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Wetting of Heterogeneous Surfaces at the
Mesoscopic Scale

Joél De Coninck!, Christophe Dobrovolny?,
Salvador Miracle-Solé3, and Jean Ruiz*

ABSTRACT: We consider the problem of wetting on a heterogeneous wall
with mesoscopic defects: i.e. defects of order L, 0 < € < 1, where L is
some typical length—scale of the system. In this framework, we extend sev-
eral former rigorous results which were shown for walls with microscopic
defects [10, 11]. Namely, using statistical techniques applied to a suitably
defined semi-infinite Ising-model, we derive a generalization of Young’s law
for rough and heterogeneous surfaces, which is known as the generalized
Cassie-Wenzel’s equation. In the homogeneous case, we also show that for
a particular geometry of the wall, the model can exhibit a surface phase
transition between two regimes which are either governed by Wenzel’s or by
Cassie’s law.
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1 Introduction

Surface phenomena play an important role in many fundamental processes
and, among them, the wetting of surfaces is a subject of primary importance.

Consider a drop of liquid B in coexistence with a gas phase A on top
of the surface W. The shape of this drop with a fixed volume of liquid is
obtained by minimizing the free energies associated to the three interfaces
under consideration. The solution of the corresponding variational problem
is given by the Winterbottom’s construction.

As a consequence, the contact angle of the droplet with the wall satisfies
in the isotropic case the well known Young’s equation :

TAB COSO = Taw — TBW = AT (1.1)

where 7,5, {1, j} € {A, B, W} is the surface tension between the media ¢ and j.
In the case of an orientation dependent surface tension for the A B—interface,
the L.H.S. of the above equations have to be modified: e.g. in dimension
d = 2, one should replace it, by cos# 745 — sinf Z74p (see [8]).

Figure 1 : Young’s contact angle

The validity of Winterbottom’s construction and Young’s equations in
the frame of Statistical Mechanics has been established in several works: see
[8, 9] for SOS-models and [1, 24] for Ising-like models. The substrate W is
usually considered as perfectly flat and homogeneous surface.

When the surface is homogeneous but rough, one usually introduce the
roughness as the ratio of the area A of the surface and the area A of its
projection on the horizontal plane: » = A/A. In this case the differential
wall tension A7 has to be computed according to the Wenzel’s law [29]:

AT = r(AT)tt



where (A7)fat = flat _ rflat 4y the differential wall tension of the correspond-
ing flat wall.

When the substrate is flat but made of two species W; and W, with
concentrations ¢; and c; = 1 — ¢4, respectively, we will have:

AT = ¢ (A7) 4 e (AT)5

where (A7)fat = 73t — 7830 This relation is known as the Cassie’s law [7].
When the substrate is both rough and heterogeneous the generalized
Cassie-Wenzel’s law states:

AT = iy (AT)1 4 rocy) (AT) B2 (1.2)

where r;c; is the ratio of the non planar surface covered with material 7 to
the total planar area.

This generalized Cassie-Wenzel’s equation has been presented for macro-
scopic defects using thermodynamical arguments in Ref. [26]. In Refs. [10,
11], the rigorous proof of this equation has been derived, within a SOS-like
model, for microscopic defects covering the surface with a certain periodicity.
In the later case the law is satisfied up to a small temperature dependent
correction (tending exponentially to zero with the temperature). Namely,

AT = 111 (AT) I 4 rocy (AT) 52 + O(e7PC)

Let us now consider a surface z(x,y) over a certain area L x L in atomic
units. Combining the previous results, we know that we can use the Cassie-
Wenzel’s equation for defects of order O(L) or of order O(1). On the other
hand, it is also obvious that a real surface can present heterogeneities at all
intermediate length-scales L° with 0 < € < 1. It is thus interesting to extend
the proof of the Cassie-Wenzel’s relation for such mesoscopic defects O(L?),
0<e<l

This is actually the aim of this paper. We consider an Ising-like lattice
gas model with mesoscopic defects. We prove in Theorem 1 below, the
validity of the generalized Cassie-Wenzel’s equation at low temperatures,
within a certain range of the coupling constants. This equation reduces to
the Cassie’s law when the wall is heterogeneous and flat and to the Wenzel’s
law when the wall is homogeneous and rough.

Let us stress that contrary to the case of microscopic defects, no corrective
term has to be added.



However, this result is only true when the strength of the interaction
between the particles and the wall is small. We give then an important
improvement of this law, showing that when this strength is varied, the
system exhibits surface phase transitions between two regimes.

Namely, we show in Theorem 2 that, in the homogeneous case, a transi-
tion takes place between a Wenzel’s and Cassie’s behaviours for the drop.

The paper is organized as follows. In Section 2, we introduce the modified
semi-infinite Ising model which describes the modeling of the rough and
heterogeneous surface, and we give the microscopic definitions of the various
surface-tensions. Our results are stated in Section 3.. Finally, Sections 4 and
5 are devoted to proofs.

2 The model

To model the influence of roughness and heterogeneities on wetting we use
a suitable 3D half-infinite Ising model to describe the drop and its vapor
and an SOS surface to represent the boundary of the wall. Namely, we will
describe the wall by the boundary &W of a half infinite lattice W C Z?2 which
represents the substrate, as shown in Figure 2.

This boundary will be rough (see below for the precise definition of W)
and we shall consider W to be the union of two disjoint subsets W7 and W.
In this way we get an inhomogeneous wall OW = dW; U W, composed of
several pieces of the two different substrates. For the vessel containing the
drop and the gas we take the complement V = Z3\ W.

To each site x of the vessel V', we associate a variable o, which may take
two values; +1 associated to a particle at x, and —1 associated to an empty
site. We assume that the substrate is completely filled, i.e. o, = +1 for all
zeW.

Inside the vessel, the variables are coupled with a nearest neighbour cou-
pling J/2 > 0, representing a nearest neighbour attraction of particles while
at the boundary between the vessel and the substrate the spins of the ves-
sel are coupled with a nearest neighbour coupling constant, K,/2 with the
particles of W: K, = K; or Ky according x € W, or x € W;.

