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Abstract

We give geometrical conditions under which there exist extremal functions for the
sharp L?-Nash inequality.

1 Introduction

This paper is in the spirit of several works on best constants problems in Sobolev type
inequalities. A general reference on this subject is the recent book of Hebey [E] These
questions have many interests. At first, they are at the origin of the resolution of famous
geometrical problems as Yamabe problem. More generally, they show how geometry and
analysis interact on Riemannian manifolds and lead to the developpement of interesting
analytic methods. This article is devoted to the existence of extremal functions for the
optimal L2-Nash inequality and follows another paper [@} in which we proved the existence
of a second best constant in the L2-Nash inequality. Obviously, finding extremal functions
is interesting from PDEs’ point of view. The proof we give here may appear very technical.
Nevertheless, its interest lies in the analytic methods it gives, for example on what concerns
the study of concentration phenomenons. Moreover, extremal functions have their own
interests because they give informations on best constants. For example, the existence of
extremal functions for the circle S gives an explicit inequality on S* (see [[L(]).

In this paper, we let (M, g) be a smooth compact Riemannian n-manifold. We consider
the following inequality : for v € C°(M),

(/M uldvg) e < (A/M| Vu |§dvg+B/M u2dvg>(/M |u | dug)™ N(A, B)(u)

We say that N (A, B) is valid if N(A, B)(u) is true for all u € C*°(M). In the following, we
refer to this inequality as the L?-Nash inequality. Let now

Ao = inf{A > 0| there exists B > 0 s.t. N(4, B) is valid }

It was shown in [{] that
n+42
)

(n+2
220\ (B)| B |*
where | B | is the volume of the unit ball B in R", Ay is the first nonzero Neumann eigenvalue
of the Laplacian for radial functions on B and Vol(M) is the volume of (M, g). Then, it was

shown in [[[0] that there exists B > 0 such that the sharp N(Ag(n), B) is valid. Another
form of sharp inequality is in Druet-Hebey-Vaugon [E} Let now

Ay = Ag(n) =

By = inf{B € Rs.t. N(Ap(n),B) is valid }



It was also proved in [@] that for any smooth compact Riemannian n-manifold (M, g),

2 |BTR (2 —2 L2\
a5 (25022) (2 )

where Sy(z) is the scalar curvature of g at . We now say that u € HZ(M), u # 0 is an
extremal function for the sharp L?- inequality N(Aq(n), Bo) if

4
n

(] )+ = aotw) [ [ Vu vy + Bo [ aldu)([ Julde,)
M M M M

Such a study was carried out for sharp Sobolev inequalities by Djadli and Druet in the very
nice reference [E] Though they are close in their statement, these two questions, to know
whether or not there exist extremal functions for sharp Sobolev inequalities and for the
sharp L2-Nash inequality, are however distinct in nature. In consequence, the problems we
have to face here are very different from the one that appears in [E] The main result of this
article is the following :

Theorem 1 Let (M,g) be a smooth compact Riemannian n-manifold. Let also By be as
above. Assume that :

BO>|B| n( 2 +n2> <n+2)nmaXSg(z)

6n n+2 A1 2 zEM

Then, there exist extremal functions of class C»*(M) (0 < a <1 ) for the sharp L*-Nash
inequality.

We present here the main ideas of the proof of this theorem which is based on a precise
study of a phenomenom of concentration. Namely, for B < By, we prove the existence of
an extremal function up for inequality N(Ap, B) where

Ap = inf{A| s.t. N(A, B) is true } > Ag(n)

We then let B — By. Standard theory shows that there exists u € H?(M) such that ugp — u
weakly in HZ(M) when B — By. We have to consider two cases. First, if u # 0, it is not
difficult to prove that u is an extremal function for N(Ag(n), By). If u = 0, we prove that u
concentrates around a point z of M. In other words, up — 0 when B — By in CP, (M —{z})
and for all 6 > 0,

. fB(z,&) u;dvg

lim ———— =

B=Bo [y uhdvg

Hence, if n is a cut-off function such that 7 = 1 in a neighbourhood of z and n = 0 on
M — B(z, ) where § is small, nup have almost the same properties than up. Via exponential
map at x, nup can be seen as a function on R" on which we have the standard optimal Nash

inequality
1+2 4
2 2
up) dx < Ag(n / Vnu das</ U dx)
</Rn(773) ) o) [ 1¥men Pa( [ s

With the use of Cartan’s expansion of the metric around = and precise estimations of the
concentration of up, these integrals can be compared to the corresponding integrals on
(M, g). We get that

/ (nuB)Ndvg < ap
M



where ap is an expression involving integrals of up. Thanks to the Euler equation of up,
we get that

oy < [ (um) o,
M

where o/ is another expression involving integrals of up. The inegality oy < ap leads to

IBI™% [ 2 n-2\[n+2\"
By <
0S 5~ 2 + N > max S, (x)

This gives the theorem.

