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ABSTRACT 

This paper investigates how to adapt some discrepancy-based search methods to solve Hybrid Flow Shop (HFS) 
problems in which each stage consists of several identical machines operating in parallel. The objective is to determine 
a schedule that minimizes the makespan. We present here an adaptation of the Depth-bounded Discrepancy Search 
(DDS) method to obtain solutions with makespan of high quality. This adaptation for the HFS contains no redundancy 
for the search tree expansion. To improve the solutions of our HFS problem, we propose a local search method, called 
CDDS, which is a hybridization of two existing discrepancy-based methods (DDS and Climbing Discrepancy Search). 
CDDS introduces an intensification process around promising solutions. These methods are tested on benchmark 
problems. Results show that discrepancy methods give promising results. 
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1. PROBLEM STATMENT 

 
In this study, we consider the l-stage Hybrid Flow Shop 
(HFS) problem with the objective to minimize the 
makespan. This problem can be denoted by Fl(P)||Cmax 
[10]. We are especially interested in how adapting 
discrepancy-based search methods for the HFS 
problem. 
 
Solving the HFS problem consists in assigning a 
specific machine to each operation of each job as well 
as sequencing all operations assigned to each machine. 
Successive operations of a job have to be processed 
serially through the l stages. Job preemption and job 
splitting are not allowed. The objective is to find a 
schedule which minimizes the maximum completion 
time or makespan defined as the elapsed time from the 
start of the first operation of the first job at stage 1 to 
the completion of the last operation of the last job at 
stage l. The HFS problem is NP-Hard as soon as it 
contains two stages and when there is, at least, more 
than one machine at a stage [5]. Detailed reviews of the 
applications and solution procedures of the HFS 
problems are provided in [6][11][14]. 
 
Most of the literature has considered the case of only 
two stages. In [13] authors presented a case study in a 
two-stage HFS with sequence-dependent setup time 
and dedicated machines. For more general cases (more 
than 2 stages), some authors developed a Branch and 
Bound (B&B) method for optimizing makespan, which 
can be used to find optimal solutions of only 
small-sized problem instances [1]. Later, this procedure 
has been improved in [17]. In this latter study, several 
heuristics have been developed to compute an initial  

 
upper bound and a genetic algorithm improves the 
value of this upper bound during the search. In order to 
reduce the search tree, new branching rules are 
proposed in [19]. Global lower bounds are developed 
in [18] which can be used to measure the quality of 
heuristic solutions when the optimal solution is 
unknown. Brah and Loo [2] expanded five better 
performing standard flow shop heuristics to the HFS 
case and evaluated them with Santos et al.’s lower 
bounds. Lower bounds are also defined in [14] based 
on the single-stage sub-problem relaxation. Another 
B&B procedure for this problem is proposed by Carlier 
and Néron in [3]. They proved that their algorithm is 
more efficient than previous exact solution procedures. 
Recently, a new heuristic method based on Artificial 
Immune System (AIS) has been proposed to solve HFS 
problems [4] and proves its efficiency. Results of AIS 
algorithm have been compared with Carlier and 
Néron’s lower bounds.  
 
In the next section, we give an overview of 
discrepancy-based methods. The third section presents 
how to adapt some of these methods to solve the HFS 
problem. In Section 4, evaluation of the proposed 
methods on usual benchmarks are detailed. Finally we 
report some conclusions and open issues to this work. 
 
2. DISCREPANCY-BASED SEARCH METHODS 

 
Discrepancy-based methods are tree search methods 
developed for solving combinatorial problems. These 
methods consider a branching scheme based on the 
concept of discrepancy to expand the search tree. This 
can be viewed as an alternative to the branching 
scheme used in a Chronological Backtracking method. 



 

Limited Discrepancy Search, denoted by LDS, is a 
branching scheme based on the discrepancy principle. 
It is instantiated to generate several variants, among 
them, Depth-bounded Discrepancy Search (DDS) or 
Climbing Discrepancy Search (CDS). 
 
