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Abstract

We give an algorithm which represents the radical J of a
finitely generated differential ideal as an intersection of rad-
ical differential ideals. The computed representation pro-
vides an algorithm for testing membership in 7. This al-
gorithm works over either an ordinary or a partial differ-
ential polynomial ring of characteristic zero. It has been
programmed. We also give a method to obtain a character-
istic set of 7, if the ideal is prime.

Keywords. Differential Algebra. Radical differential ide-
als. Characteristic sets.

1 Introduction

Let ¥ be a finite subset of a differential polynomial ring®
K{yi,...,yn}, where K denotes a differential field, ordinary
or with partial derivatives, of characteristic zero. Let R be
a ranking of the set of derivatives of these y;.

We present an algorithm, called Rosenfeld—Grobner,
which represents the least radical differential ideal contain-
ing ¥ as a finite intersection of radical differential ideals J;:

{E}=5Hn---NJs.

Each radical differential ideal 7; is described by a differential
system of polynomial equations and inequations {2; and a
(non-differential) Grobner basis B; satisfying:

1. ©; and B; provide an algorithm for testing membership
in J;, through simple reductions,

2. B; depends only on the differential ideal J; and the
ranking R.

*The authors would like to thank the participants of the Special
Year in Differential Algebra and Algebraic Geometry for their help
and their comments, in particular Pr. William Sit and Raymond T.
Hoobler.

fThis research was partially supported by EC contract ESPRIT
B.R.A. n° 6846 POSSO.

1We make precise in the following sections some of the notations
and definitions used in this introduction.
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Thus, the set of tuples (2;, B;) allows to decide the mem-
bership in the differential ideal {X} by simple reductions.
The intersection computed may not be minimal. Unfor-
tunately, we do not know how to test redundancy, which is
a problem close to the open problem related in [Ko], page
166. However, when we know that the differential ideal {¥}
is prime, the formula mentioned above may be simplified to:

{Z} =,

and we give a method for calculating, starting with the
Grobner basis Bi, a characteristic set of the differential ideal
{X}, in the sense of Ritt, relative to the ranking R.

The Rosenfeld-Grobner algorithm relies essentially on
three theorems:

1. the theorem of zeros of Hilbert, which states that a
polynomial p belongs to the radical of an ideal given
by a finite family of generators X if and only if the
system of equations and inequations ¥ = 0, p # 0 has
no solutions; we use this theorem, in the algebraic and
in the differential case.

2. a lemma of Rosenfeld [Ro], which gives a sufficient
condition so that a system of polynomial equations and
inequation admits a differential solution if and only if
it admits a purely algebraic solution; the systems $2;
described above satisfy the condition of Rosenfeld,

3. a lemma of D. Lazard, which establishes in particular
that the ideals J; described above are radical.

The algorithm which we describe utilizes only the opera-
tions and equality test with zero in the base field K: we
refer to the reduction algorithm of Ritt, the computations
of Grobner bases, and splittings similar to those in the elim-
ination methods of Seidenberg [Sel]. It does not need any
factorization. An implementation of Rosenfeld—Grébner has
been realized [Bo], in the language C. It makes calls to the
big number library of PARI and the software GB [FGLM]
for the calculus of Grébner bases.

In order to place the interest of this algorithm, let us
describe in a few words the principals of existing methods.

Ritt gave [Ri] a method to decompose the radical of a dif-
ferential ideal as an intersection of prime differential ideals,
providing a characteristic set for each of these ideals. That
algorithm is inconvenient because it is only partially effec-
tive: it proceeds by factorization over a tower of algebraic



field extensions of the field of coefficients. To our knowledge,
it has not been implemented.

Ollivier [Ol] and Carra—Ferro [Ca] have independently
tried to generalize to differential algebra the Grobner bases
invented by Buchberger [Bu] for the study of polynomial
ideals in commutative algebra. These differential Grobner
bases are in general however infinite.

Another attempt to define differential Grobner bases has
been done by E. Mansfield [Ma]. The algorithm DIFFGBA-
SIS, implemented in MAPLE, utilizes Ritt’s algorithm of
reduction and then always terminates. In general however,
it cannot guarantee its output to be a differential Grobner
basis.

We may remark that the membership problem in an arbi-
trary differential ideal is undecidable [GMO], and the mem-
bership problem of a finitely generated differential ideal is
still open.

The elimination algorithms of Seidenberg [Sel] are more
general. Rosenfeld—Groébner borrows from them the idea to
combine Hilbert’s theorem of zeros and Ritt’s algorithm of
reduction. They decide the membership problem in the rad-
ical {X} of a finitely generated differential ideal by succes-
sively eliminating all the unknowns appearing in the poly-
nomials of ¥. They use only the operations of the base
field K, but present two inconveniences: first, the descrip-
tion of the differential ideal {2} they give is not usable to
test the membership in the ideal afterwards; second, their
behavior is a lot more explosive in practice than that of
Rosenfeld-Grobner, because they are restricted to the elim-
ination rankings. This phenomenon is particularly striking
in the case of systems with partial derivatives.

2 Preliminaries

Differential algebra. In this paper, K denotes a differen-
tial field of characteristic zero endowed with a certain num-
ber of derivations denoted 91, . .., 0. Let u be an element of
K. We denote by 6 the derivation operators (6 = 7 - -- 55",
a; € N) and by 6u the element of K obtained by differen-
tiating u a1 times by 41, ..., am times by d,,,. The sum of
the exponents a; is called the order of the operator 6. The
identity operator is of order 0. The other operators are said
to be proper.

