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LOCAL LIMIT THEOREM FOR NONUNIFORMLY PARTIALLY HYPERBOLIC SKEW-PRODUCTS, AND FAREY SEQUENCES

S ÉBASTIEN GOU ËZEL

Abstract. We study skew-products of the form (x, ω) → (T x, ω + φ(x)) where T is a nonuniformly expanding map on a space X, preserving a (possibly singular) probability measure μ, and φ : X → S 1 is a C 1 function. Under mild assumptions on μ and φ, we prove that such a map is exponentially mixing, and satisfies the central and local limit theorems. These results apply to a random walk related to the Farey sequence, thereby answering a question of Guivarc'h and Raugi.

Results

Let T be a transformation on a compact manifold. If T is uniformly expanding or hyperbolic, the transfer operator associated to T admits a spectral gap on a well chosen Banach space, which makes it possible to prove virtually any limit theorem (for example the local limit theorem) by using Nagaev's method (see e.g. [START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov[END_REF][START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]). This article is devoted to the proof of the local limit theorem for transformations of the form T : (x, ω) → (T x, ω + φ(x)) where T is a nonuniformly expanding transformation on a compact manifold X, and φ : X → S 1 is a C 1 function. This transformation T is an isometry in the fibers S 1 , which prevents us from obtaining a spectral gap.

Limit theorems have been obtained (in the more general setting of partially hyperbolic transformations) by Dolgopyat in [START_REF] Dolgopyat | Limit theorems for partially hyperbolic systems[END_REF] (when T is uniformly hyperbolic, and for a measure which is absolutely continuous with respect to Lebesgue measure in the unstable direction). However, he uses elementary arguments (moment methods) which can not be used to get the local limit theorem. To the best of our knowledge, the only partially hyperbolic transformations for which a local limit theorem is proved in the literature are the Anosov flows, in [START_REF] Waddington | Large deviation asymptotics for anosov flows[END_REF] (the specific algebraic structure of flows makes it possible to reduce the problem to the study of Axiom A maps, which are uniformly hyperbolic). With the techniques of [START_REF] Tsujii | Decay of correlations in suspension semi-flows of angle-multiplying maps[END_REF], it is probably possible to obtain it also for skew-products over uniformly expanding maps, for an absolutely continuous measure. Unfortunately, the main motivating example of our study, described in the next paragraph, is nonuniformly hyperbolic, and its invariant measure is singular. Hence, we will need to introduce a new technique, essentially based on renewal theory.

The qualitative theory of skew-products as above has been studied by Brin. We will need more quantitative results, and will obtain them by using tools which are mainly due to Dolgopyat [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF][START_REF] Dolgopyat | On mixing properties of compact group extensions of hyperbolic systems[END_REF]. These techniques of Dolgopyat have already proved very powerful in a variety of contexts (see [PS01, Ana00, Sto01, Nau05, BV05a, BV05b, AGY06]), the present paper is yet another illustration of their usefulness.

1.1. Farey sequences. Before we give the precise definition of the systems to which our results apply, let us describe an interesting example, which is in fact the main motivation for this article. The following discussion is essentially taken from [START_REF] Conze | Densité d'orbites d'actions de groupes linéaires et propriétés d'équidistribution de marches aléatoires[END_REF].

If p/q and p ′ /q ′ are two irreducible rational numbers in [0, 1], they are adjacent if |pq ′p ′ q| = 1. We can then construct their median p ′′ /q ′′ = (p + p ′ )/(q + q ′ ), which lies between p/q and p ′ /q ′ , and is adjacent to any of them. Let F 0 = {0/1, 1/1}, and define inductively F n by enumerating the elements of F n-1 in increasing order, which gives a sequence of adjacent rational numbers, and by inserting the successive medians. For example, F 1 = {0/1, 1/2, 1/1} and F 2 = {0/1, 1/3, 1/2, 2/3, 1/1}. The set F n has cardinality 2 n + 1. Let also F * n = F n -{0}, it has cardinality 2 n . Any rational number of (0, 1] belongs to F * n for any large enough n. Let µ n = 1 2 n x∈F * n δ x , this sequence of measures converges exponentially fast to a measure µ, in the following sense: for any α > 0, there exist C > 0 and θ < 1 such that, for any function f : [0, 1] → C which is Hölder continuous of exponent α,

(1.1) f dµ n -f dµ ≤ Cθ n f C α .
The measure µ is Minkowski's measure, it has full support in [0, 1] and is totally singular with respect to Lebesgue measure. It is the Stieltjes measure associated to Minkowski's ? function.

To prove the exponential convergence (1.1), it is more convenient to reformulate everything in terms of a random walk on a homogeneous space for the group SL(2, R). Consider the two matrices A = ( 1 0 1 1 ) and B = 0 1 -1 2 in SL(2, R). Their linear action on R 2 leaves invariant the cone C = {(x, y) | 0 ≤ x ≤ y}, and its projectivization P(C) is the unique closed subset of P(R 2 ) which is invariant and minimal for the action of the semigroup Σ generated by A and B. Let us identity P(C) with the interval [0, 1] by intersecting C with the line y = 1, we obtain an action of Σ on [0, 1]. The actions of the matrices A and B are given by the transformations

(1.2) h A (x) = x 1 + x , h B (x) = 1 2 -x .
It can easily be checked inductively that

(1.3) F * n = {M n • • • M 1 • 1 | M i ∈ {A
, B} for i = 1, . . . , n}. In particular, setting ν = (δ A + δ B )/2, we have µ n = ν n ⋆ δ 1 . The measure µ is the unique stationary measure for the random walk given by ν, i.e., such that ν ⋆ µ = µ. Finally, the exponential convergence (1.1) is proved by showing that the Markov operator associated to the random walk has a spectral gap when it acts on the space of Hölder continuous functions.

In [START_REF] Conze | Densité d'orbites d'actions de groupes linéaires et propriétés d'équidistribution de marches aléatoires[END_REF] (see also [START_REF] Guivarc | Actions of large semigroups and random walks on isometric extensions of boundaries[END_REF]), Conze and Guivarc'h have considered the same random walk, but on homogeneous spaces which are larger than P(R 2 ). More precisely, let us fix r > 1, and consider the quotient of R 2 -{0} by the subgroup H r of homotheties of ratio ±r n , n ∈ Z. This is a compact space, endowed with an action of SL(2, R). In particular, the semigroup Σ acts on C = C/H r , which is a compact extension (with fiber S 1 ) of P(C). Let us identify C with [0, 1] × R/(log r)Z by (x, y) → (x/y, log y + (log r)Z). The random walk given by ν on C jumps from (x, ω) to hA (x, ω) := (h A (x), ω + log(1 + x)) or hB (x, ω) := (h B (x), ω + log(2x)) with probability 1/2. Let F * n = {(p/q, log q) | p/q ∈ F * n } ⊂ [0, 1]×R/(log r)Z, the measure μn := ν n ⋆δ (1,0) is the average of the Dirac masses at the points of F * n . Hence, the random walk given by ν and starting from the point (1, 0) describes the rational numbers obtained by the Farey process, as well as the logarithm of their denominators, modulo log r. By general results on random walks on compact extensions, Conze, Guivarc'h and Raugi proved in [START_REF] Conze | Densité d'orbites d'actions de groupes linéaires et propriétés d'équidistribution de marches aléatoires[END_REF][START_REF] Guivarc | Actions of large semigroups and random walks on isometric extensions of boundaries[END_REF] that μn converges weakly to µ ⊗ Leb, where Leb denotes the normalized Lebesgue measure on R/(log r)Z. This is an equirepartition result of the denominators modulo log r.

In this article, we are interested in more precise results for this random walk. First of all, we prove that the previous convergence is exponentially fast: Theorem 1.1. For any α > 0, there exist C > 0 and θ < 1 such that, for any function f : C → C which is Hölder-continuous of exponent α,

(1.4) f dμ n -f d(µ ⊗ Leb) ≤ Cθ n f C α .
We also obtain limit theorems for this random walk. In particular, we prove that it satisfies the local limit theorem. This answers a question raised by Guivarc'h and Raugi in [START_REF] Guivarc | Actions of large semigroups and random walks on isometric extensions of boundaries[END_REF].

Theorem 1.2. Let ψ : C → R be a C 6 function. Assume that there does not exist a continuous function f : C → R such that ψ • hM = f • hMf for M = A and B. Then the Markov chain X n on C, starting from (1, 0) and whose transition probability is given by ν, satisfies a nondegenerate central limit theorem for the function ψ, i.e., there exists σ 2 > 0 such that, for any a ∈ R,

(1.5) P 1 √ n n k=1 ψ(X k ) < a → 1 σ √ 2π a -∞ e -t 2 2σ 2 dt.
Assume additionally that there do not exist constants a > 0, λ > 0 and a continuous function f : C → R/λZ such that ψ • hM = f • hMf + a mod λZ for M = A and B. Then ψ satisfies the local limit theorem: for any compact subinterval I of R and any real sequence k n such that

k n / √ n → κ ∈ R, then (1.6) √ n P n k=1 ψ(X k ) ∈ I + k n → Leb(I) e -κ 2 2σ 2 σ √ 2π .
This result as well as Theorem 1.1 in fact hold for any starting point of the random walk, there is nothing specific about (1, 0). Note that aperiodicity conditions on ψ are clearly necessary to get the theorem. For κ = 0, the local limit theorem can be reformulated as follows. Consider a random walk on C × R whose transition probability is Q((x, ω, z) → (x ′ , ω ′ , z ′ )) = P ((x, ω) → (x ′ , ω ′ ))1 z ′ =z+ψ(x,ω) . The local limit theorem simply means that the measure √ nQ n δ (1,0,0) converges weakly to an explicit multiple of the measure µ ⊗ Leb R/(log r)Z ⊗ Leb R .

Let T be the transformation on the interval [0, 1] given by (1.7)

T (x) = x 1 -x if x < 1/2, T (x) = 2 - 1 x if x ≥ 1/2.
Then h A and h B are the inverse branches of the transformation T . The Markov operator corresponding to the random walk on [0, 1] is therefore the adjoint (for the measure µ) of the composition by T , i.e., the transfer operator associated to T . The transformation T is topologically conjugate to the transformation x → 2x on [0, 1], and µ is simply the maximal entropy measure of T , i.e., the pullback of Lebesgue measure under this conjugacy. Note that T is not uniformly expanding, since it has neutral fixed points at 0 and 1. We can then define a transformation T on [0, 1] × R/(log r)Z whose inverse branches are hA and hB , by

(1.8) T (x, ω) = (T x, ω + φ(x)),

where φ(x) = log(1x) if x < 1/2, and φ(x) = log(x) if x ≥ 1/2. By construction, the Markov operator corresponding to the random walk on C is the transfer operator associated to T (for the measure µ ⊗ Leb).

With the preceding discussion, we can reformulate the previous theorems in the general setting of this article: we are going to study transformations of the form (x, ω) → (T x, ω + φ(x)) where T is a nonuniformly expanding transformation of a manifold X, and φ is a C 1 function from X to the circle S 1 . Hence, to integrate the study of Farey sequences in our general setting, it will be important not to demand uniform expansion, and to be able to deal with measures which are singular with respect to Lebesgue measure. These two constraints will justify the forthcoming definitions, but they will bring along a certain number of technical difficulties. 1.2. Definition of nonuniformly partially hyperbolic skew-products. Definition 1.3. Let Z be a riemannian manifold, endowed with a finite measure ν. An open subset O of Z is said to have the weak Federer property (for the measure ν) if it satisfies the following property. We work on O, with the induced metric, and the geodesic distance it defines. For any C > 1, there exist D = D(O, C) > 1 and η 0 = η 0 (O, C) > 0 such that, for any η < η 0 , there exist disjoint balls B(x 1 , Cη), . . . , B(x k , Cη) which are compactly included in O, and sets A 1 , . . . , A k contained respectively in B(x 1 , DCη), . . . , B(x k , DCη), whose union covers a full measure subset of O, and such that, for any x ′ i ∈ B(x i , (C -1)η), we have ν(B(x ′ i , η)) ≥ ν(A i )/D. A family of open subsets (O n ) n∈N is said to uniformly have the weak Federer property (for the measure ν) if each set O n has the weak Federer property and, furthermore, for any C > 1, sup n∈N D(O n , C) < ∞ This is a technical covering condition. It is a kind of weakening of the classical doubling condition, having the following advantages. On the one hand, it will be satisfied in many examples (and in particular for Farey sequences, where the doubling condition does not hold). On the other hand, it is sufficient to carry out the forthcoming proofs (essentially, it is the technical condition which is required for Dolgopyat type arguments to work). The main point of the definition is that D can be chosen independently of η: in some sense, the weak Federer property is a covering lemma with built-in uniformity.

The following definition describes the class of applications T to which the results of this article apply. It is large enough to contain the map (1.7), as we will see later on.

Definition 1.4. Let T be a nonsingular transformation on a riemannian compact manifold X (possibly with boundary), endowed with a Borel measure µ. Let Y be a connected open subset of X, with finite measure and finite diameter for the induced metric. We will say that T is a nonuniformly expanding transformation of base Y , with exponential tails and the uniform weak Federer property, if the following properties are satisfied:

(1) There exist a finite or countable partition (modulo 0) (W l ) l∈Λ of Y , and times (r l ) l∈Λ such that, for all l ∈ Λ, the restriction of T r l to W l is a diffeomorphism between W l and Y , satisfying κ v ≤ DT r l (x)v ≤ C l v for any x ∈ W l and v a tangent vector at x, for some constants κ > 1 (independent of l) and C l . We will denote by T Y : Y → Y the map which is equal to T r l on each set W l .

(2) Let H = H 1 denote the set of inverse branches of T Y and, more generally, let H n denote the set of inverse branches of T n Y . Let J(x) be the inverse of the jacobian of T Y at x, with respect to µ. We assume that there exists a constant C > 0 such that, for any inverse branch In this article, we will only consider transformations T of that type. Hence, we will simply say that T is nonuniformly expanding with base Y .

h ∈ H, D((log J) • h) ≤ C. (3) There exists a constant C such that, for any l, if h l : Y → W l denotes the corresponding inverse branch of T Y , for any k ≤ r l , T k • h l C 1 (Y ) ≤ C. (4) Let r : Y → N
The first four conditions roughly mean that T is nonuniformly expanding, and that an induced map T Y (which is not necessarily a first return map) is uniformly expanding and Markov, with exponential tails. This kind of assumptions is described in [START_REF] Young | Statistical properties of dynamical systems with some hyperbolicity[END_REF][START_REF] Young | Recurrence times and rates of mixing[END_REF], and is often called a Young tower structure in the literature. The fifth condition is a covering condition. It is probably not very natural to require it uniformly over the inverse branches of the iterates of T Y , but it will be satisfied in all the examples we are going to consider.

Under the first two assumptions, it is a folklore result that T Y preserves a probability measure which is equivalent to µ Y , whose density is C 1 and bounded away from 0 and ∞. Without loss of generality, we may replace µ Y by this measure (which does not change the assumptions), and we will therefore always assume that µ Y is invariant under T Y (and has mass 1). Inducing from µ Y (and using the fourth assumption), and then renormalizing, we obtain a probability measure μ on X which is invariant under T and ergodic. However, the restriction of μ to Y is in general not proportional to µ Y , when the return times r l are not first return times.

The measure μ is always ergodic for T , but sometimes not for its iterates: in general, there exists a divisor d of gcd{r l | l ∈ Λ} and open sets (O i ) i∈Z/dZ such that T maps O i to O i+1 , and the restriction of T d to each O i is mixing. For the sake of simplicity, we will only consider in what follows transformations T which are mixing, i.e., for which d = 1. However, the results we will give have their counterpart in the general case, since they can be applied to T d on each set O i . Note that the mixing of T is equivalent to the ergodicity of all the iterates T n , and is implied by the equality gcd{r l } = 1.

Remark 1.5. Under the first four assumptions of Definition 1.4, and if T is mixing for the probability measure μ, then it is exponentially mixing (for Hölder continuous functions). This has been proved by Young in [START_REF] Young | Statistical properties of dynamical systems with some hyperbolicity[END_REF] (in a slightly different setting) using a spectral gap argument, and again in [You99] using coupling. We will not use these results of Young. Indeed, our arguments will yield yet another proof of this exponential mixing, through operator renewal theory (see in particular Corollary 3.5). This proof is not new, it is already implicit in [START_REF] Sarig | Subexponential decay of correlations[END_REF] and explicit in [START_REF] Gouëzel | Vitesse de décorrélation et théorèmes limites pour les applications non uniformément dilatantes[END_REF].

In a similar setting (the study of expanding semiflows), Ruelle shows in [START_REF] Ruelle | Flots qui ne mélangent pas exponentiellement[END_REF] that a suspension over an expanding map cannot be exponentially mixing if the roof function is locally constant. Therefore, it is not surprising that this case should be excluded from our study, since we will (among other results) prove exponential mixing.

Definition 1.6. Let T be a nonuniformly expanding transformation of base Y , on a manifold X. Let φ : X → R be a C 1 function. Denote by φ Y the induced function on Y , given by φ Y (x) = r(x)-1 i=0 φ(T i x). We say that φ is cohomologous to a locally constant function if there exists a

C 1 function f : Y → R such that the function φ Y -f + f • T Y is constant on each set W l , l ∈ Λ.
If φ is not cohomologous to a locally constant function, we define a map T : X × S 1 → X × S 1 by T (x, ω) = (T x, ω + φ(x)). It preserves the probability measure μ ⊗ Leb (in this article, the Lebesgue measure on the circle S 1 = R/2πZ, denoted by Leb or dω, will always be normalized of mass 1). The transformation T is "nonuniformly partially hyperbolic", in the following sense: in each fiber S 1 , T is an isometry, while it is expanding in the direction of X. Hence, we would like to talk of partial hyperbolicity. However, since the expansion of T is not uniform, T can have neutral fixed points or even critical points. Hence, there may exist points where the "expansion" in the X direction does not dominate what is happening in the fiber. Therefore, the partial hyperbolicity is rather asymptotic than instantaneous. 1.3. Limit theorems for nonuniformly partially hyperbolic skew-products. Let T be a nonuniformly expanding map with base Y , preserving the probability measure μ, and mixing. Assume that µ Y has full support in Y . Let φ : X → R be a C 1 function which is not cohomologous to a locally constant function. We consider the skew-product T (x, ω) = (T x, ω + φ(x)).

Theorem 1.7. For any α > 0, there exist θ < 1 and C > 0 such that, for all functions f, g from X × S 1 to C respectively bounded and Hölder continuous with exponent α, and for all n ∈ N,

(1.9) f • T n • g d(μ ⊗ Leb) - f d(μ ⊗ Leb) g d(μ ⊗ Leb) ≤ C θn f L ∞ g C α .
We will then be interested in limit theorems for the transformation T . Let ψ : X × S 1 → R be a Hölder continuous function, such that ψ d(μ ⊗ Leb) = 0. Let (1.10)

σ 2 = ψ 2 d(μ ⊗ Leb) + 2 ∞ k=1 ψ • ψ • T k d(μ ⊗ Leb).
This quantity is well defined, by Theorem 1.7.

Proposition 1.8. We have σ 2 ≥ 0. Moreover, σ 2 = 0 if and only if there exists a measurable function f : X × S 1 → R such that ψ = ff • T almost everywhere. In this case, the function f has a version which is continuous on Y × S 1 , and it belongs to L p (X × S 1 ) for all p < ∞.

Let us denote by S n ψ the Birkhoff sums n-1 i=0 ψ • T i . When σ 2 is nonzero, i.e., ψ is not a coboundary, then ψ satisfies the central limit theorem: Theorem 1.9. Let ψ be a Hölder continuous function on X × S 1 with zero average, such that σ 2 > 0. Then S n ψ/ √ n satisfies the central limit theorem, i.e., S n ψ/ √ n converges in distribution (for the probability measure μ ⊗ Leb) towards the gaussian distribution N (0, σ 2 ).

Let us say that ψ is aperiodic if there does not exist a > 0, λ > 0 and f : X × S 1 → R/λZ measurable, such that ψ = ff • T + a mod λ almost everywhere. This implies in particular that ψ is not a coboundary, hence σ 2 > 0.

Proposition 1.10. If ψ is a periodic C 6 function, there exist a > 0, λ > 0 and f : X ×S 1 → R/λZ measurable such that ψ = ff • T + a mod λ almost everywhere, and f is continuous on Y × S 1 .

The notion of periodicity is interesting, since it gives the only obstruction to the local limit theorem:

Theorem 1.11. Let ψ be a C 6 function on X × S 1 , with vanishing average, aperiodic (which implies σ 2 > 0). Then the Birkhoff sums S n ψ satisfy the local limit theorem, in the following sense: for any compact interval I, any real sequence

k n such that k n / √ n → κ ∈ R, we have when n → ∞ (1.11) √ n (μ ⊗ Leb){(x, ω) ∈ X × S 1 | S n ψ(x, ω) ∈ I + k n } → Leb(I) e -κ 2 2σ 2 σ √ 2π .
We also obtain numerous other limit theorems (such as the Berry-Esseen theorem on the speed of 1/ √ n in the central limit theorem, the renewal theorem, and so on). Instead of giving precise statements, we will rather give the key estimate which implies all of them, by showing that the Birkhoff sums S n ψ essentially behave like a sum of independent identically distributed random variables:

Theorem 1.12. Let ψ be a C 6 function with zero average, such that σ 2 > 0. There exist τ 0 > 0, C > 0, c > 0 and θ < 1 such that, for all functions f, g from X × S 1 to C respectively bounded and C 6 , for any n ∈ N, for any t ∈ [-τ 0 , τ 0 ],

(1.12)

e itSnψ • f • T n • g d(μ ⊗ Leb) -1 - σ 2 t 2 2 n f d(μ ⊗ Leb) g d(μ ⊗ Leb) ≤ C( θn + |t|(1 -ct 2 ) n ) f L ∞ g C 6 .
Moreover, if ψ is aperiodic, for all t 0 > τ 0 , there exist C > 0 and θ < 1 such that, for all |t| ∈ [τ 0 , t 0 ],

(1.13)

e itSnψ • f • T n • g d(μ ⊗ Leb) ≤ C θn f L ∞ g C 6 .
Taking f = g = 1, we obtain that the characteristic function of e itSnψ essentially behaves like (1σ 2 t 2 /2) n , which makes it possible to prove Theorem 1.9 for C 6 functions, Theorem 1.11, as well as numerous limit theorems, by mimicking the classical methods in probability theory for sums of independent identically distributed random variables. It should just be checked that the additional error term θn + |t|(1ct 2 ) n does not spoil the arguments. This has already been done in [START_REF] Gouëzel | Berry-Esseen theorem and local limit theorem for non uniformly expanding maps[END_REF]. We will not give further details on these classical arguments in the following.

Note that, taking t = 0, Theorem 1.12 implies Theorem 1.7 (for α = 6, but this easily implies the general case by a regularization argument). However, the proof of Theorem 1.7 is considerably easier than the proof of Theorem 1.12. Hence, we will give its proof with full details -it will also be the occasion to introduce, in a simple setting, some tools which will be used later on in more sophisticated versions.

Remark 1.13. Propositions 1.8 and 1.10 give automatic regularity for solutions of the cohomological equation, with a loss of regularity (arbitrarily small in Proposition 1.8, of 6 derivatives in Proposition 1.10). The loss of 6 derivatives is probably not optimal but, with the method of proof we use, some loss seems to be unavoidable.

The continuity of f on Y × S 1 can in general not be extended to a continuity on the whole space (think for example of a map T with discontinuities). Nevertheless, using the specificities of T , it is often possible to obtain the continuity of f on larger sets.

