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Abstract. We study systems of two elliptic equations, with right-hand sides with general power-like superlinear growth, and left-hand sides which are of Isaac's or Hamilton-Jacobi-Bellman type (however our results are new even for linear lefthand sides). We show that under appropriate growth conditions such systems have positive solutions in bounded domains, and that all such solutions are bounded in the uniform norm. We also get nonexistence results in unbounded domains.

1 Introduction.

We study positive solutions of nonvariational elliptic systems of the type

   -H 1 [u] = f 1 (x, u 1 , u 2 ) in Ω -H 2 [u] = f 2 (x, u 1 , u 2 ) in Ω u 1 = u 2 = 0 on ∂Ω, ( 1 
)
where Ω is a smooth bounded domain in R N , N ≥ 2, u = (u 1 , u 2 ), f 1 , f 2 are nonnegative locally Lipschitz functions defined in Ω × [0, ∞) 2 , and H 1 , H 2 are uniformly elliptic linear or nonlinear operators.

In the last years there has been a lot of interest in superlinear elliptic systems with or without variational structure (we give various references below). Requiring a system to have such structure is clearly a strong assumption, as it means both that the elliptic operators are in divergence form, and that f 1 and f 2 are the derivatives of a given function. An important feature in most of the previous works on nonvariational systems is that only the latter of these two requirements was removed. On the other hand, operators in non-divergence form could be considered as in [START_REF] Birindelli | Liouville theorems for elliptic inequalities and applications[END_REF], [START_REF] De Figueiredo | On the Ambrosetti-Prodi problem for non-variational elliptic systems[END_REF], [START_REF] Sirakov | Existence results and a priori bounds for higher order elliptic equations and systems[END_REF], provided they are linear, with the same principal part. It is our goal here to study the considerably more difficult case of different and nonlinear operators.

To accommodate the reader, we start by stating a consequence of our main result in a very particular model case. Let M ± λ,Λ be the Pucci operators: M + λ,Λ (M ) = sup A∈S tr(AM ), M - λ,Λ (M ) = inf A∈S tr(AM ) for any symmetric matrix M , where S = S λ,Λ N is the set of symmetric matrices whose eigenvalues lie in the interval [λ, Λ]. These important fully nonlinear operators are an upper and a lower bound for all uniformly elliptic linear operators with ellipticity constant λ and bounded coefficients. Note M 1,1 (D 2 u) = ∆u.

Theorem 1.1 I. Let λ 1 , λ 2 , Λ 1 , Λ 2 > 0. Consider the system    M 1 [u 1 ] + u p 2 = 0 in Ω M 2 [u 2 ] + u q 1 = 0 in Ω u 1 = u 2 = 0 on ∂Ω, ( 2 
)
where M k [u k ] = M ± λ k ,Λ k (D 2 u k ) (independently for k = 1,
2), and we set

ρ k = (λ k /Λ k ) ±1 , N k = ρ k (N -1) + 1.
Let p, q ≥ 1 be such that pq > 1 and

2(p + 1) pq -1 ≥ N 2 -2 or 2(q + 1) pq -1 ≥ N 1 -2.
Then there exists a positive classical solution of system [START_REF] Bardi | On the strong maximum principle for fully nonlinear degenerate elliptic equations[END_REF]. In addition, all such solutions are uniformly bounded in the L ∞ -norm. II. Under the same hypotheses, system [START_REF] Bardi | On the strong maximum principle for fully nonlinear degenerate elliptic equations[END_REF] (without the boundary condition) does not have positive solutions in the whole space, that is, if Ω = R N . Remark 1. Systems like [START_REF] Bardi | On the strong maximum principle for fully nonlinear degenerate elliptic equations[END_REF] have been extensively studied when M 1 = M 2 is the Laplacian (or other divergence form operators), see [START_REF] Azizieh | Existence and a priori estimates for positive solutions of p-Laplace systems[END_REF], [START_REF] Clement | Positive solutions of semilinear elliptic systems[END_REF], [START_REF] De Figueiredo | Strongly indefinite functionals and multiple solutions of elliptic systems[END_REF], [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF], [START_REF] Peletier | Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equation[END_REF], [START_REF] Quittner | A priori estimates and existence for elliptic systems via bootstrap in weighted Lebesgue spaces[END_REF], [START_REF] Serrin | Existence of positive entire solutions of elliptic Hamiltonian systems[END_REF], [START_REF] Zou | A priori estimates and existence for strongly coupled semilinear elliptic systems[END_REF], and the references in these papers.

Remark 2. When M 1 = M 2 and p = q this theorem reduces to the known results for the scalar equation -M ± λ,Λ (D 2 u) = u p (see [START_REF] Cutri | On the Liouville property for fully nonlinear equations[END_REF], [START_REF] Quaas | Existence results for nonproper elliptic equations involving the Pucci operator[END_REF]). More generally, H k in (1) could be coupled second-order operators

H k [u] = L k u = i,j a (k) ij (x)∂ ij u k + i b (k) i (x)∂ i u k + c (k) 1 (x)u 1 + c (k) 2 (x)u 2 .
We will actually go much further, allowing H 1 , H 2 to be nonlinear operators of Isaac's type, that is, sup-inf of coupled linear operators as above

H k [u] = sup α∈A k inf β∈B k L (α,β) k u, (3) 
where A k , B k are arbitrary index sets. Note H k is linear when [START_REF] Birindelli | Liouville theorems for elliptic inequalities and applications[END_REF]. When |B k | = 1 (like for Pucci operators) the corresponding supoperator is usually referred to as Hamilton-Jacobi-Bellman (HJB) operator. These operators are essential tools in control theory and in theory of large deviations, while general Isaac's operators are basic in game theory. We refer to [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF], [START_REF] Ishii | Viscosity solutions for monotone systems of secondorder elliptic PDE's[END_REF], and to the references in these papers, for a larger list of problems, where systems of type (1) appear.

|A k | = |B k | = 1 in ( 
Next, we give the hypotheses we make on H k , which we suppose to be in the form [START_REF] Birindelli | Liouville theorems for elliptic inequalities and applications[END_REF]. We write Du, u, x), in order to distinguish between the way H i depends on the derivatives of u. We assume all coefficients of the operators L (α,β) k in (3) are bounded measurable functions (say |b

H i [u] = H i (D 2 u,
(k) i | ≤ γ, |c (k)
j | ≤ δ, we will no longer write the dependence in α, β), and (H 1 ) for all x ∈ Ω the eigenvalues of A k (x) = (a

(k) ij (x)) ∈ C(Ω) are in [λ k , Λ k ],
and there is an invertible matrix R = R(x) such that the functions H k (R T M R, 0, 0, x) depend only on the eigenvalues of M ;

(H 2 ) the functions c

(2)

1 (x), c (1) 
2 (x) are nonnegative in Ω. Hypothesis (H 1 ) says H k are uniformly elliptic and have an invariance property with respect to the second derivatives of u. Most operators which have geometrical meaning satisfy (H 1 ) with R = I (Pucci operators are a trivial example). Of course for each A ∈ S there exists R such that R T AR = I.

Hypothesis (H 2 ) means H k is nondecreasing in the variable u i , for i = k. Systems satisfying such a hypothesis are called quasimonotone.

If H k are HJB operators, we suppose that

(H 3 ) there exist functions ψ 1 , ψ 2 ∈ W 2,N loc (Ω)∩C(Ω), such that ψ 1 > 0, ψ 2 > 0 in Ω, and H k [ψ 1 , ψ 2 ] ≤ 0 in Ω, k = 1, 2.
If H k are not HJB, we suppose they are bounded above by HJB operators, which satisfy (H 3 ), see Section 2 for a precise definition. Note we have (H 3 ) with

ψ 1 = ψ 2 ≡ 1 provided c (k) 1 + c (k) 2
≤ 0, for all α, β, k. We recently showed in [START_REF] Quaas | Principal eigenvalues and the Dirichlet problem for fully nonlinear operators[END_REF], [START_REF] Quaas | Principal eigenvalues and the Dirichlet problem for fully nonlinear operators[END_REF] (for scalar equations), [START_REF] Quaas | On the solvability of monotone systems of fully nonlinear equations[END_REF] (for systems, the linear case was considered earlier in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF]) that hypothesis (H 3 ) is equivalent to supposing that the vector operator (H 1 , H 2 ) satisfies the comparison principle, and that under (H 3 ) the corresponding Dirichlet problem has a unique solution, see Section 2.

As we explain in Section 3, to any operator H k as in (3) we can associate an explicitly given number N k = N (H k ), which appears in the fundamental solution of a related nonlinear operator. To avoid introducing heavy notations at this stage, here we only note that

N (H k ) is always in the interval [(λ k /Λ k )(N -1) + 1, (Λ k /λ k )(N -1) + 1]
, where λ k , Λ k are as in (H 1 ).

We now come to the hypotheses on the functions f i in (1). General nonlinearities with power growth were considered in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF]. We are going to use the same structural assumptions as in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF], strengthening them a little, to avoid technicalities. We suppose that f i are locally bounded functions, for which there exist exponents

α ij , γ ij ≥ 0 with γ i1 α -1 i1 + γ i2 α -1 i2 = 1 and nonnegative functions d ij , e i ∈ C(Ω), with either α 11 , α 22 > 1, d 11 , d 22 > 0 in Ω, or α 12 , α 21 ≥ 1, α 12 α 21 > 1, d 12 , d 21 > 0 in Ω, such that f i = d i1 (x)u α i1 1 + d i2 (x)u α i2 2 + e i (x)u γ i1 i u γ i2 2 + g i (x, u 1 , u 2 ), (4) 
lim

|(u 1 ,u 2 )|→∞ (d i1 (x)u α i1 1 + d i2 (x)u α i2 2 ) -1 |g i (x, u 1 , u 2 )| = 0, (5) 
lim

|(u 1 ,u 2 )|→0 (|(u 1 , u 2 )|) -1 |f i (x, u 1 , u 2 )| = 0, i = 1, 2, (6) 
uniformly in x ∈ Ω. Setting a/0 = ∞, a + = max{a, 0}, for a ∈ R, we define

β i = min 2 (α ii -1) + , 2α jj α ji (α jj -1) + , 2(α ij + 1) (α ij α ji -1) + , i, j = 1, 2, i = j .
We make the convention that when we speak of a solution (supersolution, subsolution) we mean L N -viscosity solutions. We refer to [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF] for a general review of this notion (we recall definitions and results that we need in the next section). Note that viscosity solutions are continuous and that any vector in W 2,N loc (Ω) satisfies (1) almost everywhere if and only if it is a L N -viscosity solution. For HJB operators these solutions are always strong (that is, in W 2,p loc (Ω) ∩ C(Ω), p < ∞), and are classical provided the dependence in x in (1) is C α , see [START_REF] Świech | W 1,p -estimates for solutions of fully nonlinear uniformly elliptic equations[END_REF], [START_REF] Caffarelli | Fully Nonlinear Elliptic Equations[END_REF]. Viscosity solutions are not an added complicationthey provide a good framework in our setting, just like Sobolev spaces do for some variational problems, when one knows that any H 1 -solution is classical. Theorem 1.2 Assume that system [START_REF] Azizieh | Existence and a priori estimates for positive solutions of p-Laplace systems[END_REF] satisfies (H 1 )-(H 3 ), (4)- [START_REF] Cabre | On the Alexandrov-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations[END_REF], and

β 1 ≥ N 1 -2 or β 2 ≥ N 2 -2. ( 7 
)
Then there exists a positive solution of [START_REF] Azizieh | Existence and a priori estimates for positive solutions of p-Laplace systems[END_REF]. In addition, all such solutions are uniformly bounded in the L ∞ -norm.

