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We define and study extensions of Artin's representation and braid monodromy representation to the case of topological and algebraical generalisations of braid groups. In particular we provide faithful representations of braid groups of oriented surfaces with boundary components as (outer) automorphisms of free groups. We give also similar representations for braid groups of non oriented surfaces with boundary components and we show a representation of braid groups of closed surfaces as outer automorphisms of free groups. Finally, we provide faithful representations of Artin-Tits groups of type D as automorphisms of free groups.

Introduction

Let F n be the free group of rank n with the set of generators {x 1 , x 2 , . . . , x n }. Assume further that Aut(F n ) is the automorphism group of F n . The Artin braid group B n can be represented as a subgroup of Aut(F n ). This representation, due to Artin himself, is defined associating to any generator σ i , for i = 1, 2, . . . , n -1, of B n the following automorphism of F n :

σ i :    x i -→ x i x i+1 x -1 i , x i+1 -→ x i , x l -→ x l , l = i, i + 1.
Moreover (see for instance [START_REF] Hansen | Braids and coverings[END_REF]Theorem 5.1]), any automorphism β of Aut(F n ) corresponds to an element of B n if and only if β satisfies the following conditions:

i) β(x i ) = a -1 i x s(i) a i , 1 ≤ i ≤ n, ii) β(x 1 x 2 . . . x n ) = x 1 x 2 . . . x n ,
where s is a permutation from the symmetric group S n and a i ∈ F n . Generalisations of Artin's representation have been provided by Wada [START_REF] Wada | Group invariants of links[END_REF] and further by Crisp and Paris [START_REF] Crisp | Representations of the braid group by automorphisms of groups, invariants of links, and Garside groups[END_REF], in order to construct group invariants of oriented links.

Another interesting representation of B n is the braid monodromy representation of B n into Aut(F n-1 ) (see last Section), that was proven to be faithful in [START_REF] Crisp | Artin groups of type B and D[END_REF] and [START_REF] Perron | Groupes de monodromie géométrique des singularités simples[END_REF].

In this paper, we extend Artin's and braid monodromy representations to some generalisations of braid groups.

In the case of braid groups of oriented surfaces with boundary components our representations are faithful (Theorem 2). Moreover, in the case of surfaces of genus g ≥ 1, the induced representations of surface braid groups as outer automorphisms hold faithful (Theorem 3).

In the case of closed surfaces, as earlier remarked in [START_REF] Birman | Braids, links and mapping class group[END_REF] for braid groups of the sphere, we cannot extend Artin's representation and we provide a representation in the outer automorphism group of a finitely generated free group.

In the last Section we consider the braid monodromy representation of B n in Aut(F n-1 ) and we provide a faithful representation of the n-th Artin-Tits group of type D in Aut(F n ) (Proposition 10).
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Braid groups of orientable surfaces with boundary components

Surface braids as collections of paths. Let P = {p 1 , . . . , p n } be a set of n distinct points (punctures) in the interior of a surface Σ.

A geometric braid on Σ based at P is a collection (ψ 1 , . . . , ψ n ) of n disjoint paths (called strands) on Σ × [0, 1] which run monotonically with t ∈ [0, 1] and such that ψ i (0) = (p i , 0) and ψ i (1) ∈ P ×{1}. Two braids are considered to be equivalent if they are isotopic relatively to the base points. The usual product of paths defines a group structure on the equivalence classes of braids. This group, denoted usually by B n (Σ), does not depend on the choice of P and it is called braid group on n strands of Σ. The nth braid group of the disk D 2 , B n (D 2 ), is isomorphic to B n .

In the following we will denote by B n (Σ g,p ) the braid group on n strands of an orientable surface of genus g with p boundary components (we set Σ g = Σ g,0 ) and by B n (N g,p ) the braid group on n strands of a non-orientable surface of genus g with p boundary components (we set N g = N g,0 ).

In this section we will consider an orientable surface Σ g,p of genus g ≥ 0 and with p > 0 boundary components. We set also n ≥ 2.

We denote by σ 1 , ..., σ n-1 the standard generators of the braid group B n . Since p > 0, we can embed a disk in Σ g,p and therefore we can consider σ 1 , ..., σ n-1 as elements of B n (Σ g,p ). Let also a 1 , ..., a g , b 1 , ..., b g , z 1 , ..., z p-1 be the generators of π 1 (Σ g,p ), where z i 's denote loops around the holes. Assume that the base point of the fundamental group is the startpoint of the first strand. Then each element γ ∈ π 1 (Σ g,p ) determines an element denoted also by γ in B n (Σ g,p ), by considering the braid whose first strand is describing the curve γ and other strands are constant.

Let us set x 2k-1 = a k and x 2k = b k for k = 1, . . . , g. According to [START_REF] Bellingeri | On presentation of surface braid groups[END_REF] we have that the group B n (Σ g,p ) admits a presentation with generators:

σ 1 , . . . , σ n-1 , x 1 , . . . , x 2g , z 1 , . . . , z p-1 ,
and defining relations: -Braid relations:

σ i σ i+1 σ i = σ i+1 σ i σ i+1 , 1 ≤ i ≤ n -2, σ i σ j = σ j σ i , |i -j| > 1, 1 ≤ i, j ≤ n -1, -Mixed relations: (R1) x r σ i = σ i x r , i = 1, 1 ≤ r ≤ 2g, (R2) (σ -1 1 x r σ -1 1 )x r = x r (σ -1 1 x r σ -1 1 ), 1 ≤ r ≤ 2g, (R3) (σ -1 1 x s σ 1 )x r = x r (σ -1 1 x s σ 1 ), 1 ≤ s < r ≤ 2g, (s, r) = (2m -1, 2m), (R4) (σ -1 1 x 2m-1 σ -1 1 )x 2m = x 2m (σ -1 1 x 2m-1 σ 1 ), 1 ≤ m ≤ g, (R5) z j σ i = σ i z j , i = 1, 1 ≤ j ≤ p -1, (R6) (σ -1 1 z j σ 1 )x r = x r (σ -1 1 z j σ 1 ), 1 ≤ r ≤ 2g, 1 ≤ j = p -1, (R7) (σ -1 1 z j σ 1 )z l = z l (σ -1 1 z j σ 1 ), 1 ≤ j < l ≤ p -1, (R8) (σ -1 1 z j σ -1 1 )z j = z j (σ -1 1 z j σ 1 ), 1 ≤ j ≤ p -1.
Associating to any surface braid the corresponding permutation one obtains a surjective homomorphism π :

B n (Σ g,p ) -→ S n , such that π(σ i ) = (i, i + 1), i = 1, . . . , n -1, π(x r ) = π(z j ) = e for 1 ≤ r ≤ 2g and 1 ≤ j ≤ p -1.
In [START_REF] Bellingeri | On presentation of surface braid groups[END_REF] the second author considered the subgroup D n (Σ g,p ) = π -1 (S n-1 ) and found its generators. We provide a set of defining relations of D n (Σ g,p ) using the well-known Reidemeister-Schreier's method (see [START_REF] Magnus | Combinatorial group theory[END_REF]Chap. 2]).

Let M n = {m l | 1 ≤ l ≤ n} be the set defined as follows:

m l = σ n-1 . . . σ l , l = 1, . . . , n -1, m n = 1.
It is easy to prove (see [START_REF] Bellingeri | On presentation of surface braid groups[END_REF]) that |B n (Σ g,p ) : D n (Σ g,p )| = n and that M n is a Schreier set of coset representatives of D n (Σ g,p ) in B n (Σ g,p ). Define the map -: B n (Σ g,p ) -→ M n which takes an element w ∈ B n (Σ g,p ) into the representative w from M n . The element ww -1 belongs to D n (Σ g,p ) and, by Theorem 2.7 from [START_REF] Magnus | Combinatorial group theory[END_REF], the group D n (Σ g,p ) is generated by

s λ,a = λa • (λa) -1 ,
where λ runs over the set M n and a runs over the set of generators of B n (Σ g,p ).

Case 1. If a ∈ {σ 1 , . . . , σ n-1 }, then we find the generators

τ k = σ n-1 . . . σ k+1 σ 2 k σ -1 k+1 . . . σ -1 n-1 , k = 1, . . . , n -2, τ n-1 = σ 2 n-1 .
Case 2. If a ∈ {x 1 , . . . , x 2g }, then we find the generators

w r = σ n-1 . . . σ 1 x r σ -1 1 . . . σ -1 n-1 , r = 1, . . . , 2g.
Case 3. If a ∈ {z 1 , . . . , z p-1 }, then we find the generators

ξ j = σ n-1 . . . σ 1 z j σ -1 1 . . . σ -1 n-1 , j = 1, . . . , p -1.
To find defining relations of D n (Σ g,p ) we define a rewriting process τ . It allows us to rewrite a word which is written in the generators of B n (Σ g,p ) and to present an element in D n (Σ g,p ) as a word in the generators of D n (Σ g,p ). Let us associate to the reduced word

u = a ε 1 1 a ε 2 2 . . . a εν ν , ε l = ±1, where a l ∈ {σ 1 , σ 2 , . . . , σ n-1 , x 1 , x 2 , . . . , x 2g , z 1 , z 2 , . . . , z p-1 }, the word τ (u) = s ε 1 k 1 ,a 1 s ε 2 k 2 ,a 2 . . . s εν kν ,aν
in the generators of D n (Σ g,p ), where k j is a representative of the (j -1)th initial segment of the word u if ε j = 1 and k j is a representative of the jth initial segment of the word u if ε j = -1. By [8, Theorem 2.9], the group D n (Σ g,p ) is defined by relations

r µ,λ = τ (λ r µ λ -1 ), λ ∈ M n ,
where r µ is a defining relation of B n (Σ g,p ).

Proposition 1. The group D n (Σ g,p ) admits a presentation with the generators

σ 1 , . . . , σ n-2 , x 1 , . . . , x 2g , z 1 , . . . , z p-1 , τ 1 , . . . , τ n-1 , w 1 , . . . , w 2g , ξ 1 , . . . , ξ p-1 ;
and relations:

-Braid relations (B1) σ i σ i+1 σ i = σ i+1 σ i σ i+1 , 1 ≤ i ≤ n -3, (B2) σ i σ j = σ j σ i , |i -j| > 1, 1 ≤ i, j ≤ n -2, (B3) σ -1 k τ l σ k = τ l , k = l -1, l, (B4) σ -1 l-1 τ l σ l-1 = τ l-1 , (B5) σ -1 l τ l σ l = τ l τ l+1 τ -1 l , l = n -1. -Mixed relations (R1.1) x r σ i = σ i x r , 2 ≤ i ≤ n -2, 1 ≤ r ≤ 2g, (R1.2) x r τ i = τ i x r , 2 ≤ i ≤ n -1, (R1.3) w r σ i = σ i w r , 1 ≤ r ≤ 2g, ≤ i ≤ n -2, (R2.1) (σ -1 1 x r σ -1 1 )x r = x r (σ -1 1 x r σ -1 1 ), 1 ≤ r ≤ 2g, (R2.2) x -1 r w r x r = τ -1 1 w r τ 1 , 1 ≤ r ≤ 2g, (R2.3) x -1 r τ 1 x r = τ -1 1 w r τ 1 w -1 r τ 1 , 1 ≤ r ≤ 2g, (R3.1) (σ -1 1 x s σ 1 )x r = x r (σ -1 1 x s σ 1 ), 1 ≤ s < r ≤ 2g, (s, r) = (2m -1, 2m), (R3.2) x -1 r (τ -1 1 w s τ 1 )x r = τ -1 1 w s τ 1 , 1 ≤ s < r ≤ 2g, (s, r) = (2m -1, 2m), (R3.3) x s w r = w r x s , 1 ≤ s < r ≤ 2g, (s, r) = (2m -1, 2m), (R4.1) (σ -1 1 x 2m-1 σ -1 1 )x 2m = x 2m (σ -1 1 x 2m-1 σ 1 ), 1 ≤ m ≤ g, (R4.2) x -1 2m (τ -1 1 w 2m-1 )x 2m = τ -1 1 w 2m-1 τ 1 , 1 ≤ m ≤ g, (R4.3) x -1 2m-1 w 2m x 2m-1 = τ -1 1 w 2m , 1 ≤ m ≤ g, (R5.1) z j σ i = σ i z j , 2 ≤ i ≤ n -2, 1 ≤ j ≤ p -1, (R5.2) z j τ i = τ i z j , 2 ≤ i ≤ n -1, 1 ≤ j ≤ p -1, (R5.3) ξ j σ i = σ i ξ j , 1 ≤ j ≤ p -1, 1 ≤ i ≤ n -2, (R6.1) (σ -1 1 z j σ 1 )x r = x r (σ -1 1 z j σ 1 ), 1 ≤ r ≤ 2g, 1 ≤ j ≤ p -1, (R6.2) x -1 r (τ -1 1 ξ j τ 1 )x r = τ -1 1 ξ j τ 1 , 1 ≤ r ≤ 2g, 1 ≤ j ≤ p -1, (R6.3) z j w r = w r z j , 1 ≤ r ≤ 2g, 1 ≤ j ≤ p -1, (R7.1) (σ -1 1 z j σ 1 )z l = z l (σ -1 1 z j σ 1 ), 1 ≤ j < l ≤ p -1, (R7.2) z -1 l (τ -1 1 ξ j τ 1 )z l = τ -1 1 ξ j τ 1 , 1 ≤ j < l ≤ p -1, (R7.3) z j ξ l = ξ l z j , 1 ≤ j < l ≤ p -1, (R8.1) (σ -1 1 z j σ -1 1 )z j = z j (σ -1 1 z j σ -1 1 ), 1 ≤ j ≤ p -1, (R8.2) z -1 j (τ -1 1 ξ j )z j = τ -1 1 ξ j , 1 ≤ j ≤ p -1, (R8.3) z -1 j ξ j z j = τ -1 1 ξ j τ 1 , 1 ≤ j ≤ p -1.
The generators σ 1 , . . . , σ n-2 , x 1 , . . . , x 2g , z 1 , . . . , z p-1 generate a group isomorphic to B n-1 (Σ g,p ) (see also Remark 3.1 from [START_REF] Bellingeri | On presentation of surface braid groups[END_REF]) and it is easy to see that the relations (B1), (B2), (R1.1), (R2.1), . . . , (R8.1) are a complet set of relations for B n-1 (Σ g,p ). From the other relations we can find the following conjugacy formulae:

(S1) τ σ k l = τ l , k = l -1, l, (S2) τ σ l-1 l = τ l-1 , (S3) τ σ l l = τ τ -1 l l+1 , l = n -1, (S4) τ xr i = τ i , 2 ≤ i ≤ n -1, (S5) w σ i r = w r , 1 ≤ r ≤ 2g, 1 ≤ i ≤ n -2, (S6) w xr r = w τ 1 r , (S7) τ xr 1 = τ w -1 r τ 1 1 , (S8) w xr s = w [w -1 r ,τ 1 ] s , 1 ≤ s < r ≤ 2g, (s, r) = (2m -1, 2m), (S9) w xs r = w r , 1 ≤ s < r ≤ 2g, (s, r) = (2m -1, 2m), (S10) w x 2m 2m-1 = [τ 1 , w -1 2m ]w 2m-1 τ 1 , (S11) w x 2m-1 2m = τ -1 1 w 2m , (S12) τ z j i = τ i , 2 ≤ i ≤ n -1, 1 ≤ j ≤ p -1, (S13) ξ σ i j = ξ j , 1 ≤ i ≤ n -2, 1 ≤ j ≤ p -1, (S14) ξ xr j = ξ [w -1 r ,τ 1 ] j , 1 ≤ r ≤ 2g, 1 ≤ j ≤ p -1, (S15) w z j r = w r , 1 ≤ r ≤ 2g, 1 ≤ j ≤ p -1, (S16) ξ z l j = ξ [ξ -1 l ,τ 1 ] j , 1 ≤ j < l ≤ p -1, (S17) ξ z j l = ξ l , 1 ≤ j < l ≤ p -1, (S18) τ z j 1 = [τ 1 , ξ -1 j ]τ 1 , 1 ≤ j ≤ p -1, (S19) ξ z j j = ξ τ 1 j , 1 ≤ j ≤ p -1, where a b = a -1 ba and [a, b] = a -1 b -1 ab.
Let U n-1,g,p be the subgroup of D n (Σ g,p ) generated by {τ 1 , . . . τ n-1 , w 1 , . . . , w 2g , ξ 1 , . . . , ξ p-1 }.

Proposition 2. The group U n-1,g,p is a normal subgroup of D n (Σ g,p ) and it is a free group of rank n + p + 2g -2.

Proof. The statement was proven in [1, Section.2] using the interpretation of U n-1,g,p as the fundamental group of the surface Σ g,p with n -1 points removed.

From relations (S1)...(S19) we deduce that B n-1 (Σ g,p ) acts on U n-1,g,p by conjugacy.

