration with respect to
the joint law of D(m), we obtain using Theorem 4:

E(m)‖ĝ − g‖2
L2(PX ) ≤ (1 + a)min

λ∈Λ
‖ḡ(λ) − g‖2

L2(PX) +
C log |Λ|(log |D(m)|)1/2

|D(m)|
≤ (1 + a)‖ḡ(λ̄) − g‖2

L2(PX) + o(n−2s/(2s+1)),

since log |Λ|(log |D(m)|)1/2/|D(m)| ≤ d(log n)3/2+γ/(2sminn) (see (3.1) and
(2.13)), and where λ̄ = (ϑ̄, s̄) ∈ Λ is such that ‖ϑ̄ − ϑ‖2 ≤ ∆ and ⌊s̄⌋ = ⌊s⌋
with s ∈ [s̄, s̄ + (log n)−1]. By integration with respect to Pm, we obtain

En‖ĝ − g‖2
L2(PX) ≤ (1 + a)Em‖ḡ(λ̄) − g‖2

L2(PX) + o(n−2s/(2s+1)). (5.1)

The choice of λ̄ entails HQ(s, L) ⊂ HQ(s̄, L) and

n−2s̄/(2s̄+1) ≤ e1/2n−2s/(2s+1).

Thus, together with (3.1) and (5.1), the Theorem follows if we prove that

sup
f∈HQ(s̄,L)

Em‖ḡ(λ̄) − g‖2
L2(PX) ≤ Cm−2s̄/(2s̄+1). (5.2)

for n large enough, where C > 0. We cannot use directly Theorem 3 to prove
this, since the weak estimator ḡ(λ̄) works based on data Dm(ϑ̄) (see (2.1))
while the true index is ϑ. In order to clarify the proof, we write ḡ(ϑ̄) instead
of ḡ(λ̄) since in (5.2), the estimator uses the “correct” smoothness parameter
s̄. We have

‖ḡ(ϑ̄) − g‖2
L2(PX) ≤ 2

(‖ḡ(ϑ̄)(·) − f(ϑ̄⊤·)‖2
L2(PX) + ‖f(ϑ̄⊤·) − f(ϑ⊤·)‖2

L2(PX)

)

and using together (2.13) and f ∈ HQ(s, L) for s ≥ smin, we obtain

‖f(ϑ̄⊤·) − f(ϑ⊤·)‖2
L2(PX) ≤ L2

∫

‖x‖2smin
2 PX(dx)∆2smin ≤ C(n log n)−1.

Let us denote by Qϑ(·|Xm
1 ) the joint law of (Xi, Yi)1≤i≤m from model (1.1)

(when the index is ϑ) conditional on the (Xi)1≤i≤m, which is given by

Qϑ(dym
1 |xm

1 ) :=
m
∏

i=1

1

(σ(xi)(2π)1/2)
exp

(

− (yi − f(ϑ⊤xi))
2

2σ(xi)2

)

dyi.
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Under Qϑ̄(·|Xm
1 ), we have

LX(ϑ, ϑ̄) :=
dQϑ(·|Xm

1 )

dQϑ̄(·|Xm
1 )

(law)
= exp

(

−
m

∑

i=1

ǫi(f(ϑ̄⊤Xi) − f(ϑ⊤Xi))

σ(Xi)
− 1

2

m
∑

i=1

(f(ϑ̄⊤Xi) − f(ϑ⊤Xi))
2

σ(Xi)2

)

.

Hence, if Pm
X denotes the joint law of (X1, . . . ,Xm),

Em‖ḡ(ϑ̄)(·) − f(ϑ̄⊤·)‖2
L2(PX)

=

∫ ∫

‖ḡ(ϑ̄)(·) − f(ϑ̄⊤·)‖2
L2(PX)LX(ϑ, ϑ̄)dQϑ̄(·|Xm

1 )dPm
X

≤ C

∫ ∫

‖f̄ (ϑ̄)(ϑ̄⊤·) − f(ϑ̄⊤·)‖2
L2(PX)dQϑ̄(·|Xm

1 )dPm
X (5.3)

+ 4Q2
∫ ∫

LX(ϑ, ϑ̄)1{LX (ϑ,ϑ̄)≥C}dQϑ̄(·|Xm
1 )dPm

X ,

where we decomposed the integrand over {LX(ϑ, ϑ̄) ≥ C} and {LX(ϑ, ϑ̄) ≤
C} for some constant C ≥ 3, and where we used the fact that ‖ḡ(ϑ̄)‖∞, ‖f‖∞ ≤
Q. Under Qϑ̄(·|Xm

1 ), the (Xi, Yi) have the same law as (X,Y ) from model (1.1)
where the index is ϑ̄. Moreover, we assumed that Pϑ̄⊤X satisfies Assump-
tion (D). Hence, Theorem 3 entails that, uniformly for f ∈ HQ(s̄, L),

∫ ∫

‖f̄ (ϑ̄)(ϑ̄⊤·) − f(ϑ̄⊤·)‖2
L2(PX)dQϑ̄(·|Xm

1 )dPm
X ≤ C ′m−2s̄/(2s̄+1).