Remark 1.14. Theorem 1.9 will first be proved for C 6 functions by using Theorem 1.12, and then extended to Hölder continuous functions by an approximation argument. This argument does not apply for the local limit theorem, which explains our stronger regularity assumption in Theorem 1.11.

Remark 1.15. We require that µ Y has full support in Y . For some interesting maps (e.g. maps on Cantor sets, see [START_REF] Naud | Expanding maps on Cantor sets and analytic continuation of zeta functions[END_REF]), this condition is not satisfied. The full support condition is used only to get Dolgopyat-like contraction, in the proof of Lemma A.8, and can be dispensed with, under a stronger condition on φ. Indeed, if there exist two sequences h 1 , h 2 , . . . and h ′ 1 , h ′ 2 , . . . of elements of H, and a point x in the support of µ Y , such that the series

∞ n=1 D(φ Y • h n • • • h 1 )(x) and ∞ n=1 D(φ Y • h ′ n • • • h ′ 1 )(x)
converge and are not equal, then the proof of this lemma goes through (note that this condition is very similar to (NLI) in [START_REF] Naud | Expanding maps on Cantor sets and analytic continuation of zeta functions[END_REF]). When µ Y has full support, this condition is equivalent to φ not being cohomologous to a locally constant function, as shown in the proof of Lemma A.8.

Examples.

In the examples, if T and φ are given, and one wants to apply the previous results, one should first check that T is nonuniformly expanding of base Y , for some Y , and then prove that φ is not cohomologous to a locally constant function. The first issue depends strongly on the map T (see the following list of examples), but the second one is in general easy to check as follows, by using periodic orbits.

Assume -this will be the case in all our examples -that every inverse branch h ∈ H of T Y has a unique fixed point x h . Let f be a

C 1 function on Y . If φ Y -f +f •T Y is constant on each set h(Y )
, it has to be equal to φ Y (x h ) there. Consequently, the function g, equal to φ Yφ Y (x h ) on each set h(Y ), is cohomologous to 0. In particular, if one can find a periodic orbit of T Y along which the Birkhoff sum of g is nonzero, then this is a contradiction, and φ can not be cohomologous to a locally constant function. This can easily be checked in practice: for example, we will use this argument in the specific case of Farey sequences.

If 1 ≤ k ≤ ∞, the previous argument moreover shows that, in the space of C k functions on X, the set of functions φ which are cohomologous to a locally constant function is contained in a closed vector subspace of infinite codimension. Hence, the theorems of Paragraph 1.3 can be applied for most (in a very strong sense) functions φ.

Let us now describe different classes of maps T which satisfy Definition 1.4.

Nonuniformly expanding maps, and Lebesgue measure. Let T be a C 2 map on a compact riemannian manifold X (possibly with boundary). We assume that T is nonuniformly expanding, in the following sense (see [START_REF] Ferreira Alves | SRB measures for partially hyperbolic systems whose central direction is mostly expanding[END_REF][START_REF] Ferreira Alves | Markov structures and decay of correlations for non-uniformly expanding dynamical systems[END_REF][START_REF] Gouëzel | Decay of correlations for nonuniformly expanding systems[END_REF]). Let S be a closed subset of X with zero Lebesgue measure (corresponding to the singularities of T ), possibly empty, and containing the boundary of X. We assume that T is a local diffeomorphism on X -S, nondegenerate close to S: there exist B > 1 and β > 0 such that, for any x ∈ X -S and any nonzero tangent vector v at x,

(1.14) 1 B d(x, S) β ≤ DT (x)v v ≤ Bd(x, S) -β .
Assume also that, for any x, y ∈ X with d(x, y) < d(x, S)/2,

(1.15) log DT (x) -1 -log DT (y) -1 ≤ B d(x, y) d(x, S) β and (1.16) log | det DT (x) -1 | -log | det DT (y) -1 | ≤ B d(x, y) d(x, S) β .
For δ > 0, let d δ (x, S) = d(x, S) if d(x, S) < δ, and d δ (x, S) = 1 otherwise. Let δ : (0, ε 0 ) → R + be a positive function, and let κ > 0. Assume that, for any ε < ε 0 , there exist C > 0 and θ < 1 such that, for any N ∈ N,

Leb x ∈ X | ∃n ≥ N, 1 n n-1 k=0 log DT (T k x) -1 -1 < κ or 1 n n-1 k=0 -log d δ(ε) (T k x, S) > ε ≤ Cθ N .
This assumption means that the points that do not see the expansion or are too close to the singularities, after time N , have an exponentially small measure.

As examples of such applications, let us first mention uniformly expanding maps, of course, but also multimodal maps with infinitely many branches [START_REF] Araujo | Physical measures for infinite-modal maps[END_REF] (which have thereby infinitely many critical points), as well as small perturbations of uniformly expanding maps (such perturbations can have saddle fixed points), see [START_REF] Ferreira | Strong statistical stability of non-uniformly expanding maps[END_REF] If the boundary of Y were C 1 (and not merely piecewise C 1 ), each set h(Y ) would also be an open set with C 1 boundary, and the uniform weak Federer property would directly result from the good doubling properties of Lebesgue measure. However, if the boundary of Y is only piecewise C 1 , the images of the boundary components by an inverse branch h could make smaller and smaller angles, which could prevent the uniform weak Federer property from holding.

Therefore, we have to modify slightly the construction in [START_REF] Gouëzel | Decay of correlations for nonuniformly expanding systems[END_REF] to obtain a set Y with C 1 boundary. In that article, one starts from a partition U i of X (into sets with piecewise C 1 boundary), and one subdivides each set U i into subsets V j which are sent by some iterate of T on one of the sets U k . The set Y is then one of the U i 's, and the desired partition of Y is obtained by inducing from the V j 's (see [START_REF] Gouëzel | Decay of correlations for nonuniformly expanding systems[END_REF] section 4] for details).

To obtain a smooth Y , we also start from a partition U i , but we decompose U i as U 1 i ∪U 2 i where U 1 i is a ball inside U i and U 2 i is its complement. Applying the construction of [START_REF] Gouëzel | Decay of correlations for nonuniformly expanding systems[END_REF] separately to each set U 1 i and U 2 i , we subdivide them into sets V j which are sent by some iterate of T to some U k . We finish the construction by taking for Y one of the sets U 1 i , and inducing on it. To apply the results of Paragraph 1.3, one needs an additional mixing assumption, which is satisfied as soon as all the iterates of T are topologically transitive on the attractor n≥0 T n (X) (see [START_REF] Gouëzel | Decay of correlations for nonuniformly expanding systems[END_REF]).

Multimodal maps of Collet-Eckmann type. Let T be a multimodal map on a compact interval I. If the derivative of T n along the postcritical orbits grow exponentially fast, and T is not renormalizable (which prevents periodicity problems), [START_REF] Bruin | Decay of correlations in one-dimensional dynamics[END_REF] shows that there exists a unique absolutely continuous invariant probability measure μ, and that T is exponentially mixing for this measure.

To prove this result, the authors show that there exist an interval Y and a subpartition W l of Y satisfying the first four properties of Definition 1.4, for Lebesgue measure. Since the sets h(Y ) (for h ∈ n∈N H n ) are all intervals, the uniform weak Federer property is also trivially satisfied by Lebesgue measure.

Gibbs measures in dimension 1. If T is a C 2 uniformly expanding map on a compact connected manifold X, and u : X → R is a C 1 function, there exists a unique invariant probability measure µ which maximizes the quantity h ν (T ) + u dν over all invariant probability measures ν. This is the so-called Gibbs measure associated to the potential u.

In general, it is unlikely that such a Gibbs measure satisfies the weak Federer property (unless µ is equivalent to Lebesgue measure, which corresponds to potentials u which are cohomologous tolog det(DT )). Indeed, the proof of the weak Federer property in the previous examples relies in an essential way on the good doubling properties of Lebesgue measure.

However, in dimension 1 (i.e., if T is a circle map), the iterates of T are conformal, which implies that µ satisfies the weak Federer property, and our results apply. Proofs of the Federer property in this setting have been given by Dolgopyat or Pollicott, but with small imprecisions, so we will give a full proof in Proposition 6.2 (as a very simple consequence of the methods we develop to treat the Farey sequence). Note that the same results also apply in higher dimension, for conformal uniformly expanding maps (since uniformly expanding maps always admit Markov partitions).

Farey sequences. The results of Paragraph 1.3 also apply to the map (1.8), which generates the Farey sequence. However, the proof requires more work, since checking the weak Federer property is not trivial. Moreover, the most interesting results stated in Theorem 1.2 are pointwise results (for a random walk starting from (1, 0)), while the statements of Paragraph 1.3 are on average results. To prove the pointwise statements, we will therefore need to use more technical results, established during the course of the proof of Theorems 1.7 and 1.12. As a consequence, the results of Paragraph 1.1 will be proved at the end of the article, in Section 6. 1.5. Method of proof, and contents of the article. In general, to prove exponential mixing and a local limit theorem, it is very comfortable to have a spectral gap property for a transfer operator (the spectral perturbation methods then yield the desired results quite automatically). The spectral gap is in general a consequence of some expansion or contraction properties. However, in our setting, the map T is an isometry in the fibers, and a spectral gap seems therefore difficult to obtain. Note that [START_REF] Tsujii | Decay of correlations in suspension semi-flows of angle-multiplying maps[END_REF] manages to construct a space with a spectral gap for such maps, but under strong assumptions: the map T should be uniformly expanding, and μ should be absolutely continuous with respect to Lebesgue measure. These properties are unfortunately not satisfied in our setting, and we will thus have to work without a spectral gap (on the space X × S 1 ).

Dolgopyat developed in [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF][START_REF] Dolgopyat | On mixing properties of compact group extensions of hyperbolic systems[END_REF] techniques which he used to prove the exponential decay of correlations for maps T as above, if T is uniformly expanding. His main idea is to work in Fourier coordinates, to see that each frequency is left invariant by the transfer operator associated to T , and to obtain explicit bounds on the mixing speed in each frequency (by using oscillatory integrals, which give explicit compensations). The gain is not uniform with respect to the frequency (which accounts for the lack of spectral gap), but the estimates are nevertheless sufficiently good to obtain exponential mixing.

We will use in an essential way Dolgopyat's ideas in this article, as a technical tool. This tool applies to uniformly expanding maps, which is not the case of our map T , we will therefore need to induce on the set Y to get uniform expansion. To obtain information on the initial map, we will then make use of (elementary) ideas of generating series and renewal theory.

The real difficulty of the article lies in the local limit theorem, since a spectral gap property seems more or less necessary to any known proof of the local limit theorem, while Dolgopyat's arguments do not give such a spectral gap. If we try to work on the level of frequencies, as for the exponential mixing, we quickly run into the following additional difficulty: if f is a function of frequency k, i.e., f (x, ω) = u(x)e ikω , then e itψ f is not any more a function of frequency k. In other words, the multiplication by e itψ -which is at the heart of the proof of the local limit theorem for the function ψ -mixes the different frequencies together. Hence, even though Dolgopyat's techniques give a good control at high frequencies, this control is instantaneously ruined by the multiplication by e itψ , which can go back into low frequencies, where no control is available.

The central idea for the proof of the local limit theorem is to induce at the same time in x and in k: we consider some kind of random walk on the space X × Z (where the Z factor corresponds to the space of frequencies), and we induce on a subset Y × [-K, K] where K is large enough so that what happens outside of this set can be controlled by Dolgopyat's tools. The main interest of this process is that the induced operator on Y × [-K, K] has a spectral gap, and can be studied very precisely. Using techniques of operators renewal theory [START_REF] Sarig | Subexponential decay of correlations[END_REF][START_REF] Gouëzel | Berry-Esseen theorem and local limit theorem for non uniformly expanding maps[END_REF], we will then use this information to obtain a global control on X × Z, finally yielding Theorem 1.12.

Remark 1.17. The next natural question is to study maps of the form T ′ : (x, ω, ω ′ ) → (T x, ω + φ(x), ω ′ + ψ(x, ω)), where T and φ are as above. If ψ is aperiodic, Theorem 1.12 shows that the correlations of functions of the form u(x, ω)e ikω ′ (where u is C 6 and k ∈ Z) tend to 0. Since the linear combinations of such functions are dense in L 2 , this implies that T ′ is mixing. It is even Bernoulli, by the following argument: first, T (or rather its natural extension) is Bernoulli since it is mixing and non-uniformly hyperbolic (see e.g. [START_REF] Ornstein | On the Bernoulli nature of systems with some hyperbolic structure[END_REF]). Since T is a mixing isometric extension of T , it is also Bernoulli by [START_REF] Daniel | Classifying the isometric extensions of a Bernoulli shift[END_REF]. The same argument applied to T then implies that T ′ is Bernoulli.

However, to prove further results on T ′ , such as exponential mixing or the local limit theorem (probably under stronger assumptions on ψ) seems out of reach by currents techniques. More precisely, we use Dolgopyat's techniques (which give precise explicit estimates for the map T ) to study the map T (and obtain, by an abstract compactness argument, non-explicit estimates for T ). To go one step further and study precisely T ′ , we would need explicit estimates for T (i.e., in (1.13), we would need to control θ and C in terms of t 0 ), which seems considerably more difficult.

The article is organized as follows: in Section 2, we state a theorem on transfer operators giving all the technical estimates we shall need further on (with contraction in the classical sense, or in Dolgopyat norms). This technical theorem will be proved in an appendix. In Section 3, it is used to prove Theorem 1.7. The proof is a baby version of the proof of the local limit theorem, introducing some tools on renewal operators that will be used further on. In Section 4, we describe in details the strategy of the proof of the local limit theorem, and give two technical results which are essential in its proof. The proof itself is given in Section 5. Finally, Section 6 is devoted to the proof of the results on Farey sequences, as stated in Paragraph 1.1.

In all the following, we fix once and for all a map T which is nonuniformly expanding of base Y , mixing, together with a function φ which is not cohomologous to a locally constant function.

Tools on transfer operators

For k ∈ Z and v ∈ C 1 (Y ), we set (2.1) L k v(x) = h∈H e -ikφY (hx) J(hx)v(hx),
and we define L = L 0 . This is the transfer operator associated to

T Y . For x ∈ Y and n ∈ N, let us also write S Y n φ Y (x) = n-1 i=0 φ Y (T i Y x). For n ∈ N and x ∈ Y , let r (n) (x) = n-1 i=0 r(T i Y x).
For n ∈ N, A > 0 and ε > 0, we will denote by C A,ε n the set of functions v from Y to C which are C 1 on each set h(Y ) for h ∈ H n , and such that the quantity

(2.2) v C A,ε n = sup h∈Hn sup x∈Y max(|v(hx)|, D(v • h)(x) /A)/e εr (n) (hx)
is finite. These are the functions we will be working with. They can be unbounded, but their explosion speed is controlled by the return time. Typically, if one starts from a smooth function on X and induces, the resulting function will be unbounded but in C A,ε 1 for some A, ε. In particular, for any A > 0 and ε > 0, we have

sup n∈N S Y n φ Y C A,ε n < ∞. Note that the set of functions C A,ε n
does not depend on A, but the corresponding norm does. Let k ∈ Z and C 0 > 1. We will denote by

E k (C 0 ) the set of pairs (u, v) of functions from Y to C such that |v| ≤ u and max( Dv , Du ) ≤ C 0 max(1, |k|)u.
This set is a cone, i.e., it is stable under addition and multiplication by nonnegative real numbers. We will also write

v D k (C0) (or simply v D k ) for the infimum of the quantities u L 4 over all functions u such that (u, v) ∈ E k (C 0 ). Since E k (C 0 ) is a cone, this is a norm, satisfying v L 4 ≤ v D k ≤ v C 1 .
The D k norm has been (implicitly) used by Dolgopyat, and is very useful since it enjoys good contraction properties for the action of the transfer operator L k .

We will freely use the following trivial inequalities:

if |k| ≤ |ℓ|, then v D ℓ ≤ v D k . Moreover, for any k, v D k ≤ v C 1 . Finally, we have v C A,ε ′ n ≤ v C A,ε n as soon as ε ′ ≥ ε.
The theorem we will use is the following. Recall that T is a fixed nonuniformly expanding transformation of base Y , and that φ is a C 1 function which is not cohomologous to a locally constant function, also fixed once and for all.

Theorem 2.1. There exist N > 0, C 0 > 1, ε > 0 and θ ∈ (2 -1/(1010N ) , 1), such that, for any M ≥ 1, the following properties hold.

Classical contraction: for any A ≥ 1, there exists a constant C(A) such that, for any ψ ∈ C A,4ε MN and for any

v ∈ C 1 (Y ), (2.3) L MN (ψv) C 1 ≤ θ 100MN sup x∈Y |ψ(x)|/e 4εr (M N ) (x) v C 1 + C(A) ψ C A,4ε M N v C 0 .
Moreover, there exists C > 0 satisfying: let

A ≥ 1, let ψ 1 , . . . , ψ n ∈ C A,4ε MN and let v ∈ C 1 (Y ). Write v 0 = v and v i = L MN (ψ i v i-1 ). Then (2.4) v n C 1 ≤ CA n i=1 ψ i C A,4ε M N θ 100MN n v C 1 + θ -MN n v L 2 .
Dolgopyat's contraction: for any A ≥ 1, there exists K = K(A, M ) such that, for any |k| ≥ K, for any

C 1 function v : Y → C, for any function ψ ∈ C A,4ε MN , (2.5) L MN k (ψv) D k ≤ θ 100MN ψ C A,4ε M N v D 2 M k .
Moreover, for any |ℓ| ≥ |k| ≥ K, we also have

(2.6) L MN k (ψv) D ℓ ≤ θ -MN ψ C A,4ε M N v D 2 M ℓ .
The first half of the theorem is really classical (it is a consequence of the usual contraction of transfer operators on spaces of Lipschitz or C 1 functions), the second half is less classical but should not be surprising to a reader who is used to Dolgopyat's techniques. However, this result contains additional technical difficulties with respect to the same kind of results in the literature. Indeed the functions in C A,ε MN are usually unbounded and have unbounded derivatives. Moreover, the application of Dolgopyat's arguments is problematic since the function φ Y is also unbounded with unbounded derivative. As a consequence, the proof of this theorem is quite unpleasant, even though it does not need additional conceptual ideas, only technical ones. Therefore, the proof of Theorem 2.1 is postponed to Appendix A.

In all the rest of the article (but Appendix A), N , C 0 , ε and θ will be fixed once and for all, and will denote the constants given by Theorem 2.1. . Most of the time, we will only need this weaker version (the inequalities with 4ε simply give a small additional margin, which will be useful from time to time).

Remark 2.3. Concerning the precise formulation of Theorem 2.1, let us make two additional remarks which are apparently technical but are in fact extremely important for the forthcoming proofs.

(1) The theorem for M = 1 is sufficient to obtain the exponential mixing (and to prove the theorem for M = 1 we only need the weak Federer property of Y , and no uniformity on the inverse branches). However, to prove the local limit theorem, we will need to take larger and larger M 's: since θ is independent of M , the gain θ 100MN will enable us to control some terms which are polynomially growing with M . The uniformity in M in Theorem 2.1 is therefore crucial.

(2) Since v D 2 M k ≤ v D k , the inequality (2.5) is stronger than (2.7) L MN k (ψv) ≤ θ 100MN ψ C A,4ε M N v D k .
The inequality (2.7) would be sufficient to prove the exponential mixing. However, to prove the local limit theorem, we will jump from one frequency to another, and the additional gain in the index given by (2.5) will be crucial (especially in the proof of Lemma 4.3).

The following general lemma will also be required:

Lemma 2.4. Let T 0 be an ergodic transformation of a probability space, with corresponding transfer operator T0 . Let g be a nonzero integrable function, let f be a measurable function with modulus at most 1, and let λ ∈ C with |λ| ≥ 1. We assume that λg = T0 (f g). Then |λ| = 1, |f | = 1 almost everywhere, and λg • T = f g almost everywhere.

Proof. We have |λ||g| ≤ T0 |g|. Integrating this equation yields |λ| g L 1 ≤ g L 1 , which implies |λ| = 1. Moreover, the function T0 |g| -|g| is nonnegative and has zero integral, hence it vanishes almost everywhere. Since T0 |g| = |g|, the measure with density |g| is invariant. By ergodicity, |g| is almost everywhere constant (and this constant is nonzero). The equation λg = T0 (f g) becomes

T0 (λ -1 f g/g • T 0 ) = 1. Therefore, (2.8) 1 = λ -1 f g g • T 0 ≤ λ -1 f g g • T 0 ≤ 1.
This shows that the function λ -1 f g g•T has to be equal to 1 almost everywhere.

Exponential mixing

3.1. A model for T . For n ∈ N, we are going to define an artificial transformation, which will model the dynamics of T , as follows. Let

X (n) = {(x, i) | x ∈ Y, i < r (n) (x)}, we define a map U (n) (or simply U if n is implicit) on X (n) by U (x, i) = (x, i + 1) if i + 1 < r (n) (x), and U (x, r (n) (x) -1) = (T n Y (x), 0). Let π (n) : X (n) → X be given by π (n) (x, i) = T i (x), we obtain π (n) • U = T • π (n) . We endow each set h(Y ) × {i}, for h ∈ H n and i < r (n) • h,
with the restriction of the measure µ Y to h(Y ). This yields a measure µ (n) which is invariant under U and whose restriction to Y × {0} is equal to µ Y . Strictly speaking, the map U is not defined everywhere since some points of Y do not come back to Y . However, it is defined µ (n) almost everywhere, which will be sufficient for our needs. The measure π (n) * µ (n) is absolutely continuous with respect to μ and invariant, hence these measures are proportional by ergodicity. In particular, setting μ

(n) = µ (n) /µ (n) (X (n) ), we have π (n) * μ(n) = μ.
We also endow X (n) with a metric, as follows. The set Y is canonically embedded in X (n) by y → (y, 0), we endow the image of this embedding by the metric of Y . Let h ∈ H n and 0

< i < r (n) • h (this function is constant on Y ). The map U r (n) •h-i is a bijection between h(Y ) × {i} and Y × {0}
, we choose the metric on h(Y ) × {i} so that this map is an isometry.

With this choice of the metric, the map U is very expanding on the points of the form (y, 0) (it expands the metric by at least κ n ), and it is a local isometry on the points (y, i) with i > 0. Since T satisfies the third property of Definition 1.4, the map π (n) is almost a contraction: there exists a constant C such that (3.1)

Dπ (n) (x) • v ≤ C v for any x ∈ X (n) and v tangent at x. If u : X → C is a C 1 function, the function u • π (n) is then also C 1 on X (n) , and u • π (n) C 1 ≤ C u C 1 . We finally define a map U = U (n) on X (n) × S 1 , by U(x, ω) = (U x, ω + φ • π (n) (x)). If we define π(n) : X (n) × S 1 → X × S 1 as π (n) × Id, then U is a model for T since π(n) • U = T • π(n) .
To study the properties of T , it will therefore be sufficient to understand U (n) (for any conveniently chosen n). Abusing notations, we will simply write φ on

X (n) instead of φ • π (n) . We will also identity Y with Y × {0} ⊂ X (n) .
The map U is not always mixing for the measure μ(n) : setting

(3.2) d = d (n) = gcd{r (n) (x) | x ∈ Y }, then U is mixing if and only if d = 1. If d > 1, let us write, for k ∈ Z/dZ, μ(n) k for the probability measure induced by μ(n) on the set {(x, i) | i = k mod d}. Then each measure μ(n) k is invariant under U d , and mixing. The measure π (n) * μ(n) k is absolutely continuous with respect to μ and invariant under T d . Since T d is ergodic (because T is mixing), this yields π (n) * μ(n) k = μ.
3.2. The transfer operator associated to U (N ) . In the rest of this section, we work on X (N ) , where N is given by Theorem 2.1 (and fixed once and for all). This theorem will make it possible to study the transfer operator Û associated to the map U = U (N ) . Our goal in this section is to use this information to prove Theorem 1.7.