The proof of the a priori bound in Theorem 1.2 is carried out with the help of a blow-up argument of Gidas-Spruck type, while the existence of a solution is a consequence of this bound combined with degree theory. Note that, taking again system (2) as an example, when M 1 = M 2 = ∆ it is very well known how one can apply a fixed point theorem to get the existence of solution, once an a priori bound is proven. In our situation the known approach does not work, and our proof relies on a deep result of the theory of elliptic equations, the Krylov-Safonov improved strong maximum principle, see the proof of Proposition 6.2 and Theorem 7.1.

The blow-up method for obtaining a priori bounds was developed in [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF] for the scalar case, and recently extended to some systems of equations in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF], [START_REF] De Figueiredo | On the Ambrosetti-Prodi problem for non-variational elliptic systems[END_REF], [START_REF] Sirakov | Existence results and a priori bounds for higher order elliptic equations and systems[END_REF], [START_REF] Zou | A priori estimates and existence for strongly coupled semilinear elliptic systems[END_REF] (see also the references in these works). This method is based on a contradiction argument, which in turn relies on Liouville (nonexistence) theorems for equations or systems in R N or in a half-space of R N . Proving nonexistence results is usually the main difficulty in applying the Gidas-Spruck method.

In our situation we are led to proving Liouville results for systems involving a general class of extremal operators, related to ones recently defined in [START_REF] Felmer | Critical exponents for uniformly elliptic extremal operators[END_REF] and [START_REF] Felmer | Fundamental solutions and two properties of elliptic maximal and minimal operators[END_REF]. Specifically, we are going to consider the HJB operators

M + J (M ) = sup σ(A)∈J tr(AM ) and M - J (M ) = inf σ(A)∈J tr(AM ), ( 8 
)
where J is any invariant with respect to permutations of coordinates subset of the cube [λ, Λ] N and σ(A) is the set of eigenvalues of A. These operators reduce to classical Pucci type operators when J = [λ, Λ] N , and to the Laplacian when λ = Λ = 1. To each operator M ± J in this class we associate a dimension-like number N ± J = N (M ± J ) (see Section 3) :

N + J = min x∈J N i=1 x i max x i ≤ max x∈J N i=1 x i min x i = N - J . ( 9 
)
We will need to establish Liouville type theorems for the system

M 1 (D 2 u) + v q = 0 in G, M 2 (D 2 v) + u p = 0 in G, ( 10 
)
where [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF]. Then I. there are no positive supersolutions to [START_REF] Clement | Positive solutions of semilinear elliptic systems[END_REF] with G = R N if and only if

G = R N or G = R N -1 × R + ,
2(p + 1) pq -1 ≥ N 2 -2 or 2(q + 1) pq -1 ≥ N 1 -2. ( 11 
)
II. if p, q ≥ 1 and (11) holds then there are no positive bounded solutions to [START_REF] Clement | Positive solutions of semilinear elliptic systems[END_REF] with G = R N -1 × R + , which vanish on {x N = 0}.

Liouville theorems for equations and systems in R N or in R N + have a long history. Previous results for systems concern divergence form operators, see [START_REF] Birindelli | Liouville theorems for elliptic inequalities and applications[END_REF], [START_REF] Busca | A Liouville type theorem for Lane-Emden systems[END_REF], [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF], [START_REF] Mitidieri | A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities[END_REF], [START_REF] Serrin | Non-existence of positive solutions of Lane-Emden systems[END_REF], and the references in these works.

It turns out that it is much more difficult to prove nonexistence results for fully nonlinear operators. The first result in this line is [START_REF] Cutri | On the Liouville property for fully nonlinear equations[END_REF], for viscosity supersolutions in R N of M(D 2 u) = u p , where M is a Pucci operator. Results on nonexistence of radial solutions in R N for the same equation were obtained in [START_REF] Felmer | On critical exponents for the Pucci's extremal operators[END_REF]. Nonexistence in a half-space for this equation is proved in [START_REF] Quaas | Existence results for nonproper elliptic equations involving the Pucci operator[END_REF]. Recently, Liouville results for scalar equations with general operators of type [START_REF] Caffarelli | Fully Nonlinear Elliptic Equations[END_REF] were obtained in [START_REF] Felmer | Critical exponents for uniformly elliptic extremal operators[END_REF] and [START_REF] Felmer | Fundamental solutions and two properties of elliptic maximal and minimal operators[END_REF]. To our knowledge, Theorem 1.3 is the first result on nonexistence for systems involving fully nonlinear operators.

The paper is organized as follows. In Section 2 we restate our hypotheses in the general setting of fully nonlinear equations, and recall some recent results on solvability and properties of solutions of such equations. In Section 3 we define and study the dimension-like numbers N (H), then in Section 4 we prove our Liouville result in the whole space. In Section 5 we obtain nonexistence results in a half-space, and in Section 6 we use the previous information to prove our existence theorems. Finally, in Section 7 we discuss an improved version of the strong maximum principle.

Preliminaries

In this section we give some precisions on the hypotheses in the introduction, and recall some known results which we shall need in the sequel.

We use the following notation. For some given positive constants λ, Λ, γ, and for all M, N ∈ S N (as usual, S N denotes the set of all symmetric matrices), p, q ∈ R N , we define the extremal operators

L -(M, p) = M - λ,Λ (M ) -γ |p|, L + (M, p) = M + λ,Λ (M ) + γ |p|.
The operators L -, L + are extremal with respect to all linear uniformly elliptic operators with given ellipticity constant and L ∞ -bounds for the coefficients. We set

m - i (u) := |u i | + (u j ) -, m + i (u) := |u i | + (u j ) + , j = i, i, j = 1, 2
, and, for some given δ > 0,

F * i (M, p, u) = L + (M, p) + δm + i (u).
To facilitate what follows, we restate our hypotheses on system (1), with the above notation. First, we assume that the operators H i are positively homogeneous of order 1, that is,

( H 0 ) H i (tM, tp, tu 1 , tu 2 , x) = t H i (M, p, u 1 , u 2 , x
), for all t ≥ 0. Since we want to prove existence results, we need to suppose that ( H 1 )

H i (M, 0, 0, x) is continuous on S N × Ω. The following definition plays an important role. Given a second order operator F = F (M, p, u, x) which is convex in (M, p, u) (note HJB operators are convex), we say that H i (M, p, u, x) satisfies condition (D F ) provided

(D F ) -F (N -M, q -p, v -u, x) ≤ H i (M, p, u, x) -H i (N, q, v, x) ≤ F (M -N, p -q, u -v, x).
If F is positively homogeneous of order one in (M, p, u) then F is convex in (M, p, u) if and only if F satisfies (D F ), as can be easily proved.

Next, we suppose that the operators H i are quasimonotone and uniformly elliptic with bounded measurable coefficients, that is, for some λ, Λ, γ, δ > 0 and all

M, N ∈ S N , p, q ∈ R N , u, v ∈ R 2 , x ∈ Ω, ( H 2 ) H i satisfies (D F * i ), i = 1, 2
. Note the definition of m i and ( H 2 ) imply that the function H i (M, p, u, x) is nondecreasing in the variable u j , for j = i.

Finally, we need a hypothesis which describes the admissible behaviour of the zero order terms in H 1 , H 2 . We shall give exact analogues of the known results on scalar equations, in the sense that we suppose only that the vector operator in the left-hand side of (1) satisfies a comparison principle. It turns out that this property can be described in terms of first eigenvalues of the system, as we explain next.

As an extension of earlier results on scalar equations in [START_REF] Quaas | Principal eigenvalues and the Dirichlet problem for fully nonlinear operators[END_REF], [START_REF] Quaas | Principal eigenvalues and the Dirichlet problem for fully nonlinear operators[END_REF], we showed in [START_REF] Quaas | On the solvability of monotone systems of fully nonlinear equations[END_REF] (for the linear case see sections 13 and 14 in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF]) that if we have two operators F i (M, p, u 1 , u 2 , x), convex in (M, p, u), satisfying ( H 0 )-( H 2 ), and if F 1 (0, 0, 0, 1, x) ≡ 0 and F 2 (0, 0, 1, 0, x) ≡ 0 in Ω then the vector operator F = (F 1 , F 2 ) has "first eigenvalues" λ + 1 (F ) ≤ λ - 1 (F ), such that the positivity of λ + 1 is a necessary and sufficient condition for (F 1 , F 2 ) to satisfy the comparison principle, and guarantees the unique solvability of the corresponding Dirichlet problem. If, on the contrary, we have F 1 (0, 0, 0, 1, x) ≡ 0 or F 2 (0, 0, 1, 0, x) ≡ 0 then the two scalar operators F 1 (M, p, t, 0, x) and

F 2 (M, p, 0, t, x) have corresponding first eigenvalues λ ± 1,1 (F ), λ ± 1,2 ( 
F ), whose positivity has the same implications on (F 1 , F 2 ). In this case we set λ

+ 1 (F ) = min{λ + 1,1 (F ), λ + 1,2 (F )}, λ - 1 (F ) = max{λ - 1,1 (F ), λ - 1,2 ( 
F )}. We shall suppose that there exist convex operators F 1 , F 2 , which satisfy ( H 0 ) -( H 2 ), such that H i satisfies (D F i ) (note in any case the extremal operators F * i can be used as such F 1 , F 2 ), and

( H 3 ) λ + 1 (F ) > 0.
Remark. We have shown in [START_REF] Quaas | On the solvability of monotone systems of fully nonlinear equations[END_REF] that (H 3 ) and ( H 3 ) are equivalent. Bounds on the eigenvalues in terms of the domain and the coefficients of the operators are given in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] and [START_REF] Quaas | On the solvability of monotone systems of fully nonlinear equations[END_REF]. These bounds can be used to verify ( H 3 ).

Let us now recall the definition of a viscosity solution of (1), see [START_REF] Crandall | User's guide to visosity solutions of second-order partial differential equations[END_REF], [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF].

Definition 2.1 We say that the vector v ∈ C(Ω) is a L p -viscosity subso- lution (supersolution) of H i (D 2 v i , Dv i , v, x) = f (x), p ≥ N , provided for any ε > 0, any open ball O ⊂ Ω, and any ϕ ∈ W 2,p (O) -we call ϕ a test function -such that F i (D 2 ϕ(x), Dϕ(x), v(x), x) ≤ f (x) -ε (resp. F (D 2 ϕ(x), Dϕ(x), v(x), x) ≥ f (x) + ε) a.e. in O, the function v i -ϕ cannot achieve a local maximum (minimum) in O.
We say that v is a solution of ( 1) if v is at the same time a subsolution and a supersolution of [START_REF] Azizieh | Existence and a priori estimates for positive solutions of p-Laplace systems[END_REF].

Note that whenever a function v in W 2,N loc (Ω) satisfies the inequality

F (D 2 v, Dv, v, x) ≥ (≤)f a.e. in Ω then it is a viscosity solution.
Next, we recall some easy properties of Pucci operators.