Moreover, the second term in the right hand side of (5.3) is smaller than

4Q2
∫

(

∫

LX(ϑ, ϑ̄)2dQϑ̄(·|Xm
1 )

)1/2
Qϑ̄

[

LX(ϑ, ϑ̄) ≥ C|Xm
1

]1/2
dPm

X .

Since f ∈ HQ(s, L) for s ≥ smin, since PX is compactly supported and since
σ(X) > σ0 a.s., we obtain using (2.13):

∫

LX(ϑ, ϑ̄)2dQϑ̄(·|Xm
1 ) ≤ exp

(1

2

m
∑

i=1

(f(ϑ̄⊤Xi) − f(ϑ⊤Xi))
2

σ(Xi)2

)

≤ 1

Pm
X -a.s. when m is large enough. Moreover, with the same arguments we

have

Qϑ̄

[

LX(ϑ, ϑ̄) ≥ C|Xm
1

] ≤ m−(log C)2/2 ≤ m−4s̄/(2s̄+1)

for C large enough, where we use the standard Gaussian deviation P [N(0, b2) ≥
a] ≤ exp(−a2/(2b2)). This concludes the proof of Theorem 1. �



24 S. GAÏFFAS AND G. LECUÉ

Proof of Theorem 2. We want to bound the minimax risk

inf
g̃

sup
f∈HQ(s,L)

En
∫

(

g̃(x) − f(ϑ⊤x)
)2

PX(dx) (5.4)

from below, where the infimum is taken among all estimators R
d → R based

on data from model (1.1),(1.2). We recall that ϑ⊤X satisfies Assumption (D).
We consider ϑ(2), . . . , ϑ(d) in R

d such that (ϑ, ϑ(2), . . . , ϑ(d)) is an orthogonal
basis of R

d. We denote by O the matrix with columns ϑ, ϑ(2), . . . , ϑ(d). We
define Y := OX = (Y (1), . . . , Y (d)) and Y d

2 := (Y (2), . . . , Y (d)). By the
change of variable y = Ox, we obtain

∫

Rd

(

g̃(x) − f(ϑ⊤x)
)2

PX(dx)

=

∫

Rd

(

g̃(O−1y) − f(y(1))
)2

PY (dy)

=

∫

R

∫

Rd−1

(

g̃(O−1y) − f(y(1))
)2

PY d
2 |Y (1)(dyd

2 |y(1))PY (1)(dy(1))

≥
∫

R

(

f̃(y(1)) − f(y(1))
)2

Pϑ⊤X(dy(1)),

where f̃(y(1)) :=
∫

g̃(O−1y)PY d
2 |Y (1)(dyd

2 |y(1)). Hence, if Z := ϑ⊤X, (5.4) is
larger than

inf
f̃

sup
f∈HQ(s,L)

En
∫

(

f̃(z) − f(z)
)2

PZ(dz), (5.5)

where the infimum is taken among all estimators R → R based on data from
model (1.1) with d = 1 (univariate regression). In order to bound (5.5) from
below, we use the following Theorem, from [19], which is a standard tool for
the proof of such a lower bound. We say that ∂ is a semi-distance on some
set Θ if it is symmetric, if it satisfies the triangle inequality and if ∂(θ, θ) = 0
for any θ ∈ Θ. We consider K(P |Q) :=

∫

log(dP
dQ )dP the Kullback-Leibler

divergence between probability measures P and Q.

Theorem 5. Let (Θ, ∂) be a set endowed with a semi-distance ∂. We
suppose that {Pθ; θ ∈ Θ} is a family of probability measures on a measurable
space (X ,A) and that (vn)n∈N is a sequence of positive numbers. If there
exist {θ0, . . . , θM} ⊂ Θ, with M ≥ 2, such that

• ∂(θj, θk) ≥ 2vn ∀0 ≤ j < k ≤ M
• Pθj

≪ Pθ0 ∀1 ≤ j ≤ M,

• 1
M

∑M
j=1 K(Pn

θj
|Pn

θ0
) ≤ α log M for some α ∈ (0, 1/8),
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then

inf
θ̃n

sup
θ∈Θ

En
θ [(v−1

n ∂(θ̃n, θ))2] ≥
√

M

1 +
√

M

(

1 − 2α − 2

√

α

log M

)

,

where the infimum is taken among all estimators based on a sample of size n.

