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SCHUR-WEYL DUALITY AND THE HEAT KERNEL MEASURE ON THE

UNITARY GROUP

THIERRY LÉVY

Abstract. We investigate a relation between the Brownian motion on the unitary group and
the most natural random walk on the symmetric group, based on Schur-Weyl duality. We use
this relation to establish a convergent power series expansion for the expectation of a product of
traces of powers of a random unitary matrix under the heat kernel measure. This expectation
turns out to be the generating series of certain paths in the Cayley graph of the symmetric
group. Using our expansion, we recover asymptotic results of Xu, Biane and Voiculescu. We
give an interpretation of our main expansion in terms of random ramified coverings of a disk.

1. Introduction

In this paper, we are concerned with the asymptotics of large random unitary matrices dis-
tributed according to the heat kernel measure. This problem has been studied first about ten
years ago by P. Biane [1] and F. Xu [2]. It shares some similarities with the case of unitary

matrices distributed under the Haar measure, studied by B. Collins and P. Śniady [3, 4]. The
origin of our interest in this problem is the hypothetical existence of a large N limit to the
two-dimensional U(N) Yang-Mills theory. This limit has been investigated by physicists, in par-
ticular by V. Kazakov and V. Kostov [5] and by D. Gross, in collaboration with W. Taylor [6],
A. Matytsin [7] and R. Gopakumar [8]. In [9], I. Singer has given the name of ”Master field” to
this limit, which still has to be constructed. A. Sengupta has described in [10] the relationship
between Yang-Mills theory and large unitary matrices. We refer the interested reader to this
paper and will not develop this motivation further. Sengupta’s work also contains some results
whose study was at the origin of this paper (see Proposition 2.2 and the discussion thereafter).

Our approach relies on the fact that the Schur-Weyl duality determines a (non-bijective)
correspondence between conjugation-invariant objects on the unitary group on one hand and
on the symmetric group on the other hand. To be specific, let n,N ≥ 1 be integers. Let
ρn,N : Sn × U(N) −→ GL((CN )⊗n) be the classical representation. The set Pn,N of partitions
of n with at most N parts indexes irreducible representations of both Sn and U(N). If λ is such
a partition, let χλ (resp. χλ) denote the corresponding character on Sn (resp. U(N)). Let Z
be an element of the centre of C[Sn]. Let D be a conjugation-invariant distribution on U(N).
Then the equalities

(1) ∀λ ∈ Pn,N ,
χλ(Z)

χλ(id)
=

χλ(D)

χλ(IN )
,

where χλ(D) = Dχλ, imply ρn,N (Z ⊗ 1) = ρn,N(1 ⊗ D). The main observation, implicit in [6],

is the following: the element Z = −Nn
2 −

∑

1≤k<l≤n(kl) ∈ C[Sn] and the distribution D on

U(N) defined by Dϕ = 1
2∆U(N)ϕ(IN ), where ∆U(N) is the Laplace operator, satisfy (1). Now

Z is, up to an additive constant, the generator of the most natural random walk on Sn and it
follows from this discussion that this random walk is closely related to the Brownian motion on
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the unitary group. This relation is stated precisely and proved in Section 2. It is also partially
generalized to the orthogonal and symplectic groups.

In Section 3, we prove our main result, which is the following.

Theorem 1.1 (see also Thm 3.3). Let N,n ≥ 1 be integers. Let (Bt)t≥0 be a Brownian motion

on U(N) starting at the identity and corresponding to the scalar product (X,Y ) 7→ −Tr(XY ) on

u(N). Let σ be an element of Sn. Let m1, . . . ,mr denote the lengths of the cycles of σ. Then,

for all t ≥ 0, we have the following series expansion:

(2) E[TrN (Bm1
t
N

) . . . TrN (Bmr
t
N

)] = e−
nt
2

+∞
∑

k,d=0

(−1)ktk

k!N2d
S(σ, k, d).

For all T ≥ 0, this expansion converges uniformly on (N, t) ∈ N∗ × [0, T ].

The coefficients S(σ, k, d) count paths in the Cayley graph of the symmetric group Sn. More
specifically, we consider the Cayley graph of Sn generated by all transpositions. For all π ∈ Sn,
we denote by |π| the graph distance between |π| and the identity. Then S(σ, k, d) is the number
of paths starting at σ of length k and finishing at a point π such that |π| = |σ| − (k − 2d). In
particular, S(σ, k, d) = 0 if |k − 2d| ≥ n : for each d ≥ 0, the contribution of order N−2d is a
polynomial in t.

The coefficients S(σ, k, d) depend on σ only through its conjugacy class and can be expressed
in terms of the representations of the symmetric group. In fact, Theorem 1.1 can be proved
directly using the representation theory of the unitary and symmetric groups. We present this
proof in Section 4. It is more systematical than the proof presented in Section 3 and should be
easier to generalize, as also suggested by the work of Gross and Taylor [6].

The tools of representation theory allow us, in Section 5, to compute S(σ, k, d) when σ is a
cycle of length n. The expression involves Stirling numbers and it could hardly be called simple.
Nevertheless, it allows us to count for all integer p the number of ways to write the cycle (1 . . . n)
in Sn as a product of p transpositions.

In Section 6, we use our expansion to describe the asymptotic distribution of unitary matrices
under the heat kernel measure as their size tends to infinity, thus recovering a result of P. Biane
[1]. We also recover a result of F. Xu [2] on the asymptotic factorization of the expected values
of products of traces. In order to describe the asymptotic distribution, we must compute the
coefficients S(σ, k, 0). The factorization result mentioned above reduces the problem to the case
where σ is an n-cycle. Unfortunately, the expression of S((1 . . . n), k, 0) obtained in Section 5 is
not obviously equal to what it should be according to Biane’s results. Thus, we compute this
coefficient in a different way by using the relations between the geometry of the Cayley graph
of the symmetric group and the lattice of non-crossing partitions. Then, in Section 7, we apply
the same ideas related to non-crossing partitions and use Speicher’s criterion of freeness to prove
the asymptotic freeness of independent unitary matrices under the heat kernel measure.

Finally, in Section 8, we give an interpretation of our formula in terms of random ramified
coverings over a disk, thus proving a formula described by Gross and Taylor [6]. We define
a probability measure on a certain set of ramified coverings over the disk and prove that the
expectation computed in Theorem 1.1 is the integral of a simple function - essentially N raised
to a power equal to the Euler characteristic of the total space of the covering - against this
measure. From this point of view, our expansion deserves to be called a genus expansion.

It is a pleasure to thank Philippe Biane for several enlightening conversations.
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2. Probabilistic aspects of Schur-Weyl duality

In this first section, we establish formulae which relate the heat kernel measures on U(N),
SU(N), SO(N) and Sp(N), to natural random walks in the symmetric group and the Brauer
monoid.

2.1. The unitary group. Let n and N be two positive integers. There is a natural action
of each of the groups U(N) and Sn on the vector space (CN )⊗n, defined as follows: for all
U ∈ U(N), σ ∈ Sn and x1, . . . , xn ∈ CN , we set

U · (x1 ⊗ . . . ⊗ xn) = Ux1 ⊗ . . . ⊗ Uxn,

σ · (x1 ⊗ . . . ⊗ xn) = xσ−1(1) ⊗ . . . ⊗ xσ−1(n).(3)

It is a basic observation that these actions commute to each other. In particular, they determine
an action ρn,N of Sn × U(N) on (CN )⊗n by

ρn,N (σ,U)(x1 ⊗ . . . ⊗ xn) = Uxσ−1(1) ⊗ . . . ⊗ Uxσ−1(n).

Definition 2.1. Let M1, . . . ,Mn be N × N complex matrices. Let σ be an element of Sn. We

denote by pst
σ (M1, . . . ,Mn) the complex number

pst
σ (M1, . . . ,Mn) = Tr(CN )⊗n ((M1 ⊗ . . . ⊗ Mn) ◦ ρn,N (σ, IN ))

=
∏

c=(i1...ir)
cycle of σ

Tr(Mi1 . . . Mir).

We set pst
σ (M) = pst

σ (M, . . . ,M).

The upper index st indicates that we use the standard trace rather than the normalized one
in the definition. The letter p stand for ”power sums”, since pst

σ (M), as a symmetric function of
the eigenvalues of M , is the product of power sums corresponding to the partition determined
by σ. Observe that, by definition, the character of the representation ρn,N is the function
χρn,N

(σ,U) = pst
σ (U).

The core result of Schur-Weyl duality is that the two subalgebras of End((CN )⊗n) generated
respectively by the actions of U(N) and Sn are each other’s commutant. Let us explain why
this makes a relation between the Brownian motion on U(N) and some element of the centre of
the group algebra of Sn unavoidable.

Let u(N) denote the Lie algebra of U(N), which consists of the N×N anti-Hermitian complex
matrices. Let U(u(N)) denote the enveloping algebra of u(N), which is canonically isomorphic
to the algebra of left-invariant differential operators on U(N). Let also C[Sn] denote the group
algebra of Sn. The representation ρn,N determines a homomorphism of associative algebras

C[Sn]⊗U(u(N)) −→ End((CN )⊗n). The centre Z(u(N)) of U(u(N)) is the space of bi-invariant
differential operators on U(N). Since ρn,N (1 ⊗ Z(u(N))) commutes with ρn,N (1, U) for every
U ∈ U(N), the Schur-Weyl duality asserts in particular that

ρn,N(1 ⊗Z(u(N))) ⊂ ρn,N (C[Sn] ⊗ 1).

We are primarily interested in the Laplace operator, which is defined as follows. The R-bilinear
form 〈X,Y 〉 = Tr(X∗Y ) = −Tr(XY ) is a scalar product on u(N). Let (X1, . . . ,XN2) be an
orthonormal basis of u(N). Identifying the elements of u(N) with left-invariant vector fields
on U(N), thus with first-order differential operators on U(N), the Laplace operator ∆U(N) is

the differential operator
∑N2

i=1 X2
i . It corresponds to the Casimir element

∑N2

i=1 Xi ⊗ Xi of the
enveloping algebra of u(N). This element is central and does not depend on the choice of the
orthonormal basis. Hence, ∆U(N) is well defined and bi-invariant. The discussion above shows
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that, in the representation ρn,N , the Laplace operator of U(N) can be expressed as an element
of C[Sn]. This is exactly what the main formula of this section does, in an explicit way.

Let Tn be the subset of Sn consisting of all transpositions. We set ∆Sn
= −n(n−1)

2 +
∑

τ∈Tn
τ .

The formula for the unitary group is the following.

Proposition 2.2. For all integers, n,N ≥ 1, one has

(4) ρn,N

(

∆Sn
⊗ 1 + 1 ⊗

1

2
∆U(N)

)

= −
Nn + n(n − 1)

2
.

Before we prove this formula, let us derive some of its consequences.

Proposition 2.3. For each σ ∈ Sn, the function pst
σ : U(N) −→ C satisfies the following

relation:

(5)
1

2
∆U(N)p

st
σ = −

Nn

2
pst

σ −
∑

τ∈Tn

pst
στ .

More generally, let M1, . . . ,Mn be arbitrary N×N matrices. Then, regarding pst
σ (M1U, . . . ,MnU)

as a function of U ∈ U(N), one has

(6)
1

2
∆U(N)p

st
σ (M1U, . . . ,MnU) = −

Nn

2
pst

σ (M1U, . . . ,MnU) −
∑

τ∈Tn

pst
στ (M1U, . . . ,MnU).

Proof – Recall that pst
σ (M1U, . . . ,MnU) = Tr ((M1 ⊗ . . . ⊗ Mn) ◦ ρn,N (σ,U)). Let us use the

shorthand notation M = M1 ⊗ . . . ⊗ Mn. We have

1

2
∆U(N)p

st
σ (M1U, . . . ,MnU) = Tr(M ◦ ρn,N (σ,U) ◦ ρn,N (1 ⊗

1

2
∆U(N)))

= −
Nn + n(n − 1)

2
pst

σ (M1U, . . . ,MnU) − Tr(M ◦ ρn,N(σ,U) ◦ ρn,N (∆Sn
⊗ 1)).

The result follows immediately from the definition of ∆Sn
.

The function pst
σ depends only on the cycle structure of σ. In concrete terms, if the lengths of

the cycles of σ are m1, . . . ,mr, then pst
σ (U) = Tr(Um1) . . . Tr(Umr). This redundant labelling is

however nicely adapted to our problem, as equation (5) shows. Let us spell out the right hand
side of this equality. The permutation σ being fixed, the cycle structure of στ depends on the
two points exchanged by the transposition τ . If they belong to the same cycle of σ, then this
cycle is split into two cycles. A cycle of length m can be split into a cycle of length s and a
cycle of length m− s by m distinct transpositions, unless m = 2s, in which case only m

2 of these
transpositions are distinct. If on the contrary the points exchanged by τ belong to two distinct
cycles of σ, these two cycles are merged into a single cycle. Two cycles of lengths m and m′ can
be merged by mm′ distinct permutations. Altogether, we find the following equation, which was
already present in papers of Xu [2] and Sengupta [10].

