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Extremal functions for the sharp L 2 -Nash inequality

We give geometrical conditions under which there exist extremal functions for the sharp L 2 -Nash inequality.

Introduction

This paper is in the spirit of several works on best constants problems in Sobolev type inequalities. A general reference on this subject is the recent book of Hebey [START_REF] Hebey | Nonlinear Analysis on Manifolds : Sobolev Spaces and Inequalities[END_REF]. These questions have many interests. At first, they are at the origin of the resolution of famous geometrical problems as Yamabe problem. More generally, they show how geometry and analysis interact on Riemannian manifolds and lead to the developpement of interesting analytic methods. This article is devoted to the existence of extremal functions for the optimal L 2 -Nash inequality and follows another paper [START_REF] Humbert | Best constants in the L 2 -Nash inequality[END_REF] in which we proved the existence of a second best constant in the L 2 -Nash inequality. Obviously, finding extremal functions is interesting from PDEs' point of view. The proof we give here may appear very technical. Nevertheless, its interest lies in the analytic methods it gives, for example on what concerns the study of concentration phenomenons. Moreover, extremal functions have their own interests because they give informations on best constants. For example, the existence of extremal functions for the circle S 1 gives an explicit inequality on S 1 (see [START_REF] Humbert | Best constants in the L 2 -Nash inequality[END_REF]).

In this paper, we let (M, g) be a smooth compact Riemannian n-manifold. We consider the following inequality : for u ∈ C ∞ (M ),

( M u 2 dv g ) 1+ 2 n ≤ (A M | ∇u | 2 g dv g + B M u 2 dv g )( M | u | dv g ) 4 n N (A, B)(u)
We say that N (A, B) is valid if N (A, B)(u) is true for all u ∈ C ∞ (M ). In the following, we refer to this inequality as the L 2 -Nash inequality. Let now A 0 = inf{A > 0| there exists B > 0 s.t. N (A, B) is valid } It was shown in [START_REF] Carlen | Loss-Sharp constant in Nash's inequality[END_REF] that

A 0 = A 0 (n) = (n + 2) n+2 n 2 2 n nλ 1 (B)| B | 2 n
where | B | is the volume of the unit ball B in R n , λ 1 is the first nonzero Neumann eigenvalue of the Laplacian for radial functions on B and V ol(M ) is the volume of (M, g). Then, it was shown in [START_REF] Humbert | Best constants in the L 2 -Nash inequality[END_REF] that there exists B > 0 such that the sharp N (A 0 (n), B) is valid. Another form of sharp inequality is in Druet-Hebey-Vaugon [START_REF] Druet | Vaugon-Optimal Nash's inequalities on riemannian manifolds[END_REF]. Let now

B 0 = inf{B ∈ R s.t. N (A 0 (n), B) is valid }
It was also proved in [START_REF] Humbert | Best constants in the L 2 -Nash inequality[END_REF] that for any smooth compact Riemannian n-manifold (M, g),

B 0 ≥ max V ol(M ) -2 n , | B | -2 n 6n 2 n + 2 + n -2 λ 1 n + 2 2 2 n max x∈M S g (x)
where S g (x) is the scalar curvature of g at x. We now say that u ∈ H 2 1 (M ), u ≡ 0 is an extremal function for the sharp L 2 -inequality N (A 0 (n), B 0 ) if

( M u 2 dv g ) 1+ 2 n = (A 0 (n) M | ∇u | 2 g dv g + B 0 M u 2 dv g )( M | u | dv g ) 4 n
Such a study was carried out for sharp Sobolev inequalities by Djadli and Druet in the very nice reference [START_REF] Djadli | Extremal functions for optimal Sobolev inequalities on compact manifolds[END_REF]. Though they are close in their statement, these two questions, to know whether or not there exist extremal functions for sharp Sobolev inequalities and for the sharp L 2 -Nash inequality, are however distinct in nature. In consequence, the problems we have to face here are very different from the one that appears in [START_REF] Djadli | Extremal functions for optimal Sobolev inequalities on compact manifolds[END_REF]. The main result of this article is the following :

Theorem 1 Let (M, g) be a smooth compact Riemannian n-manifold. Let also B 0 be as above. Assume that :

B 0 > | B | -2 n 6n 2 n + 2 + n -2 λ 1 n + 2 2 2 n max x∈M S g (x)
Then, there exist extremal functions of class C 1,a (M ) ( 0 < a < 1 ) for the sharp L 2 -Nash inequality.

We present here the main ideas of the proof of this theorem which is based on a precise study of a phenomenom of concentration. Namely, for B < B 0 , we prove the existence of an extremal function u B for inequality N (A B , B) where

A B = inf{A| s.t. N (A, B) is true } > A 0 (n)
We then let B → B 0 . Standard theory shows that there exists u ∈ H 2 1 (M ) such that u B → u weakly in H 2 1 (M ) when B → B 0 . We have to consider two cases. First, if u ≡ 0, it is not difficult to prove that u is an extremal function for N (A 0 (n), B 0 ). If u ≡ 0, we prove that u concentrates around a point x of M . In other words, u B → 0 when B → B 0 in C 0 loc (M -{x}) and for all δ > 0, lim

B→B0 B(x,δ) u 2 B dv g M u 2 B dv g = 1
Hence, if η is a cut-off function such that η ≡ 1 in a neighbourhood of x and η ≡ 0 on M -B(x, δ) where δ is small, ηu B have almost the same properties than u B . Via exponential map at x, ηu B can be seen as a function on R n on which we have the standard optimal Nash inequality

R n (ηu B ) 2 dx 1+ 2 n ≤ A 0 (n) R n | ∇ηu B | 2 dx R n | ηu B |dx 4 n
With the use of Cartan's expansion of the metric around x and precise estimations of the concentration of u B , these integrals can be compared to the corresponding integrals on (M, g). We get that

M (ηu B ) N dv g ≤ α B
where α B is an expression involving integrals of u B . Thanks to the Euler equation of u B , we get that

α ′ B ≤ M (ηu B ) N dv g
where α ′ B is another expression involving integrals of u B . The inegality α ′ B ≤ α B leads to

B 0 ≤ | B | -2 n 6n 2 n + 2 + n -2 λ 1 n + 2 2 2 n max x∈M S g (x)
This gives the theorem.