Let us define m := ⌊c0n
1/(2s+1)⌋, the largest integer smaller than c0n

1/(2s+1),
where c0 > 0. Let ϕ : R → [0,+∞) be a function in HQ(s, 1/2; R) with
support in [−1/2, 1/2]. We take hn := m−1 and zk := (k − 1/2)/m for
k ∈ {1, . . . ,m}. For ω ∈ Ω := {0, 1}m, we consider the functions

f(·;ω) :=
m

∑

k=1

ωkϕk(·) where ϕk(·) := Lhs
nϕ

( · − zk

hn

)

.

We have

‖f(·;ω) − f(·;ω′)‖L2(PZ) =
(

m
∑

k=1

(ωk − ωk′)2
∫

ϕk(z)2PZ(dz)
)1/2

≥ µ
1/2
0 ρ(ω, ω′)L2h2s+1

n

∫

Sµ

ϕ(u)2du,

where Sµ := SuppPZ −∪z[az, bz] (the union is over the z such that µ(z) = 0,
see Assumption (D)), where µ0 := minz∈Sµ µ(z) > 0 and where

ρ(ω, ω′) :=
m

∑

k=1

1ωk 6=ω′

k

is the Hamming distance on Ω. Using a result of Varshamov-Gilbert (see [19])
we can find a subset {ω(0), . . . , ω(M)} of Ω such that ω(0) = (0, . . . , 0),
ρ(ω(j), ω(k)) ≥ m/8 for any 0 ≤ j < k ≤ M and M ≥ 2m/8. Hence, we
have

‖f(·;ω(j)) − f(·;ω(k))‖L2(PZ ) ≥ Dn−s/(2s+1),

where D = µ
1/2
0

∫

Sµ
ϕ(u)2du/(8c2s

0 ) ≥ 2 for c0 small enough. Moreover,

1

M

M
∑

k=1

K(Pn
f(·,ω(0))|Pn

f(·,ω(k))) ≤
n

2Mσ2
0

M
∑

k=1

‖f(·;ω(0)) − f(·;ω(k))‖2
L2(PZ)

≤ n

2σ2
0

L2h2s+1
n ‖ϕ‖2

2m ≤ α log M,

where α := (L2‖ϕ‖2
2)/(σ

2c2s+1
0 log 2) ∈ (0, 1/8) for c0 small enough. The

conclusion follows from Theorem 5. �



26 S. GAÏFFAS AND G. LECUÉ

Proof of Theorem 3. We recall that r = ⌊s⌋ is the largest integer smaller
than s, and that λ(M) stands for the smallest eigenvalue of a matrix M .

Proof of (3.2). First, we prove a bias-variance decomposition of the LPE
at a fixed point z ∈ SuppPZ . This kind of result is commonplace, see for
instance [5, 6]. We introduce the following weighted pseudo-inner product,
for fixed z ∈ R and h > 0:

〈f, g〉h :=
1

mP̄Z [I(z, h)]

m
∑

i=1

f(Zi)g(Zi)1Zi∈I(z,h),

where we recall that I(z, h) = [z − h, z + h], and that P̄Z is given by (2.5).
We consider the associated pseudo-norm ‖g‖2

h := 〈g, g〉h. We introduce the
power functions ϕa(·) := ((· − z)/h)a for a ∈ {0, . . . , r}, which satisfy
‖ϕa‖h ≤ 1.

Note that the entries of the matrix Z̄m = Z̄m(z, h) (see (2.4)) satisfy
(Z̄m(z, h))a,b := 〈ϕa, ϕb〉h for (a, b) ∈ {0, . . . , r}2. Hence, (2.3) is equivalent
to find P̄ ∈ Polr such that

〈P̄ , ϕa〉h = 〈Y,ϕa〉h (5.6)

for any a ∈ {0, . . . , r}, where 〈Y,ϕ〉h := (mP̄Z [I(z, h)])−1 ∑m
i=1 Yiϕ(Zi)1Zi∈I(z,h).

In other words, P̄ is the projection of Y onto Polr with respect to the inner
product 〈·, ·〉h. For e1 := (1, 0, . . . , 0) ∈ R

r+1, we have

f̄(z) − f(z) = e⊤1 Z̄−1
m Z̄m(θ̄ − θ)

whenever λ(Z̄m) > 0, where θ̄ is the coefficient vector of P̄ and θ is the
coefficient vector of the Taylor polynomial P of f at z with degree r. In
view of (5.6):

(Z̄m(θ̄ − θ))a = 〈P̄ − P,ϕa〉h = 〈Y − P,ϕa〉h,

thus Z̄m(θ̄−θ)) = B+V where (B)a := 〈f−P,ϕa〉h and (V )a := 〈σ(·)ξ, ϕa〉h.
The bias term satisfies |e⊤1 Z̄−1

m B| ≤ (r + 1)1/2‖Z̄−1
m ‖‖B‖∞ where for any

a ∈ {0, . . . , r}
|(B)a| ≤ ‖f − P‖h ≤ Lhs/r!.

