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[1] The purpose of the present work is to quantify the correlation structure of simulated
velocity fields in heterogeneous permeability fields and to discuss how to represent it in
upscaled transport models. We investigate the velocity field correlation structure for
multinormal log permeability fields. The simulated velocity distributions are analyzed in a
Lagrangian framework, i.e., along the particles’ paths. To quantify the different spatial
organization of low- and high-velocity zones, we condition the estimated velocity
correlation length and time on the initial particle velocity. The velocity correlation length
is found to increase with the initial particle velocity, following a power law. Such an
effect is likely due to the channeling of high-velocity zones, which implies that particles
keep memory of their initial velocity over longer distances for high initial velocities
than for low initial velocities. Two distinct regimes are identified for the velocity
correlation time. For low initial particle velocity the correlation time is controlled by the
large time needed to escape from the low-velocity zones. For high initial particle velocity
it is controlled by the large time needed for particles to sample the whole velocity
field, in particular low-velocity zones. One of the consequences of these results is that for
such velocity fields the nonlinear dependence of both the correlation length and time
on the particle initial velocity restricts the use of spatial or temporal Markovian
assumptions for modeling velocity transitions in effective transport models.

Citation: Le Borgne, T., J.-R. de Dreuzy, P. Davy, and O. Bour (2007), Characterization of the velocity field organization in

heterogeneous media by conditional correlation, Water Resour. Res., 43, W02419, doi:10.1029/2006WR004875.

1. Introduction

[2] Solute transport in aquifers is controlled by diffusion,
local-scale dispersion, and spreading due to large-scale
heterogeneity of the velocity field producing fast and slow
paths. All together those processes produce the apparent
large-scale dispersion. Predicting the influence of the geo-
logical heterogeneity on the solute mixing and spreading is
required in many field applications (i.e., contaminant
monitoring and remediation). For the case of moderately
heterogeneous media, dispersion may be adequately pre-
dicted by the macrodispersion theory derived from first-order
developments [Sudicky, 1986; Dagan, 1989; Gelhar, 1993].
However, an increasing number of field observations indicate
that the Fickian model is not applicable to highly heteroge-
neous aquifers, which represent a large number of geological
settings [Adams and Gelhar, 1992; Tsang and Neretnieks,
1998; Haggerty et al., 2000; Harvey and Gorelick, 2000;
LaBolle and Fogg, 2001; Becker and Shapiro, 2003]. To
account for that, several alternative transport models have
been proposed [Berkowitz and Scher, 1998; Haggerty and
Gorelick, 1995; Benson et al., 2000; Berkowitz et al., 2002;
Becker and Shapiro, 2003]. These different models may
correspond to different types of velocity field organization
occurring in heterogeneous media. The important character-

istics of the velocity field are the distribution of point values
and the correlation structure, which quantifies the spatial
organization of the velocity field. However, the relationship
between the velocity field structure and the upscaled trans-
port models is currently not clearly defined. The motivation
of the present work is to propose a method to quantify the
correlation structure of simulated velocity fields in heteroge-
neous permeability fields and to discuss how to represent it in
upscaled transport models.
[3] Most of the past studies that quantify the velocity

field correlation are based on the classical velocity field
covariance [e.g., Salandin and Fiorotto, 1998]. However,
such measure of spatial correlation does not resolve differ-
ences between high- and low-velocity zones’ spatial orga-
nization [Zinn and Harvey, 2003]. Flow channeling and the
presence of preferential high-velocity flow paths is often
cited as the main reason for the observed non-Fickian
transport effects [Tsang and Neretnieks, 1998]. Such qual-
itative observation implies that the spatial organization of
low- and high-velocity zones is different. The presence of
large velocity channels for instance may imply long-range
velocity correlation for solute particles transported in large
velocity zones. The objective of this paper is to improve the
characterization of the velocity field organization by inte-
grating information on the velocity magnitude. To do so, we
analyze the Lagrangian velocity field (i.e., the distribution
of velocity along the path of solute particles) obtained by
particle tracking simulations in multinormal log permeability
fields.
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[4] The velocity field correlation quantifies how a
particle keeps memory of its initial particle velocity v0.
At early traveltimes or travel distance, the probability for
the particle to move with the initial velocity v0 is high.
Hence the distribution of possible velocities, given than
the particle started initially from the velocity v0 is narrow
and centered on v0. At large traveltimes or distances, the
probability distribution of possible velocities is the same
whatever the initial velocities: the conditional velocity
distributions reach an asymptotic velocity distribution.
Thus the study of the evolution with traveltime or
distance of the conditional velocity distributions allows
to quantify the velocity field correlation function, condi-
tioned on the initial velocity v0.