∆U(N) (Tr(Um1) . . . Tr(Umr )) = −NnTr(Um1) . . . Tr(Umr )

+

r
∑

i=1

miTr(Um1) . . . ̂Tr(Umi) . . . Tr(Umr )

mi−1
∑

s=1

Tr(U s)Tr(Umi−s)

+
r
∑

i,j=1,i6=j

mimjTr(Um1) . . . ̂Tr(Umi) . . . ̂Tr(Umj ) . . . Tr(Umr ) Tr(Umi+mj ).
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A remarkable feature of (4) is the fact that the element of C[Sn] which appears has coefficients
of the same sign on the elements which are not the identity. Hence, up to an additive constant,
it can be interpreted as the generator of a Markov chain on Sn. This leads us to the following
simple probabilistic interpretation of (4).

Let us introduce the standard random walk on the Cayley graph of the symmetric group
generated by the set of transpositions. It is the continuous-time Markov chain on Sn with
generator ∆Sn

, that is, the chain which jumps at rate
(

n
2

)

from its current position σ to στ ,

where τ is chosen uniformly at random among the
(

n
2

)

transpositions of Sn.
If σ is a permutation, we denote by ℓ(σ) the number of cycles of σ. For example, τ is a

transposition if and only if ℓ(τ) = n − 1.

Proposition 2.4. Let N,n ≥ 1 be integers. Let (Bt)t≥0 be a Brownian motion on U(N) starting

at the identity and corresponding to the scalar product (X,Y ) 7→ −Tr(XY ) on u(N). Let (πt)t≥0

be a standard random walk on the Cayley graph of the symmetric group Sn, independent of

(Bt)t≥0. Then the process
(

e
Nn+n(n−1)

2
tpst

πt
(Bt)

)

t≥0
is a martingale. In particular,

(7) E
[

pst
πt

(Bt)
]

= e−
Nn+n(n−1)

2
t

E

[

N ℓ(π0)
]

.

More generally, let M1, . . . ,Mn be arbitrary N×N complex matrices. Then the stochastic process
(

e
Nn+n(n−1)

2
tpst

πt
(M1Bt, . . . ,MnBt)

)

t≥0
is a martingale and

(8) E
[

pst
πt

(M1Bt, . . . ,MnBt)
]

= e−
Nn+n(n−1)

2
t

E
[

pst
π0

(M1, . . . ,Mn)
]

.

Proof – The process (π,B) is a Markov process on Sn × U(N) with generator ∆Sn
⊗ 1 + 1 ⊗

1
2∆U(N). Consider the function p : Sn × U(N) → C defined by p(σ,U) = pst

σ (M1U, . . . ,MnU).
By Proposition 2.3, this function satisfies the relation

(

∆Sn
⊗ 1 + 1 ⊗

1

2
∆U(N)

)

p = −
Nn + n(n − 1)

2
p.

The fact that
(

e
Nn+n(n−1)

2
tpst

πt
(M1Bt, . . . ,MnBt)

)

t≥0
is a martingale follows immediately. The

last assertion follows from the fact that B0 = IN a.s.

Let us turn to the proof of Proposition 2.2.

Proof of Proposition 2.2 – The action of u(N) on (CN )⊗n extends by complexification to
gl(N, C) = u(N) ⊕ iu(N). Let (X1, . . . ,XN2) be a real basis of u(N). It is also a complex basis
of gl(N, C). Define a N × N matrix g by gij = −Tr(XiXj). Since −Tr(· ·) is non-degenerate
on glN (C), the matrix g has an inverse g−1, the entries of which we denote by gij . Then it is

easy to check that the element
∑N2

i,j=1 gijXi ⊗Xj of the enveloping algebra is independent of the

choice of the basis. Of course, by choosing our original basis of u(N) orthonormal, we find that
this element is simply ∆U(N).

In order to compute ρn,N (1 ⊗ ∆U(N)), we prefer to use another complex basis of gl(N, C) =

MN (C), namely the canonical basis (Eij)i,j∈{1,...,N}. For this basis, gij,kl = −δjkδil and g = g−1.

Hence, in the enveloping algebra of gl(N, C), ∆U(N) = −
∑N

i,j=1 Eij ⊗ Eji.
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First, notice that ρn,N(1 ⊗ Eij)(x1 ⊗ . . . ⊗ xn) =
∑n

k=1 x1 ⊗ . . . ⊗ Eij(xk) ⊗ . . . ⊗ xn. Hence,

ρn,N



1 ⊗
N
∑

i,j=1

Eij ⊗ Eji



 = 2
N
∑

i,j=1

∑

1≤k<l≤n

Id⊗k−1 ⊗ Eij ⊗ Id⊗l−k−1 ⊗ Eji ⊗ Id⊗n−l−1 +

+

N
∑

i,j=1

n
∑

k=1

Id⊗k−1 ⊗ Eii ⊗ Id⊗n−k−1.

The last term is simply Nn times the identity. For the first part of the right hand side, observe
that

∑N
i,j=1 Eij ⊗ Eji ∈ End((CN )⊗2) is the transposition operator x ⊗ y 7→ y ⊗ x, that is, the

operator ρ2,N ((12), IN ). Finally, we have found that

−ρn,N (1 ⊗ ∆U(N)) = Nn Id +
∑

1≤k 6=l≤n

ρn,N ((kl), IN ).

The result follows.

The results of this section still hold, after a minor modification, when U(N) is replaced by
SU(N). Indeed, the orthogonal complement of su(N) in u(N) is the line generated by i√

N
IN .

Since ρn,N (1 ⊗ (IN ⊗ IN )) = n2Id, the Casimir operator of su(N) satisfies the relation

ρn,N (1 ⊗ ∆SU(N)) = ρn,N (1 ⊗ ∆U(N)) +
n2

N
Id.

This modifies only the exponential factors in (7) and (8).
We will explore further consequences of Proposition 2.4 in the rest of the paper. For the

moment, we derive similar results for the orthogonal and symplectic group.

2.2. The orthogonal group. Let us consider the action of SO(N) on (CN )⊗n defined by
analogy with (3). The action of Sn still commutes to that of SO(N), but, unless n = 1,
the subalgebra of End((CN )⊗n) generated by the image of C[Sn] is strictly smaller than the
commutant of the image of SO(N). Let us review briefly the operators which are classically
used to describe this commutant. We denote by {e1, . . . , eN} the canonical basis of CN .

Definition 2.5. Let β be a partition of {1, . . . , 2n} into pairs. Define ρn,N (β) ∈ End((CN )⊗n)
by setting, for all i1, . . . , in ∈ {1, . . . , N},

ρn,N (β)(ei1 ⊗ . . . ⊗ ein) =
∑

in+1,...,i2n∈{1,...,N}

∏

{k,l}∈β

δikil ein+1 ⊗ . . . ⊗ ei2n
.

Observe that the partition {{1, n + 1}, . . . , {n, 2n}} is sent to the identity operator by ρn,N .
Let Bn denote the set of partitions of {1, . . . , 2n} into pairs. The composition of the operators
ρn,N(β) corresponds to a monoid structure on Bn which is easiest to understand on a picture.
An element of Bn is represented in a box with n dots on its top edge and n dots on its bottom
edge. The dots on the top are labelled from 1 to n, from the left to the right. The dots on the
bottom are labelled from n + 1 to 2n, from the left to the right too. A pairing is then simply
represented by n chords which join the appropriate dots. Multiplication of pairings is done in
the intuitive topological way by superposing boxes and, if necessary, removing the closed loops
which have appeared.
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Figure 1. Multiplication of two diagrams in the Brauer monoid.

The monoid Bn is called the Brauer monoid and its elements are called Brauer diagrams.
The group Sn is naturally a submonoid1 of Bn, by the identification of a permutation σ with
the pairing {{1, σ(1) + n}, . . . , {n, σ(n) + n}}. The identification of Sn with a subset of Bn

is compatible with our previous definition of ρn,N in the sense that ρn,N (σ) is the same if we
consider σ as a permutation or as a Brauer diagram.

The correct statement of Schur-Weyl duality in the present context is that the subalgebras
of End((CN )⊗n) generated by SO(N) and Bn are each other’s commutant (see [11]). Let ρn,N

denote the morphism of monoids

ρn,N : Bn × SO(N) −→ GL((CN )⊗n).

Just as in the unitary case, this action determines a morphism of associative algebras ρn,N :

C[Bn] ⊗ U(so(N)) −→ End((CN )⊗n).
By analogy to the unitary case, let us define ”power sums” functions associated to Brauer

diagrams. Given β ∈ Bn and M1, . . . ,Mn ∈ MN (C), set

pst
β (M1, . . . ,Mn) = Tr((M1 ⊗ . . . ⊗ Mn) ◦ ρn,N (β)).

In particular, the character of ρn,N is given by χρn,N
(β,R) = pst

β (R).

The number pst
β (M1, . . . ,Mn) is a product of traces of words in the matrices M1,

tM1 , . . . ,

Mn, tMn. Let us describe in more detail how to compute pst
β (IN ). Let β be a Brauer diagram.

Consider the graph with vertices {1, . . . , n} and unoriented edges {k, l}, where k and l are such
that there exist k′ ∈ {k, k + n} and l′ ∈ {l, l + n} with {k′, l′} ∈ β. This is the graph obtained
by identifying the top edge with the bottom edge in the graphical representation of β. Then
each vertex has degree 2 in this graph. Hence, it is a union of disjoint unoriented cycles. If β
belongs to Sn ⊂ Bn, this cycle structure is of course that of β as a permutation, apart from the
orientation which is lost. In general, let ℓ(β) denote the number of cycles in this graph. Then

pst
β (IN ) = N ℓ(β).

Let us define an element of C[Bn] as follows. Given k and l two integers such that 1 ≤ k <
l ≤ n, we define the element 〈kl〉 of Bn as the following pairing:

〈kl〉 = {{k, l}, {n + k, n + l}} ∪
⋃

i∈{1,...,n}−{k,l}
{{i, n + i}}.

1In fact, Sn ⊂ Bn is exactly the subset of invertible elements. Indeed, for β ∈ Bn, let T (β) be the set of pairs
{k, l} ∈ β such that 1 ≤ k, l ≤ n. In words, T (β) is the set of chords in the diagram of β which join two dots on
the top edge of the box. It is clear that T (β1β2) ⊃ T (β1) for all β1, β2 ∈ Bn. Hence, T (β) must be empty for β

to be invertible. More generally, it is not difficult to check that, given β and β′ in Bn, there exists β′′ ∈ Bn such
that ββ′′ = β′ if and only if T (β) ⊂ T (β′).



8 THIERRY LÉVY

Figure 2. The elements 〈24〉 and (24) of B6.

Let Cn be the subset of Bn consisting of all the element of the form 〈kl〉. We now define

∆Bn = −
n(n − 1)

2
+
∑

α∈Cn

α. Thanks to the inclusion Sn ⊂ Bn, we still see ∆Sn
as an element

of C[Bn]. The formula for the orthogonal group is the following.

Proposition 2.6. For all integers, n,N ≥ 1, one has

(9) ρn,N

(

∆Sn
⊗ 1 + 1 ⊗ ∆SO(N)

)

= −
(N − 1)n

2
+ ρn,N (∆Bn ⊗ 1) .

Proof – The computation is very similar to that we made in the unitary case. Endow so(N)
with the scalar product 〈X,Y 〉 = −Tr(XY ). The basis (Aij)1≤i<j≤N , with Aij = Eij − Eji, is
orthogonal and 〈Aij , Aij〉 = 2 for all i < j. Hence, ∆SO(N) = 1

2

∑

1≤i<j≤N Aij ⊗ Aij . We have

ρn,N(1 ⊗ ∆SO(N)) =
∑

1≤k<l≤n

∑

1≤i<j≤N

Id⊗k−1 ⊗ Aij ⊗ Id⊗l−k−1 ⊗ Aij ⊗ Id⊗n−l +

+
1

2

n
∑

k=1

∑

1≤i<j≤N

Id⊗k−1 ⊗ A2
ij ⊗ Id⊗n−k

=
∑

1≤k<l≤n

N
∑

i,j=1

Id⊗k−1 ⊗ Eij ⊗ Id⊗l−k−1 ⊗ Eij ⊗ Id⊗n−l

−
∑

1≤k<l≤n

N
∑

i,j=1

Id⊗k−1 ⊗ Eij ⊗ Idl−k−1 ⊗ Eji ⊗ Idn−l −
(N − 1)n

2
Id

=
∑

1≤k<l≤n

ρn,N((〈kl〉 − (kl)) ⊗ 1) −
(N − 1)n

2
Id.

The result follows.

The following proposition is proved just as Proposition 2.3.

Proposition 2.7. For all β ∈ Bn, the following relation holds:

(10) ∆SO(N)p
st
β = −

(N − 1)n

2
pst

β −
∑

τ∈Tn

pst
βτ +

∑

α∈Cn

pst
βα.

