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 and other authors. Fundamental 2D identities relating the incompatibility tensor to the Frank and Burgers vectors are proved under global strain assumptions relying on the geometric measure theory, thereby giving rise to rigorous homogenisation from mesoscopic to macroscopic scale.

Introduction

Dislocations can be considered as the most undesirable and resistant class of defects for several kinds of single crystals [START_REF] Maroudas | On the prediction of dislocation formation in semiconductor crystals grown from the melt: analysis of the Haasen model for plastic deformation dynamics[END_REF][START_REF] Jordan | The theory and practise of dislocation reduction in GaAs and InP[END_REF]. Therefore, in order to improve crystal quality, the development of a relevant and accurate physical model represents a key issue with a view to reducing the dislocation density in the crystal by acting in an appropriate way on the temperature field and the solid-liquid interface shape during the growth process (Van den [START_REF] Van Den Bogaert | Dynamic global simulation of the Czochralski process: I. Principles of the method; II. Analysis of the growth of a Ge crystal[END_REF]. However the dislocation models available in the literature, such as the model of [START_REF] Alexander | Dislocations in solids[END_REF]Haasen (1968, 1986), are often based on a rather crude extension of models previously developed for polycrystals (such as usual metals and ceramics). In this case, some particular features of single crystals, such as material anisotropy or the existence of preferential glide planes, can be taken into account up to some extent, but the fundamental physics of dislocations in single crystals cannot be captured. In fact, dislocations are lines that either form loops, or end at the single crystal boundary, or join together at some locations, while each dislocation segment has a constant Burgers vector which exhibits additive properties at dislocation junctions. These properties play a fundamental role in the modelling of line defects in single crystals and induce key conservation laws at the macro-scale (typically defined by the crystal diameter). On the contrary, no dislocation conservation law exists at the macro-scale for polycrystals since dislocations can abruptly end at grain boundaries inside the medium without any conservation law holding across these interfaces.

Aware of these principles and of the pioneer works of [START_REF] Volterra | Sur l'équilibre des corps élastiques multiplement connexes[END_REF] and [START_REF] Cosserat | Théorie des corps déformables[END_REF], [START_REF] Burgers | Some considerations on the field of stress connected with dislocations in a regular crystal lattice[END_REF], [START_REF] Eshelby | The equilibrium linear arrays of dislocations[END_REF]Nabarro (1951, 1956), [START_REF] Kondo | On the geometrical and physical foundations of the theory of yielding[END_REF], [START_REF] Nye | Some geometrical relations in dislocated crystals[END_REF], and [START_REF] Kröner | Continuum theory of defects[END_REF] among other authors [START_REF] Bilby | Continuous distribution of dislocations[END_REF][START_REF] Mura | Micromechanics of defects in solids[END_REF] consider a tensorial density to model dislocations in single crystals at the macro-scale, in order to take into account both the dislocation orientation and the associated Burgers vector (cf the survey contributions of [START_REF] Kröner | Continuum theory of defects[END_REF][START_REF] Kröner | The differential geometry of elementary point and line defects in Bravais crystals[END_REF] and [START_REF] Kleinert | Gauge fields in condensed matter[END_REF]). However, in these works, the relationship between macro-scale crystal properties and the basic physics governing the nano-scale (defined by the inter-atomic distance) is not completely justified from a mathematical viewpoint. Therefore, to well define the concept of tensorial dislocation density, we here introduce an additional scale to the macro-and nano-scales, viz. the meso-scale as defined by the average distance between dislocations. The laws governing dislocation behaviour are modelled at the nano-scale, while the meso-scale (defined from the nano-scale by ensemble averaging or by averaging over a representative volume [START_REF] Kröner | Benefits and shortcomings of the continuous theory of dislocations[END_REF])) defines the "dislocated continuous medium", where each dislocation is viewed as a line and the interactions between dislocations can be modelled while the laws of linear elasticity govern the adjacent medium. The present paper focuses on meso-scale modelling with a view to clarifying the homogenisation process from meso-to macro-scale. Since dislocations are lines at the meso-scale, concentrated effects, as governed by the distribution theory (a key reference is here [START_REF] Schwartz | Théorie des distributions[END_REF]), must be introduced in the mesoscopic model. In addition, since integration around the dislocations generates a multiple-valued displacement field with the dislocations as branching lines, multivalued functions must be considered [START_REF] Almgren | Deformations and multiple-valued functions[END_REF][START_REF] Knopp | Theory of functions, Part 1&2[END_REF][START_REF] Remmert | From Riemann surfaces to Riemann spaces[END_REF]. This combination of distributional effects and multivaluedness is a key feature of the dislocation theory at the meso-scale but, unfortunately, the difficulties resulting from this mathematical association have not well been addressed so far in the literature [START_REF] Thom | Concepts in the theory of ordered media[END_REF]. As an example, non-commuting differentiation operators are freely introduced without any justification by [START_REF] Kleinert | Gauge fields in condensed matter[END_REF]. Therefore, the principal objective of this paper is to provide a strong mathematical foundation to the meso-scale theory of dislocations, showing how the distribution and geometric measure theories can be correctly used with multiple-valued fields. In particular, the application limits of Stokes' theorem are clarified. For the sake of generality, disclinations, which represent a second but rarer kind of line defect, with in addition a multiple-valued rotation field, are here considered together with dislocations. After homogenisation from meso-to macro-scale, no concentrated effects remain anymore present in the macroscopic model, which consists of a set of evolution PDE's governing scalar or tensorial defect density fields in the framework of elasto-or viscoplasticity [START_REF] Kratochvil | Thermodynamics of elastic-plastic materials as a theory with internal variables[END_REF]. However, it should be pointed out that homogenisation from meso-to macro-scale has no meaning for multiple-valued fields such as displacement and rotation, since this operation is exclusively allowed for additive (or extensive) fields such as stress, energy density or heat flux. This consideration becomes obvious when homogenisation is defined by an ensemble averaging procedure, since multiple-valued fields are mathematically defined as extended functions which cannot be added since their "domains" depend on the defect line locations. This issue is clarified in the present paper. Moreover, since the macroscopic displacement and rotation fields are not defined as ensemble averages of their mesoscopic counterparts, no unique privileged reference configuration can be defined at the macro-scale for single crystals with dislocations. Having in mind that displacement and rotation fields are defined with respect to the selected reference configuration (which can be, or not, defect free), the invariance laws governing the behaviour of single crystals with line defects at the macro-scale are constructed in accordance with this observation. In the literature the macroscopic dislocation density is classically defined as the curl of the plastic distortion [START_REF] Head | An equilibrium theory of dislocation continua[END_REF][START_REF] Cermelli | On the characterization of geometrically necessary dislocations in finite plasticity[END_REF][START_REF] Gurtin | A gradient theory of single-crystals viscoplasticity that accounts for geometrically necessary dislocations[END_REF][START_REF] Koslowski | A phase field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystal[END_REF][START_REF] Ariza | Discrete crystal elasticity and discrete dislocations in crystals[END_REF], following a postulated distortion decom-position into elastic and plastic parts. However, this approach cannot be rigorously justified (contrarily to the strain decomposition) since elastic and plastic rotations cannot be set apart. In contrast, the present paper introduces the macroscopic dislocation density by homogenisation of well-defined mesoscopic fields, under precise geometric-measure model assumptions, from which the distortion decomposition is obtained together with its relationship with the dislocation density. Since dislocations and disclinations represent body torsion and curvature, respectively, these concepts also appear as macroscopic counterparts of well-defined mesoscopic defect measures. The present paper is restricted to the 2D theory. Extension to the 3D case is under investigation. A complete link between the mesoscopic and macroscopic behaviours of single crystals with line defects should be derived from these developments. In Section 2, the scaling analysis summarised in this introduction is detailed and the basic concepts used to represent the dislocated continuous medium are introduced. Classical invariance theorems are recalled in Section 3. In Section 4, the 2D distributional theory of the dislocated continuous medium is established in the case of a single dislocation, while Section 5 treats the more general case of an ensemble of isolated dislocations. Finally, Section 6 introduces the non-Riemannian macroscopic body by homogenisation from the mesoscale, and conclusions are drawn in Section 7.

Multiscale analysis of dislocations

To address the modelling of elastic single crystals with line defects, the various scales relevant for matter description and their interrelations are briefly reviewed.

• At the nano-scale the characteristic length is the interatomic distance. At time t, the body is referred to as R ⋆⋆ (t) and the reference body is a perfect lattice R ⋆⋆ 0 . • At the meso-scale the characteristic length is the average distance between two neighbour dislocation lines. At time t, the body is referred to as R ⋆ (t), to be interpreted as a random sample corresponding to a given growth experiment.

The reference body R ⋆ 0 is a perfect crystal, i.e. a body without dislocations or disclinations.

• At the macro-scale the characteristic length is the diameter of the crystal and the body R(t) has a physical meaning related to R ⋆ (t) and R ⋆⋆ (t) in terms of ensemble average; the reference body R0 can be, or not, a perfect crystal.

Nano-scale analysis: crystalline lattice

Given a dislocation in the general sense, the atomic arrangement R ⋆⋆ (t) differs from the reference lattice R ⋆⋆ 0 , but however the atom displacements are not uniquely defined [START_REF] Kleinert | Gauge fields in condensed matter[END_REF]. More exactly, a discrete multivalued mapping xi := χ ⋆⋆ i (X l ) where i = 1, 2 or 3, is defined with X l ∈ R ⋆⋆ 0 and xi ∈ R ⋆⋆ (t). In general, the dislocation position cannot be determined precisely at the atomic level since several dislocation locations in the actual crystal can be associated with the same picture of the atom positions. In fact the defect should be understood as located inside a nanoscopic lattice region. Let us insist on the fact that there is no way to uniquely define the displacement field. Indeed any atom of R ⋆⋆ 0 can in principle be selected to define the displacement of a given atom of R ⋆⋆ (t) which is therefore a multivalued discrete mapping. This remark also makes sense at higher scales.

Meso-scale analysis: dislocated continuous medium

This scale is the one on which this paper focuses, in the framework of 2D linear elasticity. Let us here describe some general and basic field properties at the meso-scale level. Details are given in the forthcoming sections.

• The displacement field is a multivalued function such that for any point

X l ∈ R ⋆ 0 one has u ⋆ i (X l ) = xi -Xi, with xi := χ ⋆ i (X l ),
and where χ ⋆ i (X l ) is a multivalued mapping from R ⋆ 0 to R ⋆ (t). Displacement multivaluedness represents an important difficulty to address at the meso-scale in dislocation modelling. As opposed to multiple-valued fields, single-valued fields will also be called uniform.

• The strain will be denoted by E ⋆ ij . In general, the Lagrange deformation tensor is given by

E ⋆ ij := 1 2 (∂ju ⋆ i + ∂iu ⋆ j + ∂ju ⋆ m ∂iu ⋆ m ), with ∂ju ⋆ i := ∂u ⋆ i ∂Xj ,
with the classical indicial notations and summation convention used. In the sequel, linear elasticity will be assumed and hence the nonlinear terms are not taken into account at the meso-scale. This fundamental hypothesis relies on the assumption1 that all nonlinear deformation effects take place around the dislocation in a nano-scale region whose diameter is small compared to the meso-scale characteristic distance. Therefore, using a singular perturbation asymptotic treatment, the nonlinear effects become concentrated inside the defect line at the meso-scale and hence the strain can be assumed to be the single-valued linear symmetric tensor given by

E ⋆ ij := 1 2 (∂ju ⋆ i + ∂iu ⋆ j )
outside the defect line and arbitrarily set to 0 on the defect line (noting that concentrated deformation effects inside this line do not play any role in displacement integration at the meso-scale).