2. Numerical Procedure for Simulating Flow
and Transport

[5] Continuous heterogeneous media are classically mod-
eled by lognormal correlated permeability fields. Several
alternative representations of the permeability spatial vari-
ability in numerical models have been proposed. In partic-
ular, some representations include preferentially connected
high-permeability zones [Gomez-Hernandez and Wen,
1998, Zinn and Harvey, 2003; Liu et al., 2004; Knudby
and Carrera, 2005]. These representations allow investi-
gating specific types of medium such as long-range corre-
lated systems. In this study, we do not integrate any
correlation more specific than a classical exponential cor-
relation function in the permeability field model. Our aim is
(1) to investigate how a nonmultinormal velocity field
structure may arise in multinormal log permeability fields
and (2) to propose a general methodology for the analysis of
the velocity field correlation structure that may be applied to
different types of permeability fields.
[6] The lognormal permeability distribution is parameter-

ized by its lognormal mean hlnKi, its variance s2lnK and
a correlation length llnK. We investigate systems where
log permeability field variance, s2lnK, ranges from 0.25 to
3 covering a large variety of natural aquifers [Gelhar, 1993].
Spatially correlated multinormal log conductivity fields are
generated using a fast Fourier transform [Ruan and
McLaughin, 1998] (Figure 1a). We restrict our study to
two-dimensional systems. Flow is induced by a mean head
gradient rh. Boundary conditions are permeameter-like
conditions: no flux across the lateral boundaries, constant
head at upstream and downstream boundaries. The flow
equation is solved numerically with a finite difference
scheme [Ababou et al., 1989] (Figure 1b) using a grid of
1024 elements by 256 elements.
[7] Once the flow field is obtained, solute transport is

simulated by a particle tracking method. Particle displace-
ments are achieved at discrete time intervals [Kinzelbach,
1988] using a bilinear interpolation of the velocity field
[Pollock, 1988]. Transport is purely advective and conse-
quently, dispersion arises from particle spreading induced
by the permeability field heterogeneity only. The influence
of additional diffusion and local dispersion (i.e., dispersion
within each of the element volumes) will be investigated in
a subsequent work. Preliminary tests show that the optimal

time step dt is defined by the relation dt =
lblock

10vmax

where vmax

is the local block maximum velocity and lblock is the
characteristic block size. To present the results, we normal-
ize particle travel distances by the log permeability field
correlation length llnK and the traveltime by a characteristic

normalization time that we define as t =
nllnK

exp hlnKið Þjrhj.

In the simulations, we take the following parameters: the
porosity n = 1, the average log permeability exp(hlnKi) = 1
and the mean head gradient jrhj = 1. The correlation length
of the log permeability field was 8 elements [Salandin and
Fiorotto, 1998] so that the study area is 128 llnK � 32 llnK
(Figure 1). In order to account for the effect of the
nonstationary zones near the domain boundaries, particles
were injected 8 correlation lengths away from the side and
upstream boundaries [Salandin and Fiorotto, 1998]. In the
following, the symbol v denotes the norm of the velocity
vector normalized by the expected mean Eulerian velocity
exp(hlnKi) jrhj / n.

