
HAL Id: hal-00137979
https://hal.science/hal-00137979

Submitted on 22 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptation of Discrepancy-based Methods for Solving
Hybrid Flow Shop Problems

Abir Ben Hmida, Marie-José Huguet, Pierre Lopez, Mohamed Haouari

To cite this version:
Abir Ben Hmida, Marie-José Huguet, Pierre Lopez, Mohamed Haouari. Adaptation of Discrepancy-
based Methods for Solving Hybrid Flow Shop Problems. International Conference on Service Systems
and Service Management (IC SSSM’06), Oct 2006, Troyes, France. pp.1120-1125. �hal-00137979�

https://hal.science/hal-00137979
https://hal.archives-ouvertes.fr

Adaptation of Discrepancy-based Methods
for Solving Hybrid Flow Shop Problems

Abir Ben Hmida1,2, Marie-José Huguet1,3, Pierre Lopez1, Mohamed Haouari2
1LAAS-CNRS, Toulouse, France (abenhmid@laas.fr, huguet@laas.fr, lopez@laas.fr)

2Unité ROI, Ecole Polytechnique de Tunisie (mohamed.haouari@ept.rnu.tn)
3INSA, Toulouse, France

ABSTRACT

This paper investigates how to adapt some discrepancy-based search methods to solve Hybrid Flow Shop (HFS)
problems in which each stage consists of several identical machines operating in parallel. The objective is to determine
a schedule that minimizes the makespan. We present here an adaptation of the Depth-bounded Discrepancy Search
(DDS) method to obtain solutions with makespan of high quality. This adaptation for the HFS contains no redundancy
for the search tree expansion. To improve the solutions of our HFS problem, we propose a local search method, called
CDDS, which is a hybridization of two existing discrepancy-based methods (DDS and Climbing Discrepancy Search).
CDDS introduces an intensification process around promising solutions. These methods are tested on benchmark
problems. Results show that discrepancy methods give promising results.

Keywords: Hybrid Flow Shop, Discrepancy Search Methods, Local Search

 1-4244-0451-7/06/$20.00 ©2006 IEEE.

1. PROBLEM STATMENT

In this study, we consider the l-stage Hybrid Flow Shop
(HFS) problem with the objective to minimize the
makespan. This problem can be denoted by Fl(P)||Cmax
[10]. We are especially interested in how adapting
discrepancy-based search methods for the HFS
problem.

Solving the HFS problem consists in assigning a
specific machine to each operation of each job as well
as sequencing all operations assigned to each machine.
Successive operations of a job have to be processed
serially through the l stages. Job preemption and job
splitting are not allowed. The objective is to find a
schedule which minimizes the maximum completion
time or makespan defined as the elapsed time from the
start of the first operation of the first job at stage 1 to
the completion of the last operation of the last job at
stage l. The HFS problem is NP-Hard as soon as it
contains two stages and when there is, at least, more
than one machine at a stage [5]. Detailed reviews of the
applications and solution procedures of the HFS
problems are provided in [6][11][14].

Most of the literature has considered the case of only
two stages. In [13] authors presented a case study in a
two-stage HFS with sequence-dependent setup time
and dedicated machines. For more general cases (more
than 2 stages), some authors developed a Branch and
Bound (B&B) method for optimizing makespan, which
can be used to find optimal solutions of only
small-sized problem instances [1]. Later, this procedure
has been improved in [17]. In this latter study, several
heuristics have been developed to compute an initial

upper bound and a genetic algorithm improves the
value of this upper bound during the search. In order to
reduce the search tree, new branching rules are
proposed in [19]. Global lower bounds are developed
in [18] which can be used to measure the quality of
heuristic solutions when the optimal solution is
unknown. Brah and Loo [2] expanded five better
performing standard flow shop heuristics to the HFS
case and evaluated them with Santos et al.’s lower
bounds. Lower bounds are also defined in [14] based
on the single-stage sub-problem relaxation. Another
B&B procedure for this problem is proposed by Carlier
and Néron in [3]. They proved that their algorithm is
more efficient than previous exact solution procedures.
Recently, a new heuristic method based on Artificial
Immune System (AIS) has been proposed to solve HFS
problems [4] and proves its efficiency. Results of AIS
algorithm have been compared with Carlier and
Néron’s lower bounds.