Let S be a subset of a differential ring R which con-
tains K. We denote respectively by K[S] and K{S} the
smallest subring and the smallest differential subring of R
containing K and S (denoting by ©S the smallest subset
of R containing S and stable under differentiation, we have
K[BS] = K{S}).

Let S be a subset of a differential ring R. We denote by
(S) and [S] the smallest ideal and the smallest differential
ideal of R which contains S (we have (0S) = [S]). The
smallest radical differential ideal containing S, denoted by
{S}, coincides with the radical of [S].

Let I be an ideal and T be a multiplicatively stable family
of R. We denote I:T the ideal of all the elements p of R
such that, for some ¢ € T, the element tp belongs to I. If the
ideal I is differential or radical, then sois I: 7. If T C R is
any set, then T°° denotes the smallest multiplicative family
of R which contains T'.

We work with differential polynomials in K{y1,...
We call the y; letters and the 0y; derivatives.

An order R over the set of the derivatives (fy;) is said
to be a ranking ([Ko], page 75) if it is total and if it is
compatible with the differentiations over the alphabet:

7y"}'
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1. §;0y; > Oy; (for all derivation d;, all operator 6 and all
letter y;)

2. Ory; > O2y; = 0001y; > de02y; (for all derivations dy,
all operators 01,62 and all letters y;,y;).

Let p be a polynomial® of K{yi,...,y,} and R a ranking
on the Oy;. The leader u of p is the largest derivative with
respect to the ranking R which appears in p. The two con-
ditions mentioned above imply that the leader of 0p is Ou
for all derivation operators 6. Let d be the degree of u in
p. The initial I, of p is the coefficient of u? in p. The sep-
arant Sy, of p is the initial of all the proper derivatives of p
(Sp = dp/du). The rank of a polynomial p = I, - u + R, is
the polynomial u®. The rank of a set F is the set of ranks
of the elements of F.

Let p and ¢ be two polynomials and let u? be the rank
of p. The polynomial ¢ is said to be partially reduced with
respect to p if no proper derivative of u appears in q. The
polynomial q is said to be reduced with respect to p if ¢ is
partially reduced with respect to p and its degree in w is less
than d.

A set of polynomials A is said to be triangular if its el-
ements have different leaders. A set of polynomials A is
said to be autoreduced if each element of A is reduced with
respect to every other element of the set. Every autore-
duced set is triangular. Every autoreduced set is finite ([Ko],
page 77).

Let A be an autoreduced set. We denote H 4 the set of all
the initials and the separants of A. Hence HZ  denotes the
set of all the products of powers of the initials and separants
of the elements of A.

Let p be a polynomial and A = p1,...,ps be an autore-
duced set. There exists ([Ko], page 77) an algorithm, called
Ritt’s algorithm of reduction, which rewrites p as a polyno-
mial » = p rem A, reduced with respect to A (i.e. with
respect to all the elements of A), satisfying the relation:
r= 00 I8P 8y (mod [A]), for some integers a;
and b; (where I, and S, denote respectively the initial and
the separant of py).

The algorithm begins by producing a partial remainder
q = p partial-rem A. The polynomial ¢ is partially reduced
with respect to A and satisfies for some integers b1, ..., bs
the relation: ¢ = S¥'---8%p (mod [A]). The algorithm
then calculates » = p rem A by applying to ¢ a simple
algebraic reduction.

If p € [A]: HY then (p rem A) € [A]: HY.

Many such algorithms exist. We fix one of them.

An autoreduced subset C' of a set E of polynomials is
called a characteristic set® of E if E does not contain any
non-zero element reduced with respect to C. All the charac-
teristic sets of F have the same rank. A characteristic set C'
of an ideal J reduces to zero all elements of 7. If the ideal
is prime, C' reduces to zero only the elements of J and we
have J = [C]: HZ ([Ko], lemma 2, page 167).

Let p; and p; be two polynomials in an autoreduced
subset A of K{yi,...,yn}, whose leaders 6;y, and 6;y, are
derivatives of some same letter y, (this can only happen for
partial differential systems). We denote 6 the operator of
minimal order and ¢; and ¢; the two derivation operators

2The definitions which we give are only valid for polynomials p ¢
K. In this paper, we don’t need to bother with the exceptions p € K.

3This definition corresponds to Ritt’s one (see [Ri], page 5) and
coincides with Kolchin’s when E is a differential ideal. Kolchin only
defined characteristic sets for ideals (see [Ko], page 81 and 124).



such that ¢;0; = ¢;0; = 0. We define the A—polynomial be-
tween p; and p; as the polynomial Aij = Sy, ¢ipi — Sp, ¢;p;.
Its leader is strictly less than fy,.

Denote A-polynomial (A) the set of all the A—polynom-
ials which can be formed between any two elements of A.
The set A is said to be coherent® if it reduces to zero all its
A-polynomials: A-polynomial (A) rem A = {0} (or = 0).

Grobner Bases. We will have to calculate (non-differential)
Grobner bases of (non-differential) ideals of K{yi1,...,yn}.
Let A be a finite subset of K{y1,...,y»} and let Ry be a
ranking of the derivatives fy;. We order following R1 the
derivatives w; < --- < w; which appear in the elements of
A. The order R1 induces an order of elimination R2 on the
monomials of the ring K[wi,...,w:]. Let m; = wi* -+ wyt
and ma = wh! - - w’*. The order Ry is defined by: m; < ma
if for the largest index i such that a; and b; are different, we
have a; < b;.