As a consequence of theorem 1, we immediately have :

Corollary 1 Let (M, g) be a smooth compact Riemannian n-manifold. We assume that

V ol(M ) -2 n > | B | -2 n 6n 2 n + 2 + n -2 λ 1 n + 2 2 2 n max x∈M S g (x)
Then, there exist extremal functions of class C 1,a (M ) ( 0 < a < 1 ) for the sharp L 2 -Nash inequality. In particular, this is the case if the scalar curvature is nonpositive.

For n ≥ 2, the results obtained in [START_REF] Humbert | Best constants in the L 2 -Nash inequality[END_REF] on the existence of extremal functions for the sharp L 2 -Nash inequality are a consequence of theorem 1. For n = 1, we proved in [START_REF] Humbert | Best constants in the L 2 -Nash inequality[END_REF] that constant functions are extremal functions for the sharp L 2 -Nash inequality. At the moment, we are not able to give examples manifolds such that there does not exist extremal functions for the sharp L 2 -Nash inequality. Hebey and Vaugon prove in [START_REF] Hebey | Vaugon-From best constants to critical functions[END_REF] the existence of such manifolds in the case of Sobolev inequality. However, their proof strongly uses the conformal invariance of their inequality and we do not know yet some other methods to obtain this type of results.

Proof of theorem 1

Let A 0 (n) and B 0 be as in introduction. We define α 0 = B 0 A 0 (n) -1 . For α > 0, we let also

I α (u) = ( M | ∇u | 2 g dv g + (α 0 -α) M u 2 dv g )( M | u | 1+ǫα dv g ) 4 n(1+ǫα) ( M u 2 dv g ) 1+ 2 n Λ = {u ∈ C ∞ (M ) s.t. M u 2 dv g = 1} and µ α = inf u∈Λ I α (u)
where ǫ α is chosen such that

lim α→0 ǫ α = 0, µ α < A 0 (n) -1 and, lim α→0 µ α = A 0 (n) -1 (1) 
Clearly there exists

u α ∈ H 2 1 (M ), u α ≥ 0, such that M u 2 α dv g = 1 and µ α = I α (u α )
We write now the Euler equation of u α to get that, in the sense of distributions :

2A α ∆ g u α + 4 n B α u ǫα α = k α u α (E α )
where ∆ g stands for the Laplacian with the minus sign convention and :

A α = M u α 1+ǫα dv g 4 n(1+ǫα) B α = M | ∇u α | g 2 dv g + (α 0 -α) M u α 1+ǫα dv g 4 n(1+ǫα ) -1 k α = 4 n µ α + 2 M | ∇u α | 2 g dv g M u α 1+ǫα dv g 4 n(1+ǫα )
By the Sobolev embedding theorem, u α ∈ L 2n n-2 (M ) and then, by classical methods, u α ∈ C 2 (M ). To prove the theorem, we assume that there does not exists extremal functions for the sharp L 2 -Nash inequality and show that

B 0 ≤ | B | -2 n 6n 2 n + 2 + n -2 λ 1 n + 2 2 2 n max x∈M S g (x)
As easily seen, the existence of extremal functions follows from an assumption like :

lim inf α→0 M u α 1+ǫα dv g > 0
Note that such an assumption implies that :

M | ∇u α | g 2 dv g ≤ C
In the following, we then assume that lim α→0 M u α 1+ǫα dv g = 0 or, equivalently :

lim α→0 A α = 0 (2) 
Now, using N (A 0 (n), B 0 )(u α ), we have :

lim inf α→0 M | ∇u α | g 2 dv g ( M u α 1+ǫα dv g ) 4 n(1+ǫα) ≥ A 0 (n) -1
In addition, since

µ α < A 0 (n) -1 , it is clear that : lim sup α→0 M | ∇u α | g 2 dv g ( M u α 1+ǫα dv g ) 4 n(1+ǫα) ≤ A 0 (n) -1
As a consequence, one easily checks that :

lim α→0 A α M | ∇u α | g 2 dv g = A 0 (n) -1 (3) 
lim α→0 B α M u α 1+ǫα dv g = A 0 (n) -1 (4) 
lim α→0 k α = (2 + 4 n )A 0 (n) -1 (5) 
The proof of the theorem proceeds in several steps.

Step 1 to 4 are somehow similar than what was done in [START_REF] Humbert | Best constants in the L 2 -Nash inequality[END_REF]. Note however that the limits are not anymore limits as α → ∞.

Step 5 is a preparation to the concluding step, step 6. We let a α = A α 1 2 . We let also x α be a point of M such that u α (x α ) = u α ∞ . In the following, B(p, r) denotes the ball of center p and radius r in R n and B p (r) denotes the ball of center p and radius r in M . We assume in addition that bounded sequences are convergent, with no mention to the extracting of a subsequence, and write C for positive constants that do not depend on α.

