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REPRESENTATIONS OF BRAID GROUPS AND GENERALISATIONS

VALERIJ G. BARDAKOV AND PAOLO BELLINGERI

Abstract. We define and study extensions of Artin’s representation and braid monodromy
representation to the case of topological and algebraical generalisations of braid groups.
In particular we provide faithful representations of braid groups of oriented surfaces with
boundary components as (outer) automorphisms of free groups. We give also similar repre-
sentations for braid groups of non oriented surfaces with boundary components and we show
a representation of braid groups of closed surfaces as outer automorphisms of free groups.
Finally, we provide faithful representations of Artin-Tits groups of type D as automorphisms
of free groups.

1. Introduction

Let Fn be the free group of rank n with the set of generators {x1, x2, . . . , xn}. Assume
further that Aut(Fn) is the automorphism group of Fn. The Artin braid group Bn can be
represented as a subgroup of Aut(Fn). This representation, due to Artin himself, is defined
associating to any generator σi, for i = 1, 2, . . . , n− 1, of Bn the following automorphism of
Fn:

σi :






xi 7−→ xi xi+1 x
−1
i ,

xi+1 7−→ xi,
xl 7−→ xl, l 6= i, i+ 1.

Moreover (see for instance [10, Theorem 5.1]), any automorphism β of Aut(Fn) corresponds
to an element of Bn if and only if β satisfies the following conditions:

i) β(xi) = a−1
i xs(i) ai, 1 ≤ i ≤ n,

ii) β(x1x2 . . . xn) = x1x2 . . . xn,

where s is a permutation from the symmetric group Sn and ai ∈ Fn.
Generalisations of Artin’s representation have been provided by Wada [13] and further by

Crisp and Paris [5], in order to construct group invariants of oriented links.
Another interesting representation of Bn is the braid monodromy representation of Bn into

Aut(Fn−1) (see last Section), that was proven to be faithful in [6] and [12].
In this paper, we extend Artin’s and braid monodromy representations to some generali-

sations of braid groups.
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In the case of braid groups of oriented surfaces with boundary components our representa-
tions are faithful (Theorem 2). Moreover, in the case of surfaces of genus g ≥ 1, the induced
representations of surface braid groups as outer automorphisms hold faithful (Theorem 3).

In the case of closed surfaces, as earlier remarked in [4] for braid groups of the sphere, we
cannot extend Artin’s representation and we provide a representation in the outer automor-
phism group of a finitely generated free group.

In the last Section we consider the braid monodromy representation of Bn in Aut(Fn−1)
and we provide a faithful representation of the n-th Artin-Tits group of type D in Aut(Fn)
(Proposition 10).

Acknoledgments. The research of the first author has been supported by the Scientific and
Research Council of Turkey (TÜBİTAK). The first author would like to thank Prof. Hasan
Gümral, Prof. Vladimir Tolstykh and other members of the Department of Mathematics of
Yeditepe University (Istanbul) for their kind hospitality. We thank Prof. Warren Dicks for
pointing out a doubtful argument on a previous version of Proposition 10 and for suggesting
us a different approach for an easier proof.

2. Braid groups of orientable surfaces with boundary components

Surface braids as collections of paths. Let P = {p1, . . . , pn} be a set of n distinct points
(punctures) in the interior of a surface Σ.

A geometric braid on Σ based at P is a collection (ψ1, . . . , ψn) of n disjoint paths (called
strands) on Σ × [0, 1] which run monotonically with t ∈ [0, 1] and such that ψi(0) = (pi, 0)
and ψi(1) ∈ P×{1}. Two braids are considered to be equivalent if they are isotopic relatively
to the base points. The usual product of paths defines a group structure on the equivalence
classes of braids. This group, denoted usually by Bn(Σ), does not depend on the choice of P
and it is called braid group on n strands of Σ. The nth braid group of the disk D2, Bn(D2),
is isomorphic to Bn.

In the following we will denote by Bn(Σg,p) the braid group on n strands of an orientable
surface of genus g with p boundary components (we set Σg = Σg,0) and by Bn(Ng,p) the
braid group on n strands of a non-orientable surface of genus g with p boundary components
(we set Ng = Ng,0).

In this section we will consider an orientable surface Σg,p of genus g ≥ 0 and with p > 0
boundary components. We set also n ≥ 2.

We denote by σ1, ..., σn−1 the standard generators of the braid group Bn. Since p > 0, we
can embed a disk in Σg,p and therefore we can consider σ1, ..., σn−1 as elements of Bn(Σg,p).
Let also a1, ..., ag, b1, ..., bg, z1, ..., zp−1 be the generators of π1(Σg,p), where zi’s denote loops
around the holes. Assume that the base point of the fundamental group is the startpoint of
the first strand. Then each element γ ∈ π1(Σg,p) determines an element denoted also by γ
in Bn(Σg,p), by considering the braid whose first strand is describing the curve γ and other
strands are constant.
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Let us set x2k−1 = ak and x2k = bk for k = 1, . . . , g. According to [1] we have that the
group Bn(Σg,p) admits a presentation with generators:

σ1, . . . , σn−1, x1, . . . , x2g, z1, . . . , zp−1,

and defining relations:
– Braid relations:
σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 2,
σiσj = σjσi, |i− j| > 1, 1 ≤ i, j ≤ n− 1,

– Mixed relations:
(R1) xrσi = σixr, i 6= 1, 1 ≤ r ≤ 2g,
(R2) (σ−1

1 xrσ
−1
1 )xr = xr(σ

−1
1 xrσ

−1
1 ), 1 ≤ r ≤ 2g,

(R3) (σ−1
1 xsσ1)xr = xr(σ

−1
1 xsσ1), 1 ≤ s < r ≤ 2g, (s, r) 6= (2m− 1, 2m),

(R4) (σ−1
1 x2m−1σ

−1
1 )x2m = x2m(σ−1

1 x2m−1σ1), 1 ≤ m ≤ g,
(R5) zjσi = σizj, i 6= 1, 1 ≤ j ≤ p− 1,
(R6) (σ−1

1 zjσ1)xr = xr(σ
−1
1 zjσ1), 1 ≤ r ≤ 2g, 1 ≤ j 6= p− 1,

(R7) (σ−1
1 zjσ1)zl = zl(σ

−1
1 zjσ1), 1 ≤ j < l ≤ p− 1,

(R8) (σ−1
1 zjσ

−1
1 )zj = zj(σ

−1
1 zjσ1), 1 ≤ j ≤ p− 1.

Associating to any surface braid the corresponding permutation one obtains a surjective
homomorphism

π : Bn(Σg,p) −→ Sn,

such that π(σi) = (i, i + 1), i = 1, . . . , n − 1, π(xr) = π(zj) = e for 1 ≤ r ≤ 2g and
1 ≤ j ≤ p− 1.

In [1] the second author considered the subgroup Dn(Σg,p) = π−1(Sn−1) and found its gen-
erators. We provide a set of defining relations ofDn(Σg,p) using the well-known Reidemeister-
Schreier’s method (see [8, Chap. 2]).

Let Mn = {ml | 1 ≤ l ≤ n} be the set defined as follows:

ml = σn−1 . . . σl, l = 1, . . . , n− 1, mn = 1.