The largest monomial for the order Ry which appears in
a polynomial p is called the head monomial of p. Also, if
u? is the rank of a polynomial p for the order R1, then u?
appears as a factor in the head monomial of p.

If A is a subset of K[wi,...,wt] C K{y1,...,yn}, then
the non-differential ideal generated by A in Klwi,...,ws]
coincides with the intersection between the non-differential
ideal generated by A in K{yi,...,yn} and the polynomial
ring K[wi,...,wt]. Thus for the non-differential ideal (A),
the property to be prime of radical is independent of the
polynomial ring.

3 Theorems Used

3.1 The theorem of zeros

Let ¥ be a polynomial system of equations and inequations.
A model of ¥ is a solution of ¥ in a field extension of the
base field of the system. More formally,

Definition 1 Let X be a differential polynomial system of
equations and inequations of K{y1,...,yn}. A differential
model of ¥ is a morphism K{yi,...,yn} — L of differ-
ential K —algebras into a differential field L that annuls the
equations but not the inequations of X.

Let w1, ..., wy denote the derivatives which appear in the
equations and inequations of . An algebraic model of 3 is
a morphism of K-algebras Klw1,...,w] — L into a field L
which annuls the equations but not the inequations of 3.

Every differential model provides an algebraic model, but
the converse is not true. Take the example of a partial dif-
ferential system of Q{u,v}, equipped with two derivations
0 and J, which we denote by subscripts:

Uz =0, uy = v, vy #0.

The system does not admit a differential model since the
equation dyuy — 0z(uy — v) = vy = 0 contradicts the in-
equation. It admits however an obvious algebraic model:
Uy =uy =v=0and v, = 1.

Theorem 1 (theorem of zeros, Hilbert). Let ¥ be a
differential polynomial system of equations and inequations:
p1=0,...,pm =0; q¢#0 in the ring K{y1,...,Yn}-

4This definition is stronger than that of Rosenfeld [Ro] or
Kolchin [Ko], page 136. Any autoreduced set which is coherent in
our sense is also coherent in the classical sense (so theorems still ap-
ply). We adopt it because it corresponds to an algorithmic test.

160

The system Y has no differential model if and only if
some power of q belongs to the differential ideal [p1,...,pm].

The system ¥ has no algebraic model if and only if some
power of q belongs to the ideal (p1,...,pm)-

Proof See [Se2], page 178. We give the proof in the differ-
ential case. The proof in the algebraic case is similar.

The implication from left to right. The radical of a dif-
ferential ideal is a radical differential ideal and every radi-
cal differential ideal is an intersection of prime differential
ideals. Suppose that ¢ does not belong to the radical of
the ideal [p1,...,pm]. There exists then a prime differential
ideal P which contains [p1,...,pm] but not g. This ideal
provides a differential model: the canonical morphism of
the ring K{y1,...,yn} into the field of quotients of the ring
K{ys,.. ., ya}/P.

The reverse implication is immediate. O

3.2 Regular systems

A rapid computation shows that #* € [zi] but that & ¢
(zz). More generally, if A denotes a finite set of polynomi-
als, the set of the elements of [A] partially reduced w.r.t. A
may also contain polynomials which are not in (A). This
phenomenon demonstrates well the importance of the fol-
lowing lemma.

Lemma 1 (Rosenfeld). If A is an autoreduced and coher-
ent subset of the ring K{y1,...,yn} then every differential
polynomial which belongs to [A]: HY and which is partially
reduced with respect to A belongs also to (A): HY .

Proof See [Ro], page 397 or [Ko], lemma 5, page 135. O

The regular systems are differential polynomial systems
of equations and inequations for which Rosenfeld’s lemma
applies.

Definition 2 A system of differential equations and inequa-
tions is said to be regular with respect to a ranking R1, if the
set of its equations is autoreduced and coherent, the initial
and separant of each equation appear among the inequations
and if its other inequations are partially reduced with respect
to the equations:

o= 0
A =pi1,...,ps is autoreduced
ps = 0 and coherent
Q¢ I # 0
the initial and separant of each p;
Ss # 0
q # 0 q is partially reduced w.r.t. A

Notation We use the letter 2 to denote regular systems
(for instance: €2, Qs etc ...). We use the letter A to denote
the set of the equations of Q (for instance, A; and As, stand
for the set of the equations of 1 and ). We use HS to
denote the set of all the power products of the inequations
of Q (for instance, H3, and Hg correspond to €21 and ).
We have HY® C HS.

Theorem 2 (Rosenfeld). A regular system  admits a
differential model if and only if it admits an algebraic model.



Proof See [Ro], page 398. Suppose that Q2 does not admit a
differential model and we show that it then does not admit
an algebraic model. By the theorem of zeros, 1 € [A]: HS .
By Rosenfeld’s lemma, 1 € (A): HS’, and Q does not admit
an algebraic model.

The other implication is immediate. O

The lemma 1 and the theorem 2 are extensions of two re-
sults of Seidenberg ([Sel], theorems 6 and 7 pages 51 and 52)
which provide his elimination algorithm for partial differen-
tial systems.

3.3 Regular ideals

We establish in this section some important properties of the
ideals [A]: HY® and (A):HG . In particular, we show that
they are always radical and that there exists an algorithm
which decides if a given polynomial belongs to them.

The following lemma is interesting by itself. In particu-
lar, it generalizes a result of Kolchin (see [Ko], lemma 13,
page 36).