Step 1 For all δ > 0 : lim inf α→0 Bx α (δaα )

uα 1+ǫα dvg M uα 1+ǫα dvg > 0 Let, for x ∈ B(0, δ) ⊂ R n : g α (x) = (exp xα ) * g(a α x) ϕ α (x) = u α -1 ∞ u α (exp xα (a α x))
We easily get :

∆ gα ϕ α + 2 n u α -1+ǫα ∞ B α ϕ ǫα α = k α 2 ϕ α ( Ẽα )
Since ∆ g u α (x α ) ≥ 0, we get from (E α ) and ( 5) :

u α ǫα ∞ B α ≤ C u α ∞ (6) 
and since ϕ α L ∞ (B(0,δ)) ≤ 1, we get from ( Ẽα ) :

∆ gα ϕ α L ∞ (B(0,δ)) ≤ C
By classical methods, it follows that, for a ∈]0, 1[ : ϕ α C 1,a B(0,δ) ≤ C. Hence, (ϕ α ) α is equicontinuous and by Ascoli's theorem, there exists ϕ∈C 0 (B(0, δ)) such that ϕ α → ϕ in C 0 (B(0, δ)) as α → 0. We have :

ϕ(0) = lim α→0 ϕ α (0) = 1 (7) 
and also :

B(0,δ) ϕ α 1+ǫα dv gα = u α -(1+ǫα) ∞ A α -n 2 Bx α (δaα) u α 1+ǫα dv g = u α -(1+ǫα) ∞ A α -n 4 (1-ǫα) Bx α (δaα) u α 1+ǫα dv g M u α 1+ǫα dv g ≤ u α -1 ∞ A α -n 4 Bx α (δaα) u α 1+ǫα dv g M u α 1+ǫα dv g (8) 
Since [START_REF] Hebey | Vaugon-From best constants to critical functions[END_REF] then becomes :

u α ǫα ∞ ≥ 1, (6) implies : u α ∞ ≥ C.B α and since A α → 0 as α → 0, (4) implies that B α ≥ C.A α -n 4 (1+ǫα) ≥ C.A α -n 4 . Inequality
B(0,δ) ϕ α 1+ǫα dv gα ≤ C Bx α (δaα) u α 1+ǫα dv g M u α 1+ǫα dv g Moreover, B(0,δ) ϕ α 1+ǫα dv gα → C > 0 (9) 
by ( 7) and since g α → ξ in C 1 (B) for every ball B in R n . Finally, we get :

Bx α (δaα) u α 1+ǫα dv g M u α 1+ǫα dv g ≥ C > 0
This ends the proof of step 1. Note that coming back to ( 8) and ( 9), one easily gets that :

lim α→0 A α n 4 u α ∞ = C > 0 ( 10 
)
Step 2 We recall that

a α = A 1 2 α = M u 1+ǫα α dv g 2 n(1+ǫα)
Let (c α ) α be a sequence of positive numbers such that : aα cα → 0 as α → 0. Then :

lim α→0 Bx α (cα) u α 1+ǫα dv g M u α 1+ǫα dv g = 1 Let η ∈ C ∞ (R) be such that : (i) η([0, 1 2 ]) = {1} (ii) η([1, +∞[) = {0} (iii) 0 ≤ η ≤ 1 For k ∈ N, we let : η α,k (x) = η(c α -1 d g (x, x α )) 2 k
where d g denotes the distance for g. Multiplying (E α ) by η α,k 2 u α and integrating over M gives :

2A α M | ∇η α,k u α | 2 g dv g -2A α M | ∇η α,k | 2 g u α 2 dv g + 4 n B α M η α,k 2 u α 1+ǫα dv g = k α M (η α,k u α ) 2 dv g (11) 
Using

N (A 0 (n) + ǫ, B ǫ )(η α,k u α ), one easily checks : 2A α M | ∇η α,k u α | 2 g dv g -2A α M | ∇η α,k | 2 g u α 2 dv g + 4 n B α M η α,k 2 u α 1+ǫα dv g ≤ k α (A 0 (n) + ǫ) M | ∇η α,k u α | 2 g dv g ( M (η α,k u α ) 1+ǫα dv g ) 4 n(1+ǫα) + B ǫ M (η α,k u α ) 2 dv g ( M (η α,k u α ) 1+ǫα dv g ) 4 n(1+ǫα ) n n+2 (12) 
Moreover, with the assumption on (c α ) α :

| ∇η α,k | 2 g ≤ C c α 2 ⇒ lim α→0 A α M | ∇η α,k | 2 g u α 2 dv g = 0
Now, let :

λ k = lim α→0 M η α,k 2 u α 1+ǫα dv g M u α 1+ǫα dv g λk = lim α→0 M (η α,k u α ) 1+ǫα dv g M u α 1+ǫα dv g
From the definition of η α,k , we get, for all k ∈ N :

λ k+1 ≤ λk+1 ≤ λ k ≤ λk ≤ µ = lim α→0 Bx α (cα) u α 1+ǫα dv g M u α 1+ǫα dv g (13) 
and, by step 1 :

∃C > 0 s.t. ∀k ∈ N, λ k ≥ C (14) 
Let us now prove that :

λ k ≤ λ2 k . Let L k = lim α→0 A α M | ∇η α,k u α | 2 g dv g .
Note that (4) and ( 5) imply :

lim α→0 B α M η α,k 2 u α 1+ǫα dv g = λ k A 0 (n) -1
and

k α M (η α,k u α ) 2 dv g ≤ C
In particular, (11) gives : L k < +∞. We also clearly have by ( 3) and (4) :

lim α→0 M | ∇η α,k u α | 2 g dv g ( M (η α,k u α ) 1+ǫα dv g ) 4 n(1+ǫα) = L k λ 4 n k
Equation (12) then leads to :

2L k + 4 n A 0 (n) -1 λ k ≤ (2 + 4 n )A 0 (n) -1 ((A 0 (n) + ǫ)L k λ 4 n k ) n n+2
If Lk = A 0 (n)L k , we obtain, since ǫ was arbitrary :

2 Lk + 4 n λ k ≤ (2 + 4 n ) L n n+2 k λ 4 n+2 k Let now, for x, y, z : f (x, y, z) = (2+ 4 n )x n n+2 y 4 n+2 -( 4 n z+2x).
Differentiating in x, we see that ∀x, y, z > 0, f (x, y, z) ≤ f (y 2 , y, z), and then :

f ( Lk , λk , λ k ) ≤ f ( λ2 k , λk , λ k ) = 4 n ( λ2 k -λ k ). We then get : λ k ≤ λ2
k . Now, from (13), ( 14), we get : ∀N ∈ N, 0 < C ≤ λ 0 N ≤ µ. Since µ ≤ 1, we have µ = 1 which proves step 2. Note that we have also proved that Lk = 1 for all k. As one can check, we have then :

lim α→0 Bx α (cα) | ∇u α | 2 g dv g M | ∇u α | 2 g dv g = 1 (15)
As a consequence, we easily get from (11) :

lim α→0 Bx α (cα) u 2 α dv g = lim α→0 Bx α (cα) u 2 α dv g M u 2 α dv g = 1 (16)
Step 3 There exists C > 0 such that, for all x ∈ M :

u α (x)d(x, x α ) n 2 ≤ C
where d denotes the distance for g.