To keep the arguments as transparent as possible, we will assume until the end of the proof, and without repeating it each time, that d (N ) = gcd{r (N ) (x)} is equal to 1. At the end of the proof, we will indicate the modifications to be done in the general case.

Let us write a function v on X (N ) × S 1 as v(x, ω) = k∈Z v k (x)e ikω , i.e.,

(3.3) v k (x) = v(x, ω)e -ikω dω,
where dω denotes the normalized Lebesgue measure on S 1 . If Û is the transfer operator associated to U, and J is the inverse of the jacobian of U for µ (N ) ,

Ûv(x, ω) = U (x ′ ,ω ′ )=(x,ω) J (x ′ )v(x ′ , ω ′ ) = U(x ′ )=x J (x ′ )v(x ′ , ω -φ(x ′ )) = k∈Z Ux ′ =x J (x ′ )v k (x ′ )e ik(ω-φ(x ′ )) .
In the same way, if

J (n) denotes the jacobian of U n , (3.4) Ûn v(x, ω) = k∈Z U n x ′ =x J (n) (x ′ )v k (x ′ )e ik(ω-Snφ(x ′ )) .
Hence, the operator Ûn acts diagonally on each frequency, by an operator

(3.5) M n k v(x) = U n x ′ =x J (n) (x ′ )v(x ′ )e -ikSnφ(x ′ ) .
We will understand separately the action of M k for each k. Using the induction process, we will be able to understand this operator for points x, x ′ belonging to the base Y of X (N ) . We will then use this information to reconstruct the whole operator M k . To do so, let us define the following operators:

R n,k v(x) = U n x ′ =x x ′ ∈Y,Ux ′ ,...,U n-1 x ′ ∈Y,U n x ′ ∈Y J (n) (x ′ )v(x ′ )e -ikSnφ(x ′ ) , (3.6) T n,k v(x) = U n x ′ =x x ′ ∈Y,U n x ′ ∈Y J (n) (x ′ )v(x ′ )e -ikSnφ(x ′ ) , (3.7) A n,k v(x) = U n x ′ =x x ′ ∈Y,Ux ′ ,...,U n x ′ ∈Y J (n) (x ′ )v(x ′ )e -ikSnφ(x ′ ) , (3.8) B n,k v(x) = U n x ′ =x x ′ ,...,U n-1 x ′ ∈Y,U n x ′ ∈Y J (n) (x ′ )v(x ′ )e -ikSnφ(x ′ ) , (3.9) C n,k v(x) = U n x ′ =x x ′ ,...,U n x ′ ∈Y J (n) (x ′ )v(x ′ )e -ikSnφ(x ′ ) . (3.10)
The main interest of these definitions is the following. First, cutting an orbit according to the first and last time it belongs to Y , we get

(3.11) M n k = C n,k + a+i+b=n A a,k T i,k B b,k .
Moreover, considering all the times an orbit belongs to Y , we obtain (3.12)

T n,k = ∞ p=1 j1+•••+jp=n R j1,k . . . R jp,k .
Finally, for z ∈ C with modulus at most e ε , we have

(3.13) n>0 z n R n,k v = L N k (z r (N ) v).
The restriction |z| < e ε ensures that this operator is well defined, by Theorem 2.1. More precisely, we even have:

Lemma 3.1. There exists C > 0 such that, for any n ∈ N, for any k ∈ Z,

(3.14) R n,k v C 1 (Y ) ≤ C max(1, |k|)e -2nε v C 1 (Y ) . Proof. Let ψ n,k (x) = e -ikS Y N φY (x) if r (N ) (x) = n, and 0 otherwise, so that R n,k v = L N (ψ n,k v). We will show that ψ n,k C 1,4ε N ≤ C max(1, |k|)e -2εn
, which will conclude the proof by (2.4).

We have |ψ

n,k (x)| ≤ e -2nε e 2εr (N ) (x) . Moreover, if h ∈ H N satisfies r (N ) • h = n, we have (3.15) D(ψ n,k • h)(x) ≤ C|k|r (N ) (hx) ≤ C|k|e 2εr (N ) (hx) ≤ C|k|e -2εn e 4εr (N ) (hx) .
This proves the lemma.

3.3. Study of the operators T n,k . In Equation (3.11), the complicated part in the expression of M n k comes from T i,k , since the other operators are more or less explicit. This paragraph is devoted to the study of the operators T i,k , by using (3.12). Lemma 3.2. There exist C > 0 and θ < 1 such that, for any k ∈ Z -{0}, for any n ∈ N and for

any v ∈ C 1 (Y ), T n,k v C 1 ≤ Ck 2 θn v C 1 . Proof. For k ∈ Z and |z| ≤ e ε , let us write L k,z v = L N k (z r (N ) v) = L N (e -ikS Y N φY z r (N ) v). Since L k,z =
z j R j,k by (3.13), Lemma 3.1 shows that this operator acts continuously on C 1 (Y ), and that z → L k,z is holomorphic on the disk {|z| ≤ e ε }. Formally, we can rewrite (3.12) as

T n,k z n = (I -R j,k z j ) -1 = (I -L k,z ) -1 .
Hence, for any path γ in C around 0 bounding a domain on which I -L k,z is invertible for any z, we have for any n ∈ N

(3.16) T n,k = 1 2iπ γ z -n-1 (I -L k,z ) -1 dz.
We are going to use this equation as well as the information on L k,z to estimate T n,k . First step. Fix A 0 = 1, and let K 0 = K(A 0 , 1) be given by the second half of Theorem 2.1 for this value of A. We will first prove the lemma for |k| ≥ K 0 . Let us fix such a k.

Let |z| ≤ e ε . The function z r (N ) belongs to C A0,ε N and its norm is bounded by 1. For n ∈ N, we can iterate n times (2.5) (or rather (2.7)) (for M = 1), to obtain (3.17)

L n k,z v L 4 ≤ L n k,z v D k ≤ θ 100N n v D k ≤ θ 100N n v C 1 .
We will then use (2.4). Note that the function ψ(x) = e -ikS Y N φY (x) z r (N ) (x) is bounded by e εr (N ) (x) , and for h ∈ H N we have

D(ψ • h)(x) ≤ |k| D(S Y N φ Y • h)(x) e εr (N ) (x) ≤ C|k|r (N ) (x)e εr (N ) (x) ≤ C ′ |k|e 2εr (N ) (x) . Letting A = C ′ |k|, we have proved that ψ ∈ C A,2ε N and ψ C A,2ε N ≤ 1. Applying (2.4) for n iterates,
we obtain, for any C 1 function w,

(3.18) L n k,z w C 1 ≤ C|k|(θ 100N n w C 1 + θ -N n w L 2 ). Applying this equation to w = L n k,z v and using (3.17), we get (3.19) L 2n k,z v C 1 ≤ C|k|(θ 100N n L n k,z v C 1 + θ -N n θ 100N n v C 1 ).
Applying once again (3.18) but this time to v, we finally get

L 2n k,z v C 1 ≤ C|k| 2 θ 99N n v C 1 .
We can argue in the same way for odd times, to finally obtain the existence of C such that, for any

n ∈ N, v ∈ C 1 (Y ), |k| ≥ K 0 and |z| ≤ e ε , (3.20) L n k,z v C 1 ≤ Ck 2 θ 40N n v C 1 .
This shows in particular that the operator I -L k,z is invertible on C 1 (Y ), and that its inverse L n k,z has a norm which is bounded by (Ck 2 )/(1θ 40N ).

We can then use Equation (3.16) by taking for γ a circle of radius e ε . We obtain

(3.21) T n,k ≤ Ck 2 γ |z| -n ≤ Ck 2 e -nε .
This concludes the proof for |k| ≥ K 0 . Second step. Consider now |k| < K 0 , k = 0. We will show that, for any z with |z| ≤ 1, the operator I -L k,z is invertible on C 1 (Y ). Since the invertible operators form an open set, this implies the existence of ε(k) such that, for |z| ≤ e ε(k) , I -L k,z is invertible on C 1 (Y ). Using a path γ which is a circle of radius e ε(k) , we can then conclude as above (without explicit control, but since there are only finitely many values of k to deal with this is not a problem).

Thus, consider z with |z| ≤ 1. The inequality (3.18) still holds (its proof does not use |k| ≥ K 0 ). Therefore, there exists C > 0 such that, for any n ∈ N,

L n k,z v C 1 ≤ Cθ 100N n v C 1 + C(n) v L 2 . Since the injection of C 1 (Y ) in L 2 (Y ) is compact, this is a Lasota-Yorke inequality.
Hennion's Theorem [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipschitziens[END_REF] therefore shows that the essential spectral radius of

L k,z is < 1. If I -L k,z is not invertible, there must therefore exist v ∈ C 1 (Y ) nonzero such that L k,z v = v, i.e., L N (e -ikS Y N φY z r (N ) v) = v.
The operator L N is the transfer operator associated to the map T N Y , which is ergodic on Y . Lemma 2.4 applies and shows on the one hand that |z| r (N ) is almost everywhere equal to 1 (hence |z| = 1) and on the other hand that v • T N Y = z r (N ) e -ikS Y N φY v almost everywhere. Raising this equation to the power K 0 , we obtain that v K0 is invariant under the operator L kK0,z K 0 . But we have already proved that I -L kK0,z K 0 is invertible on C 1 (Y ). As a consequence, v K0 = 0, and v = 0, which is a contradiction. This concludes the proof for |k| ∈ [1, K 0 ).

To obtain an estimate on T n,0 , we must also take into account the fact that I -L 0,1 is not invertible (its kernel corresponds to constant functions), which will add a residue in the integral calculus of the previous proof. In the following definition, we introduce a tool which makes the computation of this residue possible. We will write D for the open unit disk in C, and D for its closure.

Definition 3.3. Let B be a Banach space, and let R j be operators acting on B, for j > 0. We say that they form a renewal sequence of operators with exponential decay if

(1) There exist δ > 0 and C > 0 such that R j ≤ Ce -δj . We can thus define an operator R(z) = R j z j for |z| < e δ . (2) For any z ∈ D -{1}, the operator I -R(z) is invertible on B.

(3) The operator R(1) has a simple isolated eigenvalue at 1. Let P = P (1) be the corresponding spectral projection, and R ′ (1) = jR j . We assume that there exists µ > 0 such that P R ′ (1)P = µP . Proposition 3.4. Let R j be a renewal sequence of operators with exponential decay, on a Banach space B. Let us define an operator

T n by T n = ∞ p=1 j1+•••+jp=n R j1 . . . R jp .
Then there exist C > 0 and θ < 1 such that, for any n ∈ N, T n -P/µ ≤ C θn .

Proof. For z close to 1, the operator R(z) is close to R(1). Hence, it has an eigenvalue λ(z) close to 1, with a corresponding spectral projection P (z) (and all these quantities depend holomorphically on z). Let us compute the derivative λ ′ (1).

We will denote with a prime the derivative with respect to z. For any x ∈ B, R(z)P (z)x = λ(z)P (z)x. Differentiating with respect to z and then multiplying on the left by P (z), we get (omitting the variable z)

(3.22) P R ′ P x + P RP ′ x = λ ′ P x + λP P ′ x.
Moreover, P RP ′ = P 2 RP ′ = P RP P ′ = λP P ′ . After simplification, we obtain P R ′ P x = λ ′ P x. For z = 1, P R ′ P = µP . Choosing x such that P x = 0, we finally get

(3.23) λ ′ (1) = µ = 0.
In particular, on a small enough disk O around 1, the function z → λ(z) is injective, and takes the value 1 only for z = 1. The operators I -R(z) are invertible for z ∈ D -O, hence also for z in a neighborhood of this compact set. We can therefore choose a path γ around 0 going along an arc of a circle of radius > 1, and the inner part of ∂O. It satisfies the equation

(3.24) T n = 1 2iπ γ z -n-1 (I -R(z)) -1 dz.
We modify γ into a new path γ which runs along the same arc of circle of radius > 1, and the outer part of ∂O. To obtain an analogue of (3.24), we need to add the residue of

z -n-1 (I -R(z)) -1 inside O. We have (I -R(z)) -1 = (1 -λ(z)) -1 P (z) + Q(z) where Q(z) is holomorphic inside O (whence without residue).
The only pole is thus at 1, and we get

(3.25) T n = 1 2iπ γ z -n-1 (I -R(z)) -1 dz + 1 λ ′ (1) P.
On γ, |z| ≥ e δ ′ for some δ ′ > 0. As (I -R(z)) -1 is uniformly bounded along γ, the integral term is therefore O(e -nδ ′ ). The remaining term gives the conclusion of the proposition.

We can now come back to the study of the transfer operator associated to U, and more precisely to the operators T n,0 , which have not yet been estimated. 

v ∈ C 1 (Y ), (3.26) T n,0 v - 1 µ (N ) (X (N ) ) P v C 1 ≤ C θn v C 1 .
Proof. We will use the fact that the Markov transformations T Y and U are mixing. Since these transformations are topologically mixing (by the equality gcd{r (N ) (x)} = 1 for U ), the mixing in measure results e.g. from [Aar97, Theorem 4.4.7].

Let us show that R n,0 is a renewal sequence of operators with exponential decay, on the Banach space B = C 1 (Y ). The exponential decay of R n,0 is given by Lemma

3.1. Let L 0,z v = L N (z r (N ) v) = z n R n,0 = R(z).
Let us check that I -R(z) = I -L 0,z is invertible for z ∈ D-{1}. As in the proof of Lemma 3.2, the operators L 0,z (for |z| ≤ 1) have an essential spectral radius < 1 on C 1 . If I -L 0,z were not invertible, there would exist a nonzero

C 1 function v such that L 0,z v = v. Lemma 2.4 implies that |z| = 1 and v •T N Y = z r (N ) v.
Let us extend v to the whole space X (N ) by setting v(x, i) = z i v(x, 0). Thus, the function v is bounded (and therefore integrable), and satisfies v • U = zU . This is a contradiction since U is mixing.

For z = 1, R(1) = L 0,1 simply is the transfer operator associated to T N Y . It has a simple eigenvalue at 1 (the corresponding spectral projection being P ), and no other eigenvalue of modulus 1. Let us compute P R ′ (1)P . We have

(3.27) P R n,0 P u = µ Y {r (N ) = n}P u.
As a consequence, Kac's Formula gives P R ′ (1)P = nµ Y {r (N ) = n} P = µ (N ) (X (N ) )P . We can then apply Proposition 3.4 and get the conclusion of the corollary.

3.4. The exponential mixing. The estimates on T n,k given in the previous paragraph will enable us to describe M n k for any k, and then the full transfer operator Û. For x ∈ X (N ) , denote by h(x) its height in the tower (i.e., if x = (y, i) with y ∈ Y and i < r (N ) (x), let h(x) = i). We will write C 5,1 (X (N ) ×S 1 ) for the set of functions v :

X (N ) ×S 1 → C such that ∂ i v/∂ω i is C 1 for 0 ≤ i ≤ 5, with its canonical norm.
Theorem 3.6. There exist constants C > 0 and θ < 1 such that, for any C 5,1 function v :

X (N ) × S 1 → C, for any n ∈ N and any (x, ω) ∈ X (N ) × S 1 with h(x) ≤ n/2, (3.28) Ûn v(x, ω) -v d(μ (N ) ⊗ Leb) ≤ C θn v C 5,1 .
For the proof, we will need information on the operators T i,k , but we also need to describe precisely the operators B i,k (defined in (3.9)).

Lemma 3.7. There exist θ < 1 and C > 0 such that, for any k ∈ Z, v ∈ C 1 (X (N ) ) and n ∈ N,

(3.29) B n,k v C 1 ≤ C(1 + |k|) θn v C 1 .
Moreover,

(3.30)

X (N ) v dµ (N ) - n j=0 Y B j,0 v dµ (N ) ≤ C θn v C 1 . Proof. For y ∈ Y , let v n (y) = 0 if r (N ) (y) ≤ n, and 
(3.31) v n (y) = v(y, r (N ) (y) -n) exp   -ik r (N ) (y)-1 j=r (N ) (y)-n φ(y, j)   otherwise. For x ∈ Y , we then have B n,k v(x) = L N v n (x) since B n,k v(x)
takes into account the values of v on the set Z n of points that enter Y after exactly n iterations, i.e., points of the form (y, r (N ) (y)n) with r (N ) (y) > n.

Let us check that the function v n belongs to C 1,ε N . First, since v n vanishes for r (N ) ≤ n, we have

(3.32) |v n (x)| ≤ 1 r (N ) (x)>n v C 0 ≤ e -εn e εr (N ) (x) v C 0 . Moreover, if h ∈ H N , (3.33) D(v n • h)(x) ≤ 1 r (N ) •h>n ( v C 1 + kn v C 0 ) ≤ C(1 + |k|)ne -εn e εr (N ) (hx) v C 1 .
Hence, v n belongs to C 1,ε N and its norm is bounded by

C(1 + |k|) θn v C 1 . Applying (2.4), this yields (3.29).
For (3.30), note that

∞ j=0 Y B j,0 v = v since Y B j,0 v is the integral of v on Z j . Therefore, (3.34) v - n j=0 Y B j,0 v ≤ ∞ j=n+1 Y B j,0 v ≤ ∞ j=n+1 B j,0 v C 1 ≤ C θn v C 1 by (3.29).
Corollary 3.8. There exist C > 0 and θ < 1 such that, for any k ∈ Z, any n ∈ N, any x ∈ X (N ) with h(x) ≤ n/2, and any v ∈ C 1 (X (N ) ),

(3.35) M n k v(x) -1 k=0 v dμ (N ) ≤ C(1 + |k| 3 ) θn v C 1 .
Proof. Assume first that x ∈ Y . Then (3.11) simply becomes

(3.36) M n k v(x) = n i=0 T n-i,k B i,k v(x). If k = 0, then (3.37) T n-i,k B i,k v C 1 ≤ Ck 2 θn-i B i,k v C 1 ≤ C|k| 3 θn-i θi v C 1 ,
by Lemmas 3.2 and 3.7. Summing over i, we obtain the desired bound.

If k = 0, Corollary 3.5 gives an additional term

n i=0 P B i,0 v/µ (N ) (X (N ) ) = n i=0 Y B i,0 v dµ (N ) /µ (N ) (X (N ) ) = v dµ (N ) /µ (N ) (X (N ) ) + O( θn ) = v dμ (N ) + O( θn )
by (3.30). This proves (3.35) for x ∈ Y .

If x has height j ∈ (0, n/2], let us write x = U j (x ′ ), so that

(3.38) M n k u(x) = e -ikSj φ(x ′ ) M n-j k u(x ′ ).
The estimate for x ′ gives the desired conclusion (after replacing θ with θ1/2 ).

Proof of Theorem 3.6. Let v : X (N ) × S 1 → R be a C 5,1 function. We decompose it as v(x, ω)

= k∈Z v k (x)e ikω . Then (3.39) Ûn v(x, ω) = k∈Z M n k v k (x) • e ikω , by (3.4). Therefore, if h(x) ≤ n/2, Corollary 3.8 gives Ûn v(x, ω) -v d(μ (N ) ⊗ Leb) ≤ M n 0 v 0 (x) -v 0 dμ (N ) + k =0 |M n k v k (x)| ≤ C k∈Z (1 + |k| 3 ) θn v k C 1 .
With 5 integrations by parts with respect to ω, we show that

v k C 1 ≤ C v C 5,1 /(1 + |k| 5
). This implies the theorem after summation.

Proof of Theorem 1.7 (under the assumption d (N ) = 1). Let us first show that, on

X (N ) × S 1 , (3.40) Ûn v -v d(μ (N ) ⊗ Leb) L 1 ≤ C θn v C 5,1
for some constants C > 0 and θ < 1. To do this, we decompose X (N ) as {x | h(x) > n/2} and {x | h(x) ≤ n/2}. The first set has an exponentially small measure, its contribution is therefore exponentially small. If x belongs to the second set, Ûn v(x, ω)v ≤ C θn v C 5,1 by Theorem 3.6. This proves (3.40). This implies that, for any functions v ∈ C 5,1 and u ∈ L ∞ ,

(3.41) u • U n • v d(μ (N ) ⊗ Leb) - u d(μ (N ) ⊗ Leb) v d(μ (N ) ⊗ Leb) ≤ C θn u L ∞ v C 5,1 .
Take now f ∈ L ∞ (X × S 1 ) and g ∈ C 6 (X × S 1 ). The functions u = f • π(N) and v = g • π(N) are defined on X (N ) × S 1 , respectively bounded and in C 5,1 . Moreover, (3.1) shows that v C 5,1 ≤ C g C 6 . Since π

(N ) * μ(N) = μ, (3.41) implies (3.42) f • T n • g d(μ ⊗ Leb) - f d(μ ⊗ Leb) g d(μ ⊗ Leb) ≤ C θn f L ∞ g C 6 .
Let n ∈ N and f ∈ L ∞ . The linear operator

(3.43) g → f • T n • g d(μ ⊗ Leb) - f d(μ ⊗ Leb) g d(μ ⊗ Leb)
is then bounded by 2 f L ∞ in C 0 norm, and by C θn f L ∞ in C 6 norm. For any noninteger α ∈ (0, 6), interpolation theory on the compact manifold X × S 1 (possibly with boundary) shows that there exists a constant C α such that any operator which is bounded by A in C 0 norm and by B in C 6 norm is then bounded by C α A 1-α/6 B α/6 in C α norm (see [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF]p. 200]). As a consequence, we get

f • T n • g d(μ ⊗ Leb) - f d(μ ⊗ Leb) g d(μ ⊗ Leb) ≤ C α f L ∞ 2 1-α/6 (C θn ) α/6 g C α .
This concludes the proof of the theorem for noninteger α. The general case follows readily. The interpolation argument can also be replaced by an elementary (but less synthetic) convolution argument. The idea of using interpolation theory in this kind of setting was suggested by Dinh and Sibony.

Proof of Theorem 1.7 in the general case. If d = d (N ) > 1, the transformation U is not mixing, and the arguments used above (especially in the proof of Corollary 3.5) do not apply any more. However, they can be applied to the transformation U d and its invariant measure μ(N) 0 (defined in Paragraph 3.1). As π (N ) * μ(N) 0 = μ, this implies Theorem 1.7 for times n of the form kd. To deduce the general case, one writes n = kd + r with 0 ≤ r < d and applies the theorem to the time kd and to the functions f • T r and g (which are respectively bounded and C α ).

3.5. Proof of one implication in Proposition 1.8. Proposition 3.9. Let ψ : X × S 1 → R be a Hölder continuous function of 0 average, and define σ 2 by (1.10). Then σ 2 ≥ 0. Moreover, if σ 2 = 0, there exists a measurable function f :

X × S 1 , continuous on Y × S 1 , belonging to L p for any p < ∞, such that ψ = f -f • T almost everywhere.
This is one of the implications in Proposition 1.8. Theorem 1.9 will be required for the other half, hence its proof is postponed to Paragraph 5.6.

Proof. We have (3.44)

X×S 1 n-1 i=0 ψ • T i 2 = n ψ 2 + 2 n-1 i=0 (n -i) ψ • ψ • T i . Since i>0 i ψ • ψ • T i < ∞ by Theorem 1.7, this yields (3.45) X×S 1 n-1 i=0 ψ • T i 2 = nσ 2 + O(1).
As a consequence, σ 2 ≥ 0. Moreover, if σ 2 = 0, the Birkhoff sums of ψ are uniformly bounded in L 2 . By [START_REF] Kachurovskiȋ | Rates of convergence in ergodic theorems[END_REF], there exists an L 2 function f with zero average such that ψ = ff • T almost everywhere. We have to prove that f is continuous on Y × S 1 and belongs to every L p , p < ∞.