• The infinitesimal rotation tensor is a possibly multiple-valued field given by ω ⋆ ij := 1 2 (∂ju ⋆ i -∂iu ⋆ j ) with the associated rotation vector given by

ω ⋆ k = - 1 2 ǫ ijk ω ⋆ ij = 1 2 ǫ ijk ∂ju ⋆ i and the identity ω ⋆ ij = -ǫ ijk ω ⋆ k .
The Frank and Burgers vectors Ω ⋆ k and B ⋆ i associated with a defect line are commonly defined as functions of the jumps of ω ⋆ k and u ⋆ i around this line. From Weingarten's theorems, these vectors are shown as invariants of the defect line.

The following geometric tensors are also introduced:

Definition 2.1 DISCLINATION DENSITY: Θ ⋆ ij := Ω ⋆ j δiL, (2.1) 
DISLOCATION DENSITY:

Λ ⋆ ij := B ⋆ j δiL, (2.2) 
DISPLACEMENT JUMP DENSITY:

α ⋆ ij := Λ ⋆ ij + ǫ jlm Θ ⋆ il (xm -x0m), (2.3) CONTORTION: κ ⋆ ij := α ⋆ ij - 1 2 α ⋆ mm δij , (2.4)
where x0m is a reference point for rotation and displacement integration.

Here, the symbol δiL is used to represent the concentrated vectorial measure density on the defect region L. In particular, when L is a rectifiable curve, δiL is equal to τiδL with τi the unit tangent vector to L and δL the one-dimensional Hausdorff measure density concentrated on L.

The disclination and dislocation density tensors Θ ⋆ ij and Λ ⋆ ij are measure densities (cf [START_REF] Evans | Measure theory and fine properties of functions[END_REF][START_REF] Mattila | Geometry of sets and measures in Euclidean spaces-Fractals and rectifiability[END_REF] related to the so-called strain incompatibility η ⋆ ij to be defined later. In general at the meso-scale a dislocation or a disclination is a defect line (i.e. a singular line for the strain) to which non-vanishing Burgers and/or Frank vectors are attached. The tensors Λ ⋆ ij and Θ ⋆ ij are basic physical tools to model defect density at the meso-scale while η ⋆ ij plays a key role to understand their behaviour. The displacement jump density and mesoscopic contortion (or lattice curvature) tensors α ⋆ ij and κ ⋆ ij are combinations of these basic density tensors, with α ⋆ ij = Λ ⋆ ij when the disclination density tensor vanishes.

Macro-scale analysis: continuous medium

At this level, a point xi of the actual body R(t), xi = χi(X l ) where X ∈ R0 will be called a material point to be understood as a certain volume of matter of mesoscopic size located around the point xi. In order to define macroscopic concepts such as temperature or stress, one needs to give a meaning to the temperature and stress at any point. The rigorous definition is obtained from an ergodicity argument and hence, at the macroscopic level the fields on R(t) are defined as ensemble averages of the fields defined on R ⋆ (t). By this operation these fields are smoothed, which means that concentration effects at the meso-scale level along the defect lines are erased. To this end, a weak limiting procedure (or homogenisation) is needed in order to define the dislocation and disclination densities Λij and Θij at the macro-scale level from the knowledge of the meso-scale fields Λ ⋆ ij and Θ ⋆ ij . Remark 2.1 In this context, the reference body R0 is basically arbitrary and can, or not, be a perfect crystal. Indeed, at the macro-scale, the displacement ui must be a single-valued function, while the displacement field u ⋆ i is multivalued at the mesoscale. Therefore, u ⋆ i cannot be considered as belonging to a (linear) Banach space (single-valued functions can be added since they share the same domain, whereas a multivalued function is defined on its specific Riemann foliation and cannot be added to a multivalued function defined on another Riemann foliation). Consequently the ensemble averaging procedure is forbidden for multivalued fields such as u ⋆ i and hence ui is not the ensemble average of u ⋆ i . It should also be observed that removing the field multivaluedness by performing appropriate cuts is of no use here, since by derivation these cuts introduce arbitrary distributional contributions without physical meaning. In general, it is important to make it clear that the only fields which can be obtained at the macro-scale by ensemble averaging from the meso-scale are the so-called extensive fields associated with additive physical properties (such as specific mass, stress, specific internal energy... and the dislocation and disclination densities).

3 Multiple-valued fields and line invariants; distributions as a modelling tool at the mesoscale Notations 3.1 In the following sections, the assumed open domain is denoted by Ω (in practise but not necessarily Ω is bounded), the defect line(s) are indicated by L ∈ Ω, and ΩL is the chosen symbol for Ω \ L, which is also assumed to be open without loss of generality. Focussing on the meso-scale, symbol x or xi denotes a generic point of the defect line(s), x or xi is a generic point of ΩL and x0 or x0i is a given fixed reference point of ΩL. When x and x are used together, x denotes the projection of x onto the defect line(s) L in a appropriate sense and νi := νi(x, x) is the unit vector joining x to x. The symbol ⊙ǫ is intended for a set of diameter 2ǫ enclosing the region L. More precisely, ⊙ǫ is defined as the intersection with Ω of the union of all closed spheres of radius ǫ centred on L:

⊙ǫ := Ω ∩ x∈L B[x, ǫ].
In case L is an isolated line, ⊙ǫ is a tube of radius ǫ enclosing L. In the sequel, considering a surface S of Ω crossed by L at x and bounded by the curve C, symbols dC, dL, and dS will denote the 1D Hausdorff measures on C and L, and the 2D Hausdorff measure on S, respectively, with σj and τj the unit tangent vectors to C at x and to L at x (when they exist). In some cases (having fractal curves in mind) the symbols dx k and dSi := ǫ ijk dx

(1) j dx

(2) k will stand for infinitesimal vectors oriented along C and normal to S, respectively, with in addition dC l (x) := ǫ lmn dxmτn denoting an infinitesimal vector normal to C when τn = τn(x) exists. Assumption 3.1 (Mesoscopic elastic strain) Henceforth we will assume that the linear strain E ⋆ mn is a given symmetric C ∞ (ΩL, Ê 3×3 )-tensor prolonged by 0 on the line L, L 1 -integrable on Ω and compatible on ΩL. In other words, the equality

ǫ qlm ǫ kpn ∂ l ∂pE ⋆ mn = 0 (3.1)
is assumed everywhere on ΩL.

Distributional analysis of the multiple-valued fields

In general, a multivalued function from ΩL to Ê N consists of a pair of single-valued mappings with appropriate properties:

F → ΩL and F → Ê N ,
where F is the associated Riemann foliation [START_REF] Almgren | Deformations and multiple-valued functions[END_REF][START_REF] Knopp | Theory of functions, Part 1&2[END_REF][START_REF] Remmert | From Riemann surfaces to Riemann spaces[END_REF]. In the present case of meso-scale elasticity, we limit ourselves to multivalued functions obtained by recursive line integration of single-valued mappings defined on ΩL. Reducing these multiple line integrals to simple line integrals, the Riemann foliation shows to be the set of equivalence path classes in ΩL from a given x0 ∈ ΩL with the homotopy as equivalence relationship. Accordingly, a multivalued function will be called of index n on ΩL if its n-th differential is single-valued on ΩL. No other kinds of multifunctions are considered in this work, whether L is a single line or belongs to a more complex set of defect lines (with possible branchings, etc.).

Notations 3.2 The notation ∂

(s) j is used for partial derivation of a single-or multiplevalued function whose domain is restricted to ΩL. Locally around x ∈ ΩL, for smooth functions, the meanings of ∂ (s) j and the classical ∂j are the same, whereas on the entire Ω the partial derivation operator ∂j only applies to single-valued fields and must be understood in the distributive sense. A defect-free subset U of Ω is an open set such that U ∩ L = ∅, in such a way that ∂ (s) j and ∂j coincide on U for every single-or multiple-valued function of index 1.

In the following essential definition the strain is considered as a distribution on Ω: Definition 3.1 [Frank tensor] The Frank tensor ∂mω ⋆ k is defined on the entire domain Ω as the following distribution:

∂mω ⋆ k := ǫ kpq ∂pE ⋆ qm , (3.2) 
in such a way that

< ∂mω ⋆ k , ϕ >:= - Ω ǫ kpq E ⋆ qm ∂pϕdV, (3.3) 
with ϕ a smooth test-function with compact support in Ω.

In fact, the tensorial distribution ∂mω ⋆ k is the finite part of an integral when acting against test-functions. Indeed, since ∂pE ⋆ qm might be non-L 1 (Ω)-integrable in view of its possibly too strong singularity near the defect line, instead of being directly calculated as an integral, < ǫ kpq ∂pE ⋆ qm , ϕ > must be calculated on Ω as the limit lim ǫ→0 Ω\⊙ǫ

ǫ kpq ∂pE ⋆ qm ϕdV + ∂⊙ǫ∩Ω ǫ kpq E ⋆ qm ϕdSp , (3.4) 
where the second term inside the parenthesis is precisely added in order to achieve convergence. One readily sees after integration by parts that expression (3.4) is equal to Eq. ( 3.3) provided lim ǫ→0 Ω \ ⊙ǫ = ΩL (which is a general hypothesis limiting the acceptable defect lines together with the assumption that L is of vanishing 2D Hausdorff measure). Considering the possibly multivalued (with index 1) rotation vector ω ⋆ k , it should be observed from Definition 3.