As a consequence of theorem 1, we immediately have :
Corollary 1 Let (M, g) be a smooth compact Riemannian n-manifold. We assume that

VOZ(M)7%> 1B~ ( 2 +n2> <n+2)nmang(z)

6n n+2 A1 2 zEM

Then, there exist extremal functions of class C»*(M) (0 < a <1 ) for the sharp L*-Nash
inequality. In particular, this is the case if the scalar curvature is nonpositive.

For n > 2, the results obtained in [E] on the existence of extremal functions for the sharp L2-
Nash inequality are a consequence of theorem 1. For n = 1, we proved in that constant
functions are extremal functions for the sharp L2-Nash inequality. At the moment, we are
not able to give examples manifolds such that there does not exist extremal functions for the
sharp L2-Nash inequality. Hebey and Vaugon prove in [E] the existence of such manifolds in
the case of Sobolev inequality. However, their proof strongly uses the conformal invariance
of their inequality and we do not know yet some other methods to obtain this type of results.

2 Proof of theorem 1
Let Ag(n) and By be as in introduction. We define ag = By Ay (n)_l. For a > 0, we let also
2 I+en ——
(Jar | Vu lydvg + (a0 — @) Jag wPdvg)(fo | | TE duy) T
(fM u2dvg)1+%

A = {ueC>®M)s.t. / u?dv, = 1}

Ia(u) =

M
and
Pow = ilelfA I (u)
where €, is chosen such that
lim € =0, f1a < Ao(n) " and, lim pro = Ao(n)~ (1)

Clearly there exists u, € HZ(M), us > 0, such that

/ uidvg =1 and po = In(uq)
M

We write now the Euler equation of u,, to get that, in the sense of distributions :

4
24,0 guq + —Bouls = kqta (Ey)
n



where A, stands for the Laplacian with the minus sign convention and :

4
n(l+eq)
Aa —_ </ ualJread,Ug)
M
Firea) ~ 1L
(/ | Vg |g2dvg + (ap — a)) (/ ua1+eadvg)
M M

4 Ceeery)
ko = —fa+ 2/ | Vug |§dvg (/ ua1+€advg)

n M M

By the Sobolev embedding theorem, u, € L%(M ) and then, by classical methods, u, €
C?(M). To prove the theorem, we assume that there does not exists extremal functions for
the sharp L?-Nash inequality and show that

IBI™% /2 -2\ [n+2\"
By <
="6n n—+ 2 + A1 2 ggaf(sg(x)

Bq

As easily seen, the existence of extremal functions follows from an assumption like :

a—0

liminf/ ua“““dvg >0
M
Note that such an assumption implies that :

2
/M|Vua |g dvy < C

In the following, we then assume that

lim uo T dv, =0
a—=0 far
or, equivalently :
lim A, =0 (2)
a—0

Now, using N(Ag(n), Bo)(us), we have :

liminf/ | Vg, |g2dvg(/ ua1+€“dug)n<_1i‘m> > Ag(n) ™"
M M

a—0

In addition, since pq < Ag(n)~", it is clear that :

1i 2 1+e —1 -1
nnsup/ | Vua |, dvg(/ Uo ' T dvg ) T+ < Ag(n)
M M

a—0

As a consequence, one easily checks that :

lim A, /M| Vg |, dvg = Ag(n) ™! (3)
sy, Ba A ua' e dvg = Ao(n) ™" (4)



lim ko = (2+ %)Ao(n)‘1 (5)

The proof of the theorem proceeds in several steps. Step 1 to 4 are somehow similar than
what was done in [E] Note however that the limits are not anymore limits as o« — oo. Step
5 is a preparation to the concluding step, step 6.

We let aq = Ao?. We let also x4 be a point of M such that Ua(Ta) = || Ua || In
the following, B(p,r) denotes the ball of center p and radius r in R" and B,(r) denotes
the ball of center p and radius r in M. We assume in addition that bounded sequences are
convergent, with no mention to the extracting of a subsequence, and write C for positive
constants that do not depend on «a.

wg e dvg

Step 1 For all § >0 : liminf,_o BI};Z)HW% >0
Let, for z € B(0,0) C R™ :
ga(x) = (exps,) g(aaw)
-1
pa(r) = [lua |l ualezp,, (aat))
We easily get :
2 —1+e ka r-
A o - o aBa fr = — o Ea
ga¥at —ll tall par =58 (Ea)
Since A ua(zq) > 0, we get from (E,) and (f]) :
|t 152 Bae < O tha || o (6)

and since || @a || (p(0,5) < 1, We get from (E,) :

| Ag, ¢ HL"O(B(O,é)) <C

By classical methods, it follows that, for a €]0,1[ : || va [|c1.ep(o,5 < C- Hence, (¢a), is

equicontinuous and by Ascoli’s theorem, there exists p€C?(B(0,§)) such that p, — ¢ in
C°(B(0,0)) as a — 0. We have :

2(0) = lim pa(0) =1 (7)

and also :

I+en _ —(I+ea) 4 —% 1+ea
J I N e AR
B(0,6) B, (daq)

1+e
=lu |‘7(1+€“)A *%(1*ea)f3ma(6aa)ua *dug
o ) fM U teady,

1+e
N

-1
< va o Aa f]M o Fendu,

(8)