In the next section, we give an overview of
discrepancy-based methods. The third section presents
how to adapt some of these methods to solve the HFS
problem. In Section 4, evaluation of the proposed
methods on usual benchmarks are detailed. Finally we
report some conclusions and open issues to this work.

2. DISCREPANCY-BASED SEARCH METHODS

Discrepancy-based methods are tree search methods
developed for solving combinatorial problems. These
methods consider a branching scheme based on the
concept of discrepancy to expand the search tree. This
can be viewed as an alternative to the branching
scheme used in a Chronological Backtracking method.

Limited Discrepancy Search, denoted by LDS, is a
branching scheme based on the discrepancy principle.
It is instantiated to generate several variants, among
them, Depth-bounded Discrepancy Search (DDS) or
Climbing Discrepancy Search (CDS).

2.1 Limited Discrepancy Search

The objective of LDS proposed by Harvey in [9] is to
provide a tree search method for supervising the
application of some instantiation heuristics (variable
and value ordering). It starts from an initial variable
instantiation suggested by a given heuristic and
successively explores branches with increasing
discrepancies from it, i.e. by changing the instantiation
of some variables. This number of changes corresponds
to the number of discrepancies from the initial
instantiation. The method stops when a solution is
found (if it exists) or when an inconsistency is detected
(the tree is entirely expanded).

The concept of discrepancy was first introduced for
binary variables. In this case, exploring the branch
corresponding to the best Boolean value (according a
value ordering) involves no discrepancy while
exploring the remaining branch implies 1 discrepancy.

It was then adapted to suit to non-binary variables in
two ways. The first one considers that choosing the
first ranked value (rank 1) leads to 0 discrepancy while
choosing all other ranked values implies 1 discrepancy.
In the second way, choosing value with rank r implies
r–1 discrepancies.

Dealing with a problem defined over N binary
variables, an LDS strategy can be described as shown
in Algorithm 1.

k ← 0 -- k is the number of discrepancies
kmax ← N -- N is the number of variables
Sol ← Initial_solution() -- Sol is the
 -- reference
solution
while No_Solution() and (k ≤ kmax) do
 k ← k+1
 -- Generate leaves at discrepancy k from Sol
 -- Stop when a solution is found
 Sol’ ← Compute_Leaves(Sol, k)
 Sol ← Sol’
end while

Algorithm 1. Limited Discrepancy Search

In such a primal implementation, the main drawback of
LDS is to be too redundant: during the search for
solutions with k discrepancies solutions with 0 to k–1
discrepancies are revisited. To avoid this, Improved
LDS method (ILDS) was proposed in [14]. Another
improvement of LDS consists in applying discrepancy
first at the top of the tree to correct early mistakes in
the instantiation heuristic; this is the Depth-bounded
Discrepancy Search method (DDS) proposed in [20].

In the DDS algorithm, the generation of leaves with k
discrepancies is limited by a given depth.
All these methods (LDS, ILDS, DDS) leads to a
feasible solution, if it exists, and are closely connected
to an efficient instantiation heuristic. These methods
can be improved by adding local constraint propagation
such as Forward Checking [8]. After each instantiation,
Forward Checking suppresses inconsistent values in
the domain of not yet instantiated variables involved in
a constraint with the assigned variable.