1 that ∂mω ⋆ k = ∂ (s)
m ω ⋆ k on ΩL. This results from the classical relationship provided by elasticity theory between infinitesimal rotation and deformation derivatives. However, ∂mω ⋆ k is defined by Eq. ( 3.2) as a distribution on Ω and therefore concentrated effects on L and its infinitesimal vicinity are added to ∂ (s) m ω ⋆ k , justifying the use of the symbol ∂mω ⋆ k instead of ∂mω ⋆ k without giving to ∂m the meaning of a derivation operator. In particular, it may be observed that the identical vanishing of ∂ (s) m ω ⋆ k on ΩL does not necessarily imply that the distribution ∂mω ⋆ k vanishes as well. In fact from Eq. ( 3.4), it can be shown in this particular case that

< ∂mω ⋆ k , ϕ >= lim ǫ→0 ∂⊙ǫ∩Ω ǫ kpq E ⋆ qm ϕdSp = - Ω ǫ kpq E ⋆ qm ∂pϕdV, (3.5) 
which is generally non-vanishing. Finally, as soon as the definition of the tensor distribution ∂mω ⋆ k is given, so are the distributional derivatives of ∂mω ⋆ k :

< ∂ l ∂mω ⋆ k , ϕ >= -< ∂mω ⋆ k , ∂ l ϕ >= Ω ǫ kpn E ⋆ mn ∂p∂ l ϕdV. (3.6)

Rotation and displacement vectors

The rotation vector is defined from the knowledge of the linear strain together with the rotation at a given reference point x0. From this construction follows an invariance property of ω ⋆ k as a multifunction (recalling that multivaluedness takes its origin from the existence of a defect line which renders the strain incompatible on the entire Ω). Starting from the distributive Definition 3.1 of ∂mω ⋆ k , the differential form ∂mω ⋆ k dξm is integrated along a regular parametric curve Γ ⊂ ΩL with endpoints x0, x ∈ ΩL. For selected x0 and ω ⋆ 0k , the multivalued rotation vector is defined as

ω ⋆ k = ω ⋆ k (#Γ, ω ⋆ 0 ) = ω ⋆ 0k + Γ ∂mω ⋆ k dξm,
where #Γ is the equivalence class of all regular curves homotopic to Γ in ΩL. Indeed, from strain compatibility in ΩL, i.e. from relation (3.1), it is clear that ω ⋆ k is a function of #Γ only. Consider now a regular parametric loop C (in case C is a planar loop, it is called Jordan curve) and the equivalence class #C of all regular loops homotopic to C in ΩL. Here, the extremity points play no role anymore and two loops are equivalent if and only if they can be continuously transformed into each other in ΩL. The jump of the rotation vector ω ⋆ k along #C depends on #C only and is defined as

2 [ω ⋆ k ] = [ω ⋆ k ](#C) = C ∂mω ⋆ k dξm. (3.7)
The following developments address the displacement field multivaluedness as a mere consequence of strain incompatibility. The procedure defining the displacement vector from the rotation vector by means of line integrals is classical in linear elasticity. The following tensor plays in the construction of the displacement field a role analogous to ∂mω ⋆ k in the construction of the rotation field:

Definition 3.2 [Burgers tensor] For a selected reference point x0 ∈ ΩL, the Burgers tensor is defined on the entire domain Ω as the distribution

∂ l b ⋆ k (x; x0) := E ⋆ kl (x) + ǫ kpq (xp -x0p)∂ l ω ⋆ q (x). (3.8)
The Burgers tensor can be integrated in the same way as the Frank tensor along any parametric curve Γ, providing for selected x0, ω ⋆ 0k and u ⋆ 0k the multivalued displacement vector u ⋆ k of index 2:

u ⋆ k = u ⋆ k (#Γ, ω ⋆ 0 , u ⋆ 0 ) = u ⋆ 0k + ǫ klm ω ⋆ l (x; Γ)(xm -x0m) + Γ ∂ l b ⋆ k (ξ)dξ l , which is a function of #Γ only. It may be observed that ∂ l b ⋆ k and the vector b ⋆ k = u ⋆ k -ǫ klm ω ⋆ l (xm -x0m) are related in the same way as ∂mω ⋆ k and ω ⋆ k , including the fact that ∂ l b ⋆ k = ∂ (s) l b ⋆ k on ΩL. The jumps of b ⋆ k along #C and of u ⋆ k at x along #C (which depends on #C only) are defined as [b ⋆ k ](#C; x0) = [u ⋆ k ](x; #C; x0) -ǫ klm [ω ⋆ l ](#C)(xm -x0m) = C ∂ l b ⋆ k dξ k . (3.9)
Let us now, for the sake of simplicity, focus on the case of a defect line L which (i) can itself be represented as a single C 0 , closed or not, parametric line without multiple points except possibly its extremities and (ii) is isolated in the sense that each of its points x is located inside a smooth surface S(x) bounded by a loop C(x) and such that S(x) \ {x} ⊂ ΩL. Such a defect line L will be called an isolated dislocation or disclination. The jump [ω ⋆ k ] of the rotation vector ω ⋆ k around L is defined as the jump of ω ⋆ k along #C(x) and hence is the same for any x and suitable C(x). Similarly, the jump

[b ⋆ k ] of the vector b ⋆ k around L is defined as the jump of b ⋆ k along #C(x)
and is also the same for any x and suitable C(x), given x0. In fact, the following result is well-known [START_REF] Kleinert | Gauge fields in condensed matter[END_REF]:

Theorem 3.1 [Weingarten] The rotation vector ω ⋆ k is a multifunction of index 1 on ΩL whose jump Ω ⋆ k := [ω ⋆ k ] around L is an invariant of the defect-line L. Moreover, for a given x0, the vector b ⋆ k is a multifunction of index 1 on ΩL whose jump B ⋆ k := [b ⋆ k ] around L is an invariant of the defect-line. Proposition 3.1 [Multiple-valued displacement
field] ¿From a symmetric smooth linear strain tensor E ⋆ ij on ΩL and a point x0 where the displacement and rotation are given, a multivalued displacement field u ⋆ i of index 2 can be constructed on ΩL such that the symmetric part of the deformation gradient ∂ (s) j u ⋆ i is the single-valued strain tensor E ⋆ ij on ΩL while its skew-symmetric part is the multivalued tensor ω ⋆ ij := -ǫ ijk ω ⋆ k .

2 We note that the curve C could be non rectifiable, i.e. of infinite length. In fact, integrals on fractal curves and the related Stokes' and Gauss-Green's theorems are analysed by [START_REF] Harrison | The Gauss-Green theorem for fractal boundaries[END_REF], where it is shown, by the C ∞ -smoothness of the differential form ∂mω ⋆ k dxm on Ω L that Eq. (3.7) still holds even when the Hausdorff dimension of C is higher than 1. ¿From this result, the Frank and Burgers vectors can be defined as invariants of the single isolated line L. Definition 3.3 [Frank and Burgers vectors] The Frank vector of the line L is the invariant

Ω ⋆ k := [ω ⋆ k ], (3.10) 
while for a given reference point x0 its Burgers vector is the invariant

B ⋆ k := [b ⋆ k ] = [u ⋆ k ](x) -ǫ klm Ω ⋆ l (xm -x0m). ( 3 

.11)

A defect line with non-vanishing Frank vector is called a disclination while a defect line with non-vanishing Burgers vector is called a dislocation.

Clearly a disclination should always be considered as a dislocation by appropriate choice of x0 while the reverse statement is false since Ω ⋆ k might vanish. This is why in the present paper, the word "dislocation" means in the general sense a dislocation and/or a disclination. A pure dislocation is a dislocation with vanishing Frank vector.

Remark 3.1 Two distinct reference points x0 and x ′ 0 define two distinct Burgers vectors, related by

B ⋆ k -B ′⋆ k = ǫ klm (x0m -x ′ 0m )Ω ⋆ l ,
in such a way that B ⋆ k Ω k is an invariant independent of the arbitrary choice of x0. Therefore, for a non-zero Frank vector, the vanishing of the Burgers vector depends on the arbitrary choice of x0.

The following result can be readily shown and is fundamental in the framework of our investigations since it implies conservation laws at the meso-and macro-scales. Theorem 3.2 Single disclination and dislocation lines are always closed or end at the boundary of Ω. Moreover,

∂iΘ ⋆ ij = 0 ∂iα ⋆ ij = -ǫjmnΘ ⋆ mn .
Definition 3.4 (Mesoscopic strain incompatibility) According to Eq. ( 3.1) combined with Eq. (3.3), the incompatibility tensor is defined by

η ⋆ lk := ǫ lmn ∂m∂nω ⋆ k .
The strain field is called compatible on the set U if the associated incompatibility tensor vanishes on U .

4 Distributional analysis of incompatibility for a single rectilinear dislocation 4.1 The 2D model for rectilinear dislocations 2D elasticity means that the strain E ⋆ ij is independent of the "vertical" coordinate z. However this assumption introduces no restriction on the dependence of the multiplevalued displacement and rotation fields upon z.

Notations 4.1 Henceforth the single defect line will be assumed to be located along the z-axis. The two planar coordinates will be denoted by x and y or xα. The projection of x = (xα, z) on L is x = (0, 0, z). By convention, Latin indices i, j, k, l, • • • take their values from 1 to 3 and are basically used for 3D elasticity, while Greek indices α, β, γ, δ, • • • take the values 1 or 2 and are used for 2D elasticity. Symbols (ex, ey, ez) or (eα, ez) denote the Cartesian base vectors, while (er, e θ , ez) denote the local cylindrical base vectors. For a planar curve C, the notation dCα(x) = ǫ αβ dx β will be used for the curve normal.

Let us observe that many fields are singular at the origin and that ΩL is in fact the domain where the laws of linear elasticity apply. Moreover, the strain can be decomposed into three tensors:

E ⋆ ij = δαiδ βj E ⋆ αβ planar strain + δizδjγ E ⋆ γz + δjzδiγ E ⋆ γz 3D shear +δizδjzE ⋆ zz .
pure vertical compression

The following propositions can be readily proved from Assumption 3.1:

Proposition 4.1 [2D compatibility]
In ΩL, from 2D strain compatibility, there are real numbers K, aα and b such that 

   ǫαγ ǫ βδ ∂α∂ β E ⋆ γδ = 0, ǫ αβ ∂αE ⋆ βz = K, E ⋆ zz = aαxα + b.
xα∂ β ω ⋆ κ dx β + ǫ κβ E ⋆ βz dxα = 0,
provided the length of C is uniformly bounded and as long as the convergence C(x) → x is understood in the Hausdorff sense, i.e. in such a way that

max{ x -x , x ∈ C(x)} → 0.
Proof. The second compatibility condition of Eq. (4.1) is equivalent to

∂γE ⋆ βz -∂ β E ⋆ γz = Kǫ γβ ,
from which, so far as 2D elasticity is concerned,

∂ β ω ⋆ κ := ǫκγ ∂γ E ⋆ βz = ǫκγ ∂ β E ⋆ γz -Kδ κβ ,
and

xα∂ β ω ⋆ κ + δ αβ ǫκγ E ⋆ γz = ∂ β xαǫκγ E ⋆ γz -xαKδ κβ .
Since, under the limit assumptions of this lemma, lim

C(x)→x C(x) xαdxκ = 0,
and since the strain is a single-valued tensor, the proof is achieved.

Lemma 4.2 In 2D elasticity the planar Frank vector Ω ⋆ α vanishes.

Proof. Since

∂ β b ⋆ τ = E ⋆ βτ + ǫτγ (xγ -x0γ )δ β ω ⋆ z -ǫτγ (z -z0)δ β ω ⋆ γ ,
the planar Burgers vector simply writes as

B ⋆ τ = C E ⋆ βτ + ǫτγ (xγ -x0γ )δ β ω ⋆ z dx β -ǫτγ(z -z0)Ω ⋆ γ ,
where C is any planar loop. By Weingarten's theorems the Burgers vector is a constant while the integrand is independent of z, from which the result obviously follows.

In general, the present theory does not make any use of the linear elasticity constitutive laws and of the momentum and energy conservation laws, since in the framework of Continuum Mechanics arbitrary body forces and heat supply could be applied. However the remaining of this section will be devoted to present the three classical examples of 2D line-defects for which the medium is assumed to be body force free and isothermal (detailed computations are given in Appendix A).