More generally, let M1, . . . ,Mn be arbitrary N×N matrices. Then, regarding pst
β (M1R, . . . ,MnR)

as a function of R ∈ SO(N),

∆SO(N)p
st
β (M1R, . . . ,MnR) = −

(N − 1)n

2
pst

β (M1R, . . . ,MnR)

−
∑

τ∈Tn

pst
βτ (M1R, . . . ,MnR) +

∑

α∈Cn

pst
βα(M1R, . . . ,MnR).(11)
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It seems more difficult to find a probabilistic interpretation of (9) than in the unitary case,
because the element of C[Bn] which appears does not have coefficients of the same sign on all
elements not equal to 1.

2.3. The symplectic group. Nothing really new is needed to treat the case of the symplectic
group. Let us describe briefly the results.

Let J ∈ M2N (C) denote the matrix

(

0 IN

−IN 0

)

. The symplectic group is defined by

Sp(N) = {S ∈ U(2N) : tSJS = J}. It acts naturally on ((C2N )⊗n). The action of the Brauer
monoid needs to be slightly modified to fit the symplectic case. If β belongs to Bn, we define
the operator ρn,2N (β) by setting, for all i1, . . . , in ∈ {1, . . . , 2N},

ρn,2N(β)(ei1 ⊗ . . . ⊗ ein) =
∑

in+1,...,i2n∈{1,...,n}

∏

{k,l}∈β

Jikil ein+1 ⊗ . . . ⊗ ei2n
.

Then we have an action ρn,2N : Bn×Sp(N) −→ End((C2N )⊗n) and the images of Bn and Sp(N)
generate two algebras which are each other’s commutant.

The Lie algebra sp(N) is endowed with the scalar product 〈X,Y 〉 = −Tr(XY ) and we denote
by ∆Sp(N) the corresponding Laplace operator. The main formula is the following.

Proposition 2.8. For all integers, n,N ≥ 1, one has

(12) ρn,2N

(

∆Sn
⊗ 1 + 1 ⊗ 2∆Sp(N)

)

= −(2N + 1)n + ρn,2N (∆Bn ⊗ 1) .

Proof – Just as in the unitary case, it is more convenient to use complexification. The Lie
algebra sp(N, C) = sp(N) ⊕ isp(N) is the Lie subalgebra of gl(2N, C) defined by the relation

tXJ = −JX. It consists of the matrices

(

A B
C −tA

)

, where A is an arbitrary N × N matrix

and B,C are two symmetric N × N matrices. We use the following basis of sp(N, C):

Aij = Eij − Ej+N,i+N 1 ≤ i, j ≤ N
Bij = Ei,j+N + Ej,i+N 1 ≤ i < j ≤ N
Cij = Ei+N,j + Ej+N,i 1 ≤ i < j ≤ N
Di = Ei,i+N 1 ≤ i ≤ N

Di+N = Ei+N,i 1 ≤ i ≤ N.

The bilinear form 〈·, ·〉 takes the following values on this basis:

〈Aij , Aji〉 = −2 1 ≤ i, j ≤ N

〈Bij , Cij〉 = −2 1 ≤ i < j ≤ N

〈Di,Di+N 〉 = −1 1 ≤ i ≤ N.

The other values are zero. It follows that the Casimir element of sp(N, C) is equal to

∆sp(N,C) = −
1

2

∑

1≤i,j≤N

Aij ⊗ Aji −
1

2

∑

1≤i<j≤N

(Bij ⊗ Cij + Cij ⊗ Bij)

−
∑

1≤i≤N

(Di ⊗ Di+N + Di+N ⊗ Di).

The formula follows now by a direct computation. In order to recognize operators of the form
〈kl〉 and (kl), observe that, when n = 2 for example,

ρ2,2N ((12), IN ) =

2N
∑

i,j=1

Eij ⊗ Eji,
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ρ2,2N (〈12〉, IN ) =

N
∑

i,j=1

(Eij ⊗ Ei+N,j+N + Ei+N,j+N ⊗ Eij

−Ei,j+N ⊗ Ei+N,j − Ei+N,j ⊗ Ei,j+N ) .

Proposition 2.9. For all β ∈ Bn, the following relation holds:

(13) 2∆Sp(N)p
st
β = −(2N + 1)n pst

β −
∑

τ∈Tn

pst
βτ +

∑

α∈Cn

pst
βα.

More generally, let M1, . . . ,Mn be arbitrary 2N×2N matrices. Then, regarding pst
β (M1S, . . . ,MnS)

as a function of R ∈ Sp(N), one has

2∆Sp(N)p
st
β (M1S, . . . ,MnS) = −(2N + 1)n pst

β (M1S, . . . ,MnS)

−
∑

τ∈Tn

pst
βτ (M1S, . . . ,MnS) +

∑

α∈Cn

pst
βα(M1S, . . . ,MnS).(14)

3. The power series expansion

Let us denote by TrN = 1
N

Tr the normalized trace on MN (C). Let M1, . . . ,Mn be N × N
matrices. Let σ be an element of Sn. We denote by pσ(M1, . . . ,Mn) the number

pσ(M1, . . . ,Mn) =
∏

c=(i1...ir)
cycle of σ

TrN (Mi1 . . . Mir).

We denote by ℓ(σ) the number of cycles of σ, so that pσ = N−ℓ(σ)pst
σ .

In this section, we exploit the result of Proposition 2.4 and derive a convergent power series

expansion of E

[

pσ(B t
N

)
]

when B is a Brownian motion on U(N). This expansion involves

combinatorial coefficients, which count paths in the Cayley graph of Sn. We start by discussing
these paths and introducing some notation.

3.1. The Cayley graph of the symmetric group. Fix n ≥ 1. The Cayley graph of Sn

generated by Tn can be described as follows: the vertices of this graph are the elements of Sn

and two permutations σ1 and σ2 are joined by an edge if and only if σ1σ
−1
2 is a transposition.

It is a fundamental observation that, if σ1 and σ2 are joined by an edge, then ℓ(σ1) and ℓ(σ2)
differ exactly by 1. Indeed, multiplying a permutation by a transposition splits a cycle into
two shorter cycles if the points exchanged by the transposition belong originally to the same
cycle, and otherwise combines together the two cycles which contain the points exchanged by
the transposition.

A finite sequence (σ0, . . . , σk) of permutations such that σi is joined to σi+1 by an edge for
each i ∈ {0, . . . , k − 1} is called a path of length k. The distance between two permutations is
the smallest length of a path which joins them. This distance can be computed explicitly as
follows.

Let us introduce the notation |σ| = n − ℓ(σ). We have |σ| ∈ {0, . . . , n − 1} and |σ| = 0 (resp.
1, resp. n − 1) if and only if σ is the identity (resp. a transposition, resp. a n-cycle). Other
values of |σ| do not characterize uniquely the conjugacy class of σ. It is well-known and easy to
check that |σ| is the minimal number of transpositions required to write σ. In other words, the
graph distance between two permutations σ1 and σ2 in the Cayley graph is given by |σ−1

1 σ2|.
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It turns out that the paths which play the most important role in our problem are those
which tend to get closer to the identity. Let γ = (σ0, . . . , σk) be a path. Recall that, for all
i ∈ {0, . . . , k − 1}, one has ℓ(σi+1) = ℓ(σi) ± 1. We call defect of γ and denote by d(γ) the
number of steps which increase the distance to the identity. In symbols,

d(γ) = #{i ∈ {0, . . . , k − 1} : |σi+1| = |σi| + 1}

= #{i ∈ {0, . . . , k − 1} : ℓ(σi+1) = ℓ(σi) − 1}.

The following lemma is straightforward.

Lemma 3.1. Let γ = (σ0, . . . , σk) be a path. Then 2d(γ) = k − (ℓ(σk) − ℓ(σ0)).

For σ, σ′ in Sn and k ≥ 0, let us denote by Πk(σ → σ′) the set of paths of length k which
start at σ and finish at σ′. Let us also denote by Πk(σ) the set of all paths of length k starting
at σ and by Π(σ → σ′) the set of all paths from σ to σ′. Notice that the cardinality of Πk(σ) is

equal to
(

n
2

)k
. Let us finally define the coefficients which appear in the expansion.

Definition 3.2. Consider σ ∈ Sn and two integers k, d ≥ 0. We set

S(σ, k, d) = #{γ ∈ Πk(σ) : d(γ) = d}.

In words, S(σ, k, d) is the number of paths in the Cayley graph of Sn starting at σ, of length k
and with defect d.

Observe that the adjoint action of Sn on itself determines an action of Sn on its Cayley graph
by automorphisms. Thus, S(σ, k, d) depends only on the conjugacy class of σ.

3.2. The main expansion.

Theorem 3.3. Let N,n ≥ 1 be integers. Let (Bt)t≥0 be a Brownian motion on U(N) starting

at the identity and corresponding to the scalar product (X,Y ) 7→ −Tr(XY ) on u(N). Let

M1, . . . ,Mn be arbitrary N × N complex matrices. Let σ be an element of Sn. Then, for all

t ≥ 0, we have the following series expansions:

(15)

E

[

pσ(M1B t
N

, . . . ,MnB t
N

)
]

= e−
nt
2

+∞
∑

k,d=0

(−1)ktk

k!N2d

∑

|σ′|=|σ|−k+2d

#Πk(σ → σ′) pσ′(M1, . . . ,Mn).

In particular, if m1, . . . ,mr denote the lengths of the cycles of σ, then

(16) E[TrN (Bm1
t
N

) . . . TrN (Bmr
t
N

)] = e−
nt
2

+∞
∑

k,d=0

(−1)ktk

k!N2d
S(σ, k, d).

For all T ≥ 0, both expansions converge uniformly on (N, t) ∈ N∗ × [0, T ].

In order to understand the role of the defect of a path in our problem, let us write down the
result corresponding to Proposition 2.3 for the functions pσ. As explained earlier, the number
of cycles of στ can be either ℓ(σ) + 1 or ℓ(σ) − 1, respectively when the two points exchanged
by τ belong to the same cycle of σ or to two distinct cycles. For each permutation σ ∈ Sn, we
are led to partition Tn into two classes F (σ) and C(σ), those which fragment a cycle of σ and
those which coagulate two cycles. More precisely,

F (σ) = {τ ∈ T (n) : ℓ(στ) = ℓ(σ) + 1} and C(σ) = {τ ∈ T (n) : ℓ(στ) = ℓ(σ) − 1}.

The following result is now a straightforward consequence of Proposition 2.3.
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Proposition 3.4. Let σ be a permutation in Sn. Let M1, . . . ,Mn be N × N matrices. Then

the following relation holds:

1

2N
∆U(N)pσ(M1U, . . . ,MnU) = −

n

2
pσ(M1U, . . . ,MnU)

+
∑

τ∈F (σ)

pστ (M1U, . . . ,MnU) +
1

N2

∑

τ∈C(σ)

pστ (M1U, . . . ,MnU).

According to this result, each step which increases the distance to the identity is penalized
by a weight N−2. In the proof of the power series expansion, we use the following lemma.

Lemma 3.5. Let t ≥ 0 and N > 0 be real numbers. For all σ, σ′ ∈ Sn and ε ∈ {−1, 1}, define

M ε
σ,σ′ =

+∞
∑

k=0

εktk

k!

#Πk(σ → σ′)

Nk−(ℓ(σ′)−ℓ(σ))
.

Then the matrices (M1
σ,σ′ )σ,σ′∈Sn

and (M−1
σ,σ′)σ,σ′∈Sn

are each other’s inverse.

Proof – Let us define an endomorphism L of C[Sn] by setting, for all f ∈ C[Sn],

(Lf)(σ) =
∑

τ∈F (σ)

f(στ) +
1

N2

∑

τ∈C(σ)

f(στ).

One checks easily that the matrix M ε
σ,σ′ is the matrix of the operator eεtL on C[Sn] and the

result follows.

Proof of Theorem 3.3 – Consider T ≥ 0. We claim that the right-hand side of (15) is a nor-
mally convergent series on (N, t) ∈ N∗×[0, T ]. Indeed, let us define K = max{|pσ(M1, . . . ,Mn)| :
σ ∈ Sn}. Then, for all N ≥ 1 and all t ∈ [0, T ], the sum of the absolute values of the terms of
the series is smaller than

Ke−
nt
2

+∞
∑

k=0

T k

k!

+∞
∑

d=0

S(σ, k, d) = Ke
n(n−2)

2
T .

The assertion on the uniform convergence of the expansions follows.
In order to prove (15), we start from the expression given by Proposition 2.4, at time t

N
and

with an arbitrary deterministic initial condition π0 = σ. It reads

(17) ∀σ ∈ Sn, E

[

pst
π t

N

(M1B t
N

, . . . ,MnB t
N

)

∣

∣

∣

∣

π0 = σ

]

= e−
nt
2
−n(n−1)t

2N pst
σ (M1, . . . ,Mn).

We expand the left hand side by using the properties of (πt)t≥0. This chain jumps at rate
(

n
2

)

and
its jump chain is a standard discrete-time random walk on the Cayley graph of Sn, independent
of the jump times. Thus, the left-hand side of (17) is equal to

∞
∑

k=0

e−(n
2)

t
N

(

n

2

)k tk

k!Nk

1
(

n
2

)k

∑

σ′∈Sn

∑

γ∈Πk(σ→σ′)

E

[

pst
σ′(M1B t

N
, . . . ,MnB t

N
)
]

,

where the expectation is now only with respect to the Brownian motion. After simplification
and switching to normalized traces, (17) becomes

∀σ ∈ Sn,
∑

σ′∈Sn

E

[

pσ′(M1B t
N

, . . . ,MnB t
N

)
]

∞
∑

k=0

tk

k!