3. Conditional Distributions

[8] To investigate the Lagrangian velocity field correla-
tion structure, we study the distribution of velocities along
the particle paths, conditionned by the particles initial
velocity. The conditional velocity distribution is initially
centered on the initial velocity v0 and converges at late
traveltime or travel distance toward the asymptotic velocity
distribution. The rate of convergence toward the asymptotic
distribution (in time or in distance) depends on the corre-
lation structure of the velocity field. In this section, we first
review the expected conditional distributions for multinor-
mal random fields, which are classically used to model
Eulerian velocity distributions in porous media [Rubin,
1990; Bellin et al., 1992]. Then, we describe the character-
istics of the velocity distributions that we obtain for the
simulated velocity fields in heterogeneous permeability
fields.

3.1. Expected Conditional Distributions for
Multinormal Fields

[9] We consider a multinormal random field Y, defined
by its mean E(Y), its variance s and a correlation function
r(x), where x is the lag distance between two points. For
such random field, the probability of occurrence P y; xjy

0

� �
of a value y at position x, knowing its initial value y0, is
given by

P y; xjy
0

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2 1	 r2 xð Þð Þ
p
exp 	1=2

y	 E Yð Þ 	 r xð Þ y0 	 E Yð Þð Þ
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 r2 xð Þ

p
 !2

2
4

3
5 ð1Þ

where r(x) is the random field correlation function and E(Y)
and s2 are respectively the random field mean and variance.
Note that the random variable y denotes any value of a
multinormal random field (e.g., permeability or velocity
field).
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Figure 1. Example of (a) generated log permeability field realization for a 128l� 32l grid with llnK = 8,
(b) calculated velocity field and example of a particle path for s2lnK = 0.25, (c) velocity sampled by the
particle along the trajectory, (d) calculated velocity field and example of a particle path for s2lnK = 3, and
(e) velocity sampled by the particle along the trajectory. The log permeability and log velocity amplitudes
are represented on a color scale ranging from white for small values to black for large values.
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[10] Hence, for a multinormal field Y, the conditional
distributions are expected to be normally distributed and are
fully characterized by their conditional mean and variance
that are given by

E y; xjy0ð Þ ¼ E yð Þ þ r xð Þ y0 	 E yð Þð Þ ð2Þ

s2 y; xjy0ð Þ ¼ s2 yð Þ 1	 r2 xð Þ
� �

ð3Þ

respectively.
[11] The evolutions of the conditional mean and variance

with the lag distance x are both characterized by the
correlation function r(x), which is independent of the initial
value y0 for a multinormal random field [Gomez-Hernandez
and Wen, 1998]. In the following, we show that for a
multinormal log permeability field, the velocity field
deviates from the multinormal model characterized by
equations (1)–(3).

3.2. Conditional Lagrangian Velocity Distributions
Obtained by Numerical Simulations

[12] We analyze the conditional Lagrangian distributions
of the absolute value of the flow velocity obtained from
numerical simulations for log permeability field variances
ranging from 0.25 to 3. The conditional velocity distribu-
tions can be represented as a function of particle traveltime
or travel distance (Figure 2). Velocity classes are defined
based on a regular discretization of the log velocity field.
An equal number of particles is injected in each velocity
class. The obtained conditional velocity distributions are
normalized by the number of injected particles in each class.
As long as enough particles are injected in each velocity
class to obtain reliable statistics, the method of injection
does not influence the analysis of the conditional velocity
distributions. Results are averaged over 500 realizations
with 30 000 particles departing from each velocity class.
Figure 2 shows examples of conditional velocity distribu-
tions. At short traveltimes and distances, the conditional
distributions are narrow, while at late traveltime and dis-
tance, they converge to the asymptotic Lagrangian velocity
distribution. The preasymptotic conditional distributions are
found to be highly skewed. The asymptotic distribution is
close to a lognormal distribution, as previously obtained
from numerical simulations [Bellin et al., 1992].
[13] Figure 3 shows the evolution of the conditional mean

and variance of the Lagrangian velocity field versus the
particle traveltime, for different initial velocities and a log
permeability field variance slnK