• Pure screw dislocation. From Eq. (A.7), (A.9), and Proposition A.1, the displacement and rotation vectors write as

u ⋆ i ei = B ⋆ z θ 2π ez and ω ⋆ i ei = 1 2 ∇ × u ⋆ i ei = B ⋆ z 4πr er, (4.2)
in such a way that the jump [ω ⋆ i ] vanishes identically, while from Eq. (A.8) the Cartesian strain writes as

[E ⋆ ij ] = -B ⋆ z 4πr 2   0 0 y 0 0 -x y -x 0   . (4.3)
Moreover, in ΩL, appealing to Eq. (4.3), the Frank tensor writes as

[∂mω ⋆ k ] = -B ⋆ z 4πr 2   cos 2θ sin 2θ 0 sin 2θ -cos 2θ 0 0 0 0   . (4.4)
• Pure edge dislocation. From Eq. (A.6), (A.7), and Proposition A.1, the displacement is the vector

u ⋆ i ei = -B ⋆ y (log r R + 1) 2π ex + B ⋆ y θ 2π ey,
while the rotation ω ⋆ i vanishes together with its jump. The Cartesian strain writes from Eq. (A.5) as

[E ⋆ ij ] = -B ⋆ y 2πr 2   x y 0 y -x 0 0 0 0   , (4.5)
noting that the tensor ∂mω ⋆ k = ∇ω vanishes identically in ΩL. • Wedge disclination. From Eqs. (A.7), (A.6), and Proposition A.1, the rotation vector is

ω ⋆ i ei = Ω ⋆ z θ 2π ez,
with the multiple-valued planar displacement field given by

u ⋆ x -iu ⋆ y = Ω ⋆ z 4π (1 -ν * )x ln( r R ) - Ω ⋆ z 8π (1 + ν * )x - Ω ⋆ z 2π yθ -i Ω ⋆ z 4π (1 -ν * )y ln( r R ) - Ω ⋆ z 8π (1 + ν * )x + Ω ⋆ z 2π xθ (4.6)
and a vanishing Burgers vector:

B ⋆ x -iB ⋆ y = [u ⋆ x ] -i[u ⋆ y ] + Ω ⋆ z (y + ix) = 0.
The Cartesian strain writes from Eq. (A.5) as

[E ⋆ ij ] = Ωz(1 -ν ⋆ ) 4π   (log r R + 1) 0 0 0 (log r R + 1) 0 0 0 0   - Ω ⋆ z (1 + ν * ) 8π   cos 2θ sin 2θ 0 sin 2θ -cos 2θ 0 0 0 0   , (4.7) 
and hence

[∂mω ⋆ k ] - Ω ⋆ z 2πr   0 0 sin θ 0 0 -cos θ 0 0 0   . (4.8)
Remark 4.1 It should be noted that the energy density (or compliance)

E ⋆ = 1 2 σ ⋆ ij E ⋆ ij
is not L 1 -integrable for both kinds of dislocations, while it is finite for the wedge disclination. Therefore, a Hadamard finite part distribution [START_REF] Schwartz | Théorie des distributions[END_REF][START_REF] Estrada | Regularization, pseudofunction, and Hadamard finite part[END_REF]) is needed to represent the compliance at the meso-scale (another approach makes use of strain mollification by a so-called core tensor [START_REF] Koslowski | A phase field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystal[END_REF]). This issue, whose solution requires to develop matched asymptotic expansions around the singular line in accordance with the infinitesimal displacement hypothesis, will not be addressed further in the present paper which only focuses on the geometry of dislocations.

Mesoscopic incompatibility for a single defect line

For 2D problems the incompatibility vector contains all the information provided by the general incompatibility tensor. The latter expresses on the one hand the noncommutative action of the defect line over the second derivatives of the rotation vector and on the other hand is related to concentrated effects of the Frank and Burgers vectors along the defect line.

Definition 4.1 In the 2D case, the mesoscopic incompatibility vector is defined by

η ⋆ k := ǫ αβ ∂α∂ β ω ⋆ k .
(4.9)

A strain field is compatible if the associated incompatibility vector vanishes.

As shown in the following sections, concentration effects will be represented by means of first-and second-order distributions.

Notations 4.2 Recalling Notations 4.1, Ωz and Ω 0 z stand for the sets Ωz := {x ∈ Ω such that x = (xα, z)} and Ω 0 z := Ωz \ L, while the radius r = xx is the distance from a point x inside Ω to L. Then, the 1D Hausdorff measure concentrated on L is denoted by δL (cf [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF], [START_REF] Evans | Measure theory and fine properties of functions[END_REF] and [START_REF] Mattila | Geometry of sets and measures in Euclidean spaces-Fractals and rectifiability[END_REF] for general definitions and properties on the geometric measure theory).

In what follows the hypothesis consists in assuming that the strain radial dependence in the vicinity of L is less singular than a critical threshold. This is verified for instance by the wedge disclination whose strain radial behaviour is O(ln r) and by the screw and edge dislocations whose strains are O(r -1 ). 3 For a straight defect-line L, according to these examples, the hypotheses on the strain and Frank tensors read as follows:

3 A function f (ǫ) is said to be O (g(ǫ)) (ǫ → 0 + ) if there exists K, ǫ 0 > 0 s.t. 0 < ǫ < ǫ 0 ⇒ |f (ǫ)| ≤ K|g(ǫ)|. A function f (ǫ) is said to be o (g(ǫ)) (ǫ → 0 + ) if lim ǫ→0 + f (ǫ) g(ǫ) = 0.
Assumption 4.1 [2D strain for line defects] The strain tensor E ⋆ ij is independent of the vertical coordinate z, is compatible on ΩL in the sense that conditions (4.1) hold, is smooth on ΩL and L 1 -integrable on Ω.

Assumption 4.2 [Local behaviour] The strain tensor E ⋆ ij is assumed to be o(r -2 ) (ǫ → 0 + ) while the Frank tensor is assumed to be o(r -3 )(ǫ → 0 + ).

Theorem 4.1 [Main result for a single line] Under Assumption 4.1 and 4.2, for a dislocation located along the z-axis, incompatibility as defined by Eq. (4.9) is the vectorial first order distribution

η ⋆ k = δ kz η ⋆ z + δ kκ η ⋆ κ ,
where its vertical component is

η ⋆ z = Ω ⋆ z δL + ǫαγ B ⋆ γ -ǫ βγ x 0β Ω ⋆ z ∂αδL, (4.10)
while its planar components are

η ⋆ κ = 1 2 ǫκαB ⋆ z ∂αδL. (4.11)
Proof. For some small enough ǫ > 0 and using Notations 3.1 a tube ⊙ǫ can be constructed around L and inside Ω. Assuming that the smooth 3D test-function ϕ has its compact support containing part of L, Ωǫ,z denotes the slice of Ω \ ⊙ǫ obtained for a given x ∈ L, i.e.

Ωǫ,z := {x ∈ Ωz such that ||xα|| > ǫ}, while the boundary circle of Ωǫ,z is designated by Cǫ,z.

Let us firstly treat the left-hand side of Eq. (4.10). Indeed, from Definition 4.1 with Eq. (3.2), Definition 3.1, and Eqs. (3.3) and (3.4), it follows that

< η ⋆ k , ϕ >= L dz lim ǫ→0 + Π k (z, ϕ, ǫ),
where

Π k (z, ϕ, ǫ) := - Ωǫ,z ǫ αβ ∂ β ω ⋆ k ∂αϕdS - Cǫ,z ǫ αβ ǫ kγn E ⋆ βn ∂αϕdCγ.
The boundedness of |∂τ ∂ δ ϕ| on ΩL provides the following Taylor expansions of ϕ and of ∂αϕ around x:

ϕ(x) = ϕ(x) + rνα∂αϕ(x) + r 2 2 ντ νδ ∂τ ∂ δ ϕ (x + γ1(x -x)) , (4.12) ∂αϕ(x) = ∂αϕ(x) + rντ ∂τ ∂αϕ (x + γ2(x -x)) , (4.13) with 0 < γ1(x -x), γ2(x -x) ≤ 1.
Consider the first term of Eq. (4.12), noted Πk . By virtue of strain compatibility on ΩL and Gauss-Green's theorem, this term writes as

Πk (z, ϕ, ǫ) := - Ωǫ,z ∂γ ǫ γβ ∂ β ω ⋆ k ϕ dS = Cǫ ǫ γβ ∂ β ω ⋆ k ϕdCγ.
Since by Notations 4.1 rνα := xαxα = xα, then Eq. (4.12) and Assumption 4.2 show that, for ǫ → 0 + , Πk =

Cǫ,z

ǫ γβ ∂ β ω ⋆ k ϕ(x) + xα∂αϕ(x) dCγ + o(1).
Consider the second term of Eq. (4.12), noted Π ⋆ k . On account of Assumption 4.2 and by expansion (4.13), this term may be rewritten as

Π ⋆ k (z, ϕ, ǫ) := - Cǫ,z ǫ αβ ǫ kγn E ⋆ βn ∂αϕdCγ = -∂αϕ(x) Cǫ,z ǫ αβ ǫ kγn E ⋆ βn dCγ + o(1).
From Weingarten's theorem, recalling that dCγ = ǫγτ dxτ , the expression Π k = Πk + Π ⋆ k writes as

Π k = ∂αϕ(x) Cǫ,z xα∂τ ω ⋆ k -ǫ αβ ǫ kγn ǫγτ E ⋆ βn dxτ + Ω ⋆ k ϕ(x) + o(1). (4.14)
Consider the first term of Eq. (4.14), noted Π ′ k , and take δ = γ in the identity

ǫ kδn ǫγτ = δ kz (δ γδ δnτ -δnγ δ τ δ ) -δnz (δ γδ δ kτ -δ kγ δ τ δ ) (4.15)
in such a way that

Π ′ k ∂αϕ(x) Cǫ,z xα∂τ ω ⋆ k -δ kz ǫ αβ E ⋆ βτ + δ kτ ǫ αβ E ⋆ βz dxτ . (4.16)
The cases k = z and k = κ are treated separately.

• When k = z, Definition 3.2 shows that

∂ β b ⋆ τ := E ⋆ βτ + ǫτγ (xγ -x0γ )∂ β ω ⋆ z -ǫτγ (z -z0)∂ β ω ⋆ γ
which, after multiplication by ǫτα and using Eq. (4.15) with τ, α and z substituted for k, δ and n, is inserted into Eq. (4.16), thence yielding:

Π ′ z = ∂αϕ(x) Cǫ,z ǫτα∂ β b ⋆ τ + x0α∂ β ω ⋆ z + (z -z0)∂ β ω ⋆ α dx β , (4.17)
and consequently, from the definitions of the Frank and Burgers vectors,

lim ǫ→0 + Π ′ z = ≪ {ǫατ B ⋆ τ -(z -z0)Ω ⋆ α -x0αΩ ⋆ z } ∂αδ0, ϕz ≫, (4.18)
where δ0 is the 2D Dirac measure located at 0 and ϕz(xα) := ϕ(xα, z), while symbol ≪ •, • ≫ denotes the 2D distribution by test-function product.