Let Z̄σ
m be the matrix with entries (Z̄σ

m)a,b := 〈σ(·)ϕa, σ(·)ϕb〉h. Since V
is, conditionally on Zm

1 = (Z1, . . . , Zm), centered Gaussian with covariance
matrix (mP̄Z [I(z, h)])−1Z̄σ

m, we have that e⊤1 Z̄−1
m V is centered Gaussian with

variance smaller than

(mP̄Z [I(z, h)])−1e⊤1 Z̄−1
m Z̄σ

mZ̄−1
m e1 ≤ σ2

1(mP̄Z [I(z, h)])−1λ(Z̄m)−1
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where we used σ(·) ≤ σ1. Hence, if Cr := (r + 1)1/2/r!, we obtain

Em[(f̄(z) − f(z))2|Zm
1 ] ≤ λ(Z̄m(z, h))−2(

CrLhs + σ1(mP̄Z [I(z, h)])−1/2)2

for any z, and the bandwidth choice (2.6) entails (3.2).

Proof of (3.3). Let us consider the sequence of positive curves hm(·)
defined as the point-by-point solution to

Lhm(z)s =
σ1

(mPZ [I(z, hm(z))])1/2
(5.7)

for all z ∈ SuppPZ , where we recall I(z, h) = [z−h, z +h], and let us define

rm(z) := Lhm(z)s.

The sequence hm(·) is the deterministic equivalent to the bandwidth Hm(·)
given by (2.6). Indeed, with a large probability, Hm(·) and hm(·) are close
to each other in view of Lemma 1 below. Under Assumption (D) we have
PZ [I] ≥ γ|I|β+1, which entails together with (5.7) that

hm(z) ≤ D1m
−1/(1+2s+β) (5.8)

uniformly for z ∈ SuppPZ , where D1 = (σ1/L)2/(1+2s+β)(γ2β+1)−1/(1+2s+β).
Moreover, since PZ has a continuous density µ with respect to the Lebesgue
measure, we have

hm(z) ≥ D2m
−1/(1+2s) (5.9)

uniformly for z ∈ SuppPZ , where D2 = (σ1/L)2/(1+2s)(2µ∞)−1/(2s+1). We
recall that Pm

Z stands for the joint law of (Z1, . . . , Zm).

Lemma 1. If Z satisfies Assumption (D), we have for any ǫ ∈ (0, 1/2)

Pm
Z

[

sup
z∈Supp(PZ)

∣

∣

∣

Hm(z)

hm(z)
− 1

∣

∣

∣ > ǫ
]

≤ exp(−Dǫ2mα)

for m large enough, where α := 2s/(1+2s+β) and D is a constant depending
on σ1 and L.

The next lemma provides an uniform control on the smallest eigenvalue
of Z̄m(z) := Z̄m(z,Hm(z)) under Assumption (D).
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Lemma 2. If Z satisfies Assumption (D), there exists λ0 > 0 depending
on β and s only such that

Pm
Z

[

inf
z∈Supp PZ

λ(Z̄m(z)) ≤ λ0
] ≤ exp(−Dmα),

for m large enough, where α = 2s/(1+2s+β), and D is a constant depending
on γ, β, s, L, σ1.

The proofs Lemmas 1 and 2 are given in Section 6. We consider the event

Ωm(ǫ) :=
{

inf
z∈Supp PZ

λ(Z̄m(z)) > λ0
} ∩ {

sup
z∈Supp PZ

|Hm(z)/hm(z) − 1| ≤ ǫ
}

,

where ǫ ∈ (0, 1/2). We have for any f ∈ HQ(s, L)

Em[‖τQ(f̄) − f‖2
L2(PZ )1Ωm(ǫ)] ≤ λ−2

0 (1 + ǫ)2s σ2
1

m

∫

PZ(dz)
∫ z+hm(z)
z−hm(z) PZ(dt)

,

where we used together the definition of Ωm(ǫ), (3.2) and (5.7). Let us
denote I := SuppPZ and let Iz∗ be the intervals from Assumption (D).
Using together the fact that minz∈I−∪z∗Iz∗ µ(z) > 0 and (5.9), we obtain

σ2
1

m

∫

I−∪z∗Iz∗

PZ(dz)
∫ z+hm(z)
z−hm(z) PZ(dt)

≤ Cm−2s/(2s+1).