It is easy to prove (see [1]) that |Bn(Σg,p) : Dn(Σg,p)| = n and that Mn is a Schreier set of
coset representatives of Dn(Σg,p) in Bn(Σg,p). Define the map − : Bn(Σg,p) −→ Mn which
takes an element w ∈ Bn(Σg,p) into the representative w from Mn. The element ww−1

belongs to Dn(Σg,p) and, by Theorem 2.7 from [8], the group Dn(Σg,p) is generated by

sλ,a = λa · (λa)−1,

where λ runs over the set Mn and a runs over the set of generators of Bn(Σg,p).

Case 1. If a ∈ {σ1, . . . , σn−1}, then we find the generators

τk = σn−1 . . . σk+1σ
2
kσ
−1
k+1 . . . σ

−1
n−1, k = 1, . . . , n− 2, τn−1 = σ2

n−1.
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Case 2. If a ∈ {x1, . . . , x2g}, then we find the generators

wr = σn−1 . . . σ1xrσ
−1
1 . . . σ−1

n−1, r = 1, . . . , 2g.

Case 3. If a ∈ {z1, . . . , zp−1}, then we find the generators

ξj = σn−1 . . . σ1zjσ
−1
1 . . . σ−1

n−1, j = 1, . . . , p− 1.

To find defining relations of Dn(Σg,p) we define a rewriting process τ . It allows us to
rewrite a word which is written in the generators of Bn(Σg,p) and to present an element in
Dn(Σg,p) as a word in the generators of Dn(Σg,p). Let us associate to the reduced word

u = aε1

1 aε2

2 . . . aεν

ν , εl = ±1,

where
al ∈ {σ1, σ2, . . . , σn−1, x1, x2, . . . , x2g, z1, z2, . . . , zp−1},

the word
τ(u) = sε1

k1,a1
sε2

k2,a2
. . . sεν

kν ,aν

in the generators of Dn(Σg,p), where kj is a representative of the (j − 1)th initial segment
of the word u if εj = 1 and kj is a representative of the jth initial segment of the word u if
εj = −1. By [8, Theorem 2.9], the group Dn(Σg,p) is defined by relations

rµ,λ = τ(λ rµ λ
−1), λ ∈Mn,

where rµ is a defining relation of Bn(Σg,p).

Proposition 1. The group Dn(Σg,p) admits a presentation with the generators

σ1, . . . , σn−2, x1, . . . , x2g, z1, . . . , zp−1, τ1, . . . , τn−1, w1, . . . , w2g, ξ1, . . . , ξp−1;
and relations:

– Braid relations
(B1) σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 3,
(B2) σiσj = σjσi, |i− j| > 1, 1 ≤ i, j ≤ n− 2,
(B3) σ−1

k τlσk = τl, k 6= l − 1, l,
(B4) σ−1

l−1τlσl−1 = τl−1,

(B5) σ−1
l τlσl = τlτl+1τ

−1
l , l 6= n− 1.

– Mixed relations
(R1.1) xrσi = σixr, 2 ≤ i ≤ n− 2, 1 ≤ r ≤ 2g,
(R1.2) xrτi = τixr, 2 ≤ i ≤ n− 1,
(R1.3) wrσi = σiwr, 1 ≤ r ≤ 2g, ≤ i ≤ n− 2,
(R2.1) (σ−1

1 xrσ
−1
1 )xr = xr(σ

−1
1 xrσ

−1
1 ), 1 ≤ r ≤ 2g,

(R2.2) x−1
r wrxr = τ−1

1 wrτ1, 1 ≤ r ≤ 2g,
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(R2.3) x−1
r τ1xr = τ−1

1 wrτ1w
−1
r τ1, 1 ≤ r ≤ 2g,

(R3.1) (σ−1
1 xsσ1)xr = xr(σ

−1
1 xsσ1), 1 ≤ s < r ≤ 2g, (s, r) 6= (2m− 1, 2m),

(R3.2) x−1
r (τ−1

1 wsτ1)xr = τ−1
1 wsτ1, 1 ≤ s < r ≤ 2g, (s, r) 6= (2m− 1, 2m),

(R3.3) xswr = wrxs, 1 ≤ s < r ≤ 2g, (s, r) 6= (2m− 1, 2m),
(R4.1) (σ−1

1 x2m−1σ
−1
1 )x2m = x2m(σ−1

1 x2m−1σ1), 1 ≤ m ≤ g,
(R4.2) x−1

2m(τ−1
1 w2m−1)x2m = τ−1

1 w2m−1τ1, 1 ≤ m ≤ g,
(R4.3) x−1

2m−1w2mx2m−1 = τ−1
1 w2m, 1 ≤ m ≤ g,

(R5.1) zjσi = σizj , 2 ≤ i ≤ n− 2, 1 ≤ j ≤ p− 1,
(R5.2) zjτi = τizj, 2 ≤ i ≤ n− 1, 1 ≤ j ≤ p− 1,
(R5.3) ξjσi = σiξj, 1 ≤ j ≤ p− 1, 1 ≤ i ≤ n− 2,
(R6.1) (σ−1

1 zjσ1)xr = xr(σ
−1
1 zjσ1), 1 ≤ r ≤ 2g, 1 ≤ j ≤ p− 1,

(R6.2) x−1
r (τ−1

1 ξjτ1)xr = τ−1
1 ξjτ1, 1 ≤ r ≤ 2g, 1 ≤ j ≤ p− 1,

(R6.3) zjwr = wrzj , 1 ≤ r ≤ 2g, 1 ≤ j ≤ p− 1,
(R7.1) (σ−1

1 zjσ1)zl = zl(σ
−1
1 zjσ1), 1 ≤ j < l ≤ p− 1,

(R7.2) z−1
l (τ−1

1 ξjτ1)zl = τ−1
1 ξjτ1, 1 ≤ j < l ≤ p− 1,

(R7.3) zjξl = ξlzj , 1 ≤ j < l ≤ p− 1,
(R8.1) (σ−1

1 zjσ
−1
1 )zj = zj(σ

−1
1 zjσ

−1
1 ), 1 ≤ j ≤ p− 1,

(R8.2) z−1
j (τ−1

1 ξj)zj = τ−1
1 ξj, 1 ≤ j ≤ p− 1,

(R8.3) z−1
j ξjzj = τ−1

1 ξjτ1, 1 ≤ j ≤ p− 1.