• When k = κ, Definition 3.2 shows that

∂ β b ⋆ z := E ⋆ βz + ǫγτ (xγ -x0γ)∂ β ω ⋆ τ ,
from which, after multiplication by ǫκα, it results that:

xα∂τ ω ⋆ κ = -ǫκα∂τ b ⋆ z + ǫκαE ⋆ τ z + x0α∂τ ω ⋆ κ + (xκ -x0κ)∂τ ω ⋆ α .
Then, by Lemma 4.1 with a permutation of indices κ and α, Eq. (4.16) also writes as

Π ′ κ = ∂αϕ(x) Cǫ,z -ǫκα∂ β b ⋆ z + ǫκαE ⋆ βz + x0α∂ β ω ⋆ κ -x0κ∂ β ω ⋆ α dx β +o(1).
On the other hand, from Eq. (4.16) and Lemma 4.1 (i.e. from strain compatibility) it follows that:

Π ′ κ = ∂αϕ(x) Cǫ,z -ǫ κβ E ⋆ βz dxα + ǫ αβ E ⋆ βz dxκ + o(1) = ∂αϕ(x) Cǫ,z ǫακE ⋆ βz dx β + o(1). (4.19)
By summing this latter expression of Π ′ κ with Eq. (4.19), from the definitions of the Frank and Burgers vector it follows that

Π ′ κ = 1 2 ∂αϕ(x)ǫακ B ⋆ z -ǫ γβ Ω ⋆ γ x 0β + o(1). (4.20)
Hence, in the limit ǫ → 0 + Eq. (4.20) writes as

lim ǫ→0 + Π ′ κ =≪ 1 2 ǫκαB ⋆ z - 1 2 ǫκαǫ γβ Ω ⋆ γ x 0β ∂αδ0, ϕz ≫ . (4.21)
Therefore, the result is proved on Ω 0 z , since

lim ǫ→0 + Π k (z, ϕ, ǫ) = lim ǫ→0 + Π ′ k (z, ϕ, ǫ)+ ≪ Ω ⋆ k δ0, ϕz ≫ . (4.22)
As suggested by Eq. (4.12), to obtain the result for the entire domain Ω it suffices to integrate Eqs. (4.17) and (4.20) and expression Ω ⋆ k ϕ(x) over L, in order to replace δ0 by the line measure δL in Eqs. (4.18), (4.21) and (4.22). By Eqs. (4.12), (4.18), (4.21) and (4.22), the proof is achieved.

Applications of the main result

Throughout this section (x, y, z) denotes a generic point of ΩL and all tensors are written in matrix form in the Cartesian base (ex, ey, ez).

• Screw disclocation. Since B ⋆ γ = Ω ⋆ z = 0, Eq. (4.11) yields [η ⋆ k ] = B ⋆ z 2   ∂yδL -∂xδL 0   .
This result is easily verified with use of Eq. (3.6). One needs to compute Ω ǫ kpn ǫ αβ E ⋆ βn ∂p∂αϕdV , that is to calculate the integral of

B ⋆ z 4π   ∂y∂xϕ cos θ r + ∂ 2 y ϕ sin θ r -∂ 2 x ϕ cos θ r -∂x∂yϕ sin θ r 0   .
By integration by parts, using Gauss-Green's theorem on Ω, and recalling that test-functions have compact supports and that ∂m log r = xm r 2 , these integrals become

- B ⋆ z 4π Ω   ∂yϕ ∂x cos θ r + ∂y sin θ r -∂xϕ ∂x cos θ r + ∂y sin θ r 0   dV B ⋆ z 4π Ω   -∂yϕ∂ 2 m log r ∂xϕ∂ 2 m log r 0   dV.
Hence, from ∆ (log r) = 2πδL, the first statement is verified.

• Edge dislocation. Whereas ∂mω ⋆ k identically vanishes on ΩL, it is easily seen that Eqs. (4.10) and (4.11) with

B ⋆ z = Ω ⋆ z = 0 yield [η ⋆ k ] = B ⋆ y   0 0 ∂xδL   . We must compute [η ⋆ k ] = Ω ǫ pnk ǫ αβ E ⋆ βn ∂p∂αϕdV .
For k = 1 and 2 and with n = 3, the tensor ǫ αβ E ⋆ βn ∂p∂αϕ equals E ⋆ yx ∂z∂yϕ -E ⋆ yy ∂z∂xϕ and E ⋆ xy ∂z∂xϕ -E ⋆ xx ∂z∂yϕ respectively. By integration by parts, the related integrals vanish. For k = 3, the integrand is

ǫpnzǫ αβ E ⋆ βn ∂p∂αϕE ⋆ xx ∂y∂yϕ + E ⋆ yy ∂x∂xϕ -2E ⋆ xy ∂y∂xϕ.
Integration by parts provides the expression Ω -By 2π ∂xϕ∆(log r)dV , achieving the second verification.

• Wedge disclination. Incompatibility reads

[η ⋆ k ] = Ω ⋆ z   0 0 δL   .
We must calculate < η ⋆ k , ϕ >. For k = 1, k = 2, n = 0 and p = 3 the integrand vanishes. For k = 3, one computes

ǫpnǫ lm E ⋆ mn ∂p∂ l ϕ = Ω ⋆ z (1 -ν ⋆ ) 4π ϕ∆(log r R ) + Ω ⋆ z (1 -ν ⋆ ) 4π ϕ∆(log r R ) = Ω ⋆ z 4π (2 * 2πδL),
achieving the third verification.

Distributional analysis of incompatibility for a set of isolated dislocations

In the previous section, a single defect line was considered. However, to address the macro-scale physics, homogenisation must be performed on a set of dislocation lines whose number tends to infinity in order to define regular defect density tensors. Therefore, our goal is to introduce appropriate hypotheses that can easily be applied to a set of defect lines and to a regular defect density as well.

Governing assumptions for the strain and Frank tensors

Besides the strain Assumptions 4.1 two measure hypotheses on the strain derivatives are introduced to replace the local Assumption 4.2 in order to validate Theorem 4.1 in a global framework.

Assumption 5.1 The strain divergence and trace gradient ∂αE ⋆ αi and ∂γE ⋆ κκ are finite Radon measures on Ω. 4Remark 5.1 No assumption could be made on the complete Lebesgue integrable strain gradient without contradicting the 2D examples of Appendix A. On the other hand, it can be shown that the sharp Assumption 5.1 are required to demonstrate Proposition 5.4.

Remark 5.2 Assumption 5.1 is natural in infinitesimal elasticity if one considers the strain-stress constitutive law and the equilibrium laws. As a consequence, the stress divergence must be a measure on Ω.

The following Lemmas are needed for the proof of Proposition 5.4.

Lemma 5.1

• A solenoidal distributional vector field aα on Ωz writes as aα = ǫαγ ∂γ φ, (5.1)

with φ ∈ D ′ (Ωz).

• A symmetric solenoidal distribution tensor a αβ on Ωz writes as

a αβ = ǫαγ ǫ βτ ∂γ ∂τ ψ, (5.2) with ψ ∈ D ′ (Ωz).
Proof.

• First statement. Let φ0 be any x2-primitive distribution of a1 [START_REF] Schwartz | Théorie des distributions[END_REF]. Then ∂2φ0 = a1 and, from the solenoidal property of aα, there exists a distribution G( x1 • For a given L 1 (Ωz)-scalar function f , there exists an irrotational distribution field g β such that

∂ β g β = f .
(5.3)

• For a given L 1 (Ωz)-vector function f β such that ∂ β f β = ∆g where g is a L 1 (Ωz) function, there exists a symmetric compatible tensor g αβ on Ωz such that

∂αg αβ = f β .
(5.4)

Proof.

• First statement. It is sufficient to consider an ultra-weak solution [START_REF] Brezis | Analyse fonctionnelle[END_REF] of ∆H = f and to define g β = ∂ β H.

• Second statement. By primitivation, there is a non-compatible L 1 (Ωz)-field g ⋆ αβ such that f1 = ∂1g ⋆ 11 , f2 = ∂2g ⋆ 22 and 0 = g ⋆ 21 = g ⋆ 12 . A necessary condition for g αβ to exist is that ĝαβ = g αβg ⋆ αβ verifies ∂αĝ αβ = 0, or by Lemma 5.1 that ĝαβ = ǫαγ ǫ βτ ∂γ∂τ φ for some gauge distribution φ. In order that g αβ be compatible on Ωz, φ must satisfy the following equation, equivalent to the 2D compatibility of g αβ on Ωz:

∆∆φ = ∆g ⋆ κκ -∂ β ∂αg αβ = ∆(g ⋆ κκ -g).
(5.5)

Up to a harmonic and hence smooth function on Ωz, the solution of Eq. (5.5) is the solution of ∆φ = g ⋆ κκg. Since the right-hand side is L 1 (Ωz), a solution φ exists in the ultra-weak sense and hence the existence of a symmetric compatible distribution field g αβ on Ωz verifying Eq. ( 5.4) follows.

Lemma 5.3 For constant C and C β , there are a vector gκ and a symmetric, compatible tensor G αβ on Ωz such that ∂κgκ = Cδ0,

(5.6)

∂αG αβ = C β δ0.
(5.7)

Proof. The solutions are given by gκ = (2π) -1 ∂κ log r and G αβ = 1 2 (∂αH β +∂ β Hα), where

H1 = C1 2π 3 2 log r - x 2 1 2r 2 -C2 x1x2 4πr 2 , H2 = C2 2π 3 2 log r - x 2 2 2r 2 -C1 x1x2 4πr 2 .
Lemma 5.4 Under Assumptions 4.1 and 5.1, the strain components can be put in the form:

E ⋆ κz = Eκ + eκ, (5.8) E ⋆ αβ = E αβ + e αβ , (5.9) 
where vector Eκ has a vanishing curl on Ωz for any given z while vector eκ is o(r -2 ) as r → 0 + , and where tensor E αβ is compatible on Ωz for any given z while tensor e αβ is o(r -2 ) as r → 0 + .

Proof. By Assumption 5.1, ∂κE ⋆ κi is a Radon measure on Ωz, and hence writes by Radon-Nykodým's decomposition theorem as (5.10) where fi ∈ L 1 (Ωz) and where φi is a Radon measure on Ωz singular with respect to Lebesgue's measure. As a mere consequence of the smoothness of ∂κE ⋆ κi on Ω 0 z , φi is a concentrated measure on Ωz and hence is proportional to the Dirac mass δ0, φi = Ciδ0 = (2π) -1 Ci∂ 2 κ log r.

∂κE ⋆ κi = fi + φi,
(5.11)

First statement.

• By Eqs. (5.10), (5.11) with i = z, and Lemma 5.2, there exists an irrotational gκ such that ∂κ E ⋆ κzgκ -(2π) -1 Cz∂κ log r = 0, in such a way that, by Lemma 5.1,

E ⋆ κz -gκ -(2π) -1 Cz∂κ log r = ǫκγ ∂γ ψ, (5.12)
where ψ is a distribution. Apply the curl operator to Eq. ( 5.12) and take into account the irrotational property of gκ in such a way that ∆ψ = ǫ κβ ∂ β E ⋆ κz . Since E ⋆ κz is a L 1 -vector, its curl is a first-order distribution5 and hence, by the strain compatibility which ensures the curl of E ⋆ κz to be a constant K on Ω 0 z and a combination of the Dirac mass and its first-order derivatives at the origin [START_REF] Schwartz | Théorie des distributions[END_REF], writes as K + cδ + cγ ∂γ δ.

• Now in the resulting equation (5.13) the term on the left-hand side is the divergence of a L 1 -vector, and hence Eq.