2.1 Limited Discrepancy Search 
 
The objective of LDS proposed by Harvey in [9] is to 
provide a tree search method for supervising the 
application of some instantiation heuristics (variable 
and value ordering). It starts from an initial variable 
instantiation suggested by a given heuristic and 
successively explores branches with increasing 
discrepancies from it, i.e. by changing the instantiation 
of some variables. This number of changes corresponds 
to the number of discrepancies from the initial 
instantiation. The method stops when a solution is 
found (if it exists) or when an inconsistency is detected 
(the tree is entirely expanded). 
 
The concept of discrepancy was first introduced for 
binary variables. In this case, exploring the branch 
corresponding to the best Boolean value (according a 
value ordering) involves no discrepancy while 
exploring the remaining branch implies 1 discrepancy. 
 
It was then adapted to suit to non-binary variables in 
two ways. The first one considers that choosing the 
first ranked value (rank 1) leads to 0 discrepancy while 
choosing all other ranked values implies 1 discrepancy. 
In the second way, choosing value with rank r implies 
r–1 discrepancies. 
 
Dealing with a problem defined over N binary 
variables, an LDS strategy can be described as shown 
in Algorithm 1. 
 
k ← 0 -- k is the number of discrepancies 
kmax ← N -- N is the number of variables 
Sol ← Initial_solution()   -- Sol is the 
          -- reference 
solution 
while No_Solution() and (k ≤ kmax) do 
 k ← k+1 
 -- Generate leaves at discrepancy k from Sol 
 -- Stop when a solution is found 
 Sol’ ← Compute_Leaves(Sol, k) 
 Sol ← Sol’ 
end while 

Algorithm 1. Limited Discrepancy Search 
 
In such a primal implementation, the main drawback of 
LDS is to be too redundant: during the search for 
solutions with k discrepancies solutions with 0 to k–1 
discrepancies are revisited. To avoid this, Improved 
LDS method (ILDS) was proposed in [14]. Another 
improvement of LDS consists in applying discrepancy 
first at the top of the tree to correct early mistakes in 
the instantiation heuristic; this is the Depth-bounded 
Discrepancy Search method (DDS) proposed in [20]. 

In the DDS algorithm, the generation of leaves with k 
discrepancies is limited by a given depth. 
All these methods (LDS, ILDS, DDS) leads to a 
feasible solution, if it exists, and are closely connected 
to an efficient instantiation heuristic. These methods 
can be improved by adding local constraint propagation 
such as Forward Checking [8]. After each instantiation, 
Forward Checking suppresses inconsistent values in 
the domain of not yet instantiated variables involved in 
a constraint with the assigned variable. 
 
2.2 Climbing Discrepancy Search 
 
CDS is a local search method which adapts the notion 
of discrepancy to find a good solution for 
combinatorial optimization problems [15]. It starts 
from an initial solution suggested by a given heuristic. 
Then nodes at discrepancy equal to 1 are explored, then 
those at discrepancy equal to 2, and so on. When a leaf 
with an improved value of the objective function is 
found, the reference solution is updated, the number of 
discrepancies is reset to 0, and the process for 
exploring the neighborhood starts again (see 
Algorithm 2). 
 
k ← 0  -- k is the number of discrepancies 
kmax ← N  -- N is the number of variables 
 
Sol ← Initial_Solution() -- Sol is the reference 
       -- solution 
while (k ≤ kmax) do 
 k ← k+1  
 -- Generate leaves at discrepancy k from Sol 
 Sol’ ← Compute_Leaves(Sol, k) 
 if Better(Sol’, Sol) then 
  -- Update the current solution 
  Sol ← Sol’ 
  k ← 0 
 end if 
end while 

Algorithm 2. Climbing Discrepancy Search 
 
The aim of CDS strategy is not to find only a feasible 
solution, but a high quality solution in terms of 
criterion value. As mentioned by their authors, the CDS 
method is close to the Variable Neighborhood Search 
(VNS) [7]. VNS starts with an initial solution and 
iteratively explores neighborhoods more and more 
distant from this solution. The exploration of each 
neighborhood terminates by returning the best solution 
it contains. If this solution improves the current one it 
becomes the reference solution and the process is 
restarted. The interest of CDS is that the principle of 
discrepancy defines neighborhoods as branches in a 
search tree. This leads to structure the local search 
method to restrict redundancies. 
 