Lemma 2.1 Let M, N ∈ S N , φ(x) ∈ C(Ω) be such that 0 < a ≤ φ(x) ≤ A. Then M - λ,Λ (M ) = -M + λ,Λ (-M ), M - λ,Λ (M ) = λ {ν i >0} ν i + Λ {ν i <0} ν i , where {ν 1 , . . . , ν N } = σ(M ), M - λ,Λ (M ) + M - λ,Λ (N ) ≤ M - λ,Λ (M + N ) ≤ M - λ,Λ (M ) + M + λ,Λ (N ), M - λ,Λ (M ) + M + λ,Λ (N ) ≤ M + λ,Λ (M + N ) ≤ M + λ,Λ (M ) + M + λ,Λ (N ), M - λa,ΛA (M ) ≤ M - λ,Λ (φM ) ≤ M - λA,Λa (M ),
We will also use the following simple fact.

Lemma 2.2 Suppose u ∈ C 2 (B) is a radial function, say u(x) = g(|x|), defined on a ball B ⊂ R N . Then g (|x|) is an eigenvalue of the matrix D 2 u(x), and |x| -1 g (|x|) is an eigenvalue of multiplicity N -1.
We are going to use the Generalized Maximum Principle for elliptic equations, commonly known as the Alexandrov-Bakelman-Pucci (ABP) inequality. The following theorem follows from Proposition 3.3 in [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF].

Theorem 2.1 Suppose u ∈ C(Ω) is a L N -viscosity solution of M + λ,Λ (D 2 u) + γ|Du| ≥ f (x) in Ω ∩ {u > 0}, where f ∈ L N (Ω). Then sup Ω u ≤ sup ∂Ω u + + diam(Ω).C 1 f -L N (Ω + ) , ( 12 
)
where Ω + = {x ∈ Ω : u(x) > 0} and C 1 is a constant which depends on N, λ, Λ, diam(Ω), and C 1 remains bounded when these quantities are bounded.

We have the following version of Hopf's boundary lemma (see for instance [START_REF] Bardi | On the strong maximum principle for fully nonlinear degenerate elliptic equations[END_REF], where a more general result is given).

Theorem 2.2 Let Ω be a regular domain and let u ∈ C(Ω) satisfy

M - λ,Λ (D 2 u) -γ|Du| -δu ≤ 0 in Ω, ( 13 
)
for some γ, δ ≥ 0, and u ≥ 0 in Ω. Then either u vanishes identically in Ω or u(x) > 0 for all x ∈ Ω. Moreover, in the latter case for any x 0 ∈ ∂Ω such that u(x 0 ) = 0, we have lim inf

t 0 u(x 0 + tν) -u(x 0 ) t > 0,
where ν is the inner normal to ∂Ω.

We also recall the weak Harnack inequality for viscosity solutions of fully nonlinear equations, proved in [START_REF] Caffarelli | Fully Nonlinear Elliptic Equations[END_REF] and [START_REF] Wang | On the regularity theory of fully nonlinear parabolic equations[END_REF].

Theorem 2.3 Suppose u ∈ C(Ω) is a positive function satisfying M - λ,Λ (D 2 u) -γ|Du| -δu ≤ f in Ω,
for some f ∈ L N (Ω). Then for any Ω ⊂⊂ Ω there exist positive constants p 0 and C depending on N, λ, Λ, γ, δ, dist(Ω , ∂Ω) such that

u L p 0 (Ω ) ≤ C inf x∈Ω u + f L N (Ω) .
We shall use the following comparison principle, see [START_REF] Ishii | Viscosity solutions of fully nonlinear second-order elliptic partial differential equations[END_REF] and [START_REF] Jensen | The maximum principle for viscosity solutions of fully nonlinear second-order partial differential equations[END_REF].

Theorem 2.4

Assume Ω is a bounded domain in R N . Let F : S N → R be a continuous function such that there are positive constants λ, Λ, for which

λtr(B) ≤ F (M + B) -F (M ) ≤ Λ tr(B), ( 14 
)
for all M, B ∈ S N , B ≥ 0 (this is equivalent to saying F satisfies ( H 2 ) with γ = δ = 0). Then if u, v ∈ C( Ω)
are subsolution and supersolution of

F (D 2 w) = f (x) in Ω, f ∈ C(Ω), such that u(x) ≤ v(x) for all x ∈ ∂Ω, then u(x) ≤ v(x) for all x ∈ Ω.
We are going to use the following standard convergence result from general theory of viscosity solutions (see Theorem 3.8 in [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF]).

Theorem 2.5 Suppose u n ∈ C(Ω), g n ∈ L N (Ω), and H n (M, p, u, x) are operators satisfying ( H 2 ), such that u n is a solution (or subsolution, or supersolution) in Ω of the equation

H n (D 2 u n , Du n , u n , x) = g n (x) in a domain Ω. Suppose u n → u in C(Ω), g n → g in L N (Ω)
, and H n converges to an operator H in the sense that for any ball B ⊂⊂ Ω and any φ ∈ W 2,N (B) we have

H n (D 2 φ, Dφ, u n , x) → H(D 2 φ, Dφ, u, x) in L N (B).
Then u is a solution (or subsolution, or supersolution) in Ω of

H(D 2 u, Du, u, x) = g(x).
We shall also need the C α -estimate proved in [START_REF] Wang | On the regularity theory of fully nonlinear parabolic equations[END_REF] (we refer to [START_REF] Sirakov | Solvability of fully nonlinear elliptic equations with natural growth and unbounded coefficients[END_REF] for more general results and simple self-contained proofs of the C α -estimates).

Theorem 2.6

Let Ω be a regular domain and

f ∈ L N (Ω). If u ∈ C(Ω) satisfies the inequalities M - λ,Λ (D 2 u) -γ|Du| -δ|u| ≤ -f M + λ,Λ (D 2 u) + γ|Du| + δ|u| ≥ f in Ω, then for any Ω ⊂⊂ Ω there exist constants α, A > 0 depending only on N, λ, Λ, γ, δ, f L N (Ω) , u L ∞ (Ω) , Ω , Ω, such that u ∈ C α (Ω ) and u C α (Ω ) ≤ A. If in addition u| ∂Ω ∈ C β (∂Ω) for some β > 0 then u ∈ C α (Ω)
and u C α (Ω) ≤ A (with constants depending also on β).

Extremal operators and definition of N (H k )

In this section we are going to discuss in more details the class of extremal operators M ± J we consider for the Liouville theorems. Let J denote the set of subsets of [λ, Λ] N which are invariant with respect to permutations of coordinates. First, obviously there is a one to one correspondence between elements of J and subsets A of S λ,Λ N (the set of symmetric matrices whose eigenvalues lie in [λ, Λ]), and such that P AP T = A, for each orthogonal matrix P . Namely, for each J ∈ J we can take A to be the set of matrices whose eigenvalues are in J, and for each such A we can take J to contain the eigenvalues of the matrices in A. So we can indifferently write

M + J (M ) = sup σ(A)∈J tr(AM ) = M + A (M ) = sup A∈A tr(AM ), respectively M - J = M - A .
The following lemma shows that the set of these operators is nothing but the set of convex or concave positively homogeneous uniformly elliptic operators F (M ), which depend only on the eigenvalues of M .

Lemma 3.1 Suppose F : S N → R is an operator satisfying ( H 2 ), that is, λtr(B) ≤ F (M + B) -F (M ) ≤ Λtr(B),
for all M, B ∈ S N , B ≥ 0. Suppose also that F (tM ) = tF (M ) for all t ≥ 0 and that F (P M P T ) = F (M ) for any orthogonal matrix P . If F is convex (resp. concave) then there exists a set J ∈ J , such that

F = M + J (resp. F = M - J ). Proof. Since F is convex,
it is a supremum of affine functions. Since F is homogeneous, these functions can be taken to be linear, that is,

F (M ) = sup A∈A 1 tr(AM ),
where A 1 is some set of matrices such that A 1 ⊂ S λ,Λ N , by the hypothesis on F . Then we can take A = ∪(P A 1 P T ), where the union is taken over all orthogonal matrices P .

Next, for a fixed operator M ± A in this class, we compute the quantity

M ± A (D 2 |x| α ), for any α ∈ R. By Lemma 2.2 we have σ(D 2 |x| α ) = |x| α-2 {α, α, . . . , α, α(α -1)}
so clearly for each x there exist an orthogonal matrix P such that

D 2 |x| α = α|x| α-2 P E α P t ,
where E α = I+(α-2)e nn , and e nn is the unitary matrix, whose last coefficient is one, and all other coefficients are zero. Hence for α = 0

c(α) := |α| -1 |x| 2-α M + A (D 2 |x| α ) =    -inf A∈A N -1 i=1 a ii + a nn (α -1) if α < 0 sup A∈A N -1 i=1 a ii + a nn (α -1) if α > 0,
and the same for M - A , with inf and sup reversed (here A = (a ij )). By noting that c(α) is continuous and monotonous in R + and R -, and by looking at its sign at minus infinity, zero, and one, we immediately get the following lemma. It permits to define the dimension-like numbers for the operators M ± A . Lemma 3.2 Suppose A is a set of matrices such that P AP T = A for all orthogonal matrices P . Then 1. There exists

α 0 = 0 such that M + A (D 2 |x| α 0 ) = 0 if and only if N -1 i=1 a ii -a nn > 0 for all A ∈ A.
In this case α 0 < 0 and we denote

N + A = 2 -α 0 . 2. There always exists α 0 < 0 such that M - A (D 2 |x| α 0 ) = 0, except if N = 2, λ = Λ,
and A = {λI} (that is, we are working with the Laplacian in dimension two). We denote

N - A = 2 -α 0 . In addition, there exists α 1 ∈ (0, 1) such that M - A (D 2 |x| α 1 ) = 0 if and only if N -1 i=1 a ii -a nn < 0 for some A ∈ A.
Further, we have M - A (D 2 log r) = 0 if and only if

max A∈A N -1 i=1 a ii -a nn = 0.
So, since a nn = 0,

N -1 i=1 a ii -a nn = a nn tr(A) a nn -2 ,
and by observing that for all A ∈ S N we have min σ(A) ≤ a ii ≤ max σ(A) for all i, we get the following result.

Lemma 3.3 Let J be a subset of [λ, Λ] N which is invariant with respect to permutations of coordinates. Let A be the corresponding set of matrices whose eigenvalues are in J. Then we have

N + J = N + A = min A∈A tr(A) max σ(A) ≤ max A∈A tr(A) min σ(A) = N - A = N - J (of

course the first two of these are valid if N +

A is defined), or, equivalently,

N + A = N + J = min x∈J N i=1 x i max x i ≤ max x∈J N i=1 x i min x i = N - J = N - A .
We now define the numbers N (H) which appear in Theorem 1.2.