2 = 3. The evolutions of the
conditional mean and variance are found to be very
dependent on the initial velocity, contrary to the multi-
normal case (equations 2 and 3). The convergence of the
conditional mean to the asymptotic mean is longer for low
initial velocities than for high initial velocities (Figure 3a).
Furthermore, the increase toward the asymptotic variance is
not steady like in the multinormal case (Figure 3b). For the
lowest initial velocities (ln v0 < 	1.5), the conditional
variance increases above the asymptotic variance at inter-
mediate time. Such effect is related to the skewness of
conditional distributions which is visible even in the log-
scale representation (Figure 2). The persistence of a signif-
icant proportion of particles having velocities close to the
initial velocity, while other particles have experienced the
whole velocity field distribution, implies that the preasymp-
totic variance may be higher than the asymptotic variance.
[14] In summary, not only are the simulated velocity

distributions not Gaussian, but their correlation structure
differs from the multinormal representation, since the evo-
lution of conditional distributions with traveltime or dis-
tance depend strongly on the initial conditioning velocity.
This may explain the inconsistency of the Fickian repre-
sentation for modeling dispersion in such velocity fields. In
the following, we develop a method to quantify such non-
multinormal correlation structure and discuss how to repre-
sent it in effective transport models.

4. Definition of Conditional Correlation Times
and Lengths Estimates

[15] The analysis of conditional velocity distributions
shows that the convergence to the asymptotic velocity
distribution depends on the initial velocity (Figure 3). In

Figure 2. Example of conditional distributions for an
initial velocity v0 = 6 and a log permeability field variance
s2lnK = 3 (a) as a function of travel distance and (b) as a
function of traveltime.
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this section, we discuss how to quantify this effect in terms
of conditional correlation. A possible estimate of the con-
ditional correlation is the conditional covariance. The con-
ditional covariance Cov (y, y0) is directly related to the
conditional mean E (yjy0) by

Cov y; y0ð Þ ¼ E y0 	 E yð Þð Þ y	 E yð Þð Þjy0ð Þ
¼ y0 	 E yð Þð Þ E yjy0ð Þ 	 E yð Þð Þ ð4Þ

where y is the value of the random field at a given lag
distance or lag time of the initial value y0.
[16] The main problem with the use of the conditional

covariance as an estimator of conditional correlation is its
poor sensitivity for initial values close to the asymptotic
mean. For initial velocities close to the mean (	0.75 < ln v0 <
0.25), the conditional mean curves, which are linearly
related to the conditional covariances (equation 4), over-
shoot the asymptotic value before converging back toward it
(Figure 3a). This may be explained by the fact that particles
initially sample preferentially high velocities, since a long
time is required to sample the lowermost portion of the
velocity distribution. Hence the use of conditional covari-
ance to quantify conditional correlation leads to inconsistent
results.
[17] Conversely, a relevant estimate of the conditional

correlation could be provided by the conditional variance
(Figure 3b). It expresses the rate at which the velocity
variability increases with distance or time interval. However,

for the velocity fields considered here, the increase toward
the asymptotic variance is not steady like in the multinormal
case (Figure 3b). Again, this effect disqualifies the use of the
conditional variance as an estimator of the conditional
correlation. In summary, the use of the conditional covari-
ance or conditional variance for estimating correlation is
valid for multi-Gaussian models, for which the conditional
distributions are fully described by their mean and variance
(equations (1), (2), and (3)), but not in the present case, for
which conditional distributions are skewed.
[18] An estimator of the correlation time and length valid

for any type of velocity distributions is required. We define
the correlation time and length as generic characteristics that
quantify the convergence to the asymptotic regime. To
determine the rate of convergence toward the Lagrangian
velocity distribution, we calculate the mean absolute differ-
ence between the conditional distributions and the asymp-
totic Lagrangian velocity distribution:

C xj ln v0ð Þ ¼
Z1
	1

����P ln vj ln v0; xð Þ 	 P ln v;1ð Þ
����d ln v ð5Þ

where x represents either the lag distance or the lag time,
P(lnvjlnv0, x) is the conditional log velocity distribution and
P(lnv, 1) is the asymptotic Lagrangian log velocity
distribution. The asymptotic Lagrangian distribution is
computed as the late traveltime or the large travel distance