Since || uq |2 > 1, (B) implies : || uq || > C.B, and since A, — 0 as a — 0, ([]) implies
that B, > C.A,~T0%%) > 04,7 %. Inequality (E) then becomes :

1+e
I ue T du,
/ @a1+€advga S C Bra(5aa)1+€

B(0,6) Joy uatteodug




Moreover,

/ wo' T dvg, — C >0
B(0,5)
by (ﬂ) and since g, — & in C1(B) for every ball B in R". Finally, we get

1+eq
mea (daa) Ua d'Ug >0 >0
Sy watteado =
M T g

This ends the proof of step 1. Note that coming back to (§) and (), one easily gets that :

lim Ay % || ug ||, =C >0
a—0

2
1 n(l+eaq)
Ao = AOQt = (/ ué‘+€advg)
M

Let (ca),, be a sequence of positive numbers such that : = — 0 as o — 0. Then

(10)
Step 2 We recall that

1+e€
f U adv
. Ba, (ca) to g
lim (ca)

a—0 fM ualJre“‘ d’Ug

=1
Let n € C*°(R) be such that :

(@) n(0,3]) = {1}
(i) (1, +ool) = {0}

(iid) 0<n<l

k
For k € N, we let : nq k() (n(ca_ldg(:n,xa)))2

where d,; denotes the distance for g.
Multiplying (E,) by na,;ﬂua and integrating over M gives :

4
24, / | Vilatta Pdvg — 244 / | Vo Pa?dv, + 2B, / o e
M M

:ka/ (naykua)deg
M

Using N(Ao(n) + €, Be)(Na,kUa ), one easily checks :

(11)

4
2AO</ | Vo, kta |§dvg - 2Aa/ | Vo, k |§ua2dvg + —Ba/ na,k2ua1+€“dvg
M M n M

Moreover, with the assumption on (c)



C
2 . 2 2 _
| vna,k |g S Ca_2 = cluli% Aa /M | vnoz,k |guo¢ dvg =0

Now, let :

2 1
. fM Mok Ua' " duyg
A = lim T
a—0 fM Ug, +€advg
1+e
N fM (%,kua) “dvg

A = lim
a—0 fM ua1+€a d’Ug

From the definition of 74, we get, for all £ € N :

1+e
mea (ca) Ua advg

Mot < o1 <A < A\ < = li 13
k4l S Ak4+1 S Ak S Ak S U algb fMuaHeadvg (13)

and, by step 1 :
dC >0s.t. Vke N, A\ > C (14)

Let us now prove that : A\, < :\i Let Ly = lima—0 A [ | Vakta |§dvg. Note that ()
and () imply :

lim Ba/ na7k2ua1+€“dvg = )\kAo(n)fl
a—0 M

and

ko / (Nakta)*dvg < C
M

In particular, ([L1)) gives : L < +o00. We also clearly have by () and (fi) :

4
n(l+teq) ~4

lim / | Vo ko |§dvg(/ (naykua)l—‘_e“dvg) =LA}
a—0 Jar M

Equation ([[Z) then leads to :

g n+2

2Lt Ao M € 2 ) A0lm) (o) + L))

If Ly = Ag(n)Lg, we obtain, since ¢ was arbitrary :

2L+ he < 24 D)LTEATR
k nk— 'k k

Let now, for z,y,z : f(x,y,2) = (2+%)xn%2y%+2 —(%z+2z). Differentiating in z, we see that

VZL',y,Z > O,f(x,y,z) S f(yQ,y,Z), and then : f(ikvj\]ﬁ)\k) S f(j\ivj\]ﬁ)\k) = %(Xi - Ak)
We then get : A, < A2. Now, from ([[J), ([4), we get : VN € N, 0 < C < A" < p. Since



u < 1, we have u = 1 which proves step 2. Note that we have also proved that L, =1 for
all k. As one can check, we have then :

fBIa(ca) | Vug |§dvg

im 5 =1 (15)
a=0 [ | Vug [,dvg
As a consequence, we easily get from (@) :
uZdv
lim wldv, = lim fBIa“a; S (16)
a—0 Ba,, (Ca) a—0 fM uad’[}g

Step 3 There exists C > 0 such that, for all x € M :

3

ug(x)d(z,24)2 < C
where d denotes the distance for g.

We proceed by contradiction. We suppose that the following assumption is true :

Jyo € M s.t. 1111% ua(ya)d(ya,xa)% = 400 (H)
Let :
Vo = ua(ya)d(yan xa>5
We can assume that : ;
Vo = || ua(.)d(., 7q)2 Hoo
First, we prove that, if v is small enough :
By, (ua(Ya) ™) N By, (aavs") = 0 (17)

3o

It is here sufficient to show that d(Za,¥a) = Ua(Ya) ™ + @avs”, or, equivalently that
A e aaua(ya)%. Ifv< %, from (H), we get that Va® Y — +o0 and v, Y — 0
as a — 0. Hence, it still has to be proved that aaua(ya)% < C. We have aaua(ya)% <
aq || Ua HO%O Since aq = Ao ? and by (L0), this gives : aq | ua Ho%o < C . Equation ([[7) then
follows. We let now, for z € B(0,1) :

ha(z) = (expy,) g(lax)
Yo (:c) = Uq (ya>7lua (expya (lax))
where : d .
lo = ta |02 ta(ya)?