Theorem 3.6 implies that there exist θ < 1 and C > 0 such that, for any C 6 function v : X × S 1 → C, for any n ∈ N, for any x ∈ X (N ) with h(x) ≤ n/2,

(3.46) Ûn (v • π(N) )(x, ω) -v ≤ C θn v C 6 . Since | Ûn (v • π(N) )(x, ω) -v| ≤ 2 v C 0 ,
interpolation theory as above implies that, for any α > 0, there exist C α > 0 and θα < 1 such that, for any x ∈ X (N ) with h(x) ≤ n/2,

(3.47) Ûn (v • π(N) )(x, ω) -v ≤ C α θn α v C α .
As ψ belongs to C α and has vanishing integral, we can therefore define a function g on X (N ) ×S 1 by

(3.48) g(x, ω) = - ∞ n=1 Ûn (ψ • π(N) )(x, ω).
This function is continuous on Y × S 1 , and belongs to L p for any p < ∞ (since |g(x, ω)| ≤ C(1 + h(x)), this last function belonging to any L p because µ (N ) {h(x) ≥ n} decays exponentially with n). Moreover, by construction, Ûg -

g = Û(ψ • π(N) ). We know that ψ = f -f • T where f ∈ L 2 . As a consequence, ψ • π(N) = f • π(N) -f • π(N) • U, whence Û(ψ • π(N) ) = Û(f • π(N) ) -f • π(N) . We get (3.49) g -f • π(N) = Û(g -f • π(N) ).
In particular, for any n ∈ N, gf • π(N) = Ûn (gf • π(N) ). Theorem 3.6 shows that, for any function v ∈ C 5,1 (X (N ) ×S 1 ) with zero integral, Ûn v converges to 0 in L 2 . By density, this convergence holds for any function v ∈ L 2 with zero integral. In particular, Ûn (gf • π(N) ) converges to 0, hence gf • π(N) = 0. As g is continuous on Y × S 1 and belongs to all spaces L p , p < ∞, this concludes the proof. 4. Strategy and tools for the local limit theorem 4.1. Description of the strategy of the proof. Let us fix an integer M . We work with the transformation U = U (MN ) on X (MN ) (hence also with U (MN ) on X (MN ) × S 1 ).

Let ψ : X × S 1 → R be a C 6 function with 0 average. We will also write ψ instead of ψ • π(MN) on X (MN ) × S 1 . To prove the local limit theorem for ψ, we consider for t ∈ R the operator Ût (v) := Û (e itψ v). If we understand well the iterates of Ût , we will deduce the asymptotic behavior of e itSnψ , since this quantity is equal to Ûn t (1). Instead of working with functions on X (MN ) × S 1 , we have seen in the proof of the exponential mixing that it is worthwhile to use Fourier series, and work on X (MN ) × Z. If v is a function and (v k ) k∈Z denote its Fourier coefficients, then the Fourier coefficients of e itψ v are given by

(4.1) (e itψ v) k = a+b=k (e itψ ) a v b .
Applying then the operator Û (which acts at the level of the k frequency by the operator M k ), we obtain

(4.2) ( Ût v) k (x) = l∈Z Ux ′ =x J (x ′ )e -ikφ(x ′ ) (e itψ ) k-l (x ′ )v l (x ′ ).
This is some kind of Markov operator on X (MN ) × Z, for the "transition probability"

(4.3) K t (x,k)→(x ′ ,l) := 1 Ux ′ =x J (x ′ )e -ikφ(x ′ ) (e itψ ) k-l (x ′
). The equality (x ′ ,l) K (x,k)→(x ′ ,l) = 1 does not hold, so this is not a real transition kernel, but we will nevertheless use the intuition of random walks. Let us in particular write, for n ∈ N, In this expression, we consider trajectories of the random walk x n , x n-1 , . . . , x 0 . It may seem unnatural to write things in that direction, but it is designed to give the "good" order when we express things in terms of transfer operators. Let Kt be the operator with kernel K t , acting on bounded functions on X (MN ) × Z, by

(4.4) K t,n (x,k)→(x ′ ,l) = k0=l,
(4.5) Kt v(x, k) = (x ′ ,l) K t (x,k)→(x ′ ,l) v(x ′ , l).
By construction, the powers Kt,n of Kt have kernels K t,n . Moreover, Ût corresponds to the operator Kt at the level of frequencies, i.e., if v is a smooth function on X (MN ) × S 1 with Fourier coefficients

(v k ) k∈Z , (4.6) ( Ûn t v) k (x) = (x ′ ,l) K t,n (x,k)→(x ′ ,l) v l (x ′ ).
To see that this expression and these computations are correct, we should check that (4.7) sup

(x,k)∈X (M N ) ×Z (x ′ ,l) K t (x,k)→(x ′ ,l) < ∞,
which is always the case if ψ is C 2 in the direction of S 1 (by two integrations by parts), and will always be satisfied in the following. A priori, this does not prevent K t,n (x,k)→(x ′ ,l) from blowing up exponentially fast with n. However, K t,n (x,k)→(x ′ ,l) is also the kernel of the operator obtained by multiplying v with e itSnψ , and then applying Ûn . Therefore, (4.8)

K t,n (x,k)→(x ′ ,l) = 1 U n x ′ =x J (n) (x ′ )e -ikSnφ(x ′ ) (e itSnψ ) k-l (x ′ ),
and this quantity is bounded by J (n) (x ′ ) ≤ 1. Note that (4.8) can also be checked directly from the formula (4.4), with several successive integrations. We will let different operators (with kernels related to K t,n ) act on spaces of functions from X (MN ) × Z to C (or Y × Z to C if we only consider trajectories starting from Y × Z or ending in Y × Z). If B is such a functional space, and v ∈ B, we will sometimes write v k (x) instead of v(x, k).

To understand the previous "random walk", we will study its successive returns to the set Y × [-K, K] where K is large enough. Indeed, outside of this set, we have a strong contraction (by Theorem 2.1) hence excursions can be controlled. Only what happens inside Y × [-K, K] can therefore be problematic, and we will use there an abstract compactness argument. Let us denote by K t,n,exc (x,k)→(x ′ ,l) the "probability" of an excursion, i.e., of starting from (x, k) ∈ Y × [-K, K], and coming back to

(x ′ , l) ∈ Y × [-K, K] after a time exactly n, without entering Y × [-K, K] in between. Formally, for (x, k) ∈ Y × [-K, K] and (x ′ , l) ∈ Y × [-K, K], K t,n,exc (x,k)→(x ′ ,l) = k0=l,...,kn=k x0=x ′ ,x1,...,xn-1∈X,xn=x (xi,ki) ∈Y ×[-K,K] for 0<i<n K t (xn,kn)→(xn-1,kn-1) . . . K t (x2,k2)→(x1,k1) K t (x1,k1)→(x0,k0) . Let B K = |k|≤K C 1 (Y ).
An element of B K can therefore be seen as a function v on X × Z such that v k is C 1 for |k| ≤ K, and v k = 0 for |k| > K. We define then an operator R t n on B K by

(4.9) (R t n v) k (x) = (x ′ ,l) K t,n,exc (x,k)→(x ′ ,l) v l (x ′ ). For x ∈ Y and |k| ≤ K, let also (T t n v) k (x) = (x ′ ,l)∈Y ×[-K,K] K t,n (x,k)→(x ′ ,l) v l (x ′ ), i.e.
, we consider all the returns of the "random walk" to Y × [-K, K] and not only the first ones. This means that

T t n v = 1 Y ×[-K,K] Kt,n (1 Y ×[-K,K] v) for v ∈ B K . By construction, (4.10) T t n = ∞ p=1 j1+•••+jp=n R t j1 . . . R t jp .
This is a renewal equation, that we already met in the course of the proof of exponential mixing.

The main difference is that, for the mixing, each frequency was left invariant by the transfer operator, which means we only had to consider random walks on X (N ) and excursions outside Y .

Here, since there is also some interaction between the frequencies, we have to localize spatially (i.e., on Y ), but also on the space of frequencies since the estimates given by Theorem 2.1 are not uniform in k. The proof will consist in understanding precisely the R t n 's, deducing from that good estimates on T t n 's, and using these to reconstruct precisely enough Ûn t . We will thus need two technical tools: on the one hand, a tool on perturbations of renewal sequences of operators (we want estimates which are precise both with respect to n and t), and on the other hand good estimates on the excursions outside of Y × [-K, K].

Before going on, let us give another expression of K t,n,exc that will be needed later on, by considering the successive returns to

Y × Z. Let us define a function ψ Y : Y × S 1 → R by (4.11) ψ Y (x, ω) = r(x)-1 i=0 ψ   T i x, ω + i-1 j=0 φ(T j x)   .
It is the function induced by ψ and T on the set Y × S 1 . Let us denote by S Y n ψ Y the Birkhoff sums of ψ Y for the map induced by

T on Y × S 1 . For x, x ′ ∈ Y and k, l ∈ Z, let K t,Y (x,k)→(x ′ ,l) = 1 T M N x ′ =x J (MN ) (x ′ )e -ikS Y M N φY (x ′ ) (e itS Y M N ψY ) k-l (x ′
), which corresponds to the "probability" (for the above random walk) of the first return in Y × Z. Considering the successive returns to

Y × (Z -[-K, K]), we get for x, x ′ ∈ Y and k, l ∈ [-K, K], (4.12) K t,n,exc (x,k)→(x ′ ,l) = p≥0 k0=l,k1,...,kp-1 ∈[-K,K],kp=k x0=x ′ ,x1,...,xp-1∈Y,xp=x p-1 i=0 r (M N ) (xi)=n K t,Y (xp,kp)→(xp-1,kp-1) . . . K t,Y (x1,k1)→(x0,k0) .
4.2. Perturbed renewal sequences of operators.

Definition 4.1. Let B be a Banach space, and let R t j be operators acting on B, for j > 0 and t ∈ [-t 0 , t 0 ] for some t 0 > 0. These operators form a perturbed sequence of renewal operators with exponential decay if

(1) The operators R 0 j form a renewal sequence of operators with exponential decay. We will in particular write P and µ for the associated spectral projection and coefficient, as in Definition 3.3.

(2) There exist δ > 0 and a, C > 0 such that, for all t, t ′ ∈ [-t 0 , t 0 ] with |tt ′ | ≤ a, for any

j > 0, R t j -R t ′ j ≤ C|t -t ′ |e -δj .
(3) Let us write R(z, t) = z j R t j for |z| < e δ . For (z, t) close to (1, 0), the operator R(z, t) is a small perturbation of R(1, 0). Therefore, it has an eigenvalue λ(z, t) close to 1. We assume that, for some α > 0, λ(1, t) = 1αt 2 + O(|t| 3 ). We say that this sequence if aperiodic if, for any (z, t)

∈ (D × [-t 0 , t 0 ]) -{(1, 0)}, the operator I -R(z, t) is invertible on B.
Theorem 4.2. Let R t j be a perturbed sequence of renewal operators with exponential decay. Let

(4.13) T t n = ∞ p=1 j1+•••+jp=n R t j1 . . . R t jp .
Then there exist τ 0 ∈ (0, t 0 ), θ < 1 and c, C > 0 such that, for t ∈ [-τ 0 , τ 0 ], for n > 0, (4.14)

T t n - 1 µ 1 - αt 2 µ n P ≤ C θn + C|t|(1 -ct 2 ) n .
Moreover, if R t j is aperiodic, one also has, for |t| ∈ [τ 0 , t 0 ] and n > 0, (4.15)

T t n ≤ C θn . Proof. If γ is a path around 0 in C, close enough to 0, (4.16)

T t j = 1 2iπ γ z -j-1 (I -R(z, t)) -1 dz.
By analyticity, this equality holds true for any path γ around 0 bounding a domain on which I -R(z, t) is invertible for any z.

Let us first show (4.15) in the aperiodic case. Let t = 0. The operators I -R(z, t) are invertible for any z ∈ D. Since invertible operators form an open set, there exists an open neighborhood I t of t, and ε t > 0, such that I -R(z, t ′ ) is invertible for t ′ ∈ I t and |z| ≤ e εt . Taking for γ the circle of radius e εt , we obtain T t ′ j ≤ C(t)e -jεt . If τ > 0, the compact set [-t 0 , -τ ] ∪ [τ, t 0 ] can be covered by a finite number of the intervals I t , and we get the following: there exist δ τ > 0 and C τ > 0 such that, for any |t| ∈ [τ, t 0 ], for any j > 0, T t j ≤ C τ e -jδτ . This proves (4.15), if we can choose τ so that (4.14) is satisfied.

For (4.14), we work in a neighborhood of (z, t) = (1, 0). There exist an open disk O around 1, and τ 0 > 0, such that, for (z, t) ∈ O × [-τ 0 , τ 0 ], the operator R(z, t) has a unique eigenvalue λ(z, t) close to 1. Let us also denote by P (z, t) the corresponding spectral projection. These functions depend holomorphically on z, and in a Lipschitz way on t.

We saw in the proof of Proposition 3.4 that λ ′ (1, 0) = µ = 0. Reducing O if necessary, we can therefore assume that z → λ(z, 0) is injective on O (and takes the value 1 only at z = 1).

When t converges to 0, the function z → λ(z, t) converges uniformly to z → λ(z, 0) (with a speed O(t)). Since all these functions are holomorphic, the derivatives converge uniformly with the same speed. In particular, z → λ(z, t) takes the value 1 at a unique point γ(t) in O, if t is small enough, by Rouché's Theorem. Moreover, γ(t) → 1 when t → 0.

Let us establish an asymptotic expansion of γ(t). We have

λ(γ(t), t) -λ(1, t) = γ(t) 1 λ ′ (z, t) dz = γ(t) 1 (λ ′ (z, t) -λ ′ (1, 0)) dz + λ ′ (1, 0)(γ(t) -1). Moreover, |λ ′ (z, t) -λ ′ (1, 0)| ≤ C(|z -1| + |t|) ≤ C(|γ(t) -1| + |t|). As λ(γ(t), t) -λ(1, t) = 1 -λ(1, t) = αt 2 + O(|t| 3 ), we obtain (4.17) λ ′ (1, 0)(γ(t) -1) = αt 2 + O(t 3 ) + O(|t||γ(t) -1|) + O(|γ(t) -1| 2 ).
As λ ′ (1, 0) = µ = 0, this yields γ(t) -1 ∼ αt 2 /µ. In particular, γ(t) -1 = O(t 2 ). Putting this information back in the equation, we finally obtain

(4.18) γ(t) = 1 + αt 2 /µ + O(t 3 ).
The operators I -R(z, 0) are invertible for z ∈ D -O. By continuity, I -R(z, t) is invertible for any z in a neighborhood of this compact set, and t close enough to 0, say t ∈ [-τ 0 , τ 0 ]. We can therefore choose a path γ around 0 made of an arc of circle of radius > 1, and the inner part of ∂O, satisfying (4.16) for |t| ≤ τ 0 . We modify γ into a new path γ by replacing the inner part of ∂O with its outer part. To obtain an analogue of (4.16), we should add the residue of z -j-1 (I -R(z, t)) -1 inside O. We have (I -R(z, t)) -1 = (1λ(z, t)) -1 P (z, t) + Q(z, t) where Q(z, t) is holomorphic inside O (whence without residue). The only pole is located at γ(t), and we obtain (4.19)

T t j = 1 2iπ γ z -j-1 (I -R(z, t)) -1 dz + 1 λ ′ (γ(t), t) P (γ(t), t)γ(t) -j-1 .
On γ, we have |z| ≥ e δ0 for some δ 0 > 0. As (I -R(z, t)) -1 is uniformly bounded on γ, the integral term is O(e -δ0j ). For the remaining term, we have

1 λ ′ (γ(t),t) P (γ(t), t) = 1 λ ′ (1,0) P (1, 0) + O(t).
Making this substitution gives an error of O(|t||γ(t)| -j ) = O(|t|(1ct 2 ) j ), by (4.18). We get (4.20)

T t j -

1 µ P γ(t) -j-1 ≤ Ce -jδ0 + C|t|(1 -ct 2 ) j .
Finally, if we replace γ(t) -j-1 with (1αt 2 /µ) j , the error is bounded, thanks to (4.18), by

C(1 -ct 2 ) j (1 + C|t| 3 ) j -1 ≤ C(1 -ct 2 ) j (1 + C|t| 3 ) j j|t| 3 . If t is small enough, (1 -ct 2 )(1 + C|t| 3 ) ≤ (1 -ct 2 /2). Finally, j|t| 3 (1 -ct 2 /2) j ≤ j|t| 3 (1 -ct 2 /4) j (1 -ct 2 /4) j ≤ |t|(1 -ct 2 /4) j • jt 2 exp(-cjt 2 /4) ≤ C|t|(1 -ct 2 /4) j , (4.21) since the function x → xe -cx 2 /4 is bounded on R + .
4.3. Estimates on the excursions. In this whole paragraph, we fix an integer M , a constant A > 1 and a sequence (γ d ) d∈Z with γ d ∈ (0, 1] and γ d = O(1/|k| 4 ) when d → ±∞.

We then choose an integer K such that Let k = (k 0 , k 1 , . . . , k j ) be a sequence of integers. We say that this sequence is admissible if |k i | > K for any i ∈ (0, j). We say that it is strongly admissible if, additionally, |k j | > K. We will denote by d i = k ik i-1 the successive differences.

Lemma 4.3. Let k = (k 0 , k 1 , . . . , k j0 ) be a strongly admissible sequence. Let ψ 1 , . . . , ψ j0 be functions from Y to C, and let ε 1 , . . . , ε j0 belong to

[0, 1]. Assume that ψ i C A,3ε M N ≤ ε i γ di . Let v 0 : Y → C, define a sequence of functions v i by induction, by v i = L MN ki (ψ i v i-1 ). Then (4.25) v j0 L 2 ≤ j0 i=1 ε i γ 9/10 di θ 100MN j0 v 0 C 1 .
Proof. We will use the following "virtual heights" (4.26)

β i = max(|k i |, |k i-1 |/2 M , . . . , |k 0 |/2 Mi ).
Their interest is that we will be able to control by induction the Dolgopyat norms v i D β i (while this would not be possible for the norm D ki if the jumps d i are too large).

If

|k i | ≥ β i-1 /2 M , we have β i = |k i |.
Then, by Theorem 2.1 (and more precisely (2.5)),

v i D β i = L MN ki (ψ i v i-1 ) D k i ≤ θ 100MN ψ i C A,3ε M N v i-1 D 2 M k i ≤ θ 100MN ε i γ di v i-1 D β i-1
.

Otherwise,

β i = β i-1 /2 M > |k i |, and (using (2.6)) (4.27) v i D β i = L MN ki (ψ i v i-1 ) D β i ≤ θ -MN ψ i C A,3ε M N v i-1 D 2 M β i ≤ θ -MN ε i γ di v i-1 D β i-1
.

In both cases, we have similar equations, with a large gain or a small loss.

Let us show by induction on i that (4.28)

v i D β i ≤ θ 100MN i ε 1 . . . ε i (γ d1 . . . γ di ) 9/10 v 0 D k 0
, the result being clear for i = 0. Assume that the result is proved up to i -1, and let us prove it for i. 

If β i = |k i |, (4.29) v i D β i ≤ θ 100MN ε i γ di v i-1 D β i-1 ≤ θ 100MN ε i (γ di ) 9/10 v i-1 D β i-1 since γ d ≤
v i D β i ≤ ε i . . . ε ι+1 γ di . . . γ dι+1 θ -MN (i-ι) v ι D βι .
Moreover, β i = β ι /2 M(i-ι) , and β i > K since k is strongly admissible. Hence, (4.31)

|d ι+1 | + • • • + |d i | ≥ |k ι -k i | ≥ (2 M(i-ι) -1)β i ≥ (2 M(i-ι) -1)K.
Write J for the set of indexes a ∈ (ι, i] for which |d a | > K/2. Then J |d a | ≥ (2 M(i-ι) -1 -(iι)/2)K. By (4.24), we therefore get J |d a | ≥ 2 M(i-ι) . By (4.22), γ d ≤ 1/(1 + |d|) for any |d| > K/2. We obtain

(γ di . . . γ dι+1 ) 1/10 ≤ a∈J γ 1/10 da ≤ a∈J 1 (1 + |d a |) 1/10 = 1 a∈J (1 + |d a |) 1/10 ≤ 1 a∈J |d a | 1/10 ≤ 2 -M(i-ι)/10 .
By Theorem 2.1, θ 101N ≥ 2 -1/10 . As a consequence, 2 -M(i-ι)/10 ≤ θ 101MN (i-ι) . Hence, we obtain from (4.30)

v i D β i ≤ θ -MN (i-ι) (γ di . . . γ dι+1 ) 1/10 • ε i . . . ε ι+1 (γ di . . . γ dι+1 ) 9/10 v ι D βι ≤ θ 100MN (i-ι) • ε i . . . ε ι+1 (γ di . . . γ dι+1 ) 9/10 v ι D βι .
Using the induction assumption at ι, we get (4.28) at i. This concludes the induction and the proof of (4.28).

From (4.28) at j 0 , we obtain in particular

(4.32) v j0 L 2 ≤ θ 100MN j0 ε 1 . . . ε j0 (γ d1 . . . γ dj 0 ) 9/10 v 0 D k 0 . As v 0 D k 0 ≤ v 0 C 1 , this concludes the proof.
Lemma 4.4. There exists a constant C (depending on M, A, {γ d }, K) satisfying the following property. Let (k 0 , k 1 , . . . , k j ) be an admissible sequence. Let ψ 1 , . . . , ψ j be functions from Y to C, and let ε 1 , . . . , ε j belong to [0, 1]. We assume that

ψ i C A,3ε M N ≤ ε i γ di .
Let v 0 : Y → C, define a sequence of functions v i by induction, by v i = L MN ki (ψ i v i-1 ). Then

(4.33) v j C 1 ≤ C(1 + k 2 0 ) j i=1 ε i γ 1/3 di θ 30MN j v 0 C 1 .
Proof. We write j 0 = j/2 or (j -1)/2, depending on whether j is even or odd.

Let

ϕ i = e -ikiS Y M N φY ψ i , so that v i = L MN (ϕ i v i-1 ). We have |ϕ i (x)| ≤ ε i γ di e 3εr (M N ) (x) and, for h ∈ H MN , D(ϕ i • h)(x) ≤ D(ψ i • h)(x) + |k i | D(S Y MN φ Y • h)(x) |ψ i (hx)| ≤ Cε i γ di e 3εr (M N ) (hx) + C|k i |r (MN ) (hx)ε i γ di e 3εr (M N ) (hx) ≤ C|k i |ε i γ di e 4εr (M N ) (hx)
for some constant C ≥ 1 depending only on M and A.