The total ring of fractions of a ring R is obtained by
making invertible all the elements of R which do not divide
zero. We denote it Q(R).

Lemma 2 (Lazard). Let A = pa,...
set of a polynomial ring K|wi, ..., w], for the ranking w1 <

- < we. Letur < --- < us be the leaders of the elements
of A and Sa denote the set of the separants of the elements
of A. If the ideal (A): ST is non trivial, then the total ring
of fractions Q of the ring K[w1, ..., w¢]/(A): ST verifies the
two following properties:

,Ds be a triangular

(P1) it is isomorphic to a product of fields.

(P2) denoting w; the image of w;, we have: W; satisfies an
algebraic relation over Q(K[w1,...,wi—1]) if and only
if wi is some u;.

Moreover, the properties above remain true if S is replaced
by any multiplicative family S which contains it, provided
that the ideal (A): S is non trivial.

The following small lemmas are used in the proof.

a. Let R be a ring. Let I be an ideal and S be a mul-
tiplicative family of R. Let X be an indeterminate.
The ring homomorphisms R 2> S™'R, R 2 R/I and
R — R[X] commute together. Moreover, if S and S’

are two multiplicative families, the morphisms is and
iy commute also. If I C J, then R/J ~ (R/I)/p(J).

b. We retain the notations of (a). Since I:S = i " (is(I))
and the image of S in R/I:S contains no zero divi-
sor, by (a), we have the isomorphisms Q(R/I:S) ~
Q(ST'R/ST) = Q(p(S) ™' (R/T)).

c. Let R be a ring. If a € R is nilpotent, then ¢ 'R is
the zero ring. R/(1) is also the zero ring.

d. If R = Ry X --- X R, is a product of rings and if
a = (ai,...,ay) is one of its elements, we have:
R/(a) = Ri/(a1) X+ X Rn/(an),
a 'R = aflRl X oo X a;an,
R[X] Ri[X] X -+ x Rp[X].
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e. Let R5 Sbea ring homomorphism. Let p € R[X] be
a polynomial and S, be its separant. Then f(Sp)

Stp)-

f. Let p € K[X] be a polynomial over a field. Let
pit - per be the decomposition of p into irreducible
factors. Since the separant S, of p contains as factors
the multiple factors (a; > 1) of p, the ideal (p):Sp°
is generated by the product of the simple factors of p.
The ring K[X]/(p):S;° is hence either the zero ring
(by (c), if p has no simple factors), either a product of
fields, according to the Chinese Remainders theorem.

Proof We define a sequence of rings as follows:

Ro K
Ri+1 = Q(RI [wz+1]) if Wi+1 75 Uj for each Uy,
Rit1 = Rilu;]/(p;): S5 if wit1 = u;.

where p; and S; denote the images of p; and S; in R;[u;].

To prove the lemma 2 we are going to establish, first that
R, verifies (P1) and (P2), second that R; is isomorphic to Q.
Last, we consider the case of multiplicative families which
contain S%°.

1. We show by induction on 4 that R; verifies (P1) and
(P2). Clearly, Ro satisfies them. Assume that R; ~
Ki x --+ x K,, verifies these two properties and let us
show that R;4 verifies (P1) and (P2) also.

If w; is not a leader wj, using (d), Ri41 is isomorphic
to [ [, Kr(wiy1). It verifies (P1) and (P2).

Let us consider the case w; uj. Let pj
(Pj1s-- -+ Djm) andS (Sj1,...,8jm). By (d) we
have, R;[u;]/(p;): Hk 1K’c [u;]/(Pjk) :

Let 1 <k <m.

If 5,5 € K, then S;; = 0 and the k*" factor of the
product above is the zero ring, by (e) and (c).

If pjx ¢ Kg, then by (f), Kilu;]/(pjx):S;y is either
the zero ring, either isomorphic to some product of
algebraic field extensions of Kj.

Thus R;41 verifies (P1) and (P2).

2. We show by induction on ¢ that R; ~ Q. The main
point to check is that the inversion of the non zero
divisors commute with the other ring homomorphisms.
Let us denote

Ti:K[wl,... 7pj,1)1(517...,
where u;_1 < w; < u;. We have Q@ = Q(T;). Clearly,

Ry ~ Q(To). Assume that R; ~ Q(T5;) and let us prove

that Rit1 >~ Q(Ti41)-

If wit1 # u; then Riy1 = Q(Ri[wit+1]). Every non

zero divisor in Tj is still a non zero divisor in T;[wit1],

s0 Rit1 >~ Q(Tilwit1]) and by (a), Rit1 =~ Q(Tit1).

If Wi+l = Uj then Rit1 = Rl[uﬂ/(;ﬁj) : S;O Since

R; 41 verifies (P2), every non zero divisor in 7; is still a

non zero divisor in T;[u;]/(p;

) S’J‘-’O. Since R;+1 verifies
(P1) we have Riy1 ~ Q(T— [u 1):55°). Then by (a)
and (b) Riy1 ~ Q(Ti+1

s wil [ (p1, - - Sj—1)%,

j]/(ﬁ]

3. By (c) and (d), the inversion of an element p of a prod-
uct of fields only suppresses the fields of the product
for which p has a zero component. O



Definition 3 A differential ideal J is said to be regular if
there exists a regular system Q such that J = [A]: HS. An
algebraic ideal J is said to be reqular if there exists a regular
system ) such that J = (A): HZ .

Theorem 3 FEwvery regular ideal is radical.