Definition 3.1 For any H[u] = H(M, p, u, x) satisfying ( H 0 ) -( H 2 ) we set J ± H = {J ∈ J : M ± J (M ) ≤ H(M, 0, 0, x) for all M ∈ S N , x ∈ Ω} (note J + H can be empty but [λ, Λ] N is always in J - H ),
and

N (H) = min min J∈J + H N + J , min J∈J - H N - J .
4 Liouville results. Proof of Theorem 1.3 I

We start by proving a version, for the extremal operators of the previous section, of the Hadamard Three Spheres Theorem which can be found in [START_REF] Felmer | Fundamental solutions and two properties of elliptic maximal and minimal operators[END_REF]. For completeness we give the proof here. Theorem 4.1 Let J ∈ J and set

N + J = min x∈J N i=1 x i max x i . If u ∈ C(B R ) is a viscosity solution of M + J (D 2 u) ≤ 0, in B R , ( 15 
)
then for any 0 < r 1 < r < r 2 < R we have

m(r) ≥ m(r 1 )(r 2-N + J -r 2-N + J 2 ) + m(r 2 )(r 2-N + J 1 -r 2-N + J ) r 2-N + J 1 -r 2-N + J 2 if N + J = 2 m(r) ≥ m(r 1 ) log(r 2 /r) + m(r 2 ) log(r/r 1 ) log(r 2 /r 1 ) if N + J = 2. ( 16 
)
The same result holds for M - J , replacing N + J by N - J .

Proof. Let us define

φ(x) = C 1 |x| 2-N + J + C 2 if N + J = 2 C 1 log(|x|) + C 2 if N + J = 2,
where C 1 and C 2 are such that φ(x) = m(r 1 ) on ∂B r 1 and φ

(x) = m(r 2 ) on ∂B r 2 . It is trivial to check that C 1 > 0 if N + J > 2 and C 1 < 0 if N + J ≤ 2. Since M + J (D 2 φ) = 0 in B r 2 \ B r 1 (here we have to recall that M + J (-M ) = -M - J (M )
, and to note that when N + J < 2 we have α 1 = 2-N + J in the second part of Lemma 3.2), by using Theorem 2.4 we get u(x) ≥ φ(x) in B r 2 \ B r 1 , which implies the result.

Proposition 4.1 Let J ∈ J and set N + J = min x∈J N i=1 x i max x i . Let u ∈ C(R N ) be a viscosity solution of M + J (D 2 u) ≤ 0 in R N . Then 1) if N + J > 2 and u is positive then the function r N + J -2 m u (r) is increasing. 2) if N +
J ≤ 2 and u is bounded below then u is constant. The same result holds for M - J , replacing N + J by N - J (note once more that N - J > 2 except for the Laplacian in dimension two).

Proof. 1) First, [START_REF] De Figueiredo | A priori estimates and existence of positive solutions of semilinear elliptic equation[END_REF] implies m(r)(r

2-N + J 1 -r 2-N + J ) ≥ m(r 1 )(r 2-N + J -r 2-N + J 2
), since u is positive. This inequality holds for all r 2 , so we can take r 2 → ∞, and conclude, by using m(r) ≥ 0.

2) We take r 2 → ∞ in [START_REF] De Figueiredo | A priori estimates and existence of positive solutions of semilinear elliptic equation[END_REF], and obtain that m(r) ≥ m(r 1 ), therefore the decreasing function m(r) is constant. Then by the strong maximum principle (Theorem 2.2) u is constant.

Proof of Theorem 1.3 I. We argue by contradiction, and suppose that u, v ≥ 0 are nontrivial supersolutions to system [START_REF] Clement | Positive solutions of semilinear elliptic systems[END_REF]. First, if N 1 ≤ 2 or N 2 ≤ 2 we immediately conclude, by the second statement in Proposition 4.1. So we shall suppose N 1 > 2, N 2 > 2. For given r 1 > 0 fixed, we consider the function

g(r) = m u (r 1 /2) 1 - (r -r 1 /2) 3 + (r 1 /2) 3 ,
similarly to [START_REF] Cutri | On the Liouville property for fully nonlinear equations[END_REF].

If we define φ(x) = g(|x|), we have constructed

φ so that u ≥ φ in B r 1 /2 , φ ≤ 0 < u in R N \ B r 1 , and u(x 0 ) = φ(x 0 ) for some x 0 with |x 0 | = r 1 /2.
Hence the minimum of u -φ in R N is non-positive and achieved at a point x = x(r 1 ), such that r 1 /2 ≤ |x| < r 1 . Thus we can use φ as test function in the first equation of (10) at x (recall Definition 2.1) and get

M 1 (D 2 φ(x)) + v(x) q ≤ 0.
Then, by a simple computation and the definition of

M 1 = M A 1 , v(x) q ≤ 3m u (r 1 /2) (r 1 /2) 3 a nn + â (|x| -r 1 /2) + |x| (|x| -r 1 /2) + , for some A = (a ij ) ∈ A 1 ⊂ S λ,Λ N
, where we have set â :=

N -1 i=1 a ii . If |x| = r 1 /2
, then we get v(|x|) = 0, which is impossible. Thus, we necessarily have r 1 /2 < x < r 1 . Noting that the expression in the large brackets is bounded, by

m v (r 1 ) ≤ v(x) we get (m v (r 1 )) q ≤ C m u (r 1 /2) (r 1 /2) 2 ,
for some positive constant C. Now we use the first statement in Proposition 4.1 to obtain

(m v (r 1 )) q ≤ C m u (r 1 ) (r 1 ) 2 , ( 17 
)
with C possibly different, but independent of r 1 . Arguing in the same way we get from the second equation in [START_REF] Clement | Positive solutions of semilinear elliptic systems[END_REF] that

(m u (r 1 )) p ≤ C m v (r 1 ) (r 1 ) 2 . ( 18 
)
Thus, by combining the last two inequalities we conclude that

m v (r 1 ) ≤ C 1 1 (r 1 ) 2(p+1)/(pq-1) , and m u (r 1 ) ≤ C 2 1 (r 1 ) 2(q+1)/(pq-1) . Hence r N 2 -2 1 m v (r 1 ) ≤ C 1 1 (r 1 ) α 2 -(N 2 -2) , ( 19 
)
r N 1 -2 1 m u (r 1 ) ≤ C 2 1 (r 1 ) α 1 -(N 1 -2) , ( 20 
)
where α 1 = 2(q + 1)/(pq -1) and α 2 = 2(p + 1)/(pq -1). Therefore if

α 2 > N 2 -2 or α 1 > N 1 -2 then one of increasing functions r N 2 -2 1 m v (r 1 ) or r N 1 -2 1 m u (r 1 ) goes to 0 as r 1 → ∞, providing a contradiction.
In case, say, α 2 = N 2 -2 we need a supplementary logarithmic lower bound. In this case we define, for fixed 0 < r

1 < r 2 , h(r) = c 1 log(1 + r) r N 2 -2 + c 2 ,
where c 1 > 0 (to be chosen later) and c 2 ∈ R are such that h(r 1 ) ≤ m(r 1 ) and h(r 2 ) = m(r 2 ). More specifically, we take

0 < c 1 ≤ (m(r 1 ) -m(r 2 )) / log(1 + r 1 ) r N 2 -2 1 - log(1 + r 2 ) r N 2 -2 2 , c 2 = m(r 2 ) -c 1 log(1 + r 2 ) r N 2 -2 2 .
We may choose and fix r 1 large enough so that h (r) > 0 and h (r

) < 0, for r > r 1 . Let w(x) = h(|x|), then M 2 (D 2 w(x)) = a nn h (r) + â h (r) r , r 1 ≤ r ≤ r 2 ,
for some A = (a ij ) ∈ A 2 (which may depend on r).

Then, if M 2 = M + A 2 is a supremum operator by its definition we have

M 2 (D 2 w(x)) ≥ a * nn h (r) + â * h (r) r ,
where A * = (a * ij ) ∈ A 2 is the matrix at which N 2 = N A 2 is achieved (recall Lemma 3.3). We recall that N 2 -1 = â * /a * nn . A simple computation gives

h (r) + (N 2 -1) h (r) r ≥ -C c 1 |x| N 2 ,
for some positive constant C, hence

M 2 (D 2 w(x)) ≥ -C c 1 |x| N 2 . ( 21 
)
If M 2 = M - A 2 is an infimum operator the optimality condition is reversed. So we use a different argument to get [START_REF] Felmer | Fundamental solutions and two properties of elliptic maximal and minimal operators[END_REF]. In case h (r) + â ann h (r)/r ≥ 0 we have trivially [START_REF] Felmer | Fundamental solutions and two properties of elliptic maximal and minimal operators[END_REF]. In case h (r) + â a nn h (r)/r < 0, since â

a nn ≤ N 2 -1, N 2 = N - A 2 , we have a nn h (r) + â h (r) r ≥ a nn (h (r) + (N 2 -1) h (r) r ),
from which (21) follows.

On the other hand, by Proposition 4.1 we have

m v (x) ≥ m v (r 1 )r N 2 -2 1 |x| N 2 -2 = C 1 |x| N 2 -2 ,
for |x| ≥ r 1 , and then from the equation for v, [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF] and

α 2 = N 2 -2 we get M 2 (D 2 v(x)) ≤ -m p u (x) ≤ -|x| 2p m pq v ≤ - C 2 |x| N 2 ,
for some positive C 2 . Therefore, we can use Theorem 2.4, choosing a smaller c 1 if necessary, to conclude w(x) ≤ v(x) in B r 2 \ B r 1 . Letting r 2 → ∞ we finally conclude that c 2 ≥ 0 at the limit and

v(x) ≥ C log(1 + |x|) |x| N 2 -2 ,
for large |x| and some positive C. This is a contradiction with [START_REF] Felmer | On critical exponents for the Pucci's extremal operators[END_REF].

In the case α 1 = N 1 -2, we can argue in the same way. This proves that system [START_REF] Clement | Positive solutions of semilinear elliptic systems[END_REF] has no positive supersolutions provided [START_REF] Crandall | User's guide to visosity solutions of second-order partial differential equations[END_REF] holds.

It remains to construct a super-solution of (10), when

α 2 < N 2 -2 and α 1 < N 1 -2.
Note the solution of the linear system s + 1 = pt, t + 1 = qs is t = α 1 2 and s = α 2 2 . So for these s, t we have

s < N 2 -2 2 and t < N 1 -2 2
We define the functions

v(r) = A(1 + r 2 ) -s and u(r) = B(1 + r 2 ) -t ,
and claim that (u, v) is a radial super-solution of [START_REF] Clement | Positive solutions of semilinear elliptic systems[END_REF], for an appropriate choice of the positive constants A and B. We observe that v (r) ≥ v (r)/r for all r > 0, and for the function w(x) = v(|x|) we have

M 2 (D 2 w(x)) = a nn (v (r) + â a nn v (r) r ),
for some A = (a ij ) ∈ A 2 . In the case M 2 is a supremum operator we have as above â ann ≥ N 2 -1, by the definition of N 2 . We also recall that λ ≤ a nn ≤ Λ. Then using v ≤ 0, we get

M 2 (D 2 w(x)) ≤ C(v (r) + (N 2 -1) v (r) r ).
In the case of an infimum operator we get the same just from the definition of M 2 . Thus, by a simple computation,

M 2 (D 2 w) + u p ≤ -C 1 A(N 2 -2(s + 1)) (1 + r 2 ) s+1 + B p (1 + r 2 ) pt .
By arguing in the same way we see that z(x) = u(|x|) satisfies

M 1 (D 2 z) + v q ≤ -C 2 B(N 1 -2(t + 1)) (1 + r 2 ) t+1 + A p (1 + r 2 ) qs .
Recall that by the definition of s and t we have N 2 -2(s + 1) > 0, N 1 -2(t + 1) > 0, and s + 1 = pt, t + 1 = qs. Finally, we remark that pq > 1 permits to choose A and B such that the right hand sides of the last two inequalities are equal to zero.