∂ β ǫ κβ E ⋆ κz -(2π) -1 c∂ β log r - K 2 x β = cγ ∂γδ,
(5.13) has no distributional solution unless cγ = 0.

• It results that ∆ψ = K + (2π) -1 c∆(log r) provides a gauge field ψ which writes as

ψ = h + (2π) -1 c log r, (5.14)
where h is a solution of ∆h = K on Ωz. It is easily verified that the curl of ψ is o(r -2 ) as r → 0 + .

• Defining Eκ = gκ + (2π) -1 Cz∂κ log r and eκ = ǫκγ ∂γψ in Eq. ( 5.12) achieves the first statement proof.

Second statement.

• Let us prove that the divergence of fi is the Laplacian of an L 1 (Ωz) function.

In fact, since η ⋆ z writes as (5.15) it is from Assumption 5.1 a concentrated first-order distribution writing as a combination of the Dirac mass and its first-order derivatives. Hence: (5.16) where ĉ, ĉγ , c, cγ are constants.

η ⋆ z = ∂α ∂αE ⋆ κκ -∂ β E ⋆ αβ ,
∂ β f β = ∂α∂ β E ⋆ αβ -∂ β φ β = ∆E ⋆ κκ -η ⋆ z -∂ β φ β = ∆E ⋆ κκ -ĉδ0 -ĉγ ∂γδ0 = ∆ (E ⋆ κκ -c log r -cγ ∂γ log r) ,
• From Eqs. (5.10), (5.7), (5.4) and Lemma 5.2, there exists a compatible g κβ such that (5.17) in such a way that, by Lemma 5.1, (5.18) for some gauge field A ∈ D ′ (Ωz) verifying, by the compatibility of g κβ and G κβ on Ωz, the relation

∂κ E ⋆ κβ -g κβ -G κβ = 0,
E ⋆ κβ -g κβ -G κβ = ǫκγ ǫ βτ ∂γ∂τ A,
η ⋆ z = ∆∆A on Ωz. (5.19)
Hence, since the left-hand side writes as a combination of derivatives of δ0 of order lower or equal to 1, the field A is the solution of ∆A = (a + aγ∂γ ) log r with constant a, aγ , up to a smooth harmonic function on Ωz. It follows that A = (a + aγ∂γ ) r 2 4 (log r -1) is a C 0 (Ωz) solution of Eq. ( 5.19) such that:

∂κ∂ β A is o(r -2 ) as r → 0 + .
(5.20)

• The proof is complete with the definitions E κβ = G κβ +g κβ and e κβ = ǫκγ ǫ βτ ∂γ ∂τ A in Eqs. (5.18) and (5.20).

Mesoscopic incompatibility for a set of isolated defect lines

Theorem 5.1 [Main 2D result] Under Assumptions 4.1 and 5.1, for a set L of isolated dislocations parallel to the z-axis and located at the positions x L β , L ∈ L, incompatibility as defined by Eq. (4.9) is the vectorial first order distribution

η ⋆ k = δ kz η ⋆ z + δ kκ η ⋆ κ , (5.21) 
where

• its vertical component is

η ⋆ z = L∈L Ω ⋆ z δL + ǫαγ B ⋆ γ + ǫ βγ (x L β -x 0β )Ω ⋆ z ∂αδL , (5.22) 
• its planar components are

η ⋆ κ = L∈L 1 2 ǫκαB ⋆ z ∂αδL.
(5.23)

Proof. ¿From Lemma 5.4 the strain E ⋆ βn (n = α or z ) is decomposed in compatible parts (E β and E αβ ) and o(r -2 ) parts (e β and e αβ ) to which the demonstration may be limited by linearity. Since from Eqs. (5.14) and (5.20) the gradients ∂γ e β , ∂γ e αβ are o(r -3 ) for r → 0 + , the proof of Theorem 4.1 can be followed for every L ∈ L as soon as E ⋆ βz is replaced by e β and E ⋆ βτ by e βτ . However, since the dislocations are located at positions x L β instead of 0, an additional shift x L β is required in Eq. (5.22).

Mesoscopic defect densities in 2D incompatible elasticity

Since the tensors Θ ⋆ ik , Λ ⋆ ik , α ⋆ ik vanish for i = z, the 2D densities for an ensemble L of rectilinear dislocations write as follows 6 : Definition 5.1

Θ ⋆ k := L∈L δ kz Ω ⋆L z δL (5.24) Λ ⋆ k := L∈L B ⋆L k δL, (5.25) α ⋆ 
k := α ⋆ zk = Λ ⋆ k -δ kα ǫ αβ Θ ⋆ z (x β -x 0β ).
(5.26)

Moreover, in the 2D case, the contortion tensor writes as:

κ ⋆ ij = δizα ⋆ j - 1 2 α ⋆ z δij .
(5.27)

The following result expresses the incompatibility in terms of κ ⋆ ij : Theorem 5.2 Under Assumptions 4.1 and 5.1, the mesoscopic strain incompatibility for a set L of rectilinear dislocations writes as (5.28) or equivalently as

η ⋆ k = Θ ⋆ k + ǫ αβ ∂ακ ⋆ kβ ,
η ⋆ k = Θ ⋆ k + ǫ kαl ∂ακ ⋆ zl .
6 Various notations are used in the literature to represent the defect densities. In particular, [START_REF] Nye | Some geometrical relations in dislocated crystals[END_REF], [START_REF] Kröner | Continuum theory of defects[END_REF] and [START_REF] Kleinert | Gauge fields in condensed matter[END_REF] give different definitions of the dislocation density and contortion tensors (without considering disclinations in the first two cases). We here follow Kröner's and Kleinert's notations for α ⋆ ij and Nye's original definition of κ ⋆ ij , with Nye's α ⋆ ij here denoted by α ⋆ ji . It should be recalled that the term "contortion" was introduced by [START_REF] Kondo | On the geometrical and physical foundations of the theory of yielding[END_REF].

Proof. Consider any straight dislocation L ∈ L located at a given x L ∈ Ω. From Theorem 5.1, incompatibility writes as

η ⋆ k = δ kz Ω ⋆ z δL + ǫαγ B ⋆ γ + ǫ βγ (x β -x 0β )Ω ⋆ z ∂αδL + δ kκ 1 2 ǫκαB ⋆ z ∂αδL.
(5.29)

Taking into account Eqs. (5.24), (5.25), (5.26), and (5.27), and the relation

∂α ((x β -x 0β )δL) = ∂α (x L β -x 0β )δL = (x L β -x 0β )∂αδL,
it results from Theorem 5.1 that incompatibility can be written in the alternative formulation

η ⋆ k (x L ) = Θ ⋆ k (x L ) + ǫ αβ ∂ακ ⋆ kβ (x L ), (5.30) 
or equivalently as

η ⋆ k (x L ) = Θ ⋆ k (x L ) + ǫ kαl ∂ακ ⋆ zl (x L
). The result follows after summation on L ∈ L and using Eqs. (5.24), (5.25), (5.26), and (5.27).

First of all, the tensor ∂j ∂ l u ⋆ k is defined on the entire Ω in a similar way as ∂j ω ⋆ k :

Definition 5.2

∂j∂ l u ⋆ k := ∂jE ⋆ kl + ǫ kpl ∂j ω ⋆ p .
(5.31) By Proposition 3.1, the displacement field u ⋆ k is a multivalued function of index 2, which is obtained on ΩL by recursive line integration of ∂

(s) j ∂ (s) l u ⋆ k = ∂ (s) j (E ⋆ kl + ω ⋆ kl
) and hence by recursive integration of ∂j ∂ l u ⋆ k .

Remark 5.3 In the situation where, for a particular selection of the reference point, the dislocations have vanishing Burgers vectors, the disclination density equals the incompatibility

ǫ αβ ∂α∂ β ω ⋆ k = Θ ⋆ k = η ⋆ k .
(5.32)

Using an arbitrary reference point, this expression is certainly false in the general case where disclinations coexist with dislocations. Moreover, the tensor ∂j ∂ l u ⋆ k does not provide relevant information in terms of defect densities since ǫ ijl ∂j ∂ l u ⋆ k = 0 on Ω.

The mesoscopic vectors and tensors Θ ⋆ k , Λ ⋆ k , α ⋆ k , κ ⋆ k and η ⋆ k are concentrated distributions on the defect lines which provide all the information on dislocation and disclination densities. However, homogenisation to the macro-scale still requires to clarify their link with the multiple-valued rotation and displacement fields. In order to resolve this problem, the tensors ∂j ω ⋆ k and ∂j ∂ l u ⋆ k are completed by appropriate concentrated effects in the defect lines, without however modifying their relationship with the multiple-valued displacement and rotation fields defined in ΩL.

Definition 5.3 ð β ω ⋆ k := ∂ β ω ⋆ k -κ ⋆ kβ , (5.33) ðαð β u ⋆ k := ∂α∂ β u ⋆ k -ǫ kpβ κ ⋆ pα = ∂αE ⋆ kβ + ǫ kpβ ðαω ⋆ p .
(5.34)

Theorem 5.3 The vector and tensor distributions ð β ω ⋆ k and ðαð β u ⋆ k verify:

MESOSCOPIC DISCLINATION DENSITY Θ ⋆ k = ǫ αβ ∂αð β ω ⋆ k , (5.35) MESOSCOPIC DISLOCATION DENSITY α ⋆ k = ǫ αβ ðαð β u ⋆ k .
(5.36)

Proof. The first statement is a mere consequence of Eq. (5.28) while the second one follows from Eq. (5.33) by simple calculations, noting that ∂mω ⋆ m = 0 on Ω and that

α ⋆ k = κ ⋆ zk -κ ⋆ pp δ zk .
(5.37)

Remark 5.4 Eqs. (5.35) and (5.24) directly show that

S ǫ αβ ∂αð β ω ⋆ k dS = S Θ ⋆ k dS = L∈L C Ω ⋆L k , (5.38) 
where the domain S is bounded by the counterclockwise-oriented Jordan curve C, which encloses once each defect line of the subset LC of L. Similarly, Eqs. (5.36) and (5.26) show that

S ǫ αβ ðαð β u ⋆ k dS = S (Λ ⋆ k -δ kα ǫ αβ Θ ⋆ z (x β -x 0β )) dS, = L∈L C B ⋆L k -δ kα ǫ αβ Ω ⋆L z (x L β -x 0β ) .
(5.39)

Remark 5.5 The vector ∂ l ω ⋆ z does not verify Stokes theorem, neither in the classical sense, since ǫ αβ ∂α∂ β ω ⋆ z is singular at x L , nor in a measure theoretical sense, since ǫ αβ ∂α∂ β ω ⋆ z is not a measure but a first-order distribution given by Eq. (5.22). As often observed in the literature, even in an inappropriate context, a formal use of Stokes theorem may give a correct final result. We here prefer to avoid any confusion and hence to mention that, in view of a clarification of Stokes' theorem in the context of defective crystals, the following formula holds and can be proved as a consequence of the previous definitions:

C ð l ω ⋆ z dx l = S C
ǫ αβ ∂αð l ω ⋆ z dS.