Using the monoticity constraints from Assumption (D), we obtain

σ2
1

m

∫

Iz∗

P (dz)
∫ z+hm(z)
z−hm(z) PZ(dt)

≤ σ2
1

m

(

∫ z∗

z∗−az∗

µ(z)dz
∫ z
z−hm(z) µ(t)dt

+

∫ z∗+bz∗

z∗

µ(z)dz
∫ z+hm(z)
z µ(t)dt

)

≤ σ2
1

m

∫

Iz∗

hm(z)−1dz ≤ Cm−2s/(2s+1),

hence Em[‖τQ(f̄)−f‖2
L2(PZ)1Ωm(ǫ)] ≤ Cm−2s/(2s+1) uniformly for f ∈ HQ(s, L).

Using together Lemmas 1 and 2, we obtain Em[‖τQ(f̄)−f‖2
L2(PZ )1Ωm(ǫ)∁ ] =

o(n−2s/(2s+1)), and (3.3) follows. �
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Proof of Theorem 4. In model (1.1), when the noise ǫ is centered and
such that E(ǫ2) = 1, the risk of a function ḡ : R

d → R is given by

A(ḡ) := E[(Y − ḡ(X))2] = E[σ(X)2] + ‖ḡ − g‖2
L2(PX),

where g is the regression function. Therefore, the excess risk satisfies

A(ḡ) − A = ‖ḡ − g‖2
L2(PX),

where A := A(g) = E[σ(X)2]. Let us introduce n := |D| the size of the learn-
ing sample, and M := |Λ| the size of the dictionary of functions {ḡ(λ);λ ∈ Λ}.
The least squares of ḡ over the learning sample is given by

An(ḡ) :=
1

n

n
∑

i=1

(Yi − ḡ(Xi))
2.

We begin with a linearization of these risks. We consider the convex set

C :=
{

(θλ)λ∈Λ such that θλ ≥ 0 and
∑

λ∈Λ

θλ = 1
}

,

and define the linearized risks on C as

Ã(θ) :=
∑

λ∈Λ

θλA(ḡ(λ)), Ãn(θ) :=
∑

λ∈Λ

θλAn(ḡ(λ)),

which are linear versions of the risk A and its empirical version An. The
exponential weights w = (wλ)λ∈Λ := (w(ḡ(λ)))λ∈Λ are actually the unique
solution of the minimization problem

min
(

Ãn(θ) +
1

Tn

∑

λ∈Λ

θλ log θλ

∣

∣ (θλ) ∈ C
)

, (5.10)

where T > 0 is the temperature parameter in the weights (2.10), and where

we use the convention 0 log 0 = 0. Let λ̂ ∈ Λ be such that An(ḡ(λ̂)) =
minλ∈Λ An(ḡ(λ)). Since

∑

λ∈Λ wλ log
( wλ

1/M

)

= K(w|u) ≥ 0 where K(w|u)
denotes the Kullback-Leibler divergence between the weights w and the uni-
form weights u := (1/M)λ∈Λ, we have together with (5.10):

Ãn(w) ≤ Ãn(w) +
1

Tn
K(w|u)

= Ãn(w) +
1

Tn

∑

λ∈Λ

wλ log wλ +
log M

Tn

≤ Ãn(eλ̂) +
log M

Tn
,
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where eλ ∈ C is the vector with 1 for the λ-th coordinate and 0 elsewhere.
Let a > 0 and An := An(g). For any λ ∈ Λ, we have

Ã(w) − A = (1 + a)(Ãn(w) − An) + Ã(w) − A − (1 + a)(Ãn(w) − An)

≤ (1 + a)(Ãn(eλ) − An) + (1 + a)
log M

Tn

+ Ã(w) − A − (1 + a)(Ãn(w) − An).

Let us denote by EK the expectation with respect to PK , the joint law of
the learning sample for a noise ǫ which is bounded almost surely by K > 0.
We have

EK
[

Ã(w) − A
] ≤ (1 + a)min

λ∈Λ
(Ãn(eλ) − An) + (1 + a)

log M

Tn

+ EK
[

Ã(w) − A − (1 + a)(Ãn(w) − An)
]

.

Using the linearity of Ã on C, we obtain

Ã(w) −A− (1 + a)(Ãn(w) −An) ≤ max
g∈GΛ

(

A(g) −A− (1 + a)(An(g) −An)
)

,

where GΛ := {ḡ(λ) ; λ ∈ Λ}. Then, using Bernstein inequality, we obtain for
all δ > 0

PK
[

Ã(w) − A − (1 + a)(Ãn(w) − An) ≥ δ
]

≤
∑

g∈GΛ

PK

[

A(g) − A − (An(g) − An) ≥ δ + a(A(g) − A)

1 + a

]

≤
∑

g∈GΛ

exp
(

− n(δ + a(A(g) − A))2(1 + a)−1

8Q2(1 + a)(A(g) − A) + 2(6Q2 + 2σK)(δ + a(A(g) − A))/3

)

.