Formally, for any finite set {2 C V' these interactions are described by the



Hamiltonian

Ho)=~2 ¥ (uoy~-1-3 X (051

(zy)z,y€Q (zy)z€Q,YEN\W
K
-5 2 (- (2.1

(zy)zeQ,yeWw

Here (xy) denotes nearest neighbour pairs, Q¢ = Z3\ Q is the complement
of 2, and @ are the chosen boundary conditions defined as @ = + or —, i.e.
either 5, = +1 forally € Q°\ W or g, = —1 for all y € Q°\ W.

Let us now introduce the differential wall tension for the model (2.1).
Considering a finite lattice A(L) = {(x1, 72, 23) € Z3: |z;| < L,i=1,2,3},
we let Z5,(Q2) and Z,,(Q) be the partition functions of the model (2.1) at
inverse temperature (3, in the volume Q = A(L) NV, with respectively, +
and — boundary conditions on that part of the boundary of A(L) NV which
is not part of the wall (on the wall, the boundary conditions are always
+1). We then define the wall free energy 7, (and similarly 7_y) in term
of log Z;\,(Q) by subtracting the bulk term as well as the boundary terms
associated with the boundary 92 \ 0W, and taking appropriate limits. The
differential wall tension

AT =Tow —Tow (2.2)

is thus defined as [16, 23, 3, 2, 10]:

. Zy ()
Ar=—1 w
PAT =~ I BT 12 8 75 @)

(2.3)

For the usual surface tension 7+- between the + and — phases we use the
standard definition [17]. Namely, let Z*(A(L)) be the partition function of
the standard Ising model with formal Hamiltonian

J
) Z(Umay -1)
(zy)

in the volume A(L) with 4+ boundary conditions on the boundary of A and
ZT7(A(L)) be the partition function with + boundary conditions below the
plane x3 = 1/2 and — boundary conditions above this plane. Then, the
surface tension 7+- is defined by the limit

| . Z+(A(L))
Ir- == M e 12 7 aw))

(2.4)
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In the perfectly flat case, the set modeling the substrate will be just
the half space Wi = {(z1,29,23) € Z® | 13 < 0} and we let (Ar)fat
(resp. (AT7)3%) correspond to the case of the homogeneous flat wall with
W1 = Wﬂat, W2 = @ (resp. WQ = Wﬂat, W1 = (Z])

More generally, we consider a substrate surface W (defined as the set of
unit plaquettes, whose center intersects the bonds zy, r € W, y € Z3\ W,
in their middle point) given by a periodic Solid-On-Solid type interface, i.e.
OW corresponds to the graph of a periodic function z3 = z3(x1, z2).

For the sake of simplicity, we shall consider a boundary surface OW given
by the graph of the function z3(x1,z2) defined on the cylinder {% <z <
a+3,2<m <a+3i}by

—b+ifor 1<z <c+3,3<z<c+

x3(z1,22) = { 1

5 otherwise

1
2

and determined on the complement of this cylinder by the periodicity (see
Figure 2).

Figure 2: The substrate surface OW.

We take a mesoscopic length-scale for the size of the pores. Namely, we
choose a = aof(L), b="0byf(L), c = cof(L), d = dof(L), where limy_,, f(L)
= oo and limy,,o f(L)/L = 0. The roughness of the wall is 7 = lim,, ;oo (1+
4bc/a?) = 1+ 4boco/a?.

Finally to describe heterogeneities, we take 1, as the part of the wall W
below the plane 3 = —d + 1/2 and W, as the part of W above this plane
(0 <d<b).



We use A angl A, to denote the area of the substrate surfaces 0W; and
OW, and A; and A, their projection onto the horizontal plane. The respective
roughness r1, o and concentrations c;, ¢y, can then be defined by
Ak Ak
= Cp = &V
Ay A+ Ay

in terms of which the roughness reads r = ric; + roco.

ry = k=1,2 (2.5)

3 Results

Our first result establishes the validity of the generalized Cassie-Wenzel’s
equation for the model defined in the previous section.

Theorem 1 Assume that the parameters introduced above satisfy the condi-
tions

1 r4c¢ -1
C=J1- -
[1 —max(g, - g — 7))
T1 1 T2Cy — Co
—|K —|K -, >0 3.1
| 1|7‘1+1 | 2|maX(2 T262—02+CQ—1) ( )
and that the temperature is sufficiently low, namely BC > 5.71, then

AT = r1C1 (AT){ht + TQCQ(AT)gat (32)

The condition (3.1) (which can be viewed as a condition of smallness of
|K;|/J and |K5|/J) ensures that the configurations + and — are the respec-
tive ground states of H* and H~: min, H} (¢) > HZ (—) and min, H; (o) >

+
Hg (—). Let h*(o) = limp_, o0 % be the specific energies per unit surface.
One has h™(+) = 0 and h (=) = 111 K; + roco Ky. This implies that the
law (3.2) holds true at the level of ground states.

Indeed, letting Ae = lim;_,q m [min, Hg (o) — min, H¢ (0)], one
has

Ae = rlclKl + TQCQKQ (33)

The proof of this result at the level of free energies is given in Section 4. Let
us mention the study on Cassie’s law proposed in [15] whose results do not
rely on the knowledge of ground states.

Our second result concerns the homogeneous case. We will assume that
K; = Ky. We let p =1+ 4by/cy be the relative roughness of the pores and
let ¢ = (co/ap)? be the density of the pores.

7



Theorem 2 i) If —J/p < K < J/p, then

AT = r(AT)f (3.4)
ii) If J/p< K < J, then
AT =71+ (1) (Ar)at (3.5)
iii) If —J < K < —J/p, then
AT = =1+ (1 =) (A7) (3.6)

As before, it is assumed that the temperature is sufficiently low, see (5.2)
and (5.52).

Let us here stress the physical meaning of these results.