Figure 3. Evolution as a function of particle traveltime of the conditional mean and variance for a log
permeability field variance s2lnK = 3, for different initial velocities v0, with 0.1 < v0 < 6.
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velocity distribution of particles departing from all the
possible initial velocities. In practice, the asymptotic
Lagrangian distributions were reached by x = 100l and
t = 100t, therefore the distributions for that distance and
time (Figure 2) are approximately identical to the
asymptotic distribution.
[19] All distributions are shifted by the conditional mean

(i.e., to be centered on the same mean) in order to avoid side
effects related to the shape of the distributions without
loosing information on the velocity correlation. When
C(xjln v0) = 0, the conditional velocity distribution is equal
to the asymptotic distribution and particles have lost mem-
ory of there initial velocity v0. We estimated the character-
istic correlation lengths or time by integrating this function
in distance and time respectively. In order to filter out the
marginal differences between the distributions at late time or
distance, space and time integrations are performed until the
difference between the conditional distributions and the
asymptotic distribution (equation 5) is lower than 0.05.
Preliminary tests showed that stopping when the residual
is less than 5% allowed avoiding integrating the numerical
variability, without loosing information on the velocity
correlation. Hence the characteristic correlation length

is obtained by integrating the correlation function over
distance:

xC ln v0ð Þ ¼
Zxmax

0

C xj ln v0ð Þ=C 0j ln v0ð Þdx ð6Þ

where x represents either travel distance or time and xmax

represents the maximum distance of integration. The
characteristic correlation time tc is obtained similarly by
integrating the correlation function over time.
[20] We tested this method from particle tracking

simulations for two end-members of possible velocity
field structures: a multinormal velocity field (defined by
equation (1)) and a stratified velocity field. In the first case,
the correlation distance is expected to be independent on
the initial velocity while in the second case the correlation
distance is expected to be strongly dependent on the initial
velocity. For a multinormal random field defined by
equation (1), we obtain a consistent estimate of the
conditional correlation, independent of the initial condi-
tioning value, as expected for multinormal random fields.
The integral xc is not strictly equal to the multinormal field

Figure 4. Evolution of the difference between the conditional distributions and the asymptotic
distributions (equation (5)) for a log permeability field variance s2lnK = 3 (a) as a function of travel distance
and (b) as a function of traveltime. The curves are normalized by their value for t = 0 or x = 0.
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correlation length l but it is proportional. xc is well related
to the correlation length: whatever the multinormal field
correlation length and variance are, we obtain: xc = Kl,
with the coefficient K = 0.185 ± 0.002. For numerical
simulations of solute transport in stratified velocity fields
with lateral mass exchange by diffusion [Matheron and de
Marsily, 1980], we obtain velocity correlation functions in
time that are independent of the initial particle velocity,
while the velocity correlation functions in distance depend
on the conditioning initial particle velocity. In such media,
for particles initially departing from a velocity v0, the
probability of sampling the velocity v0 at time t is
decreasing with a power law defined by P(t) / t	0.5

[Bouchaud and Georges, 1990]. As expected, the obtained
temporal correlation functions decrease with a power in the
range 	0.5 ± 0.05, whatever the initial velocity v0.
[21] In summary, the method proposed to characterize the

conditional correlation (equation (5)) can be used for highly
skewed velocity distributions and gives consistent results
for end-members of possible velocity field correlation
structures. In the next section, we apply this method to
velocity fields simulated in mutlinormal log permeabiliy
fields.

5. Results: Lagrangian Velocity Field Correlation
Structure in Multinormal Log Permeability Fields

[22] Figure 4 shows the evolution of the conditional
Lagrangian velocity correlation C(xjlnv0)/C(0jlnv0) as a
function of particle traveltime and travel distance for a log
permeability field of variance s2lnK = 3 for two different
initial velocities. These curves display the rate of conver-
gence of conditional distributions toward the asymptotic
Lagrangian velocity distribution. The shapes of the curve
are different for low and high initial velocity, which
suggests that the conditional velocity correlation depends
on the initial velocity. To quantify the conditional correla-
tion, we compute the integral of these functions that gives

the characteristic convergence time or distance (equation (6)
and Figure 5).