2.2 Climbing Discrepancy Search

CDS is a local search method which adapts the notion
of discrepancy to find a good solution for
combinatorial optimization problems [15]. It starts
from an initial solution suggested by a given heuristic.
Then nodes at discrepancy equal to 1 are explored, then
those at discrepancy equal to 2, and so on. When a leaf
with an improved value of the objective function is
found, the reference solution is updated, the number of
discrepancies is reset to 0, and the process for
exploring the neighborhood starts again (see
Algorithm 2).

k ← 0 -- k is the number of discrepancies
kmax ← N -- N is the number of variables

Sol ← Initial_Solution() -- Sol is the reference
 -- solution
while (k ≤ kmax) do
 k ← k+1
 -- Generate leaves at discrepancy k from Sol
 Sol’ ← Compute_Leaves(Sol, k)
 if Better(Sol’, Sol) then
 -- Update the current solution
 Sol ← Sol’
 k ← 0
 end if
end while

Algorithm 2. Climbing Discrepancy Search

The aim of CDS strategy is not to find only a feasible
solution, but a high quality solution in terms of
criterion value. As mentioned by their authors, the CDS
method is close to the Variable Neighborhood Search
(VNS) [7]. VNS starts with an initial solution and
iteratively explores neighborhoods more and more
distant from this solution. The exploration of each
neighborhood terminates by returning the best solution
it contains. If this solution improves the current one it
becomes the reference solution and the process is
restarted. The interest of CDS is that the principle of
discrepancy defines neighborhoods as branches in a
search tree. This leads to structure the local search
method to restrict redundancies.

3. HOW TO ADAPT DISCREPANCY-BASED
METHODS TO SOLVE HYBRID FLOW SHOP

3.1 Problem Variables and Constraints

To solve the HFS problem under study, at each stage,
we have to select a job, to allocate a resource for the
operation of the selected job, and to fix its start time.
Since the start time of each operation will be fixed as
soon as possible to reduce the makespan, we only
consider two kinds of variables: job selection and
resource allocation. The values of these two kinds of
variables are ordered following a given instantiation
heuristic presented below.

At each stage s, we denote by Xs the job selection
variables vector and by As the resource allocation
variables vector. Thus, s

iX corresponds to the ith job in

the sequence and s
iA is its affectation value

(Ni ,...,1=∀ , with N the number of jobs). The domain
of s

iX variable is { }NJJJ ,...,, 21 , Ni ,...,1=∀ and
ls ,...,1=∀ which corresponds to the choice of job to

be scheduled. The values taken by the s
iX variables

have to be all different. The s
iA domains are

{ }sM,...,1 , Ni ,...,1=∀ . Moreover, we consider
precedence constraints between two consecutive
operations of the same job and duration constraints for
each operation at a given stage.

3.2 Discrepancy for Hybrid Flow Shop

Despite the fact we have two kinds of variables, we
only consider here one kind of discrepancy:
discrepancy on job selection variables. Indeed, our
goal is to improve the makespan of our solutions, and
since all resources are identical, discrepancy on
allocation variables cannot improve it. Therefore, only
the sequence of jobs to be scheduled may have an
impact on the total completion time.

Therefore, doing a discrepancy consists in selecting
another job to be scheduled than the job given by a
value ordering heuristic. Job selection variables are
N-ary variables. The number of discrepancy is
computed as follows: the first value given by the
heuristic corresponds to 0 discrepancy, all the other
values correspond to 1 discrepancy (see Figure 1).

To obtain solutions of 1+k discrepancies directly
from a solution with k discrepancies (without revisiting
solutions with 0,…, k-1 discrepancies), we consider the
last instantiated variable having the kth discrepancy
value and we just have to choose a remaining variable
for the k+1th discrepancy value.

At each stage s, the maximum number of discrepancy
is 1−N which leads to develop a tree of !N leaves
(all the permutations of jobs are obtained).

3.3 Instantiation Heuristics and Propagation

Variable ordering follows a stage-by-stage policy. The

exploration strategy first consider job selection variable
to choose a job, secondly consider resource allocation
variable to assign the selected job to a resource.

J1

J2

J2

J3

J2

J3

J1

 J3

J3

J1

J1

J2

J2

J1

0 1 1 2 1 2

 J3

X1

s

X2

s

X3

s

 k

Figure 1. Discrepancies on job selection (stage s)

We have two types of value ordering heuristics: the
first one ranks jobs whilst the second one ranks
resources.