According to the relative strength of the solid/liquid (K) and the lig-
uid/gaz (J) interactions, the system will mimic one of the ground states
corresponding to situations where either the liquid fills the pores of the sub-
strate, or leaves these pores empty (see below). In the first case we recover
the Wenzel’s law (3.5) that, according to macroscopic considerations, gov-
erns the behaviour of a sessile drop of liquid sitting on top of a rough and
homogeneous wall. However, from these microscopic considerations, we get
that a sufficient enhancing of the affinity between the liquid and the gas
phase gives rise to a Cassie-type behaviour due to the additional liquid/gaz
interfaces created by the absence of liquid within the pores. To see that this
difference is a quantitative one, let’s consider for the sake of definiteness a
drop of water on top of a polyethylene therephtalate (PET) surface. The
wall energy (A7) of PET is 40mN /m, and the superficial tension 7 of
water is 72.4mN / m. We thus have :

401
‘Wenzel a 2471

cosf

to be compared to :

cosf —ﬂ—c'(l-f-ﬂ)
Cassie N 72.4 72.4

A typical roughness for such a surface is 1.5. We thus get that versus ¢, the
cosine of the equilibrium contact angle § behaves as depicted in Figure 3:

8



cosf

0.4

0.3

0.1

0.1 0.2 0.3 - 0.4 C

Figure 3: Dependence of the equilibrium contact angle 8 on the “density of pores” ¢’
exhibiting a transition between a Wenzel’s regime (1) and a Cassie’s regime (2).

Let us emphasize that this result, if it can be carried over to real surfaces,
suggests that the wetting properties of a rough wall are not only driven by
the roughness r of the wall, but do also depend on the particular geometry
that gives rise to r.

We end this section with the ground states description in the homo-
geneous case. Let o, be the configuration with all + above the plane
z3 = k+1/2 (k > 0) and all — below this plane. It is easy to check
that these configurations together with the configuration with all + mini-
mize the Hamiltonian with + boundary conditions. One has min, H} (o) >
min,_, (4ot} Hg (o) and the specific energy h' (o) takes the following values:

ht(+)=0
2 2
n ¢ c® + 4be
h*(of) = J+rK for all finite k>1

Notice that At (+) = h* (o7 ) on the line K = —J/p and h*(og) = h(o}) on
the line K = —J. Analogously, let o, be the configuration with all — above
the plane 3 = k + 1/2 and all + below this plane.



One has min, H, (o) > minae{_yak_} H (o) and:

h K (3.8)
h™(o,) =J for all finite k>1
Notice that h~(—) = h™(0y ) on the line K = J/p and h= (0, ) = h~ (0}, ) on

the line K = J.
The formulae (3.7) and (3.8) lead to the phase diagram shown in Figure 4.

Figure 4: The diagram of ground states.

They show that the results (3.4-3.6) hold true at the level of ground state.
Indeed,
Ae=rK (3.9)

when —J/p < K < J/p,

Ae=cdJ+(1-)K (3.10)

10



when J/p < K < J, and finally
Ae=—-dJ+(1-)K (3.11)

when —J < K < —J/p.
The proof of these results at the level of free energies is given in Section 5.

4 Proof of Theorem 1

To prove the result at the level of free energies, we have to take into account
the excitations of ground states. To this end we begin with a contour rep-
resentation of partition functions Z,}, () and Z,, (). A natural definition
is to consider the contours as boundaries of regions where the considered
configuration differs from the corresponding ground state configuration.

For Z;,(Q) we have a standard representation introducing for any con-
figuration o (such that o, = +1 for all z € Q°) the contours as connected
components of the set B* (o) of all plaquettes of the dual lattice that separate
two neighbouring sites z,y € V with o, # o,.

For any contour v we introduce the weight factor

z+(7) = ¢ BUImKI+Eilywy [+K2lyw, ) (4.1)

Here we define vy, = yN oW, i = 1,2, and v = 7\ (ywy, U Ywn) 5 [Yok)s
|Yw;|, is the number of plaquettes of Yk, yw,, respectively. In terms of the
weight factors z*(7) one clearly has

Zyp@= >, [t (4.2)

{'71 a'",’Yn}Comp 1=1

where {71, ..., Yn }comp 18 a collection of compatible (mutually disjoint) con-
tours in €.

To get a similar expression for Z};,(€2), we only have to be careful with the
definition of contours touching the wall. Namely, for configurations o such
that o, = +1 for z € W and o0, = —1 for z € Q°¢\ W, we introduce contours
as connected component of the set B~ (o) of all plaquettes separating nearest
neighbour sites z,y € V for which o, # o0, or nearest neighbour sites z €
V,y € W for which o, = 0,(= +1). Introducing now the weight 2~ (v) as

2 () = e Pkl =Kl [=Kalyw, ) (4.3)

11



we get

Zi@) = erm@-sene S ) @

{71,-++s¥n }comp =1
where A;(€2) is the number of bonds zy, x € Q, y € W;. Notice that the set
of contours in both situations exactly coincide (even though the weights do
not) and the sums in (4.2) and (4.4) are over exactly the same collections of
contours. Notice also that the weights (4.1) (4.3) differs only if v touches the
wall i.e., if yNOW # (.

To be able to control, in terms of convergent cluster expansions, In Z;}, ()
and In Z;;, (), the weights 2% (y) and 2z~ () must satisfy the dumping con-
dition [2*(7)| < e ) where A is a fixed sufficiently large constant and
17| = x| + [vwi| + [vw,|. To find upper bounds for |z~ (v)| and |2 (7)] we
notice that

Jvox| = [K1| [y | = [K2| [yw,|
[y | + [yws | IYw | Yws |
A~ i Ve

Realizing by easy geometrical observations that the term inside brackets is
greater than C, one gets by the definitions (4.1) (4.3):

2 ()| < e P (15)

We now introduce multi-indexes in order to write the logarithm of the
partition functions Z;},(Q) and Z,;,(Q2) as a sum over these multi-indexes (see
[20]). A multi-index X is a function from the set of contours into the set of
non negative integers, and we let supp X = {y: X(v) > 1}. We define the
truncated functionals

PH(X) = LX) H () ¥ (4.6)

where the factor a(X) is a combinatoric factor defined in terms of the con-
nectivity properties of the graph G(X) with vertices corresponding to v €
supp X (there are X () vertices for each v € supp X) that are connected
by an edge whenever the corresponding contours are incompatible). Namely,
a(X) = 0 and hence ®*(X) = 0 unless G(X) is a connected graph and

aX)= 3 (-1)@) (4.7)

GCG(X)

12



Here the sum goes over connected subgraphs G whose vertices coincide with
the vertices of G(X) and |e(G)| is the number of edges of the graph G. If
the cluster C' contains only one contour, then a(y) = 1.