The generators σ1, . . . , σn−2, x1, . . . , x2g, z1, . . . , zp−1 generate a group isomorphic toBn−1(Σg,p)
(see also Remark 3.1 from [1]) and it is easy to see that the relations (B1), (B2), (R1.1),
(R2.1), . . . , (R8.1) are a complet set of relations for Bn−1(Σg,p). From the other relations
we can find the following conjugacy formulae:

(S1) τσk

l = τl, k 6= l − 1, l,
(S2) τ

σl−1

l = τl−1,

(S3) τσl

l = τ
τ−1

l

l+1 , l 6= n− 1,
(S4) τxr

i = τi, 2 ≤ i ≤ n− 1,
(S5) wσi

r = wr, 1 ≤ r ≤ 2g, 1 ≤ i ≤ n− 2,
(S6) wxr

r = wτ1
r ,

(S7) τxr

1 = τw−1
r τ1

1 ,

(S8) wxr
s = w

[w−1
r ,τ1]

s , 1 ≤ s < r ≤ 2g, (s, r) 6= (2m− 1, 2m),
(S9) wxs

r = wr, 1 ≤ s < r ≤ 2g, (s, r) 6= (2m− 1, 2m),
(S10) wx2m

2m−1 = [τ1, w
−1
2m]w2m−1τ1,

(S11) w
x2m−1

2m = τ−1
1 w2m,

(S12) τ
zj

i = τi, 2 ≤ i ≤ n− 1, 1 ≤ j ≤ p− 1,
(S13) ξσi

j = ξj, 1 ≤ i ≤ n− 2, 1 ≤ j ≤ p− 1,

(S14) ξxr

j = ξ
[w−1

r ,τ1]
j , 1 ≤ r ≤ 2g, 1 ≤ j ≤ p− 1,

(S15) w
zj
r = wr, 1 ≤ r ≤ 2g, 1 ≤ j ≤ p− 1,
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(S16) ξzl

j = ξ
[ξ−1

l
,τ1]

j , 1 ≤ j < l ≤ p− 1,

(S17) ξ
zj

l = ξl, 1 ≤ j < l ≤ p− 1,
(S18) τ

zj

1 = [τ1, ξ
−1
j ]τ1, 1 ≤ j ≤ p− 1,

(S19) ξ
zj

j = ξτ1
j , 1 ≤ j ≤ p− 1,

where ab = a−1ba and [a, b] = a−1b−1ab.

Let Un−1,g,p be the subgroup ofDn(Σg,p) generated by {τ1, . . . τn−1, w1, . . . , w2g, ξ1, . . . , ξp−1}.

Proposition 2. The group Un−1,g,p is a normal subgroup of Dn(Σg,p) and it is a free group
of rank n + p+ 2g − 2.

Proof. The statement was proven in [1, Section.2] using the interpretation of Un−1,g,p as the
fundamental group of the surface Σg,p with n− 1 points removed. �

From relations (S1)...(S19) we deduce that Bn−1(Σg,p) acts on Un−1,g,p by conjugacy.

Theorem 1. The group Bn−1(Σg,p) with n ≥ 3, g ≥ 0 and p > 0 acts by conjugacy on
the free group Un−1,g,p. Therefore we have a representation ρU : Bn−1(Σg,p) → Aut(Un−1,g,p)
defined algebraically as follows:
– Generators σi, i = 1, . . . , n− 2:

σi :





τi 7−→ τ
τ−1

i

i+1 ;
τi+1 7−→ τi ;
τl 7−→ τl, l 6= i, i+ 1, ;
wr 7−→ wr, 1 ≤ r ≤ 2g ;
ξj 7−→ ξj, 1 ≤ j ≤ p− 1.

– Generators xr, r = 1, . . . , 2g:

xr :





τ1 7−→ τw−1
r τ1

1 ;
τi 7−→ τi, 2 ≤ i ≤ n ;

ws 7−→ w
[w−1

r ,τ1]
s , s < r, (s, r) 6= (2m− 1, 2m) ;

wr−1 7−→ [τ1, w
−1
r ]wr−1τ1, if r = 2m ;

wr 7−→ wτ1
r ;

ws 7−→ ws, r < s, (r, s) 6= (2m− 1, 2m) ;
wr+1 7−→ τ−1

1 wr+1, if r = 2m− 1 ;

ξj 7−→ ξ
[w−1

r ,τ1]
j , 1 ≤ j ≤ p− 1 .

– Generators zj , j = 1, . . . , p− 1:

zj :





τ1 7−→ τ
ξ−1

j τ1

1 ;
τi 7−→ τi, 2 ≤ i ≤ n ;
w

zj
r 7−→ wr, 1 ≤ r ≤ 2g) ;

ξ
zj

l 7−→ ξ
[ξ−1

j ,τ1]

l , 1 ≤ l < j ≤ p− 1 ;
ξ

zj

j 7−→ ξτ1
j ;

ξ
zj

l 7−→ ξl, 1 ≤ j < l ≤ p− 1 .
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In the following we outline a proof of the faithfulness of the representation ρU of Bn−1(Σg,p)
given in Theorem 1 using the interpretation of surface braids as mapping classes.

First, we recall that the mapping class group of a surface Σg,p, let us denote it by Mg,p,
is the group of isotopy classes of orientation-preserving self-homeomorphisms which fix the
boundary components pointwise.

Let P = {p1, . . . , pn} be a set of n distinct points (punctures) in the interior of the surface
Σg,p. The punctured mapping class group of Σg,p relative to P is defined to be the group
of isotopy classes of orientation-preserving self-homeomorphisms which fix the boundary
components pointwise, and which fix P setwise. This group, that we will denote by Mn

g,p,
does not depend on the choice of P, but just on its cardinal.

We recall also that a simple closed curve C is essential if either it does not bound a disk
or it bounds a disk containing at least two punctures.

Finally, we denote TC as a Dehn twist along a simple closed curve C. Let C and D be
two simple closed curves bounding an annulus containing only the puncture pj . We shall say
that the multitwist TCT

−1
D is a j-bounding pair braid, also called spin map in [4].

Surface braids as mapping classes. Let g, p ≥ 0 and let ψn,0 : Mn
g,p → Mg,p be the

homomorphism induced by the map which forgets the set P. When p = 0, according to a
well-known result of Birman [4, Chapter 4.1], the group Bn(Σg) is isomorphic to kerψn,0 if
g > 1. The statement of Birman’s theorem concerns the case of closed surfaces, but the
proof extends naturally to the case of surfaces with boundary components and the group
Bn(Σg,p) is isomorphic to kerψn,0 if g ≥ 1 and p > 0.

Geometrically the correspondence between kerψn,0 and Bn(Σg,p) is realized as follows:
given a homeomorphism h of Σg,p isotopic to the identity Id of Σg,p and fixing boundary
components pointwise and P setwise, the track of the punctures p1, . . . , pn under an isotopy
from h to Id is the geometric braid corresponding to the homeomorphism h.
Theorem 2. Let g ≥ 0, p > 0 and n ≥ 3. The representation ρU : Bn−1(Σg,p) →
Aut(Un−1,g,p) is faithful.

Proof. First we prove the claim when g is greater or equal then 1. According to Birman’s
result we can represent the group Dn(Σg,p) as a (normal) subgroup of Mn

g,p, more precisely
as the subgroup of mapping classes in kerψn,0 sending the nth puncture into itself (see
also Remark 18 from [3]). In particular generators τ1, . . . , τn−1, w1, . . . , w2g, ξ1, . . . , ξp−1, of
Dn(Σg,p) (see Proposition 1) correspond to n-bounding pair braids in Mn

g,p.

Let ψn,n−1 : Mn
g,p → Mn−1

g,p be the homomorphism forgetting the last puncture. Now,
let us consider the exact sequence associate to the restriction of ψn,n−1 to Dn(Σg,p). The
image of Dn(Σg,p) by ψn,n−1 coincides with kerψn−1,0 which is isomorphic to Bn−1(Σg,p). On
the other hand, kerψn,n−1 ∩Dn(Σg,p) is the subgroup of Mn

g,p generated by n-bounding pair
braids τ1, . . . , τn−1, w1, . . . , w2g, ξ1, . . . , ξp−1 and therefore it is isomorphic to Un−1,g,p.