Type 1: job selection. Several heuristics are used. We
first give the priority to the job with the earliest start
time (EST) and in case of equality we consider three
kinds of rules: SPT (Smallest Processing Time) rule on
the first stage, LPT (Longest Processing Time) rule on
the first stage, and CJ (Critical Job) rule. The latter rule
gives the priority to the job with the longest duration.

Type 2: assignment of operations to machines. The
operation of the job chosen by the heuristic of Type 1,
is assigned to the machine such that the operation
completes as soon as possible. This heuristic, called
FCT (First Completion Time), is dynamic; the machine
with the highest priority depends on the machines
previously loaded.

After each instantiation of Type 2, we use a Forward
Checking constraint propagation mechanism to update
the finishing time of the selected operation and the
starting time of the following operation in the job
routing. We also maintain the availability date of the
chosen resource.

3.4 Proposed Discrepancy-based Methods

In our problem, the initial leaf (with 0 discrepancy) is a
solution since we do not constrain the makespan value.
Nevertheless we may use discrepancy principles to
expand the tree search for visiting the neighborhood of
this initial solution. The only way to stop this
exploration is to fix a limit for the CPU time or to
reach a given lower bound on the makespan. To limit
the search tree, one can use the DDS method which
considers in priority variables at the top of the tree (job
selection at the first stage). However this kind of
method has no guide for searching in a promising space
search.

To improve the search, we have to consider the CDS
method which goes from an initial solution to a better
one and so on. The idea of applying discrepancies only

at the top of the search tree can be also joined with
CDS algorithm to limit the tree search expansion. So,
we create a new strategy called CDDS method
(Climbing Depth-bounded Discrepancy Search). With
this new method, one can restrict neighborhoods to be
visited by only using discrepancies on variables at the
top of the tree (see Algorithm 3).

k ←0 -- k is the number of discrepancy
kmax ← N -- N is the number of variables

Sol ← Initial_Solution() -- Sol is the reference
 -- solution
while (k ≤ kmax) do
 k ← k +1
 -- Generate leaves at discrepancy k from Sol
 -- and at p-depth value from the top of the tree
 -- with 1 < p < N
 Sol’← Compute_Leaves(Sol, p, k)
 if Better(Sol’, Sol) then
 -- Update the current solution
 Sol ← Sol’
 k ← 0
 end if
end while

Algorithm 3. Climbing Depth-bounded Discrepancy Search

4. EXPERIMENTS

4.1 Test beds

We compare our adaptation of the DDS method and
our proposed CDDS method for solving benchmarks
problems which are presented in [3]. In [3], all the
problems have been solved using a Branch & Bound
(B&B) method operating with use of satisfiability tests
and time-bound adjustments. They calculated lower
bounds (LBs) of the problems and they limited their
search within 1600 s.

In our study, we propose to compare our solutions with
these LBs. We also run our algorithm within 1600 s. If
optimal solution was not found within 1600 s, the
search is stopped and the best solution is accepted as
the final schedule. The depth of discrepancy in our
methods varies between 3 and 8 from the top of the tree.
We have carried out our tests on a Pentium IV 3.20
GHz with 192 Mo RAM. DDS and CDDS algorithms
have been programmed using C language and run
under Windows XP Professional.

4.2. Results

In Table 1, for all considered problems, we present the
best makespan values)(maxC obtained by our DDS
and CDDS methods among the three value ordering
heuristics (SPT, LPT, and CJ), and the B&B algorithm
of [3] within 1600 s. Deviation from LBs is calculated
as follows:

%deviation =
LowerBound

LowerBoundbestC −_max

Lower bounds and %deviations from such LBs are

given in the last four columns.

In [3] some of the problems are grouped as hard
problems. Hard problems consist of the c and d types
of 10×5 and 15×5 problems. The rest of the problems
(all a, b types and 10×10 c type problems) are
identified as easy problems. As shown in Table 1, for a
and b type problems better results have been found
than for c and d type problems. Indeed, the machine
configurations have an important impact on problems
complexity that affects solution quality [4].