#Πk(σ → σ′)

Nk−(ℓ(σ′)−ℓ(σ))
= e−

nt
2 pσ(M1, . . . ,Mn).
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We recognize the expression of M1
σ,σ′ and, by Lemma 3.5, we conclude that for all σ ∈ Sn,

E

[

pσ(M1B t
N

, . . . ,MnB t
N

)
]

= e−
nt
2

∞
∑

k=0

(−1)ktk

k!

∑

σ′∈Sn

#Πk(σ → σ′)

Nk−(ℓ(σ′)−ℓ(σ))
pσ′(M1, . . . ,Mn).

The first formula follows from the fact that |σ| = n − ℓ(σ). Setting M1, . . . ,MN equal to IN

yields the second formula.

Most of the coefficients which appear in the expansion (16) are zero. More precisely, the
situation is the following.

Lemma 3.6. Let γ be a path of length k and defect d starting at σ. Then the following inequal-

ities hold:

0 ≤ d ≤ k and 2d − (ℓ(σ) − 1) ≤ k ≤ 2d + (n − ℓ(σ)).

In particular, |k − 2d| ≤ n − 1.
Moreover, let d ≥ 0 be given. Then S(σ, 2d + (n − ℓ(σ)), d) > 0 and, if d ≥ ℓ(σ) − 1, then

S(σ, 2d − (ℓ(σ) − 1), d) > 0. Finally, if d ≤ ℓ(σ) − 1, then S(σ, d, d) > 0.

Proof – Assume that the path finishes at σk. Then the first two inequalities reflect simply the
fact that 1 ≤ ℓ(σk) ≤ n.

To prove the second part of the statement, consider d ≥ 0. Recall that σ is fixed. Let us
construct a longest possible path starting at σ with defect d. For this, we minimize the defect
at each step. First, we build a path by going from σ down to the identity through a geodesic.
This takes n− ℓ(σ) steps and the defect of the path is still zero. Then the path must make one
step up. Immediately after this, it can go down to the identity again. It can repeat this at most
d times without its defect becoming larger than d. By then it has length 2d + (n − ℓ(σ)). Thus
we have constructed a path of length 2d + (n − ℓ(σ)) with defect d. A similar argument works
for a shortest path of given defect.

In particular, for all d ≥ 0, the contribution of order N−2d to E[pσ(B t
N

)] is a polynomial

function of t of degree 2d + (n − ℓ(σ)) and in which the smallest exponent of t is max(d, 2d −
(ℓ(σ) − 1)).

3.3. Examples. Let us work out explicitly a few examples.
For n = 1: there is a single path in the Cayley graph of S1. It has length and defect 0. Thus,

we recover the well-known formula

E

[

TrN (B t
N

)
]

= e−
t
2 .

For n = 2: for each k ≥ 0 there is a unique path of length k starting at the identity. It has
defect ⌊k+1

2 ⌋. Thus,

E

[

TrN (B t
N

)2
]

= e−t
∞
∑

k=0

(−1)ktk

k!N2⌊k+1
2

⌋
= e−t

(

cosh
t

N
−

1

N
sinh

t

N

)

.

Similarly, for each k ≥ 0, there is a unique path of length k starting at (12). It has defect ⌊k
2⌋.

Thus,

E

[

TrN (B2
t
N

)
]

= e−t
∞
∑

k=0

(−1)ktk

k!N2⌊k
2
⌋

= e−t

(

cosh
t

N
− N sinh

t

N

)

.

For n = 3: the situation is a bit more complicated but it is still possible to compute everything by
hand. For a path starting at the identity of length k and defect d, we must have 2d−2 ≤ k ≤ 2d.
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Hence, if k is odd, it must be equal to 2d − 1. So, for all l ≥ 1, S(id, 2l − 1, l) = 32l−1. If k is
even, then two situations are possible. We leave it as an exercise to check that, for all l ≥ 1,
S(id, 2l, l) = 32l−1 and S(id, 2l, l + 1) = 2.32l−1. Finally, S(id, 0, 0) = 1. We find

E

[

TrN (B t
N

)3
]

= e−
3t
2

(

1 +
N2 + 2

3N2

(

cosh
3t

N
− 1

)

−
1

N
sinh

3t

N

)

.

Similarly, we find

E

[

TrN (B2
t
N

)TrN (B t
N

)
]

= e−
3t
2

(

cosh
3t

N
−

N2 + 2

3N
sinh

3t

N

)

,

E

[

TrN (B3
t
N

)
]

= e−
3t
2

(

1 +
N2 + 2

3

(

cosh
3t

N
− 1

)

− N sinh
3t

N

)

.

For n ≥ 4, it seems difficult to determine all the coefficients at once and by hand. Nevertheless,
the following diagram, which indicates how many edges join the various conjugacy classes of S4

in the Cayley graph allows one to compute specific values of S(σ, k, d).

(123)
3

%%KKKKKKKKK

3zzuuu
uu

uu
uu

id
6 //

(12)
1

oo

4
::uuuuuuuuu

1

$$IIII
II

III
(1234)

4

eeKKKKKKKKK

2yysssssssss

(12)(34)
2

ddIIIIIIIII

4
99sssssssss

Figure 3. The Cayley graph of S4 modulo conjugation.

For instance, one can use it to prove the following formulae :

e2t
E

[

TrN (B t
N

)4
]

= 1 +
1

N2
(−6t + 3t2) +

1

N4
(15t2 − 20t3 + 5t4) + O(

1

N6
),

e2t
E

[

TrN (B4
t
N

)
]

= (1 − 6t + 8t2 −
8

3
t3) +

1

N2
(10t2 −

58

3
t3 +

71

4
t4 −

16

3
t5) + O(

1

N4
).

3.4. The case of SU(N). Let us conclude this section by stating without proof the following
analogue of Theorem 3.3 in the case of the the special unitary group. This theorem is proved
exactly like its unitary version, by using the observation made at the end of Section 2.1.

Theorem 3.7. Let N,n ≥ 1 be integers. Let (Bt)t≥0 be a Brownian motion on SU(N) starting

at the identity and corresponding to the scalar product (X,Y ) 7→ −Tr(XY ) on su(N). Let

M1, . . . ,Mn be arbitrary N × N complex matrices. Let σ be an element of Sn. Then, for all

t ≥ 0, we have the following series expansion:

E

[

pσ(M1B t
N

, . . . ,MnB t
N

)
]

= e−
nt
2

+ n2t

2N2

+∞
∑

k,d=0

(−1)ktk

k!N2d
×

∑

|σ′|=|σ|−k+2d

#Πk(σ → σ′) pσ′(M1, . . . ,Mn).(18)

In particular, if m1, . . . ,mr denote the lengths of the cycles of σ, then

(19) E[TrN (Bm1
t
N

) . . . TrN (Bmr
t
N

)] = e−
nt
2

+ n2t

2N2

+∞
∑

k,d=0

(−1)ktk

k!N2d
S(σ, k, d).
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For all T ≥ 0, both expansions converge uniformly on (N, t) ∈ N∗ × [0, T ].

4. A representation-theoretic derivation of the power series expansions

In this section, we give an alternative derivation of the expansions (16) and (19), based on the
representation theory of the unitary and symmetric groups and the relations between symmetric
functions. This approach is less elementary than the one adopted in the previous sections but
we believe that it is more likely to allow generalizations. In Section 5, we will use it to compute
some of the coefficients S(σ, k, d).

4.1. Expansion for the unitary group. The integers N,n ≥ 1 are fixed throughout this
section. We write λ ⊢ n if λ = (λ1 ≥ . . . ≥ λr > 0) is a partition of n. The integer r is called
the length of λ and we denote it by ℓ(λ). We denote the set of all partitions by P.

Let λ be a partition of n. We denote by sλ the Schur function associated to the partition
λ, whose definition is given in [12, I.3]. For all U ∈ U(N), the number sλ(U) is defined as the
value of sλ on the eigenvalues of U . We will use the fact that, if ℓ(λ) > N , then the symmetric
polynomial in N variables determined by sλ is the zero polynomial. This follows for example
from the expression of sλ as a determinant in the elementary symmetric functions [12, I.3, (3.5)].

Recall the definition of the power sums, that is, the functions pst
σ : U(N) −→ C for σ ∈ Sn

(see Definition 2.1).
The Schur functions and the power sums are related as follows. Let χλ : Sn −→ C denote the

character of the irreducible representation of Sn associated with λ. Then one has the following
pair of relations [12, I.7,(7.7)]:

(20) ∀λ ⊢ n, sλ =
1

n!

∑

σ∈Sn

χλ(σ)pst
σ ,

(21) ∀σ ∈ Sn, pst
σ =

∑

λ⊢n

χλ(σ)sλ.

The set Û(N) of isomorphism classes of irreducible representations (irreps) of U(N) is in
one-to-one correspondence with the set ZN

↓ of non-increasing sequences α = (α1 ≥ . . . ≥ αN ) of
elements of Z. Even when some of the αi’s are negative, the Schur function sα is well-defined
and the character of the irrep α is χα(U) = sα(U).

Let (Bt)t≥0 be the Brownian motion on U(N) of Theorem 3.3. Let dU denote the normalized
Haar measure on U(N). For each t > 0, let Qt denote the heat kernel at time t on U(N), that
is, the density of the distribution of Bt with respect to the Haar measure. Our main result is
the following reformulation of (16).

Theorem 4.1. Let N,n ≥ 1 be integers. Let σ be an element of Sn. Then, for all t ≥ 0,

(22) N−ℓ(σ)

∫

U(N)
pst

σ (U)Q t
N

(U) dU = e−
nt
2

+∞
∑

k,d=0

(−1)ktk

k!N2d
S(σ, k, d).

In the course of the proof, we admit two lemmas which we prove afterwards. We have pre-
ferred this order to the strict logical order to make the proof easier to follow.

Proof – If t = 0, the result is clearly true. When t > 0, the proof consists in expanding Qt into
the sum of its Fourier series and turning all quantities related to U(N) into quantities related to
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Sn. For all t > 0, the function Qt is smooth on U(N) and invariant by conjugation. It admits
the following uniformly convergent Fourier expansion [13, Thm 4.4]:

(23) Qt(U) =
∑

α∈ZN
↓

e−
c2(α)t

2 sα(IN )sα(U),

where the number c2(α) is characterized by the equality ∆U(N)χα = −c2(α)χα. Using the

relation (21) to expand pst
σ (U), we find the following expression for the left-hand side of (22):

∫

U(N)
pst

σ (U)Q t
N

(U) dU =
∑

α∈ZN
↓ ,µ⊢n

e−
c2(α)t

2N sα(IN )χµ(σ)

∫

U(N)
sα(U)sµ(U) dU.

By the orthogonality properties of the characters of irreps, the integral in the right-hand side is
zero unless α = µ. Hence, we can replace the sum over α and µ by a sum over the partitions µ
such that µ ⊢ n and ℓ(µ) ≤ N :

(24)

∫

U(N)
pst

σ (U)Q t
N

(U) dU =
∑

µ⊢n,ℓ(µ)≤N

e−
c2(µ)t

2N sµ(IN )χµ(σ).

We still need to express sµ(IN ) and c2(µ) in terms of quantities related to the symmetric group.

In order to compute sµ(IN ), we use the relation (20). Let us define Ω =
∑

σ∈Sn
N ℓ(σ)σ. This

notation is borrowed from [6]. Then (20) implies the equality

(25) sµ(IN ) =
1

n!
χµ(Ω).

In Lemma 4.3, we will prove that χµ(Ω) = 0 if ℓ(µ) > N . This allows us to drop the restriction
ℓ(µ) ≤ N in the summation.

Let us compute c2(µ), the eigenvalue of ∆U(N) associated to sµ. Thanks to (5), we know

the value of ∆U(N)p
st
σ for all σ and (20) expresses sµ as a linear combination of power sums.

Combining these two equations, we find

(26) ∆U(N)sµ = −Nnsµ −
2

n!

∑

σ∈Sn

∑

τ∈Tn

χµ(στ)pst
σ ,

where Tn is the set of the transpositions of Sn. We now use the following consequence of Schur’s
lemma: whenever x belongs to the group algebra C[Sn] and y to the centre of the group algebra,

(27) ∀µ ⊢ n, χµ(xy) =
χµ(x)χµ(y)

χµ(1)
.

This relation implies that the last term of (26) is equal to n(n − 1)χµ((12))
χµ(1) sµ. Hence,

(28) c2(µ) = nN + n(n − 1)
χµ((12))

χµ(1)
.

Combining (24), (25) and (28), we find
∫

U(N)
pst

σ (U)Q t
N

(U) dU = e−
nt
2

∑

k≥0

(−t)k

k!

∑

µ⊢n

χµ(Ω)χµ(σ)

n!

(

n(n − 1)

2N

χµ((12))

χµ(1)

)k

.