Proof Let Q) be a regular system. Let p be a polynomial for
which a power p”™ belongs to (A): Hg". The image of p" in
Klwi,...,w]/(A): HS is zero. That ring has no nilpotent
element, since its total ring of fractions is a product of fields,
according to the lemma 2. Hence the image of p is zero, p
belongs to (A): HY and that ideal is radical.

Let us show that the regular differential ideal [A]: HS
is also radical. Let p be a polynomial for which a power p"
belongs to [A]: HY®. The polynomial p = p rem A is equiv-
alent to some S7* -+ - Sg*p modulo [A]: HY. By Rosenfeld’s
lemma and the first part of the proof, p € (A): HS whence
pisin [A]: HY. This ideal is thus radical. O

The following lemma is a consequence of lemma 2 (prop-
erty (P2)), the proof of which is left to the reader. It is
used in the proof of the lemma 5 and shows that we may
read the transcendance degree of a system without calculat-
ing the Grobner basis of (A): HS, except the condition to
ascertain that the ideal is non trivial.

Lemma 3 Let € be a regular system for a ranking Ri1. Let
up < --- < us be the leaders of the equations of the sys-
tem. Let B be a Grobner basis of (A): HY for the order Ra
induced by R1.

If (A): H® is not the unit ideal, then the leaders of the
polynomials of B are the derivatives ui, ..., Us.

Let Q be a regular system and A be the set of its equa-
tions. We give in section 4 a method to calculate a Grobner
basis B of (A) : HS’, and in section 6 an example of a regular
system without models.

The following lemma shows how to decide the member-
ship problem in a regular differential ideal. Its proof is an
easy consequence of Rosenfeld’s lemma.

Lemma 4 Let Q be a regular system, A be the set of its
equations, and B be a Grobner basis of (A): HS . For each
polynomial p of K{y1,...,yn} we have:

p€[A]: HY <= (ppartial-rem A) € (B).

We would like to clarify the correspondance between sys-
tems of regular algebraic ideals and regular differential ide-
als. An example suffices to show that two different regular
systems may define the same regular ideals:

r+1=0, and

(x+1)(z+2)%=0, (x+2)(3z+4) #0.

Question: Is the correspondance between regular algebraic
ideals and regular differential ideals bijective ? In other
words, do two regular differential systems define the same
regular algebraic ideal if and only if they define the same reg-
ular differential ideal ? The following lemma, which shows
the implication from right to left, is a step in the proof of
theorem 6. The converse implication, which we have not
established, seems to be in keeping with the open problem:
to decide the inclusion of two prime differential ideals each
given by a characteristic set (see [Ko], page 166).
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Lemma 5 Two reqular systems which define the same reg-
ular differential ideal define also the same regular algebraic
ideal.

Proof Let 2 and Q' be two regular systems defining the
same regular differential ideal [A]: Hy® = [A']: HS). Let
B and B’ be the Grébner bases respectively of the ideals
(A): HS and (A"): HZS for the order R2 induced by R1. We
suppose B is different from B’ and we seek a contradiction.

We order the polynomials of B = bg,b1,...,bn and of
B’ = by,bY,...,b.., by increasing order. Let i be the least
index such that the head monomials of the polynomials b;
and b are different and suppose b; < b;. Since b; belongs
to the differential ideal [A]: HS, by lemma 4 (b} partial-rem
A) € (B).

Let u, and u, be the leaders of the polynomials in the
basis B and B’ and let uj be the leader of b;. We have
uyp = u'l, e Uj—1 = u;-,l.

By the lemma 3, each polynomial of the basis B (re-
spectively B’) is partially reduced w.r.t. each other. Since
ur = uy,...,u—1 = uj_, and since b; < b;, the partial re-
duction of b; by A does not modify &, and we have b; € (B).
In view of the hypothesis made on i, the head monomial of
b} can not be reduced by any rule from B.

This contradiction proves the lemma. O

While the basis B is “canonical”, it does not permit easy
computation in K{y1,...,yn}/[A]: HS . In fact, the partial
reduction algorithm does not transform a polynomial into a
polynomial which is equivalent modulo the ideal:

p Z (p partial-rem A) (mod [A]: HY).

4 The Rosenfeld—Grébner Algorithm

The program Rosenfeld—Grébner gathers at entry a differ-
ential system of equations and inequations ¥ and a ranking
R1. It produces by splittings a finite family (£2;) of consis-
tent (with models) regular systems whose differential models
form a partition of the differential models of 3.

The Greek letters A, Q, I';, denote systems of equations
and inequations. Aeq and Aj, stand respectively for the set
of the equations and for the set of the inequations of the
system A.

The function obviouslyInconsistent returns true if a non-
zero element of K appears among the equations, or if 0
appears among the inequations of the system.

program Rosenfeld-Grobner (A, R1)
begin
if not obviouslyInconsistent (A) then
A := a characteristic set of the finite set Aeq
Let {h1,...,hr} denote the set of the initials
and of the separants of the elements of A
such that h; ¢ K.
R:= (Aeq \ AU A-pols(A)) rem A
if R=0 or R= {0} then
Qeq :=A
Qin = (Ajp partial-rem A) U
{h’l #07"')]’“‘ 750}
B := a Grébner basis of (A): HY®
if B # {1} then
produce on output 2 and B
endif
else
Fr+1,eq = AUR
Lrgrin = Aip U{h1 #0,..., hr # 0}
Rosenfeld—Grébner (I'y41,R1)
endif



for i := r downto 1 do
Fi,eq = Aeq @] {hi = 0}
Liin = Ajp U{hi—1 #0,...,h1 # 0}
Rosenfeld—Grébner (I';, R1)
end
endif
end

Some other ways exist to do the splitting of A into the
I'; (see [Bo]). This one was used by Seidenberg in [Sel].