In Table 2, we compare the efficiency of the three
methods for easy and hard problems. As it will be
noticed from the table, for easy problems, DDS and
CDDS algorithms provide better results than B&B, but
for hard problems B&B algorithm is better than DDS
algorithm. On the other hand, for hard problems,
CDDS method obtains better solutions compared to
B&B algorithm in terms of deviation value from LBs.

Table 2. Relative efficiency of the three methods

Method Easy problems Hard problems
 %deviation %deviation

B&B 2.2 6.9
DDS 1.4 8.0

CDDS 1.1 5.0

If all problems are considered, the average deviation
from LBs for DDS algorithm is 3.58%, while the
average deviation of B&B is 3.68%. For CDDS the
average is only of 2.32%. On these benchmarks, our
CDDS algorithm provides in average the best
solutions.

Table 3 presents a comparison between the value
ordering heuristics (SPT, LPT, and CJ) efficiency. For
both CDS and CDDS methods, the third rule (CJ)
always gives better solutions in a fixed running time.

Table 3. Efficiency of value ordering heuristics
heuristics SPT LPT CJ
%deviation 6.3 5.2 2.5

Our discrepancy-based methods (DDS and CDDS)
prove their contributions in terms of improvement of
the initial makespan. Within 1600 seconds of CPU time
the deviation of the initial makespan has been reduced
with DDS algorithm by nearly 14.7% for hard
problems and 9.7% for easy ones. If we consider all
problems, the initial makespan has been reduced with
DDS algorithm by nearly 10.4%. For CDDS, the initial
makespan reduction is about 14%. This percentage is
distributed as 21% for hard problems and 10.4% for
easy ones.

Easy problems instances rapidly converge compared
with hard ones. They take, for both DDS and CDDS
methods, 13 mn in average to obtain all the solutions

for easy problems, while hard problems take 25 mn in
average. Since we have not the B&B code, we can not

dress a comparison with it in terms of CPU time.

Table 1. Solutions of test problems (bold problems have been identified as hard problems)
Cmax %deviation Problem