A Liouville theorem in a half-space

In this section we prove the second part of Theorem 1.3. We shall actually need a stronger variant of this theorem.

We use an idea by Dancer [START_REF] Dancer | Some notes on the method of moving planes[END_REF], which consists in the following : if there is a solution of the problem in {x N > 0}, and if one is able to show that any such solution is increasing in the x N -direction, then, after eventually some supplementary work, one should be able to pass at the limit as x N → ∞ and thus get a solution of the same problem in R N -1 , which in turn permits to use the nonexistence result for the whole space, that we already proved. Note that the numbers N 1 , N 2 from Theorem 1.3 (which we defined in the previous sections) are strictly increasing in N , so the nonexistence results in R N + hold for a larger range of p, q than the nonexistence result in R N . Monotonicity results for systems of two equations were proved in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF]. The approach there relies on a moving planes argument and on some extensions of the Harnack-Krylov-Safonov estimates for nonlinear elliptic systems obtained in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF]. Note that the moving planes method was recently extended to viscosity solutions and fully nonlinear equations in [START_REF] Da Lio | Symmetry results for viscosity solution of fully nonlinear elliptic equation[END_REF].

When trying to get extensions of the Harnack estimates from [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF], which are needed in the moving planes argument, a crucial role is played by an extension to viscosity solutions of a basic "quantitative strong maximum principle" of Krylov and Safonov, which was one of the cornerstones of their theory of linear equations in nondivergence form, see [START_REF] Krasnoselskii | Positive solutions of operator equations[END_REF]. We give such an extension in the appendix (Theorem 7.1), see also the comments there. We use this result also in Section 6.

Here are the precise monotonicity and (non-)existence statements for systems in a half-space. Suppose we have an autonomous system of the type

F 1 (D 2 u 1 ) + f 1 (u 1 , u 2 ) = 0 F 2 (D 2 u 2 ) + f 2 (u 1 , u 2 ) = 0, (22) 
where F 1 , F 2 satisfy ( 14),

f i ∈ C 1 (R 2 ), i = 1, 2
, and f i is increasing in u j , i = j. We shall suppose in addition that we can write

f 1 (u 1 , u 2 ) = u p 2 + g 1 (u 1 , u 2 )u 1 , f 2 (u 1 , u 2 ) = u q 1 + g 2 (u 1 , u 2 )u 2 , ( 23 
)
for some p, q ≥ 1 and some nonnegative continuous functions g 1 , g 2 , which have polynomial growth in u 1 , u 2 .

Let J 1 , J 2 be the subsets at which the dimension-like numbers for F 1 and F 2 are attained, see Definition 3.1. Set N 1 = N (F 1 ), N 2 = N (F 2 ). Let M J 1 , M J 2 be the corresponding extremal operators. We consider the system

M J 1 (D 2 u 1 ) + u p 2 ≤ 0 M J 2 (D 2 u 2 ) + u q 1 ≤ 0. ( 24 
)
Theorem 5.1 Suppose we have a system of type [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF] which satisfies [START_REF] Gilbarg | Elliptic partial differential equation of second order[END_REF].

If problem [START_REF] Ishii | Viscosity solutions for monotone systems of secondorder elliptic PDE's[END_REF] has no positive bounded solutions in R N -1 , then [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF] has no nontrivial nonnegative bounded solutions in R N + which vanish on {x N = 0}. In the case when F 1 and F 2 are the Laplacian, this theorem appeared in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF]. Its proof is divided into two parts. In the first part we prove that all bounded solutions of ( 22) in a half-space are strictly increasing in the x N -direction, and in the second part we pass to the limit as x N → ∞.

The monotonicity result is proved like in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF], once we have the corresponding Harnack estimates for fully nonlinear systems, together with a variant of the moving planes method for viscosity solutions. We are going to sketch the arguments in Section 5.2, for completeness.

On the other hand, the passage to the limit cannot be done like in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF], since the approach there, based on multiplication by cut-off functions and integration, is not applicable to operators in non-divergence form. We give a different and simpler proof in Section 5.3.

Harnack type estimates for systems

The argument in the next section requires some Harnack estimates for systems which we state in this section. Such results were obtained in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF]. The first theorem below is a particular case of Theorem 3.2 and Proposition 3.1 in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF]. We include it here for the reader's convenience.

In this section G denotes an arbitrary domain in R N and Q l (l = 1, 2) are concentric cubes with side l, properly included in G.

Theorem 5.2 ([5]

) Assume f 1 (u 1 , u 2 ), f 2 (u 1 , u 2 ) are globally Lipschitz continuous functions, with Lipschitz constant A, such that f i is nondecreasing in u j for i = j. Let (u 1 , u 2 ) be a nonnegative solution of [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF] in a domain G. We suppose that the system is fully coupled, in the sense that f 1 (0, v) > 0 for all v > 0, and f 2 (u, 0) > 0 for u > 0. Then for any cube Q in G there exists a function Φ(t) (depending on N, λ, Λ, A, Q and G), continuous on [0, ∞), such that Φ(0) = 0 and

sup x∈Q max{u 1 , u 2 } ≤ Φ( inf x∈Q min{u 1 , u 2 }).
In particular, if any of u 1 , u 2 vanishes at one point in G then both u 1 and u 2 vanish identically in G.

Further, if

Q 1 ⊂ Q 2 ⊂ G,
and u is a subsolution of ( 22) then for each p > 0 there exists a constant C depending only on p, N, λ, Λ, and A such that

sup x∈Q 1 max{u 1 , u 2 } ≤ C max{u 1 , u 2 } L p (Q 2 )
The same results hold if f i depend on x and the constant A is uniform in x.

Next, we state two Harnack inequality for systems, which play an important role in the moving planes argument. The proofs of these theorems are the same as the proofs of Theorems 3.6 and 1.4 from [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF], making essential use of Theorem 7.1 in the Appendix. [START_REF] Da Lio | Symmetry results for viscosity solution of fully nonlinear elliptic equation[END_REF]. Suppose the functions a, b, c, d ∈ L ∞ (Q 2 ) are such that |a|, |d| ≤ A, and

Theorem 5.3 Let F 1 , F 2 satisfy
0 ≤ b ≤ A, 0 ≤ c ≤ A in Q 2 . Suppose (u 1 , u 2 ) is a positive solution of F 1 (D 2 u 1 ) + a(x)u 1 + b(x)u 2 = 0 F 2 (D 2 u 2 ) + c(x)u 1 + d(x)u 2 = 0 in Q 2 . Assume in addition that b(x) is bounded below by a positive constant on Q 1 . Then sup x∈Q 1 u 1 ≤ C inf x∈Q 1 u 1 . ( 25 
)
where the constant C depends on N, A, λ, Λ, and on upper bound for

sup Q 2 b inf Q 1 b .
Theorem 5.4 Let (u 1 , u 2 ) be a positive solution of [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF] in some domain G and suppose [START_REF] Gilbarg | Elliptic partial differential equation of second order[END_REF] holds. Suppose K is a compact set properly included in G and max inf

x∈K u 1 , inf x∈K u 2 ≤ 1, max sup x∈G u 1 , sup x∈G u 2 ≤ M . Then sup x∈K max{u 1 , u 2 } ≤ C min inf x∈K u 1 1 p , inf x∈K u 2 1 q , 20
where C depends only on N, λ, Λ, M, K, G.

A monotonicity result

This section is devoted to the following theorem.

Theorem 5.5 Suppose we have a nontrivial nonnegative bounded solution (u 1 , u 2 ) of system [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF] in

R N + = {x ∈ R N | x N > 0}, such that u 1 = u 2 = 0 on ∂R N
+ . Suppose ( 23) is satisfied. Then

∂u i ∂x N > 0 in R N + , i = 1, 2. ( 26 
)
In the the proof of this theorem we shall use an extension to viscosity solutions of fully nonlinear systems a maximum principle in narrow domains, proved by Cabre [START_REF] Cabre | On the Alexandrov-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations[END_REF] in the case of strong solutions of a scalar equation.

We recall the following definition of [START_REF] Cabre | On the Alexandrov-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations[END_REF]. For a given domain Ω ⊂ R N , the quantity R(Ω) is defined to be the smallest positive constant R such that

meas (B R (x) \ Ω) ≥ 1 2 meas (B R (x)) , for all x ∈ Ω.
If no such radius R exists, we define R(Ω) = +∞. It is easy to see that whenever the domain Ω is contained between two parallel hyperplanes at a distance d, we have R(Ω) ≤ 2 N dω -1 N , where ω N is the volume of the unit ball in R N .

We have the following easy extension of the results in [START_REF] Cabre | On the Alexandrov-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations[END_REF] (see also [START_REF] Cabre | Topics in regularity and qualitative properties of solutions of elliptic equations[END_REF]).

Proposition 5.1 Let Ω be a domain with R(Ω) < ∞. Suppose u ∈ C(Ω) and f ∈ L ∞ (Ω) satisfy M + λ,Λ (D 2 u)+ γ|Du|-δu ≥ f in Ω, for some γ, δ ≥ 0, and sup Ω u < ∞. Then sup Ω u ≤ lim sup x→∂Ω u(x) + CR(Ω) 2 ||f || L ∞ (Ω) ,
where C is a constant depending only on N, λ, Λ, γ, δ, R(Ω), and C is bounded when these quantities are bounded.

The proof of this result is identical to the proof of Theorem 5.3 in [START_REF] Cabre | Topics in regularity and qualitative properties of solutions of elliptic equations[END_REF], by using the weak Harnack inequality for viscosity solutions.

It is not difficult to deduce from Proposition 5.1 a maximum principle for systems in domains with small R(Ω).

Theorem 5.6 Let H i (M, p, u 1 , u 2 , x) be operators satisfying ( H 2 ). Then there exists a number R depending only on N, λ, Λ, γ, δ,,

such that R(Ω) ≤ R implies that each solution u ∈ C(Ω) of    H 1 (D 2 u 1 , Du 1 , u 1 , u 2 , x) ≥ 0 in Ω H 2 (D 2 u 2 , Du 2 , u 1 , u 2 , x) ≥ 0 in Ω u 1 ≤ 0, u 2 ≤ 0 on ∂Ω, ( 27 
)
satisfies u i ≤ 0 in Ω, i = 1, 2.
Proof. From H 2 and ( 27) we get

M + λ,Λ (D 2 u i ) + γ|Du i | -δu i ≥ -2δu + i -δu + j , i = 1, 2, j = i.
By applying Proposition 5.1 to these equations we obtain sup

Ω u + i ≤ C 1 R(Ω) 2 (sup Ω u + 1 + sup Ω u + 2 ), i = 1, 2.
We sum up these two equations and take R = ( √ 4C 1 ) -1 .

Proof of Theorem 5.5. Set M = max sup

R N + u 1 , sup R N + u 2 .
We can suppose that the functions f 1 and f 2 are globally Lipschitz continuous. Indeed, if they are not, we can replace them by f 1 ϕ and f 2 ϕ, where ϕ is a cut-off function such that ϕ = 1 on the positive cube with side M , and ϕ = 0 outside a cube with side M + 1, containing properly the previous one.