Moreover, we have for any δ > 0 and g ∈ GΛ,

(δ + a(A(g) − A))2(1 + a)−1

8Q2(A(g) − A) + 2(6Q2(1 + a) + 2σK)(δ + a(A(g) − A))/3
≥ C(a,K)δ,

where C(a,K) :=
(

8Q2(1 + a)2/a + 4(6Q2 + 2σK)(1 + a)/3
)−1

, thus

EK
[

Ã(w) − A − (1 + a)(Ãn(w) − An)
] ≤ 2u + M

exp(−nC(a,K)u)

nC(a,K)
.

If we denote by γA the unique solution of γ = A exp(−γ), where A > 0,
we have (log A)/2 ≤ γA ≤ log A. Thus, if we take u = γM/(nC(a,K)), we
obtain

EK
[

Ã(w) − A − (1 + a)(Ãn(w) − An)
] ≤ 3 log M

C(a,K)n
.
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By convexity of the risk, we have

Ã(w) − A ≥ A(ĝ) − A,

thus

EK

[‖ĝ − g‖2
L2(PX)

] ≤ (1 + a)min
λ∈Λ

‖ḡ(λ) − g‖2
L(PX ) + C1

log M

n
,

where C1 := (1+a)(T−1 +3C(a,K)−1). It remains to prove the result when
the noise is Gaussian. Let us denote ǫn

∞ := max1≤i≤n |ǫi|. For any K > 0,
we have

E
[‖ĝ − g‖2

L2(PX)

]

= E
[‖ĝ − g‖2

L2(PX)1ǫn
∞≤K

]

+ E
[‖ĝ − g‖2

L2(PX)1ǫn
∞>K

]

≤ EK
[‖ĝ − g‖2

L2(PX)

]

+ 2Q2P [ǫn
∞ > K].

For K = Kn := 2(2 log n)1/2, we obtain using standard results about the
maximum of Gaussian vectors that P [ǫn

∞ > Kn] ≤ P [ǫn
∞−E[ǫn

∞] > (2 log n)1/2] ≤
1/n, which concludes the proof of the Theorem. �

6. Proof of the lemmas.

Proof of Lemma 1. Using together (2.6) and (5.7), if Iǫ
m(z) := [z − (1 +

ǫ)hm(z), z+(1+ǫ)hm(z)] and Im(z) := I0
m(z), we obtain for any ǫ ∈ (0, 1/2):

{Hm(z) ≤ (1 + ǫ)hm(z)} =
{

(1 + ǫ)2sP̄Z [Iǫ
m(z)] ≥ PZ [Im(z)]

}

⊃ {

(1 + ǫ)2sP̄Z [Im(z)] ≥ PZ [Im(z)]
}

,

where we used the fact that ǫ 7→ PZ [Iǫ
m(z)] is nondecreasing. Similarly, we

have on the other side

{Hm(z) > (1 − ǫ)hm(z)} ⊃ {

(1 − ǫ)2sP̄Z [Im(z)] ≤ PZ [Im(z)]
}

.

Thus, if we consider the set of intervals

Im :=
⋃

z∈Supp PZ

{

Im(z)
}

,

we obtain

{

sup
z∈Supp PZ

∣

∣

∣

Hm(z)

hm(z)
− 1

∣

∣

∣ ≥ ǫ
}

⊂
{

sup
I∈Im

∣

∣

∣

P̄Z [I]

PZ [I]
− 1

∣

∣

∣ ≥ ǫ/2
}

.

Using together (5.7) and (5.8), we obtain

PZ [Im(z)] = σ2
1/(mL2hm(z)2s) ≥ Dm−(β+1)/(1+2s+β) =: αm. (6.1)
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Hence, if ǫ′ := ǫ(1 + ǫ/2)/(ǫ + 2), we have

{

sup
I∈Im

∣

∣

∣

P̄Z [I]

PZ [I]
− 1

∣

∣

∣ ≥ ǫ/2
}

⊂
{

sup
I∈Im

P̄Z [I] − PZ [I]
√

P̄Z [I]
≥ ǫ′α1/2

m

}

∪
{

sup
I∈Im

PZ [I] − P̄Z [I]
√

PZ [I]
≥ ǫα1/2

m /2
}

.