On B(0,1), we have :

—(1+4 —(1+4 €a
kol ta |12 ua (ya) b — 2Pall ta 12 0 (ya)

Aha Vo = 24, nA,

o (Ea)
Moreover :

ho — € in CY(B(0,1)) as a — 0 (18)



We have || uq || < Cug(Yao). To see this, note that, by the definition of

L% (By, (ta(ya) 7)) =

Yo, We have for all x € By, (Ua(ya)_%) .

wJ3
w3

Ua(ya)d(xozaya) > ua(x)d(xou ) (19)

Moreover, since x € B, (ua(ya)i%) .

3o

d(yaa 1') < ua(ya)7

3o

and, by (H) : ua(ya) ™ < 3d(%a,Ya). So we have :

3o

N 1
d(z,x0) = d(Za,ya) =A@, Ya) = d(Ta, Ya) — Va(Ya) ™ = §d(:va,ya)

Coming back to , the result follows immediately. Since I, < uq (Yo 7%, we then have
g
| Ya ll Lo (B(0,1)) < €. From @), (L0) and the fact that, by (), Bada 1) — C > 0 as

a — 0, we get
lim [ ua 3 =C (20)
Now, from (f), (L0)) and (RJ), we see that (E7,) has bounded coefficients and then :
| Ao llp(B0,1)) < C
As in step 1, we get the existence of 1 € C°(B(0, 1)) such that, up to a subsequence :
Yo — P in C*(B(0,1)) as a — 0

Here, v is such that 1(0) = 1 and then :

/ Ydz > 0 (21)
B(0,1)
However, by ) :
/ Ydr = lim Yo T dup,,
B(0,1) a=0JB(0,1)

and, as one can check :

/ ¢a Hea d’Uha = ﬂa
B(0,1)

foa (la) ual"rﬁa d'Ug
Aa % (1+€a)

where

Ba = Aa 10T ug (o) " (

If we prove that lim,_,¢o B, = 0, we get a contradiction with (@) which ends the proof of
step 3. First, let
_ U (Ya)

e s

1+e€q
Bo < Cmg EHY (foawaua)) fe d”ﬂ)

1+4e€q
f]M Ua dug

(o3

Clearly, by ([LJ) :




By step 2 and (E),

f _2 Uozl-‘rea d’Ug
lim By, (ua(ya) n) =0 (22)

a—0 fM ’ua1+€“ d’Ug

If mq > C > 0, we have B, — 0 as a — 0. Hence, we assume that lim,_.g ms = 0. We now
proceed by induction to prove that :

(n+3

k
n+2) / ., UQQdUg =0 (Hk)
By, (27 ua(ya) ™ n)

First, we prove that (Hp) is true. We proved before that

lim mq
a—0

o 2. <C. a\Ya
el 5, () 2y < Ctialya)
Hence, we have, noting that uq(ys) — 00 as a — 0 :
/ , usdvg < Cua(ya)/ , unteedu,
Byq (wa(ya) ™) Byq (ua(ya) ™)

< Cmal| ta |, / . ulteedy,

By, (ua(ya)™ ™)

By (IQ) and (B2

i | . L U edu, =0
o By, (e (ya) ™)

k
(Hp) then follows. Let now e, = (Z—ig) and suppose that (Hy) is true. Let us prove

that (Hyy1) is true. Let 1o (2) = n(ta(ya) 2%dy (2, yo)) where 7 is defined as in step 2.
Multiplying (E,) by
ua(na,k)2
meF

and integrating over M, we obtain :
2Aam;€’“/ | Vo, ko |§dvg - 2Aam;€’“/ | Vak |§ua2dvg
M M

4
+—Bama75’“/ na7k2ua1+€“dvg:kama76’“/ (nmkua)deg (23)
n M M

By (Hy) :
2A,m;* | Vo k |2ua2dvg
M g

< CAaua(ya)%m;Ek/ 2 uidvg < CAa“oz(yoz)%
By, 27 Fua(ya)” ™)

4
n

a 4
Moreover, by (L0), Aqtia(ya)™ = AamC% | te ||o%O < Cmg — 0 as a — 0. We have also, by
(Hy,) and () :

lim komq " / (nmkua)deg =0
a—0 M

Therefore, (R3) gives :

10



2Aa/ | Vo ka |§dvg < C.mék (24)
M

4
—Ba/ na1k2ua1+6"dvg < Cmék
n M

Up to replacing 7q,k by \/Na.k, With the same arguments, we also have :

4
—Ba/ na7k1+€“ua1+6advg < Cm (25)
n M

Moreover, using N (A4, B)(Na,kta), one easily checks that :

n+42

()

4
n(l+eq)
+B-/ (na,kua)zdvg</ (na,kua)1+€“dvg)
M M

Clearly, we have in fact that :