3. HOW TO ADAPT DISCREPANCY-BASED 
METHODS TO SOLVE HYBRID FLOW SHOP 

 
3.1 Problem Variables and Constraints 
 



 

To solve the HFS problem under study, at each stage, 
we have to select a job, to allocate a resource for the 
operation of the selected job, and to fix its start time. 
Since the start time of each operation will be fixed as 
soon as possible to reduce the makespan, we only 
consider two kinds of variables: job selection and 
resource allocation. The values of these two kinds of 
variables are ordered following a given instantiation 
heuristic presented below. 
 
At each stage s, we denote by Xs the job selection 
variables vector and by As the resource allocation 
variables vector. Thus, s

iX corresponds to the ith job in 

the sequence and s
iA is its affectation value 

( Ni ,...,1=∀ , with N the number of jobs). The domain 
of s

iX  variable is { }NJJJ ,...,, 21 , Ni ,...,1=∀  and 
ls ,...,1=∀  which corresponds to the choice of job to 

be scheduled. The values taken by the s
iX  variables 

have to be all different. The s
iA domains are 

{ }sM,...,1 , Ni ,...,1=∀ . Moreover, we consider 
precedence constraints between two consecutive 
operations of the same job and duration constraints for 
each operation at a given stage.  
 
3.2 Discrepancy for Hybrid Flow Shop 
 
Despite the fact we have two kinds of variables, we 
only consider here one kind of discrepancy: 
discrepancy on job selection variables. Indeed, our 
goal is to improve the makespan of our solutions, and 
since all resources are identical, discrepancy on 
allocation variables cannot improve it. Therefore, only 
the sequence of jobs to be scheduled may have an 
impact on the total completion time. 
 
Therefore, doing a discrepancy consists in selecting 
another job to be scheduled than the job given by a 
value ordering heuristic. Job selection variables are 
N-ary variables. The number of discrepancy is 
computed as follows: the first value given by the 
heuristic corresponds to 0 discrepancy, all the other 
values correspond to 1 discrepancy (see Figure 1). 
 
To obtain solutions of 1+k  discrepancies directly 
from a solution with k discrepancies (without revisiting 
solutions with 0,…, k-1 discrepancies), we consider the 
last instantiated variable having the kth discrepancy 
value and we just have to choose a remaining variable 
for the k+1th discrepancy value. 
 
At each stage s, the maximum number of discrepancy 
is 1−N  which leads to develop a tree of !N  leaves 
(all the permutations of jobs are obtained). 
 
3.3 Instantiation Heuristics and Propagation 
 
Variable ordering follows a stage-by-stage policy. The 

exploration strategy first consider job selection variable 
to choose a job, secondly consider resource allocation 
variable to assign the selected job to a resource. 
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Figure 1. Discrepancies on job selection (stage s) 
 
We have two types of value ordering heuristics: the 
first one ranks jobs whilst the second one ranks 
resources. 
 
Type 1: job selection. Several heuristics are used. We 
first give the priority to the job with the earliest start 
time (EST) and in case of equality we consider three 
kinds of rules: SPT (Smallest Processing Time) rule on 
the first stage, LPT (Longest Processing Time) rule on 
the first stage, and CJ (Critical Job) rule. The latter rule 
gives the priority to the job with the longest duration.  
 
Type 2: assignment of operations to machines. The 
operation of the job chosen by the heuristic of Type 1, 
is assigned to the machine such that the operation 
completes as soon as possible. This heuristic, called 
FCT (First Completion Time), is dynamic; the machine 
with the highest priority depends on the machines 
previously loaded. 
 
After each instantiation of Type 2, we use a Forward 
Checking constraint propagation mechanism to update 
the finishing time of the selected operation and the 
starting time of the following operation in the job 
routing. We also maintain the availability date of the 
chosen resource. 
 