Theorem 1. The group B n-1 (Σ g,p ) with n ≥ 3, g ≥ 0 and p > 0 acts by conjugacy on the free group U n-1,g,p . Therefore we have a representation ρ U : B n-1 (Σ g,p ) → Aut(U n-1,g,p ) defined algebraically as follows: -Generators σ i , i = 1, . . . , n -2:

σ i :            τ i -→ τ τ -1 i i+1 ; τ i+1 -→ τ i ; τ l -→ τ l , l = i, i + 1, ; w r -→ w r , 1 ≤ r ≤ 2g ; ξ j -→ ξ j , 1 ≤ j ≤ p -1.
-Generators x r , r = 1, . . . , 2g:

x r :                          τ 1 -→ τ w -1 r τ 1 1 ; τ i -→ τ i , 2 ≤ i ≤ n ; w s -→ w [w -1 r ,τ 1 ] s , s < r, (s, r) = (2m -1, 2m) ; w r-1 -→ [τ 1 , w -1 r ]w r-1 τ 1 , if r = 2m ; w r -→ w τ 1 r ; w s -→ w s , r < s, (r, s) = (2m -1, 2m) ; w r+1 -→ τ -1 1 w r+1 , if r = 2m -1 ; ξ j -→ ξ [w -1 r ,τ 1 ] j , 1 ≤ j ≤ p -1 .
-Generators z j , j = 1, . . . , p -1:

z j :                  τ 1 -→ τ ξ -1 j τ 1 1 ; τ i -→ τ i , 2 ≤ i ≤ n ; w z j r -→ w r , 1 ≤ r ≤ 2g) ; ξ z j l -→ ξ [ξ -1 j ,τ 1 ] l , 1 ≤ l < j ≤ p -1 ; ξ z j j -→ ξ τ 1 j ; ξ z j l -→ ξ l , 1 ≤ j < l ≤ p -1 .
In the following we outline a proof of the faithfulness of the representation ρ U of B n-1 (Σ g,p ) given in Theorem 1 using the interpretation of surface braids as mapping classes.

First, we recall that the mapping class group of a surface Σ g,p , let us denote it by M g,p , is the group of isotopy classes of orientation-preserving self-homeomorphisms which fix the boundary components pointwise.

Let P = {p 1 , . . . , p n } be a set of n distinct points (punctures) in the interior of the surface Σ g,p . The punctured mapping class group of Σ g,p relative to P is defined to be the group of isotopy classes of orientation-preserving self-homeomorphisms which fix the boundary components pointwise, and which fix P setwise. This group, that we will denote by M n g,p , does not depend on the choice of P, but just on its cardinal.

We recall also that a simple closed curve C is essential if either it does not bound a disk or it bounds a disk containing at least two punctures.

Finally, we denote T C as a Dehn twist along a simple closed curve C. Let C and D be two simple closed curves bounding an annulus containing only the puncture p j . We shall say that the multitwist

T C T -1
D is a j-bounding pair braid, also called spin map in [START_REF] Birman | Braids, links and mapping class group[END_REF]. Surface braids as mapping classes. Let g, p ≥ 0 and let ψ n,0 : M n g,p → M g,p be the homomorphism induced by the map which forgets the set P. When p = 0, according to a well-known result of Birman [4, Chapter 4.1], the group B n (Σ g ) is isomorphic to ker ψ n,0 if g > 1. The statement of Birman's theorem concerns the case of closed surfaces, but the proof extends naturally to the case of surfaces with boundary components and the group B n (Σ g,p ) is isomorphic to ker ψ n,0 if g ≥ 1 and p > 0.

Geometrically the correspondence between ker ψ n,0 and B n (Σ g,p ) is realized as follows: given a homeomorphism h of Σ g,p isotopic to the identity Id of Σ g,p and fixing boundary components pointwise and P setwise, the track of the punctures p 1 , . . . , p n under an isotopy from h to Id is the geometric braid corresponding to the homeomorphism h. Theorem 2. Let g ≥ 0, p > 0 and n ≥ 3. The representation ρ U : B n-1 (Σ g,p ) → Aut(U n-1,g,p ) is faithful.

Proof. First we prove the claim when g is greater or equal then 1. According to Birman's result we can represent the group D n (Σ g,p ) as a (normal) subgroup of M n g,p , more precisely as the subgroup of mapping classes in ker ψ n,0 sending the nth puncture into itself (see also Remark 18 from [START_REF] Bellingeri | Lower central series for surface braids[END_REF]). In particular generators τ 1 , . . . , τ n-1 , w 1 , . . . , w 2g , ξ 1 , . . . , ξ p-1 , of D n (Σ g,p ) (see Proposition 1) correspond to n-bounding pair braids in M n g,p . Let ψ n,n-1 : M n g,p → M n-1 g,p be the homomorphism forgetting the last puncture. Now, let us consider the exact sequence associate to the restriction of ψ n,n-1 to D n (Σ g,p ). The image of D n (Σ g,p ) by ψ n,n-1 coincides with ker ψ n-1,0 which is isomorphic to B n-1 (Σ g,p ). On the other hand, ker ψ n,n-1 ∩ D n (Σ g,p ) is the subgroup of M n g,p generated by n-bounding pair braids τ 1 , . . . , τ n-1 , w 1 , . . . , w 2g , ξ 1 , . . . , ξ p-1 and therefore it is isomorphic to U n-1,g,p .