) e ez}
< A. | Vo ko |gdvg (Mo kUa) dvg
M M

2

4
n n(ltea)
(/ (na,kua)QdUg) < C-/ | Vo, kta |§dvg (/ (na,k“a)1+€advg)
M M M

4
C . n(ltea)
< 7] </ | Vo, kUa |§dvg’4a> <Ba/ (77a7kua)1+ advg)
AaBa"(HCO‘) M M

Using (R4) and (3), we get

n C 1 + €
(/ (na7kua>2d’vg) < = mg""n( +€a)) k
M

i 4 .
AQBOT;(HSQ)

4
By (E)a AaBg" ) > C > 0. Since :

/ ) uidvgg/ (naﬁkua)deg
Bya(Qf(kJrl)ua(ya)i;) M

(Hj41) then follows. As a consequence, (Hy) is true for all k. Coming back to () , we get
that, for all k :

1imo m;e’“Ba/ ) ualJrEadvg =0
- i _2
* By, (27 ua(ya)” ™)

Using the fact that limy—q loUq (ya)% = 0 and choosing k such that e, > % + 1, we get :
limy—0 8o = 0 which ends the proof of step 3.

Step 4 For all ¢,k > 0, we have :

lim A,k / ua’dvy, = 0 (26)
o M—Bg, (c)

11



lim A, " g Tedv, = 0 (28)
B g
a— M—Bg, (c)

Let ro(7) = dgy(z,7,) and let 6 €]0, §[. Using step 3, we have :

Aaia/ ua2dvg S C.Aa75/ ualJ’»Ea'rai%(l*Ea)dvg
M—Ba, (¢) M—Bg, ()

< C’.Aof‘s/ uaHC“dvg
M—Bg, (c)

Recall the definition of A, to get :

lim Aof&/ ua2dvg =0
a—0
M—B,, (c)

Mimicking what we have done in the proof of step 3, we prove by induction that, for all k :

lim A, -(+5) 5/ ua2dvg =0
M—Bg, ( )

a—0

This gives (Pf). Following the arguments used in the proof of step 3, one easily gets (P7)

and (P§) from (P4) and (). Now, we set, for ¢ > 0 small, 7, = n(c1r,) where 7 is as
above. We also define :

fIV[ | Vuana |§Rij($a)l'il'jdvg

rv =
fM | Vuana |§dvg
Ju ( (uama) T Rij(za)aia! dv,
T1 = e
fM (uana d’Ug
9 — fl\/[ Ua T ij (Z'Q)SC Z'Jd’l)g

)’R
Jos (Wana) dvg

1

where (z',..,2™) are exponential coordinates.

Step 5 We have

i —3 (*TV +(1+2)rs — _n(liea)Tl)
a—0 Aa

CIBITR 2 n—2 )\ (n+2\"
= T6n \nt2 ' a 5 ) Sol@0) (29)

We come back to the notations of step 1. Let :

. -1 4—% = .
Co :OIthlo|\ Uq || o Aa* and Cy = i:rrlOA;a

Note that, by (E) and (@), these limits exist. As one easily checks :

S O N el
B(0,9) By, (daq)

12



and

/ Soal"rﬁadvga = || Uy ||m7(1+€a)Aa_%/ ual—}-eadvg

e Bag (8ac)

- (” Ua ||oo_(1+€a)A0¢_%(1+€a)) Aa—%(1+€a)/ ua1+€advg Aa%€a
By, (daq)

Let first o goes to 0 and then, 6 to +oc0. By (E) and step 2, we have :

2 2
2 dv :Co
oo 5

and

w3

/[R" odve = CoC

Now, let us compute [gp= | Vo |§dv5. First, it is clear that :

Yo — @ in CY(B) as a — 0

(30)

(31)

(32)

for all compact ball B in R". Let ns(z) =1 ((25)71 | x |) where 7 is as in step 2. Multiply

(E4) by @ans? and integrate over R™. We check :
2B,

ka
< Vo, Voan; > dva+7_/ @ ”‘“nstva:—/ Pa’ns>dvg,
/R" «a alls —g,“%g nH'UJaH}XJGQ R" e g 2 R" e 9

Using (E), one easily gets :

2B, 2 1 amn
= ZAo(n)"'CoCy 2

1—¢€q n

lim
=0 nfl uq |5

and then, by (§) and (B3) :

2 —1 ~_
<V, Von? >.d ZA CoCy 2 20d
/R"’ P, Vpils >gdve + o(n)” CoCy /IR"’ ns”pave

2 -1 2 2
= (1 - d
= (1+-)4o(n) /an i dve
We have

/R" < Ve, Vo >cdvg = Q/R" < Ve, Vs >consdog + /R" | Vo |§7752dv5

§2/ Vs Qdev)Z(/ Vo 2n52dv)2+/ Vo |2ns2dv
(Rn| Btaee) ([ 190 ntaue) + [ 196 Enstase

By (BQ) and since | Vs | < C%t, one easily gets :

. 2 _ 2
SEIJPOO - < Vo, Vons >cdve = /]R" | Voo |dve

(34)

By (B0), we know that ¢ € L2(R™). As a consequence, plugging (B4) into (BJ) and using

