Wetting of Heterogeneous Surfaces at the Mesoscopic Scale - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Physics Année : 2004

Wetting of Heterogeneous Surfaces at the Mesoscopic Scale

Résumé

We consider the problem of wetting on a heterogeneous wall with mesoscopic defects: i.e.\ defects of order $L^{\varepsilon}$, $0<\varepsilon<1$, where $L$ is some typical length--scale of the system. In this framework, we extend several former rigorous results which were shown for walls with microscopic defects \cite{DMR,DMR2}. Namely, using statistical techniques applied to a suitably defined semi-infinite Ising-model, we derive a generalization of Young's law for rough and heterogeneous surfaces, which is known as the generalized Cassie-Wenzel's equation. In the homogeneous case, we also show that for a particular geometry of the wall, the model can exhibit a surface phase transition between two regimes which are either governed by Wenzel's or by Cassie's law.
Fichier principal
Vignette du fichier
JSP-103-137-DDMR-rev.pdf (348.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00138010 , version 1 (23-03-2007)

Identifiants

  • HAL Id : hal-00138010 , version 1

Citer

Joël de Coninck, Christophe Dobrovolny, Salvador Miracle-Solé, Jean Ruiz. Wetting of Heterogeneous Surfaces at the Mesoscopic Scale. Journal of Statistical Physics, 2004, 114, pp.574-604. ⟨hal-00138010⟩
144 Consultations
163 Téléchargements

Partager

More