Then, Theorem 6 (see Appendix) and the fact that the shatter coefficient
satisfies S(Im,m) ≤ m(m + 1)/2 entails the Lemma. �

Proof of Lemma 2. Let us denote Z̄m(z) := Z̄m(z,Hm(z)) where Z̄m(z, h)
is given by (2.4) and where Hm(z) is given by (2.6). Let us define the matrix
Z̃m(z) := Z̃m(z, hm(z)) where

(Z̃m(z, h))a,b :=
1

mPZ [I(z, h)]

m
∑

i=1

(Zi − z

h

)a+b
1Zi∈I(z,h).

Step 1. Let us define for ǫ ∈ (0, 1) the event

Ω1(ǫ) :=
{

sup
z∈Supp PZ

∣

∣

∣

Hm(z)

hm(z)
−1

∣

∣

∣ ≤ ǫ
}

∩
{

sup
z∈Supp PZ

∣

∣

∣

P̄Z [I(z,Hm(z))]

PZ [I(z, hm(z))]
−1

∣

∣

∣ ≤ ǫ
}

.

For a matrix A, we denote ‖A‖∞ := maxa,b |(A)a,b|. We can prove that on
Ω1(ǫ), we have

‖Z̄m(z) − Z̃m(z)‖∞ ≤ ǫ.

Moreover, using Lemma 1, we have Pm
Z [Ω1(ǫ)

∁] ≤ C exp(−Dǫ2mα). Hence,
on Ω1(ǫ), we have for any v ∈ R

d, ‖v‖2 = 1

v⊤Z̄m(z)v ≥ v⊤Z̃m(z)v − ǫ

uniformly for z ∈ SuppPZ .
Step 2. We define the deterministic matrix Z(z) := Z(z, hm(z)) where

(Z(z, h))a,b :=
1

PZ [I(z, h)]

∫

I(z,h)

( t − z

h

)a+b
PZ(dt),

and
λ0 := liminfm inf

z Supp PZ

λ
(

Z(z, hm(z))
)

.

We prove that λ0 > 0. Two cases can occur: either µ(z) = 0 or µ(z) > 0.
We show that in both cases, the liminf is positive. If µ(z) > 0, the entries
(Z(z, hm(z)))a,b have limit (1 + (−1)a+b)/(2(a + b + 1)), which defines a
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positive definite matrix. If µ(z) = 0, we know that the density µ(·) of PZ

behaves as the power function | · −z|β(z) around z for β(z) ∈ (0, β). In this
case, (Z(z, hm(z)))a,b has limit (1+ (−1)a+b)(β(z)+1)/[2(1+a+ b+β(z))],
which defines also a definite positive matrix.
Step 3. We prove that

Pm
Z [ sup

z∈Supp PZ

‖Z̃m(z) − Z(z)‖∞ > ǫ] ≤ exp(−Dǫ2mα).

We consider the sets of nonnegative functions (we recall that I(z, h) = [z −
h, z + h])

F (even) :=
⋃

z∈Supp PZ

a even and 0≤a≤2r

{( · − z

hm(z)

)a
1I(z,hm(z))(·)

}

,

F
(odd)
+ :=

⋃

z∈Supp PZ

a odd and 0≤a≤2r

{( · − z

hm(z)

)a
1[z,z+hm(z)](·)

}

,

F
(odd)
− :=

⋃

z∈Supp PZ

a odd and 0≤a≤2r

{( z − ·
hm(z)

)a
1[z−hm(z),z](·)

}

.

Writing I(z, hm(z)) = [z − hm(z), z) ∪ [z, z + hm(z)] when a + b is odd, and
since

PZ [I(z, hm(z))] ≥ Ef(Z1)

for any f ∈ F := F (even) ∪ F
(odd)
+ ∪ F

(odd)
− , we obtain

‖Z̃m(z) − Z(z)‖∞ ≤ sup
f∈F

| 1
m

∑m
i=1 f(Zi) − Ef(Z1)|

Ef(Z1)
.

Hence, since x 7→ x/(x + α) is increasing for any α > 0, and since α :=
Ef(Z1) ≥ Dm−(β+1)/(1+2s+β) =: αm (see (6.1)), we obtain

{

sup
z∈Supp PZ

‖Z̃m(z) − Z(z)‖∞ > ǫ
}

⊂
{

sup
f∈F

| 1
m

∑m
i=1 f(Zi) − Ef(Z1)|

αm + 1
m

∑m
i=1 f(Zi) + Ef(Z1)

> ǫ/2
}

.