(B1)), we have :

13



[ 190 2o = Aofm) ™ Co? (35)
Now, let, for u € H(R"):

4
v | Vu Jgdvg(Jn udve)”
(Jgn u2dve)' ™

By the works of Carlen and Loss [ﬂ], we know that :

I (u)

Yu € HE(R™), Ie(u) > Ag(n) ™"
By (B0), (B1)) and (B5), we have :
Ie(p) = Ao(n) "' C§

Since Cy < 1, it follows that Co = 1 (if C < 1, we would have I¢(¢) < Ag(n)~" ). Therefore,
Ie(p) = Ao(n)_l. Let u, u # 0 and radially symetric, be an eigenfunction associated to
A1, the first eigenvalue of the Laplacian on the unit ball B in R" for radial functions with
Neumann condition on the boundary. Moreover, we may assume that u(0)=1. By Carlen
and Loss [{], we have :

© = kv(Ax)

where v(z) = u(z) — u(1). Now, by (Bd), (B1) and since Cy = 1, we get :

2
/n 502dv§ = </R" gadvg>

We know that ( see theorem 1.3 in [f] ) :

/ v2dv£ = n+2u(1)2 | B |

2
/andv£:7|B|u(1)
This gives then :
A= )\2
where )
n+2\ " 2
A = n
i=("57) 151
Let now :

2 i
mea (baq) | Vug |gRij(:Ca)£L' x]dvg

v, =
fM | Vuana |2dvg
1+eq ()
fBIa(Saa) (ta) " Ryj (w022’ dug
™, = Ttea
fM (Uama) dvg
2 i
JB.. (san) (ta) Rij(za)a'a? dug
25 =

S (uana)deg

14



We recall that n, = n(cflra) where ¢ > 0 is small and where 7 is defined as before. Using
(E), we easily see that

2
Jas | Vuana [,dvg _
a=0 [ | Vg |§dvg

We also get that, with step 2 and ([L9),

. fM (uana)deg

1 =1
asb fM u2 dvg
1+eq
lim Jar (ela) Ty

a—0 fM ’u(l;rea d’Ug

Now, by an easy proof by contradiction using step 2, (L) and ([Ld), we see that

Vg 2 v
lim lim fM| |g d

2 =
6—o00 a—0 mea ) | Vug |gd'Ug

2
uz dv
lim lim _Dytadvs =1
b=000=0 [ (50, Uadvg
ulteady
lim lim Jas o g 1

1+e€q

0
d—o00 a— mea (5aa) Uey d’Ug

Here, limg_, o lim,_,o means that « first goes to 0 and then, § goes to +o0o0. This implies
that :

2 i
. A . . fBIa (5ac) | Vg |ng‘j (20)'2? dv,
lim lim —< = lim lim .
d—o00 a—0 o d—o00 a—0 Aa me (6aa) | Vua |gd’l)g
14e€q i
; N ) . . fBIa (6aa) (ua) Rij(zo)x*a? dvg
lim lim == = lim lim -
d—o00 a—0 Aa d—o0 a—0 Aa fB (5a0) (ua) ad’Ug
2 i
: . T2 . . fBM((saa) (ua) Rij(zq)xtz? dvg
lim lim =22 = lim lim .
d—o00 a—0 Aa d—o00 a—0 Aa fB (da )(Ua) d’[)g

Let (y!,..,4™) be canonical coordinates in R™ and (z?,..,2™) be exponential coordinates in
M. Tt is easy to see that, for a radial function f:

/ Fy'y? dve = 5”—/ fly [Pdve
B(0,5) " JB(0,5)

We also have :
/ uaPz el dvg = || ua |0, Aa"E / ©aPy'y dug,
Bma (6‘1&) B(076)
and :

[ Ve atetdn, = 2 Au® [ Ve |, e,
By, (daa) B(0,6)

By these results and noting that ¢ is compactly supported, we have, for § large enough :

2 2
A Sy(xo) JrR | Vo le| y " dog

a—0 A, n Jrm | Ve |§dv5

15



ris  Se(xo) Jrr @l y Pdve

lim == =

a0 As n Jrr edve

i 728 _ Sy(xo) Jr» oy |2dU£
im == =

a—0 Aa n fRn (p2d’U§

Then, for 6 > Ag :
Jre | Vo el y P

—8 (-Tv,é + (14 2)ras — mrm) Ao~ 28, (o) (
2
Jrr | Vo [edve

6 p—
A, o 6n

lim

a—0
+n+2fRn 02|y |Pdve B 4 Jrrvly |2dv§)
n JRrr v2dug n(l+ey) [prvdug
This expression has been computed in Druet, Hebey and Vaugon [H] We have :

st 0Bt jert (2 ne) (nen)f )
A, T 6n \n+2 '\ 2 g\ro

Hence, it is sufficient to prove that :

B ay | Vuana |2Ri<(xa)xixjdv
fM By, (daq) g g —0 (36)

. . Tves —Tv . .
lim lim — i - lim lim 5
§—o00 a—0 a §—o00 a—0 A, fM | Viuana |gdvg