Hence system [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF] satisfies the hypotheses of Theorem 5.2, from which we deduce that either both functions u 1 and u 2 vanish identically on R N + or both u 1 and u 2 are strictly positive on R N + . The first case is excluded by hypothesis. So we can assume that u 1 , u 2 are strictly positive in R N + . For each λ > 0 we denote

T λ = {x ∈ R N | x N = λ}, Σ λ = {x ∈ R N | 0 < x N < λ}, and introduce the functions v (λ) i (x) = u i (x , 2λ -x N ), w (λ) i (x) = v (λ) i (x) -u i (x), i = 1, 2, defined in Σ λ . Since both (u 1 , u 2 ) and (v (λ) 1 , v (λ) 
2 ) satisfy system [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF] we obtain by subtracting the corresponding equations and by using Proposition 2.1 from [START_REF] Da Lio | Symmetry results for viscosity solution of fully nonlinear elliptic equation[END_REF] (recall u 1 , u 2 are only continuous)

M - λ,Λ (D 2 w (λ) 1 ) + c (λ) 11 (x)w (λ) 1 + c (λ) 12 (x)w (λ) 2 ≤ 0 M - λ,Λ (D 2 w (λ) 2 ) + c (λ) 21 (x)w (λ) 1 + c (λ) 22 (x)w (λ) 2 ≤ 0 (28) 
in Σ λ , where c λ ij (x) is the partial derivative of f i with respect to u j , evaluated at some point between u j (x) and v

(λ) j (x). Note that c (λ) ij are bounded by a Lipschitz constant of f = (f 1 , f 2 ) on [0, M ] 2 , and c (λ) 12 , c (λ) 21 ≥ 0. Obviously w (λ) = (w (λ) 1 , w (λ)
2 ) ≡ 0 on T λ and w (λ) > 0 on T 0 (recall that u i = 0 on T 0 and u i > 0 on T λ , λ > 0). By Theorem 5.6, if λ is small enough, then w (λ) ≥ 0 in Σ λ . Hence

λ * = sup{λ | w (µ) ≥ 0 in Σ µ , ∀ µ < λ} > 0.
We see that for each 0 < λ ≤ λ * the function w

(λ) i ≥ 0 satisfies the inequality M - λ,Λ (D 2 w (λ) i ) + c (λ) ii w (λ) i ≤ 0 in Σ λ . Hence Hopf's lemma (Theorem 2.2) implies w (λ) i > 0 and ∂u i ∂x N = -1 2 ∂w (λ) i ∂x N > 0 on T λ .
Therefore, the theorem is proved if we show that λ * = +∞.

Suppose for contradiction that λ * is finite. By Theorem 5.6 we can fix ε 0 > 0 such that the matrix operator M - λ,Λ + C λ (x) satisfies the maximum principle in the domain Σ λ * +ε 0 \ Σ λ * -ε 0 (here C λ (x) denotes the matrix of the coefficients in ( 28)). For instance, we can take ε 0 = ω N 2 N +1 R, where R is the number from Theorem 5.6. Lemma 5.1 There exists δ 0 ∈ (0, ε 0 ], such that for each δ ∈ (0, δ 0 ) we have

w (λ * +δ) i ≥ 0 in Σ λ * -ε 0 \ Σ ε 0 , i = 1, 2.
The proof of this lemma is the same as the proof of Lemma 3.1 in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF]. Then we can apply Theorem 5.6 to (28) in Σ λ * +δ \ Σ λ * -ε 0 and in Σ ε 0 (these domains are narrow enough) to conclude that w (λ * +δ) i ≥ 0 in Σ λ * +δ for each δ ∈ (0, δ 0 ). This contradicts the maximal choice of λ * .

Proof of Theorem 5.1

Suppose u = (u 1 , u 2 ) is a solution of (22), u ≡ 0, 0 ≤ u 1 , u 2 ≤ M . For each x = (y, x N ) in the strip Σ 1 = {x ∈ R N : 0 < x N < 1} we set u (n) i (y, x N ) = u i (y, x N + n), i = 1, 2. Now u (n)
satisfies the same system as u, since ( 22) is autonomous. Then, using once more the C α -regularity, Theorem 2.6, we see that {u n } is bounded in C α and hence a subsequence of it converges uniformly on compact subsets of Σ 1 to a vector u. By Theorem 2.5 this vector satisfies

F 1 (D 2 u 1 ) + f 1 ( u 1 , u 2 ) = 0 in Σ 1 F 2 (D 2 u 2 ) + f 2 ( u 1 , u 2 ) = 0 in Σ 1 , (29) 
so, by the definition of M J 1 , M J 2 and the hypotheses on f i ,

M J 1 (D 2 u 1 ) + u p 2 ≤ 0 in Σ 1 M J 2 (D 2 u 2 ) + u q 1 ≤ 0 in Σ 1 . (30) 
However, the monotonicity result of Theorem 5.5 trivially implies that u is strictly positive and independent of the x N -variable. This means that the last line and column of D 2 u 1 , D 2 u 2 contain only zeros, so the N -dimensional extremal operators M J 1 , M J 2 applied to these matrices are actually (N -1)dimensional, and we have [START_REF] Quaas | Existence results for nonproper elliptic equations involving the Pucci operator[END_REF] in R N -1 .

6 Proof of Theorem 1.2

The setting

The proof of our existence theorem is an application of degree theory for compact operators in cones. This theory, essentially developed by Krasnoselskii, has often been used to show that such operators possess fixed points. We are going to use an extension of Krasnoselskii results, due to Benjamin and Nussbaum, in the form that appeared in [START_REF] De Figueiredo | A priori estimates and existence of positive solutions of semilinear elliptic equation[END_REF]. We start by recalling the abstract setting in [START_REF] De Figueiredo | A priori estimates and existence of positive solutions of semilinear elliptic equation[END_REF]. Let K be a closed cone with non-empty interior in the Banach space (E, • ). Let Φ : K → K and Ψ : K × [0, ∞) → K be compact operators such that Φ(0) = 0 and Ψ(x, 0) = Φ(x) for all x ∈ K. Then the following theorem holds (see Proposition 2.1 and Remark 2.1 in [START_REF] De Figueiredo | A priori estimates and existence of positive solutions of semilinear elliptic equation[END_REF]).

Theorem 6.1 Assume there exist numbers R 1 > 0, R 2 > 0 and T > 0 such that R 1 = R 2 , and (i) x = βΦ(x) for all 0 ≤ β ≤ 1 and x ≤ R 1 , (ii) Ψ(x, t) = x for all x = R 2 and all t ∈ [0, +∞), (iii) Ψ(x, t) = x for all x ∈ B R 2 and all t ≥ T . Then Φ has a fixed point x ∈ K such that x is between R 1 and R 2 . Note that (i) implies that i C (Φ, B R 1 ) = 1, while (ii) and (iii) imply i C (Φ, B R 2 ) = 0, where i C is the Krasnoselskii index and B R = {x ∈ K :
x < R}, so Theorem 6.1 follows from the excision property of the index.

We set

E = {u = (u 1 , u 2 ) ∈ C(Ω) × C(Ω) | u i = 0 on ∂Ω, i = 1, 2} and K = {u ∈ E | u i ≥ 0 in Ω, i = 1, 2}. It is clear that solving (1) is equivalent to finding a fixed point in K of Φ : K → K, defined by Φ(u 1 , u 2 )(x) := S(f 1 (u 1 , u 2 , x), f 2 (u 1 , u 2 , x)), x ∈ Ω,
where for any (h 1 , h 2 ) ∈ K we define S(h 1 , h 2 ) as the solution of the Dirichlet problem

   -H 1 (D 2 u 1 , Du 1 , u 1 , u 2 , x) = h 1 (x) in Ω -H 2 (D 2 u 2 , Du 2 , u 1 , u 2 , x) = h 2 (x) in Ω u 1 = u 2 = 0 on ∂Ω, (31) 
Lemma 6.1 The operator S : K → K is well defined, continuous and compact. In addition, S(0, 0) = (0, 0).

Proof. It follows from the results in [START_REF] Quaas | On the solvability of monotone systems of fully nonlinear equations[END_REF] (which extend the earlier results in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF], [START_REF] Quaas | Principal eigenvalues and the Dirichlet problem for fully nonlinear operators[END_REF], [START_REF] Quaas | Principal eigenvalues and the Dirichlet problem for fully nonlinear operators[END_REF]) that under ( H 0 )-( H 3 ) system ( 31) is uniquely solvable for any h ∈ L N (Ω) 2 and satisfies the maximum principle, that is, h ≥ (≤)0 implies u ≥ (≤)0 in Ω. Hence S is well defined and S(0, 0) = (0, 0). In addition, the Alexandrov-Bakelman-Pucci estimate (which extends Theorem 2.1 to systems)

u i L ∞ (Ω) ≤ C max i=1,2 H i L N (Ω) (32) 
is valid (here C depends on N, λ, Λ, γ, δ, diam(Ω) and λ + 1 (F ) > 0). Hence S is continuous.

Further, it follows from [START_REF] Quaas | Principal eigenvalues and the Dirichlet problem for fully nonlinear operators[END_REF] and from the C α -estimates, Theorem 2.6, that if u n is a sequence of solutions of (31) then u n is uniformly bounded in C α (Ω), for some α ∈ (0, 1). Therefore the compactness of S follows from the compactness of the embedding C α (Ω) → C(Ω).

In our case we define the operator Ψ as follows : for any u ∈ K, t ∈ [0, ∞],

Ψ(u 1 , u 2 , t)(x) = S(f 1 (u 1 + t, u 2 + t, x), f 2 (u 1 + t, u 2 + t, x)).
First we show that condition (i) in Theorem 6.1 is satisfied. This is the content of the following proposition. Proposition 6.1 There is R 1 > 0 so that for all t ∈ [0, 1] the system

   -H 1 (D 2 u 1 , Du 1 , u 1 , u 2 , x) = tf 1 (u 1 , u 2 , x) in Ω -H 2 (D 2 u 2 , Du 2 , u 1 , u 2 , x) = tf 2 (u 1 , u 2 , x) in Ω u 1 = u 2 = 0 on ∂Ω, ( 33 
)
has no solution (u 1 , u 2 ) with 0 < u := max( u 1 L ∞ (Ω) , u 2 L ∞ (Ω) ) ≤ R 1 .
Proof. We argue by contradiction. Let {(u

(n) 1 , u (n)
2 , t n )} n∈N be a sequence of positive solutions to [START_REF] Quaas | On the solvability of monotone systems of fully nonlinear equations[END_REF] such that u

(n) i L ∞ (Ω) → 0 as n → +∞, i = 1, 2, and t n ∈ [0, 1]. Define v (n) i (x) = u (n) i (x) u (n) .
Then we have, by ( H 0 ),

-H 1 (D 2 v (n) 1 , Dv (n) 1 , v (n) 1 , v (n) 2 , x) = t n u (n) f 1 (u (n) 1 , u (n) 2 , x) -H 2 (D 2 v (n) 2 , Dv (n) 2 , v (n) 1 , v (n) 2 , x) = t n u (n) f 2 (u (n) 1 , u (n) 2 , x). Note v (n) 1 , v (n) 2 ≤ 1 in Ω, and v (n) i (x n ) = 1
for some i and some x n ∈ Ω. However, the right hand sides of the last two equalities go to zero uniformly in Ω, by hypothesis [START_REF] Cabre | On the Alexandrov-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations[END_REF]. Then, by Lemma 6.1 v (n) i converges uniformly to some function v i . Applying Theorem 2.5 and then Lemma 6.1 yields v ≡ 0, a contradiction.