The group Bn−1(Σg,p) embeds naturally in Bn(Σg,p) by sending generators of Bn−1(Σg,p)
in corresponding ones of Bn(Σg,p) and therefore Bn−1(Σg,p) can be considered also as a
subgroup of Mn

g,p. Moreover, the action considered in Theorem 1 corresponds to the action
by conjugacy of Bn−1(Σg,p), seen as a subgroup of Mn

g,p, on Un−1,g,p. Since Un−1,g,p is a
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normal subgroup of Mn
g,p we can define a map Θ : Inn(Mn

g,p) → Aut(Un−1,g,p). We prove
that Θ is injective and therefore that the action by conjugacy of Bn−1(Σg,p) on Un−1,g,p is
faithful. Let g ∈ Inn(Mn

g,p) such that Θ(g) = 1 and C be an essential curve. We can
associate to the curve C another simple closed curve D such that they bound an annulus
containing only the puncture pn. The mapping class TCT

−1
D is then a n-bounding pair braid.

Since Θ(g) = 1, then g TCT
−1
D g−1 = TCT

−1
D and from a simple argument on the index of

intersection of curves (see for instance Proposition 2.10 of [2]) one can easily deduce that
g(C) = C. Since g(C) = C for any essential curve C it follows that g is isotopic to the
identity (Lemma 5.1 and Theorem 5.3 of [7]). Therefore Θ is injective and in particular the
representation defined in Theorem 1 is faithful when g ≥ 1.

The only case left is when the genus is equal to zero. We recall that, for p > 0, the group
Bn(Σ0,p) is isomorphic to the subgroup Bn+p−1,p−1 of Bn+p−1 fixing the last p−1 strands. In
this case our representation coincides with Artin representation of Bn+p−1 in Aut(Fn+p−1)
restricted to the subgroup Bn+p−1,p−1. �

Corollary 1. The group Bm(Σg,p) is residually finite for m ≥ 1, g ≥ 0 and p > 0.

Proof. Baumslag and Smirnov proved (see for instance [9, Theorem 4.8]) that any finitely
presented group which is isomorphic to a subgroup of automorphisms of a free group of finite
rank is residually finite. Therefore for m > 1 the statement is a Corollary of Theorem 2. In
the case m = 1, the group B1(Σg,p) is isomorphic to the fundamental group of Σg,p which is
free and therefore residually finite. �

Remark also that from Theorem 2 one can derive, using Fox derivatives, a Burau rep-
resentation for Bn(Σg,p). Since the restriction on Bn of such representation coincides with
the usual Burau representation of Bn, the Burau representation for Bn(Σg,p) obtained from
Theorem 2 is not faithful for n ≥ 5.

3. Surface braids as outer automorphisms of free groups

As recalled in the Introduction, any element β of Bn ⊂ Aut(Fn) fixes the product
x1x2 . . . xn of generators of Fn. We prove a similar statement for the group Bn(Σg,p), for
p > 0.

Proposition 3. Let p > 0 and let Un−1,g,p be the free group of rank n + p + 2g − 2 defined
above. Any element β in Bn−1(Σg,p) ⊂ Aut(Un−1,g,p) fixes the product

A = τ−1
n−1 . . . τ

−1
2 τ−1

1 ξ1ξ2 . . . ξp−1[w
−1
1 , w2] . . . [w

−1
2g−1, w2g].

Proof. In order to prove the claim it suffices to verify that any generator of Bn−1(Σg,p), con-
sidered as an automorphism of Un−1,g,p, fixes the element A.

Case 1: generators σi, 1 ≤ i ≤ n − 2. The group Bn−1 is a subgroup of Bn−1(Σg,p) and by
Artin’s theorem Bn−1 is a subgroup of Aut(Fn−1), Fn−1 = 〈τ1, τ2, . . . , τn−1〉, and fixes the
product τ1τ2 . . . τn−1. Hence, the generator σi also fixes the product τ−1

n−1 . . . τ
−1
2 τ−1

1 .
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From Theorem 1 it follows that

wσi

r = wr, 1 ≤ r ≤ 2g; ξσi

j = ξj, 1 ≤ j ≤ p− 1.

Hence, Aσi = A.

Case 2: generators xr, 1 ≤ r ≤ 2g. By Theorem 1 we have

(τ−1
n−1 . . . τ

−1
2 τ−1

1 )xr = τ−1
n−1 . . . τ

−1
2 (τ−1

1 wrτ
−1
1 w−1

r τ1)

and
(ξ1 . . . ξp−1)

xr = (ξ1 . . . ξp−1)
[w−1

r ,τ1].

Let us consider
([w−1

1 , w2] . . . [w
−1
2g−1, w2g])

xr .

We will distinguish two cases: r = 2m− 1 and r = 2m, where m = 1, . . . g. In the first case
we have the following equalities:

([w−1
1 , w2] . . . [w

−1
2m−3, w2m−2])

x2m−1 = ([w−1
1 , w2] . . . [w

−1
2m−3, w2m−2])

[w−1

2m−1
,τ1],

[w−1
2m−1, w2m]x2m−1 = [w−τ1

2m−1, τ
−1
1 w2m] = [τ1, w

−1
2m−1][w

−1
2m−1, w2m],

([w−1
2m+1, w2m+2] . . . [w

−1
2g−1, w2g])

x2m−1 = [w−1
2m+1, w2m+2] . . . [w

−1
2g−1, w2g].

In the second case we have the following equalities:

([w−1
1 , w2] . . . [w

−1
2m−3, w2m−2])

x2m = ([w−1
1 , w2] . . . [w

−1
2m−3, w2m−2])

[w−1

2m,τ1],

[w−1
2m−1, w2m]x2m = [τ−1

1 w−1
2m−1[w

−1
2m, τ1], w

τ1
2m] = [τ1, w

−1
2m][w−1

2m−1, w2m],

([w−1
2m+1, w2m+2] . . . [w

−1
2g−1, w2g])

x2m = [w−1
2m+1, w2m+2] . . . [w

−1
2g−1, w2g].

In both cases we have

([w−1
1 , w2] . . . [w

−1
2g−1, w2g])

xr = [τ1, w
−1
r ][w−1

1 , w2] . . . [w
−1
2g−1, w2g].

Hence, the element xr acts by conjugation on A as follows

Axr = τ−1
n−1 . . . τ

−1
2 τ−1

1 [w−1
r , τ1](ξ1 . . . ξp−1)

[w−1
r ,τ1][τ1, w

−1
r ][w−1

1 , w2] . . .

[w−1
2g−1, w2g],
and then it is easy to check that Axr = A.

Case 3: generators zj , 1 ≤ j ≤ p− 1. By Theorem 1 we have

(τ−1
n−1 . . . τ

−1
2 τ−1

1 )zj = τ−1
n−1 . . . τ

−1
2 τ−1

1 [ξ−1
j , τ1],

(ξ1 . . . ξp−1)
zj = (ξ1 . . . ξj−1)

[ξ−1

j ,τ1]ξτ1
j ξj+1 . . . ξp−1 = [ξ−1

j , τ1]
−1ξ1 . . . ξp−1,
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and

([w−1
1 , w2] . . . [w

−1
2g−1, w2g])

zj = [w−1
1 , w2] . . . [w

−1
2g−1, w2g].