- B, an) (Wanla) T Rij(wa)ziad dv
lim lim 22" — fim lim Ju Do (00) 1+€J -0 (37)
§—o00 a—0 Aa §—o00 a—0 Aa fl\/[ (Uana) ad’Ug
_ B " (uana)QRi<(xa)xixjdv
lim lim 227" — jim lim Ju Py (002) 2] 2 =0 (38)
b—ooa—ag  Ag §—00 a—ap A, fM (Uane) dvg

First, let us deal with (Bg). Let :

. fM—BIa (6aa) (naua)QRij ()22l dvgy

Ty = 5
Aa f]\/[ (naua) d’Ug
By (id) :
[ 2. 24
M—B,, (5a,) YaTa GV
T, < a
<C A,
Now, by step 3 :
ulery? M, 2 dy
T, < CfoBIa(ziaa) - 9

n

€a
: foBIa (daq) Ua™dVg

A
C i

€a 2—n
foBIa (aq) Ya'Ta” "dug
<
Ao

To estimate this expression, we integrate (E,) over M — B,_(da,). We get :

<cC
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A2 A E
T, <C / Uadvg + / Oyuado (39)
Ba  Jym-B,, (5a0) Ba  JoB,, (5a.)

Let us prove that the second member of (@) goes to 0 if we let @ goes to 0 and ¢ to co. We
have, using the definition of A, :

1
Aa_% A;Z f]\/[_Bma (6aa) ua‘i‘ﬁa d’Ug 1+eq
Uadvg < T+e
Ba  Jy-B,, (5a0) B Sy o dvg
By (), we have :

B
Step 2 clearly implies that :

Hence :

1
f 1+ea Ttea
U dv a
. . M—B,,. (8 a g
lim lim za (900) =0
d—~+ooc a—0

1+
fM ua “dvg

Aa 2
lim lim

Uqdvg =0
s—ocoa—0 By /]M—Bma(éaa)

Now, if ro, = da,, we have :

|5Vua(x) |§ H U Hoo

— 1 1 (Ve)g = om0

Since ¢ is compactly supported ( see above ), for ¢ large enough :

I (Vea)g. ”Loo(aB(o,(s)) —0
Consequently, for § large enough :

-3
lim

Oyugdo =0
a—0 B /BBIQ(Saa)

By (B9), this proves (B
over M — B,_(daq) :

). To get (BA) and (B7), multiply (E,) by re’na”ua pq integrate

72/ (8yua)uara2na2dg+2/ | VuanaTa |§dvg—2/
OBy, (5a4) M—B;, (daa)

| Vnara |§ua2dvg
M—Bg, (daq)
4B,

k

ltea,. 2, 2 _ FRa

A/ ua“ranadvgf—
NAa JM-B,, (baa)

1 / ua2ra2na2dvg
a JM—Bg, (daq)
As we did before, we use the fact that for r, = da,

(40)

| Guua(x) |§ H U Hoo

1
2

I (Vea)g HLOO(BB(O,&))
and :

o () < ta llooll #a |l L (a8(0.6))
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This gives that for ¢ large enough, the boundary term goes to 0. Moreover, it is clear that
we have :

/ | Viara |§uidvg <C u?dv,
M—B,,, (§as) M —Bg, (6aa)

By step 2, we obtain :

. . 2 (2 2 _
611m hL% | Vrang [ ua”dvg =0
—ooa M—B;, (daa)

Observe that the second member of (i) goes to 0 when a — 0 and § — co. This easily
follows from what we did when we proved (Bg). Relation ([i(]) then implies that :
lim lim | Viuanara |§dvg =0 (41)
d—00a=0 Jar_ B, (saa)
and also that :

) . 4B,
lim lim
d—o0 a—0 nAg M—Bg,, (daq)

which gives (B7). In addition :

/ | VuanaTa |§dvg = / | Vuana |§7’a2dvg
M=B,, (as) M=B,, (as)

+2/ < VuaTa; Vra > ualaladvg Jr/ | Vra |§naua2dvg
M—B,, (Ja.) M—B,, (a.)

1+4e€q
«

U ra277a2dvg =0

For every x,y, € > 0, we have : zy < 1(ex? + 1y?). Noting that :

/ < VUuaNa, Vra >guanaradvg
M—Bg,, (daq)

> — / | Vuana |§Ta2dvg / | Vg, |§7}aua2dvg
M—B,,, (6as) M—Bg,, (§aa)

/ | Vuanara |§dvg >(1- e)/ | Vuana |37«a2dvg
M—Bg, (daq) M—Bg, (daq)

1

1
2 2

we get :

1
+(1— —)/ | Vra |2 (atia) dv,
M—Bg, (daq)

€

Using ([t]) and the fact that lim A, [,, | Vuana |§dvg = Ag(n)~!, we then clearly get (B4).
Finally, this proves step 5.