Then, using Theorem 7 (note that any f ∈ F is non-negative), we obtain

Pm
Z [ sup

z∈Supp PZ

‖Z̃m(z) − Z(z)‖∞ > ǫ]

≤ 4E[N1(αmǫ/8, F, Zm
1 )] exp

( − Dǫ2m2s/(1+2s+β)).
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Together with the inequality

E[N1(αmǫ/8, F, Zm
1 )] ≤ D(αmǫ)−1m1/(2s+1)+(β−1)/(2s+β), (6.2)

(see the proof below), this entails the Lemma. �

Proof of (6.2). It suffices to prove the inequality for F (even) and a fixed

a ∈ {0, . . . , 2r}, since the proof is the same for F
(odd)
+ and F

(odd)
− . We denote

fz(·) := ((· − z)/hm(z))a1I(z,hm(z))(·). We prove the following statement:

N (ǫ, F, ‖ · ‖∞) ≤ Dǫ−1m1/(2s+1)+(β−1)/(2s+β),

which is stronger than (6.2), where ‖ · ‖∞ is the uniform norm over the
support of PZ . Let z, z1, z2 ∈ SuppPZ . We have

|fz1(z) − fz2(z)| ≤ max(a, 1)
∣

∣

∣

z − z1

h1
− z − z2

h2

∣

∣

∣1I1∪I2 ,

where hj := hm(zj) and Ij := [zj − hj , zj + hj ] for j = 1, 2. Hence,

|fz1(z) − fz2(z)| ≤ |h1 − h2| + |z1 − z2|
min(h1, h2)

.

Using (5.7) together with a differentiation of z 7→ hm(z)2sPZ [I(z, hm(z))],
we obtain that

|hm(z1) − hm(z2)|

≤ sup
z1≤z≤z2

∣

∣

∣

hm(z)2s+1(µ(z − hm(z)) − µ(z + hm(z)))

(2sσ2
1)/(mL) + hm(z)2s+1(µ(z − hm(z)) + µ(z + hm(z)))

∣

∣

∣|z1 − z2|,

for any z1 < z2 in Suppµ. This entails together with Assumption (D), (5.8)
and (5.9):

|hm(z1) − hm(z2)| ≤
µ∞

2s(γL)(2s+1)/(2s+β+1)

( m

σ2
1

)

β
2s+β+1 |z1 − z2|,

for any z1 < z2 in Suppµ. Hence,

|fz1(z) − fz2(z)| ≤ Dm
1

2s+1
+ β−1

2s+β |z1 − z2|,

which concludes the proof of (6.2). �
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APPENDIX A: SOME TOOLS FORM EMPIRICAL PROCESS
THEORY

Let A be a set of Borelean subsets of R. If xn
1 := (x1, . . . , xn) ∈ R

n, we
define

N(A, xn
1 ) :=

∣

∣

{{x1, . . . , xn} ∩ A|A ∈ A}
∣

∣

and we define the shatter coefficient

S(A, n) := max
xn
1∈Rn

N(A, (x1, . . . , xn)). (A.1)

For instance, if A is the set of all the intervals [a, b] with −∞ ≤ a < b ≤ +∞,
we have S(A, n) = n(n + 1)/2.

Let X1, . . . ,Xn be i.i.d. random variables with values in R, and let us
define µ[A] := P (X1 ∈ A) and µ̄n[A] := n−1 ∑n

i=1 1Xi∈A. The following in-
equalities for relative deviations are due to Vapnik and Chervonenkis (1974),
see for instance in [21].

Theorem 6 (Vapnik and Chervonenkis (1974)). We have

P
[

sup
A∈A

µ(A) − µ̄n(A)
√

µ(A)
> ǫ

]

≤ 4S(A, 2n) exp(−nǫ2/4)

and

P
[

sup
A∈A

µ̄n(A) − µ(A)
√

µ̄n(A)
> ǫ

]

≤ 4S(A, 2n) exp(−nǫ2/4)

where SA(2n) is the shatter coefficient of A defined by (A.1).

Let (X , τ) be a measured space and F be a class of functions f : X →
[−K,K]. Let us fix p ≥ 1 and zn

1 ∈ X n. Define the semi-distance dp(f, g)
between f and g by

dp(f, g) :=
( 1

n

n
∑

i=1

|f(zi) − g(zi)|p
)1/p

and denote by Bp(f, ǫ) the dp-ball with center f and radius ǫ. The ǫ−covering
number of F w.r.t dp is defined as

Np(ǫ,F , zn
1 ) := min

(

N | ∃f1, . . . , fN s.t. F ⊆ ∪M
j=1B

p(fj, ǫ)
)

.

Theorem 7 (Haussler (1992)). If F consists of functions f : X →
[0,K], we have

P
[

sup
f∈F

∣

∣E[f(X1)] − 1
n

∑n
i=1 f(Xi)

∣

∣

α + E[f(X1)] +
1
n

∑n
i=1 f(Xi)

≥ ǫ
]

≤ 4E[Np(αǫ/8,F ,Xn
1 )] exp

(

− nαǫ2

16K2

)

.
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