We proceed by contradiction. We suppose that the following assumption is true :

∃y α ∈ M s.t. lim α→0 u α (y α )d(y α , x α ) n 2 = +∞ (H) Let : v α = u α (y α )d(y α , x α ) n 2
We can assume that :

v α = u α (.)d(., x α ) n 2 ∞
First, we prove that, if ν is small enough :

B yα (u α (y α ) -2 n ) ∩ B xα (a α v α ν ) = ∅ (17) 
It is here sufficient to show that d(x α , y α ) ≥ u α (y α )

-2 n + a α v α ν , or, equivalently that v α 2 n -ν ≥ v α -ν + a α u α (y α ) 2 n . If ν < 2 n , from (H), we get that v α 2 n -ν → +∞ and v α -ν → 0
as α → 0. Hence, it still has to be proved that a α u α (y α )

2 n ≤ C. We have a α u α (y α ) 2 n ≤ a α u α 2 n ∞ . Since a α = A α 1 2
and by [START_REF] Humbert | Best constants in the L 2 -Nash inequality[END_REF], this gives : 17) then follows. We let now, for x ∈ B(0, 1) :

a α u α 2 n ∞ ≤ C . Equation (
h α (x) = (exp yα ) * g(l α x) ψ α (x) = u α (y α ) -1 u α (exp yα (l α x))
where :

l α = u α -n+4 2n ∞ u α (y α ) 1 2
On B(0, 1), we have :

∆ hα ψ α = k α u α -(1+ 4 n ) ∞ u α (y α ) 2A α ψ α - 2B α u α -(1+ 4 n ) ∞ u α (y α ) ǫα nA α ψ α ǫα (E α ′ )
Moreover :

h α → ξ in C 1 (B(0, 1)) as α → 0 (18) We have u α L ∞ (By α (uα(yα) -2 n ))
≤ C.u α (y α ). To see this, note that, by the definition of y α , we have for all x ∈ B yα (u α (y α ) -2 n ) :

u α (y α )d(x α , y α ) n 2 ≥ u α (x)d(x α , x) n 2 (19) Moreover, since x ∈ B yα (u α (y α ) - 2 
n ) :

d(y α , x) ≤ u α (y α ) -2 n
and, by (H) : u α (y α )

-2
n ≤ 1 2 d(x α , y α ). So we have :

d(x, x α ) ≥ d(x α , y α ) -d(x, y α ) ≥ d(x α , y α ) -u α (y α ) -2 n ≥ 1 2 d(x α , y α )
Coming back to (19), the result follows immediately. Since

l α ≤ u α (y α ) - 2 
n , we then have ψ α L ∞ (B(0,1)) ≤ C. From ( 6), [START_REF] Humbert | Best constants in the L 2 -Nash inequality[END_REF] and the fact that, by (4),

B α A α n 4 (1+ǫα) → C > 0 as α → 0, we get lim α→0 u α ǫα ∞ = C (20) 
Now, from ( 6), ( 10) and (20), we see that (E ′ α ) has bounded coefficients and then :

∆ hα ψ α L ∞ (B(0,1)) ≤ C
As in step 1, we get the existence of ψ ∈ C 0 (B(0, 1)) such that, up to a subsequence :

ψ α → ψ in C 0 (B(0, 1)) as α → 0
Here, ψ is such that ψ(0) = 1 and then :

B(0,1) ψdx > 0 (21) 
However, by (18) :

B(0,1) ψdx = lim α→0 B(0,1)
ψ α 1+ǫα dv hα and, as one can check :

B(0,1) ψ α 1+ǫα dv hα = β α
where

β α = A α n 4 (1+ǫα) u α (y α ) -(1+ǫα) l α -n By α (lα) u α 1+ǫα dv g A α n 4 (1+ǫα)
If we prove that lim α→0 β α = 0, we get a contradiction with (21) which ends the proof of step 3. First, let

m α = u α (y α ) u α ∞
Clearly, by [START_REF] Humbert | Best constants in the L 2 -Nash inequality[END_REF] :

β α ≤ Cm -( n 2 +1) α By α (uα(lα)) u α 1+ǫα dv g M u α 1+ǫα dv g
By step 2 and (17),

lim α→0   By α (uα(yα) -2 n ) u α 1+ǫα dv g M u α 1+ǫα dv g   = 0 (22)
If m α ≥ C > 0, we have β α → 0 as α → 0. Hence, we assume that lim α→0 m α = 0. We now proceed by induction to prove that :

lim α→0 m -( n+3 n+2 ) k α By α (2 -k uα(yα) -2 n ) u α 2 dv g = 0 (H k )
First, we prove that (H 0 ) is true. We proved before that

u α L ∞ (By α (uα(yα) -2 n )) ≤ C.u α (y α )
Hence, we have, noting that u α (y α ) → ∞ as α → 0 : 

By α (uα(yα) -2 n ) u 2 α dv g ≤ Cu α (y α ) By α (uα(yα) -2 n ) u 1+ǫα α dv g ≤ Cm α u α ∞ By α (uα(yα) -2 n ) u 1+ǫα
2A α m -ǫ k α M | ∇η α,k u α | 2 g dv g -2A α m -ǫ k α M | ∇η α,k | 2 g u α 2 dv g + 4 n B α m α -ǫ k M η α,k 2 u α 1+ǫα dv g = k α m α -ǫ k M (η α,k u α ) 2 dv g (23) 
By (H k ) :