Step 6 We prove the theorem.
Let, for u € HZ(M) :

4
n(ltea)

Lo (u) = Lo(u) — (ag — o) / | [0 dv,)
M
a— We first prove that :

-1
lim Ao(n) ~ — Ig,a(naua)
a—0 Aa

= ao (42)
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By (B4), (£7) and (§), one can check that :

lim Ig,a(“a) - Ig,a(naua)

a—0 Aa =0

Moreover, we have :

Ig.a(ua) = la(ua) = (a0 — @) Aa

Since o — 0 and I, (uq) < Ao(n)_l, we get :

—1
lim inf Ao(n)  ~ Iga(atia)
a—0 Aa

In addition, we can also write, by ()

Ao(n) ™" = Iyo(Natia Ao(n) ™" = Ip(uq Aq
Jim sup o(n) g.0(Matia) — lim sup o(n) 0(ua) + @0
a—0 Aa a—0 Aa

By definition of ag, we have Iy(ua) > 1o = Ag(n)~1. This implies that :

A 71_1 a\lla%a
s 2000 ™! Ty ()
a—0 Aa

() then comes from ({d), (f4) and ({@5).

b— We prove that :

<

(43)

1 .
/ | Vitata [gdve _/ | Vitata [ydv, = _6/ | Vit [ Rij(xa)z'a? dvg + O(1)  (46)
M M M

First note that the limit of right-hand side member of (f46]) exists. We have

y | Vitatia [5dv, = /ﬂ . | Viata [edvg + /A I(gij — 6D Duadjuanidog + Ci(a)  (47)

where 01

(@)
B, (3)

that for 6 >0,

‘/ 8 U 0j uanadvg < (gij — 5ij)8iua8juadvg

By, (daq)

+

/ (gij — 6ij)0iuaajuanidvg
M—Bg, (daa)

Using the Cartan Hadamard expansion of the metric g, we get that

‘/ (9 U 0j uanadvg <C

+C/ | Vg |§7‘idvg +C | Vg |§7‘Zdvg
Say) M—Bg, (daq)

/ R'u? (24)0; ua0; uax®z dv
By, (daq)

stands for the terms in which the derivatives of 7, appear. Since supp(Vn,) C
and by step 2, ([[) and ([l§), we see that C}(a) — 0 when a — 0. We write

where (R'y?(24)) are the components of the Riemann curvature of g in exponential map
at . One gets from ([tl]) that the third term of this expression is small if 4 is large. The
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second term goes to 0 when « tends to 0. It can be seen by writing that, on B,_(daa),
To < daq. We now prove that the first term goes to 0 with . We write that

/ R'i? (20)0iuaOjuqr® s dvy
By, (daa)

< Ol ua |I2.AS

/ R (24)0;000; 00"z dv,,
B(0,6)

where ¢ is defined as in step 1. Now, since ¢, — ¢ in C*(B(0,§)) when a — 0 and since ¢
is radially symmetric, we get that

limO R (xa)aiuaajuaxkxl =0
Together with (E), this proves that, for all ¢,

lim R (ma)aitpaajgoaackxldvg =0
a=0JB, (5aq)

We finally obtain that

lim0 (g — 6ij)8iua8juanidvg =0 (48)
a— M

To conclude, we write that, by the Cartan Hadamard expansion of g,
1 o
/ | VNota |§dvg :/ | VNota |§dv§ + —/ | VNota |§Rij(za):cl:c3dvg +0(1) (49)
M M 6/

We then get (i) from (i), (1§) and (9.

c— We prove that :

 Tea(latta) = Ipa(maua) 1| BITF (2 =2\ (nt2\"
dimy A, =A== ety 2 Sylxo) (50)

where I¢ is defined as above.

Let :
t, = fM(naua)HEadvg - fM(naua)Headvg
fM(naua)HC“dvzz
ty = Jos Uactia)*dve — [ (10 tia)*dvg
fzw(naua)2d”g
2 2
o = Jar | Viiaua |£dv§ = Jar | Vilata |gdvg

fM | Vijata |§dvg
By the Cartan Hadamard expansion of g, we have :

1 o
dvg = (1 + gRi,j(xa)xzxj + O(ri)) dvg

Coming back to the notations of step 5, we then get :

lim —— =
a—0 Aa a—0 06 Aa



and :
lim — = lim —— (52)

From ([i), we also have :

We write :

4
(14 ty)(1 + )70
(1+t)+%

(B0) then follows by (), (51)),ED), () and the fact that lima o Iy.a(tala) = Ao(n)

- Igya(uana)

Ifﬁa(uana) - Igﬂ(“@cﬁ@c) = Ig,a(uana)

d— Conclusion
By Holder’s inequality and Carlen and Loss [E}, we have :

4
n

Jar | Viata |§dv£ (f]M nauadvg)

Ag(n)™*
fM (naua)2dU€ 0( )

If,a(naua) Z

We have then : .
Ie.a(Nata) = Iga(Matia) = Ao(n) " — Ig,a9(Nata)
Dividing this inequality by A, and recalling that By = agAo(n), we get from (i) and (0)

that : ) ,
|B| ™ 2 n—2\ (n+2\"
By < S
=%, w2t 2 o(0)

B < LB ( 2 +n2> <n+2)nmaXSg(z)

6n n+2 A1 2 zeM
This ends the proof of the theorem.

and then :
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