Hence, Azj = A and the Proposition follows. �

We recall that ρU : Bn−1(Σg,p) → Aut(Un−1,g,p) is the representation of Bn−1(Σg,p) defined
in Theorem 1 and let p : Aut(Un−1,g,p) → Out(Un−1,g,p) be the canonical projection.
Theorem 3. The representation p ◦ ρU : Bn−1(Σg,p) → Out(Un−1,g,p) is faithful for p > 0
when g > 0 and for p > 2 when g = 0.

Proof. Since the representation ρU : Bn−1(Σg,p) → Aut(Un−1,g,p) is faithful (Theorem 2), we
can identify Bn−1(Σg,p) with ρU(Bn−1(Σg,p)).

Now suppose that there exists β ∈ Bn−1(Σg,p) ∩ Inn(Un−1,g,p). From Proposition 3 one
deduces that β is a conjugation by a power m of

A = τ−1
n−1 . . . τ

−1
2 τ−1

1 ξ1ξ2 . . . ξp−1[w
−1
1 , w2] . . . [w

−1
2g−1, w2g].

Now, let g be a generator of Bn−1(Σg,p). Since all elements of Bn−1(Σg,p) fix the element A
we deduce the following equalities:

g−1(β(g(x))) = g−1(Amg(x)A−m) = AmxA−m = β(x),

for any x ∈ Un−1,g,p. One deduces that g−1βg = β for any generator g of Bn−1(Σg,p)
and therefore β belongs to the center of Bn−1(Σg,p). Since Bn−1(Σg,p) (with n ≥ 2) has
trivial center for p > 0 when g > 0 [11] and for p > 2 when g = 0, the intersection
Bn−1(Σg,p) ∩ Inn(Un−1,g,p) is trivial and the claim follows. �

Remark 1. Let φ : Bn → Out(Fn) the representation obtained composing Artin repre-
sentation of Bn in Aut(Fn) with the canonical projection of Aut(Fn) in Out(Fn). Such
representation is not faithful and it is easy to see that the kernel is the center of Bn.

4. Surface braid groups of non-orientable surfaces with boundary

components

Let Ng,p be a non-orientable surface of genus g ≥ 1, with p > 0 boundary components. Let
σ1, . . . , σn−1 be the usual generators of Bn and a1, . . . ag, z1, . . . zp−1 be the usual generators
of the fundamental group of Ng,p. As in previous section we can consider σ1, . . . , σn−1 and
a1, . . . ag, z1, . . . zp−1 as elements of Bn(Ng,p). According to [1] the group Bn(Ng,p) admits a
presentation with generators:

σ1, . . . σn−1, a1, . . . ag, z1, . . . zp−1,

and relations:
– Braid relations:
σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 2,
σiσj = σjσi, |i− j| > 1, 1 ≤ i, j ≤ n− 1,

– Mixed relations:
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(R1) arσi = σiar, i 6= 1, 1 ≤ r ≤ g,
(R2) σ−1

1 arσ
−1
1 ar = arσ

−1
1 arσ1, 1 ≤ r ≤ g,

(R3) (σ−1
1 asσ1)ar = ar(σ

−1
1 asσ1), 1 ≤ s < r ≤ g,

(R4) zjσi = σizj, i 6= 1, 1 ≤ j ≤ p− 1,
(R5) (σ−1

1 ziσ1)ar = ar(σ
−1
1 ziσ1), 1 ≤ r ≤ g, 1 ≤ i ≤ p− 1, n > 1,

(R6) (σ−1
1 zjσ1)zl = zl(σ

−1
1 zjσ1), 1 ≤ j < l ≤ p− 1,

(R7) (σ−1
1 zjσ

−1
1 )zj = zj(σ

−1
1 zjσ

−1
1 ), 1 ≤ j ≤ p− 1.

As in previous section let us consider the natural projection of π : Bn(Ng,p) −→ Sn,
which associates to any braid the corresponding permutation. This projection map σi in
the corresponding transposition and generators a1, . . . , ag, z1, . . . , zp−1 into the identity. As
before, let Dn(Ng,p) = π−1(Sn−1) and let ml = σn−1 . . . σl, l = 1, . . . , n − 1, mn = 1. The
set Mn = {ml | 1 ≤ l ≤ n} is a Schreier set of coset representatives of Dn(Ng,p) in Bn(Ng,p)
and the group Dn(Ng,p) is generated by

sλ,a = λa · (λa)−1,

where λ runs over the set Mn and a runs over the set of generators of Bn(Ng,p).

Case 1. If a ∈ {σ1, . . . , σn−1}, then we find the generators

τk = σn−1 . . . σk+1σ
2
kσ
−1
k+1 . . . σ

−1
n−1, k = 1, . . . , n− 2, τn−1 = σ2

n−1.

Case 2. If a ∈ {a1, . . . , ag}, then we find the generators

wr = σn−1 . . . σ1arσ
−1
1 . . . σ−1

n−1, r = 1, . . . , g.

Case 3. If a ∈ {z1, . . . , zp−1}, then we find the generators

ξj = σn−1 . . . σ1zjσ
−1
1 . . . σ−1

n−1, j = 1, . . . , p− 1.

Using the same argument as in the orientable case one can find the following group pre-
sentation for Dn(Ng,p).

Proposition 4. The group Dn(Ng,p), n ≥ 1 admits a presentation with the generators

σ1, . . . , σn−2, a1, . . . , ag, z1, . . . , zp−1, τ1, . . . , τn−1, w1, . . . , wg, ξ1, . . . , ξp−1,

and the following relations:
– Braid relations:

(B1) σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 3,
(B2) σiσj = σjσi, |i− j| > 1, 1 ≤ i, j ≤ n− 2,
(B3) σ−1

k τlσk = τl, k 6= l − 1, l,
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(B4) σ−1
l−1τlσl−1 = τl−1,

(B5) σ−1
l τlσl = τlτl+1τ

−1
l , l 6= n− 1.

– Mixed relations:

(R1.1) arσi = σiar, 2 ≤ i ≤ n− 2, 1 ≤ r ≤ g,
(R1.2) arτi = τiar, 2 ≤ i ≤ n− 1,
(R1.3) wrσi = σiwr, 1 ≤ r ≤ g, 1 ≤ i ≤ n− 2,
(R2.1) (σ−1

1 arσ
−1
1 )ar = ar(σ

−1
1 arσ1), 1 ≤ r ≤ g,

(R2.2) a−1
r (τ−1

1 wr)ar = τ−1
1 wrτ1, 1 ≤ r ≤ g,

(R2.3) a−1
r wrar = τ−1

1 wr, 1 ≤ r ≤ g,
(R3.1) (σ−1

1 asσ1)ar = ar(σ
−1
1 asσ1), 1 ≤ s < r ≤ g,

(R3.2) a−1
r (τ−1

1 wsτ1)ar = τ−1
1 wsτ1, 1 ≤ s < r ≤ g,

(R3.3) aswr = wras, 1 ≤ s < r ≤ g,
(R4.1) zjσi = σizj , 2 ≤ i ≤ n− 2, 1 ≤ j ≤ p− 1,
(R4.2) zjτi = τizj, 2 ≤ i ≤ n− 1, 1 ≤ j ≤ p− 1,
(R4.3) ξjσi = σiξj, 1 ≤ j ≤ p− 1, 1 ≤ i ≤ n− 2,
(R5.1) (σ−1