2A α m -ǫ k α M | ∇η α,k | 2 g u α 2 dv g ≤ CA α u α (y α ) 4 n m -ǫ k α By α (2 -k uα(yα) -2 n ) u 2 α dv g ≤ CA α u α (y α ) 4 n
Moreover, by [START_REF] Humbert | Best constants in the L 2 -Nash inequality[END_REF], A α u α (y α )

4 n = A α m 4 n α u α 4 n ∞ ≤ C.m 4 n
α → 0 as α → 0. We have also, by (H k ) and ( 5) :

lim α→0 k α m α -ǫ k M (η α,k u α ) 2 dv g = 0
Therefore, (23) gives :

2A α M | ∇η α,k u α | 2 g dv g ≤ C.m ǫ k α (24) 4 n B α M η α,k 2 u α 1+ǫα dv g ≤ C.m ǫ k α
Up to replacing η α,k by √ η α,k , with the same arguments, we also have :

4 n B α M η α,k 1+ǫα u α 1+ǫα dv g ≤ C.m ǫ k α (25)
Moreover, using N (A, B)(η α,k u α ), one easily checks that :

M (η α,k u α ) 2 dv g n+2 n ≤ A. M | ∇η α,k u α | 2 g dv g M (η α,k u α ) 1+ǫα dv g 4 n(1+ǫα) +B. M (η α,k u α ) 2 dv g M (η α,k u α ) 1+ǫα dv g 4 n(1+ǫα)
Clearly, we have in fact that :

M (η α,k u α ) 2 dv g n+2 n ≤ C. M | ∇η α,k u α | 2 g dv g M (η α,k u α ) 1+ǫα dv g 4 n(1+ǫα) ≤ C A α B 4 n(1+ǫα ) α M | ∇η α,k u α | 2 g dv g A α B α M (η α,k u α ) 1+ǫα dv g 4 n(1+ǫα)
Using ( 24) and (25), we get

M (η α,k u α ) 2 dv g n+2 n ≤ C A α B 4 n(1+ǫα ) α .m (1+ 4 n(1+ǫα) )ǫ k α By (4), A α B 4 n(1+ǫα) α ≥ C > 0. Since : By α (2 -(k+1) uα(yα) -2 n ) u 2 α dv g ≤ M (η α,k u α ) 2 dv g (H k+1
) then follows. As a consequence, (H k ) is true for all k. Coming back to (25) , we get that, for all k :

lim α→0 m -ǫ k α B α By α (2 -k uα(yα) -2 n ) u α 1+ǫα dv g = 0
Using the fact that lim α→0 l α u α (y α )

2 n = 0 and choosing k such that ǫ k ≥ n 2 + 1, we get : lim α→0 β α = 0 which ends the proof of step 3.

Step 4 For all c, k > 0, we have :

lim α→0 A α -k M-Bx α (c) u α 2 dv g = 0 (26) lim α→0 A α -k M-Bx α (c) | ∇u α | 2 g dv g = 0 (27) lim α→0 A α -k M-Bx α (c) u α 1+ǫα dv g = 0 (28) Let r α (x) = d g (x,
x α ) and let δ ∈]0, n 4 [. Using step 3, we have :

A α -δ M-Bx α (c) u α 2 dv g ≤ C.A α -δ M-Bx α (c) u α 1+ǫα r α -n 2 (1-ǫα) dv g ≤ C.A α -δ M-Bx α (c) u α 1+ǫα dv g
Recall the definition of A α to get :

lim α→0 A α -δ M-Bx α (c) u α 2 dv g = 0
Mimicking what we have done in the proof of step 3, we prove by induction that, for all k :

lim α→0 A α -( n+3 n+2 ) k δ M-Bx α (2 k c) u α 2 dv g = 0
This gives (26). Following the arguments used in the proof of step 3, one easily gets ( 27) and ( 28) from ( 24) and ( 25). Now, we set, for c > 0 small, η α = η(c -1 r α ) where η is as above. We also define :

r ∇ = M | ∇u α η α | 2 g R ij (x α )x i x j dv g M | ∇u α η α | 2 g dv g r 1 = M (u α η α ) 1+ǫα R ij (x α )x i x j dv g M (u α η α ) 1+ǫα dv g r 2 = M (u α η α ) 2 R ij (x α )x i x j dv g M (u α η α ) 2 dv g
where (x 1 , .., x n ) are exponential coordinates.

Step 5 We have

lim α→0 -1 6 -r ∇ + (1 + 2 n )r 2 - 4 n(1+ǫα) r 1 A α = | B | -2 n 6n 2 n + 2 + n -2 λ 1 n + 2 2 2 n S g (x 0 ) (29)
We come back to the notations of step 1. Let :

C 0 = lim α→0 u α -1 ∞ A -n 4 α and C0 = lim α→0 A ǫα α
Note that, by [START_REF] Humbert | Best constants in the L 2 -Nash inequality[END_REF] and ( 20), these limits exist. As one easily checks :

B(0,δ) ϕ α 2 dv gα = u α ∞ -2 A α -n 2 Bx α (δaα) u α 2 dv g and B(0,δ) ϕ α 1+ǫα dv gα = u α ∞ -(1+ǫα) A α -n 2 Bx α (δaα) u α 1+ǫα dv g = u α ∞ -(1+ǫα) A α -n 4 (1+ǫα) A α -n 4 (1+ǫα) Bx α (δaα) u α 1+ǫα dv g A α n 2 ǫα
Let first α goes to 0 and then, δ to +∞. By (16) and step 2, we have :

R n ϕ 2 dv ξ = C 0 2 (30)
and

R n ϕdv ξ = C 0 C n 2 0 (31) Now, let us compute R n | ∇ϕ | 2 ξ dv ξ .
First, it is clear that :

ϕ α → ϕ in C 1 (B) as α → 0 (32) for all compact ball B in R n . Let η δ (x) = η (2δ) -1 | x |
where η is as in step 2. Multiply ( Ẽα ) by ϕ α η δ 2 and integrate over R n . We check :