The standard cluster expansion [17] [13] [20], then yields

m > J[F= D] eFfX) (4.8)

{71,--s¥n}comp =1 Xex(Q)

Here x(2) is the set of all multi-indexes X having all contours in €.
The convergence of the cluster expansion holds, c.f. [13] [20], as soon as
one can find a positive real-valued function p () such that

2(7) exp { -> u(v’)} < u(v)
Yy
Here the sum runs over contours 7' incompatible with «: this relation is
denoted by 7' ~ 7 and means that +' intersects . Taking into account
that the number contours v of size ¢ passing to a given point is less then
122¢ | the area of contours is even, with minimal value |[y™®| = 6, that

> 1Y) < 1YY 5, (7)), and choosing p(y) = (12%") "I, the above
convergence condition will be satisfied here whenever

—6t
BC>1In122 +1t+ 167 > 5.71 (4.9)

—e2t —

It implies

Y. o) < uly) (4.10)

X:X(7)>1
As a result of (4.8) we can write
In Z{(Q) —In Zyy,(Q) — BK1 A, — BEKr Ay = ) [8F(X) — @7 (X)] (4.11)
Xex()
By definitions (4.1) and (4.3) the contributions of the contours in the bulk
are exactly the same for the + or — b.c. Thus all terms with X supported
by contours not touching the wall are canceled in the above difference of the

logarithms and only the sum over X containing contours touching the wall
remains. We use xw (£2) to denote the set of all such multi-indexes X. Then,

In Z{ (Q)—In Zyy () —BK1 A1 —fE Ay = Y [8T(X) — @ (X)] (4.12)

Xexw ()

13



Using the fact that 2*(7y) are invariant under horizontal translation by mul-
tiples of the periodicity constant a and satisfy the bound (4.5), one get,

. 1 _
AT—T101K1—7“202K2=L11_{20m Z [(I)+(X)_(I) (X)]

2
Xexw(Q)

—lim Y [er(X) - (X)) (413)

a oo 2
- ﬁa’ XEXW(QU.)
where 0, =V N A,, with
Aa={x€Z3:0§x1§a,O§x2§a,|x3\Sa}

Let us now turn to the flat walls. Let €' be a box in the semi-infinite

lattice
L= {(1'1,.’13'2,.’173) €Z3:x3> 0}

and let IT = oW1t be the plane 23 = 1/2. We let Zlfvﬁat (€') and vaﬂat(Q’)
1 2
be the partition functions corresponding to the case of the flat walls. We

define the contours as before and introduce the weights
zji(’y) = e BI(Imoxl£K;|7l) (4.14)

Here vy = y N II and vk = v \ 75 we say that v touches II if it contains
plaquettes of this plane. Then,

Zoua @)= >[I0 (4.15)

{’)’1 ,---,’)’n}comp 1=1

iy () = PR N7 T () (4.16)

{715-y¥n}comp =1

Here {71, ..., 7 }comp are collections of compatible contours in 2" and A(9')
is the number of bonds zy, z € ', y € Z*\ ', that cross the plane II. We
let ® be the truncated functional associated to the weights (4.14). Then

In Zp 0t () =10 Zppo (V) = BIGAQ) = ) [@F (X) = &5 (X)] (4.17)

Xexn()

14



where x11(Q) is the set of multi-indexes of x(€') whose support intersect the
plane II. Using that the weights are now completely invariant with respect
to horizontal translations, we have

(An)is — K, = Jim S [@F(X) — & (¥)]

L—o0 6&2
Xexn(,)
[®F(X) — &7 (X)]
= 4.1
> XA Fi (4.18)
XexmLpex
and
a ) 1 _
(AT)3* — Ky = Lll_{{)low Z (@3 (X) — @5 (X)]
Xexn(,)
[@F (X) — @ (X)]
= 4.1
> AT T (4.19)

XexnLpeX

Here Q! = A,NL and the two last sums in (4.18) (4.19) are over multi-indexes
whose support contains a given plaquette of the plane II.

Our last step is to compare the R.H.S. of (4.13) with (4.18) and (4.19).
To this end, we split the sum over multi-indexes X € xr,, (€2,) in three terms
Si(a), Sa(a), and R(a). The first term S;(a) is the sum over X that intersect
only one face of the part (0W)), of the boundary of the wall that separates
Wi from €),. Notice that for the multi-indexes X involved in this sum, one
has ®(X) = & (X). Furthermore, since (0W,), has five faces, S;(a) is the
sum of five terms and each of them divided by the area of corresponding face
will actually equal F; in the limit @ — co. Thus

lim Si(a)/Ba® = ricFi
a—»0oQ

The second term Sy(a) is the sum over multi-indexes that intersect only one
face of the part (0W3), of the boundary of the wall that separates W, from
Q.. In that case ®*(X) = ®;(X) and we get analogously to the previous
situation

alg?o Sy(a)/Ba* = rocyFy

Finally, the reminder R(a) contains the terms where the supports of multi-
indexes intersect at least two faces of (OW), = (0W1), U (0W3),. It thus

15



can be bounded by a constant times the length of the boundary of faces (for
the adjacent ones) plus a term proportional to the area of the vertical faces
times a negative exponential small correction with a power proportional to
the length between the opposed faces. Thus the ratio R(a)/Ba* goes to 0 as
a goes to infinity and we get

AT — r101K1 — TQCQKQ = 7‘101?1 —+ TQCQfQ

giving the desired result.