Let B = C max |k i |, this shows that ϕ i C B,4ε M N ≤ ε i γ di .
We can apply (2.4) between the indexes 1 and j 0 , to get

v j0 C 1 ≤ C(max |k i |) j0 i=1 ε i γ di θ 100MN j0 v 0 C 1 + θ -MN j0 v 0 L 2 ≤ Cθ -MN j0 j0 i=1 ε i γ di (max |k i |) v 0 C 1 .
Applying (2.4) between the indexes j 0 + 1 and j, we obtain

v j C 1 ≤ C(max |k i |)   j i=j0+1 ε i γ di   θ 100MN (j-j0) v j0 C 1 + θ -MN (j-j0) v j0 L 2 .
We will use the bound on v j0 C 1 given by the previous equation, and the bound on v j0 L 2 from Lemma 4.3 (if j 0 = 0, this lemma does not apply since the sequence (k 0 ) is not necessarily strongly admissible, but the estimate (4.25) is trivial in this case). We obtain: ≤ 1

v j C 1 ≤ C j i=1 ε i γ di θ 40MN j (max |k i |) 2 v 0 C 1 + C j0 i=1 ε i γ 9/10 di   j i=j0+1 ε i γ di   (max |k i |)θ 40MN j v 0 C 1 ≤ Cθ 40MN j (max |k i |) 2 j i=1 ε i γ 9/10 di v 0 C 1 . Assume first that max |k i | ≤ 2(|k 0 | + jK). As θ 40MN j j 2 ≤ Cθ 30MN j ,
i∈J |d i | 2 ≤ 4/(max |k i |) 2 .
Finally,

(max |k i |) 2 j i=1 γ di 9/10 = (max |k i |) 2 j i=1 γ di 17/30 • j i=1 γ di 1/3 ≤ 4 j i=1 γ di 1/3
. This yields again the conclusion of the lemma.

Proof of the local limit theorem

We fix a C 6 function ψ : X × S 1 → R with vanishing average, and a real number t 0 > 0. We will study the operators Tt := T (e itψ •) for |t| ≤ t 0 . We will first choose M , A, a sequence γ d and an integer K so that the results of Paragraph 4.3 apply. All these choices will depend on ψ and t 0 . 5.1. Choosing the constants. Let ψ Y be the function defined in (4.11). There exists a constant

C(ψ) such that |S Y n ψ Y (x, ω)| ≤ C(ψ)r (n) (x)
. More generally, as T is an isometry in the fiber direction S 1 , we even have

(5.1) ∂ 4 ∂ω 4 S Y n ψ Y (x, ω) ≤ C(ψ)r (n) (x).
In particular, for any |t| ≤ t 0 ,

(5.2)

∂ 4 ∂ω 4 e itS Y n ψY (x,ω) ≤ C(t 0 , ψ)r (n) (x) 4 .

Let us denote by F

(n,t) d the d-th Fourier coefficient of e itS Y n ψY in the circle direction. Making 4 integrations by parts in the circle direction and using the previous equation yields

(5.3) |F (n,t) d (x)| ≤ C(t 0 , ψ)r (n) (x) 4 1 + |d| 4 ≤ C ′ (t 0 , ψ)e εr (n) (x) 1 + |d| 4 .
There also exists C(n, t 0 , ψ) such that, for any h ∈ H n ,

(5.4) D(F

(n,t) d • h)(x) ≤ C(n, t 0 , ψ) e εr (n) (hx) 1 + |d| 4 .
We fix once and for all an integer M such that (5.5)

θ 20MN d∈Z min 1, C ′ (t 0 , ψ) 1 + |d| 4 1/3 < θ 10MN and (5.6) θ 100MN d∈Z min 1, C ′ (t 0 , ψ) 1 + |d| 4 < 1/4. Let γ d = min 1, C ′ (t0,ψ) 1+|d| 4
. By (5.4), we can then choose a constant A such that (5.7)

F (MN,t) d C A,ε M N ≤ γ d
for any d ∈ Z. Finally, we choose K satisfying (4.22)-(4.24).

All the constants C we will consider until the end of this section may depend on M, A, {γ d }, K. We will work on the space X (MN ) , with the map U = U (MN ) , to prove Theorem 1.12 for t ∈ [-t 0 , t 0 ]. We will freely use all the results that we proved in Section 3. Formally, we proved these results for X (N ) , but the same arguments hold verbatim in X (MN ) .

As in the proof of Theorem 1.7, we will assume until the end of the proof that d (MN ) = 1, i.e., U (MN ) is mixing. Only at the end of the proof will we give the modifications to be done to handle the general case.

The renewal process. As in Paragraph 4.1, let us define a space B K =

|k|≤K C 1 (Y ), endowed with the norm of the supremum of the C 1 norms of the different components. We will see an element v of B K as a set of functions (v k ) |k|≤K where v k corresponds to frequency k, and then v BK = sup |k|≤K v k C 1 . We will also write

v C 0 = sup v k C 0 .
For z ∈ C, t ∈ [-t 0 , t 0 ] and k = (k 0 , . . . , k j ) an admissible sequence, we formally define an operator Q t k (z) on C 1 (Y ), by

(5.8)

Q t k (z)v = L MN kj (z r (M N ) F (MN,t) dj L MN kj-1 z r (M N ) . . . L MN k1 (z r (M N ) F (MN,t) d1 v) . . . ).
Intuitively, this operator applies to a function of frequency k 0 , and gives a function of frequency k j . If B is a Banach space of functions from Y × Z to C, it is therefore more natural to consider an operator Qt k (z) from B to B, defined by ( Qt

k (z)v) k = 0 if k = k j , and ( Qt k (z)v) kj = Q t k (z)v k0
. This applies for instance if B = B K (and |k 0 | ≤ K, |k j | ≤ K). We will occasionally use the operators Qt k (z), but the technical estimates will be formulated in terms of Q t k (z).

Lemma 5.1. The operator Q t k (z) acts continuously on C 1 (Y ) for any t ∈ [-t 0 , t 0 ] and any |z| ≤ e 2ε , and its norm is bounded by

C(1 + k 2 0 )θ 20MN j j i=1 γ 1/3 di . Moreover, the map z → Q t k (z) is holomorphic from {|z| < e 2ε } to End(C 1 (Y )) the set

of continuous linear operators on C 1 (Y ).

There exist a > 0 and C > 0 such that, for all |tt ′ | ≤ a, for any admissible sequence k,

(5.9)

Q t k (z) -Q t ′ k (z) End(C 1 (Y )) ≤ C|t -t ′ |(1 + k 2 0 )θ 20MN j j i=1 γ 1/3 di .
Finally, if |t| ≤ a,

(5.10)

Q t k (z) ≤ C(1 + k 2 0 )(C|t|) #{i | di =0} θ 20MN j j i=1 γ 1/3 di .
Proof. To estimate the norm of Q t k (z), we use the estimate given by Lemma 4.4, taking ε i = 1 and

ψ i = z r (M N ) F (MN,t) di . If |z| ≤ e 2ε , we have ψ i C A,3ε M N ≤ F (MN,t) di C A,ε M N ≤ γ di . We obtain (5.11) Q t k (z) End(C 1 (Y )) ≤ C(1 + k 2 0 ) j i=1 γ 1/3 di θ 30MN j .
If |z| < e 2ε , each function ψ i 1 r (M N ) >n tends to 0 in C A,3ε MN when n tends to infinity. As a consequence, z → Q t k (z) is a uniform limit of polynomials on any compact subset of {|z| < e 2ε }, and is therefore holomorphic there.

To prove the rest of the lemma, we will use the following inequality (which can easily be proved by 4 integrations by parts): there exists C > 0 such that, for any t, t ′ ∈ [-t 0 , t 0 ] and for any d ∈ Z, (5.12)

F (MN,t) d -F (MN,t ′ ) d C A,ε M N ≤ C|t -t ′ |γ d .
To prove (5.9), let us write

Q t k (z)v -Q t ′ k (z)v as j b=0 L MN kj (z r (M N ) F (MN,t) dj L MN kj-1 . . . L MN k b (z r (M N ) (F (MN,t) d b -F (MN,t ′ ) d b )L MN k b-1 ( z r (M N ) F (MN,t ′ ) d b-1 L MN k b-2 (. . . L MN k1 (z r (M N ) F (MN,t ′ ) d1 v) . . . ).
Fix b. To estimate the corresponding term in this equation, we will again use Lemma 4.4. Let

ψ i = z r (M N ) F (MN,t) di for i > b, ψ i = z r (M N ) F (MN,t ′ ) di for i < b and ψ b = z r (M N ) (F (MN,t) d b -F (MN,t ′ ) d b ).
Let also ε i = 1 for i = b. Then ψ i , ε i satisfy the assumptions of Lemma 4.4 for i = b. Let finally ε b = C|t ′ -t| (where C is as in (5.12)). If t ′ is close enough to t, we have ε b ≤ 1, and the assumptions of Lemma 4.4 are again satisfied by (5.12). Using this lemma, we obtain (after summation over b)

(5.13) Q t k (z)v -Q t ′ k (z)v C 1 ≤ C(j + 1)|t ′ -t|(1 + k 2 0 ) j i=1 γ 1/3 di θ 30MN j v k0 C 1 .
As (j + 1)θ 30MN j ≤ Cθ 20MN j , we get (5.9). Finally, to prove (5.10), note that F (MN,0) d = 0 if d = 0. As a consequence, (5.12) applied to

t ′ = 0 gives F (MN,t) d C A,ε M N ≤ C|t|γ d .
We can therefore apply Lemma 4.4 to ε i = 1 if d i = 0, and

ε i = C|t| if d i = 0, to obtain (5.10).
Let us then define formally an operator R(z, t) on B K by R(z, t) = Qt k (z), where we sum over all admissible sequences k with |k 0 | ≤ K and |k j | ≤ K, i.e., (5.14

) (R(z, t)v) k = ∞ j=1 k0,k1,...,kj-1 |k0|≤K k=(k0,k1,...,kj-1,k) admissible Q t k (z)v k0 .
The coefficient of z n corresponds to considering the first returns to Y × [-K, K] after a time exactly n. By (4.12), this is exactly the operator R t n defined in (4.9). Using the estimates in Lemma 5.1, our next goal is to prove that the operators R t n satisfy the assumptions of Theorem 4.2. Indeed, this theorem will thus provide us with a good estimate for T t n (defined in (4.10)), which is the main building block of Ûn t . Lemma 5.2. The formal series R(z, t) defines an holomorphic function on the disk |z| < e 2ε , uniformly bounded in t ∈ [-t 0 , t 0 ]. In particular, there exists C > 0 such that, for any t ∈ [-t 0 , t 0 ], for any n ∈ N, for any v ∈ B K , R t n v BK ≤ Ce -nε v BK . Moreover,

(5.15) R(z, t)v -R(z, t ′ )v BK ≤ C|t -t ′ | v BK .
In particular, for any n ∈ N, for any

v ∈ B K , R t n v -R t ′ n v BK ≤ C|t -t ′ |e -nε v BK .
Proof. As θ 20MN d∈Z γ 1/3 d < 1, the estimates given by Lemma 5.1 are summable. This directly implies the lemma.

Lemma 5.3. There exists a constant C such that, for any z with |z| ≤ e 2ε , for any t ∈ [-t 0 , t 0 ], for any v ∈ B K ,

(5.16) R(z, t)v BK ≤ 1 2 v BK + C v C 0 .
Proof. Fix an integer P . We define a truncated series R(z, t, P ) by summing as in R(z, t) along admissible sequences k = (k 0 , k 1 , . . . , k j ), but with the additional restrictions sup |k i | ≤ P and j ≤ P . When P tends to infinity, R(z, t, P ) converges (in norm) to R(z, t), uniformly for (z, t) ∈ {|z| ≤ e 2ε } × [-t 0 , t 0 ]. We will show that, for any P ∈ N, there exists C(P ) such that (5.17) R(z, t, P

)v BK ≤ 1 3 v BK + C(P ) v C 0 .
This implies the desired result, by choosing a large enough P . Let k be an admissible sequence of length j > 0. Iterating j times the equation (2.3) (applied to the functions

ψ i = z r (M N ) e -ikiS Y M N φY F (MN,t) di
), we obtain a constant C(k) such that, for any v ∈ C 1 (Y ), (5.18)

Q t k (z)v C 1 ≤ θ 100MN j j i=1 γ di v C 1 + C(k) v C 0 .
The operator R(z, t, P ) involves only a finite number of admissible sequences. Denoting by C(P ) the sum of C(k) over these admissible sequences, we obtain for any

v ∈ B K R(z, t, P )v BK ≤ P j=1 θ 100MN j d∈Z γ d j v BK + C(P ) v C 0 ≤ θ 100MN γ d 1 -θ 100MN γ d v BK + C(P ) v C 0 ≤ 1 3 v BK + C(P ) v C 0 ,
by (5.6).

Corollary 5.4. For any t ∈ [-t 0 , t 0 ] and for any |z| ≤ e 2ε , the operator R(z, t) acting on B K has an essential spectral radius bounded by 1/2.

Proof. This is a consequence of Hennion's Theorem [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipschitziens[END_REF] (or more precisely of the version without iteration of this theorem given in [BGK06, Lemma 2.2], since the operator R(z, t) is a priori not continuous for the C 0 norm).

Definition 5.5. Let ψ : X × S 1 → R be a C 6 function. We say that it is continuously periodic if there exist a > 0, λ > 0 and f : X × S 1 → R/λZ measurable such that ψ = ff • T + a mod λ almost everywhere, and f is continuous on Y × S 1 . Otherwise, we say that ψ is continuously aperiodic.

Proposition 1.10 says that aperiodicity and continuous aperiodicity are equivalent. However, we will be able to prove this equivalence only at the complete end of our arguments. Until then, it will be more convenient to work with the notion of continuous aperiodicity.

Proposition 5.6. For any z ∈ D -{1}, the operator I -R(z, 0) is invertible on B K . Moreover, if the function ψ is continuously aperiodic, the operator 

I -R(z, t) is invertible on B K for any (z, t) ∈ (D × [-t 0 , t 0 ]) -{(1, 0)}. Proof. Let |z| ≤ 1 and t ∈ [-t 0 , t 0 ]. If the operator I -R(z, t) is not invertible, its
Q t k (z)v k0 .
Lemma 5.1 implies (after summation over the admissible sequences) that

k∈Z v k C 1 < ∞. Moreover, for any k ∈ Z, (5.19) v k = l∈Z L MN k (z r (M N ) F (MN,t) k-l v l ).
This equation is indeed a consequence of the construction of the v k 's if |k| > K, and of the fact that v is a fixed point of R(z, t) if |k| ≤ K.

Let us define a continuous function g on Y × S 1 by g(x, ω) = k∈Z v k (x)e ikω . As v is nonzero, g is also nonzero. The invariance equation (5.19) translates into the following for g:

(5.20) ÛY (z r (M N ) e itS Y M N ψY g) = g,
where ÛY is the transfer operator associated to the map which is induced by U = U (MN ) on Y . Lemma 2.4 yields |z| = 1 and g • U Y = e itS Y M N ψY z r (M N ) g. Let us extend g to the whole space X (MN ) × S 1 by setting

(5.21) g(x, i, ω) = z i g(x, 0, ω) exp   it i-1 j=0 ψ • U j (x, ω)   .
This function is bounded (since g is bounded on Y ), nonzero, and satisfies g • U = ze itψ g. If t = 0, we obtain g • U = zg. But the map U is mixing (this was proved in Theorem 3.6 and in (3.41) for U (N ) , the same proof holds for U (MN ) ). As a consequence, z = 1.

If t = 0, let f : X (MN ) × S 1 → R/2πZ be the logarithm of g, and let a be such that z = e -ia . Then tψ • π(MN) = f • Uf + a mod 2π, and f is continuous on Y × S 1 ⊂ X (MN ) × S 1 (we have reintroduced the projection π(MN) in the notations since we will soon be confronted to lifting problems). In general, f is not constant on the fibers of π(MN) , and can therefore not be written as f • π(MN) in R/2πZ. However, since the fibers of π(MN) are countable, [START_REF] Gouëzel | Berry-Esseen theorem and local limit theorem for non uniformly expanding maps[END_REF]Theorem 1.4] shows that there exist λ of the form 2π/n for some integer n, and f : X × S 1 → R/λZ, such that f = f • π(MN) mod λ almost everywhere. As a consequence, tψ = f • T -f + a mod λ, and f has a continuous version on Y × S 1 (since this is the case for f ). Hence, ψ is continuously periodic.

Lemma 5.7. The operator R(1, 0) has a simple eigenvalue at 1. The corresponding spectral projection is given by (P v) 0 = Y v 0 dµ Y , and

(P v) k = 0 if k = 0. Denoting by R ′ (z, t) the derivative with respect to z of R(z, t), we have P R ′ (1, 0)P = µ (MN ) (X (MN ) )P . Proof. We have (R(1, 0)v) k = L MN k v k , it
is therefore sufficient to know the spectral properties of the operators L MN k (for |k| ≤ K) to conclude. For k = 0, there operators have a spectral radius < 1, while for k = 0 there is a simple eigenvalue at 1, the corresponding eigenprojection being given by integration (as we saw in the proofs of Lemma 3.2 and Corollary 3.5). This yields the desired formula for P .

As P R 0 j P = µ Y {r (MN ) = j}P for j ≥ 1, we have (5.22) P R ′ (1, 0)P = jµ Y {r (MN ) = j}P = µ (MN ) (X (MN ) )P, by Kac's Formula.

5.3. Estimate of the perturbed eigenvalue. In this paragraph, we prove the following estimate (which is necessary to apply Theorem 4.2).

Theorem 5.8. Denote by λ(1, t) the eigenvalue close to 1 of R(1, t), for small t. Then

(5.23) λ(1, t) = 1 -µ (MN ) (X (MN ) ) σ 2 t 2 2 + O(t 3 ),
where σ 2 is given by (1.10).

The proof will take the rest of this paragraph. We will write R(t) and λ(t) instead of R(1, t) and λ(1, t), since we will only consider z = 1. Let f t be the eigenfunction (in B K ) of R(t) for the eigenvalue λ(t), normalized so that f t 0 = 1 (this is possible since f 0 0 = 1 and f t converges to f 0 in B K ). Note that

f t = f 0 + O(t) and λ(t) = 1 + O(t) (since R(t) = R(0) + O(t)
and the simple isolated eigenvalues, as well as the corresponding eigenfunctions, depend in a Lipschitz way on the operator). Moreover, f 0 0 = 1, and f 0 k = 0 for k = 0. Lemma 5.9. We have

λ(t) = 1 + O(t 2 ). Proof. We have (R(t)f t ) 0 = Q t k (1)f t k0
where the summation is over the admissible sequences k = (k 0 , . . . , k j ) with |k 0 | ≤ K and k j = 0. If j ≥ 2, there are at least two nonzero differences

d i = k i -k i-1
, and the sum of the corresponding terms is therefore bounded by Ct 2 , by (5.10). If j = 1 but k 0 = 0, the difference is nonzero, which gives a O(t) factor. As f t k0 = O(t), the resulting term is therefore also

O(t 2 ). It remains (R(t)f t ) 0 = Q t (0,0) (1)f t 0 + O(t 2 ). As R(t)f t = λ(t)f t and f t 0 = 1, we obtain after integration λ(t) = Y Q t (0,0) (1)f t 0 + O(t 2 ) = Y L MN (F (MN,t) 0 f t 0 ) + O(t 2 ) = Y ×S 1 e itS Y M N ψY (x,ω) f t 0 (x) + O(t 2 ).
As f t 0 = 1, we get (5.24)

λ(t) = 1 + (e itS Y M N ψY -1)(f t 0 -1) + (e itS Y M N ψY -1) + O(t 2 ). Since f t 0 = f 0 0 + O(t) = 1 + O(t), the first integral is O(t 2 )
. For the second one,

(5.25) (e itS Y M N ψY -1) = it S Y MN ψ Y + O(t 2 ) = M N it X×S 1 ψ + O(t 2 ) = O(t 2 ) since ψ = 0. This finally yields λ(t) = 1 + O(t 2 ).
Define a function g k on Y by g k (x) = S Y MN ψ Y (x, ω)e -ikω dω. Lemma 5.10. The function g k belongs to C 1,ε MN . Moreover, there exists a constant C > 0 such that, for any small enough t and for any k ∈ Z,

(5.26) F (MN,t) k -1 k=0 -itg k C 1,ε M N ≤ Ct 2 1 + k 4 . Proof. Write F (MN,t) k (x) -1 k=0 -itg k (x) = S 1 e itS Y M N ψY (x,ω) -1 -itS Y MN ψ Y (x, ω) e -ikω dω = -t 2 1 v=0 (1 -v) S 1 S Y MN ψ Y (x, ω) 2 e itS Y M N ψY (x,ω)v e -ikω dω dv.
This gives (5.26) after 4 integrations by parts with respect to ω.

Lemma 5.11. For any |k| ≤ K, we have in C 1 (Y )

(5.27)

f t k = f 0 k + it ∞ n=1 L MN n k (g k ) + O(t 2 ). Note that g k belongs to C 1,ε MN , which implies that L MN k g k ∈ C 1 (Y ) by Theorem 2.1. The series n∈N L MN n k L MN k g is therefore convergent in C 1 (Y ): for k = 0, the spectral radius of L MN k on C 1 (Y ) is < 1
and the convergence is trivial. For k = 0, there is still exponential convergence for functions with zero average, which is the case of g 0 because ψ = 0.

Proof of Lemma 5.11. As λ(t) = 1 + O(t 2 ), we have

f t -f 0 t = λ(t)f t -f 0 t + O(t) = R(t)f t -R(0)f 0 t + O(t) = (R(t) -R(0)) f t -f 0 t + R(0) f t -f 0 t + R(t) -R(0) t f 0 + O(t). Since R(t) -R(0) = O(t) and f t -f 0 = O(t), we obtain (5.28) (I -R(0)) f t -f 0 t = R(t) -R(0) t f 0 + O(t).
The operator R(0) simply acts by (R(0

)v) k = L MN k v k . Let us study (R(t)f 0 ) k = k Q t k (1)1,
where k is an admissible sequence beginning by 0 and ending by k. If the length of this admissible sequence is at least 2, there are two nonzero differences, and we obtain a term bounded by O(t 2 ). Hence,

(5.29) (R(t)f 0 ) k = Q t (0,k) (1)1 + O(t 2 ) = L MN k (F (MN,t) k ) + O(t 2 ).
Applying Lemma 5.10 and using the fact that

L MN k is continuous from C 1,ε MN to C 1 (Y ), we get in C 1 (Y ) (5.30) (R(t)f 0 ) k = 1 k=0 + itL MN k g k + O(t 2 ) = (R(0)f 0 ) k + itL MN k g k + O(t 2 ). Let h k = n>0 L MN n k g k .
Denote by h the corresponding element in B K , so that the k-th component of (I -R(0))h is equal to L MN k g k . The equations (5.28) and (5.30) imply that

(5.31) (I -R(0)) f t -f 0 t -ih = O(t).
As I -R(0) is invertible on the set of elements v of B K with v 0 = 0, this shows that (f tf 0 )/tih = O(t), which is the desired conclusion.