R n < ∇ϕ α , ∇ϕ α η 2 δ > gα dv gα + 2B α n u α 1-ǫα ∞ R n ϕ α 1+ǫα η δ 2 dv gα = k α 2 R n ϕ α 2 η δ 2 dv gα
Using (4), one easily gets :

lim α→0 2B α n u α 1-ǫα ∞ = 2 n A 0 (n) -1 C 0 C-n 2 0
and then, by ( 5) and (32) :

R n < ∇ϕ, ∇ϕη 2 δ > ξ dv ξ + 2 n A 0 (n) -1 C 0 C-n 2 0 R n η δ 2 ϕdv ξ = (1 + 2 n )A 0 (n) -1 R n η δ 2 ϕ 2 dv ξ (33) 
We have

R n < ∇ϕ, ∇ϕη 2 δ > ξ dv ξ = 2 R n < ∇ϕ, ∇η δ > ξ ϕη δ dv ξ + R n | ∇ϕ | 2 ξ η δ 2 dv ξ ≤ 2 R n | ∇η δ | 2 ξ ϕ 2 dv ξ 1 2 R n | ∇ϕ | 2 ξ η δ 2 dv ξ 1 2 + R n | ∇ϕ | 2 ξ η δ 2 dv ξ
By (30) and since | ∇η δ | ≤ cst δ , one easily gets :

lim δ→+∞ R n < ∇ϕ, ∇ϕη 2 δ > ξ dv ξ = R n | ∇ϕ | 2 ξ dv ξ (34) 
By (30), we know that ϕ ∈ L 2 (R n ). As a consequence, plugging (34) into (33) and using (31), we have :

R n | ∇ϕ | 2 ξ dv ξ = A 0 (n) -1 C 0 2 (35) 
Now, let, for u ∈ H 2 1 (R n ):

I ξ (u) = R n | ∇u | 2 ξ dv ξ ( R n udv ξ ) 4 n ( R n u 2 dv ξ ) 1+ 2 n
By the works of Carlen and Loss [START_REF] Carlen | Loss-Sharp constant in Nash's inequality[END_REF], we know that :

∀u ∈ H 2 1 (R n ), I ξ (u) ≥ A 0 (n) -1
By (30), ( 31) and (35), we have :

I ξ (ϕ) = A 0 (n) -1 C2 0 Since C0 ≤ 1, it follows that C0 = 1 ( if C0 < 1, we would have I ξ (ϕ) < A 0 (n) -1
). Therefore,

I ξ (ϕ) = A 0 (n) -1
. Let u, u ≡ 0 and radially symetric, be an eigenfunction associated to λ 1 , the first eigenvalue of the Laplacian on the unit ball B in R n for radial functions with Neumann condition on the boundary. Moreover, we may assume that u(0)=1. By Carlen and Loss [START_REF] Carlen | Loss-Sharp constant in Nash's inequality[END_REF], we have :

ϕ = kv(λx)
where v(x) = u(x)u(1). Now, by (30), (31) and since C0 = 1, we get :

R n ϕ 2 dv ξ = R n ϕdv g 2
We know that ( see theorem 1.3 in [START_REF] Druet | Vaugon-Optimal Nash's inequalities on riemannian manifolds[END_REF] ) :

R n v 2 dv ξ = n + 2 2 u(1) 2 | B | R n vdv ξ = -| B | u(1)
This gives then :

λ 2 = λ 2 0
where

λ 2 0 = n + 2 2 -2 n | B | 2 n
Let now :

r ∇,δ = Bx α (δaα) | ∇u α | 2 g R ij (x α )x i x j dv g M | ∇u α η α | 2 dv g r 1,δ = Bx α (δaα) (u α ) 1+ǫα R ij (x α )x i x j dv g M (u α η α ) 1+ǫα dv g r 2,δ = Bx α (δaα) (u α ) 2 R ij (x α )x i x j dv g M (u α η α ) 2 dv g
We recall that η α = η(c -1 r α ) where c > 0 is small and where η is defined as before. Using (15), we easily see that

lim α→0 M | ∇u α η α | 2 g dv g M | ∇u α | 2 g dv g = 1
We also get that, with step 2 and (16),

lim α→0 M (u α η α ) 2 dv g M u 2 α dv g = 1 lim α→0 M (u α η α ) 1+ǫα dv g M u 1+ǫα α dv g = 1
Now, by an easy proof by contradiction using step 2, (15) and ( 16), we see that

lim δ→∞ lim α→0 M | ∇u α | 2 g dv g Bx α (δaα) | ∇u α | 2 g dv g = 1 lim δ→∞ lim α→0 M u 2 α dv g Bx α (δaα) u 2 α dv g = 1 lim δ→∞ lim α→0 M u 1+ǫα α dv g Bx α (δaα) u 1+ǫα α dv g = 1
Here, lim δ→∞ lim α→0 means that α first goes to 0 and then, δ goes to +∞. This implies that :

lim δ→∞ lim α→0 r ∇,δ A α = lim δ→∞ lim α→0 Bx α (δaα) | ∇u α | 2 g R ij (x α )x i x j dv g A α Bx α (δaα) | ∇u α | 2 g dv g lim δ→∞ lim α→0 r 1,δ A α = lim δ→∞ lim α→0 Bx α (δaα) (u α ) 1+ǫα R ij (x α )x i x j dv g A α Bx α (δaα) (u α ) 1+ǫα dv g lim δ→∞ lim α→0 r 2,δ A α = lim δ→∞ lim α→0 Bx α (δaα) (u α ) 2 R ij (x α )x i x j dv g A α Bx α (δaα) (u α ) 2 dv g
Let (y 1 , .., y n ) be canonical coordinates in R n and (x 1 , .., x n ) be exponential coordinates in M . It is easy to see that, for a radial function f :

B(0,δ) f y i y j dv ξ = δ ij 1 n B(0,δ) f | y | 2 dv ξ
We also have :