(5.40)

6 Macroscopic analysis 6.1 A first approach to homogenisation from meso-to macro-scale

The mesoscopic results given in the previous sections are now homogenised (in an appropriate manner, whose description [START_REF] Kröner | Benefits and shortcomings of the continuous theory of dislocations[END_REF] is not the purpose of this paper). Indeed, in the context of linear elasticity, the macroscopic elastic strain Eij is obtained by averaging the mesoscopic stress σ ⋆ ij and hence the macroscopic elastic incompatibility η ik is obtained by averaging the mesoscopic incompatibility η ⋆ ik . Moreover the defect densities are homogenised and the macroscopic counterparts of Θ where E kβ and κ kβ define the macroscopic elastic strain and contortion.

⋆ k , Λ ⋆ k , α ⋆ k and κ ⋆ ij write as Θ k , Λ k , α k ,
Moreover, the macroscopic counterpart of Theorem 5.2 (i.e. the fundamental equation "inc E = Θ + curl κ" of the continuum theory of defects by [START_REF] Kröner | Continuum theory of defects[END_REF] [START_REF] Harrison | The Gauss-Green theorem for fractal boundaries[END_REF], then

Ω k (S) = C ð β ω k dx β .
Moreover, in the absence of disclinations, B k (S) = S α k dS.

The macroscopic density tensors Λ k and κij , as obtained from the single-valued mesoscopic densities, have a geometrical interpretation [START_REF] Kröner | Continuum theory of defects[END_REF]Anthony, 1970) which will be discussed in the following section. Indeed, α k is directly related to the torsion of a body submitted to an incompatible purely elastic deformation to which a non-Riemannian connexion is attached due to the contortion κij .

The non-Riemannian macroscopic body

The following geometric objects are introduced after homogenisation of the welldefined mesoscopic elastic strain and defect densities, in order to provide the model of a macroscopic body endowed with a law of parallel displacement together with internal torsion accounting for the defective crystal structure.

Definition 6.3

METRIC TENSOR: gij := δij -2Eij , (6.9) TORSION: ∆Γ k;ij := T j;ik + T i;jk -T k;ji , (6.12)

T k;ij := - 1 2 ǫpij (α pk -ǫ kmn Θpm(xn - x0n 
NON SYMMETRIC CHRISTOFFEL SYMBOLS:

Γ k;ij := Γk;ij -∆Γ k;ij . (6.13) Remark 6.2 The metric of the actual configuration R(t) is δij . Therefore, as required (cf Introduction and Remark 2.1) the reference configuration R0 is nowhere used to introduce the above objects.

Since small displacements are considered, no distinction is to be made between upper and lower indices.

Lemma 6.1 The tensor gij defines a Riemannian metric. The symmetric Christoffel symbols Γk;ij define a symmetric connexion compatible with this metric, while T k;ij and ∆Γ k;ij are skew-symmetric tensors w.r.t. i and j and i and k, respectively. Moreover, the components of T k;ij for i = z or j = z vanish in the 2D case.

Proof. The first statements follow from basic definitions [START_REF] Dubrovin | Modern geometry-methods and applications[END_REF][START_REF] Schouten | Ricci-Calculus[END_REF] while the last one follows from the fact that, in the 2D case, α pk (x L ) and Θpm(x L ) for L ∈ L are proportional to τpδL(x L ) with τp standing for the tangent vector to the defect line.

Proposition 6.1 The Cristoffel symbols Γ k;ij define a non-symmetric connexion compatible with the metric gij and whose torsion writes as T k;ij .8 

Proof. It is easy to verify [START_REF] Dubrovin | Modern geometry-methods and applications[END_REF] Observing that the 1 st term in the right-hand side of Eq. (6.15) writes as ∆Γ k;ij while, by Definition 6.3 (Eq. (6.12)), the left-hand side and the two remaining terms of the right-hand side of Eq. (6.15) are equal to T j;ik , T k;ji and -T i;jk , respectively, the proof is complete.

The following result shows ∆Γ k;ij as directly linked to the contortion κij .

Proposition 6.2 In the 2D case, the contortion tensor ∆Γ k;ij writes in terms of κij as

∆Γ k;ij = δ kκ (δiαδ jβ ǫκακ zβ ) + δiαδjzǫατ κτκ + δizδ jβ ǫ βτ κτκ -δ kz δiαδ jβ ǫ αβ κzz.
Proof. For k = z, by Definition 6.3, the last statement of Lemma 6.1, and Eq. ( 6.1), it is found that ∆Γz;ij = ∆Γ z;αβ δiαδ jβ , with

∆Γ z;αβ = T z;αβ = - 1 2 ǫ αβ αz = -ǫ αβ κzz = - 1 2 ǫατ δ τ β αz = ǫατ κ τ β .
For k = κ, by Definition 6.3 and the last statement of Lemma 6.1, it is found that ∆Γκ;ij = δiαδ jβ (T κ;αβ + T β;ακ + T α;βκ ) + δiαδjzTz;ακ + δizδ jβ T z;βκ , with T z;ξκ = ǫ ξτ κτκ and T ξ;τ ν = -1 2 ǫτν (α ξ + ǫ ξγ Θz(xγ -x0γ )). Since the combination of the terms in Θz vanish in ∆Γκ;ij , the proof is completed by observing that ǫ αβ ακ + ǫκαα β = (ǫακǫτν)ǫ τ β αν = ǫακα β = ǫακκ zβ . The following definition introduces two differential forms related, on the one hand (by Definitions 6.2 and 6.3, and Theorem 6.1 and Proposition 6.1) to the homogenisation of the well-defined mesoscopic defect measures and, on the other hand, as shown by the forthcoming theorem, to macroscopic incompatible rotation and distortion vectors. Definition 6.4 The following differential forms are introduced: (6.16)

dωj := ð β ωj dx β ,
dβ kl := -Γ l;kβ dx β .
(6.17)

In the literature the existence of an elastic macroscopic distortion field is generally postulated [START_REF] Mura | Micromechanics of defects in solids[END_REF][START_REF] Head | An equilibrium theory of dislocation continua[END_REF][START_REF] Cermelli | On the characterization of geometrically necessary dislocations in finite plasticity[END_REF]Gurtin, 2001, 2002;[START_REF] Koslowski | A phase field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystal[END_REF][START_REF] Ariza | Discrete crystal elasticity and discrete dislocations in crystals[END_REF] and the global distortion decomposition in elastic and plastic parts follows9 . The point of view of the present paper is to avoid this kind of a-priori decomposition, which we believe cannot be rigorously justified. Nevertheless, the following theorem introduces rotation and distortion fields (which are not the global rotation and distortion related to the macroscopic strain) in the absence of disclinations. In contrast with the classical literature where it is basically postulated that dislocation density is the distortion curl, this relationship is here well-proved. with β kl = E klǫ klj ωj, and where ω 0 j is arbitrary and the integration is made on any line with endpoints x0 and x. Moreover,

∂αβ kβ = ðαð β u k and ǫ αβ ∂αβ kβ = α k .
(6.20)

Proof. By Definition 6.3, the symmetric part of the connexion writes as

-Γ (l;k)β dx β = - 1 2 ∂ β g kl dx β = - 1 2 ∂mg kl dxm = ∂mE kl dxm = dE kl ,
while, by Definition 6.3 and Proposition 6.2, the skew-symmetric part writes as

-Γ [l;k]β = - 1 2 (∂ k g lβ -∂ l g kβ ) + ∆Γ l;kβ = ∂ k E lβ -∂ l E kβ + ∆Γ l;kβ .
Observing, by Definitions 6.2 and 6.4 and Proposition 6.2, that dωj = ð β ωjdx β = -1 2 ǫ lkj Γ [l;k]β dx β , it results that dβ kl = dE klǫ klj dωj. Under the assumption of a vanishing macroscopic disclination density, the existence of well-defined Bravais rotation and distortion fields follows from Eqs. (6.16) and (6.20), Theorem 6.1, and Remark 6.1. Moreover, since ∂αβ kβ = ∂αE kβǫ kβj ðαωj , by Eq. (6.5), it equals ðαð β u k , completing the proof by Eq. (6.8).

Remark 6.3 Referring to "Bravais" instead of "elastic" rotation and distortion fields is devoted to highlight that these quantities do not have a purely elastic meaning Remark 6.4 The Bravais distortion does not derive from a Bravais displacement in the presence of dislocations. In fact, around a closed loop C, even if the macroscopic disclination density vanishes, the displacement differential as defined by du k := β kα dxα verifies by Theorem 6.2 the relationship:

C du k = S ǫ βα ∂ β β kα dS = α k (S).
(6.21) Remark 6.5 Eq. ( 6.18) indicates that symbol ð in Eq. ( 6.16) becomes a true derivation operator in the absence of disclinations.

Remark 6.6 Theorem 6.1 defines an operation of parallel displacement according to the Bravais lattice geometry. The parallel displacement of any vector vi along a curve of tangent vector dx

(1) α is such that dx

α ∇αvi = 0 and hence that the components of vi vary according to the law d (1) vi = -Γ i;jβ vjdx

(1) β [START_REF] Dubrovin | Modern geometry-methods and applications[END_REF]. This shows the macroscopic Burgers vector and dislocation density together with the Bravais rotation and distortion fields as reminiscences of the defective crystal properties at the nanoscale. In fact, if dx (2) ξ , it results from Eq. (6.10), Remark 6.1, and the skew symmetry of T k;αβ that, in the absence of disclinations,

dB k = α k dS = -ǫ αβ Γ k;αβ dS = -Γ k;αβ (dx (1) α dx (2) β -dx (1) 
β dx (2) α ), whose right-hand side appears as a commutator verifying the relation

dB k = ǫ αβ ðαð β u k dS = -ǫ αβ d (α) (dx (β) ).

Concluding remarks

In this paper we have developed a 2D theory to analyse dislocated single crystals at the meso-scale by combining distributions with multiple-valued kinematic fields. The distributions are basically concentrated along the defect lines, which in turn form the branching lines of the multivalued fields. As a consequence of this analysis, a basic theorem relating the incompatibility tensor (as derived from the deformation field) to the Frank and Burgers vectors of the defect line has been established. This theory provides a framework for the homogenisation of the medium properties from mesoto macro-scale. In particular the macroscopic dislocation density is defined without stipulating an a-priori distorsion decomposition into elastic an plastic parts (which does not exist, actually). The classical relationship between Bravais distortion and dislocation densities, instead of being a definition, now appears as a result taking its origin from the meso-scale analysis. Moreover, the torsion and contortion tensors, which both describe the defective macroscopic crystal, are now properly understood as averages of concentrated mesoscopic tensors. Since the latter are the differentials (in an appropriate sense) of multivalued mesoscopic fields, we have shown how mesoscopic multivaluedness is recovered in the geometric properties of the non-Riemannian macroscopic crystal. In particular, in contrast with the mesoscale (where defects are due to the multivaluedness of the rotation and displacement fields) the macroscopic Burgers vector now appears as the commutator of a non-closed differential operator related to the body torsion. Extension to the 3D case is under investigation. Here, the handling of non-rectilinear curves will be required in the framework of the geometric-measure theory. This should eventually make it possible to consider a set of defect curves, freely occupying the crystal with possible intersections and accumulation regions-forming so-called dislocation clusters. .3) The relations between stress and strain are In this and the following sections, functions of the complex variable Z = x + iy and its conjugate Z are now introduced. Remembering that, compared to holomorphic functions, analytical functions may be multivalued it is easily seen that given two analytic functions f and g, all real functions of the form It should be emphasised that E ⋆ αβ must be a single-valued field.