Let U Y be the map induced by U = U (MN ) on Y × S 1 . The associated transfer operator ÛY acts on each frequency k by L MN k . From the spectral properties of the operators L MN k , we obtain the convergence of the series

σ2 = Y (S Y MN ψ Y ) 2 + 2 ∞ n=1 Y S Y MN ψ Y • S Y MN ψ Y • U n Y = Y (S Y MN ψ Y ) 2 + 2 ∞ n=1 Y Ûn Y S Y MN ψ Y • S Y MN ψ Y .
(5.32)

Lemma 5.12. We have

λ(t) = 1 -σ2 t 2 /2 + O(t 3 ). Proof. Let us estimate (R(t)f t ) 0 . We have (R(t)f t ) 0 = 1≤|k|≤K k=(k,k1,...,kj-1,0) admissible Q t k (1)f t k + k=(0,k1,...,kj-1,0) admissible Q t k (1)f t 0 .
In the first sum, f t k = O(t). If there are two nonzero differences in the admissible sequence k, we therefore obtain terms bounded by O(t 3 ) by (5.10). In the second sum, we also get O(t 3 ) unless there are at most two nonzero differences, which is possible only for the sequences k = (0, 0) and k = (0, ℓ, . . . , ℓ, 0), where ℓ is repeated a number of times, say j, and |ℓ| > K. Hence,

(R(t)f t ) 0 = 1≤|k|≤K L MN (F (MN,t) -k f t k ) + L MN (F (MN,t) 0 f t 0 ) + Q t (0,ℓ,...,ℓ,0) (1)f t 0 + O(t 3 ).
We have

(5.33) Q t (0,ℓ,...,ℓ,0) (1)v = L MN (F (MN,t) -ℓ L MN ℓ F (MN,t) 0 L MN ℓ . . . L MN ℓ (F (MN,t) ℓ f t 0 ) . . . ).
As there are two nonzero differences in these admissible sequences, the contribution of these terms to R(t)f t 0 is O(t 2 ). Moreover, F (MN,t) 0

= 1 + O(t). If we replace F (MN,t) 0 by 1, we get an additional error of O(t) in each term. It can be checked as in the proof of (5.9) that these errors are summable. In the same way, f t 0 may be replaced by 1 since the error is O(t). We get

(R(t)f t ) 0 = 1≤|k|≤K L MN (F (MN,t) -k f t k ) + L MN (F (MN,t) 0 f t 0 ) + j>0 |ℓ|>K L MN (F (MN,t) -ℓ L MN j ℓ F (MN,t) ℓ ) + O(t 3 ).
For |ℓ| > K and j > 0, we have

L MN j ℓ v C 1 ≤ C(1 + ℓ 2 )θ 30MN j v C 1,ε M N
for any function v, by Lemma 4.4. Hence, (5.26) enables us to replace F (MN,t) ℓ and F

(MN,t) -ℓ respectively with itg ℓ and itg -ℓ , the additional errors being summable and giving a term of order O(t 3 ). Using also the estimates on f t k Lemma 5.11, we obtain

(R(t)f t ) 0 = -t 2 1≤|k|≤K n>0 L MN (g -k L MN n k g k ) + L MN (F (MN,t) 0 f t 0 ) -t 2 |ℓ|>K j>0 L MN (g -ℓ L MN j ℓ g ℓ ) + O(t 3 ).
To estimate L MN (F (MN,t) 0

f t 0 ), we write, in C 1,ε MN ,
(5.34) F

(MN,t) 0

(x) = 1 + itg 0 (x) - t 2 2 S 1 S Y MN ψ Y (x, ω) 2 dω + O(t 3 ).
Consequently, by Lemma 5.11 and since

f t 0 = 1, g 0 = 0, Y L MN (F (MN,t) 0 f t 0 ) = Y F (MN,t) 0 f t 0 = 1 + Y itg 0 f t 0 - t 2 2 Y S 1 S Y MN ψ Y (x, ω) 2 f t 0 (x) dω + O(t 3 ) = 1 -t 2 ∞ n=1 Y g 0 L MN n g 0 - t 2 2 Y ×S 1 S Y MN ψ Y (x, ω) 2 + O(t 3 ).
Finally, as

λ(t) = Y λ(t)f t 0 = Y (R(t)f t ) 0 , we obtain (5.35) λ(t) = 1 - t 2 2 Y ×S 1 S Y MN ψ Y (x, ω) 2 -t 2 k∈Z n>0 Y g -k L MN n k g k + O(t 3 ),
and the sum is absolutely converging. To conclude the proof, it is therefore sufficient to show that, for any n > 0,

(5.36)

k∈Z Y g -k L MN n k g k = Y ×S 1 S Y MN ψ Y • S Y MN ψ Y • U n Y .
We have

Y g -k L MN n k g k = g -k L MN n (e -itk n-1 j=0 S Y M N φY •U j Y g k ) = Y g -k • U n Y e -itk n-1 j=0 S Y M N φY •U j Y g k = Y S 1 S Y MN ψ Y (U n Y x, ω)e ik ω dω e -itk n-1 j=0 S Y M N φY •U j Y (x) × × S 1 S Y MN ψ Y (x, ω)e -ikω dω dµ Y (x). Let ω ′ = ω - n-1 j=0 S Y MN φ Y • U j Y (x)
, so that the previous formula becomes (5.37)

Y g -k L MN n k g k = Y S 1 S Y MN ψ Y • U n Y (x, ω ′ )e ikω ′ S 1 S Y MN ψ Y (x, ω)e -ikω dω dµ Y (x).
For any u, v ∈ L 2 (Y × S 1 ), we have (5.38)

Y ×S 1 uv = k∈Z Y S 1 u(x, ω ′ )e ikω ′ dω ′ S 1 v(x, ω)e -ikω dω dµ Y (x),
where the series on the right converges absolutely. This is simply Parseval's equality in each fiber S 1 , integrated with respect to x. Together with (5.37), this yields (5.36) and concludes the proof of the lemma.

Lemma 5.13. We have σ2 = µ (MN ) (X (MN ) )σ 2 .

Together with Lemma 5.12, this concludes the proof of Theorem 5.8.

Proof. We will show that (5.39) σ2 =

X (M N ) ×S 1 ψ 2 d(µ (MN ) ⊗ Leb) + 2 ∞ n=1 X (M N ) ×S 1 ψ • ψ • U n d(µ (MN ) ⊗ Leb).
Since µ (MN ) projects on µ (MN ) (X (MN ) )μ, this will imply the result of the lemma.

It is easy to convince oneself of (5.39) by expanding the expression of S Y MN ψ Y in σ2 and then gluing back together the different pieces to get the right member of (5.39). However, this process involves series which are a priori not convergent, which is a problem. We will therefore do the computation in a different way, inspired by [Gou04a, Proposition 4.8].

Let us define a function c on X (MN ) ×S 1 by c = ∞ n=1 Ûn (ψ). This series converges by Theorem 3.6, and defines a function belonging to L p (X (MN ) × S 1 ) for any p. Moreover, c = Û ψ + Ûc. Let a be the restriction of c to Y . The previous equation implies that a = ÛY S Y MN ψ Y + ÛY a. As a consequence, the function ã = aa is equal to

∞ n=1
Ûn Y (S Y MN ψ Y ) (and this series is indeed converging, since S Y MN ψ Y = 0). In particular,

(5.40) σ2 =

Y ×S 1 (S Y MN ψ Y ) 2 + 2 Y ×S 1 S Y MN ψ Y • ã = Y ×S 1 (S Y MN ψ Y ) 2 + 2 Y ×S 1 S Y MN ψ Y • a.
The explicit relationship between a and c then makes it possible to show (as in the proof of [Gou04a, Proposition 4.8]) that this quantity is equal to X (M N ) ×S 1 (ψ 2 + 2ψc), which proves (5.39) given the definition of c.

Reconstruction of Ûn

t . Let us assume from now on that σ 2 > 0. We proved in the previous paragraphs that the sequence R t n is a perturbed renewal sequence of operators with exponential decay, in the sense of Definition 4.1, and that it is aperiodic if the function ψ itself is continuously aperiodic. We can therefore apply Theorem 4.2 and get the following estimate on T t n (defined in (4.10)): Proposition 5.14. Let P be the operator on B K defined in Lemma 5.7. There exist τ 0 > 0, c > 0, C > 0 and θ < 1 such that, for any n ∈ N, t ∈ [-τ 0 , τ 0 ] and v ∈ B K , (5.41)

T t n v - 1 µ (MN ) (X (MN ) ) 1 - σ 2 t 2 2 n P v BK ≤ C( θn + |t|(1 -ct 2 ) n ) v BK .
Moreover, if ψ is continuously aperiodic, we also have for any |t| ∈ [τ 0 , t 0 ],

(5.42)

T t n v BK ≤ C θn v BK .
We recall that T t n is also given by T

t n v = 1 Y ×[-K,K] Kt,n (1 Y ×[-K,K] v).
As we have a good control on Kt outside Y × [-K, K], the information given by Proposition 5.14 will therefore make it possible to reconstruct precisely Kt,n . As a first step, we will estimate

P t n v := 1 Y ×Z Kt,n (1 Y ×Z v).
As in Paragraph 3.2, we thus define operators A t n , B t n and C t n using the kernel K t along trajectories of the "random walk" of length n, starting and ending in Y × Z, with the following additional restrictions. For the operator A t n , we only sum over the trajectories that enter in Y ×[-K, K] after a time exactly n, for the operator B t n over the trajectories starting in Y × [-K, K] and staying out of it for the next n iterates , and for the operator C t n over the trajectories spending all their iterates outside of Y × [-K, K]. Formally, for n > 0,

A t n v(x, k) = p≥0 k0∈[-K,K],k1,...,kp-1,kp=k ∈[-K,K] x0,x1,...,xp-1,xp=x p-1 i=0 r (M N ) (xi)=n K t,Y (xp,kp)→(xp-1,kp-1) . . . K t,Y (x1,k1)→(x0,k0) v(x 0 , k 0 ),
and B t n , C t n are defined in an analogous way. By construction, the operator P t n satisfies:

(5.43)

P t n = C t n + a+i+b=n A t a T t i B t b ,
as long as this expression makes sense. We therefore need to introduce different Banach spaces of functions from Y × Z to C such that the operators A t n , B t n and C t n are well defined between these spaces. In addition to B K , let us denote by B 1 the set of functions v from Y × Z to C such that k∈Z (1 + k 2 ) v k C 1 (Y ) < ∞, with its canonical norm, and by B 2 the set of functions v from Y × Z to C such that k∈Z v k C 1 (Y ) < ∞. We will consider A t a as an operator from B K to B 2 , B t b as an operator from B 1 to B K , and C t n as an operator from B 1 to B 2 . It should of course be checked that these operators are bounded for these respective norms. This is done in the following lemma.

Lemma 5.15. There exists C > 0 such that, for any n ∈ N * and any t ∈ [-t 0 , t 0 ],

(5.44) By construction, A t n is the coefficient of z n in this series. Moreover, summing the estimates of Lemma 5.1 over admissible sequences with |k 0 | ≤ K and |k j | > K, we obtain that A(z, t) is holomorphic on the disk {|z| < e 2ε } (as a function from B K to B 2 ). Summing the estimates (5.10) for small t, we also get that A(z, t) is bounded by C|t| (since the number of differences in such an admissible sequence is at least 1). As a consequence, A(z, t) is bounded by C|t| for t ∈ [-t 0 , t 0 ] since this inequality is trivial outside of a neighborhood of 0. Thus, the coefficient of z n in A(z, t) decays at least like C|t|e -εn . This concludes the proof of the estimate of A t n . For B t n , we argue in the same way, using the fact that it is the coefficient of z n in the series As

A t n BK →B 2 ≤ C|t|e -εn , B t n B 1 →BK ≤ C|t|e -εn , C t n B 1 →B 2 ≤ Ce -
Q t k (z) C 1 (Y )→C 1 (Y ) ≤ C|t|(1 + k 2 0 )θ 20MN j j i=1 γ 1/3
di by Lemma 5.1, we also have

(5.47) Qt k (z) B 1 →BK ≤ C|t|θ 20MN j j i=1 γ 1/3 di .
Since this quantity is summable with respect to k, the series (5.46) is holomorphic on the disk {|z| < e 2ε } and bounded by C|t|. We conclude as above. Finally, C t n is the coefficient of z n in the series which defines an holomorphic function from B 1 to B 2 in the disk {|z| < e 2ε } (by summing the estimates of Lemma 5.1). This yields the desired estimate for C t n .

We have defined a projection P on B K , which can be extended to an operator from B 1 to B 2 , as follows: (P v) k = 0 if k = 0, and (P v) 0 = Y v 0 dµ Y .

Corollary 5.16. There exist constants τ 0 > 0, c > 0, C > 0 and θ < 1 such that, for any n ∈ N, t ∈ [-τ 0 , τ 0 ] and v ∈ B 1 , (5.49)

P t n v - 1 µ (MN ) (X (MN ) ) 1 - σ 2 t 2 2 n P v B 2 ≤ C( θn + |t|(1 -ct 2 ) n ) v B 1 .
Moreover, if ψ is continuously aperiodic, one also has for any |t| ∈ [τ 0 , t 0 ]

(5.50)

P t n v B 2 ≤ C θn v B 1 .
Proof. We write P 

i+j=n (j + 1)e -εj (1 -ct 2 ) i ≤ C|t|(1 -ct 2 ) n n j=0 (1 -ct 2 ) -1 e -ε j ≤ C|t|(1 -ct 2 ) n 1 -(1 -ct 2 ) -1 e -ε .
This is bounded by C|t|(1ct 2 ) n if t is small enough.

When ψ is continuously aperiodic, the equation (5.50) is proved in the same way by combining (5.42) and Lemma 5.15. The next step in the reconstruction of Kt,n is to understand P t n v := 1 Y ×Z Kt,n (v). We will let this operator act on the space B 0 of functions v from X (MN ) × Z to C such that k∈Z (1 + |k| 3 ) v k C 1 (X (M N ) ) < ∞, and take its values in B 2 . Let us also define an operator P from B 0 to B 2 by ( P v) k = 0 for k = 0, and ( P v) 0 = X (M N ) v 0 dμ (MN ) (recall that μ(MN) is a probability measure on X (MN ) , whose restriction to Y is µ Y /µ (MN ) (X (MN ) )).

Proposition 5.17. There exist constants τ 0 > 0, c > 0, C > 0 and θ < 1 such that, for any n ∈ N, t ∈ [-τ 0 , τ 0 ] and v ∈ B 0 , (5.52)

P t n v -1 - σ 2 t 2 2 n P v B 2 ≤ C( θn + |t|(1 -ct 2 ) n ) v B 0 .
Moreover We will first study D t n , as an operator from B 0 to B 1 . As the dynamics of U between two returns to Y is trivial, D t n can be explicitly described as follows. Recall that a point x in X (MN ) is a pair (y, i) where y ∈ Y and i < r (MN ) (y). The preimages of (x, 0) under U n which do not enter Y in between are exactly the points (hx, r (MN ) (hx)n) where h ∈ H MN is an inverse branch of T MN Y whose return time r (MN ) • h is > n. Let v ∈ B 0 . For k, l ∈ Z, let us define a function v n k,l on Y by v n k,l (y) = 1 r (M N ) (y)>n v l (y, r (MN ) (y)n)e -ikSnφ(y,r (M N ) (y)-n) (e itSnψ ) k-l (y, r (MN ) (y)n). Here, (y, r (MN ) (y)n) is a point in X (MN ) , e -ikSnφ is a function on X (MN ) and (e itSnψ ) k-l is the kl-th Fourier coefficient (in the ω direction) of the function e itSnψ on X (MN ) × S 1 , so it is also a function on X (MN ) . We have defined v n k,l so that

D t n v(x, k) = l L MN v n k,l (x). Let us now estimate D t n v B 1 in terms of v B 0 .
As ψ belongs to C 5,1 , the kl-th Fourier coefficient of e itSnψ is bounded by Cn 5 /(1 + |k -l| 5 ). As r (MN ) (x) > n, we get (5.55)

|v n k,l (x)| ≤ C v l C 0 n 5 1 + |k -l| 5 ≤ C v l C 0 e -εn e 2εr (M N ) (x)
1 + |k -l| 5

and, for any inverse branch h,

(5.56) D(v n k,l • h) C 0 ≤ C v l C 1 (1 + |k|)n n 5 1 + |k -l| 5 ≤ C v l C 1 (1 + |k|)e -εn e 2εr (M N ) (x)
1 + |k -l| 5 .

As a consequence, (5.57)

v n k,l C 1,2ε M N ≤ C(1 + |k|) 1 + |k -l| 5 v l C 1 e -εn .
By Theorem 2.1,

L MN v n k,l C 1 (Y ) ≤ C v n k,l C 1,2ε M N
. Finally,

(5.58)

D t n v B 1 = k (1 + |k| 2 ) (D t n v) k C 1 (Y ) ≤ Ce -εn k,l 1 + |k| 3 1 + |k -l| 5 v l C 1 . If l is fixed, (5.59) k 1 + |k| 3 1 + |k -l| 5 = j 1 + |j + l| 3 1 + |j| 5 ≤ C j 1 + |j| 3 + |l| 3 1 + |j| 5 ≤ C(1 + |l| 3 ).
Consequently,

(5.60)

D t n v B 1 ≤ Ce -εn v B 0 .
In P t n v = i+j=n P t i D t j v, let us replace P t i with (1σ 2 t 2 /2) i P/µ (MN ) (X (MN ) ) + E t i , where E t i is an error term. The control of E t i given by Corollary 5.16, combined with the computation made at the end of the proof of this lemma, gives (5.61)

i+j=n E t i D t j B 0 →B 2 ≤ C i+j=n ( θi + |t|(1 -ct 2 ) i )e -εj ≤ C ′ ( θi + |t|(1 -ct 2 ) n ).
Hence, there is only one term left to be estimated in P t n v, with frequency 0, given by (5.62)

I t n := 1 µ (MN ) (X (MN ) ) i+j=n 1 - σ 2 t 2 2 i Y (D t j v) 0 dµ Y . For all u, v ∈ R holds |e u -e v | ≤ |u -v|e max(u,v) . As Y (D t j v) 0 ≤ Ce -εj v B 0 , we obtain n j=0 1 - σ 2 t 2 2 n-j Y (D t j v) 0 dµ Y -1 - σ 2 t 2 2 n n j=0 Y (D t j v) 0 ≤ C 1 - σ 2 t 2 2 n n j=0 j log 1 - σ 2 t 2 2 1 - σ 2 t 2 2 -j e -εj v B 0 ≤ Ct 2 1 - σ 2 t 2 2 n v B 0 .
Let us define a function f on X (MN ) × S 1 by f (x, ω) = k v k (x)e ikω . If Z j ⊂ X (MN ) denotes the set of points in X (MN ) which enter into Y after exactly j iterates, we have

(5.63) Y (D t j v) 0 dµ Y = Zj ×S 1 f e itSjψ d(µ (MN ) ⊗ Leb).
Since the measure of Z j decays exponentially fast,

(5.64)

Y (D t j v) 0 dµ Y - Zj ×S 1 f d(µ (MN ) ⊗ Leb) ≤ C Zj ×S 1 |t|j f C 0 ≤ C|t| θj v B 0 .
Finally,

n j=0 Zj ×S 1 f d(µ (MN ) ⊗ Leb) - X (M N ) ×S 1 f d(µ (MN ) ⊗ Leb) ≤ C f C 0 ∞ j=n+1 µ (MN ) (Z j ) ≤ C v B 0 θn .
Combining these different estimates, we obtain

I t n = 1 - σ 2 t 2 2 n 1 µ (MN ) (X (MN ) ) X (M N ) ×S 1 f d(µ (MN ) ⊗ Leb) + O( θn + |t|(1 -ct 2 ) n ) = 1 - σ 2 t 2 2 n X (M N ) v 0 dμ (MN ) + O( θn + |t|(1 -ct 2 ) n ).
This proves (5.52). Finally, (5.53) is proved in the same way, by using (5.50).

Let Ût denote the operator acting on functions on X (MN ) × S 1 by Ût (v) = Û (e itψ v), where Û is the transfer operator associated to U.

Theorem 5.18. Assume σ 2 > 0. Then there exist constants τ 0 > 0, c > 0, C > 0 and θ < 1 such that, for any C 5,1 function v : X (MN ) × S 1 → C, for any n ∈ N, for any t ∈ [-τ 0 , τ 0 ] and for any (x, ω) ∈ X (MN ) × S 1 such that h(x) ≤ n/2, (5.65) Ûn t v(x, ω) -1 -

σ 2 t 2 2 n v d(μ (MN ) ⊗ Leb) ≤ C(1 + h(x))( θn + |t|(1 -ct 2 ) n ) v C 5,1 .
Moreover, if ψ is continuously aperiodic, we also have for any |t| ∈ [τ 0 , t 0 ] and for any (x, ω) with h(x) ≤ n/2

(5.66)

Ûn t v(x, ω) ≤ C θn v C 5,1 .
Note that this theorem implies Theorem 3.6, taking simply t = 0 (and a different value of θ).

Proof. Define w in B 0 by w(x, k) = S 1 v(x, ω)e -ikω dω, so that v(x, ω) = w(x, k)e ikω . As v ∈ C 5,1 , w belongs to B 0 and w B 0 ≤ C v C 5,1 .

For x ∈ Y , we have Ûn t v(x, ω) = k∈Z ( P t n w) k (x)e ikω by construction of P t n . Hence, Proposition 5.17 implies that, for x ∈ Y and t ∈ [-τ 0 , τ 0 ] Ûn t v(x, ω) -1 -

σ 2 t 2 2 n v ≤ ( P t n w) 0 (x) -1 - σ 2 t 2 2 n w 0 + k∈Z * |( P t n w) k (x)| ≤ P t n w -1 - σ 2 t 2 2 n P w B 2 ≤ C( θn + |t|(1 -ct 2 ) n ) w B 0 ≤ C( θn + |t|(1 -ct 2 ) n ) v C 5,1 .
This proves (5.65) for the points x with h(x) = 0. Assume now that j = h(x) ∈ (0, n/2]. Let x ′ be such that U j x ′ = x, and let ω ′ = ω -S j φ(x ′ ), so that U j (x ′ , ω ′ ) = (x, ω). Then Ûn t v(x, ω) = e itSj ψ(x ′ ,ω ′ ) Ûn-j t v(x ′ , ω ′ ). Using the result for (x ′ , ω ′ ), we get (5.67) Ûn t v(x, ω)e itSj ψ(x ′ ,ω ′ ) 1 -

σ 2 t 2 2 n-j v ≤ C( θn-j + |t|(1 -ct 2 ) n-j ) v C 5,1 .
Since nj ≥ n/2, this last term is bounded by θn/2 + |t|(1ct 2 ) n/2 , which is compatible with (5.65) (upon changing the values of θ and c). Moreover, |e itSj ψ(x ′ ,ω ′ ) -1| ≤ C|t|j. Replacing e itSj ψ(x ′ ,ω ′ ) by 1 in (5.67), we add an error which is bounded by C|t|h(x)(1σ 2 t 2 /2) n/2 . This is again compatible with (5.65). Finally, 1 -

σ 2 t 2 2 n-j -1 - σ 2 t 2 2 n ≤ j log 1 - σ 2 t 2 2 1 - σ 2 t 2 2 n-j ≤ Cjt 2 (1 -ct 2 ) n/2 ,
still compatible with (5.65). Doing all these substitutions, we obtain (5.65). Finally, (5.66) is proved in the same way, by using (5.53).

Proof of Theorem 1.12. Theorem 3.6 enabled us to prove Theorem 1.7, page 18. The same arguments make it possible to deduce Theorem 1.12 from Theorem 5.18, when d (MN ) = 1. When d = d (MN ) > 1, let us show (1.12) ((1.13) is analogous). Applying the previous arguments to the transformation U d , which is mixing, we almost obtain (1.12) for times n of the form kd, with a slight difference: since σ 2 is replaced with

(5.68) (S d ψ) 2 + 2 ∞ j=1 (S d ψ)(S d ψ) • T jd = dσ 2 ,
we in fact obtain

e itS kd ψ • f • T n • g d(μ ⊗ Leb) -1 -d σ 2 t 2 2 k f d(μ ⊗ Leb) g d(μ ⊗ Leb) ≤ C( θk + |t|(1 -ct 2 ) k ) f L ∞ g C 6 .
To really obtain (1.12), we thus have to bound (1

-σ 2 t 2 /2) kd -(1 -dσ 2 t 2 /2) k . We have 1 - σ 2 t 2 2 kd -1 -d σ 2 t 2 2 k ≤ kd log 1 - σ 2 t 2 2 -k log 1 -d σ 2 t 2 2 • max 1 - σ 2 t 2 2 kd , 1 -d σ 2 t 2 2 k ≤ Ck|t| 4 (1 -ct 2 ) k .
By (4.21), this term is bounded by Ct 2 (1ct 2 /2) k . This concludes the proof for times n = kd.