1 zjσ1)ar = ar(σ
−1
1 zjσ1), 1 ≤ r ≤ g, 1 ≤ j ≤ p− 1,

(R5.2) a−1
r (τ−1

1 ξjτ1)ar = τ−1
1 ξjτ1, 1 ≤ r ≤ g, 1 ≤ j ≤ p− 1,

(R5.3) zjwr = wrzj , 1 ≤ r ≤ g, 1 ≤ j ≤ p− 1,
(R6.1) (σ−1

1 zjσ1)zl = zl(σ
−1
1 zjσ1), 1 ≤ j < l ≤ p− 1,

(R6.2) z−1
l (τ−1

1 ξjτ1)zl = τ−1
1 ξjτ1, 1 ≤ j < l ≤ p− 1,

(R6.3) zjξl = ξlzj , 1 ≤ j < l ≤ p− 1,
(R7.1) (σ−1

1 zjσ
−1
1 )zj = zj(σ

−1
1 zjσ

−1
1 ), 1 ≤ j ≤ p− 1,

(R7.2) z−1
j (τ−1

1 ξj)zj = τ−1
1 ξj, 1 ≤ j ≤ p− 1,

(R7.3) z−1
j ξjzj = τ−1

1 ξjτ1, 1 ≤ j ≤ p− 1.

It is easy to see that the relations (B1), (B2), (R1.1), (R2.1), . . . , (R7.1) are defining rela-
tions of Bn−1(Ng,p). From the other relations we can find the following conjugacy formulae:
(S1) τσk

l = τl, k 6= l − 1, l,
(S2) τ

σl−1

l = τl−1,

(S3) τσl

l = τ
τ−1

l

l+1 , l 6= n− 1,
(S4) τar

i = τi, 2 ≤ i ≤ n− 1,
(S5) wσi

r = wr, 1 ≤ r ≤ g, 1 ≤ i ≤ n− 2,

(S6) τar

1 = (τ−1
1 )w−1

r τ1 ,
(S7) war

r = τ−1
1 wr, 1 ≤ r ≤ g,

(S8) war
s = wwrτ1w−1

r τ1
s , 1 ≤ s < r ≤ g,

(S9) was
r = wr, 1 ≤ s < r ≤ g,

(S10) τ
zj

i = τi, 2 ≤ i ≤ n− 1, 1 ≤ j ≤ p− 1,
(S11) ξσi

j = ξj, 1 ≤ i ≤ n− 2, 1 ≤ j ≤ p− 1,

(S12) ξar

j = ξwrτ1w−1
r τ1

j , 1 ≤ r ≤ g, 1 ≤ j ≤ p− 1,

(S13) w
zj
r = wr, 1 ≤ r ≤ g, 1 ≤ j ≤ p− 1,
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(S14) ξzl

j = ξ
[ξ−1

l
,τ1]

j , 1 ≤ j < l ≤ p− 1,

(S15) ξ
zj

l = ξl, 1 ≤ j < l ≤ p− 1,
(S16) τ

zj

1 = [τ1, ξ
−1
j ]τ1, 1 ≤ j ≤ p− 1,

(S17) ξ
zj

j = ξτ1
j , 1 ≤ j ≤ p− 1.

Consider the subgroup

Wn,g,p = 〈τ1, . . . , τn−1, w1, . . . , wg, ξ1, . . . , ξp−1〉

of Dn+1(Ng,p). The group Wn,g,p is free (see [1]) and from (S1)–(S17) we see that Bn(Np,g)
acts on Wn,g,p by conjugacy.

Theorem 4. The group Bn(Ng,p), for n > 1, p ≥ 1 and g ≥ 1 acts by conjugation on the
free group Wn,g,p and the induced representation ρW : Bn(Ng,p) → Aut(Wn,g,p) is defined as
follows:
– Generators σi, i = 1, . . . , n− 1:

σi :





τi 7−→ τ
τ−1

i

i+1 ;
τi+1 7−→ τi ;
τl 7−→ τl, l 6= i, i+ 1 ;
wr 7−→ wr, 1 ≤ r ≤ g ;
ξj 7−→ ξj, 1 ≤ j ≤ p− 1 .

– Generators ar, r = 1, . . . , g:

ar :





τ1 7−→ (τ−1
1 )w−1

r τ1 ;
τi 7−→ τi, 2 ≤ i ≤ n ;

ws 7−→ wwrτ1w−1
r τ1

s , 1 ≤ s < r ≤ g ;
wr 7−→ τ−1

1 wr ;
ws 7−→ ws, 1 ≤ r < s ≤ g ;

ξj 7−→ ξwrτ1w−1
r τ1

j , 1 ≤ j ≤ p− 1.

– Generators zj , j = 1, . . . , p− 1:

zj :






τ1 7−→ [τ1, ξ
−1
j ]τ1 ;

τi 7−→ τi, 2 ≤ i ≤ n ;
wr 7−→ wr, 1 ≤ r ≤ g ;

ξl 7−→ ξ
[ξ−1

j ,τ1]

l , 1 ≤ l < j ≤ p− 1 ;
ξj 7−→ ξτ1

j ;
ξl 7−→ ξl, 1 ≤ j < l ≤ p− 1.

We don’t know if the representation ρW : Bn(Ng,p) → Aut(Wn,g,p) is faithful or not.

Proposition 5. Let β be in Bn(Ng,p). The element ρW (β) in Aut(Wn,g,p) fixes the product

A = τ−1
n−1 . . . τ

−1
2 τ−1

1 ξ1 ξ2 . . . ξp−1w
2
1 w

2
2 . . . w

2
g.
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Proof. As above it is enough to prove that images of generators of Bn(Ng,p) fix A.
Case 1: generators σi, 1 ≤ i ≤ n − 1. The group Bn is a subgroup of Bn(Ng,p) and by
Artin’s theorem Bn is a subgroup of Aut(Fn), Fn = 〈τ1, τ2, . . . , τn−1〉 and fixes the product
τ1τ2 . . . τn−1. Hence, ρW (σi) also fixes the product τ−1

n−1 . . . τ
−1
2 τ−1

1 .
From Theorem 4 it follows that

wσi

r = wr, 1 ≤ r ≤ g; ξσi

j = ξj, 1 ≤ j ≤ p− 1.

Hence, Aσi = A.

Case 2: generators ar, 1 ≤ r ≤ g. By Theorem 4 we have that

(τ−1
n−1 . . . τ

−1
2 τ−1

1 )ar = τ−1
n−1 . . . τ

−1
2 (τw−1

r τ1
1 ),

and
(ξ1 . . . ξp−1)

ar = (ξ1 . . . ξp−1)
wrτ1w−1

r τ1 ,

and
(w2

1 . . . w
2
g)

ar = (w2
1 . . . w

2
r−1)

wrτ1w−1
r τ1(τ−1

1 wrτ
−1
1 wr)(w

2
r+1 . . . w

2
g).