5.1. Spatial Conditional Correlation

[23] The results for the correlation in distance (Figure 5a)
indicate that the distance for convergence to the Lagrangian
distribution increases with velocity. Such result implies that
particles loose memory of their initial velocity over shorter
distances for low initial velocities than for high initial
velocities. This could be related to the different spatial
organization of low- and high-velocity zones. Indeed, for
large log permeability variances, low- and high-velocity
zones do not have the same spatial organization (Figure 1).
High-velocity zones form tortuous channels, whereas low-
velocity values are localized in island shaped zones. The
longitudinal size of the high-velocity channels is larger than
that of the low-velocity islands between the channels.
Results show that the correlation length xc scales with
velocity as a power law:

xc ¼ A s2
� �

vm0 ð7Þ

with m = 0.3 ± 0.02.

5.2. Temporal Conditional Correlation

[24] For the temporal conditional correlation, we observe
that the evolution of the conditional distributions differs
depending on whether the initial velocity is low or high
(Figure 4b). The correlation curves conditioned on high
initial velocities decrease rapidly initially and then converge
slowly at late time. Consequently, it takes a long time for
particles departing from high velocities to sample the whole
velocity distribution and especially the low velocities.
Without diffusion, mass conservation implies that particles
traveling from high to low velocities experience a range of
intermediate velocities. Since particles cannot jump directly
from high to low velocities, the highest the initial velocity,
the longer it takes to sample the lowest velocities. On the
other hand, the correlation curves conditioned on low initial
velocities decrease initially slowly but drop to zero faster. It

Figure 5. (a) Correlation distance as a function of conditioning initial velocity and (b) correlation time
as a function of conditioning initial velocity for different log permeability field variances. The estimates of
correlation time and length are calculated as the integral of the correlation curves in Figure 4 (equation (6)).
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takes a long time for particles to get out of low-velocity
zones, but when they are out eventually, they sample rapidly
the whole velocity field.
[25] The balance between these opposite effects produ-

ces two distinctly different correlation regimes. For the
lowermost part of the velocity distribution, transport is
controlled by the time needed for particles to leave low-
velocity zones. The dependence of the correlation time in
this regime is tc = 2l/v0. Consequently, the characteristic
correlation time is the same as if particles would have to
leave a region of size 2l at constant initial velocity v0. For
intermediate and high initial velocities, the time for par-
ticles to sample the whole velocity distribution becomes
higher than the time needed for particles to leave the initial
velocity. The evolution of correlation time tc with the
initial velocity is a slow increase following a power law:

tc ¼ B s2
� �

vn0 ð8Þ

with n = 0.2 ± 0.02.
[26] We find that the relation between the conditional

correlation time and length is not given by v0 = xc/tc. This is
due to the fact that in the preasymptotic regime (t < tc and
x < xc), the particle velocity is not necessarily equal to the
initial velocity v0. Its probability distribution is given by the
conditional velocity distributions (Figure 2).

6. Discussion

6.1. Influence of the Permeability Field Heterogeneity
on the Velocity Field Organization

[27] For the different log permeability field variances in
the range 0.25–3, the correlation length curves as a function
of initial velocity are approximately superimposed and
characterized by the same power law exponent. Although
the velocity channeling is apparently increasing with the
log permeability field variance (Figure 1), we do not
observe a very important effect on the Lagrangian velocity
correlation lengths. the scaling of the correlation length as a
function of the initial velocity is independent on the

variance (Figure 5a). Increasing the permeability field
variance causes the asymptotic Lagrangian velocity distri-
bution to shift toward the higher velocities but it does not
change the velocity field correlation structure. Similarly, the
scaling of the correlation time as a function of the initial
velocity is independent on the permeability field variance.
However, the prefactor B (equation (8)) does depend on the
permeability field variance.
[28] Figure 6 displays the coefficients A and B that