Remark. Note that if the left hand side of the system is decoupled, that is, H 1 does not depend on u 2 and H 2 does not depend on u 1 (like in Theorem 1.1) then we can allow one of the functions f i to have a linear growth in u j , i = j, since then the equalities

-H 1 (D 2 v 1 , Dv 1 , v 1 , x) = v 2 -H 2 (D 2 v 2 , Dv 2 , v 2 , x) = 0.
would still imply v ≡ 0. This remark shows that we can allow p = 1 or q = 1 in Theorem 1.1, which in particular gives an existence result for higher order equations involving iterated fully nonlinear operators.

In order to prove condition (iii) in Theorem 6.1 we state the following proposition. Proposition 6.2 There exists a constant T > 0 so that if the system

   -H 1 (D 2 u 1 , Du 1 , u 1 , u 2 , x) = f 1 (u 1 + t, u 2 + t, x) in Ω -H 2 (D 2 u 2 , Du 2 , u 1 , u 2 , x) = f 2 (u 1 + t, u 2 + t, x) in Ω u 1 = u 2 = 0 on ∂Ω, ( 34 
)
possesses a solution u = (u 1 , u 2 ) ∈ K, then 0 ≤ t ≤ T.
Proof. First, by ( H 2 ), the positivity of f i and the strong maximum principle (Theorem 2.2) we have

u i ≡ 0 in Ω or u i > 0 in Ω, i = 1, 2.
By the hypotheses we made on the functions f 1 , f 2 , for any A > 0 we can find T = T (A) ≥ 1 such that for all t ≥ T we have either (case I)

f 1 (u 1 + t, u 2 + t, x) ≥ A(u 1 + t), f 2 (u 1 + t, u 2 + t, x) ≥ A(u 2 + t),
or (case II)

f 1 (u 1 + t, u 2 + t, x) ≥ A(u 2 + t), f 2 (u 1 + t, u 2 + t, x) ≥ a(u 1 + t),
or the last two inequalities with A and a interchanged (here a is a positive lower bound for d 21 or d 12 from (4)) 3 .

In case I we see that the nonpositive functions

v 1 = -u 1 , v 2 = -u 2 satisfy F * 1 (D 2 v 1 , Dv 1 , v 1 , 0, x) ≥ F * 1 (D 2 v 1 , Dv 1 , v 1 , v 2 , x) ≥ -Av 1 + 1 F * 2 (D 2 v 2 , Dv 2 , 0, v 2 , x) ≥ F * 2 (D 2 v 2 , Dv 2 , v 1 , v 2 , x) ≥ -Av 2 + 1 (35) 
in Ω, by ( H 2 ) (recall ( H 2 ) implies the system is quasimonotone). Clearly this implies v 1 , v 2 < 0 in Ω, by Theorem 2.2. We recall the following corollary from Proposition 4.2 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet problem for fully nonlinear operators[END_REF].

Lemma 6.2 If F (M, p, t, 0, x) satisfies ( H 0 )-( H 2 )
and is convex in (M, p, t) then the quantity

λ - 1 (F, Ω) = sup {λ | Ψ -(F, Ω, λ) = ∅}, where Ψ -(F, Ω, λ) = {ψ ∈ C(Ω) | ψ < 0 in Ω, F (D 2 ψ, Dψ, ψ, x) + λψ ≥ 0 in Ω},
is bounded by constants which depend only on N, λ, Λ, γ, δ, Ω.

So ( 35) is a contradiction, since A can be taken arbitrarily large.

In case II we get, by ( H 2 ) and

M + (M ) = -M -(-M ), -M - λ,Λ (D 2 u 1 ) + γ|Du 1 | + δu 1 ≥ Au 2 + A > Au 2 , -M - λ,Λ (D 2 u 2 ) + γ|Du 2 | + δu 2 ≥ au 1 + a > au 1 ,
in Ω. This implies u 1 , u 2 > 0 in Ω, by Theorem 2.2. Fix ε > 0, depending only on the geometry of Ω, such that Ω = {x ∈ Ω : dist(x, ∂Ω) > ε} is a domain which is not empty, and fix two concentric cubes

Q 1 ⊂⊂ Q 2 ⊂ Ω . Then Theorem 7.1 implies inf Q 1 u 1 ≥ κA inf Q 1 u 2 and inf Q 1 u 2 ≥ κa inf Q 1 u 1 ,
where κ depends only on N, λ, Λ, γ, δ, and Ω. This is clearly a contradiction, if we fix A larger than (κ √ a) -2 .

Finally, condition (ii) in Theorem 6.1 is a consequence of the following proposition. Proposition 6.3 For each t 0 there exists a constant C, such that if u = (u 1 , u 2 ) is a solution of system [START_REF] Quittner | A priori estimates and existence for elliptic systems via bootstrap in weighted Lebesgue spaces[END_REF] with 0 ≤ t ≤ t 0 , then

u L ∞ (Ω) ≤ C.
Proof. We argue by contradiction, using the widely employed blow-up method of Gidas and Spruck [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF], [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF]. Suppose there exists a sequence (u 1,n , u 2,n ) of positive solutions of (34) with t = t n ∈ [0, t 0 ], such that at least one of the sequences u 1,n and u 2,n tends to infinity in the L ∞ -norm. Without restricting the generality we suppose t 0 = 0 (the argument below remains the same for t 0 > 0). Let β 1 , β 2 be the numbers from Theorem 1.2. We set

λ n = ||u 1,n || -β 1 L ∞ (Ω) , if ||u 1,n || β 2 L ∞ (Ω) ≥ ||u 2,n || β 1 L ∞ (Ω) (up to a subsequence), and λ n = ||u 2,n || -β 2 L ∞ (Ω)
otherwise. Say we are in the first of these two situations. Note that we have λ n → 0 as n → ∞. Let x n ∈ Ω be a point where u 1,n assumes its maximum. The functions

v i,n (x) = λ β i n u i,n (λ n x + x n ),
are such that v 1,n (0) = 1 and 0 ≤ v i,n ≤ 1 in Ω. One easily verifies that the functions v 1,n and v 2,n satisfy

-H 1,n (D 2 v 1,n , Dv 1,n , v 1,n , v 2,n , •) = a 1 (•)λ β 1 +2-β 1 α 11 n v α 11 1,n + b 1 (•)λ β 1 +2-β 2 α 12 n v α 12 2,n + c 1 (•)λ β 1 +2-β 1 γ 11 -β 2 γ 12 n v γ 11 1,n v γ 12 2,n + g 1,n -H 2,n (D 2 v 2,n , Dv 2,n , v 1,n , v 2,n , •) = a 2 (•)λ β 2 +2-β 1 α 21 n v α 21 1,n + b 2 (•)λ β 2 +2-β 2 α 22 n v α 22 2,n + c 2 (•)λ β 2 +2-β 1 γ 21 -β 2 γ 22 n v γ 21 1,n v γ 22 2,n + g 2,n (36) 
in the domain Ω n = 1 λ n (Ω -x n ), where the dot stands for λ n x + x n , and we have set

g i,n = λ β i +2 n g i •, λ -β 1 n v 1,n , λ -β 2 n v 2,n , H i,n (M, p, u 1 , u 2 , x) := H i (M, λ n p, λ 2 n u 1 , λ 2 n u 2 , x n + λ n x).
By compactness we can assume that {x n } tends to some point x 0 ∈ Ω. It is a very standard fact that the domain Ω n converges either to R N or to a half-space in R N . With the choice of β 1 , β 2 that we made in the introduction, we have that all powers of λ n in (36) are non-negative (see for example lemma 2.2 in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF]). Thus the right hand side of ( 36) is bounded in L ∞ (Ω), so by compactness -see Lemma 6.1 -we find that, up to a subsequence, v i,n converges to some function v i uniformly in compact sets of R N (or R N + ). In order to pass to the limit in [START_REF] Serrin | Non-existence of positive solutions of Lane-Emden systems[END_REF], we use the fact that the sequence of operators H i,n satisfies the hypothesis of Theorem 2.5. Indeed, as can be easily verified with the help of ( H 2 ) and λ n → 0, for any fixed ball B and any φ ∈ W 2,N (B) we have

H i,n (D 2 φ, Dφ, v 1,n , v 2,n , x) → H 1 (D 2 φ, 0, 0, 0, x 0 ) in L N (B).
Thus we can pass to the limit in [START_REF] Serrin | Non-existence of positive solutions of Lane-Emden systems[END_REF]. Note that in the passage to the limit the terms in the right hand side of (36) which contain strictly positive powers of λ n disappear, as well as h i,n , while the terms where the power of λ n is zero remain. Actually, this observation has dictated the choice of β 1 , β 2 (note this choice depends only on the exponents α ij ) -more details on this can be found in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF].

In this way we obtain a nontrivial (since v 1 (0) = 1) bounded solution of the system

-H 1 (D 2 v 1 , 0, 0, 0, x 0 ) = c 11 v α 11 1 + c 12 v α 12 2 + c 13 v γ 11 1 v γ 12 2 -H 2 (D 2 v 2 , 0, 0, 0, x 0 ) = c 21 v α 21 1 + c 22 v α 22 2 + c 23 v γ 21 1 v γ 22 2 (37) 
in R N or R N + (with a Dirichlet boundary condition), where c ij ≥ 0 are constants. There are several cases now, depending on the possible values of c ij . We shall only list them and give the contradiction in each case, referring to [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF] for an explanation on how these cases appear. Note in any case c 12 = 0 implies c 13 = 0 and c 21 = 0 implies c 23 = 0.