If n is a general time, it can be written as kd + r with 0 ≤ r < d. The theorem at time kd, applied to the functions e itSr ψ f • T r and g (respectively bounded and Hölder continuous) gives almost the result, the factor (1σ 2 t 2 /2) n simply being replaced with (1σ 2 t 2 /2) kd . As above, one checks that the resulting additional error term is still compatible with (1.12). 5.5. Proof of Theorem 1.9. Assume first that ψ is a C 6 function, with σ 2 > 0. Theorem 1.12 for f = g = 1 shows that the characteristic function of S n ψ/ √ n converges to e -σ 2 t 2 /2 , which is equivalent to the convergence of S n ψ/ √ n towards the gaussian distribution N (0, σ 2 ). This concludes the proof in this case.

Assume now that ψ is only C α , with zero average, and with σ 2 > 0. Let ψ ε be a C 6 function, close to ψ in C α/2 , with corresponding asymptotic variance σ 2 ε . Theorem 1.7 (applied in C α/2 ) shows that the variance of S n (ψψ ε )/ √ n is uniformly small in n. This implies on the one hand that the distributions of S n ψ/ √ n and S n ψ ε / √ n are close, and on the other hand that σ 2 ε is close to σ 2 . In particular, if ε is small enough, σ 2 ε > 0. As S n ψ ε / √ n converges to N (0, σ 2 ε ), this implies that S n ψ/ √ n is close in distribution to N (0, σ 2 ) if n is large enough. Therefore, S n ψ/ √ n is indeed converging to N (0, σ 2 ). 5.6. Regularity in the cohomological equation.

Proof of Proposition 1.8. We proved half of the proposition in Proposition 3.9. It remains to prove that, if ψ = ff • T for some measurable f , then σ 2 = 0. If σ 2 > 0, Theorem 1.9 implies that S n ψ/ √ n converges to a gaussian distribution. However,

S n ψ/ √ n = (f -f • T n )/ √ n converges in distribution to 0, which is a contradiction. Hence, σ 2 = 0.
Proof of Proposition 1.10. Let ψ : X × S 1 → R be a C 6 function. We have to show that ψ is periodic if and only if ψ is continuously periodic.

If ψ is continuously periodic, it is trivially periodic. Conversely, suppose that ψ is continuously aperiodic, but it is nevertheless possible to write ψ = uu • T + a mod λ, where u is measurable and a ∈ R.

If σ 2 vanished, ψ would be continuously periodic by Proposition 1.8, which is a contradiction. Hence σ 2 > 0. As ψ is continuously aperiodic, it satisfies Theorem 1.12 (because (1.13) has been proved under the sole assumption of continuous aperiodicity). In particular, for t = 0 and for any functions f, g which are respectively bounded and C 6 , e itSnψ f • T n g → 0. By density, this convergence to 0 holds for any f, g ∈ L 2 . However, for t = 2π/λ, f = e itu and g = e -itu , (5.69) e itSnψ f • T n g = e it(u-u•T n +na) e itu•T n e -itu = e itna , which does not converge to 0. This is a contradiction.

6. Proofs for Farey sequences 6.1. A general criterion for the weak Federer property. We would like to prove that some measures µ satisfy the weak Federer property. In the introduction, we have seen that this property is quite easy to check for Lebesgue measure. However, in view of the application to Farey sequences, it is desirable to have a sufficiently simple criterion, that does not apply only to absolutely continuous measures. In this paragraph, we describe such a criterion. Let us consider a riemannian manifold Z endowed with a measure µ such that, for any ρ > 0, inf x∈Z µ(B(x, ρ)) > 0. We assume that Z is partitioned in a finite number of subsets Y 1 , . . . , Y p , and that each set Y j admits a (finite or countable) subpartition modulo 0, into sets (W l,j ) l∈Λ(j) . Let also T be a map which sends each set W l,j diffeomorphically to one of the Y k . We can define H n as the set of inverse branches of T n . Such an inverse branch h is not defined on the whole space Z, only on one of the sets Y j = Y j(h) . We assume that:

(1) There exist κ > 1 and C l,j such that, for any x ∈ W l,j and v tangent at Z in x, κ v ≤ DT (x)v ≤ C l,j v . (2) Let J(x) be the inverse of the jacobian of T with respect to µ. There exists C > 0 such that, for any h ∈ H 1 , D((log J) • h) ≤ C. (3) For any C > 1, there exist D > 1 and η 0 > 0 such that, for any η < η 0 , for any 1 ≤ j ≤ p, there exist disjoint balls B(x 1 , Cη), . . . , B(x k , Cη) which are compactly included in

Y j , sets A 1 , . . . , A k with A i ⊂ B(x i , D Cη) ∩ Y j such that, for any x ′ i ∈ B(x i , ( C -1)η), holds µ(B(x ′ i , η)) ≥ µ(A i )/ D,
and a finite number of inverse branches h 1 , . . . , h ℓ ∈ H 1 defined respectively on Y j1 , . . . , Y j ℓ such that, for any i ∈ [1, ℓ], there exist x ∈ Y ji and v a unit tangent vector at x with (6.1)

Dh i (x)v ≥ Cη, such that: (6.2) k i=1 B(x i , Cη) ⊂ k i=1 A i and (6.3) Y j = k i=1 A i ⊔ ℓ i=1 h i (Y ji ) mod 0.
(4) The transformation T is uniformly quasi-conformal, in the following sense: there exists K > 0 such that, for any h ∈ n∈N H n defined on a set Y j , for any x, x ′ ∈ Y j and any unit tangent vectors v and v ′ respectively at x and x ′ , (6.4)

Dh(x)v ≤ K Dh(x ′ )v ′ .
The first two properties are uniform expansion properties, analogous to the similar requirements on T Y in Definition 1.4. The difference is that the full shift structure has been replaced by a subshift of finite type, since such a structure will naturally appear in the proofs for Farey sequences. The third property is a kind of weak Federer property, but not on the whole space, rather on the images of branches whose size is at most Cη (by the requirement (6.1)). It is therefore much easier to check than the true weak Federer property. Finally, the last property of uniform quasi-conformality will enable us to iterate the dynamics, to get information at scales which are not covered by the third assumption.

Proposition 6.1. Under the previous assumptions, the sets h(Y j(h) ) (for h ∈ n∈N H n ) uniformly have the weak Federer property (for the measure µ).

Proof. The quasi-conformality assumption shows that it is sufficient to prove that each set Y j satisfies the weak Federer property: if sets A i as in the definition of the weak Federer property can be constructed on Y j , they can be transported to h(Y j ) by the map h. In this process, one loses only harmless constant factors, and this implies the uniform weak Federer property. From this point on, we shall therefore work only on Y j , for each 1 ≤ j ≤ p. We want to constructs sets A i as in the definition of the weak Federer property. The third assumption of the proposition gives some of these sets, but to get the other ones we will need to iterate the dynamics. Thus, the construction will be inductive.

For any 1 ≤ j ≤ p, let us fix a point a j ∈ Y j , and a unit tangent vector v j at a j . Let also ρ > 0 be such that the balls B(a j , ρ) are compactly included in Y j . Fix a constant C for which one wants to prove the weak Federer property, and consider η small enough. We will say that an inverse branch h ∈ H n , defined on Y j , is (C, η)-good, or simply good, if Dh(a j )v j ≥ KCη/ρ.

We will prove the following fact: there exists a constant M such that, if h ∈ H n is a good branch defined on Y j , then there exist disjoint balls B(x 1 , Cη), . . .

, B(x k , Cη) compactly included in h(Y j ), sets A 1 , . . . , A k with A i ⊂ h(Y j ) ∩ B(x i , M Cη) such that any ball B(x ′ i , η) included in B(x i , Cη) satisfies µ(B(x ′ i , η)) ≥ µ(A i )/M
, and good branches h 1 , . . . , h ℓ ∈ H n+1 defined respectively on Y j1 , . . . , Y j ℓ such that (6.5)

k i=1 B(x i , Cη) ⊂ k i=1 A i and (6.6) h(Y j ) = k i=1 A i ⊔ ℓ i=1 h i (Y ji ) .
This fact easily implies the proposition: we first apply it to the inverse branch Id Yj (which is obviously good if η is small enough), and then by induction to the inverse branches which are produced by the fact at the previous step. This process terminates, since there is no good branch in H n if n is large enough.

To prove that fact, we will use the assumption (3) for the constant C = max(K 2 C, K 4 C/ρ). Let η 0 and D > 0 be given by (3), for this value of C. Let η < η 0 . Let h ∈ H n be a good branch, defined on a set Y j .

First case: assume that η/(K Dh(a j )v j ) ≥ η 0 . The image of the ball B(a j , ρ) contains the ball B(ha j , ρ Dh(a j )v j /K), which itself contains B(ha j , Cη) since h is good. Moreover, for

x, x ′ ∈ Y holds d(hx, hx ′ ) ≤ d(x, x ′ )K Dh(a j )v j ≤ diam Y η η0 .
In particular, if M ≥ diam Y /(Cη 0 ), we get h(Y ) ⊂ B(ha j , M Cη). We can thus take a ball B(ha j , Cη) and a set A 1 = h(Y ). To conclude, we should check that µ(B(x ′ , η)) ≥ M -1 µ(A i ) for any x ′ ∈ B(ha j , (C -1)η), if M is large enough. Since the iterates of T have a uniformly bounded distortion, (6.7)

µ(B(x ′ , η)) µ(A i ) ≍ µ(h -1 B(x ′ , η)) µ(Y ) . Moreover, h -1 B(x ′ , η) contains B(h -1 x ′ , η/(K Dh(a j )v j )), which itself contains B(h -1 x ′ , η 0 ).
The measure of these balls is uniformly bounded from below. This concludes the proof in this case.

Second case: assume now that η/(K Dh(a j )v j ) ≤ η 0 . Let η h = η/(K Dh(a j )v j ), it is bounded by η 0 . Hence, the assumption (3) gives sets A 1 , . . . , A k , balls B(x 1 , Cη h ), . . . , B(x k , Cη h ) and inverse branches h 1 , . . . , h ℓ defined respectively on Y j1 , . . . , Y j ℓ . We will show that the balls B(hx 1 , Cη), . . . , B(hx k , Cη), the sets Āi = h(A i ) and the inverse branches h • h 1 , . . . , h • h ℓ satisfy the conclusion of the fact.

Let us first show that the inverse branch h

• h i is good. By definition of h i , Dh i (a ji )v ji ≥ Cη h /K ≥ K 2 Cη/(ρ Dh(a j )v j ). We have D(h • h i )(a ji )v ji = Dh(h i a ji )Dh i (a ji )v ji . Moreover, Dh(x)v ≥ K -1 v Dh(a j )v j . Therefore, D(h • h i )(a ji )v ji ≥ K -1 Dh i (a ji )v ji Dh(a j )v j ≥ K -1 K 2 Cη ρ Dh(a j )v j Dh(a j )v j = KCη/ρ.
This shows that h • h i is good. The set hB(x i , Cη h ) contains the ball B(hx i , Cη h Dh(a j )v j /K), which itself contains the ball B(hx i , Cη) because C ≥ K 2 C. Moreover, for any x ′ ∈ B(hx i , (C -1)η), the set h -1 B(x ′ , η) contains the ball B(h -1 x ′ , η/(K Dh(a j )v j )) = B(h -1 x ′ , η h ). As the distortion of the iterates of T is uniformly bounded, we obtain for any x ′ ∈ B(hx i , (C -1)η)

(6.8) µ(B(x ′ , η)) µ( Āi ) ≍ µ(h -1 B(x ′ , η)) µ(A i ) ≥ µ(B(hx ′ , η h )) µ(A i ) ≥ D-1 . Finally, as A i ⊂ B(x i , D Cη h ), Āi is contained in B(hx i , D Cη h K Dh(a j )v j ) = B(hx i , D Cη).
The previous criterion easily implies that Gibbs measures in dimension 1 have the uniform weak Federer property: Proposition 6.2. Let T be a C 2 uniformly expanding map on the circle S 1 , and let µ be a Gibbs measure corresponding to a C 1 potential. Then there exists a subset Y of S 1 such that T is nonuniformly expanding with base Y , for the measure µ.

Proof. Let d be the topological degree of T , and let x 0 be a fixed point of T . Let Y = Z = S 1 -{x 0 }. Then S 1 -T -1 (x 0 ) it the union of d intervals W 1 , . . . , W j , each of them being sent by T onto Z. These intervals form a partition (modulo 0) of Z satisfying the first four points of Definition 1.4 (for r i = 1, 1 ≤ i ≤ d). If we can prove that T satisfies the assumptions of the previous proposition, the proof will be complete. The assumptions (1) and (2) are clear, the fourth is equivalent to the bounded distortion for Lebesgue measure since we are in one dimension. Let us check (3), for some C > 0. Let η 0 be small enough so that, for any x ∈ Z and any inverse branch h ∈ H, |h ′ (x)| ≥ Cη 0 . We take no ball B(x i , Cη), no set A i , and all the inverse branches h ∈ H. Then (6.2) is empty, hence trivial, and (6.3) is also trivial. 6.2. Farey sequences. Let r > 1. Let T be the map on X = [0, 1] given by (1.7), and let T be its extension to [0, 1] × R/(log r)Z defined in (1.8), using a function φ. This function is not C 1 on [0, 1], which seems to be a problem since we always worked with a function φ of class C 1 . To avoid this problem, we can simply work with the disjoint union X = [0, 1/2] ⊔ [1/2, 1], on which φ is C 1 . All our results in the previous sections have been formulated for transformations on X × R/2πZ, but the same results hold verbatim on X × R/γZ for any γ = 0, and in particular for γ = log r. Henceforth, we will simply denote R/(log r)Z by S 1 and apply without further notice the preceding results.

Let x 0 = 1/2, and set x n = h A (x n-1 ), i.e., x n is the preimage of x n-1 under the left branch of T . Explicitly, x n = 1/(n + 2). Let I j = (x j , x j-1 ). Let also Īj = 1 -I j be the symmetric of I j with respect to 1/2. Let Y = (x 1 , x 0 ) = (1/3, 1/2), and denote by T Y the map induced by T on Y . Its combinatorics can be described as follows: a point of Y is sent by T in (1/2, 1), it spends some time i > 0 there, is then sent back to (0, 1/2), and increases (for j ≥ 0 iterates) before entering back in Y . The points with this combinatorics form an interval I i,j := T -1 ( Īi ) ∩ T -i-1 (I j+1 ), and T i+j+1 (I i,j ) = Y . Letting r i,j = i + j + 1, we thus obtain a partition of Y that satisfies the first point of Definition 1.4. Proposition 6.3. The map T is nonuniformly expanding of base Y , in the sense of Definition 1.4, for the partition {I i,j } i>0,j≥0 and Minkowski's measure µ. Moreover, it is mixing.

Proof. The first point of Definition 1.4 is clear. For the second one, note that the jacobian of T for Minkowski's measure is everywhere equal to 2 by definition. Hence, the jacobian of T Y on I i,j is constant (equal to 2 i+j+1 ), and D((log J) • h i,j ) = 0. The third point is trivial. For the fourth one, we have for any σ > 0 (6.9) Y e σr = µ(I i,j )e σ(i+j+1) = 2 -i-j-3 e σ(i+j+1) , Proof. Assume by contradiction that there exists a C 1 function f such that φ Yf + f • T Y is constant on each interval I i,j , equal to some number a i,j . The interval I 1,1 contains the point x = 3/2 -√ 5/2, with T Y (x) = x. Necessarily, a 1,1 = φ Y (x). In the same way, the interval I 2,1 contains x ′ = 1 -√ 3/3, invariant under T Y , which gives a 2,1 = φ Y (x ′ ). Let now y = 1 -√ 6/4. This point belongs to I 1,1 , but T Y (y) ∈ I 2,1 , and T 2 Y (y) = y. Then (6.11) φ Y (y) + φ Y (T Y y) = a 1,1 + a 2,1 = φ Y (x) + φ Y (x ′ ).

However, it is possible to compute explicitly φ Y (y) + φ Y (T Y y)φ Y (x)φ Y (x ′ ), and check that this quantity is nonzero (approximately equal to -0.013). This is a contradiction.

The previous proposition and lemma show that the results of Paragraph 1.3 apply to T . However, this is not sufficient to prove Theorems 1.1 and 1.2, since these results are pointwise while the results of Paragraph 1.3 are averaged. We will therefore need an additional ingredient. Let X (n) be the extension of X defined in Paragraph 3.1, and let π (n) , π(n) be the corresponding projections.

Lemma 6.5. For any n ∈ N, there exists a constant C(n) such that, for any integrable function u : X × S 1 → C, for almost all (x, ω) ∈ X × S 1 and for any k ∈ N, (6.12) T k u(x, ω) = C(n)

π (n) (x ′ )=x 2 -h(x ′ ) Ûk (u • π(n) )(x ′ , ω).
Proof. Let B be the σ-algebra of Borel measurable subsets of X × S 1 , and let B ′ = (π (n) ) -1 (B). This is a sub-σ-algebra of the Borel σ-algebra on X (n) × S 1 . A function v on X (n) × S 1 can be written as u • π(n) if and only if v is B ′ -measurable.

Let us first prove that (6.13)

( T k u) • π(n) = E( Ûk (u • π(n) ) | B ′ ).
To do this, let us write E( Ûk (u • π(n) ) | B ′ ) = v • π(n) . As μ ⊗ Leb = π(n) * (μ (n) ⊗ Leb), we have for any measurable function f on X × S 1 (6.14)

X×S 1 vf = X (n) ×S 1 v • π(n) f • π(n) = X (n) ×S 1 E( Ûk (u • π(n) ) | B ′ )f • π(n) . As f • π(n) is B ′ -measurable, we get X×S 1 vf = X (n) ×S 1 Ûk (u • π(n) )f • π(n) = X (n) ×S 1 u • π(n) f • π(n) • U k = X (n) ×S 1 u • π(n) f • T k • π(n) = X×S 1 uf • T k .
This last equality shows that v = T k u, and concludes the proof of (6.13).

The set X (n) is endowed with a countable partition A such that π (n) is injective on each element of the partition. Let us define a function F on X (n) as follows: on each set a ∈ A, let

F = dμ (n) / d(μ • π (n)
|a ). This is the local Radon-Nikodym derivative of μ(n) with respect to (π (n) ) * μ. As π (n) * μ(n) = μ, we have π (n) (x ′ )=x F (x ′ ) = 1 for almost every x ∈ X. Let us show that the conditional expectation with respect to B ′ is given by (6.15)

E(v | B ′ )(x, ω) = π (n) (x ′ )=π (n) (x)
F (x ′ )v(x ′ , ω).

Let us indeed define a function w on X × S 1 by (6.16) w(x, ω) =

π (n) (x ′ )=x F (x ′ )v(x ′ , ω) = a∈A 1 x∈π (n) a F ((π (n) |a ) -1 x)v((π (n) |a ) -1 x, ω).
If f is a measurable function on X × S 1 ,

X×S 1 f w = a∈A π (n) (a)
f (x, ω)F ((π

(n) |a ) -1 x)v((π (n) |a ) -1 x, ω) dμ(x) dω = a∈A a f (π (n) x ′ , ω)v(x ′ , ω) dμ (n) (x ′ ) dω = X (n) ×S 1 f • π(n) v.
This proves (6.15). Together with (6.13), this implies the lemma if we can prove that (6.17)

F (x ′ ) = C(n)2 -h(x ′ ) .
As T Y is the first return map to Y , the jacobian of π (1) for the measure μ(1) on Y is equal to 1. Since μ(n) is proportional to μ(1) on Y , this implies that F is constant on Y , equal to a constant C(n). This proves (6.17) for points with zero height. The jacobian of T for μ is equal to 2, while the jacobian of U is equal to 1 on the set of points that do not come back to the basis. By induction over h(x ′ ), this implies (6.17).

Corollary 6.6. There exist constants C > 0 and θ < 1 such that, for any C 6 function f : X × S 1 → C, for any (x, ω) ∈ X × S 1 , (6.18)

T n f (x, ω)f ≤ C θn f C 6 .

Proof. Since everything is symmetric with respect to 1/2, and continuous, it is sufficient to prove the assertion for almost every x ∈ (1/2, 1). We work in X (N ) , where N is given by Theorem 2.1. Note that d (N ) is equal to 1, since r (N ) takes the values 2N and 2N + 1. Applying Theorem 3.6 to the function v = f • π(N) , we get: for any n ∈ N, for any x ′ ∈ X (N ) with h(x ′ ) ≤ n/2, (6.19) Ûn (f • π(N) )(x ′ , ω)f ≤ C θn f C 6 .

Together with Lemma 6.5, this yields

T n f (x, ω) -f ≤ C   π (N ) (x ′ )=x,h(x ′ )≤n/2
θn 2 -h(x ′ ) + π (N ) (x ′ )=x,h(x ′ )>n/2

2 -h(x ′ )   f C 6 .
To conclude, it is thus sufficient to prove that, for x ∈ (1/2, 1), the cardinality of (6.20) {x ′ | π (N ) (x ′ ) = x, h(x ′ ) = k} grows at most polynomially with k. If we write a point of X (N ) as a pair (x ′ , j) with x ′ ∈ Y and j < r (N ) (x ′ ), it is easy to check that U k induces a bijection between the set (6.20) and the set of points in T -k (x) ∩ Y whose first k iterates under T spend a time t < N in Y . If t is fixed, such a point is determined by the combinatorics (i 1 , j 1 , . . . , i t , j t , i t+1 ) of times spent in [1/2, 1], then in [0, 1/2], then in [1/2, 1], and so on, with the constraint that the sum of these lengths is k (we recall that we assume x ∈ (1/2, 1)). As a consequence, (6.21)

Card{x ′ | π (N ) (x ′ ) = x, h(x ′ ) = k} ≤ N -1 t=0 k 2t+1 ≤ Ck 2N .
This quantity indeed grows polynomially.

Proof of Theorem 1.1. If f is a continuous function on [0, 1] × S 1 , then f dμ n = T n f (1, 0). Hence, Corollary 6.6 shows the theorem for C 6 functions. The case of C α functions is then deduced by interpolation, just like at the end of the proof of Theorem 1.7.

Proof of Theorem 1.2. If ψ is a C 6 function which is not a coboundary, we show like in the proof of Corollary 6.6 (but using Theorem 5.18 instead of Theorem 3.6) that, for |t| ≤ τ 0 , (6.22) T n t f (x, ω) -1 -

σ 2 t 2 2 n f ≤ C( θn + |t|(1 -ct 2 ) n ) f C 6 .
Proof. Increasing H if necessary, we can assume that, for any h ∈ H (n-1)N , the branches h 1 • h and h 2 • h belong to H. Let (u, v) ∈ E 3k (C 0 , H(Y ), ε, nN ). Let h ∈ H (n-1)N , we will work on h(Y ), and use the weak Federer property for the constant C = C 2 (ζ/δ + 1) (where C 2 is given by Lemma A.7). Definition 1.3 provides us with constants D > 0 and η 0 (h(Y ), C). Since the weak Federer property is uniform over the inverse branches of T Y , we can even choose D depending only on C, and not on h.

We apply the definition of the weak Federer property to η = δ/(C 2 |k|). If |k| is large enough, we indeed have η < η 0 (h(Y ), C) for any h ∈ H (n-1)N (here, the finiteness of H is crucial). We obtain disjoint balls B(x 1 , C 2 (ζ/δ + 1)η), . . . , B(x k , C 2 (ζ/δ + 1)η) compactly contained in h(Y ), and sets A 1 , . . . , A k contained in B(x i , Dη), whose union covers h(Y ), and such that, for any nN ) ) by construction (using Lemma A.11). Hence, Lemma A.10 implies that (e N α(ε) L N (χ 2 u 2 ) 1/2 , L N k v) ∈ E k (C 0 , h(Y ), (n -1)N, ε). We glue together the different functions χ obtained by varying h, to obtain a function (that we still denote by χ) on H(Y ). We sill have (e N α(ε) L N (χ 2 u 2 ) 1/2 , L N k v) ∈ E k (C 0 , H (n-1)N (Y ), (n -1)N, ε). If we can prove that L N (χ 2 u 2 ) 1/2 L 4 ≤ β u L 4 where β < 1 is a constant which is independent of everything else, then the proof will be finished.