Bx α (δaα) u α p x i x j dv g = u α p ∞ A α 1+ n 2 B(0,δ)
ϕ α p y i y j dv gα and :

Bx α (δaα) | ∇u α | 2 g x i x j dv g = u α 2 ∞ A α n 2 B(0,δ)
| ∇ϕ α | gα y i y j dv gα By these results and noting that ϕ is compactly supported, we have, for δ large enough :

lim α→0 r ∇,δ A α = S g (x 0 ) n R n | ∇ϕ | 2 ξ | y | 2 dv ξ R n | ∇ϕ | 2 ξ dv ξ lim α→0 r 1,δ A α = S g (x 0 ) n R n ϕ| y | 2 dv ξ R n ϕdv ξ lim α→0 r 2,δ A α = S g (x 0 ) n R n ϕ 2 | y | 2 dv ξ R n ϕ 2 dv ξ Then, for δ ≥ λ 0 : lim α→0 -1 6 -r ∇,δ + (1 + 2 n )r 2,δ - 4 n(1+ǫα) r 1,δ A α = λ 0 -2 S g (x 0 ) 6n -R n | ∇v | 2 ξ | y | 2 dv ξ R n | ∇v | 2 ξ dv ξ + n + 2 n R n v 2 | y | 2 dv ξ R n v 2 dv ξ - 4 n(1 + ǫ α ) R n v| y | 2 dv ξ
R n vdv ξ This expression has been computed in Druet, Hebey and Vaugon [START_REF] Druet | Vaugon-Optimal Nash's inequalities on riemannian manifolds[END_REF]. We have :

-1 6 -r ∇,δ + (1 + 2 n )r 2,δ - 4 n(1+ǫα) r 1,δ A α = | B | -2 n 6n 2 n + 2 + n -2 λ 1 n + 2 2 2 n S g (x 0 )
Hence, it is sufficient to prove that :

lim δ→∞ lim α→0 r ∇,δ -r ∇ A α = lim δ→∞ lim α→0 M-Bx α (δaα) | ∇u α η α | 2 g R ij (x α )x i x j dv g A α M | ∇u α η α | 2 g dv g = 0 (36) lim δ→∞ lim α→0 r 1,δ -r 1 A α = lim δ→∞ lim α→0 M-Bx α (δaα) (u α η α ) 1+ǫα R ij (x α )x i x j dv g A α M (u α η α ) 1+ǫα dv g = 0 (37) lim δ→∞ lim α→α0 r 2,δ -r 2 A α = lim δ→∞ lim α→α0 M-Bx α (δaα) (u α η α ) 2 R ij (x α )x i x j dv g A α M (u α η α ) 2 dv g = 0 (38) 
First, let us deal with (38). Let :

T α = M-Bx α (δaα) (η α u α ) 2 R ij (x α )x i x j dv g A α M (η α u α ) 2 dv g
By ( 16) :

T α ≤ C M-Bx α (δaα) u 2 α r α 2 dv g A α
Now, by step 3 :

T α ≤ C M-Bx α (δaα) u ǫα α r α 2-n r α n 2 ǫα dv g A α ≤ C M-Bx α (δaα) u ǫα α r α 2-n dv g A α ≤ C A α 1-n 2 M-Bx α (δaα) u ǫα α dv g A α
To estimate this expression, we integrate (E α ) over M -B xα (δa α ). We get : This gives that for δ large enough, the boundary term goes to 0. Moreover, it is clear that we have :

M-Bx α (δaα) | ∇η α r α | 2 g u 2 α dv g ≤ C M-Bx α (δaα) u 2 α dv g
By step 2, we obtain :

lim δ→∞ lim α→0 M-Bx α (δaα) | ∇r α η 2 α | 2 g u α 2 dv g = 0
Observe that the second member of (40) goes to 0 when α → 0 and δ → ∞. This easily follows from what we did when we proved (38). Relation (40) then implies that :

lim δ→∞ lim α→0 M-Bx α (δaα) | ∇u α η α r α | 2 g dv g = 0 (41) 
and also that : lim

δ→∞ lim α→0 4B α nA α M-Bx α (δaα) u α 1+ǫα r α 2 η α 2 dv g = 0
which gives (37). In addition :

M-Bx α (δaα) | ∇u α η α r α | 2 g dv g = M-Bx α (δaα) | ∇u α η α | 2 g r α 2 dv g +2 M-Bx α (δaα) < ∇u α η α , ∇r α > g u α η α r α dv g + M-Bx α (δaα) | ∇r α | 2 g η α u α 2 dv g
For every x, y, ǫ > 0, we have : xy ≤ 1 2 (ǫx 2 + 1 ǫ y 2 ). Noting that :

M-Bx α (δaα) < ∇u α η α , ∇r α > g u α η α r α dv g ≥ - M-Bx α (δaα) | ∇u α η α | 2 g r α 2 dv g 1 2 M-Bx α (δaα) | ∇r α | 2 g η α u α 2 dv g 1 2
we get :

M-Bx α (δaα) | ∇u α η α r α | 2 g dv g ≥ (1 -ǫ) M-Bx α (δaα) | ∇u α η α | 2 g r α 2 dv g +(1 - 1 ǫ ) M-Bx α (δaα) | ∇r α | 2 g (η α u α ) 2 dv g
Using (41) and the fact that lim

A α M | ∇u α η α | 2 g dv g = A 0 (n) -1
, we then clearly get (36). Finally, this proves step 5.

Step 6 We prove the theorem.

