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ABSTRACT

In geophysics, a homomorphic system is used to modelize the
convolution of an emitted wavelet (source) with the impulse
response of the earth into the sum of the log spectra of the
wavelet and the earth’s response. If the source function is
supposed to be stationary and the earth’s response spatially
nonstationary, by averaging the log spectra of several random
reflection records, the log spectrum of the wavelet will be en-
hanced and the log spectrum of the earth’s response will av-
erage out. In this paper, we take an interest in the application
of the above method on synthetic seismic data, for estimating
the theoretical wavelet spectrum. Then, the wavelet estimate
is used to deconvolve the data for obtaining the earth’s re-
sponse.

1. INTRODUCTION

The seismic traced(t) is usually assumed to be the convolu-
tion of an emitted waveletw(t) with the impulse response of
the earthr(t). Homomorphic deconvolution was introduced
by Oppenheim and Schafer [1], and has been used to decon-
volve seismic records [2]: the method consists in separating
the wavelet and earth’s reflectivity components in homomor-
phic domain by filtering method.

Another technique was proposed by Otis & Smith [3], for es-
timating the actual source wavelet and then deconvolving the
seismic data. It consists in averaging the log spectra of several
reflection records, the log spectrum of the emitted wavelet
(supposed stationary) will be enhanced and the log spectrum
of the earth’s response (nonstationary) will average out. Log
spectral averaging has two important advantages: (1) the es-
timate of the source wavelet will contain phase information
concerning the actual source; (2) if the estimate of the source
is used to construct a Wiener inverse filter for deconvolving
the seismogram, the assumption that the earth’s response isa
white series is eliminated.

2. HOMOMORPHIC SYSTEM AND WAVELET
ESTIMATION

A commonly used homomorphic systemT is the cascade of
(a) the Fourier transform of a time signalx(t),

X(f) = F [x(t)]

and (b) the complex logarithm of the spectrumX(f),

log[X(f)] = log[|X(f)|] + j arg[X(f)], (1)

If we assume that the seismic reflectiond(t) (noiseless) is the
convolution of a sourcew(t) with the impulse response of the
earthr(t), the application of the previous steps (a) and (b)
gives:

log[D(f)] = log[W (f)] + log[R(f)] (2)

The real (Re) and imaginary (Im) parts of the resultant rela-
tion (2) are given by:

Re : log |D(f)| = log |W (f)| + log |R(f)| (3)

Im : arg[D(f)] = arg[W (f)] + arg[R(f)] (4)

Now, let us considerNs sensors recording different reflec-
tions{ds(t)}s=1..NS

to provide the seismic profile (see figure
1). If the source wavelet can be considered stationary and the
geological structure considered spatially variable, thenthe log
spectra of each trace (see eqs. (2), (3) and (4)) will be the sum
of a constant function corresponding to the source wavelet
and a variable function corresponding to the earth’s response.
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Fig. 1. Seismic reflections recorded by different sensors.



Next, we present the Log Spectral Averaging (LSA) method,
whose objective is to enhance the unchanging function (source
wavelet) and suppressing the changing signals (earth’s responses).

2.1. Wavelet Estimation by Log Spectral Averaging

With source wavelet stationarity assumption, averaging the
real and imaginary parts of log spectra (see eqs. (3) and (4))
gives:
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If for eachf the values{log |Rs(f)|}s=1..Ns
are random vari-

ables that have identical probability distributions with the same
meanK and varianceσ, and{arg[Rs(f)]}s=1..Ns

are ran-
dom variables distributed uniformly within a certain inter-
val [−φ1 , φ1], then with respect to the central limit theorem,
we have:
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In other words, the LSA will produce an estimate proportional
to the actual wavelet magnitude|W (f)| (see eq. (5)) and an
estimate of the actual wavelet phasearg[W (f)] (see eq. (6)).