DDS CDDS B&B
LB of
Cmax DDS CDDS B&B

J10c5a2 88 88 88 88 0.0 0.0 0.0
J10c5a3 117 117 117 117 0.0 0.0 0.0
J10c5a4 121 121 121 121 0.0 0.0 0.0
J10c5a5 122 122 122 122 0.0 0.0 0.0
J10c5a6 110 110 110 110 0.0 0.0 0.0
J10c5b1 130 130 130 130 0.0 0.0 0.0
J10c5b2 107 107 107 107 0.0 0.0 0.0
J10c5b3 109 109 109 109 0.0 0.0 0.0
J10c5b4 122 122 122 122 0.0 0.0 0.0
J10c5b5 153 153 153 153 0.0 0.0 0.0
J10c5b6 115 115 115 115 0.0 0.0 0.0
J10c5c1 71 69 68 68 4.4 1.5 0.0
J10c5c2 76 75 74 74 2.7 1.4 0.0
J10c5c3 73 72 71 71 2.8 1.4 0.0
J10c5c4 68 66 66 66 3.0 0.0 0.0
J10c5c5 79 78 78 78 1.3 0.0 0.0
J10c5c6 70 70 69 69 1.4 1.4 0.0
J10c5d1 67 66 66 66 1.5 0.0 0.0
J10c5d2 75 74 73 73 2.7 1.4 0.0
J10c5d3 65 64 64 64 1.6 0.0 0.0
J10c5d4 72 70 70 70 2.9 0.0 0.0
J10c5d5 68 68 66 66 3.0 3.0 0.0
J10c5d6 64 63 62 62 3.2 1.6 0.0
J10c10a2 158 158 158 158 0.0 0.0 0.0
J10c10a3 151 148 148 148 2.0 0.0 0.0
J10c10a4 150 149 149 149 0.7 0.0 0.0
J10c10a5 148 148 148 148 0.0 0.0 0.0
J10c10a6 147 146 146 146 0.7 0.0 0.0
J10c10b1 163 163 163 163 0.0 0.0 0.0
J10c10b2 158 157 157 157 0.6 0.0 0.0
J10c10b3 169 169 169 169 0.0 0.0 0.0
J10c10b4 159 159 159 159 0.0 0.0 0.0
J10c10b5 165 165 165 165 0.0 0.0 0.0
J10c10b6 165 165 165 165 0.0 0.0 0.0
J10c10c1 117 118 127 113 3.5 4.4 12.4
J10c10c2 117 117 116 116 0.9 0.9 0.0
J10c10c3 118 117 133 98 20.4 19.4 35.7
J10c10c4 122 121 135 103 18.4 17.5 31.1
J10c10c5 131 128 145 121 8.3 5.8 19.8
J10c10c6 108 106 112 97 11.3 9.3 15.5
J15c5a1 178 178 178 178 0.0 0.0 0.0
J15c5a2 165 165 165 165 0.0 0.0 0.0
J15c5a3 132 130 130 130 1.5 0.0 0.0
J15c5a4 156 156 156 156 0.0 0.0 0.0
J15c5a5 164 164 164 164 0.0 0.0 0.0
J15c5a6 179 178 178 178 0.6 0.0 0.0
J15c5b1 170 170 170 170 0.0 0.0 0.0
J15c5b2 152 152 152 152 0.0 0.0 0.0
J15c5b3 157 157 157 157 0.0 0.0 0.0
J15c5b4 149 147 147 147 1.4 0.0 0.0
J15c5b5 166 166 166 166 0.0 0.0 0.0
J15c5b6 175 175 175 175 0.0 0.0 0.0
J15c5c1 91 90 85 85 7.1 5.9 0.0
J15c5c2 98 92 90 90 8.9 2.2 0.0
J15c5c3 93 93 87 87 6.9 6.9 0.0
J15c5c4 92 90 90 89 3.4 1.1 1.1
J15c5c5 84 77 84 73 15.1 5.5 15.1
J15c5c6 94 93 91 91 3.3 2.2 0.0
J15c5d1 167 167 167 167 0.0 0.0 0.0
J15c5d2 92 87 85 82 12.2 6.1 3.7
J15c5d3 89 83 96 77 15.6 7.8 24.7
J15c5d4 92 86 101 61 50.8 41.0 65.6
J15c5d5 87 82 97 67 29.9 22.4 44.8
J15c5d6 88 84 87 79 11.4 6.3 10.1
J15c10a1 236 236 236 236 0.0 0.0 0.0
J15c10a2 203 200 200 200 1.5 0.0 0.0
J15c10a3 198 198 198 198 0.0 0.0 0.0
J15c10a4 225 225 225 225 0.0 0.0 0.0
J15c10a5 182 182 183 182 0.0 0.0 0.5
J15c10a6 201 200 200 200 0.5 0.0 0.0
J15c10b1 222 222 222 222 0.0 0.0 0.0

J15c10b2 187 187 187 187 0.0 0.0 0.0
J15c10b3 222 222 222 222 0.0 0.0 0.0
J15c10b4 221 221 221 221 0.0 0.0 0.0
J15c10b5 200 200 200 200 0.0 0.0 0.0
J15c10b6 219 219 219 219 0.0 0.0 0.0
Average 3.58 2.32 3.68

5. CONCLUSIONS AND FURTHER WORKS

In this paper two discrepancy-based methods are
presented to solve Hybrid Flow Shop problems with
minimization of makespan. The first one is an
adaptation of Depth-bounded Discrepancy Search (DDS)
to suit to the problem under study. The second one,
Climbing Depth-bounded Discrepancy Search (CDDS),
combines both CDS and DDS. The two methods are
based on instantiation heuristics which guide the
exploration process towards some relevant decision
points able to reduce the makespan. These methods use
usual constraint propagation to prune the search tree.