By Lemma 4.2 below, the sum over µ is equal to N ℓ(σ)
∑

d≥0 N−2dS(σ, k, d). The result follows
immediately.
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Lemma 4.2. Let σ be an element of Sn. Let k ≥ 0 be an integer. Then

(29)
∑

d≥0

S(σ, k, d)

N2d
= N−ℓ(σ)−k

∑

µ⊢n

χµ(Ω)χµ(σ)

n!

(

n(n − 1)

2

χµ((12))

χµ(1)

)k

.

Proof – There is no issue of convergence, since the sum on the left-hand side is finite. Let
γ = (σ0, . . . , σk) be a path of defect d. By Lemma 3.1, ℓ(σk) = ℓ(σ0) + k − 2d. Hence,

∑

d≥0

S(σ, k, d)

N2d
= N−ℓ(σ)−k

∑

σ′∈Sn

#Πk(σ → σ′)N ℓ(σ′).

Now, #Πk(σ → σ′) is the number of k-tuples (τ1, . . . , τk) ∈ T k
n such that στ1 . . . τk = σ′. A

standard computation based on the fact that
∑

µ⊢n χµ(1)χµ(σ) = n!δσ,id and on (27) leads to

#Πk(σ → σ′) =
∑

µ⊢n

χµ(1)χµ(σ−1σ′)
n!

(

n(n − 1)

2

χµ((12))

χµ(1)

)k

.

The result follows by summing over σ′ and applying (27) again.

Lemma 4.3. Define Ω ∈ C[Sn] by Ω =
∑

σ∈Sn
N ℓ(σ)σ. Then the following relations hold.

1. For all µ ⊢ n such that ℓ(µ) ≤ N , χµ(Ω) = n!sµ(IN ).
2. For all µ ⊢ n such that ℓ(µ) > N , χµ(Ω) = 0.

Proof – The first assertion follows immediately from (20).
In order to prove the second assertion, let us introduce the Jucys-Murphy elements X1, . . . ,Xn

of C[Sn], defined by X1 = 0 and Xi = (1 i) + (2 i) + . . . + (i − 1 i) for i ∈ {2, . . . , n}. They
generate a maximal Abelian subalgebra of C[Sn]. In particular, they can be simultaneously
diagonalized in every irreducible representation of Sn. We borrow the following statements
from [14].

Let µ = (µ1, . . . , µr) be a partition of n. The subset Dµ = {(i, j) ∈ (N∗)2 : j ≤ µi} of Z2 is
called the diagram of µ. An element (i, j) of Dµ is called a box and its content is defined as the
integer c(i, j) = j − i.

The space of the irreducible representation of Sn associated to µ admits a basis which diago-
nalizes the Jucys-Murphy elements and is indexed by the bijections t : Dµ −→ {1, . . . , n} which
are increasing in each variable. These bijections are usually called tableaux. The eigenvalue of
the Jucys-Murphy element Xk on the vector associated to the tableau t is the content of the
box t−1(k).

We need also the following well-known fact: for every k ∈ {0, . . . , n− 1}, the k-th elementary
symmetric function of the Jucys-Murphy elements is equal to

∑

σ∈Sn
1|σ|=k σ, where |σ| =

n − ℓ(σ). This can be proved as follows. For each m ∈ {1, . . . , n}, let us imbed Sm into Sn as
the subgroup which leaves {m+1, . . . , n} invariant. For all m ∈ {1, . . . , n} and k ∈ {0, . . . ,m−1},
set Σm,k =

∑

σ∈Sm
1|σ|=k σ. Let us also define em,k =

∑

i1<...<ik≤m Xi1 . . . Xik . We need to

prove that em,k = Σm,k. This is clearly true if k ∈ {0, 1}. The general case follows by induction
on m, each inductive step being proved by induction on k, thanks to the relations

Σm,k = Σm−1,k + Σm−1,k−1Xk and em,k = em−1,k + em−1,k−1Xk.

From the equality proved in the last paragraph and the relation |σ| = n − ℓ(σ), we deduce
the following equality in the polynomial ring C[Sn][z]:

(30)

n
∏

i=1

(z + Xi) =
∑

σ∈Sn

zℓ(σ)σ.
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Evaluating at z = N and applying χµ, we find

χµ(Ω) = χµ

(

n
∏

i=1

(N + Xi)

)

=
∑

t tableau

n
∏

i=1

(N + c(t−1(i))) = χµ(1)

ℓ(µ)
∏

i=1

µi
∏

j=1

(N + j − i).

If ℓ(µ) ≥ N +1, then (N +1, 1) is a box of Dµ, whose content is −N . It follows that χµ(Ω) = 0
in this case.

4.2. Expansion for the special unitary group. Let us apply a similar analysis to the special
unitary group in order to derive (19) in another way.

By restriction, any irrep of U(N) determines an irrep of SU(N) and the restrictions of α,α′ ∈
ZN
↓ are isomorphic if and only if there exists k ∈ Z such that α′ = (α1 + k, . . . , αN + k). Hence,

the set of irreps of SU(N) is in one-to-one correspondence with the set of partitions of length
at most N − 1 and the character of the irreducible representation corresponding to a partition
λ is given by the Schur function sλ.

Let (Bt)t≥0 be the Brownian motion on SU(N) of Theorem 19. Let dU denote the Haar
measure on SU(N). For each t > 0, let Qt denote the heat kernel at time t on SU(N), that is,
the density of the distribution of Bt with respect to the Haar measure. We reformulate (19) as
follows.

Theorem 4.4. Let N,n ≥ 1 be integers. Let σ be an element of Sn. Then, for all t ≥ 0,

(31) N−ℓ(σ)

∫

SU(N)
pst

σ (U)Q t
N

(U) dU = e−
nt
2

+ tn2

2N2

+∞
∑

k,d=0

(−1)ktk

k!N2d
S(σ, k, d).

Proof – If t = 0, both sides are equal to 1. Assume that t > 0. The Fourier expansion of Qt is
then the following:

(32) Qt(U) =
∑

λ∈P
ℓ(λ)≤N−1

e−
c′2(λ)t

2 sλ(IN )sλ(U),

where now c′2(λ) is defined by the equality ∆SU(N)χλ = −c′2(λ)χλ. Combined with the relation
(21), it implies

∫

SU(N)
pst

σ (U)Q t
N

(U) dU =
∑

λ∈P,µ⊢n
ℓ(λ)≤N−1

e−
c′2(λ)t

2N sλ(IN )χµ(σ)

∫

SU(N)
sλ(U)sµ(U) dU.

When ℓ(µ) > N , sµ is identically zero on SU(N). When ℓ(µ) ≤ N − 1, then the integral in the
right-hand side of the last equation is equal to δλ,µ. Let us consider the terms of the sum for
which ℓ(µ) = N . In this case, let us write µ = µ′+(µN , . . . , µN ), so that ℓ(µ′) ≤ N−1. Then the
integral is equal to δλ,µ′ and we may assume that λ = µ′. In this case, sλ(IN ) = sµ′(IN ) = sµ(IN )
and c′2(λ) = c′2(µ

′). Hence,
∫

SU(N)
pst

σ (U)Q t
N

(U) dU =
∑

µ⊢n,ℓ(µ)≤N−1

e−
c′2(µ)t

2N sµ(IN )χµ(σ) +
∑

µ⊢n,ℓ(µ)=N

e−
c′2(µ′)t

2N sµ(IN )χµ(σ).

Let us first compute c′2(µ) when ℓ(µ) ≤ N −1. For this, we use the fact that sµ is an eigenvector

of ∆U(N) whose restriction to SU(N) is sµ. Since ∆SU(N)p
st
σ =

(

∆U(N) + n2

N

)

pst
σ whenever
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σ ∈ Sn, we find, thanks to (27),

∆SU(N)sµ =

(

−Nn − n(n − 1)
χµ((12))

χµ(1)
+

n2

N

)

sµ.

When ℓ(µ) = N , we are interested in sµ′ but sµ is still an eigenvector of ∆U(N) whose restriction
to SU(N) is sµ′ . Hence,

∆SU(N)sµ′ = ∆SU(N)sµ =

(

−Nn − n(n − 1)
χµ((12))

χµ(1)
+

n2

N

)

sµ = −c′2(µ
′)sµ′ .

Thus, in both sums, the argument of the exponential is −nt
2 + n2t

2N2 − tn(n−1)
2N

χµ((12))
χµ(1) . Using this

fact and the first assertion of Lemma 4.3, we find
∫

SU(N)
pst

σ (U)Q t
N

(U) dU = e−
nt
2

+ n2t

2N2
∑

µ⊢n,ℓ(µ)≤N

e
−t

n(n−1)
2N

χµ((12))
χµ(1)

χµ(Ω)χµ(σ)

n!
.

The second assertion of Lemma 4.3 tells us that we can remove the restriction ℓ(µ) ≤ N , since
the other terms are zero. After expanding the exponential, Lemma 4.2 allows us to finish the
proof just as in the unitary case.

5. Computation of S((1 . . . n), k, d).

In this section, we apply the methods of representation theory to the computation of some
of the coefficients which appear in our main expansions, namely the coefficients S((1 . . . n), k, d)
for all n, k, d ≥ 0.

Let us recall the definition of the Stirling cycle numbers, or Stirling numbers of the first kind
s(n, k), also denoted by

[

n
k

]

. They are characterized by the identities in C[x]

x(x − 1) . . . (x − n + 1) =
n
∑

k=0

[

n

k

]

xk,

valid for all n ≥ 0. In other words,
[

n

k

]

= (−1)n−ken−k(1, . . . , n − 1) = (−1)n−k
∑

1≤i1<...<in−k≤n−1

i1 . . . in−k,

where en−k denotes the (n − k)-th elementary symmetric function.
By applying the alternating character to the identity (30), we find the relation

∑

σ∈Sn

ε(σ)xℓ(σ) = x(x − 1) . . . (x − n + 1) =

n
∑

k=0

[

n

k

]

xk,

from which we deduce that
∣

∣

[

n
k

]∣

∣ is the number of elements of Sn with exactly k cycles, or

in other words at distance n − k from the identity. In particular,
[

n
0

]

= 0. Let us make the

convention that
[

n
k

]

= 0 if k < 0. The main result of this section is the following.

Proposition 5.1. For all n, k, d ≥ 0,

S((1 . . . n), k, d) =
1

n

∑

r,s,l,m≥0
r+s=n−1

l+m=n−1−k+2d

(−1)l+r

r!s!

(n

2
(s − r)

)k
[

s + 1

s + 1 − l

][

r + 1

r + 1 − m

]

.
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Proof – Instead of computing S((1 . . . n), k, d) we compute the sum of S(σ, k, d) when σ spans
the set of all n-cycles. Dividing the result by (n − 1)! yields S((1 . . . n), k, d). Now, a path of
length k starting at an n-cycle has defect d if and only if it ends at a distance n−1−k+2d from
the identity. Let us recall some of the notation used in the proof of Lemma 4.3. The integer n
being fixed, we set Σr =

∑

|σ|=r σ. Hence,

S((1 . . . n), k, d) =
1

(n − 1)!

∑

σ∈Sn,|σ|=n−1

S(σ, k, d)

=
1

(n − 1)!

∑

σ,π∈Sn,|σ|=n−1,|π|=n−1−k+2d

#Πk(σ → π)

=
1

(n − 1)!

∑

λ⊢n

χλ(Σn−1)χ
λ(Σn−1−k+2d)

n!

(

χλ(Σ1)

χλ(id)

)k

.(33)

Now we use the following fact, which is a consequence of the description of the representations
of Sn given by Okounkov and Vershik [14] and recalled briefly in the proof of Lemma 4.3:

(34) ∀r ∈ {0, . . . , n − 1} ,
χλ(Σr)

χλ(id)
= er ({c(�) : � ∈ λ}) .

In words, the right-hand side of this equation is the r-th elementary symmetric function of the
contents of the boxes of the diagram of λ. In particular, if the diagram of λ has at least two
boxes of content 0, then χλ(Σn−1) = 0. Hence, the non-zero terms of the sum (33) arise from
the partitions which are hooks, that is, of the form ηr = (n − r 1r) for some r ∈ {0, . . . , n − 1}.
This fact is well known (see for example the appendix of [15]), and ηr is the representation
∧r St, where St is the restriction of the natural representation of Sn on Cn to the hyperplane of

equation {z1 + . . . + zn = 0}. This representation is of degree
(

n−1
r

)

and χηr((1 . . . n)) = (−1)r.
Let us introduce the notation s = n − 1 − r. It follows easily from (34) that

(35) ∀r ∈ {0, . . . , n − 1} ,
χηr(Σ1)

χηr(id)
=

n(n − 1)

2
− nr =

n

2
(s − r).

The contents of the boxes of ηr are {−r, . . . , 0, . . . , s}. Hence, by the definition of the Stirling
numbers and (34), we have for all r ∈ {0, . . . , n − 1}

χηr(Σn−1−k+2d)

χηr (id)
= en−1−k+2d(−r, . . . , 0, . . . , s)

=
∑

l,m≥0
l+m=n−1−k+2d

el(1, . . . , s)(−1)mem(1, . . . , r)

=
∑

l,m≥0
l+m=n−1−k+2d

(−1)l
[

s + 1

s + 1 − l

][

r + 1

r + 1 − m

]

.(36)

Finally, combining (35) and (36), we find the expected result.