5 Proof of Theorem 2

We first consider the proof of Wenzel’s regime stated in (3.4) when |K| < J/p.
In this situation, the condition on the parameters K and J ensures that the
configurations + and — are the respective ground states of H™ and H .
Here, one has simply to notice that for the homogeneous wall the weights of
contours satisfy

J—plK|
|zi(’y)\ < e A el

(5.1)

The situation then turns out to be a particular case of the problem already
analyzed in Section 4. The needed condition on the temperature is

J — plK]|

b p+1

> 5.71 (5.2)

We now turn to the proof of Cassie’s regime stated in (3.5) assuming that
Jlp<K<J

5.1 The flat differential tension (Ar)fat

Let us first consider the partitions functions ZViVﬂat (€') corresponding to a
flat wall in a box ' C L. For the partition function Z 4, (€)') we define the
contours (as in Section 4) as connected component of the set B~(co) of all
plaquettes separating nearest neighbour sites z,y for which o, # o, if the
bond zy does not cross the plane II or nearest neighbour sites x, y for which

oy = oy if the bond zy crosses the plane II. We introduce the weights

P (7) — B x| —=K|xl) (5_3)
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where vy = yN Il and ypx = 7 \ 9 In term of these weights, one has

Ly () = 7A@ [T () (5.4)

{’Yl "“”yn}comp i=1

where {71, ..., Vn }comp are families of compatible contours in €' and A({Y') is
the number of bonds zy, z € ', y € Z3\ ', that crosses the plane II. For
the partition function Z;’Vﬂat (€') we use the standard definition of contours
and introduce the weights

Zf+ ('Y) — ¢ BU x|+ K|7l) (5.5)

to get

Ziaw @)= Y Jlaw=ew| > X (5.6)

{71 a---,'Yn}comp i=1 XEX Q’

where @;L is the truncated functional corresponding to z;". It will be conve-
nient to sum over the multi-indexes with same support. We thus introduce

the functional B
of(S) = ) ¥ (X) (5.7)
X:suppX=S

to get

Z+

T () = Z H 2 = exp Z o (S (5.8)

{71y ¥n}comp 1=1 Sex(Y)

where (with an abuse of notation) x(€') denote the set of the supports of
multi-indexes in 2. The supports of multi-indexes will be called clusters.

Since by definitions the weights of contours are the same for contours not
touching the plane II, we have

Zyau @)= P40 ST T Y [L50h) 69)

{71 ¥n}comp 2=1 {7} ¥ }comp =1

-NIT
v; NI 7;, nH:@,7}~7i

Here the first sum is over (compatible) families of contours touching the plane
IT and the second ones is over (compatible) families of contours not touching
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the plane II and compatible with the first family. From relations (5.8-5.9)
one has

7= Qo ) n
ZZLVﬂac(Q’) — ¢ PEAWQ) Z HZ;(/Y’) exp | — Z o (9)
Wﬂat( ) {71, An}comp 2=1 S:Sexm(a’)
’YiﬂH?é@ orSoey;
n
— ¢ PEAQ) Z H 2 () H e~ (9) (5.10)
{71:-Yn}comp =1 S:Sexm()
v NIT#D orSavy;

where the sum in the exponential and in the last product are over clusters
S touching the plane II or incompatible with some contour 7; of the family
{71, -+, Yn} (the relation denoted S » ~; means that S intersects ;), or both.
To expand this product, we define the aggregates A as connected families of
clusters. Introducing the weights

pr(A) = [[e ™ —1 (5.11)
SeA
we get
Zywaa () ppeaw T T~
Ze = Y et X ) 612)
Wﬂat {¥15ees ’Yn}comp =1 {Aq,..., Am}comp J:]_
i NII#D AjOTI£D orNAjoey;

where the second sum is over families of aggregates touching the wall or
incompatible with a contour of the family {71, ..., 7.}

As it was done for multi-indexes, it is convenient to sum over all aggre-
gates with the same support. We define the weight

ZOEED DR (5-13)

A={S1,...,8,}:US;=S

This leads to

7 ae () - ik
W ilat _ _—BKA(Y —
wat {7157 }comp =1 {51, Smbcomp =1
v; NII#D Sjﬂl'[;é@ orNS,»y;
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We call excitation a subset I' C {71, .., Yn }comp U{S1, -+ S} comp Whose sup-
port suppI’ = (Uyery) U (User) is connected and define the weight of an
excitation I' by:

wiT) = [[2e () [T o(5) (5.14)

~yer Ser
Then
77 () , -
T =¢ 2 e (5-15)
W flat {I'1,---;Tn}comp i=1

suppl';NIT#D

where the sum runs over compatible families {I'y, ..., 'y }comp 0f excitations.
For J/p < K < J the weights satisfy the bound

|2t (7)] < e PN (5.16)
2 (7)] < e P (5.17)

The truncated functional are then bounded as:
1B (S)| < 15| (rve PK)"*

Here the cluster constant may be computed as kK = 1+2(\/§+1)eﬁ and the
entropy as v = 32 (see [12]). The weights of aggregates may be controlled

with the inequality ‘e‘q’;r(s) - 1‘ < (e—1) |®{(S)|. This allows to show (see
again [12]):
()| < |8e(e — I)KVQe_ﬂK“S' (5.18)
provided 8e(e — 1)kv2e P < 1.
We will now exponentiate the R.H.S. of (5.15). To this ends we introduce
multi-indexes C' defined on the set of excitations i.e. as functions from the

set, of excitations into the set of non negative integers. We let suppC =
{I': C(T") > 1} and let ¥¢ be the truncated functional associated to wy:

(C) = % [T (5.19)

where a(C) is defined as in (4.7) with a graph G(C) whose vertices correspond
to excitations I' € supp C' and that are connected by an edge whenever the
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corresponding excitations are incompatible. We get as a result of cluster
expansion
Z e ()
In Yfi() +BKAQ) = Y W(C) (5.20)
Zwﬂat (Q,)
Cexn()
Using that the weights are now completely invariant with respect to hor-
izontal translations, we have taking ' = A(L)NL

1 T(C)

AVt — lim —— \j = = .
(A7) et 2 WO = ) mag =T 62
Cexn(') Ce;g%(m

Here the last sum is over multi-indexes whose support contains a given pla-
quette of the plane II. This series converges provided one can find a positive
function such that

s(exp - F,Zwru(m} < ()

This condition is fulfilled whenever
2uk max(e_ﬂ(%), 8e(e — 1)rr’e PK) <1

To see it, we put u(I') = (2va) "I where |T'| is the number of plaquettes
. 2
of supp T, getting > p(I') < 25|I'|. We then choose for a the value

92

1+ 2(1 ++/2) that minimizes the function aea-1.