E ⋆ αβ = 1 + ν * E * σ ⋆ αβ - ν * E * σ ⋆ γγ δ αβ , ( 

A.2 Second group of solutions: vertical displacement field

Another solution concerns the particular case where u ⋆ α = 0, noting that each solution of 2D elasticity can be decomposed into a purely planar and a purely vertical solution. In fact, since stress equilibrium shows that (λ + µ)∂i∂ju ⋆ j + µ∆u ⋆ i = 0, it is easy to infer for i = z that u ⋆ z =

(1 + ν) E ℜ{h(Z)}, (A.7) with h(Z) an analytic function. Then

E ⋆ xz -iE ⋆ yz = (1 + ν) 2E h ′ (Z). (A.8)
The function h ′ (Z) must be uniform. The complex rotation is

ω ⋆ := ω ⋆ x + iω ⋆ y = - i(1 + ν) 2E h ′ (Z).
(A.9)

In 2D isothermal linear elasticity without body forces, every displacement solution has planar components given by Eq. (A.6) and a vertical component given by Eq. (A.7) while the rotation vector has planar components given by Eq. (A.9) and a vertical component given by Eq. (A.7) [START_REF] Sokolnikoff | Mathematical theory of elasticity[END_REF] and [START_REF] Knopp | Theory of functions, Part 1&2[END_REF]).

A.3 The three 2D examples of rectilinear defects

In this section we consider two typical multivalued analytic functions log(Z) and Zlog(Z). Starting from the general uniform strain expressions Eq. (A.5) or Eq. (A.8) it is easily observed that any of the holomorphic functions f ′′ (with ℜ{f ′ } singlevalued), g ′′ and h ′ can provide a solution to the 2D problem. Since these functions can be expanded in Laurent series:

f ′′ (Z) = +∞ -∞
anZ n , g ′′ (Z) = with a-1 real in order that ℜ{f ′ } be uniform. The relevant cases are those which give rise to a dislocation or a disclination, i.e. such that the functions f , f ′ , g ′ , ℜ{h} or ℑ{f ′ } are multivalued. Hence, in order to obtain non-vanishing rotation or displacement jumps, one needs to consider the following cases:

f (Z) = -a-2 ln( Z R ) + a-1Z ln( Z R
), a-1 ∈ Ê, where R is a constant length and to which any purely elastic term may always be added. In fact, from Eqs. (A.6), (A.7), (A.7) and (A.9), and from the definition B ⋆ := B ⋆ x + iB ⋆ y with B ⋆ k given by Eq. (3.11), it follows that:

                         Ω ⋆ z = 4 E * [ℑ{f ′ }], B ⋆ : = B ⋆ x -iB ⋆ y = [u ⋆ x ] -i[uy] -Ω ⋆ z (iz) = 3-ν * E * [f ] -1+ν * E * Z[f ′ ] + [g ′ ] + 4iZ E * [ℑ{f ′ }]
,

Ω ⋆ : = Ω ⋆ x + iΩ ⋆ y = - i(1 + ν) 2E [h ′ ], B ⋆ z = [u ⋆ z ] -ℜ{iZΩ ⋆ } = 1 + ν E [ℜ{h}] - 1 + ν 2E ℜ{Z[h ′ ]} = 1 + ν E [ℜ{h}].
It should immediately be noted that Ω ⋆ vanishes identically since h ′ cannot be multivalued. ¿From Eqs. (A.10)-(A.12) and some easy computations, the only possible solutions are given by the following proposition.

Proposition A.1 For a straight defect line L in 2D elasticity, there are no more than three distinct defect classes. The two dislocation classes are the screw dislocation with a vertical Burgers vectors B ⋆ z , as generated by the analytical function h (f = g = 0), and the edge dislocation with a planar complex Burgers vector B ⋆

x + iB ⋆ y , as generated by the analytical function g (f = h = 0). There is a single class of disclinations, the wedge disclination, which has a vertical Frank vector Ω ⋆ z and is generated by the analytical function f (g = h = 0). These functions are:

WEDGE DISCLINATION f (Z) = E * Ω ⋆ z 8π z ln( Z R ) EDGE DISLOCATION g(Z) = E * (B ⋆ y + iB ⋆ x ) 2(1 + ν * )π Z ln( Z R ) SCREW DISLOCATION h(Z) = iEB ⋆ z 2π(1 + ν) ln( Z R
).

For the edge dislocation, a detailed derivation is given by [START_REF] Eshelby | A simple derivation of the elastic field of an edge dislocation[END_REF].

  Let C(x) denote a family of 2D closed rectifiable curves. Then, in 2D elasticity, the Frank tensor and the strain verify the relation lim C(x)→x C(x)

•

  ) s.t. ∂1φ0 + a2 = G(x1). By x1-primitivation of G(x1), it is easy to find F (x1) s.t. ∂1F = G(x1), and to verify that φ = φ0 + F (x1) solves the problem. Second statement. ¿From ∂αa αβ = 0, there is a distribution φ β s.t. a αβ = ǫαγ ∂γφ β . Then ǫαγ ∂γ (∂ β φ β ) ∂ β a αβ = 0 and hence ∂ β φ β is a constant C or equivalently ∂ β (φ β -1 2 Cx β ) = 0. From Eq. (5.1), there exists a distribution ψ such that φ β -1 2 Cx β = ǫ βτ ∂τ ψ, and hence a αβ = ǫαγ ǫ βτ ∂γ∂τ ψ + 1 2 ǫ αβ C. The symmetry of a αβ implies that C = 0. Lemma 5.2

  and κij , with α k = κ zkκppδ zk and κij = δizαj -Frank and Burgers tensors) The Frank and Burgers vectors crossing a macroscopic surface S are defined as Ω k (S) := S Θ k dS, (6.2) B k (S) := S Λ k dS. (6.3) By homogenisation of Eqs. (5.33) and (5.34), the macroscopic counterparts of Definition 5.3 write as follows: Definition 6.2 ð β ω k := ǫ kpq ∂pE qβκ kβ , (6.4) ðαð β u k := ∂αE kβ + ǫ kpβ ðαωp,(6.5) 

Theorem 6. 2 [

 2 Bravais rotation and distortion fields] If the macroscopic disclination density vanishes, there exists rotation and distortion fields defined as kl (x) := E kl (x 0 )ǫ klj ω 0 j +

  ξ are two infinitesimal vectors with the associated area dS := ǫ νξ dx (1) ν dx

A

  Appendix: Computation of 2D rectilinear dislocationsA.1 First group of solutions: planar displacement field ¿From the constitutive law σ ⋆ ij = λE ⋆ kk δij + 2µE ⋆ ij with λ, µ the Lamé coefficients and since E ⋆ kk = E ⋆ γγ , the following planar law holds:σ ⋆ αβ = κ * E ⋆ γγ δ αβ + 2µE ⋆D αβ , (A.1)with the planar compressibility modulus κ * defined by κ * := λ + µ and the planar deviatoric strain given byE ⋆D αβ = E ⋆ αβ -1 2 E ⋆ γγ δ αβ . ¿From the equilibrium conditions ∂ β σ ⋆ βγ = 0 it follows that σ ⋆ αβ = ǫαγ ǫ βδ ∂γ∂ δ F, (A.2)for a smooth enough Airy function F , in such way thatσ ⋆ αα = ∂ 2 α F = ∆F. (A

F

  = ℜ{Zf + g} satisfy Eq. (A.2) and vice-versa. Eq. (A.3) then shows thatσ ⋆ xx + σ ⋆ yy = 4ℜ{f ′ (Z)}.¿From Eqs. (A.3) and (A.4) the deformation tensor is given by 3ν * )f (Z) -(1 + ν * )(Zf ′ (Z) + g ′ (Z

  1)(n + 2) Z n+2a-2 ln(Z) + a-1Z ln(Z) + A1Z + A0, 1)(n + 2) Z n+2b-2 ln(Z) + b-1Z ln(Z) + B1Z + B0,

  ) = c-1 ln( Z R), c-1 ∈ iÊ, (A.12)

  By Stokes' theorem, if S is a region enclosed by a curve C, which might have only fractal regularity

			7 ) and
	Theorem 5.3 now follow from homogenisation of the mesoscopic defect densities and
	from Definition 6.2:		
	Theorem 6.1		
	KR ÖNER'S IDENTITY	η k = Θ k + ǫ αβ ∂ακ kβ ,	(6.6)
	MACROSCOPIC DISCLINATION DENSITY	Θ k = ǫ αβ ∂αð β ω k ,	(6.7)
	MACROSCOPIC DISLOCATION DENSITY	α k = ǫ αβ ðαð β u k .	(6.8)
	Remark 6.1		

  that Γ k;ij is a connexion since Γk;ij is a connexion and ∆Γ k;ij is a tensor. Denoting by ∇ k (resp. ∇k ) the covariant gradient w.r.t. Γ k;ij (resp. Γk;ij ), and recalling that a connexion is compatible with the metric gij if the covariant gradient of gij w.r.t. this connexion vanishes, we find by Eq. (6.13)∇ k gij : = ∂ k gij -Γ l;ik g lj -Γ l;jk g li = ∇k gij + ∆Γ l;ik g lj + ∆Γ l;jk g li ,(6.14) where in the right-hand side, the 1 st term vanishes by Lemma 6.1 while the 2 nd and 3 rd terms cancel each other since ∆Γ l;jk g li = ∆Γ i;jk = -∆Γ j;ik . It results that the connexion torsion, i.e. the skew-symmetric part of ∆Γ j;ik w.r.t. i and k, writes as

	1 2	(∆Γ j;ik -∆Γ j;ki ) = -	1 2	(∆Γ i;jk -∆Γ k;ji ) =	1 2	(∆Γ k;ij -∆Γ i;kj ) +
				(∆Γ k;ji -∆Γ k;ij ) -(∆Γ i;jk -∆Γ i;kj ) .	(6.15)

In practise this assumption is certainly valid in single crystal growth.

A finite Radon measure on Ω is a measure bounded on compact subsets of Ω.

Following Schwartz (1957), a distribution is of order 1 if it defines a linear continuous map on C 1 c (Ω).

Note that different sign conventions for the rotation vector and incompatibility apply in Kröner's work.

In the literature, a so-called Bravais' crystal is a macroscopic body endowed with a lattice where parallel displacement along the crystallographic lines is defined by the connexion Γ k;ij of Theorem 6.1 and where the metric is not defined by Eq. (6.9), but by the motion of an internal observer who would measure his own displacement by counting the atomic lattice steps, without feeling the body torsion[START_REF] Kröner | Continuum theory of defects[END_REF].

In fact, the distortion is often considered as a constitutive variable in dislocation models[START_REF] Davini | A proposal for a continuum theory of defective crystals[END_REF][START_REF] Gurtin | A gradient theory of single-crystals viscoplasticity that accounts for geometrically necessary dislocations[END_REF][START_REF] Ariza | Discrete crystal elasticity and discrete dislocations in crystals[END_REF].