The group B n-1 (Σ g,p ) embeds naturally in B n (Σ g,p ) by sending generators of B n-1 (Σ g,p ) in corresponding ones of B n (Σ g,p ) and therefore B n-1 (Σ g,p ) can be considered also as a subgroup of M n g,p . Moreover, the action considered in Theorem 1 corresponds to the action by conjugacy of B n-1 (Σ g,p ), seen as a subgroup of M n g,p , on U n-1,g,p . Since U n-1,g,p is a normal subgroup of M n g,p we can define a map Θ : Inn(M n g,p ) → Aut(U n-1,g,p ). We prove that Θ is injective and therefore that the action by conjugacy of B n-1 (Σ g,p ) on U n-1,g,p is faithful. Let g ∈ Inn(M n g,p ) such that Θ(g) = 1 and C be an essential curve. We can associate to the curve C another simple closed curve D such that they bound an annulus containing only the puncture p n . The mapping class

T C T -1 D is then a n-bounding pair braid. Since Θ(g) = 1, then g T C T -1 D g -1 = T C T -1
D and from a simple argument on the index of intersection of curves (see for instance Proposition 2.10 of [START_REF] Bellingeri | On automorphisms of surface braid groups[END_REF]) one can easily deduce that g(C) = C. Since g(C) = C for any essential curve C it follows that g is isotopic to the identity (Lemma 5.1 and Theorem 5.3 of [START_REF] Ivanov | On injective homomorphisms between Teichmüller modular groups, I[END_REF]). Therefore Θ is injective and in particular the representation defined in Theorem 1 is faithful when g ≥ 1.

The only case left is when the genus is equal to zero. We recall that, for p > 0, the group B n (Σ 0,p ) is isomorphic to the subgroup B n+p-1,p-1 of B n+p-1 fixing the last p -1 strands. In this case our representation coincides with Artin representation of B n+p-1 in Aut(F n+p-1 ) restricted to the subgroup B n+p-1,p-1 .

Corollary 1. The group B m (Σ g,p ) is residually finite for m ≥ 1, g ≥ 0 and p > 0.

Proof. Baumslag and Smirnov proved (see for instance [START_REF] Lindon | Combinatorial group theory[END_REF]Theorem 4.8]) that any finitely presented group which is isomorphic to a subgroup of automorphisms of a free group of finite rank is residually finite. Therefore for m > 1 the statement is a Corollary of Theorem 2. In the case m = 1, the group B 1 (Σ g,p ) is isomorphic to the fundamental group of Σ g,p which is free and therefore residually finite.

Remark also that from Theorem 2 one can derive, using Fox derivatives, a Burau representation for B n (Σ g,p ). Since the restriction on B n of such representation coincides with the usual Burau representation of B n , the Burau representation for B n (Σ g,p ) obtained from Theorem 2 is not faithful for n ≥ 5.

Surface braids as outer automorphisms of free groups

As recalled in the Introduction, any element β of B n ⊂ Aut(F n ) fixes the product x 1 x 2 . . . x n of generators of F n . We prove a similar statement for the group B n (Σ g,p ), for p > 0. Proposition 3. Let p > 0 and let U n-1,g,p be the free group of rank n + p + 2g -2 defined above. Any element β in B n-1 (Σ g,p ) ⊂ Aut(U n-1,g,p ) fixes the product

A = τ -1 n-1 . . . τ -1 2 τ -1 1 ξ 1 ξ 2 . . . ξ p-1 [w -1 1 , w 2 ] . . . [w -1 2g-1 , w 2g ]. Proof.
In order to prove the claim it suffices to verify that any generator of B n-1 (Σ g,p ), considered as an automorphism of U n-1,g,p , fixes the element A.

Case 1: generators

σ i , 1 ≤ i ≤ n -2. The group B n-1 is a subgroup of B n-1 (Σ g,p )
and by Artin's theorem B n-1 is a subgroup of Aut(F n-1 ), F n-1 = τ 1 , τ 2 , . . . , τ n-1 , and fixes the product τ 1 τ 2 . . . τ n-1 . Hence, the generator σ i also fixes the product τ

-1 n-1 . . . τ -1 2 τ -1 1 .
and

([w -1 1 , w 2 ] . . . [w -1 2g-1 , w 2g ]) z j = [w -1 1 , w 2 ] . . . [w -1 2g-1 , w 2g ].
Hence, A z j = A and the Proposition follows.

We recall that ρ U : B n-1 (Σ g,p ) → Aut(U n-1,g,p ) is the representation of B n-1 (Σ g,p ) defined in Theorem 1 and let p : Aut(U n-1,g,p ) → Out(U n-1,g,p ) be the canonical projection. Theorem 3. The representation p • ρ U : B n-1 (Σ g,p ) → Out(U n-1,g,p ) is faithful for p > 0 when g > 0 and for p > 2 when g = 0.

Proof. Since the representation ρ U :

B n-1 (Σ g,p ) → Aut(U n-1,g,p ) is faithful (Theorem 2), we can identify B n-1 (Σ g,p ) with ρ U (B n-1 (Σ g,p )).
Now suppose that there exists β ∈ B n-1 (Σ g,p ) ∩ Inn(U n-1,g,p ). From Proposition 3 one deduces that β is a conjugation by a power m of

A = τ -1 n-1 . . . τ -1 2 τ -1 1 ξ 1 ξ 2 . . . ξ p-1 [w -1 1 , w 2 ] . . . [w -1 2g-1 , w 2g
]. Now, let g be a generator of B n-1 (Σ g,p ). Since all elements of B n-1 (Σ g,p ) fix the element A we deduce the following equalities:

g -1 (β(g(x))) = g -1 (A m g(x)A -m ) = A m xA -m = β(x),
for any x ∈ U n-1,g,p . One deduces that g -1 βg = β for any generator g of B n-1 (Σ g,p ) and therefore β belongs to the center of B n-1 (Σ g,p ). Since B n-1 (Σ g,p ) (with n ≥ 2) has trivial center for p > 0 when g > 0 [START_REF] Paris | Geometric subgroups of surface braid groups[END_REF] and for p > 2 when g = 0, the intersection B n-1 (Σ g,p ) ∩ Inn(U n-1,g,p ) is trivial and the claim follows.