5.2 The surface tension 7, _

We now turn to the surface tension 7, . An important property of this
surface tension is that it can be defined as an appropriated limit of (2.4)
with many different boxes A [4]. Indeed, one can take instead of A(L), the
set

{z€Z®: |z:| <L, |zs| < L,W(L) <z3 < g(L)}

provided the height functions —h and g goes to infinity in the limit when L
tends to infinity. Here we shall consider the box

QQb:{xEZS:Olegc,Onggc,—belgL}
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and let Z*(§2.5) be the partition function of the Ising model in the box €.,
with + boundary condition and Z*~(2.,) be the partition function with +
boundary condition below the plane IT and — boundary condition above this
plane. Then

1 Zt= (Qc,b)

Bry = — lim —1

dm e o) (5:22)

Instead of 7, we shall study an auxiliary differential tension (AT).ux
that will eventually coincide with 7;_. Consider the box (2., (associated to
a single pore), and let Z}}poe () and Zjppore (e5) be the partitions func-
tions corresponding to the Hamiltonian (2.1) in the box 2., with+ and —
boundary conditions respectively. This means that the partition function
Zpore(Qep) (r€SP. Zyprpore () differs from the partition function Z+ ()
(resp. Z7T7 (%)) only by the fact that the coupling between bonds zy
z € Qep y ¢ Qcp below the plane IT is K instead of J. We define

_ . ]_ Z;[/pore (QC,b)
AT == i Gt @)

(5.23)
For the partition function Zpere(2.5), we define contours as connected
component of the set of all plaquettes separating nearest neighbour sites x, y
for which o, # o, if the bond zy does not cross the plane II or nearest
neighbour sites x,y for which o, = o, if the bond zy crosses the plane II.
We introduce the weights
2. (7) = e~ P Iicl =T 70|+ K] vpr] (5.24)
Here 79 = v NI is the set of dual plaquettes of bond crossing the plane II,
Yor is the set of dual plaquettes of bonds zy, z € Q. y ¢ €2 below the
plane IT and Yok = 7 \ (Y0 NYpr). We will say that the contour vy touches the
wall if 7, is not empty. Then,

Zpone (o) = € #7400 5™ [T 2n() (5.25)

{715++5n }comp 1=1

where A(f.p) is the number of bonds zy of €., that crosses the plane II
(and {71, ---, Yn }comp is & collection of compatible contours in §2.;).
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For the partition function Z;’Vpore(Qc,b) we use the standard representation
of contours and define the weights

Z;rr(“r) — e BUIrbkl+T1ol+K]vp:| (5.26)

getting

ZI—/’—Vpore (Qc,b) = Z H z;_r(fYZ) = €exp Z (fi);r (X)

{715es¥n}comp =1 Xex(ep)

=exp| Y @59 (5.27)

SEX(Qc,b)

where <I>+ is the truncated functional associated to z;“r, and as above we have
summed over all multi-indexes with same support:

O(S) = Y, LX)

X:suppX=S

Since by definitions the weights of contours are the same for contours not
touching the plane II, we have

m
— _ —BJAR b + !
Zyvore (Qep) = €774 0e0) Zpr (7:) 25 (75)
{7155 ’Y'n.}comp i=1 {'yi ..... ’Y"m}comp =1
; NI#D ~

— !
G OI=0,7;~;

Here the first sum is over (compatible) families of contours touching the plane
IT and the second ones is over (compatible) families of contours not touching
the plane II and compatible with the first family.

By taking into account (5.27), one gets

Zﬁ pore Qc —
Y}_Vi(’b) =e BIA(2e ) Z Hzpr 'Yz eXp | — Z @;—T(S)
prore (Qc,b)

..... Tn}tcomp =1 S:SEXH(QC,b)
7101'19&0 orSaey;
— § : _&T
{71,--»¥n}comp 2=1 S=5€XH(QC,b)
Y NTI#D orSney;
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As above, to expand the last product we introduce aggregates A as fami-
lies of clusters whose support is connected and define the weights p,,(4) =

[Toeae ®® —1 to get

) m
ZveeOet) _ 1000 % Porl)
Z+ (Q ) _ or % Ppr{j
W pore c,b {71,---»yn}comp =1 {A1,-, Am}comp J=1
~; NIT£D AjNIIAD orNA ey,

(5.29)
Here again, it is convenient to sum over all aggregates with the same support.
We thus define the weights

Por(S) = Z Por(A)

A:{Sl,...,Sn}:USi:S

getting
— n m
Zyrpore(ep) — e BIA) 2= () (S;)
Z b pore (Qep) pr\ Vi Ppr
wpere {2 c;b (41,1 Yeomp i=1 {S10SmYeomp J=1
v; NII#£D 5;NII#0 orNSjwy;

Notice that the weight 2. (7) do not always decrease with the area of
contours. To control the ratio of the two partition functions above in terms
of convergent cluster expansion, we have to define the right excitations. To
this end, we first split the set {71, ..., Y }eomp U {S1, -+, S} comp int cOnnected
components. The components whose support touches the wall WP*® are
called wall excitations and denoted T'"2ll. We use B, to denote the subset
composed of wall excitations and By to denote its complement. For the wall
excitations, we define the weights

wpe (T2 = H 25:(7) H ppr(S) (5.30)

,Yel"wall SeTrwall

Note that |z (7)| < e PK1l and therefore p,.(S) satisfy the bound (5.18).
On the other hand, for the wall excitations one has