The Grobner basis B of the ideal (A): HS is computed
by the method below. It is classical [Tr]. It detects regular
systems without models: those with basis {1}.

1. The system {2 is transformed into a system of equa-
tions: the algorithm introduces a new unknown z; for
each inequation h; # 0 of the system and rewrites
hi 7& 0 as hizi =1.

2. A basis By is computed following any elimination order
R satisfying: Oy; < z; (for all derivatives fy; and all
unknowns z;),

3. The desired basis B is obtained by truncating Bp.
Only those polynomials of By which do not involve
z; are retained.

4.1 Proofs
Lemma 6 The Rosenfeld—Grébner algorithm stops.

Proof The set of the equations of each system I'; not obvi-
ously inconsistent, produced from A, contains A and at least
one polynomial p ¢ K reduced w.r.t. A.

Thus, the characteristic sets of the sets of the equations
of the systems I'; not obviously inconsistent are lower than
A, for the usual ranking on autoreduced sets ([Ko], page 81).

This ranking is a well ordering ([Ko|, proposition 3, page
81). Since the algorithm discards obviously inconsistent sys-
tems, Rosenfeld—Grobner stops. O

The two lemmas below deal with the correction of the
algorithm. Since 2 corresponds to a particular case of I';41,
we do not distinguish it from I';.41, in order to simplify the
statements.

Lemma 7 ¢ is a differential model of A if and only if ¢ is
a differential model of some I'; (1 <14 <r+1). Moreover,
the differential models of the systems I'; are disjoint.

We only give the main argument of the proof.

Let ¢ be a differential model of some system A = 0, hy #
0,...,h, #0. Let p be any polynomial and let p = p rem A.
According to the definition of the models and to the spec-
ifications of Ritt’s algorithm of reduction, we have ¢(p) =

0 < ¢(p) = 0.

We need the notations below for the lemma 8, which is
used for the calculus of characteristic sets in section 5.

Let ¥ be a system of equations and inequations, {3eq}
be the radical differential ideal generated by the equations of
the system, and Hs® be the multiplicative family generated
by its inequations. We denote J(X) the radical differential
ideal {3eq}: HY .

Lemma 8 If J(A) is prime and if ¢ is the greatest index
such that T'y has a differential model, then

JN) =T [T).
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Proof According to the lemma 7 above and to the theorem
of zeros,

JAN)=TTr1)Nn---NJ([I),

so the index £ exists. We consider thus two cases.

1. No polynomial h; (1 <4 < ) belongs to J(A). We
prove that J(I'y41) C J(A) and the equality follows
from the formula above (¢ = r + 1).

We have I'yy1.6q C [Aeq] C J(A). Since the ideal is
prime and since no polynomial h; belongs to it, we have
HE? NI (A) = 0. Now, assume that p € J(I'r41) ie.
that for some h € Hy,_ , we have hp € {I'rq1,eq} C
J(A). Since h ¢ J(A) and that ideal is prime, we
have p € J(A).

2. Let t < r be the smallest index such that h: € J(A).
We prove that all the ideals J(I';) (t < ¢ <7+ 1) are
trivial and that J(I';) C J(A). The equality follows
from the formula above (£ = t).

By the formula above, for ¢ < i < r 4+ 1 we have hy €
J(A) € J(T';) but, according to the way the I'; are
computed, we have also h; € Hr;. These ideals J(I';)
are hence trivial and the corresponding systems 2; are
not produced on the output of the program.

According to the hypothesis I't,eq C J(A). Since this
ideal is prime and no polynomial h; (1 < i < t) belongs
to it, we have HY, N J(A) = () whence as in 1. above,

JT) =J(A). O

4.2 Properties of the computed representation

A basis in the sense of Ritt and Raudenbush of a radical
differential ideal 7 is any finite family ¥ such that J = {3}.
Ritt and Raudenbush established [Ri], page 10 that every
radical differential ideal admitted a basis.

The Rosenfeld—Grobner algorithm decomposes a differ-
ential ideal {¥} given by a finite basis as an intersection of
regular differential ideals each described by a regular sys-
tem. This decomposition is also an algorithm for member-
ship testing in {X}.

Consider a system X : p1 =0, ..., p,n = 0 of differential
polynomial equations of K{yi,...,yn}. Let Q1,...,Qs be
the successive regular systems produced by the Rosenfeld—
Grobner algorithm applied to ¥ for some ranking Rq.

For each system €2;, we denote A; the set of its equations
and Hg the multiplicative family generated by its inequa-
tions.

Theorem 4 With notations as above, we have:

1) ¢ is a differential model of ¥ if and only if ¢ is a
differential model of some Q; (1 <i<s).
Moreover, the differential models of the reqular systems
Q; are disjoint.

2) the radical differential ideal {¥X} is the intersection of
the regular differential ideals [A;]: Hg, .

=} = VB = [A]: HS n---N[A,] HE.
Proof

1) It is an easy consequence of the lemma 7.



2) By 1) and the theorem of zeros, a polynomial p belongs
to {X} if and only if, for each ¢ € [1,s], the system
obtained by adjoining the inequation p # 0 to €2; has
no differential models. By the theorem of zeros and the
theorem 3, these systems have no differential models
if and only if p € [A;]: HS,. O

The description of the ideal {¥} computed by Rosenfeld—
Grobner allows us to decide the membership problem in {3},
using a few reductions. This is expressed in the following
theorem, whose proof is an immediate consequence of the
theorem 4 and the lemma 4.