It seems that Proposition 5.1 should allow one to find a simple generating function for the
numbers S((1 . . . n), k, d). Our best result in this direction is the following. We use the notation
(x)n = x(x − 1) . . . (x − n + 1).
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Proposition 5.2. For all n,N ≥ 0, one has

∑

k,d≥0

(−1)ktk

d!N2d
S((1 . . . n), k, d) =

(−1)n

n

∑

r,s≥0
r+s=n−1

1

r!s!
e

1
4N2 (s−r)2n2t2

(

nt

2
(s − r)

)

s+1

(

−
nt

2
(s − r)

)

r+1

.

We emphasize that this generating function is, unfortunately, exponential with respect to d
instead of k.

In Proposition 5.1, when k takes the largest possible value given n and d, namely n− 1 + 2d,
then l and m must be equal to 0 and the identity

[

n
n

]

= 1 simplifies greatly the expression. This
leads us to the following corollary.

Corollary 5.3. Let n ≥ 1 be an integer. For each p ≥ 0, let cn,p denote the number of distinct

ways in which the cycle (1 . . . n) ∈ Sn can be written as a product of p transpositions. The

number cn,p is non-zero if and only if p = n − 1 + 2d for some d ≥ 0. In this case,

cn,p = S((1 . . . n), n − 1 + 2d, d) =
np

n!

n−1
∑

r=0

(−1)r
(

n − 1

r

)(

n − 1

2
− r

)p

.

For each n ≥ 1, one has the equality

∑

p≥0

cn,p
xp

p!
=

1

n!
e

n(n−1)
2

x
(

1 − e−nx
)n−1

.

In particular, cn,n−1 = nn−2, cn,n+1 = 1
24 (n2 − 1)nn+1 and

cn,n+3 =
1

5760
(5n − 7)(n + 3)(n + 2)(n2 − 1)nn+3.

Remark 5.4. The value of cn,n−1 is classical. The sequence (cn,n+1)n≥1 is known as A060603

in the Online Encyclopedia of Integer Sequences [16].

6. Asymptotic distribution

One of the consequences of Theorem 3.3 is that the limit as N tends to infinity of E[pσ(B t
N

)]

exists. Using Lemma 3.6, we get the following result.

Proposition 6.1. Consider σ ∈ Sn. The limit of E[pσ(B t
N

)] as N tends to infinity exists and

it is equal to

lim
N→∞

E

[

pσ(B t
N

)
]

= e−
nt
2

|σ|
∑

k=0

(−1)k
S(σ, k, 0)

k!
tk.

Unfortunately, Proposition 5.1 does not seem to lead easily to a simple expression for S(σ, k, 0)
nor even S((1 . . . n), k, 0). In this section, we determine a simple expression of S(σ, k, 0) for all
σ and k ≥ 0. For this, we prove a factorization property and use the relation between the
metric geometry of the Cayley graph of Sn and the lattice of non-crossing partitions of the cycle
(1 . . . n). The fact that the two expressions of S((1 . . . n), k, 0) given by Propositions 5.1 and 6.6
agree is not obvious, at least for the author.
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6.1. The factorization property. The factorization property is the following result. It re-
duces the problem of the determination of S(σ, k, 0) to the case where σ is a cycle.

Proposition 6.2. Let m1, . . . ,mr be positive integers. Then

lim
N→∞

E

[

TrN (Bm1
t
N

) . . . TrN (Bmr
t
N

)
]

= lim
N→∞

E

[

TrN (Bm1
t
N

)
]

. . . lim
N→∞

E

[

TrN (Bmr
t
N

)
]

.

More precisely,

(37) E

[

TrN (Bm1
t
N

) . . . TrN (Bmr
t
N

)
]

− E

[

TrN (Bm1
t
N

)
]

. . . E
[

TrN (Bmr
t
N

)
]

= O(N−2),

uniformly in t on bounded intervals.

We start by proving the following property of the numbers S(σ, k, 0). It is in fact equivalent
to the proposition.

Proposition 6.3. Consider σ ∈ Sn. Assume that σ = c1 . . . cℓ(σ) is the decomposition of σ as

a product of cycles with disjoint support. Then

(38) ∀k ≥ 0 , S(σ, k, 0) =
∑

l1+...+lℓ(σ)=k

k!

l1! . . . lℓ(σ)!
S(c1, l1, 0) . . . S(cℓ(σ), lℓ(σ), 0).

Proof – The number S(σ, k, 0) is the number of paths of length k starting at σ and which at
each step move towards a permutation with one more cycle than their current position. As we
already observed several times, each step of such a path corresponds to the multiplication by a
transposition which exchanges two points which belong to the same cycle of σ. There is thus
a natural partition of the set of all steps of such a path, according to the cycle of σ in which
their support is contained. Let us introduce some notation. Let (σ0 = σ, σ1, . . . , σk) be a path
with defect zero. For each i ∈ {1, . . . , k}, set τi = σ−1

i−1σi. Let (C1, . . . , Cℓ(σ)) be the partition of
{1, . . . , k} determined by the fact that i ∈ Cj if and only if the support of τi is contained in the
support of cj. Then it is clear that, for all j ∈ {1, . . . , ℓ(σ)}, the transpositions (τi, i ∈ Cj) are
the steps of a path with defect zero starting from cj .

Hence, constructing a path of length k starting at σ and with defect zero is equivalent to
constructing a collection of ℓ(σ) paths with defect zero starting at c1, . . . , cℓ(σ) respectively,
whose lengths l1, . . . , lℓ(σ) add up to k, and a shuffling of the steps of these paths, that is, a
sequence (C1, . . . , Cℓ(σ)) of subsets of {1, . . . , k} which partition {1, . . . , k} and whose cardinals
are l1, . . . , lℓ(σ) respectively. The equation (38) is just the translation in symbols of the last
sentence.

Proof of Proposition 6.2 – By Theorem 3.3 and Proposition 6.3, the terms of degree N0

of the difference on the left hand side of (37) vanish. Hence, this difference is of the form
N−2F (t,N−2) for some entire function F . The result follows.

We have observed after Definition 3.2 that S(σ, k, d) depends only on the conjugacy class of
σ. Hence, we need to compute S((1 . . . m), k, 0). The arguments of the proof of Proposition
6.3 show that the paths of defect 0 starting at (1 . . . m) stay in Sm if we identify Sm with the
subgroup of Sn which leaves {m+1, . . . , n} invariant. Hence, we are reduced to the computation
of S((1 . . . n), k, 0) for all n ≥ 1 and k ∈ {0, . . . , n−1}. This computations involves non-crossing
partitions. For the sake of being self-contained, we give a brief review of the properties of
non-crossing partitions that we use.
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6.2. Non-crossing partitions. Let P = {P1, . . . , Pℓ} be a partition of {1, . . . , n}. The par-
tition P is said to be non-crossing if there does not exist i, j, k, l ∈ {1, . . . , n} such that
i < j < k < l and r, s ∈ {1, . . . , ℓ} with r 6= s such that i, k ∈ Pr and j, l ∈ Ps. Another
way to formulate the fact that P is non-crossing is the following. For each class Pj of the parti-

tion, let Hj denote the convex hull in C of {e
2ikπ

n : k ∈ Pj}. Then P is non-crossing if and only
if for all i, j ∈ {1, . . . , ℓ}, i 6= j ⇒ Hi ∩ Hj = ∅. This notion is relative to the cyclic order on
{1, . . . , n} determined by (1 . . . n). We denote by NC(n) the set of non-crossing partitions of
the cycle (1 . . . n). This set has been first considered by Kreweras in [17].

The fineness relation between partitions restricted to NC(n) makes NC(n) a poset. More
precisely, we say that P1 4 P2 if every class of P1 is contained in a class of P2. The poset
(NC(n),4) is in fact a lattice, which means that suprema and infima exist. There is in particular
a maximum, {{1, . . . , n}}, which we denote by 1n, and a minimum, {{1}, . . . , {n}}, which we
denote by 0n. The poset NC(n) can be made into a graph by joining two partitions P and Q if
they are distinct and comparable, say P ≺ Q, and the interval [P,Q] = {R ∈ NC(n) : P 4 R 4

Q} is reduced to {P,Q}.
A non-crossing partition P = (P1, . . . , Pℓ) of the cycle (1 . . . n) determines an element σP of

Sn as follows: take the cycles of σP to be the classes of P with the cyclic order induced by
(1 . . . n). In symbols, if i ∈ Pj , then

σP (i) = (1 . . . n)k(i) , where k = min{l ≥ 1 : (1 . . . n)l(i) ∈ Pj}.

In particular, σ0n = id and σ1n = (1 . . . n). The partial order on NC(n) corresponds via the
mapping P 7→ σP to the following partial order on Sn.

Consider σ1, σ2 ∈ Sn. Recall that |σ1| = n − ℓ(σ1), the minimal number of terms of a
decomposition of σ1 in a product of transpositions, is the distance from id to σ1 in the Cayley
graph of Sn generated by Tn. By definition, we say that σ1 4 σ2 if |σ2| = |σ1| + |σ−1

1 σ2|. In
words, σ1 4 σ2 if and only if there exists a geodesic path from id to σ2 through σ1. The identity is
the minimum of Sn for this partial order, and the n-cycles the (pairwise incomparable) maximal
elements. The next lemma is well known and its proof is left to the reader.

Lemma 6.4. The mapping from NC(n) to Sn which sends a partition P to the permutation

σP is an isomorphism of posets from NC(n) onto [id, (1 . . . n)] = {σ ∈ Sn : σ 4 (1 . . . n)}.

As a consequence of this Lemma, S((1 . . . n), k, 0) is the number of decreasing paths of length
k starting at 1n in NC(n). It turns out to be easier to count increasing paths in NC(n) starting
at 0n. They are in one-to-one correspondence by the following duality property of NC(n)
discovered by Kreweras.

For σ ∈ [id, (1 . . . n)], let us introduce K(σ) = σ−1(1 . . . n). It is readily checked that K is a
decreasing bijection of [id, (1 . . . n)]. The corresponding decreasing bijection of NC(n) is called
the Kreweras complementation. It can be described combinatorially at the level of non-crossing
partitions as follows.

Given a partition R of {1, . . . , n} and a partition S of {1, . . . , n} ≃ {1̄, . . . , n̄}, let R ∪ S
denote the partition of {1, 1̄, 2, 2̄, . . . , n, n̄} obtained by merging R and S. Even if R and S are
non-crossing, R ∪ S may be crossing with respect to the cyclic order (1, 1̄, 2, 2̄, . . . , n, n̄). Now
let P be a non-crossing partition of {1, . . . , n}. The partition K(P ) is by definition the largest
element of NC(n) such that P ∪ K(P ) is non-crossing.

The following result summarizes this discussion of non-crossing partitions in relation to our
problem.

Proposition 6.5. For all n ≥ 1 and k ≥ 0, S((1 . . . n), k, 0) is the number of increasing paths

of length k starting at {{1}, . . . , {n}} in the lattice of non-crossing partitions of (1 . . . n).
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Figure 4. The Kreweras complement of {{1, 3, 12}, {2}, {4, 8, 9}, {5, 6, 7}, {10, 11}}
is {{1, 2}, {3, 9, 11}, {4, 7}, {5}, {6}, {8}, {10}, {12}}.

It remains to count these paths. To do this, we use the fact that S((1 . . . n), n− 1, 0) = nn−2.
This is a classical result of combinatorics, since S((1 . . . n), n − 1, 0) is the number of ways to
write a n-cycle as a product of n − 1 transpositions. It is also a special case of Corollary 5.3.

Proposition 6.6. For all n ≥ 1 and k ≥ 0,

S((1 . . . n), k, 0) =

(

n

k + 1

)

nk−1.

It is understood that this number is zero if k ≥ n.

Proof – We count the increasing paths of length k in NC(n) starting at {{1}, . . . , {n}} by first
regrouping them according to their terminal point. The possible terminal points of these paths
are exactly the non-crossing partitions of (1 . . . n) into n − k classes. Such partitions may be
classified according to the number of singletons they contain, the number of pairs, and so on.

Let s1, . . . , sn be non-negative integers such that s1+. . .+sn = n−k and s1+2s2+. . .+nsn = n.
We say that a partition is of type (s1, . . . , sn) if it contains exactly si classes of cardinal i for each
i ∈ {1, . . . , n}. The number of non-crossing partitions of type (s1, . . . , sn) has been computed

by Kreweras [17]. It is equal to
n!

(k + 1)!s1! . . . sn!
.

Let P be a non-crossing partition of type (s1, . . . , sn). An increasing path from {{1}, . . . , {n}}
to P looked at in the reverse direction is a decreasing path from P to {{1}, . . . , {n}}. There
are as many such paths as there are geodesic paths from the permutation σP induced by P to
the identity, that is, S(σP , k, 0). Let us apply Lemma 6.3 to compute this number. The only
non-zero term in the sum corresponds to the situation where li = |ci| for each i ∈ {1, . . . , ℓ(σP )}.
Since S(c, |c|, 0) = mm−2 for every cycle c of size m, we find the formula

S((1 . . . n), k, 0) =
∑

(s1,...,sn)

n!