Remark 1. Let φ : B n → Out(F n ) the representation obtained composing Artin representation of B n in Aut(F n ) with the canonical projection of Aut(F n ) in Out(F n ). Such representation is not faithful and it is easy to see that the kernel is the center of B n .

Surface braid groups of non-orientable surfaces with boundary components

Let N g,p be a non-orientable surface of genus g ≥ 1, with p > 0 boundary components. Let σ 1 , . . . , σ n-1 be the usual generators of B n and a 1 , . . . a g , z 1 , . . . z p-1 be the usual generators of the fundamental group of N g,p . As in previous section we can consider σ 1 , . . . , σ n-1 and a 1 , . . . a g , z 1 , . . . z p-1 as elements of B n (N g,p ). According to [START_REF] Bellingeri | On presentation of surface braid groups[END_REF] the group B n (N g,p ) admits a presentation with generators:

σ 1 , . . . σ n-1 , a 1 , . . . a g , z 1 , . . . z p-1 ,
and relations: -Braid relations:

σ i σ i+1 σ i = σ i+1 σ i σ i+1 , 1 ≤ i ≤ n -2, σ i σ j = σ j σ i , |i -j| > 1, 1 ≤ i, j ≤ n -1, -Mixed relations: (R1) a r σ i = σ i a r , i = 1, 1 ≤ r ≤ g, (R2) σ -1 1 a r σ -1 1 a r = a r σ -1 1 a r σ 1 , 1 ≤ r ≤ g, (R3) (σ -1 1 a s σ 1 )a r = a r (σ -1 1 a s σ 1 ), 1 ≤ s < r ≤ g, (R4) z j σ i = σ i z j , i = 1, 1 ≤ j ≤ p -1, (R5) (σ -1 1 z i σ 1 )a r = a r (σ -1 1 z i σ 1 ), 1 ≤ r ≤ g, 1 ≤ i ≤ p -1, n > 1, (R6) (σ -1 1 z j σ 1 )z l = z l (σ -1 1 z j σ 1 ), 1 ≤ j < l ≤ p -1, (R7) (σ -1 1 z j σ -1 1 )z j = z j (σ -1 1 z j σ -1 1 ), 1 ≤ j ≤ p -1.
As in previous section let us consider the natural projection of π : B n (N g,p ) -→ S n , which associates to any braid the corresponding permutation. This projection map σ i in the corresponding transposition and generators a 1 , . . . , a g , z 1 , . . . , z p-1 into the identity. As before, let D n (N g,p ) = π -1 (S n-1 ) and let

m l = σ n-1 . . . σ l , l = 1, . . . , n -1, m n = 1. The set M n = {m l | 1 ≤ l ≤ n} is a Schreier set of coset representatives of D n (N g,p ) in B n (N g,p )
and the group D n (N g,p ) is generated by

s λ,a = λa • (λa) -1 ,
where λ runs over the set M n and a runs over the set of generators of B n (N g,p ).

Case 1. If a ∈ {σ 1 , . . . , σ n-1 }, then we find the generators

τ k = σ n-1 . . . σ k+1 σ 2 k σ -1 k+1 . . . σ -1 n-1 , k = 1, . . . , n -2, τ n-1 = σ 2 n-1 .
Case 2. If a ∈ {a 1 , . . . , a g }, then we find the generators w r = σ n-1 . . . σ 1 a r σ -1 1 . . . σ -1 n-1 , r = 1, . . . , g.

Case 3. If a ∈ {z 1 , . . . , z p-1 }, then we find the generators

ξ j = σ n-1 . . . σ 1 z j σ -1 1 . . . σ -1
n-1 , j = 1, . . . , p -1. Using the same argument as in the orientable case one can find the following group presentation for D n (N g,p ). Proposition 4. The group D n (N g,p ), n ≥ 1 admits a presentation with the generators σ 1 , . . . , σ n-2 , a 1 , . . . , a g , z 1 , . . . , z p-1 , τ 1 , . . . , τ n-1 , w 1 , . . . , w g , ξ 1 , . . . , ξ p-1 , and the following relations: -Braid relations:

(B1) σ i σ i+1 σ i = σ i+1 σ i σ i+1 , 1 ≤ i ≤ n -3, (B2) σ i σ j = σ j σ i , |i -j| > 1, 1 ≤ i, j ≤ n -2, (B3) σ -1 k τ l σ k = τ l , k = l -1, l, (S14) ξ z l j = ξ [ξ -1 l ,τ 1 ] j , 1 ≤ j < l ≤ p -1, (S15) ξ z j l = ξ l , 1 ≤ j < l ≤ p -1, (S16) τ z j 1 = [τ 1 , ξ -1 j ]τ 1 , 1 ≤ j ≤ p -1, (S17) ξ z j j = ξ τ 1 j , 1 ≤ j ≤ p -1.
Consider the subgroup W n,g,p = τ 1 , . . . , τ n-1 , w 1 , . . . , w g , ξ 1 , . . . , ξ p-1 of D n+1 (N g,p ). The group W n,g,p is free (see [START_REF] Bellingeri | On presentation of surface braid groups[END_REF]) and from (S1)-(S17) we see that B n (N p,g ) acts on W n,g,p by conjugacy.