K|-J
B

[z (M| < e”

for any v € I3, This implies that the weights (5.30) have good decaying
properties for large 3.
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For the remaining part By, this is not the case and we have to introduce
the excitations differently. In the situation under consideration, they can be
defined following the Dobrushin’s analysis given in [14] (see also [5, 6, 21]).
Namely, for any component B € By, and any contour v € B touching the
plane II, we will divide the set of plaquettes of v in two sets. An hori-
zontal plaquette p € « is called correct (or ceiling face in the terminology
of [14]) if it lies on the plane II or if the vertical lines that crosses it in
its middle crosses only two horizontal plaquettes of Bpx. All the other pla-
quettes of y are called incorrect (or wall faces in the terminology of [14]).
We use I(Byk) to denote the set of incorrect plaquettes of Bpx. Then the
union of I(Byy) with the set of clusters S € By splits into connected com-
ponents I'® = {pi, .., pn; S1, ..., S } called elementary excitations (or walls in
the terminology of [14]). A set Bykx = {71, ..., 7n} such that v; N II # ( is in
one-to-one correspondence with a set of elementary excitations. An elemen-
tary excitation I'® = {p, .., pp; S1, ..., S } is said in the standard position if
there exists a contour y such that {p1, .., p, } is the only elementary excitation
corresponding to 7.

Let T}, denotes the vertical shift by a height h: T,(z) = (21, x9, 3 + h),
Tw(A) = {z : T, '(z) € A} . Then for any elementary excitation, there is
only one shifted excitation It = T}, (I'®") which is in the standard position
(see [14] or Lemma 2.2 in [18]). We define the weights of any shifted or
elementary excitation by

wpr(FSh) = Wpr({pla ey P S15 ey Sm}) = ¢ PIn H ppr(Sj) (531)
j=1
With these definitions, we get from (5.29):
Zv_Vpore(Qc,b) —BJA(Q Zv_vpore(Qc,b)
Z+ o (Q b) = e ﬂ ( c,b) Z Z+p0re(Q b) (532)
w & {FYall _____ ryall rsh 1“;,};} w 2
Fan:@ comp

where {F{V*’“H, ey Dl e Fi'}ll}comp
shifted excitations whose support touches the plane II. We introduce as
before the multi-indexes C' as non compatible families of excitations and let
W, be the corresponding truncated functional to get

ZV_Vpore (QC,I))
ZI_/"—/pore (Qc’b)

are families of (compatible) walls or

In +BJAQ) = Y Un(C) (5.33)

Cexn(Qep)
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Here, the convergence condition reads

K|~
2UK max(e_ﬂ(pﬁﬂJ), 8e(e — 1) ke PK) < 1

By definition (5.23) of the auxiliary tension (AT)aux, this relation gives

B(AT)aux — BJ = — lim l2 Y T(C)- lim L Y U(©0)

L—oo C
Cexn(Qc,p) Cexm(Q,p)
suppCﬂWpore =0 suppCﬁWpore #0

(5.34)
where supp C = Urecsupp . The second limit actually goes to zero. This
may be seen by realizing that the sum over multi-indexes whose support
touches both the plane IT and W"** is composed of a term proportional to
the perimeter of the square ¢? (for multi-indexes touching the vertical faces of
W) plus a term proportional to c? times an exponential small correction
proportional to b (for multi-indexes touching the horizontal face of W""".
The first limit gives actually the free energy of excitations of the surface
tension 7, _ so that

(AT)qux = Ty— (5.35)

5.3 The differential tension AT

We finally turn to the differential wall tension of the rough wall. For the
partition function Zy,(€2), we have again to be careful with the definition of
contours. For configurations o (such that o, = +1 for x € W and 0, = —1
for x € Q°\ W), we introduce now contours as connected component of the
set BY(o) of all plaquettes separating nearest neighbour sites z,y for which
oz # oy if the bond zy does not cross the plane II or nearest neighbour sites
x,y for which o, = o, if the bond zy crosses the plane II. We define the set
(OW); = IIN OW, to be the part of the boundary of the wall intersecting
the plane II, the set (OW ), = OW \ (OW)s to be its complement and the set
[Ip =II'\ (OW); to be the complement of (OW)s.

From the definition of B°(c) (defined as the boundary of regions where
the configuration differs from the ground state oy ), it follows that the con-
figuration o, associated to the unique contour vy satisfy:

Hg (o) — Hg (o) = J|vok| + Klvpel — K| — J|70] (5.36)

where ypr = YN (OW)pr, 7 = v N (OW); is the part of the contour that
intersect (OW )y, respectively (OW )¢, 7o = v N Iy is the part of the contour
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that intersect Iy, and vpx = 7 \ (Vpr U va U 7o) is the complement of these
three sets. Introducing now the weight z () as

2 () = e P o+ K pr|=Klel=Thol) (5.37)

we get

Zy (Q) = e PIEAD+TA0()] Z H 2 (%) (5.38)

{71557} comp 1=1

where Ag(f2), is the number of bonds zy, x € Q, y € W that crosses (OW);
and Ay(2) is the number of bonds zy, z € Q, y € Q that crosses Ilj.

For Z;,(2) we keep the standard definitions of contours, so that intro-
ducing the weight factors

2t () = e PUIkHK e+ Kyl +7 1o ) (5.39)

we get

7= > JlFt=ep| Y o7(X)

{’)’1;---;’Yn}comp =1 XEX(Q)

=exp | » @9 (5.40)

Sex(Q)

where ®+ is the truncated functional associated to z;;r, and as above we
summed over all multi-indexes with same support:

HS) = Y. N(X)
X:suppX=S
Note that the weights zT () are bounded as
2 (7)] < e PEY (5.41)

Since by definitions the weights of the contours not touching the plane II
are exactly the same for 4+ or — b.c., we have

Z;V(Q):e—ﬂ[KAf(ﬂHJAo(O)] Z Hz () Z H

----- Yn}comp =1 {’Yl,---,’Ym}comp =1

'ann#m 'y]ﬂH 0, 'yJN»yl

(5.42)
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which gives by taking into account (5.40)