(k + 1)!s1! . . . sn!

k!

1!s2 . . . (n − 1)!sn
20s231s3 . . . n(n−2)sn ,

where the sum is extended to all possible types of partitions of {1, . . . , n} into n− k classes. Let
us enumerate the possible types by enumerating the partitions themselves. If we do this, each
type will appear as many times as the number of partitions of this specific type. The number
of partitions of type (s1, . . . , sn) is

n!

1!s1s1! . . . n!snsn!
.

Hence, we find the following expression:

S((1 . . . n), k, 0) =
1

k + 1

∑

P

1(1−1)s12(2−1)s2 . . . n(n−1)sn ,
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where the sum runs over all partitions of {1, . . . , n} into n− k classes. Now the right hand side
has been computed by Kreweras in [18] and it is equal to

S((1 . . . n), k, 0) =
1

k + 1

(

n − 1

n − k − 1

)

nk =

(

n

k + 1

)

nk−1.

This is the expected result.

Let us state separately the following result which has been used in the course of this proof.

Lemma 6.7. Let P ∈ NC(n) be a partition of type (s1, . . . , sn). There are exactly

(s2 + . . . + (n − 1)sn)!

1!s2 . . . (n − 1)!sn
20s2 . . . n(n−2)sn

increasing paths from 0n to P .

Remark 6.8. The explicit expression of the large N limit of the moments of B t
N

obtained in

this section has been stated by Singer in [9] and proved by Biane in [1].
The asymptotic distribution of B t

N
as N tends to infinity is the unique probability measure

µt on the group U of complex numbers of modulus 1 such that, for all n ∈ N,
∫

U
zn µ(dz) =

∫

U
z−n µt(dz) = e−

nt
2
∑n−1

k=0
(−nt)k

nk!

(

n
k+1

)

. This expression of the moments of µt is not very easy

to handle, if only numerically, because it is an alternated sum of large numbers. Let us point

out two analytical ways of studying µt.

The S-transform of µt is its moment generating function, defined by St(z) =
∫

U

ξz
1−ξz

dµt(ξ) =
∑∞

n=1 mn,tz
n, where mn,t is the n-th moment of µt. Since |mn,t| ≤ 1 for all n and t, the function

St is holomorphic on the unit disk D = {z : |z| < 1}. Moreover, since St(z) = z + O(z2), there

exist a reciprocal function to St in a neighbourhood of 0, which we denote by χt. It turns out

that χt is much simpler than St: χt(z) = z
z+1et(z+ 1

2
), as one can easily check by using Lagrange’s

inversion formula. To put it more concisely, the measure µt is fully characterized by the following

relation, valid for z in a neighbourhood of 0:
∫

U

1

1 − z
z+1etze

t
2 ξ

dµt(ξ) = 1 + z.

By studying χt, Biane proved in [19] the following facts. For each t > 0, the measure µt has a

continuous density with respect to the uniform measure on U. For t ∈ (0, 4], this density is zero

exactly on the set
{

eiθ : |θ − π| ≤ 2 arctan

√

4 − t

t
−

1

2

√

t(4 − t)

}

.

For t > 4, the density of µt is positive. Finally, for all t > 0, the density of µt at eiθ is a real

analytic function of θ on the relative interior of its support.

Another way of studying µt is to observe that mn,t = e−
nt
2

2inπ

∮

e−ntz
(

1 + 1
z

)n
dz, the integral

being along any contour of index 1 with respect to 0. In [7], Gross and Matytsin use this

expression and the saddle point method to exhibit the following phase transition with respect to

t: if t ∈ (0, 4), mn,t decays with n like n− 3
2 , whereas for t ∈ (4,+∞), it decays exponentially.

Along the same lines, one can check that for t = 4, mn,4 decays like n− 4
3 . This indicates that the

density of µ4 is less regular than the density of µt for t ∈ (0, 4). This behaviour is consistent at

a heuristical level with a general result of Biane about additive convolution with the semi-circle

law [20].
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6.3. Almost sure convergence. The material gathered so far allows us to prove very easily
the following result.

Proposition 6.9. Consider σ ∈ Sn. Then, uniformly in t on bounded intervals,

Var
[

pσ(B t
N

)
]

= O(N−2).

In particular, on any probability space on which a Brownian motion on U(N) is defined for N
large enough, the following convergence holds almost surely and in L2 :

lim
N→∞

pσ(B t
N

) = e−
nt
2

n−ℓ(σ)
∑

k=0

(−1)kS(σ, k, 0)
tk

k!
.

Proof – Let us denote by σ × σ the element of S2n which sends i on σ(i) and n + i on n + σ(i)
for each i ∈ {1, . . . , n}. With this notation, p2

σ = pσ×σ, so that

Var
[

pσ(B t
N

)
]

= E

[

pσ×σ(B t
N

)
]

− E

[

pσ(B t
N

)
]2

=

∞
∑

k,d=0

(−1)ktk

k!N2d



S(σ × σ, k, d) −
∑

l1+l2=k,d1+d2=d

k!

l1!l2!
S(σ, l1, d1)S(σ, l2, d2)



 ,

where the last expression follows after simplification from Theorem 3.3. In the term correspond-
ing to d = 0, both d1 and d2 must be equal to 0. By the same argument of support as in the
proof of Proposition 6.3, we find

S(σ × σ, k, 0) =
∑

l1+l2=k

k!

l1!l2!
S(σ, l1, 0)S(σ, l2, 0).

The result follows immediately.

7. Asymptotic freeness

In this section, we prove that independent Brownian motions on U(N) converge in distribu-
tion, as N tends to infinity, towards free non-commutative random variables. We do not consider
∗-freeness, that is, we do not consider products involving B−1

t
N

. In fact, the asymptotic ∗-freeness

of independent Brownian motions follows from a general result of Voiculescu (see [21] and [1,
Lemma 6] for details). Here we use Speicher’s characterization of freeness by the vanishing of
mixed free cumulants. This combinatorial characterization is very well suited to the approach
we have adopted in this paper.

7.1. The factorization property. Let us start by slightly improving Proposition 6.2, by in-
cluding the extra deterministic matrices M1, . . . ,Mn of Theorem 3.3. We consider these matrices
as elements of the non-commutative probability space (MN (C),TrN ) and speak of their distri-
bution accordingly.

Proposition 7.1. Let (M
(N)
1 , . . . ,M

(N)
n )N≥1 be a sequence of families of N × N matrices.

Assume that this sequence converges in distribution. Consider σ ∈ Sn. Write σ as a product of

cycles : σ = (i1,1 . . . i1,m1) . . . (iℓ(σ),1 . . . iℓ(σ),mℓ(σ)
). Then

(39) lim
N→∞

E

[

pσ(M
(N)
1 B t

N
, . . . ,M (N)

n B t
N

)
]

=

ℓ(σ)
∏

r=1

lim
N→∞

E TrN

(

M
(N)
ir,1

B t
N

. . . M
(N)
ir,mr

B t
N

)

.
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More precisely,

(40) E

[

pσ(M
(N)
1 B t

N
, . . . ,M (N)

n B t
N

)
]

−

ℓ(σ)
∏

r=1

E TrN

(

M
(N)
ir,1

B t
N

. . . M
(N)
ir,mr

B t
N

)

= O(N−2),

uniformly in t on bounded intervals. It is understood that all limits exist.

Proof – According to Theorem 3.3, the left hand side of (39) is equal to

(41) e−
nt
2

∞
∑

k=0

(−t)k

k!

∑

|σ′|=|σ|−k

#Πk(σ → σ′) lim
N→∞

pσ′(M
(N)
1 , . . . ,M (N)

n ).

This last limit exists for all σ′ by the assumption that the family (M
(N)
1 , . . . ,M

(N)
n ) converges in

distribution. All permutations σ′ which contribute to the sum satisfy on one hand |σ′| = |σ|−k,
hence |σ′σ−1| ≥ k, and #Πk(σ → σ′) > 0, hence |σ′σ−1| ≤ k. Hence, only permutations σ′ such
that σ′ 4 σ contribute and (41) can be rewritten as

(42) e−
nt
2

∑

σ′4σ

(−t)|σ
′σ−1|

|σ′σ−1|!
#Π|σ′σ−1|(σ → σ′) lim

N→∞
pσ(M

(N)
1 , . . . ,M (N)

n ).

Let c1, . . . , cℓ(σ) denote the cycles of σ. It is not difficult to check that the interval [id, σ] in the

poset Sn is isomorphic to the product of intervals
∏ℓ(σ)

r=1[id, cr] by the mapping (α1, . . . , αℓ(σ)) 7→

α1 . . . αℓ(σ). Consider σ′ 4 σ and write σ′ = α1 . . . αℓ(σ) accordingly. Then |σ′σ−1| = |α1c
−1
1 | +

. . . + |αℓ(σ)c
−1
ℓ(σ)|. Moreover, by the same argument of shuffling used in the computation of

S((1 . . . n), k, 0),

#Π|σ′σ−1|(σ → σ′) =
|σ′σ−1|!

∏ℓ(σ)
r=1 |αrc

−1
r |!

ℓ(σ)
∏

r=1

#Π|αrc−1
r |(cr → αr).

Hence, (42) can be written as

(43)

ℓ(σ)
∏

r=1

e−
(|cr |+1)t

2

∑

αr4cr

(−t)|αrc−1
r |

|αrc
−1
r |!

#Π|αrc−1
r |(cr → αr) lim

N→∞
TrN (M

(N)
ir,1

. . . M
(N)
ir,mr

),

and this is just the right-hand side of (39).
The equation (40) follows from (39) just as in Proposition 6.2.

7.2. Free cumulants. As a preliminary to the proof of the asymptotic freeness, we compute the
free cumulants of the limiting distribution of B t

N
. Let (A, ϕ) be a non-commutative probability

space and ut an element of A such that B t
N

converges in distribution to ut as N tends to infinity.

We have spent a substantial part of this paper proving that the moments of ut are given by

(44) ϕ(un
t ) = e−

nt
2

n−1
∑

k=0

(

n

k + 1

)

(−nt)k

nk!
.

Given a ∈ A and σ ∈ Sn with cycle lengths (m1, . . . ,mℓ(σ)), let us use the notation ϕσ(a) =
ϕ(am1) . . . ϕ(amℓ(σ)). The free cumulants of ut form a family of complex numbers (kπ(ut))π∈

⋃

n≥1 Sn

and they are characterized by the identity

(45) ∀n ≥ 1,∀σ ∈ Sn , ϕσ(ut) =
∑

σ′4σ

kσ′(ut).
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Let us use the notation kn = k(1...n). It is an elementary property of the free cumulants that
they are multiplicative, in that kσ = km1 . . . kmℓ(σ)

when (m1, . . . ,mℓ(σ)) are the cycle lengths of
σ.

Proposition 7.2. The free cumulants of ut are given by

(46) kn(ut) = e−
nt
2

(−nt)n−1

n(n − 1)!
.

More generally, if σ ∈ Sn, then

(47) kσ(ut) = e−
nt
2

(−t)|σ|

|σ|!
#Π|σ|(id → σ).

Proof – Let us put ϕ(un
t ) under the form of the right hand side of (45). Applying Theorem

3.3, using Kreweras complementation and using Lemma 6.7, we find

ϕ(un
t ) = e−

nt
2

∑

σ4(1...n)

(−t)|σ(1...n)−1|

|σ(1 . . . n)−1|!
#Π|σ(1...n)−1|((1 . . . n) → σ)

= e−
nt
2

∑

σ4(1...n)

(−t)|σ|

|σ|!
#Π|σ|(id → σ)

=
∑

σ4(1...n)

(e−
1t
2 (−t)01−1)s1(e−

2t
2 (−t)120)s2 . . . (e−

nt
2 (−t)n−1nn−2)sn

0!s11!s2 . . . (n − 1)!sn
,

where s1, . . . , sn are respectively the number of fixed points of σ, and the numbers of transposi-
tions, 3-cycles, . . ., n-cycles in the decomposition of σ. By comparing this expression with (45),
we find the desired expression for the cumulants of ut.

Let us recall briefly Speicher’s characterization of freeness by the vanishing of mixed free
cumulants [22]. Let a1, . . . , an be non-commutative random variables on a space (A, ϕ), where
ϕ is a tracial state. For σ ∈ Sn, the number mσ(a1, . . . , an) is defined by

mσ(a1, . . . , an) =
∏

c cycle of σ
c=(i1...ir)

ϕ(ai1 . . . air).

It is well defined thanks to the fact that ϕ is tracial. The numbers mσ(a1, . . . , an) are the mixed
moments of a1, . . . , an. The relation

mσ(a1, . . . , an) =
∑

σ′4σ

kσ′(a1, . . . , an)

characterizes the family of numbers kσ(a1, . . . , an), the mixed free cumulants of a1, . . . , an.
Speicher’s characterization of freeness is the following. Let (ak)k≥1 be a family of elements of

A. Then this family is free if and only if, for all n ≥ 2 and all i1, . . . , in ≥ 1 such that ir 6= is
for some r, s ∈ {1, . . . , n}, k(1...n)(ai1 , . . . , ain) = 0.