Theorem 4. The group B n (N g,p ), for n > 1, p ≥ 1 and g ≥ 1 acts by conjugation on the free group W n,g,p and the induced representation ρ W : B n (N g,p ) → Aut(W n,g,p ) is defined as follows:

-Generators σ i , i = 1, . . . , n -1:

σ i :            τ i -→ τ τ -1 i i+1 ; τ i+1 -→ τ i ; τ l -→ τ l , l = i, i + 1 ; w r -→ w r , 1 ≤ r ≤ g ; ξ j -→ ξ j , 1 ≤ j ≤ p -1 .
-Generators a r , r = 1, . . . , g: a r :

                 τ 1 -→ (τ -1 1 ) w -1 r τ 1 ; τ i -→ τ i , 2 ≤ i ≤ n ; w s -→ w wrτ 1 w -1 r τ 1 s , 1 ≤ s < r ≤ g ; w r -→ τ -1 1 w r ; w s -→ w s , 1 ≤ r < s ≤ g ; ξ j -→ ξ wrτ 1 w -1 r τ 1 j , 1 ≤ j ≤ p -1.
-Generators z j , j = 1, . . . , p -1:

z j :                τ 1 -→ [τ 1 , ξ -1 j ]τ 1 ; τ i -→ τ i , 2 ≤ i ≤ n ; w r -→ w r , 1 ≤ r ≤ g ; ξ l -→ ξ [ξ -1 j ,τ 1 ] l , 1 ≤ l < j ≤ p -1 ; ξ j -→ ξ τ 1 j ; ξ l -→ ξ l , 1 ≤ j < l ≤ p -1.
We don't know if the representation ρ W : B n (N g,p ) → Aut(W n,g,p ) is faithful or not. Proposition 5. Let β be in B n (N g,p ). The element ρ W (β) in Aut(W n,g,p ) fixes the product

A = τ -1 n-1 . . . τ -1 2 τ -1 1 ξ 1 ξ 2 . . . ξ p-1 w 2 1 w 2 2 . . . w 2 g .
Proof. As above it is enough to prove that images of generators of B n (N g,p ) fix A. Case 1: generators σ i , 1 ≤ i ≤ n -1. The group B n is a subgroup of B n (N g,p ) and by Artin's theorem B n is a subgroup of Aut(F n ), F n = τ 1 , τ 2 , . . . , τ n-1 and fixes the product τ 1 τ 2 . . . τ n-1 . Hence, ρ W (σ i ) also fixes the product τ -1 n-1 . . . τ -1 2 τ -1 1 . From Theorem 4 it follows that

w σ i r = w r , 1 ≤ r ≤ g; ξ σ i j = ξ j , 1 ≤ j ≤ p -1. Hence, A σ i = A.
Case 2: generators a r , 1 ≤ r ≤ g. By Theorem 4 we have that

(τ -1 n-1 . . . τ -1 2 τ -1 1 ) ar = τ -1 n-1 . . . τ -1 2 (τ w -1 r τ 1 1
), and (ξ 1 . . . ξ p-1 ) ar = (ξ 1 . . . ξ p-1 ) wrτ 1 w -1 r τ 1 , and (w 2 1 . . . w 2 g ) ar = (w 2 1 . . . w 2 r-1 ) wrτ 1 w -1 r τ 1 (τ -1 w r τ -1 1 w r )(w 2 r+1 . . . w 2 g ). Hence, the element a r acts on A as follows:

A ar = τ -1 n-1 . . . τ -1 2 τ -1 1 ξ 1 . . . ξ p-1 w 2 1 w 2 2 . . . w 2 g , and A ar = A. Case 3. Generators z j , 1 ≤ j ≤ p -1. By Theorem 4 we deduce that (τ -1 n-1 . . . τ -1 2 τ -1 1 ) z j = τ -1 n-1 . . . τ -1 2 (τ -1 1 ξ j τ -1 1 ξ -1 j τ 1 ), (ξ 1 . . . ξ p-1 ) z j = (ξ 1 . . . ξ j-1 ) ξ j τ -1 1 ξ -1 j τ 1 (ξ τ 1 j ) ξ j+1 . . . ξ p-1 , and 
(w 2 1 w 2 2 . . . w 2 g ) z j = w 2 1 w 2 2 . . . w 2 g . Hence, A z j = A.

Braid groups of closed surfaces

Let Σ g = Σ g,0 be a closed orientable surface of genus g ≥ 1. The group B n (Σ g ), n > 1 admits a group presentation with generators:

σ 1 , . . . σ n-1 , x 1 , . . . x 2g ,
and relations: -Braid relations:

σ i σ i+1 σ i = σ i+1 σ i σ i+1 , 1 ≤ i ≤ n -2, σ i σ j = σ j σ i , |i -j| > 1, 1 ≤ i, j ≤ n -1, -Mixed relations: (R1) x r σ i = σ i x r , i = 1, 1 ≤ r ≤ 2g, (R2) (σ -1 1 x r σ -1 1 )x r = x r (σ -1 1 x r σ -1 1 ), 1 ≤ r ≤ 2g,
family of Artin-Tits groups associated to Coxeter groups of type A and braid groups of the annulus coincide with Artin-Tits groups associated to Coxeter groups of type B. In this Section we give a faithful representation of the remaining infinite family of spherical Artin-Tits groups, associated to Coxeter groups of type D. First let us denote by A(D n ) the n-th Artin-Tits group of type D with the group presentation provided by its Coxeter graph (see Figure 1), where vertices δ 1 , . . . , δ n are the generators of the group and two generators δ i , δ j verify the relation δ i δ j δ i = δ j δ i δ j if they are related by an edge and elsewhere they commute. (1) The representation ρ D : B n → Aut(F n-1 ) given algebraically by: ρ D (σ 1 ) :

x 1 → x 1 , x j → x -1 1 x j , j = i, and for 2 ≤ i ≤ n -1, ρ D (σ i ) :

   x i-1 -→ x i , x i -→ x i x -1 i-1 x i , x j -→ x j , j = i -1, i.
is well defined and faithful. 2 )(δ i+1 • • • δ 3 ) -1 for i = 2, . . . , n -1. The first item of Proposition 9 was already established in [START_REF] Perron | Groupes de monodromie géométrique des singularités simples[END_REF] by topological means and the third item is actually proven in the proof of Proposition 2.3 in [START_REF] Crisp | Artin groups of type B and D[END_REF].