LD VN | XU D DR
W( ) {71,-->»7n}comp 2=1 S:Sex ()
v NTTAD orSwy;
= ¢ AEAOTIA@] N TTe () [ e (543)
{715 Yn}comp 1=1 S:Sexm()
7;NI#D orSoery;

To expand the last product we introduce again aggregates A as families
of clusters S whose support is connected and define the weights p(A) =
[Lsese™® ™ — 1 to get

Zy (82 —BKALQ)+J Ag(Q S o
R D SIS | EXCUIND DR | CTH

{71,-->1m}comp i=1 {A1,..0; Am}comp Jj=1
v NII#D Aj NII#Q orr']Ajoa'yi
(5.44)
Again, we sum over all aggregates with the same support by defining the
weights
p(S) = > p(A)
A:{Sl,...,Sn}:USi:A
to get
Zw () _ gk a(@)+IA0@)] T .
Zi@ =° bR | ERCORD DI | VI
w {7155 Yn}comp i=1 {S154 S‘M}comp j:1
¥ NP S;NI#D orNS;»y;
(5.45)

As in the previous section the weights 2z~ () have good decaying proper-
ties only for contours touching the wall. To control the ratio, we proceed
as for the study of the surface tension 7,_. Namely, we first split the set
{715 s Ynteomp U {S1, -+ S} eomyp i connected components. The components
whose support touches the wall W are called wall excitations and denoted
™2l We use By to denote the subset of {71, ..., Yn }eomp U {S1, -y S} eomp
composed of wall excitations and By, to denote its complement. For the wall
excitations, we define the weights

W =TT = I o) (5.46)

,Yerwall Serwall
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Since |z (7)] < e PEN p.(S) satisfy the bound (5.18). On the other hand,
for these wall excitations one has

127 (7)] < min(e=PFONI, =BG
for any v € I This implies that the weights (5.30) have good decaying
properties for large .

For the remaining part By this is not the case and we have to introduce
the excitations differently. We shall define them as in the study of the aux-
iliary tension (A7)au,. Namely, for any B € By and any contour v € B
touching the plane II, we will divide the set of plaquettes of v in two sets.
A plaquette p € « is called correct if it lies on the plane II or if the verti-
cal lines that crosses it in its middle crosses only two horizontal plaquettes
of Byx. All the other plaquettes of v are called incorrect: in particular, all
the vertical plaquettes are incorrect ones. We use I(Byy) to denote the set
of incorrect plaquettes of Bpx. Then the union of I(Byy) with the set clus-
ters S € By split into connected components {pi, .., pn; S1, ..., Sm} called
elementary excitations. A set Byx = {71, ..., ¥n} such that v NII # 0 is in
one-to-one correspondence with a set of elementary excitations. An elemen-
tary excitation I'® = {p, .., pp; S1, ..., S } is said in the standard position if
there exists a contour y such that {p1, .., p, } is the only elementary excitation
corresponding to 7.

Let T}, denotes the vertical shift by a height h: T,(z) = (21, x2, 3 + h),
Th(A) = {z : T, '(z) € A} . Then for any elementary excitation, there is
only one shifted excitation " = T}, (I'®") which is in the standard position.
We define the weights of any shifted or elementary excitation by

w(T*™) = w{p1, .., Pn; S1, ey S }) = €77 H p(S;) (5.47)

With these definitions, we get from (5.45):

Zw() _ _prage &
—e £()+J Ao ()] Fwall w FSh
(0 £l

rknn )

(5.48)
where {F‘{V"‘“,...,F‘,’l"all,l“ﬁh,...,Ff,};}comp are families of (compatible) wall or
shifted excitations whose support touches the plane II. We introduce as
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before the multi-indexes C' as non compatible families of excitations and let
U be the corresponding truncated functional associated to w to get

Zw($2)

1
ZA()

+BIKA(Q) + TA(Q)] = ) ¥(C) (5.49)

Cexn(2)

Using the fact that ¥(C) are invariant under horizontal translation by mul-
tiples of the periodicity constant a, one gets,

1
—(1-K—-dJ=lim 0 Y
At —(1-¢) cdJ L1—1>Tolo,3(2L+1)2 ()
Cexn(Q)

= lim - P (o) (5.50)

where 0, = V N A,, with
Aa:{x€Z3:0§x1§a,0§x2§a,|x3\ga}
To fulfill the convergence conditions we need to take

2ukK max(e’ﬁ(¥),e_ﬂ(pf+_ﬂj), 8e(e — 1)rve PK) < 1 (5.51)

Our last step is to compare the R.H.S. of (5.49) with (5.21) and (5.34). We
shall take the box (' to be the complement of €2, in €,

Q' =Q\ Qep

Then we split the sum over multi-indexes C' € x1(£2,) in three terms Sg(a),
Spr(a), and R(a). The first sum Sg(a) is over multi-indexes whose support
lies inside €'. Notice that for the multi-indexes C involved in this sum, one
has U(C) = ¥¢(C) and thus
S, 2 _ .2
im 9 _C = p o

a—00 ﬂaQ a2

The second sum Sp,(a) is over multi-indexes whose support lies inside €2..
For the multi-indexes C involved in this sum, one has ¥(C) = ¥, (C) and
thus

lim (@)

CQ
= F=CF,
a—»00 /Ba2 a2” P pr
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Finally the reminder R(a) contains the multi-indexes whose support in-
tersects both Q' and €. This term is thus bounded by a constant times the
length of the separation line between and II;. Therefore the limit R(a)/a?goes
to zero as a — oo and we get

AT—(1-K-dT=Q0-)F+dFy

giving the desired result.
The proof of (3.6) when —J < K < —J/p is obtained by the symmetry
7t — 7Z~,Z~ — Z* when K — —K and thus we take

2UK max(e’ﬁ(J 2|K|),e_5(p{<+ﬂJ),86(e —Drvle PEN <1 (5.52)
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Figure captions

1. Young’s contact angle
2. The substrate surface OW.

3. Dependence of the equilibrium contact angle 6 on the “density of pores”
¢’ exhibiting a transition between a Wenzel’s regime (1) and a Cassie’s
regime (2).

4. The diagram of ground states.
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