characterize the evolution of the correlation times and
distances with v0 (equations (7) and (8)) as a function of
the log permeability field variance. The evolution of A is a
slow decrease with s2lnK. A similar decrease of the corre-
lation length with the log permeability field variance was
obtained by Salandin and Fiorotto [1998], who analyzed
the Eulerian velocity field covariance of lognormal perme-
ability fields. Conversely, B increases rapidly with the log
permeability field variance. Therefore the main effect of
increasing the log permeability variance is to increase the
velocity field correlation time and not the correlation length.
This increase is similar to the increase in the convergence
time to Fickian dispersion as the log permeability variance
increases and to the increase in the asymptotic dispersion
coefficient as the log permeability variance increases
[Salandin and Fiorotto, 1998].

6.2. Consequences for the Influence of the Injection
Method

[29] The first consequence of the results obtained is
concerning the influence of the injection method on solute
dispersion. When the initial solute velocity distribution
is different from the asymptotic Lagrangian velocity distri-
bution, there is a non stationary regime, in which the
Lagrangian velocity distribution is evolving from the initial
velocity distribution to the asymptotic velocity distribution.
For instance in tracer tests, the tracer may be injected in a
low-velocity zone compared to the distribution of velocities
in the media. In such case, the distribution of velocities seen
by the tracer would evolve as a function of traveltime or
distance untill it reaches an asymptotic velocity distribution.
Our results suggest that when the tracer is in the preasymp-
totic regime, velocity distributions are highly skewed, with
a large portion of the mass moving with the initial velocity
and a small portion of the mass having very different
velocities (Figure 2). Hence, in this regime, transport would
be expected to have important non-Fickian characteristics.
In practical applications, this non stationary regime may be
relatively long and dominate the characteristics of the tracer
dispersion.
[30] The duration and the distance over which the non

stationary regime is expected to occur should depend on the
velocity in which the tracer was injected. For instance,
injecting the solute preferentially in high-velocity zones
implies that convergence toward the asymptotic regime will
be initially quick and then slow at late time. Indeed, we
showed that it takes a long time for particles departing from
high velocities to sample the whole velocity distribution and
especially the low velocities (Figure 4b). The average
distance to reach the asymptotic regime would be larger if
particles are preferentially injected in high-velocity zones
than in low-velocity zones (Figure 5a).

Figure 6. Evolution as a function of the log permeability
field variance of the coefficients A and B that characterize
the evolution of the correlation times and distances with v0
(equations (7) and (8)).
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6.3. Consequences for the Representation of the
Velocity Field Organization in Upscaled Transport
Models

[31] The results of the present study have important
consequences for the representation of velocity transitions
along particle paths in upscaled transport models. Contin-
uous time random walks (CTRW) models are increasingly
used in subsurface hydrology to account for the anomalous
spreading of tracer, that exhibit skewness or heavy power
law tails [Berkowitz et al., 2002; Dentz et al., 2004]. The
CTRW representation assumes that the velocity transitions
along the particle paths can be represented by random
particle jumps performed in random times, which corre-
spond to random velocities. The jumps sizes and times are
independent on the previous jump sizes and times. Thus the
particle jumps correspond to the velocity correlation length
and the jump times, or waiting times, to the velocity
correlation time. The analytical solutions are often obtained
by assuming a Markovian assumption in space or in time,
which correspond respectively to a constant jump size or
jump time. Hence these solutions implicitly assume partic-
ular values for the exponents m and n (respectively m = 0 or
n = 0 in equations (7) and (8)). Comparisons with numerical
simulations, lab and field experiments showed that, in
several cases, the Markovian in space simplification works
well [Berkowitz et al., 2006]. The present study suggests
that, for the particular permeability fields investigated,
the particle waiting times and the subsequent jumps are
not independent, since the characteristic correlation time
and distance depend on the particle velocity. Such property
can be implemented in CTRW formulations where spatial
and temporal increments are coupled [Shlesinger et al.,
1982; Blumen et al., 1989; Berkowitz and Scher, 1998;
Meerschaert et al., 2003; Metzler and Klafter, 2000, 2004].
Such theoretical framework could be used to account for a
variety of possible relations between conditional correlation
and velocity, including non linear relationships, such as
obtained in our study (equations (7) and (8)).
[32] Obviously, the results presented in this study are