Let, for u ∈ H 2 1 (M ) :

I g,α (u) = I α (u) -(α 0 -α)( M | u | 1+ǫα dv g ) 4 n(1+ǫα ) a-W e f irst prove that : lim α→0 A 0 (n) -1 -I g,α (η α u α ) A α = α 0 (42) 
By ( 26), ( 27) and (28), one can check that :

lim α→0 I g,α (u α ) -I g,α (η α u α ) A α = 0 (43) 
Moreover, we have :

I g,α (u α ) = I α (u α ) -(α 0 -α)A α Since α → 0 and I α (u α ) ≤ A 0 (n) -1 , we get : lim inf α→0 A 0 (n) -1 -I g,α (η α u α ) A α ≥ α 0 (44) 
In addition, we can also write, by (43)

lim sup α→0 A 0 (n) -1 -I g,α (η α u α ) A α = lim sup α→0 A 0 (n) -1 -I 0 (u α ) + α 0 A α A α
By definition of α 0 , we have I 0 (u α ) ≥ µ 0 = A 0 (n) -1 . This implies that :

lim sup α→0 A 0 (n) -1 -I g,α (η α u α ) A α ≤ α 0 (45) 
(42) then comes from (43), ( 44) and (45).

b-W e prove that :

M | ∇η α u α | 2 ξ dv ξ - M | ∇η α u α | 2 g dv g = - 1 6 M | ∇η α u α | 2 ξ R ij (x α )x i x j dv g + O(1) (46) 
First note that the limit of right-hand side member of (46) exists. We have

M | ∇η α u α | 2 g dv g = M | ∇η α u α | 2 ξ dv g + M (g ij -δ ij )∂ i u α ∂ j u α η 2 α dv g + C 1 (α) (47) 
where C 1 (α) stands for the terms in which the derivatives of η α appear. Since supp(∇η α ) ⊂ M -B xα ( c 2 ) and by step 2, (15) and ( 16), we see that C 1 (α) → 0 when α → 0. We write that, for δ > 0,

M (g ij -δ ij )∂ i u α ∂ j u α η 2 α dv g ≤ Bx α (δaα) (g ij -δ ij )∂ i u α ∂ j u α dv g + M-Bx α (δaα) (g ij -δ ij )∂ i u α ∂ j u α η 2 α dv g
Using the Cartan Hadamard expansion of the metric g, we get that where (R i kl j (x α )) are the components of the Riemann curvature of g in exponential map at x α . One gets from (41) that the third term of this expression is small if δ is large. The second term goes to 0 when α tends to 0. It can be seen by writing that, on B xα (δa α ), r α ≤ δa α . We now prove that the first term goes to 0 with α. We write that Bx α (δaα)

M (g ij -δ ij )∂ i u α ∂ j u α η 2 α dv g ≤ C Bx α (δaα)
R i kl j (x α )∂ i u α ∂ j u α x k x l dv g ≤ C u α 2 ∞ A n 2 α B(0,δ) R i kl j (x α )∂ i ϕ α ∂ j ϕ α x k x l dv gα
where ϕ is defined as in step 1. Now, since ϕ α → ϕ in C 1 (B(0, δ)) when α → 0 and since ϕ is radially symmetric, we get that

lim α→0 R i kl j (x α )∂ i u α ∂ j u α x k x l = 0
Together with [START_REF] Humbert | Best constants in the L 2 -Nash inequality[END_REF], this proves that, for all δ, where I ξ is def ined as above. Let :

t 1 = M (η α u α ) 1+ǫα dv ξ -M (η α u α ) 1+ǫα dv g M (η α u α ) 1+ǫα dv g t 2 = M (η α u α ) 2 dv ξ -M (η α u α ) 2 dv g M (η α u α ) 2 dv g t ∇ = M | ∇η α u α | 2 ξ dv ξ -M | ∇η α u α | 2 g dv g M | ∇η α u α | 2 g dv g
By the Cartan Hadamard expansion of g, we have :

dv ξ = 1 + 1 6 R i,j (x α )x i x j + O(r 3 α ) dv g
Coming back to the notations of step 5, we then get :

lim α→0 t 1 A α = lim α→0 1 6 r 1 A α (51) 

2 n 2 k

 22 ) then follows. Let now ǫ k = n+3 n+2 k and suppose that (H k ) is true. Let us prove that (H k+1 ) is true. Let η α,k (x) = η(u α (y α ) d g (x, y α )) where η is defined as in step 2. Multiplying (E α ) by u α (η α,k ) 2 m ǫ k α and integrating over M, we obtain :

2 g r 3 α

 23 α )∂ i u α ∂ j u α x k x l dv g +C Bx α (δaα) | ∇u α | dv g + C M-Bx α (δaα) | ∇u α | 2 g r 2 α dv g

M| ∇η α u α | 2 ξ| ∇η α u α | 2 ξ dv ξ + 1 6 M | ∇η α u α | 2 ξ

 2262 lim α→0 Bx α (δaα) R i kl j (x α )∂ i ϕ α ∂ j ϕ α x k x l dv g = 0 We finally obtain that lim α→0 M (g ijδ ij )∂ i u α ∂ j u α η 2 α dv g = 0(48)To conclude, we write that, by the Cartan Hadamard expansion of g,dv g = M R ij (x α )x i x j dv g + O(1)(49)We then get (46) from (47), (48) and (49).c-W e prove that :lim α→0 I ξ,α (η α u α ) -I g,α (η α u α ) A α = A 0 (n)

Let us prove that the second member of (39) goes to 0 if we let α goes to 0 and δ to ∞. We have, using the definition of A α :

By (4), we have :

Step 2 clearly implies that :

Since ϕ is compactly supported ( see above ), for δ large enough :

Consequently, for δ large enough :

By (39), this proves (38). To get (36) and (37), multiply (E α ) by rα 2 ηα 2 uα Aα and integrate over M -B xα (δa α ) :

As we did before, we use the fact that for r α = δa α :

and :

and :

From ( 46), we also have :

We write :

(50) then follows by ( 29), (51),( 52), (53) and the fact that lim α→0 I g,α (u α η α ) = A 0 (n) -1 .

d-Conclusion

By Hölder's inequality and Carlen and Loss [START_REF] Carlen | Loss-Sharp constant in Nash's inequality[END_REF], we have :

We have then :

Dividing this inequality by A α and recalling that B 0 = α 0 A 0 (n), we get from ( 42) and (50) that : This ends the proof of the theorem.