While the above estimation approach can be straighforward
applied to recovering the amplitude|W (f)|, the situation is
more complicated when the phases are considered. Indeed,
the original data phasearg[D(f)] is always given as ”modu-
lus 2π: ARG[D(f)] = (arg[D(f)])

2π (wrapped phase), i.e.
the phase can never be retrieved as a continuous fonction of
the frequencyf , even if it is originally a continuous function
[4]. Clearly, the phase wrapping makes the execution of phase
averaging of no use. A possible solution to this deficiency is
to reconstruct the original phase values via phase unwrapping
methods before averaging is applied. Next, two phase un-
wrapping methods are described and used in our application,
for recovering the original data phase and then the wavelet
phase.

2.2. Phase unwrapping for wavelet phase recovering

2.2.1. Oppenheim’s phase unwrapping

One solution was proposed by Oppenheim [4]: the unwrapped
phase is recovered by computing the phase derivative and then
integrating it. From eq. (1), and replacingX(f) by D(f), we
denoteD̂(f) = log[D(f)] and

D̂R(f) = log[|D(f)|]

D̂I(f) = arg[D(f)]

the real and imaginary parts of̂D(f) respectively. Referring
to Oppenheim [4], we have:

d

df
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d

df
D̂I(f) =

D′

I(f)DR(f) − DI(f)D′

R(f)

DR(f)2 + DI(f)2

(7)
whereDR, DI are the real and imaginary parts of the dataD(f)
andD′

R, D′

I their corresponding derivatives with respect to
frequency. Once, the phase derivative is obtained, one can
recover the unwrapped phase by integrating it:

arg[D(f)] =

∫ f

0

arg′[D(ξ)]dξ (8)
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2.2.2. Phase unwrapping by Matlab routine

The Matlab phase unwrapping consists in correcting the ra-
dian phase angles in the wrapped phase ARG[D(f)] by adding
multiples of 2π when absolute jumps between consecutive
elements of ARG[D(f)] are greater than the jump tolerance
of π radians.

2.2.3. Deramping the unwrapped phase

In this paragraph, we show that usual conditions imposed to
the unwrapped data phasearg[D(f)] lead us to suppress the
linear component of the phase [5]. To do so, let us write the
discrete Fourier transform as:

D(ω) =

+∞
∑

n=−∞

d(n) exp [−jωn] (9)

Due to the fact thatD∗(−ω) = D(ω), the phase must be an
odd function:

− arg[D(−ω)] = arg[D(ω)] (10)

Moreover,arg[D(ω)] must be2π-periodic:

arg[D(ω1)] = arg[D(ω1 + 2π)] , ∀ω1 (11)

Hence, following eqs. (10) and (11), we must have in partic-
ular:

arg[D(ω)]
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Since

arg[D(ω)]
∣
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ω=π
=

∫ π

0

arg′[D(ω)]dω (13)

we conclude with eq.(12) that the phase derivative must be a
zero mean function. So, we must normalize the phase deriva-
tive as follows:

arg′[D(ω)] = arg′[D(ω)] − rd (14)

with rd =
1

π

∫ π

0

arg′[D(ω)]dω.



The normalization in eq.(14) is equivalent to suppress the lin-
ear component in the unwrappped phase:

arg[D(ω)] = arg[D(ω)] − rdω (15)

The unwrapping and deramping of the data phase is hence re-
quired before applying the phase averaging in eq. (6). Figure
2 shows an illustration of the deramping process: figure 2(a)
represents the unwrapped phase of a data and the correspond-
ing linear component superimposed on the phase; figure 2(b)
shows the deramped data phase.
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(a) Phase unwrapped by Oppenheim’s method
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Fig. 2. Unwrapping then deramping the data phase.

3. SIMULATIONS AND WAVELET ESTIMATION
RESULTS

For wavelet estimation, we have consideredNs highly un-
correlated noisy traces{ds(t)}j=1..Ns

of Nt time samples
(Ns = 750, Nt = 199). Each trace is expressed asds(t) =
[w ∗ rs](t) + bs(t) wherew(t), rs(t) andbs(t) are the actual
emitted wavelet, the earth response and a zero-mean gaussian

noise with varianceσ2
b = 5 10−3. The adding noisebs(t) su-

perimposed to the noiseless data, is highlighted in figure 3(a)
in the case of one trace, the resulting noisy trace is represented
in figure 3(b). The first ten highly uncorrelated noisy traces
are shown in figure 3(c). The previous synthetic case can be
obtained from real highly correlated data of size(Ms ×Mt) with
Ms < Ns, Mt > Nt, by picking upNs traces ofNt time
samples randomly in the real data array.