relevant to multinormal log permeability field defined by an
exponential correlation function and advection transport
only. We expect that other types of Lagrangian velocity
correlation structures may be obtained in other cases. The
characteristic exponent of the velocity correlation structure
(equations 7 and 8) appear to be quite general since they are
independent on the log permeability field variance. It is
probable that they are relevant for multinormal log perme-
ability field with a finite covariance. In three dimensions,
the channeling of high-velocity zones may be even more
important than in two dimensions, as flow has more
opportunity to encounter least resistance preferential flow
paths. An increased channeling is also expected to occur in
nonmultinormal permeability fields with preferentially
connected high-permeability zones [Zinn and Harvey,
2003]. In the general case, the role of channeling on the
velocity field structure is not obvious. In the present study,
we found that the apparent increase in channeling for high-
permeability field variances does not imply an increased
correlation length of the high-velocity zones. It implies an
increase of the low-velocity zones correlation time, as the
asymptotic velocity distribution is shifted toward the high

velocities. These aspects will be investigated in further
studies. The role of diffusion and local dispersion, which
are likely to change significantly the velocity transition
properties along the particles paths, will also be investigated
in the future.

7. Conclusions

[33] The present study shows that the correlation structure
of the Lagrangian velocity field in log permeability fields is
complex and may not be simply described by classical
statistical methods. How to quantify non-multi-Gaussian
correlation structures is a debated issue [Gomez-Hernandez
and Wen, 1998; Knudby and Carrera, 2005]. Here we tackle
this issue by studying the evolution of Lagrangian velocity
distributions conditioned on the initial particle velocity as a
function of particle traveltime or distance. We showed that,
in multinormal log permeability fields, the Lagrangian
velocity field is not multinormal, since the conditional
Lagrangian velocity distributions depend on the initial
particle velocity.
[34] The conditional velocity distributions, which are

initially narrow and centered on the initial velocity, widen
as particles experience different velocities, and converge to
the asymptotic Lagrangian velocity distribution. The rate of
convergence toward the asymptotic Lagrangian velocity
distribution depends on the velocity correlation function.
To quantify the rate of convergence as a function of initial
velocity, we computed the mean absolute difference between
conditional distributions and the asymptotic Lagrangian
distribution at different particle traveltimes and travel dis-
tances. We thus defined estimates of correlation length and
time conditioned on initial particle velocities in a Lagrangian
framework. These Lagrangian velocity field correlation
length and time quantify the traveltime and distance above
which a particle velocity is independent of its initial velocity.
[35] For the correlation in distance, the evolution with the

initial particle velocity v0 is an increase characterized by a
power law exponent of 0.3: xc = A(s2)v0

0.3. For the corre-
lation in time, the evolution with initial particle velocity is
not monotonic. For low initial velocity, the dominant effect
is the time needed for particles to leave the low-velocity
zones and the correlation is inversely proportional to the
initial velocity: tc = 2l/v0. For intermediate and high
velocities, the time for particle to sample the whole velocity
distribution becomes higher than the time needed for
particles to leave the initial velocity and the correlation
time increases with initial velocity: tc = B(s2)v0

0.2.
[36] The scaling of the correlation length and time as a

function of the initial velocity v0 is independent on the log
permeability field variance. The main effect of increasing
the log permeability variance is to increase the coefficient
B(s2), while the coefficient A(s2) is slightly decreasing.
Hence the increase in flow channeling that is observed for
high log permeability variances induces mainly an increase
of the velocity field correlation time. The nonlinear depen-
dence of both the correlation length and the correlation time
on the particle initial velocity restricts the use of spatial or
temporal Markovian assumptions for modeling particle
velocity transitions in heterogeneous media. This property
can be accounted for in coupled CTRW formulations.
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