Hence, the element ar acts on A as follows:

Aar = τ−1
n−1 . . . τ

−1
2 τ−1

1 ξ1 . . . ξp−1w
2
1 w

2
2 . . . w

2
g ,

and Aar = A.
Case 3. Generators zj , 1 ≤ j ≤ p− 1. By Theorem 4 we deduce that

(τ−1
n−1 . . . τ

−1
2 τ−1

1 )zj = τ−1
n−1 . . . τ

−1
2 (τ−1

1 ξj τ
−1
1 ξ−1

j τ1),

(ξ1 . . . ξp−1)
zj = (ξ1 . . . ξj−1)

ξjτ−1

1
ξ−1

j τ1 (ξτ1
j ) ξj+1 . . . ξp−1,

and
(w2

1 w
2
2 . . . w

2
g)

zj = w2
1 w

2
2 . . . w

2
g .

Hence, Azj = A. �

5. Braid groups of closed surfaces

Let Σg = Σg,0 be a closed orientable surface of genus g ≥ 1. The group Bn(Σg), n > 1
admits a group presentation with generators:

σ1, . . . σn−1, x1, . . . x2g,

and relations:
– Braid relations:
σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 2,
σiσj = σjσi, |i− j| > 1, 1 ≤ i, j ≤ n− 1,

– Mixed relations:
(R1) xrσi = σixr, i 6= 1, 1 ≤ r ≤ 2g,
(R2) (σ−1

1 xrσ
−1
1 )xr = xr(σ

−1
1 xrσ

−1
1 ), 1 ≤ r ≤ 2g,
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(R3) (σ−1
1 xsσ1)xr = xr(σ

−1
1 xsσ1), 1 ≤ s < r ≤ 2g, (s, r) 6= (2m− 1, 2m),

(R4) (σ−1
1 x2m−1σ

−1
1 )x2m = x2m(σ−1

1 x2m−1σ1), 1 ≤ m ≤ g,
(TR5) [x−1

1 , x2][x
−1
3 , x4] . . . [x

−1
2g−1, x2g] = σ1σ2 . . . σ

2
n−1 . . . σ2σ1.

As before, let π be the natural projection of Bn(Σg) in Sn, let Dn(Σg) = π−1(Sn−1) and
ml = σn−1 . . . σl, l = 1, . . . , n− 1, mn = 1. The set Mn = {ml | 1 ≤ l ≤ n} is a Schreier set
of coset representatives of Dn(Σg) in Bn(Σg) and Dn(Σg) is generated by

σ1, σ2, . . . , σn−2, τ1, τ2, . . . , τn−1, x1, x2, . . . , x2g, w1, w2, . . . , w2g,

where
τk = σn−1 . . . σk+1σ

2
kσ
−1
k+1 . . . σ

−1
n−1, k = 1, . . . , n− 2, τn−1 = σ2

n−1,

wr = σn−1 . . . σ1xrσ
−1
1 . . . σ−1

n−1, r = 1, . . . , 2g.

Proposition 6. The group Dn(Σg), n > 1, admits a group presentation with generators:

σ1, . . . , σn−2, x1, . . . , x2g, τ1, . . . , τn−1, w1, . . . , w2g,

and relations:
– Braid relations:
(B1) σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 3,
(B2) σiσj = σjσi, |i− j| > 1, 1 ≤ i, j ≤ n− 2,
(B3) σ−1

k τlσk = τl, k 6= l − 1, l,
(B4) σ−1

l−1τlσl−1 = τl−1,

(B5) σ−1
l τlσl = τlτl+1τ

−1
l , l 6= n− 1.

– Mixed relations:
(R1.1) xrσi = σixr, 2 ≤ i ≤ n− 2, 1 ≤ r ≤ 2g,
(R1.2) xrτi = τixr, 2 ≤ i ≤ n− 1,
(R1.3) wrσi = σiwr, 1 ≤ r ≤ 2g, 1 ≤ i ≤ n− 2,
(R2.1) (σ−1

1 xrσ
−1
1 )xr = xr(σ

−1
1 xrσ

−1
1 ), 1 ≤ r ≤ 2g,

(R2.2) x−1
r wrxr = τ−1

1 wrτ1, 1 ≤ r ≤ 2g,
(R2.3) x−1

r τ1xr = τ−1
1 wrτ1w

−1
r τ1, 1 ≤ r ≤ 2g,

(R3.1) (σ−1
1 xsσ1)xr = xr(σ

−1
1 xsσ1), 1 ≤ s < r ≤ 2g, (s, r) 6= (2m− 1, 2m),

(R3.2) x−1
r (τ−1

1 wsτ1)xr = τ−1
1 wsτ1, 1 ≤ s < r ≤ 2g, (s, r) 6= (2m− 1, 2m),

(R3.3) xswr = wrxs, 1 ≤ s < r ≤ 2g, (s, r) 6= (2m− 1, 2m),
(R4.1) (σ−1

1 x2m−1σ
−1
1 )x2m = x2m(σ−1

1 x2m−1σ1), 1 ≤ m ≤ g,
(R4.2) x−1

2m(τ−1
1 w2m−1)x2m = τ−1

1 w2m−1τ1, 1 ≤ m ≤ g,
(R4.3) x−1

2m−1w2mx2m−1 = τ−1
1 w2m, 1 ≤ m ≤ g,

(RT.1) [x−1
1 , x2][x

−1
3 , x4] . . . [x

−1
2g−1, x2g] = σ1σ2 . . . σn−3σ

2
n−2σn−3 . . . σ2σ1τ1,

(RT.2) [w−1
1 , w2][w

−1
3 , w4] . . . [w

−1
2g−1, w2g] = τ1τ2 . . . τn−1.

Consider the subgroup Vn−1,g of Dn(Σg) generated by {τ2, . . . , τn−1, w1, . . . , w2g}. The
group Vn−1,g is free and normal in Dn(Σg) [1]. Using relation (RT.2) one finds that

τ1 = [w−1
1 , w2][w

−1
3 , w4] . . . [w

−1
2g−1, w2g]τ

−1
n−1 . . . τ

−1
2
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and therefore τ1 ∈ Vn. Also, consider the subgroup

Bn−1(Σg) = 〈σ1, . . . , σn−2, x1, . . . , x2g〉

of Dn(Σg). The group Bn−1(Σg) is not isomorphic to Bn−1(Σg).
In fact, one can prove that the relations (B1), (B2), (R1.1), (R2.1), (R3.1), (R4.1) and

(RT.1) are defining relations of Bn−1(Σg) and therefore we can deduce that Bn−1(Σg) ≃
Bn−1(Σg)/〈〈τ1〉〉. From the other relations we can see that Bn−1(Σg) acts on Vn by conjugacy.
Hence, the following theorem holds.

Proposition 7. There exists a representation ρV : Bn−1(Σg) → Aut(Vn−1,g), induced by the
action by conjugacy of Bn−1(Σg) on the free group Vn−1,g = 〈τ2, . . . , τn−1, w1, . . . , w2g〉 given
algebraically as follows:

–Action on generators τ2, . . . , τn−1:
(S1) τσk

l = τl, k 6= l − 1, l,

(S2) τ
σl−1

l = τl−1,

(S3) τσl

l = τ
τ−1

l

l+1 , l 6= n− 1,

(S4) τxr

i = τi, 2 ≤ i ≤ n− 1, 1 ≤ r ≤ 2g,

–Action on generators w1, . . . , w2g:
(S5) wσi

r = wr, 1 ≤ r ≤ 2g, 1 ≤ i ≤ n− 2,

(S6) wxr
r = wτ1

r , 1 ≤ r ≤ 2g,

(S7) τxr

1 = τw−1
r τ1

1 , 1 ≤ r ≤ 2g,

(S8) wxr
s = w

[w−1
r ,τ1]

s , 1 ≤ s < r ≤ 2g, (s, r) 6= (2m− 1, 2m),

(S9) wxs
r = wr, 1 ≤ s < r ≤ 2g, (s, r) 6= (2m− 1, 2m),

(S10) wx2m

2m−1 = [τ1, w
−1
2m]w2m−1τ1,

(S11) w
x2m−1

2m = τ−1
1 w2m,

where

τ1 = [w−1
1 , w2][w

−1
3 , w4] . . . [w

−1
2g−1, w2g]τ

−1
n−1 . . . τ

−1
2 .