Figure 4(a) illustrates the wavelet magnitude estimate obtained
by the above averaging method: the estimate is very close to
the theoretical wavelet magnitude|W (f)| until about the fre-
quencyf = 40 Hz, and deviates slightly beyond it. From
the previous estimate, we have calculated the DSP that al-
lows to incorporate a bandpass filtering on the data for re-
covering the wavelet phase. The cut-off frequencies of the
passband filter are fixed at∆dB = −35 dB from the max-
imum of the DSP. Figure 4(b) illustrates the wavelet phase
estimates obtained by the above averaging method, after the
phase unwrapping methods and deramping: (1) globally, the
phase estimate is better after Oppenheim’s phase unwrapping
than the one after Matlab phase unwrapping, (2) the estimate
values are inconsistent from frequencyf = 30 Hz: at this
frequency, the signal energy decreases by about6 dB. Figure
4(c) shows the temporal wavelet estimates resulting from the
frequency wavelet estimation in figure 4(b): we can notice
that the wavelet estimate obtained after Oppenheim’s phase
unwrapping is better than the one after Matlab phase unwrap-
ping, especially around the timet = 0.02 s: this is due to
a better wavelet phase estimate obtained after Oppenheim’s
phase unwrapping (see figure 4(b)).

Figure 5(a) represents a trace whereas the figures 5(b) and
(c) illustrate estimates of the earth’s response obtained by de-
convolving the data in figure 5(a), with the Wiener inverse

filter G(f) =
Ŵ ∗(f)

|Ŵ (f)|2 + fn

, whereŴ (f) is the wavelet

estimate obtained by LSA,fn is a noise factor whose value

that we have chosen isfn = 10−3

[

|Ŵ (f)|2
]

max
. Compar-

ing with the actual earth response in figure 6, we can notice
that the earth response reconstruction is better in figure 5(c)
(after Oppenheim’s phase unwrapping) than in figure 5(b) (af-
ter Matlab phase unwrapping): indeed, around the timest =
{−0.3,−0.1, 0.06, 0.14, 0.3}, we can observe that the sec-
ondary peaks are weaker in figure 5(c) than in figure 5(b).

4. CONCLUSION

Log Spectral Averaging is a useful tool for estimating the
source wavelet. The method is based on stationary wavelet
and spatially variable earth’s response assumptions. An im-
portant advantage of Log Spectral Averaging is that it is not
restricted to minimum-phase wavelets since the method can
estimate the magnitude and the phase of the actual wavelet.
For synthetic noisy data recorded by a number of sensors
large enough, we have shown that the Log Spectral Averag-
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(a) Noiseless data and noise superimposed.
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(b) Signal resulting of the addition of
the noiseless data and noise in figure (a).
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Fig. 3. Synthesis of highly uncorrelated noisy data for wavelet
estimation and earth response reconstruction.
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Fig. 4. Estimation of the modulus and the phase of the wavelet
by averaging method.
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(b) Earth response estimate obtained
from wavelet spectrum estimation in figure 4

(after Matlab unwrapping method).
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(c) Earth response estimate obtained
from wavelet spectrum estimation in figure 4

(after Oppenheim’s unwrapping method).

Fig. 5. Earth response reconstruction by Wiener filtering.
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Fig. 6. Theoretical earth response corresponding to figures
5(b) and (c).

ing provides a good wavelet magnitude estimate and it can
evaluate well enough the actual wavelet phase if the phase of
the data is unwrapped and then deramped. Nevertheless, the
quality of the wavelet phase estimation seems to depend on
the choice of the phase unwrapping method: in particular, the
wavelet phase estimation can be improved by chosing a more
efficient phase unwrapping method.

Once the wavelet estimate is available, it is used to construct
an inverse filter for deconvolving the data and obtaining the
earth’s response. Performances of the above method have to
be deeply evaluated in function of Signal-to-Noise Ratio. In
addition, for real data it will be useful in terms of computa-
tion time, to incorporate a bandpass filtering (filter determined
when estimating the wavelet) and deconvolution into one op-
eration.
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