Theorem 5 With notations as above, we have:

pe{X} & Vie[l,s], (ppartial-rem A;) € (B;).

5 Computation of characteristic sets

We give a method to compute the characteristic set of a
prime differential ideal given by a basis in the sense of Ritt
and Raudenbush. We generalize here the result [Ol], page
89, of Ollivier.

We retain the notations of the preceding section.

Lemma 9 If the differential ideal {X} is prime then
{¥} = [Ai]: Hg,.

Proof The inclusion from left to right comes from the the-
orem 4. The other one is a consequence of the lemma 8. O

To our knowledge, there does not exist any algorithm
which decides if a differential ideal given by a basis (either
in the classical sense or in the sense of Ritt and Raudenbush)
is prime.

The coherent and autoreduced set A; satisfies a property
of characteristic sets of the ideal: if C is a characteristic
set of a prime differential ideal {X}, then we have {X} =
[C]: HE . However, A; is not necessarily a characteristic set
of the ideal. Consider the (algebraic) example below:

Ar:(z+1)(z+2)=0, (z+1y+2=0.
A; is autoreduced with respect to the order z < y, the ideal
(A1) : HZ, is prime but its characteristic set is

C:x+2=0,y—2=0.

The basis B of (A1):Hg,, computed with respect to the
order Rs induced by Ri is almost a characteristic set of
{X}, but not quite. We give in the following section an
example which shows that this is not necessarily the case.
The theorem below indicates how to compute C' from B.

Theorem 6 Let {X} be a prime differential ideal and Q
be a regular system with respect to a ranking R1 such that
{X} = [A]:Hg". Let B be a Grobner basis of (A): HZ
computed with respect to the order Ra induced by Ri.

The following algorithm calculates a characteristic set C
of the ideal {¥}, with respect to the ranking Ri, from the
basis B.

begin
Assume that the elements of B=01 < -+ < bm
are arranged in increasing order.
C = {b1}
for i :=2,...,m do
let u; and u;—1 be the leaders of b; and b;—1
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if u; # u;—1 then
C :=C U {b; rem C}
endif
end
end

Proof We are going to successively establish the following
points:

1. To determine C amounts to determining a character-
istic set of the prime ideal (C): HZ, with respect to
the order R;.

2. B is a Grobner basis of (C): HZ .

3. Let p = I, - u™ + R, be a polynomial of (B) =
(C): HZ, whose initial I, is not in the ideal. There ex-
ists then in B a polynomial b = I, - u® + Ry with dp <
dp and there exists in C' a polynomial ¢ = I. cute + R,
with d. < dp.

Since neither I, nor I., appear in (B) = (C): HZ,
and since B and C are two subsets of the ideal, the
algorithm described in the theorem extracts from B a
set of polynomials of the same rank as C, but which is
not necessarily autoreduced in the sense of Ritt. The
proof of the theorem is completed by:

4. The reductions carried out by the algorithm may not
reduce the rank of the polynomials extracted from the
basis. O

Proof of 1. See [Ro]. The characteristic set of a differential
ideal, autoreduced by definition, is coherent since it reduces
to zero every polynomial (in particular the A—polynomials)
of the ideal. We apply the lemma of Rosenfeld. (C): HZ is
the intersection of the prime differential ideal [C]: H¥ and
the ring of partially reduced polynomials with respect to C.
The ideal (C): HE is then prime.

To say that a coherent and autoreduced set C' is not a
characteristic set of [C]: HZ, is to say that there exists in
that ideal a non-zero polynomial p, reduced with respect
to C. By the lemma of Rosenfeld, this is to say that p
belongs to (C): H¥ and hence C is not a characteristic set
of (C):HZ.O

Proof of 2. Since {¥} = [C]:HZ (see [Ko], lemma 2,
page 167) and {3} = [A]: H", by lemma 5, we have (B) =
(C):H&.O

Proof of 3. Let p = I, - u™ + R, be a polynomial of
(B) = (C): HZ, whose initial I,, is not in the ideal. Suppose
the head monomial m; of I, under normal form modulo B.
Since p is reduced to zero by B, there exists a polynomial
b of B whose head monomial divides the head monomial
mp = m; - u® of p, but does not divide m;. The rank of b
is then u® with 0 < dy, < d,.

Since (B) (C):HZ is prime and since I, does not
belong to the ideal, C' does not reduce I, to zero. There
exists then in the characteristic set a polynomial ¢ = I. -
u + R, with 0 < de < dp. O

Proof of 4. This is immediate since the initials of the
polynomials of B do not belong to (B) = (C):Hg, the
ideal is prime and the characteristic set of a prime ideal
reduces to zero only the elements of the ideal. O



6 Examples

The algorithms described in the preceding sections have
been programmed (see [Bo], VI) in the language C. The
manipulations of big numbers are effected by the library of
PARI. The Grébner bases computations are by the software
GB (see [FGLM]).

The computations are done on the IBM RS/6000 sta-
tion cosme.polytechnique.fr. The timing of computation are
given by the UNIX command time.

6.1 Membership testing

We first give a very simple example to illustrate splittings
and to show how to test membership in radical differential
ideals. We deal with

8

For the ranking 6z < ¢y (for all derivation operators 6
and ¢), the first equation may be reduced by the second one.
Its remainder is y. ¥ is thus split into two systems:

(2 +1)y+y=0
24+ x=0.

iy =0 2%+ 1)y +y=0
'y #24+2=0 andTi< ?>+z=0
& #0 % =0.