The test problems are benchmarks used in the literature.
The percentage deviations from lower bounds are
presented. Our results are compared with B&B results.
In terms of makespan, we obtain in average better
solutions with the proposed CDDS approach.

Another method, a metaheuristic based on Artificial
Immune System (AIS), has proved its efficiency for
solving Hybrid Flow Shop problems [4]. Experimental
results with the same benchmarking problems show that
the average deviation of AIS algorithm from LBs is
1.66% while the CDDS deviation is 2.32%. In contrast,
CDDS is a simple local search method based on generic
tree search principles. Moreover, a solution can be
obtained at any time. The notion of discrepancy permits
the neighborhood structuring and avoids the
redundancies. Since the current implementation is
identical to a simple descent method, a further work will
consist to design a diversification mechanism.

REFERENCES

[1] Brah S.A., Hunsucker J.L., “Branch and Bound
algorithm for the flow shop with multiprocessors”,
EJOR (51) 88-89, 1991

[2] Brah S.A., Loo L.L., “Heuristics for scheduling in a
flow shop with multiple processors”, EJOR (113)
113-122, 1999

[3] Carlier J., Néron E., “An exact method for solving
the multiprocessor flowshop”, RAIRO-OR (34) 1-25,
2000

[4] Engin O., Döyen A., “A new approach to solve
hybrid flow shop scheduling problems by artificial
immune system”, FGCS (20) 1083-1095, 2004

[5] Gupta J.N.D., “Two-stage hybrid flowshop

scheduling problem”, JORS (39) 359-364, 1988
[6] Gupta J.N.D., “Hybrid flowshop scheduling

problems”, Production and Operational
Management Society Annual Meeting, 1992

[7] Hansen P., Mladenovic N., “Variable neighborhood
search: Principles and applications”, EJOR (130)
449-467, 2001

[8] Haralick R., Elliot G., “Increasing tree search
efficiency for constraint satisfaction problems”, AI
(14) 263-313, 1980

[9] Harvey W.D., “Nonsystematic backtracking search”,
PhD thesis, CIRL, University of Oregon, 1995

[10] Hoogeveen J.A., Lenstra J.K., Veltman B.,
“Premptive scheduling in a two-stage multiprocessor
flowshop is NP-Hard”, EJOR (89) 172-175, 1996

[11] Kis T., Pesch E., “A review of exact solution
methods for the non-preemptive multiprocessor
flowshop problem”, EJOR (164) 592-608, 2005

[12] Korf R.E., “Improved limited discrepancy search”,
Proceedings AAAI-96, 286-291, 1996

[13] Lin H.T., Liao, C.J., 2003, “A Case Study in a
Two-Stage Hybrid Flow Shop with Setup Time and
Dedicated Machines”, IJPE (86) 133-143, 2003

[14] Linn R., Zhang W., “Hybrid flow shop scheduling:
a survey”, Comput. Ind. Eng. (37) 57-61, 1999

[15] Milano M., Roli A., “On the relation between
complete and incomplete search: an informal
discussion”, Proceedings CPAIOR’02, 2002

[16] Moursli O., Pochet Y., “A branch and bound
algorithm for the hybrid flow shop”, IJPE (64)
113-125, 2000

[17] Portmann M.C., Vignier A, Dardihac D., Dezalay
D., “Branch and Bound crossed with G.A. to solve
hybrid flow shops”, IJPE (43) 27-137, 1992

[18] Santos D.L., Hunsucker J.L., Deal D.E., “Global
lower bounds for flow shops with multiple
processors”, EJOR (80) 112-120, 1995

[19] Vignier A., “Contribution à la résolution des
problèmes d’ordonnancement de type monogamme,
mutimachines (flow shop hybride)”, PhD Thesis,
University of Tours, France, 1997

[20] Walsh T., “Depth-bounded Discrepancy Search”,
Proceedings IJCAI-97, 1388-1395, 1997