From Proposition 7 we get a representation of Bn−1(Σg) in Aut(Vn−1,g)/〈〈t〉〉, where t ∈
Aut(Vn−1,g) is the conjugation by the word

[w−1
1 , w2] . . . [w

−1
2g−1, w2g]τ

−1
n−1 . . . τ

−1
2 .
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Therefore, we have the following result:

Proposition 8. There exists a representation ρṼ : Bn−1(Σg) → Out(Vn−1,g), given alge-
braically as follows:

–Action (up to conjugacy) on generators τ2, . . . , τn−1:
(S1) τσk

l = τl, k 6= l − 1, l,

(S2) τ
σl−1

l = τl−1,

(S3) τσl

l = τ
τ−1

l

l+1 , l 6= n− 1,

(S4) τxr

i = τi, 2 ≤ i ≤ n− 1, 1 ≤ r ≤ 2g,

–Action (up to conjugacy) on generators w1, . . . , w2g:
(S5) wσi

r = wr, 1 ≤ r ≤ 2g, 1 ≤ i ≤ n− 2,

(S6) wxr
r = wτ1

r , 1 ≤ r ≤ 2g,

(S7) τxr

1 = τw−1
r τ1

1 , 1 ≤ r ≤ 2g,

(S8) wxr
s = w

[w−1
r ,τ1]

s , 1 ≤ s < r ≤ 2g, (s, r) 6= (2m− 1, 2m),

(S9) wxs
r = wr, 1 ≤ s < r ≤ 2g, (s, r) 6= (2m− 1, 2m),

(S10) wx2m

2m−1 = [τ1, w
−1
2m]w2m−1τ1,

(S11) w
x2m−1

2m = τ−1
1 w2m,

where
τ1 = [w−1

1 , w2][w
−1
3 , w4] . . . [w

−1
2g−1, w2g]τ

−1
n−1 . . . τ

−1
2 .

We don’t know if the representation ρṼ of Bn−1(Σg) is faithful or not.

6. Artin-Tits groups

We recall that classical braid groups are also called Artin-Tits groups of type A. More
precisely, let (W,S) be a Coxeter system and let us denote the order of the element st in W
by ms, t (for s, t ∈ S). Let A(W ) be the group defined by the following group presentation:

A(W ) = 〈S | st · · ·︸ ︷︷ ︸
ms, t

= ts · · ·︸ ︷︷ ︸
ms, t

for any s 6= t ∈ S with ms, t < +∞〉 .

The group A(W ) is the Artin-Tits group associated to W . The group A(W ) is said to be
of spherical type if W is finite. There exists three infinite families of finite Coxeter groups
usually denoted respectively as of type A, B and D. Artin braid groups correspond to the
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family of Artin-Tits groups associated to Coxeter groups of type A and braid groups of
the annulus coincide with Artin-Tits groups associated to Coxeter groups of type B. In
this Section we give a faithful representation of the remaining infinite family of spherical
Artin-Tits groups, associated to Coxeter groups of type D.

First let us denote by A(Dn) the n-th Artin-Tits group of type D with the group presenta-
tion provided by its Coxeter graph (see Figure 1), where vertices δ1, . . . , δn are the generators
of the group and two generators δi, δj verify the relation δiδjδi = δjδiδj if they are related by
an edge and elsewhere they commute.
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��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
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��

δ1

δ
2

δ3 δn

Figure 1.

We denote by πD : A(Dn) → Bn the epimorphism defined by πD(δ1) = πD(δ2) = σ1

and πD(δi) = σi−1 for i = 3, . . . , n, which admits the section sD : Bn → A(Dn) defined by
sD(σi) = δi+1 for i = 1, 2, . . . , n− 1.

Proposition 9. [6, Proposition 2.3]

(1) The representation ρD : Bn → Aut(Fn−1) given algebraically by:

ρD(σ1) :

{
x1 → x1,
xj → x−1

1 xj , j 6= i,

and for 2 ≤ i ≤ n− 1,

ρD(σi) :






xi−1 7−→ xi,
xi 7−→ xix

−1
i−1xi,

xj 7−→ xj , j 6= i− 1, i.

is well defined and faithful.
(2) The group A(Dn) is isomorphic to Fn−1 ⋊ρD

Bn, where the projection on the second
factor is πD and the section Bn → Fn−1 ⋊ρD

Bn is just sD.
(3) In particular, ker πD = Fn−1 is freely generated by λ1, . . . , λn−1, where λ1 = δ1δ

−1
2

and λi = (δi+1 · · · δ3)(δ1δ
−1
2 )(δi+1 · · · δ3)

−1 for i = 2, . . . , n− 1.

The first item of Proposition 9 was already established in [12] by topological means and
the third item is actually proven in the proof of Proposition 2.3 in [6].

From Proposition 9 we can deduce a faithful representation of A(Dn) into Aut(Fn).

Proposition 10. The representation ι : A(Dn) → Aut(Fn) given algebraically by:
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ι(δ1) :





x1 7−→ x1,
xj 7−→ xjx

−1
1 , j 6= 1, n,

xn 7−→ x1xnx
−1
1 ,

ι(δ2) :





x1 7−→ x1,
xj 7−→ x−1

1 xj , j 6= 1, n,
xn 7−→ xn,

and for 3 ≤ i ≤ n,

ι(δi) :





xi−2 7−→ xi−1,
xi−1 7−→ xi−1x

−1
i−2xi−1,

xj 7−→ xj , j 6= i− 2, i− 1.

is well defined and faithful.

Proof. From Proposition 9 it follows that Fn−1 ⋊ρD
Bn is isomorphic to A(Dn) through the

morphism χ : Fn−1 ⋊ρD
Bn → A(Dn) defined algebraically as follows: χ(xi) = λi for any

generator xi of Fn−1 and χ(σi) = δi+1 for any generator σi of Bn.
Remark that Fn−1⋊ρD

Bn is a subgroup of Fn−1⋊Aut(Fn−1). Now, considering the natural
inclusion of Aut(Fn−1) into Aut(Fn) leaving the generator xn invariant and the action by
conjugacy of Fn−1 on Fn, we obtain a morphism φ : Fn−1 ⋊ρD

Bn → Aut(Fn), which can be
easily proved to be injective.

By direct calculation one can verify that ι(λi) is the conjugacy by xi for i = 1, . . . , n− 1;
moreover, since ι ◦ χ restricted to Bn coincides with the representation of Bn into Aut(Fn)
obtained composing the map ρD with the natural inclusion of Aut(Fn−1) into Aut(Fn) leaving
the generator xn invariant, we can deduce that ι◦χ = φ and therefore the claim follows. �
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