Theorem 7.3. Let (B(N,k))N,k≥1 be a family of Brownian motions, such that, for all N, k ≥ 1,

B(N,k) is a Brownian motion on U(N) and, for all N ≥ 1, the Brownian motions (B(N,k))k≥1

are independent. Let (tk)k≥1 be a sequence of non-negative real numbers.
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Then, as N tends to infinity, the family of non-commutative random variables (B
(N,k)
tk
N

)k≥1

converges in distribution towards a free family (b(k))k≥1 of non-commutative random variables

such that, for all k ≥ 1, b(k) has the distribution of utk .

Proof – We prove the result for finite families (B(N,k))N≥1,k∈{1,...,K} for some finite K, by
induction on K. The case K = 1 is settled by our computation of the asymptotic distribution

of B
(N)
t
N

, that is, Propositions 6.1 and 6.6.

Let K ≥ 2 be an integer and let us assume that the property is proved for K − 1 independent

Brownian motions. We need to prove that the mixed free cumulants of B
(N,1)
t1
N

, . . . , B
(N,K)
tK
N

tend

to zero as N tends to infinity. We regard B
(N,k)
tk
N

as elements of the non-commutative probability

space (L∞(Ω, P)⊗MN (C), E⊗TrN ) and we use the notation mσ and kσ accordingly. In particular,
with our previous notation, mσ = E pσ.

What we need to prove is that, for all n ≥ 2, all σ ∈ Sn, all i1, . . . , in ∈ {1, . . . ,K} not all
equal,

lim
N→∞

mσ(B
(N,i1)
ti1
N

, . . . , B
(N,in)
tin
N

) =
∑

σ′4σ
∀r∈{1,...,n}, iσ′(r)=ir

lim
N→∞

kσ′(B
(N,i1)
ti1
N

, . . . , B
(N,in)
tin
N

).

By the factorization property (39) and Fubini’s theorem, the left hand side is multiplicative with
respect to the cycle decomposition of σ. The right hand side is also clearly multiplicative, hence,
it suffices to consider the case where σ = (1 . . . n). In this case, we are looking at the expected

trace of a product B
(N,i1)
ti1
N

. . . B
(N,in)
tin
N

where at least two factors are distinct. Of course, the case

where one of the K possible factors does not appear is treated by the induction hypothesis. Let
us assume that the K factors appear, in particular B(N,1). Up to cyclic permutation, which does

not affect its trace, the product above can be put under the form W
(N)
1 B

(N,1)
t1
N

. . . W
(N)
r B

(N,1)
t1
N

,

for some r ≥ 1 and some products W
(N)
1 , . . . ,W

(N)
r of factors among B(N,2), . . . , B(N,K). Our

previous results show that

lim
N→∞

E TrN

(

B
(N,i1)
ti1
N

. . . B
(N,in)
tin
N

)

= e−
nt
2

∑

σ4(1...r)

(−t)|σ(1...r)−1|

|σ(1 . . . r)−1|!

#Π|σ(1...n)−1|((1 . . . r) → σ) lim
N→∞

mσ(W
(N)
1 , . . . ,W (N)

r )

= e−
nt
2

∑

σ4(1...r)

(−t)|σ|

|σ|!
#Π|σ|(id → σ) lim

N→∞
mK(σ)(W

(N)
1 , . . . ,W (N)

r )

=
∑

σ4(1...r)

kσ(ut1) lim
N→∞

mK(σ)(W
(N)
1 , . . . ,W (N)

r ),

where we have changed σ in K(σ) = σ−1(1 . . . r) between the first and the second line.

The term limN→∞ mK(σ)(W
(N)
1 , . . . ,W

(N)
r ) is equal to a sum of limits of free cumulants of

the factors appearing in W
(N)
1 , . . . ,W

(N)
r in this order. By induction, only pure free cumulants

appear, those which do not involve more than one Brownian motion in each cycle of the per-
mutation. Moreover, by the combinatorial description of K(σ) as a non-crossing partition, only
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such cumulants appear that remain non-crossing when they are merged with σ. In symbols,

lim
N→∞

E TrN

(

B
(N,i1)
ti1
N

. . . B
(N,in)
tin
N

)

=
∑

σ4(1...n)
∀k∈{1,...,n}, ik=iσ(k)

lim
N→∞

kσ(B
(N,i1)
ti1
N

, . . . , B
(N,in)
tin
N

).

This is exactly what we expected.

8. Large N Yang-Mills theory on a disk and branching covers

In this section, we explain how our main expansion relates the Brownian motion on the
unitary group to a natural model of random branching covers on this disk. In doing this, we
give a rigorous proof of results which are stated in [6].

Let D be the closed disk of radius 1 centred at the origin O of R2. Let n ≥ 1 be an integer.
Let λ be a partition of n. We define the set Rn,λ as the set of isomorphism classes of ramified
coverings π : R −→ D which satisfy the following properties.
1. R is a ramified covering of degree n.
2. For each ramification point x ∈ D of R which is not the origin O, R has a generic ramification
type at x, in that #π−1(x) = n − 1.
3. The monodromy of R along the boundary of D belongs to the conjugacy class of Sn corre-
sponding to λ.
An element of Rn,λ is allowed to be ramified over O, with any kind of ramification. The set of
its ramification points distinct from O is called its locus of generic ramification. It is contained
in the interior of D − {0}, which we denote by D∗.

Let X be a finite subset of D∗. We define Rn,λ,X as the subset of Rn,λ formed by the coverings
whose locus of generic ramification is X.

The set Rn,λ,X is in natural one-to-one correspondence with a set of equivalence classes of
paths in the Cayley graph of Sn as follows. Assume that X = {x1, . . . , xk}. Choose a point b
on the boundary of D. By the interior of a simple closed continuous curve based at b, we mean
the bounded connected component of the complement of its range. Let C,C1, . . . , Ck be simple
closed curves in D based at b with pairwise disjoint interiors such that the interior of C contains
O and, for each i ∈ {1, . . . , k}, the interior of Ci contains xi. We assume that this is done in such
a way that the curve CCk . . . C1 is homotopic to the boundary of D in D− (X ∪{O}). Then the
monodromies σO, τ1, . . . , τk of an element R ∈ Rn,λ,X along the curves C,C1, . . . , Ck are defined
in Sn up to simultaneous conjugation and their orbit characterizes R. The assumptions made
on R imply that τ1, . . . , τk are transpositions and σOτ1 . . . τk belongs to λ.

Let Pn,λ,k be the set of paths in the Cayley graph of Sn which start at an element of the con-
jugacy class determined by λ. The symmetric group acts on Pn,λ,k by conjugation. The mapping
from Rn,λ,X which associates to R the orbit of the path (σOτk . . . τ1, σOτk . . . τ2, . . . , σOτk, σO)
is a bijection. Moreover, the cardinal of the stabilizer of this orbit is equal to the cardinal of
the automorphism group Aut(R) of R. Hence, the image on Rn,λ,X of the counting measure on
Pn,λ,k by the mapping Pn,λ,k −→ Pn,λ,k/Sn ≃ Rn,λ,X is the measure

ρn,λ,X =
∑

R∈Rn,λ(X)

n!

#Aut(R)
δR.

This measure is finite and satisfies ρn,λ,X(1) =
(

n
2

)k
.

There is a natural topology on Rn,λ, which is generated by the sets

O(R,U) = {R′ ∈ Rn,λ : R|D−U ≃ R′
|D−U},
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where R spans Rn,λ and U the set of neighbourhoods of the locus of generic ramification of R.
This is a fairly coarse topology: for example, the cardinal of the locus of generic ramification
is not continuous, but only lower semi-continuous in this topology. However, the ramification
type at O is continuous. On the set X of finite subsets of D∗, we put the topology which makes
the bijection X ≃

⊔

n≥0((D
∗)n − ∆n)/Sn a homeomorphism, where ∆n is the subset of (D∗)n

where at least two components coincide. These topologies do not make the ramification locus
a continuous function of the ramified covering. Nevertheless, let M(Rn,λ) denote the space of
finite Borel measures on Rn,λ endowed with the topology of weak convergence.

Lemma 8.1. The mapping X −→ M(Rn,λ) which sends X to ρn,λ,X is continuous.

Proof – By definition of the topology on X , it suffices to prove that the mapping is continuous
on (D∗)k − ∆k for all k ≥ 0. Consider k ≥ 0, X = {x1, . . . , xk} and a bounded continuous
function f : Rn,λ,X −→ R. Choose ε > 0.

Since Rn,λ,X is finite, the continuity of f implies the existence of r > 0 such that the balls
B(xi, r) are contained in D∗, pairwise disjoint for i ∈ {1, . . . , k} and the neighbourhood U =
B(x1, r) × . . . × B(xk, r) of X in (D∗)k − ∆k satisfies

∀R ∈ Rn,λ,X ,∀R′ ∈ O(R,U), |f(R′) − f(R)| < ε

(

n

2

)−k

.

Let X ′ = {x′
1, . . . , x

′
k} be an element of U . Let φ be a homeomorphism of D such that φ|D−U =

idD−U and φ(xi) = x′
i for all i ∈ {1, . . . , k}. For each ramified covering π : R −→ D belonging

to Rn,λ,X , the covering Φ(R) = (φ ◦π : R −→ D) belongs to Rn,λ,X′ . Replacing φ by its inverse
in the definition of Φ : Rn,λ,X −→ Rn,λ,X′ yields the inverse mapping, hence Φ is a bijection.
Moreover, the conjugation by φ determines an isomorphism between Aut(R) and Aut(Φ(R)).
Finally, R and Φ(R) are isomorphic outside U . Altogether,

∣

∣ρn,λ,X′(f) − ρn,λ,X(f)
∣

∣ ≤
∑

R∈Rn,λ,X

n!

#Aut(R)
|f(Φ(R)) − f(R)| < ε.

Since k, X, f and ε were arbitrary, the result follows.

Let t ≥ 0 be a real number. Let Ξt be the distribution of a Poisson point process on D of
intensity t

π
times the Lebesgue measure on D. Under Ξt, a random subset of D is contained in

D∗ with probability 1 and the average number of points of such a random set is t. Thinking of
Ξt as a Borel probability measure on X , we define a measure on Rn,λ by setting

ρt
n,λ =

∫

X
ρn,λ,X Ξt(dX).

The measure ρt
n,λ is finite and satisfies ρt

n,λ(1) = et(n
2)−t. We define a probability measure µt

n,λ

on Rn,λ by normalizing ρt
n,λ.

Let us define two functions on Rn,λ. Firstly, given R ∈ Rn,λ, let us define k(R) as the
number of ramification points of R distinct from O. We have observed that this is a lower
semi-continuous, hence measurable function of R. Secondly, let χ(R) be the Euler characteristic
of R.

Lemma 8.2. Let X be a subset of cardinal k of D∗. Let R be an element of Rn,λ,X and

γ = (σ0, . . . , σk) a representative of the associated orbit of Pn,λ,k. Then

χ(R) = ℓ(σk) − k = ℓ(λ) − 2d(γ).

In particular, χ : Rn,λ −→ Z is upper semi-continuous and measurable.
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Proof – The first equality follows from the Riemann-Hurwitz formula, the second from the
definition of the defect of a path. The last assertion follows from the lower semi-continuity of
k and the fact that ℓ(σk), which depends only on the ramification type at O, is a continuous
function of R.

The main result is the following.

Theorem 8.3. Let N,n ≥ 1 be two integers. Let (Bt)t≥0 be the Brownian motion on U(N)
defined in Theorem 3.3. Let λ be a partition of n and σ an element of Sn which belongs to the

conjugacy class determined by λ. Let t ≥ 0 be a real number. Then

ent−n2t
2 E

[

pst
σ (B t

N
)
]

=

∫

Rn,λ

(−1)k(R)Nχ(R) µt
n,λ(dR).

We could have avoided the unpleasant exponential factor in the statement of this theorem if
we had considered the signed measure ρ̃t

n,λ =
∫

X (−1)#Xρn,λ,X Ξt(dX) instead of ρn,λ.

Proof – Let X be a finite subset of D∗. The set Rn,λ,X is in bijection with the set of orbits
of Πk(σ) under the action of Sn by conjugation. Let R be an element of Rn,λ,X and γ =
(σ, σ1, . . . , σk) a representative of the corresponding orbit. By Lemma 8.2,

∫

Rn,λ

(−1)k(R)Nχ(R) ρn,λ,X(dR) =
∑

γ∈Πk(σ)

(−1)k(X)N ℓ(λ)−2d(γ)

= N ℓ(λ)
∑

d≥0

(−1)k(X)

N2d
S(σ, k(X), d).

Integrating with respect to Ξt(dX), we find
∫

Rn,λ

(−1)k(R)Nχ(R) ρt
n,λ(dR) = e−tN ℓ(σ)

∑

k,d≥0

(−t)k

k!N2d
S(σ, k, d).

By Theorem 3.3, the right-hand side of this equality is equal to e−t+ nt
2 E

[

pst
σ (B t

N
)
]

. The result

follows after normalizing ρt
n,λ.
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