3.4 Proposed Discrepancy-based Methods 
 
In our problem, the initial leaf (with 0 discrepancy) is a 
solution since we do not constrain the makespan value. 
Nevertheless we may use discrepancy principles to 
expand the tree search for visiting the neighborhood of 
this initial solution. The only way to stop this 
exploration is to fix a limit for the CPU time or to 
reach a given lower bound on the makespan. To limit 
the search tree, one can use the DDS method which 
considers in priority variables at the top of the tree (job 
selection at the first stage). However this kind of 
method has no guide for searching in a promising space 
search. 
 
To improve the search, we have to consider the CDS 
method which goes from an initial solution to a better 
one and so on. The idea of applying discrepancies only 



 

at the top of the search tree can be also joined with 
CDS algorithm to limit the tree search expansion. So, 
we create a new strategy called CDDS method 
(Climbing Depth-bounded Discrepancy Search). With 
this new method, one can restrict neighborhoods to be 
visited by only using discrepancies on variables at the 
top of the tree (see Algorithm 3). 
 
k ←0  -- k is the number of discrepancy 
kmax ← N  -- N is the number of variables 
 
Sol ← Initial_Solution() -- Sol is the reference  
       -- solution 
while (k ≤ kmax) do 
 k ← k +1  
 -- Generate leaves at discrepancy k from Sol 
 -- and at p-depth value from the top of the tree 
 -- with 1 < p < N 
 Sol’← Compute_Leaves(Sol, p, k) 
 if Better(Sol’, Sol) then 
  -- Update the current solution 
  Sol ← Sol’ 
  k ← 0 
 end if 
end while 

Algorithm 3. Climbing Depth-bounded Discrepancy Search 
 

4. EXPERIMENTS 
 
4.1 Test beds 
 
We compare our adaptation of the DDS method and 
our proposed CDDS method for solving benchmarks 
problems which are presented in [3]. In [3], all the 
problems have been solved using a Branch & Bound 
(B&B) method operating with use of satisfiability tests 
and time-bound adjustments. They calculated lower 
bounds (LBs) of the problems and they limited their 
search within 1600 s. 
 
In our study, we propose to compare our solutions with 
these LBs. We also run our algorithm within 1600 s. If 
optimal solution was not found within 1600 s, the 
search is stopped and the best solution is accepted as 
the final schedule. The depth of discrepancy in our 
methods varies between 3 and 8 from the top of the tree. 
We have carried out our tests on a Pentium IV 3.20 
GHz with 192 Mo RAM. DDS and CDDS algorithms 
have been programmed using C language and run 
under Windows XP Professional.  
 
4.2. Results 
 
In Table 1, for all considered problems, we present the 
best makespan values )( maxC  obtained by our DDS 
and CDDS methods among the three value ordering 
heuristics (SPT, LPT, and CJ), and the B&B algorithm 
of [3] within 1600 s. Deviation from LBs is calculated 
as follows: 

%deviation = 
LowerBound

LowerBoundbestC −_max  

Lower bounds and %deviations from such LBs are 

given in the last four columns. 
 
In [3] some of the problems are grouped as hard 
problems. Hard problems consist of the c and d types 
of 10×5 and 15×5 problems. The rest of the problems 
(all a, b types and 10×10 c type problems) are 
identified as easy problems. As shown in Table 1, for a 
and b type problems better results have been found 
than for c and d type problems. Indeed, the machine 
configurations have an important impact on problems 
complexity that affects solution quality [4].  
 
In Table 2, we compare the efficiency of the three 
methods for easy and hard problems. As it will be 
noticed from the table, for easy problems, DDS and 
CDDS algorithms provide better results than B&B, but 
for hard problems B&B algorithm is better than DDS 
algorithm. On the other hand, for hard problems, 
CDDS method obtains better solutions compared to 
B&B algorithm in terms of deviation value from LBs.  

 
Table 2. Relative efficiency of the three methods 

Method Easy problems Hard problems 
 %deviation %deviation 

B&B 2.2 6.9 
DDS 1.4 8.0 

CDDS 1.1 5.0 

 
If all problems are considered, the average deviation 
from LBs for DDS algorithm is 3.58%, while the 
average deviation of B&B is 3.68%. For CDDS the 
average is only of 2.32%. On these benchmarks, our 
CDDS algorithm provides in average the best 
solutions. 
 