Let J 1 , J 2 be the sets at which the dimension-like numbers N 1 , N 2 corresponding to the operators in the left-hand side of (37) are attained, and let M 1 , M 2 be the corresponding extremal operators, see Definition 3.1. So (v 1 , v 2 ) is a supersolution of (37) with H 1 , H 2 replaced by M 1 , M 2 , according to Definition 3.1. When the domain for [START_REF] Sirakov | Existence results and a priori bounds for higher order elliptic equations and systems[END_REF] is R N we are going to use Theorem 1.3 to get a contradiction, while in the case when the domain is R N + we are going to apply Theorem 5.1 directly to [START_REF] Sirakov | Existence results and a priori bounds for higher order elliptic equations and systems[END_REF]. If N 1 ≤ 2 or N 2 ≤ 2 we just use Proposition 4.1 part 2. Case 1. c 11 > 0 and c 22 > 0. If the domain is R N then we have a contradiction with the Liouville theorem for scalar inequalities from [START_REF] Felmer | Critical exponents for uniformly elliptic extremal operators[END_REF], which is a particular case of Theorem 1.3 with p = q and M 1 = M 2 . If the domain is R N + we have two subcases. If all c ij > 0 we have a contradiction with our Liouville theorem in half-space, see Theorem 5.1. If c 21 = c 23 = 0 then the second equality in (37) implies v 2 ≡ 0 by Theorem 5.1 (with p = q = α 22 ). Then the first equation in [START_REF] Sirakov | Existence results and a priori bounds for higher order elliptic equations and systems[END_REF] becomes scalar in v 1 and we apply the same theorem to it. [START_REF] Sirakov | Existence results and a priori bounds for higher order elliptic equations and systems[END_REF] implies that v 2 ≡ c 0 , a constant (this is a consequence from the Harnack inequality, see for instance [START_REF] Caffarelli | Fully Nonlinear Elliptic Equations[END_REF]). If c 0 = 0 (this is the only case for a halfspace, because of the Dirichlet boundary condition) again the first equation is scalar. If c 0 > 0 by the first equation we get a positive bounded solution to -M - λ,Λ (D 2 v 1 ) ≥ c 0 c 21 = c > 0 in R N which is easily seen to be impossible. Indeed, if there were such a function, by the comparison Theorem 2.4 we would have v 1 (0) ≥ w R (0), where w R is the solution of the Dirichlet problem -M - λ,Λ (D 2 w) = c in the ball B R (this problem is solvable, see for instance Proposition 7.1). Then if v R (y) = w R (Ry), we have -M - λ,Λ (D 2 v R ) = cR 2 in B 1 . So, by Theorem 7.1 we have v 1 (0) ≥ cR 2 for all R, a contradiction. Theorem 1.2 is proved, since it is a consequence of Theorem 6.1.

Appendix

Here we prove the following result. To fix notations, again Q l will denote a cube with size l. Any two cubes such that one is obtained by doubling the size of the other are supposed to be concentric. For any measurable set E we denote with meas(E) = |E| its Lebesgue measure. 

M - λ,Λ (D 2 u) -γ|Du| -δu ≤ -αχ ω in Q 2 , ( 38 
)
for some α > 0 (here χ ω denotes the characteristic function of ω). Then there exists a constant m > 0, depending only on N, λ, Λ, γ, δ, and on a positive lower bound of the measure of ω, such that inf

Q 1 u ≥ mα. ( 39 
)
This theorem extends a result by Krylov and Safonov, concerning linear elliptic operators and strong solutions, that is, u ∈ W 2,N loc (Q 2 ). For such operators and solutions Theorem 7.1 follows from Theorem 2, page 118, in the book [START_REF] Krasnoselskii | Positive solutions of operator equations[END_REF].

As we will show below, Theorem 7.1 can be reduced to the result in [START_REF] Krasnoselskii | Positive solutions of operator equations[END_REF]. However, since this reference is not easy to work with, and since Theorem 7.1 plays an essential role in our arguments, we are going to give a full selfcontained proof of this theorem, which is based only on the Alexandrov-Bakelman-Pucci inequality, convergence properties of viscosity solutions and on a result from measure theory -Egoroff's theorem.

First proof of Theorem 7.1. We use the following well-known results from the theory of fully nonlinear operators. -inf and hence, fixing s such that λ(s + 1) = Λ(N -1),

Q ρ 2 u = inf Q ρ 2 v -inf Q ρ 2 u ≤ sup Q ρ 2 (v -u) ≤ sup Qρ (v -u) ≤ 1 4 for ρ ≤ 1, so u ≥ 1 2 in Q ρ 2 .
M + λ,Λ (D 2 (w -u)) + γ|D(w -u)| ≥ M - λ,Λ (D 2 w) -γ|Dw| -G[u] -δu ≥ -Cρ s |x| -s-1 -δu ≥ -Cρ -1 (1 + ρu) in the set Q 2ρ \ Q ρ 2 . Since w -u ≤ 0 on ∂(Q 2ρ \ Q ρ 2
) and u < 1 on the set {w -u > 0}, Theorem 2.1 yields sup

Q ρ \Q ρ 2 (w -u) ≤ sup Q 2ρ \Q ρ 2 (w -u) ≤ C(1 + ρ) 1 L N (Q 2ρ ) ≤ C|Q 2ρ | 1/N = Cρ

  For a given u ∈ C(B R ), we define m u (r) = min |x|≤r u(x), for 0 ≤ r < R. Theorem 2.2 clearly implies that if M ± J (D 2 u) ≤ 0 then m u (r) = min |x|=r u(x).

Case 2 .

 2 c 12 > 0 and c 21 > 0. Then we have a contradiction with Theorems 1.3 and 5.1. Case 3. c 21 = c 22 = c 23 = 0, c 11 , c 12 > 0. Then the second equation in

Theorem 7 . 1

 71 Let ω ⊂ Q 2 be a closed set with positive measure and suppose u ∈ C(Q 2 ) is a positive function satisfying

Lemma 7 . 1 Proposition 7 . 1

 7171 Let w ∈ W 2,N loc (Ω). There exists a scalar linear uniformly elliptic second order operator L 0 (depending on w) with bounded measurable coefficients, such thatM - λ,Λ (D 2 w) -γ|Dw| = L 0 wThe ellipticity constant of L 0 and the L ∞ -bounds for the coefficients of L 0 depend only on N, λ, Λ, γ.Proof. This is very standard. Recall M - λ,Λ (M ) = inf A∈S λ,Λ N tr(AM ). This infimum is attained (since S λ,Λ N is compact), for any fixed M . Then we takeL 0 w(x) = tr A 0 (x)D 2 w(x) -b(x).Dw(x),where x -→ A 0 (x) is a measurable selection of elements of S λ,Λ N at which the infimum above is attained, andb(x) = Let c, f ∈ L ∞ (Ω), and c ≥ 0 in Ω. Then there exists a unique solution v ∈ W 2,N loc (Ω) ∩ C(Ω) of the following problem M - λ,Λ (D 2 v) -γ|Dv| -cv = f a.e. in Ω v = 0 on ∂Ω. (40)Proof. When c ≡ 0 this result was proved in[START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF] (Corollary 3.10 in that paper). Exactly the same proof works for c ≥ 0, since the authors use Theorem 17.17 in[START_REF] Gilbarg | Elliptic partial differential equation of second order[END_REF] and the ABP estimate, which both hold when c ≥ 0. In order to prove Theorem 7.1 we apply Proposition 7.1 to get a solution in W 2,N loc ∩ C(Ω) of M - λ,Λ (D 2 v) -γ|Dv| -δv = -αχ ω a.e. in Q 2 v = 0 on ∂Q 2 . (41)provided u ∈ W 2,N (Q 2ρ ). Extending this inequality to u only continuous is easy (and standard, since v ∈ C 2 ), by using Definition 2.1 and test functions. Since v -u ≤ 0 on ∂Q ρ , by applying Theorem 2.1 to the last inequality we obtain supQ ρ (v -u) ≤ Cρ -1 1 + γρ + δρ 2 u L N (Qρ∩{v-u>0}) ≤ Cρ -1 (1 + γρ + δρ 2 sup v-u>0 u) |Q ρ ∩ {v -u > 0}| 1/N . Note that {v -u > 0} ⊂ {u < 1}, so meas(Q ρ ∩ {v -u > 0}) ≤ C(N )βρ N , by hypothesis. Then sup Qρ (v -u) ≤ Cβ 1/N (1 + γρ + δρ 2 ). By choosing β sufficiently small and ρ 0 ≤ 1 we get 3 4

2 ,|x|

 2 Now set, for s > 0 andx ∈ Q 2ρ \ Q ρ -s -(2ρ) -s (ρ/2) -s -(2ρ) -s .It is easy to compute, with the help of Lemma 2.2, thatM - λ,Λ (D 2 (|x| -s )) -γ|D(|x| -s )| = s(λ(s + 1) -Λ(N -1) -γ|x|)|x| -s-2 ,
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Set w = v -u. By Lemma 2.1 we have

By Lemma 7.1 equation ( 41) can be recast as a linear one, in which the coefficients depend on v but their L ∞ bounds do not. So we can apply the result in [START_REF] Krasnoselskii | Positive solutions of operator equations[END_REF] to this equation and v, and conclude, by (42).

Second proof of Theorem 7.1. Here we give a self-contained proof of the theorem. We start with the following basic proposition. Proposition 7.2 There exists a number ρ 0 ∈ (0, 1) depending only on N , λ, Λ, γ, δ, such that if for some ρ ∈ (0, ρ 0 ] and some cube

then for any ν, a > 0 there exists κ > 0 depending on ν, N, λ, Λ, γ, δ, such that

Before proving this proposition, let us show how Theorem 7.1 follows from it. We also need a well-known result from measure theory, usually referred to as Egoroff's theorem.

Then there exists a subsequence of {u n } which converges to u almost everywhere in G, and for any δ > 0 and any open bounded set

Proof of Theorem 7.1. We are going to suppose that ω = Q 1 (we actually apply the theorem only in this case). The full strength of Theorem 7.1 can then be obtained by a covering argument.

Replacing u by u/α we can suppose α = 1. Let ρ 0 be the number from Proposition 7.2.

Claim. There exist ν, a > 0 such that for any cube Q ⊂ Q 1 with size ρ 0 , and for any solution u of ( 38)

If this claim is true then Theorem 7.1 follows from Proposition 7.2. So suppose the claim is false, that is, for all n ∈ N there exists a cube Q (n) with fixed size ρ 0 , Q (n) ⊂ Q 1 , and a solution u n of [START_REF] Sirakov | Solvability of fully nonlinear elliptic equations with natural growth and unbounded coefficients[END_REF], such that

Then, clearly, there exists a subsequence of {Q (n) } which contains a fixed cube Q with size larger than ρ 0 /2. The above inequality implies that {u n } converges in measure to zero in this cube. Then by Egoroff's theorem {u n } converges uniformly to zero in some subset of Q with positive measure. This implies, by Theorem 2.5, that zero is a solution of [START_REF] Sirakov | Solvability of fully nonlinear elliptic equations with natural growth and unbounded coefficients[END_REF] in some subset of Q 1 , a contradiction. We now turn to Proposition 7.2. First we prove a weaker result.

Proposition 7.3 There exist numbers β, κ, ρ 0 ∈ (0, 1) depending only on N , λ, Λ, γ, δ, such that if for some ρ ∈ (0, ρ 0 ] and some cube

then for any a > 0

Proof. Without restricting the generality we can suppose a = 1 (replace u by u/a). To simplify some of the following computations, we suppose that Q stands for a ball instead of a cube in this lemma (this is obviously equivalent).

Then, by Lemmas 2.1 and 2.2, for any

so, by taking ρ 0 sufficiently small, we have, for ρ ≤ ρ 0 ,

which finishes the proof of Proposition 7.3. Now we can carry out the proof of Proposition 7.2 with the help of an argument which goes back to Krylov. It uses the following well-known measure theoretic result.

Lemma 7.1 Let G be a cube and K be some measurable subset of G, such that |K| ≤ η|G|, for some η ∈ (0, 1). Let F be the set of all cubes B contained in G, and such that |B ∩ K| ≥ η|B|.

Proof. This is inequality (9.20) from [START_REF] Gilbarg | Elliptic partial differential equation of second order[END_REF], setting f to be the indicator function of K in the reasoning there.

Proof of Proposition 7.2. We repeat the same reasoning and get either Proposition 7.2 or

This process stops after at most n iterations, where n is a number such that ν(1 + ζ) n ≥ 1.