The system I's gives immediately a regular system Q2 =
I’'s. The Grobner basis computation only simplifies the fac-
tor & in the first equation: By = {y,&? +x}. The system I’y
leads with no splittings to the regular system below. The
Grobner basis computation is useless.

o

Now, we may verify that (22 + 1) ¢ {X}. We apply the
theorem 5: (2% + 1) is reduced to zero by (¢* + x) in Q1
but reduced to 1 in .

We may also verify that ©(2% + 1), which is the first
derivative of (4% + z), belongs to {£}. This polynomial is
reduced to zero by both systems 22 and 2;.

y+y=0
z=0

6.2 Hidden algebraic contradictions

The following example does not have any physical signif-
icance. It shows the necessity to assure that the regular
systems have models.

Consider the following system in Q{u,v} equiped with
three derivations ds, 6, and 6,. The derivation operators
are denoted by subscripts.

2
Uy = 2UylUs — 1, Ugy =V, Vg = Ug2,
3
Vy = UyVz, Uz = UzUy.

uy
The ranking R1 used for the calculations is the following:
1) Gu > ¢v for all derivation operators 6, ¢,

2) Ou > ¢u if 6 > ¢ for the lexicographic order given by
0z > 0y > 6. (same choice for v).
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The Rosenfeld—Grobner algorithm computes two regular sys-
tems in a little more than 6 seconds:

VzVyz — Vz2Vy = 0,
(Ugvyvyy + (*Uzz + Uvz) 2)'0 'U 2 VUyy
+(v2v.. —vvd)vl =0,
ul—1=0, v.uy—vy =0,
(U?’Uy’vyy + (_Uzz + U'Uz)US)’Uq; — Ug’[)yy
+ (V2022 — vU2)VE =0,
v £ 0, V0yVyy — Vavys + V05 £ 0, vy #0
u, # 0, Uf,vx —v2vy, # 0,
V2 Uyy + (—Vzz + vv2)VS # 0
v=0
w—-1=0
Uyy = 0
UylUy — 1 =10
u; #0
Uy # 0

The first is inconsistent. Remark that it is not detected
before the Grobner bases computation, although our imple-
mentation of the splitting process looks for simple contra-
dictions: the final algebraic treatment is necessary. Here is
the Grobner basis associated with the second system:

3
v, u,—1, Uyy, Usuy—1.

6.3 Computing a characteristic set

The example below, which has no physical significance, shows
the necessity to proceed with the described reductions in
theorem 6 to obtain a characteristic set of a differential ideal
that (we know) is prime.

Let ¥ be the following system of ordinary differential

equations:
T=yrt+y+1
Uy = 2yx + 22yx +y + 2z
z2=Y
The differential ideal [X] is prime, since the system is or-
thonomic (HY = {1}) and autoreduced® with the ranking:

1) 6z > ¢y and 0z > ¢z for all derivation operators 6, ¢
and 1,

2) ¢y > Yz if the order of ¢ is larger or equal to that of

I

3) Yz > ¢y if the order of ¥ is strictly larger than that
of ¢.

We now apply the Rosenfeld—Grobner algorithm to ¥ with
the elimination order:

1) 0z > ¢y > vz for all operators 0, ¢ and .

We obtain (in a bit more than 3 seconds) a unique regular
system €2;. The Grobner basis By that is associated to it is:

P = ((F — 2+ 1)2@® — 2@ 4 (345 + 2242 — &
—22)x® — 2% + (=62 — 2)d — 1)Z% + ((2z
+2)i% + i + (=22 — 2)i + 2)i — @2 + 1)

p2 = ((& — 2>+ 1y —z® + (& + 20)% — @)

ps = ((® —2i° 4+ 2i)y — 2@ + (—2i + 22)z®
+ 23 + (22 + (6 + 2)& — 1)& — 2% — 1)

pa= (2 —y).

5Tt is necessarily coherent, since it only involves ordinary differen-
tial equations.



If we extract a characteristic set from Bi, without effecting
the described reduction in theorem 6, we obtain an autore-
duced set A = p1, p2, which is not a characteristic set of the
ideal [X] (the polynomial ps in fact does not leave since it
is not reduced with respect to p2). Apply the theorem 6 by
reducing ps by p2. We obtain then a characteristic set C' of
[2]:

p1, p2, (& —d* 4+ 1)z —a® + (& + 22)3 — @).

Remark In practice, we may often do without Rosenfeld—
Grobner for generating the system €21: the majority of the
time, we know that an ideal [X] is prime by showing a rank-
ing R for which X is orthonomic, autoreduced and coherent
(cf. the example above). The ranking R furnishes a char-
acteristic set, hence a membership testing algorithm of the
ideal [X], which permits avoiding the splittings.

7 Conclusion

Although the models of the regular systems produced by the
Rosenfeld-Grobner algorithm are disjoint, the regular differ-
ential ideals which are defined by them may be redundant.
In particular, the algorithm may produce many systems,
even when the differential ideal {X} is prime.

We do not know how to decide the inclusion of two regu-
lar differential ideals. It is a problem very close to the prob-
lem of Ritt: to decide the inclusion of two prime differential
ideals each given by a characteristic set, which “seems very
far from solution” ([Ko], page 166). Its solution would allow
us to decide if a differential ideal given by a finite family of
generators is prime.
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