From Proposition 9 we can deduce a faithful representation of A(D n ) into Aut(F n ).

Proposition 10. The representation ι : A(D n ) → Aut(F n ) given algebraically by: ι(δ 1 ) :

   x 1 -→ x 1 , x j -→ x j x -1 1 , j = 1, n, x n -→ x 1 x n x -1 1 ,
ι(δ 2 ) :

   x 1 -→ x 1 ,
x j -→ x -1 1 x j , j = 1, n, x n -→ x n , and for 3 ≤ i ≤ n, ι(δ i ) :

   x i-2 -→ x i-1 , x i-1 -→ x i-1 x -1
i-2 x i-1 , x j -→ x j , j = i -2, i -1. is well defined and faithful.

Proof. From Proposition 9 it follows that F n-1 ⋊ ρ D B n is isomorphic to A(D n ) through the morphism χ : F n-1 ⋊ ρ D B n → A(D n ) defined algebraically as follows: χ(x i ) = λ i for any generator x i of F n-1 and χ(σ i ) = δ i+1 for any generator σ i of B n .

Remark that F n-1 ⋊ ρ D B n is a subgroup of F n-1 ⋊Aut(F n-1 ). Now, considering the natural inclusion of Aut(F n-1 ) into Aut(F n ) leaving the generator x n invariant and the action by conjugacy of F n-1 on F n , we obtain a morphism φ : F n-1 ⋊ ρ D B n → Aut(F n ), which can be easily proved to be injective.

By direct calculation one can verify that ι(λ i ) is the conjugacy by x i for i = 1, . . . , n -1; moreover, since ι • χ restricted to B n coincides with the representation of B n into Aut(F n ) obtained composing the map ρ D with the natural inclusion of Aut(F n-1 ) into Aut(F n ) leaving the generator x n invariant, we can deduce that ι • χ = φ and therefore the claim follows.
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From Theorem 1 it follows that w σ i r = w r , 1 ≤ r ≤ 2g; ξ σ i j = ξ j , 1 ≤ j ≤ p -1. Hence, A σ i = A.

Case 2: generators x r , 1 ≤ r ≤ 2g. By Theorem 1 we have (τ -1 n-1 . . . τ -1 2 τ -1 1 ) xr = τ -1 n-1 . . . τ -1 2 (τ -1 1 w r τ -1 1 w -1 r τ 1 ) and (ξ 1 . . . ξ p-1 ) xr = (ξ 1 . . . ξ p-1

]) xr . We will distinguish two cases: r = 2m -1 and r = 2m, where m = 1, . . . g. In the first case we have the following equalities:

In the second case we have the following equalities:

In both cases we have

Hence, the element x r acts by conjugation on A as follows

and then it is easy to check that A xr = A.

Case 3: generators z j , 1 ≤ j ≤ p -1. By Theorem 1 we have

It is easy to see that the relations (B1), (B2), (R1.1), (R2.1), . . . , (R7.1) are defining relations of B n-1 (N g,p ). From the other relations we can find the following conjugacy formulae:

As before, let π be the natural projection of B n (Σ g ) in S n , let D n (Σ g ) = π -1 (S n-1 ) and 

Consider the subgroup V n-1,g of D n (Σ g ) generated by {τ 2 , . . . , τ n-1 , w 1 , . . . , w 2g }. The group V n-1,g is free and normal in D n (Σ g ) [START_REF] Bellingeri | On presentation of surface braid groups[END_REF]. Using relation (RT.2) one finds that

and therefore τ 1 ∈ V n . Also, consider the subgroup

In fact, one can prove that the relations (B1), (B2), (R1.1), (R2.1), (R3.1), (R4.1) and (RT.1) are defining relations of B n-1 (Σ g ) and therefore we can deduce that B n-1 (Σ g ) ≃ B n-1 (Σ g )/ τ 1 . From the other relations we can see that B n-1 (Σ g ) acts on V n by conjugacy. Hence, the following theorem holds. Proposition 7. There exists a representation ρ V : B n-1 (Σ g ) → Aut(V n-1,g ), induced by the action by conjugacy of B n-1 (Σ g ) on the free group V n-1,g = τ 2 , . . . , τ n-1 , w 1 , . . . , w 2g given algebraically as follows:

-Action on generators τ 2 , . . . , τ n-1 :

-Action on generators w 1 , . . . , w 2g : (S5)

From Proposition 7 we get a representation of B n-1 (Σ g ) in Aut(V n-1,g )/ t , where t ∈ Aut(V n-1,g ) is the conjugation by the word

Therefore, we have the following result:

Proposition 8. There exists a representation ρ V : B n-1 (Σ g ) → Out(V n-1,g ), given algebraically as follows:

-Action (up to conjugacy) on generators τ 2 , . . . , τ n-1 :

-Action (up to conjugacy) on generators w 1 , . . . , w 2g : (S5) 2g-1 , w 2g ]τ -1 n-1 . . . τ -1 2 . We don't know if the representation ρ V of B n-1 (Σ g ) is faithful or not.

Artin-Tits groups

We recall that classical braid groups are also called Artin-Tits groups of type A. More precisely, let (W, S) be a Coxeter system and let us denote the order of the element st in W by m s, t (for s, t ∈ S). Let A(W ) be the group defined by the following group presentation:

for any s = t ∈ S with m s, t < +∞ .

The group A(W ) is the Artin-Tits group associated to W . The group A(W ) is said to be of spherical type if W is finite. There exists three infinite families of finite Coxeter groups usually denoted respectively as of type A, B and D. Artin braid groups correspond to the