Table 3 presents a comparison between the value 
ordering heuristics (SPT, LPT, and CJ) efficiency. For 
both CDS and CDDS methods, the third rule (CJ) 
always gives better solutions in a fixed running time. 
 

Table 3. Efficiency of value ordering heuristics 
heuristics SPT LPT CJ 
%deviation 6.3 5.2 2.5 

 
Our discrepancy-based methods (DDS and CDDS) 
prove their contributions in terms of improvement of 
the initial makespan. Within 1600 seconds of CPU time 
the deviation of the initial makespan has been reduced 
with DDS algorithm by nearly 14.7% for hard 
problems and 9.7% for easy ones. If we consider all 
problems, the initial makespan has been reduced with 
DDS algorithm by nearly 10.4%. For CDDS, the initial 
makespan reduction is about 14%. This percentage is 
distributed as 21% for hard problems and 10.4% for 
easy ones. 
 
Easy problems instances rapidly converge compared 
with hard ones. They take, for both DDS and CDDS 
methods, 13 mn in average to obtain all the solutions 



 

for easy problems, while hard problems take 25 mn in 
average. Since we have not the B&B code, we can not 

dress a comparison with it in terms of CPU time. 

 
 
 

Table 1. Solutions of test problems (bold problems have been identified as hard problems) 
Cmax %deviation Problem 

DDS CDDS B&B
LB of 
Cmax DDS CDDS B&B 

J10c5a2 88 88 88 88 0.0 0.0 0.0 
J10c5a3 117 117 117 117 0.0 0.0 0.0 
J10c5a4 121 121 121 121 0.0 0.0 0.0 
J10c5a5 122 122 122 122 0.0 0.0 0.0 
J10c5a6 110 110 110 110 0.0 0.0 0.0 
J10c5b1 130 130 130 130 0.0 0.0 0.0 
J10c5b2 107 107 107 107 0.0 0.0 0.0 
J10c5b3 109 109 109 109 0.0 0.0 0.0 
J10c5b4 122 122 122 122 0.0 0.0 0.0 
J10c5b5 153 153 153 153 0.0 0.0 0.0 
J10c5b6 115 115 115 115 0.0 0.0 0.0 
J10c5c1 71 69 68 68 4.4 1.5 0.0 
J10c5c2 76 75 74 74 2.7 1.4 0.0 
J10c5c3 73 72 71 71 2.8 1.4 0.0 
J10c5c4 68 66 66 66 3.0 0.0 0.0 
J10c5c5 79 78 78 78 1.3 0.0 0.0 
J10c5c6 70 70 69 69 1.4 1.4 0.0 
J10c5d1 67 66 66 66 1.5 0.0 0.0 
J10c5d2 75 74 73 73 2.7 1.4 0.0 
J10c5d3 65 64 64 64 1.6 0.0 0.0 
J10c5d4 72 70 70 70 2.9 0.0 0.0 
J10c5d5 68 68 66 66 3.0 3.0 0.0 
J10c5d6 64 63 62 62 3.2 1.6 0.0 
J10c10a2 158 158 158 158 0.0 0.0 0.0 
J10c10a3 151 148 148 148 2.0 0.0 0.0 
J10c10a4 150 149 149 149 0.7 0.0 0.0 
J10c10a5 148 148 148 148 0.0 0.0 0.0 
J10c10a6 147 146 146 146 0.7 0.0 0.0 
J10c10b1 163 163 163 163 0.0 0.0 0.0 
J10c10b2 158 157 157 157 0.6 0.0 0.0 
J10c10b3 169 169 169 169 0.0 0.0 0.0 
J10c10b4 159 159 159 159 0.0 0.0 0.0 
J10c10b5 165 165 165 165 0.0 0.0 0.0 
J10c10b6 165 165 165 165 0.0 0.0 0.0 
J10c10c1 117 118 127 113 3.5 4.4 12.4 
J10c10c2 117 117 116 116 0.9 0.9 0.0 
J10c10c3 118 117 133 98 20.4 19.4 35.7 
J10c10c4 122 121 135 103 18.4 17.5 31.1 
J10c10c5 131 128 145 121 8.3 5.8 19.8 
J10c10c6 108 106 112 97 11.3 9.3 15.5 
J15c5a1 178 178 178 178 0.0 0.0 0.0 
J15c5a2 165 165 165 165 0.0 0.0 0.0 
J15c5a3 132 130 130 130 1.5 0.0 0.0 
J15c5a4 156 156 156 156 0.0 0.0 0.0 
J15c5a5 164 164 164 164 0.0 0.0 0.0 
J15c5a6 179 178 178 178 0.6 0.0 0.0 
J15c5b1 170 170 170 170 0.0 0.0 0.0 
J15c5b2 152 152 152 152 0.0 0.0 0.0 
J15c5b3 157 157 157 157 0.0 0.0 0.0 
J15c5b4 149 147 147 147 1.4 0.0 0.0 
J15c5b5 166 166 166 166 0.0 0.0 0.0 
J15c5b6 175 175 175 175 0.0 0.0 0.0 
J15c5c1 91 90 85 85 7.1 5.9 0.0 
J15c5c2 98 92 90 90 8.9 2.2 0.0 
J15c5c3 93 93 87 87 6.9 6.9 0.0 
J15c5c4 92 90 90 89 3.4 1.1 1.1 
J15c5c5 84 77 84 73 15.1 5.5 15.1 
J15c5c6 94 93 91 91 3.3 2.2 0.0 
J15c5d1 167 167 167 167 0.0 0.0 0.0 
J15c5d2 92 87 85 82 12.2 6.1 3.7 
J15c5d3 89 83 96 77 15.6 7.8 24.7 
J15c5d4 92 86 101 61 50.8 41.0 65.6 
J15c5d5 87 82 97 67 29.9 22.4 44.8 
J15c5d6 88 84 87 79 11.4 6.3 10.1 
J15c10a1 236 236 236 236 0.0 0.0 0.0 
J15c10a2 203 200 200 200 1.5 0.0 0.0 
J15c10a3 198 198 198 198 0.0 0.0 0.0 
J15c10a4 225 225 225 225 0.0 0.0 0.0 
J15c10a5 182 182 183 182 0.0 0.0 0.5 
J15c10a6 201 200 200 200 0.5 0.0 0.0 
J15c10b1 222 222 222 222 0.0 0.0 0.0 



 

J15c10b2 187 187 187 187 0.0 0.0 0.0 
J15c10b3 222 222 222 222 0.0 0.0 0.0 
J15c10b4 221 221 221 221 0.0 0.0 0.0 
J15c10b5 200 200 200 200 0.0 0.0 0.0 
J15c10b6 219 219 219 219 0.0 0.0 0.0 
Average   3.58 2.32 3.68 

 
5. CONCLUSIONS AND FURTHER WORKS 
 
In this paper two discrepancy-based methods are 
presented to solve Hybrid Flow Shop problems with 
minimization of makespan. The first one is an 
adaptation of Depth-bounded Discrepancy Search (DDS) 
to suit to the problem under study. The second one, 
Climbing Depth-bounded Discrepancy Search (CDDS), 
combines both CDS and DDS. The two methods are 
based on instantiation heuristics which guide the 
exploration process towards some relevant decision 
points able to reduce the makespan. These methods use 
usual constraint propagation to prune the search tree. 
 
The test problems are benchmarks used in the literature. 
The percentage deviations from lower bounds are 
presented. Our results are compared with B&B results. 
In terms of makespan, we obtain in average better 
solutions with the proposed CDDS approach. 
 
Another method, a metaheuristic based on Artificial 
Immune System (AIS), has proved its efficiency for 
solving Hybrid Flow Shop problems [4]. Experimental 
results with the same benchmarking problems show that 
the average deviation of AIS algorithm from LBs is 
1.66% while the CDDS deviation is 2.32%. In contrast, 
CDDS is a simple local search method based on generic 
tree search principles. Moreover, a solution can be 
obtained at any time. The notion of discrepancy permits 
the neighborhood structuring and avoids the 
redundancies. Since the current implementation is 
identical to a simple descent method, a further work will 
consist to design a diversification mechanism. 
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