Let ũ = L N (χ 2 u 2 ) 1/2 . We have Let Y 1 = B ′′ i , and let Y 2 be its complement. On Y 1 , the factor h∈HN J (N ) (hx)χ(hx) 4 is bounded by a uniform constant β 0 < 1, hence ũ(x) 4 ≤ β 0 L N (u 4 )(x). On Y 2 , we only have ũ(x) 4 ≤ L N (u 4 )(x).

Let w = L N (u 4 ). Since Du ≤ 3C 0 |k|u, there exists a constant C such that Dw ≤ C|k|w. Integrating this inequality along a path between two points yields w(x) ≤ e C|k|d(x,y) w(y) for any x, y. In particular, since A i ⊂ B(x i , CDδ/(C 2 |k|)), there exists C such that, for any x ∈ A i and y ∈ B ′′ i , we have w(x) ≤ Cw(y). Integrating this inequality, Lemma A.13. There exist θ 2 < 1 and a function α : (0, ε 0 ) → R + which tends to 0 when ε → 0 satisfying the following property. For any M > 0, ε < ε 0 and A > 0, there exists K > 0 such that, for any C 1 function v : Y → C and for any ψ ∈ C A,ε MN , for any |k| ≥ K, (A.33)

L MN k (ψv) D k ≤ e MN α(ε) θ MN 2 ψ C A,ε M N v D 2 M k .

  be the function which is equal to r l on W l . Then there exists σ 0 > 0 such that Y e σ0r dµ < ∞.(5) Let µ Y denote the probability measure induced by µ on Y . Then the sets h(Y ), for h ∈ n∈N H n , uniformly have the weak Federer property (with respect to µ Y ).

Remark 2. 2 .

 2 Note that the bounds with ψ C A,4ε M N imply the same bounds with ψ C A,ε M N

  Corollary 3.5. For any C 1 function v on Y , let P v = v dµ Y . Then there exist C > 0 and θ < 1 such that, for any n ∈ N and any

  Mn -1n/2 ≥ 2 Mn /K.

  1 for any d ∈ Z. The inductive assumption concludes the proof. If β i > |k i |, consider ι the last time before i for which β ι = |k ι |. Iterating (4.27) up to ι, we get (4.30)

  kernel contains a nonzero function v = (v -K , . . . , v K ) by Corollary 5.4. Let us define a function v k , for |k| > K, by v k = ∞ p=1 k=(k0,k1,...,kj-1,k) admissible |k0|≤K

∞

  j=1 k=(k0,k1,...,kj-1,kj ) admissible |k0|>K,|kj |≤K Qt k (z).

  k0,k1,...,kj-1,kj ) admissible |k0|>K,|kj |>K Qt k (z),

  x ′ i ∈ B(x i , (C 2 (ζ/δ + 1) -1)η), holds µ Y (B(x ′ i , η)) ≥ µ Y (A i )/D. On each ball B = B(x i , C 2 (ζ/δ + 1)η) = B(x i , (ζ + δ)/|k|), we apply Lemma A.11 to the pair of functions (u(x)e εr (nN ) (x) , v(x)) (which belongs to E 3k (C 0 , T -N Y B, 0, 0)).The conclusion of this lemma gives a ball B ′ i = B(x ′ i , δ/|k|) as well as an index j ∈ {1, 2}. We will write type(B ′ i ) = j. Let B ′′ i = B(x ′ i , δ/(C 2 k)) = B(x ′ i , η). By Lemma A.7, there exists a function ρ i equal to 1 onB ′′ i , vanishing outside of B ′ i , whose C 1 norm is bounded by C|k|. Let us then define a function ρ on T -N Y (hY ) by ρ = ( type(B ′ i )=j ρ i ) • T NY on h j (hY ) (for j = 1, 2) and ρ = 0 elsewhere. Finally, let χ = 1cρ where c is small enough. Then χ C 1 ≤ |k| if c is small enough, and |L N k v| ≤ L N (χue εr

  (

ũ(x) 4

 4 = h∈Hn J (N ) (hx)χ(hx) 2 u(hx) 2 2 ≤ h∈HN J (N ) (hx)χ(hx) 4 • h∈HN J (N ) (hx)u(hx) 4 .

.u 4 .

 4 But µ Y (A i ) ≤ Dµ Y (B ′′ i ) by definition of the sets A i , hence Ai w ≤ C B ′′ i w.The balls B ′′ i are pairwise disjoint, so we conclude Y2 w ≤ C ′ Y1 w for some constant C ′ . Let E be large enough so that (E + 1)β 0 + C ′ ≤ E. Then (E + 1) ũ4 ≤ (E + 1) This is the desired inequality.

  section 6]. of X and a partition of Y such that the first four properties of Definition 1.4 are satisfied. The set Y is an open set with piecewise C 1 boundary, and each inverse branch h can be extended to a neighborhood of Y .

	Proposition 1.16. Under these assumptions, there exists a subset Y of X such that T is nonuni-
	formly expanding of base Y , for Lebesgue measure.
	Proof. This theorem is essentially proved in [Gou06, Theorem 4.1]. More precisely, this theorem
	constructs a subset Y

  Assume now that max |ki | > 2(|k 0 | + jK). We have |k 0 | + |d i | ≥ max |k i |. Denote by J the set of indexes ≥ 1 for which |d i | > K.By (4.22), γ d ≤ 1/(1 + |d|) 60/17 for any |d| > K. We get

	γ di	17/30	≤	i∈J (1 + |d i |) 60/17 1	17/30
								we obtain the conclusion of
	the lemma (by bounding directly	j i=1 γ di	9/10	by	j i=1 γ di	1/3	).
					Then		
	(4.34)						

i∈J |d i | ≥ max |k i | -|k 0 | -jK ≥ max |k i |/2.

  εn . Proof. Let us start with A t n . If k = (k 0 , . . . , k j ) is an admissible sequence, we have defined an operator Qt k (z) in Paragraph 5.2, by ( Qt k(z)v) k = 0 if k = k j , and ( Qt k (z)v) kj = Q t k (z)v k0 .We define an operator A(z, t) from B K to B 2 by

		∞	
	(5.45)	A(z, t) =	Qt k (z).
		j=1 k=(k0,k1,...,kj-1,kj ) admissible	
		|k0|≤K,|kj|>K	

  ct 2 ) i )e -εb , again by Lemma 5.15 and Proposition 5.14. The term e -εa θi e -εb is exponentially small in n, while the remaining term is bounded by |t|

	t n = A t 0 T t n B t 0 + C t n + a+i+b=n, i<n A t a T t i B t b , as an operator from B 1 to B 2 . The 0 gives the desired asymptotics, by Proposition 5.14 (and since A t n B t 0 T t term A t 0 and B t 0 are simply trivial extension and restriction operators). The term C t n is O( θn ) by Lemma 5.15. Hence, we should estimate the sum a+i+b=n, i<n A t a T t i B t b , whose norm is bounded by
	(5.51)	C|t|

a+i+b=n e -εa ( θi + (1

  , if ψ is continuously aperiodic, one also has for any |t| ∈ [τ 0 , t 0 ] ≤ C θn v B 0 . Proof. Let us define an operator D t n , which corresponds to considering the trajectories of the "random walk" starting from Y × Z and staying outside of Y × Z during a time n, so that

	(5.53) B 2 P t P t n v n = i+j=n P t i D t j . Formally, for x ∈ Y ,
	(5.54)	D t n v(x, k) =	x0,...,xn=x k0,...,kn=k	K t (xn,kn)→(xn-1,kn-1) . . . K t (x1,k1)→(x0,k0) v(x 0 , k 0 ).
			xi ∈Y for 0≤i<n	

which is finite as soon as σ < log 2. The mixing of T is a consequence of the equality gcd{r i,j } = 1.

Thus, we just have to prove the uniform weak Federer property. To do this, we will use Proposition 6.1. Let Y 0 = Y , and let Y 1 be its symmetric with respect to 1/2. Let Z = Y 0 ∪ Y 1 , and let T be the first return map induced by T on Z. It sends each interval T -1 ( Īi )∩Y 0 bijectively to Y 1 , and each interval T -1 (I i ) ∩ Y 1 bijectively to Y 0 . If we prove that T satisfies the assumptions of Proposition 6.1, this will conclude the proof of the uniform weak Federer property, since the inverse branches of the iterates of T Y are in particular inverse branches of iterates of T .

Assumptions (1) and (2) of Proposition 6.1 are trivial (since J is constant on each monotonicity interval of T ). For the fourth point, the quickest argument is certainly to use the fact that all the inverse branches of the iterates of T are homographies (hence with vanishing schwarzian derivative) which can be extended to the whole interval [0, 1]. Koebe's Lemma [dMvS93, Theorem IV.1.2] directly yields the uniform quasi-conformality.

Hence, we just have to check point (3). It is sufficient to check it on Y 0 , since everything is symmetric with respect to 1/2. If J is an interval, we will denote its length by |J|. Then | Īn | is a decreasing sequence, with | Īn+1 |/| Īn | → 1 when n → ∞, since T ′ (1) = 1. As a consequence,

We will use the following fact: for any C > 0, there exists D > 0 such that, for any interval J included in an interval K n with |J| ≥ C -1 |K n |, then µ(J) ≥ D -1 µ(K n ). To prove this fact, we apply once the map T , which sends K n to Y 1 , and J to an interval J ′ satisfying |J ′ | ≥ C -1 K -1 |Y 1 | by quasi conformality. Hence, µ(J ′ ) is uniformly bounded from below. As µ(J ′ )/µ(Y 1 ) = µ(J)/µ(K n ), this proves the fact.

We can now prove the third assumption of Proposition 6.1, on Y 0 . Let C > 1. We will construct inverse branches h 1 , . . . , h ℓ , balls B(x 1 , Cη), . . . , B(x k , Cη) and sets A 1 , . . . , A k as follows, if η is small enough.

Let N be maximal such that |K n | ≥ Cη for n ≤ N . We take ℓ = N , and let h 1 , . . . , h ℓ be the inverse branches of T whose images are the intervals K 1 , . . . , K ℓ . Then h i is defined on Y 1 , of length 1/6, and the length of its image K i is ≥ Cη. Hence, there exists a point y i ∈ Y 1 with h ′ i (y i ) ≥ 6 Cη. This proves (6.1).

We decompose the remaining interval as a union of intervals of length 2 Cη, excepted maybe the first one whose length belongs to [2 Cη, 4 Cη). Let us denote this decomposition by J 0 , . . . , J p . Since |K N | = o( n>N |K n |) when N → ∞, we have p ≥ 2 if η is small enough. Let us define sets A 1 , . . . , A p by A i = J i for i > 1, and A 1 = J 0 ∪ J 1 . Let B(x i , Cη) = J i-1 for i > 1, and let B(x 1 , Cη) be the leftmost part of J 0 . For i > 1, the ball B(x i , Cη) is not included in the set A i , it is strictly to its left. The balls are disjoint, and A i ⊂ B(x i , 5 Cη). Let us show that they satisfy the desired conclusion: we have to prove that, for any interval J of length 2η included in B(x i , Cη), then µ(J) ≥ D-1 µ(A i ) holds for some constant D (independent of η). Either J contains an interval K n , or it intersects such an interval along a subinterval of length at least η. Moreover, |K n | ≤ C|K N +1 | ≤ C Cη. In both cases, the fact we proved above implies that µ

We first deal with i = 1. As

Assume now i > 1. There exists an interval

This also concludes the proof in this case.

Lemma 6.4. The function φ is not cohomologous to a locally constant function.

Moreover, if ψ is aperiodic, for τ 0 ≤ |t| ≤ t 0 , (6.23)

As T n t 1(1, 0) = E(e it n k=1 ψ(X k ) ), this implies the limit assertions in Theorem 1.2. The automatic regularity properties still have to be checked.

As T is an homeomorphism between Y × S 1 and [1/2, 1] × S 1 , we conclude from the equality f • T = fψ that f is continuous on [1/2, 1] × S 1 . Finally, as T is an homeomorphism between [1/2, 1] × S 1 and [0, 1] × S 1 , we obtain with the same argument the continuity of f on the whole space.

We argue in the same way for the cohomological equation in R/λZ, by using Proposition 1.10.

Appendix A. Contraction properties of transfer operators

In this appendix, we prove Theorem 2.1 on the contraction properties (in C 1 norm or in Dolgopyat norm) of the transfer operator associated to a map T Y , where T is a nonuniformly expanding map of base Y . Henceforth, the notations and assumptions will be those of Theorem 2.1.

A.1. Contraction in the C 1 norm. In this paragraph, we introduce the tools to prove the first part of Theorem 2.1. However, the choice of the constants N and θ of Theorem 2.1 will only be possible at the complete end of the proof, in the next paragraph.

We will use several times the following distortion lemma, whose proof is completely standard and will be omitted.

Lemma A.1. Let J (n) (x) be the inverse of the jacobian of T n Y at the point x. There exists C > 0 (independent of n) such that, for any h ∈ H n , for any x, y ∈ Y , D(J

For small enough ε, we define an operator L ε acting on functions from Y to C, by L ε u(x) = J(hx)u(hx)e εr (x) . If H 0 ⊂ H, we will also denote by L ε,H0 the same operator but where the sum is restricted to the inverse branches belonging to H 0 . The following elementary estimates will be used again and again in all the forthcoming arguments.

Lemma A.2. There exists a function α(ε) which tends to 0 when ε → 0 such that L ε L 2 →L 2 ≤ e α(ε) and L ε C 0 →C 0 ≤ e α(ε) .

Moreover, if ε 0 > 0 is small enough, for any γ > 0, there exists H 0 ⊂ H with a finite complement such that L ε0,H0 L 2 →L 2 ≤ γ.

Proof. We have

. We have J(hx) ≤ CJ(hy) for any h ∈ H and all x, y ∈ Y , hence J(hx)e 2εr(hx) ≤ C J(hy)e 2εr(hy) . Integrating this inequality with respect to y, we get

This quantity is finite if ε is small enough, by the fourth assumption of Definition 1.4. Taking the complement of H 0 small enough, it can even be made arbitrarily small. This proves the second point of the lemma.

For the first point, we have to be slightly more precise. For any x, we have e 2εr(hx) ≤ 1 + 2εr(hx)e 2εr(hx) . Hence, using the inequality J(hx) ≤ CJ(hy) for any h ∈ H and x, y ∈ Y , we get Integrating with respect to y,

and this last integral is uniformly bounded if ε is small enough. This gives the desired estimate for the action of L ε on L 2 and C 0 . Let us prove a lemma which will easily imply (2.3).

Lemma A.3. There exist ε 0 > 0 and θ 0 < 1 such that, for any A > 0, n ∈ N and ε < ε 0 , there exists C > 0 such that, for any

by Lemma A.4. This gives the desired control in the C 0 norm. For the

given by Lemma A.1, and get the same bound as for the C 0 norm. If we differentiate ψ(hx), its derivative is bounded by A ψ C A,ε n e εr (n) (hx) , and using the same argument as for the C 0 norm we obtain the same bound (with an additional factor A, which is not a problem since C is allowed to depend on A in the statement of the lemma).

Finally, if we differentiate v • h, we have

, and we therefore get a bound

If ε is small enough, κ -1 e α(ε) < 1. This concludes the proof.

We now turn to the proof of (2.4). As a preliminary estimate, let us first consider the case ψ i = e εr (N ) for all i, in the following lemma.

Lemma A.4. There exist N 0 > 0, θ 0 < 1, C > 0, ε 0 > 0 and a function α : (0, ε 0 ) → R + tending to 0 when ε → 0, satisfying the following property. For any N ≥ N 0 and ε < ε 0 , for any

Proof. We have

Integrating this equation over y and summing over the inverse branches, we conclude ) .

But e εr (N ) = L N ε 1 ≤ e N α(ε) by Lemma A.2. In the same way,

We obtain (for some different function α(ε))

, the resulting term is bounded by

bounded by Cκ -N e N α(ε) Dv C 0 . We have proved that

Taking ε 0 small enough so that κ -1 e α(ε0) < 1, and N 0 large enough, this implies the lemma.

The following lemma essentially proves (2.4).

Lemma A.5. There exist N 0 > 0, θ 0 < 1, C > 0, ε 0 > 0 and a function α : (0, ε 0 ) → R + tending to 0 when ε → 0 such that, for any N ≥ N 0 , for any A ≥ 1, the following holds. Let ε < ε 0 , let

Proof. Note first that two points x and y of Y can be joined by a path of uniformly bounded length,

Integrating with respect to y,

Let us first prove a preliminary inequality. For any C 1 function w and any integer i,

by Lemma A.4 (applied to the time N i). Applying (A.12) to L N i ε w, we obtain (A.14)

Let now w be a Lipschitz function. It is a uniform limit of C 1 functions w n , with Dw n C 0 ≤ C Lip(w). Taking limits in the previous equation for w n , we get (A.15)

Let finally v be a C 1 function. The function |v| is Lipschitz, and its Lipschitz coefficient is bounded by Dv C 0 . We conclude (A.16)

We can now prove the lemma itself. We will write

We will bound these three terms. For the first one, D(J (N ) • h)(x) ≤ CJ (N ) (hx). This term is therefore bounded by Cγ i . . . γ 1 L N i ε |v 0 | C 0 , which can be estimated with (A.16). For the second term, we have a similar bound, with an additional factor A.

For the third term, we bound Dh(x) by κ -N , and J (N ) (hx)e εr (N ) (hx) = L N ε 1(x) ≤ e N α(ε) by Lemma A.2. Taking ε small enough, we can ensure that κ -1 e α(ε) ≤ θ 0 (increasing θ 0 if necessary).

We have proved that (A.17)

Iterating this equation inductively over i yields

This gives the estimate of the lemma for Dv n C 0 . Thanks to (A.12), this also implies the desired bound for v n C 0 . The following technical lemma will be needed later on.

Lemma A.6. There exists a constant C 1 > 0 such that, for any n ∈ N, for any x ∈ Y , h∈Hn

We will use the convexity inequality ( a i x i ) 4 ≤ ( a i ) 3 a i x 4 k , which comes from the convexity of x → x 4 when a i = 1 (the general case can be reduced to that specific case). We take a i = κ -i+1 and x i = r(h i . . . h 1 x), and obtain

The sum that we want to estimate is bounded by CF n (x). As J (n) (hx) ≤ CJ (n) (hy) by Lemma A.1, we have F n (x) ≤ CF n (y). Hence, F n (x) ≤ C F n . Finally, a change of variables yields, (A.20)

A.2. Contraction for Dolgopyat's norms. To prove the contraction for Dolgopyat's norms, we will essentially follow Dolgopyat's arguments as they are presented in [AGY06, Section 7], with additional technical complications due to the facts that the involved functions are unbounded, and that we want estimates which are uniform in M in Theorem 2.1. We will need the following lemma, proved in [AGY06, Lemma 7.5].

Lemma A.7. There exist constants C 2 > 1 and C 3 > 0 such that, for any ball B(x, C 2 r) which is compactly included in Y , there exists a C 1 function ρ : Y → [0, 1], vanishing outside B(x, C 2 r), equal to 1 on B(x, r) and with ρ C 1 ≤ C 3 /r.

Later on, we will use oscillatory integral arguments. To do that, it will be important that the phases of e ikS Y N φY •h vary at various speeds when one uses different inverse branches h. This is ensured by the following lemma.

Lemma A.8. There exist C 4 > 0 and an integer N 0 > 0 such that, for any N ≥ N 0 , there exist inverse branches h 1 , h 2 ∈ H N and a continuous unitary vector field y(x) on Y such that, for any x ∈ Y ,

Proof. First step. Let us show that there exist C ′ and N ′ such that, for any N ≥ N ′ , there exist inverse branches h 1 , h 2 ∈ H N , a point x ∈ Y and a unit tangent vector y at x such that

We argue by contradiction, so assume it is not the case.

Let us fix an inverse branch h ∈ H, and consider the sequence of inverse branches h n . Then

, this series converges normally, to a continuous 1-form ω(x) • y. Let x 0 be any point in Y , the series

and its sum ψ is a C 1 function with Dψ = ω.

Let now h ′ ∈ H be another inverse branch. Let us consider

Letting n tend to infinity, we get (A.23)

This contradicts the fact that φ Y is not cohomologous to a locally constant function, and concludes the proof of the first step.

Second step. Let us fix an arbitrary branch

uniformly bounded independently of p, by a constant c 0 . Fix N ≥ N ′ (given by the first step) such that c 0 κ -N ≤ C ′ /4. Let h 1 and h 2 be the inverse branches given by the first step, at time N , and let x 0 and y 0 be a point in Y and a tangent vector at this point, satisfying the conclusions of the first step. We extend y 0 to a continuous vector field on a neighborhood U of x 0 , still satisfying (A.22).

Since µ Y has full support in Y , µ Y (U ) > 0. Hence, U intersects k>0 h∈H k h(Y ), since µ Y is supported on this last set. Let x 1 be a point in the intersection, and let

In particular, there exist k > 0 and an inverse branch ℓ ∈ H k such that ℓ(Y ) ⊂ U .

Let y 1 (x) = Dℓ(x) -1 • y 0 (ℓx). For any p ∈ N, and j ∈ {1, 2}, we have

We conclude the proof by taking y(x) = y 1 (x)/ y 1 (x) .

We recall that we defined a constant C 1 in Lemma A.6, and a constant C 4 in Lemma A.8. We fix once and for all a constant C 0 ≥ max(4C 1 , 10). We also fix an integer N which is larger than the integers N 0 given by Lemmas A.5 and A.8, and such that κ -N ≤ 1/1000 and

From this point on, the D k norms and the cones E k will always be defined with respect to the constant C 0 . The following lemma essentially proves (2.6).

Lemma A.9. There exists a function α : (0, ε 0 ) → R + which tends to 0 when ε tends to 0 such that, for any ε < ε 0 , M > 0 and A > 0, there exists K > 0 such that, for any |ℓ| ≥ |k| ≥ K, for any

, we will show that there exists α(ε)

We bound ψ(hx) by

e εr (M N ) (hx) , and use Cauchy-Schwarz inequality. We conclude

is bounded by a coefficient of the form e MN α(ε) by Lemma A.2. Let us now estimate the derivative of (A.27)

If we differentiate J (MN ) (hx), its derivative is bounded by CJ (MN ) (hx) by Lemma A.1, and the resulting term is therefore bounded by par Ce MN α(ε) ũ(x) as above. If we differentiate e -ikS Y M N φY (hx) , we use Cauchy-Schwarz inequality and Lemma A.6 to obtain a bound

, and the resulting term is therefore bounded by Ae MN α(ε) ũ(x). Finally, if we differentiate v(hx), we use the inequality Dv(hx) ≤ C 0 κ -MN 2 M |ℓ|u(hx), so that the resulting term is bounded by C 0 κ -MN 2 M |ℓ|e MN α(ε) ũ(x). Finally,

The choice of N and C 0 implies that this term is bounded by C 0 |ℓ|e MN α(ε) ũ(x) if K is large enough.

Let us finally bound the derivative of ũ, or rather of ũ2 (x) = ψ 2 C A,ε M N J (MN ) (hx)u(hx) 2 . If we differentiate the jacobian, the resulting term is bounded by C ũ2 . If we differentiate u 2 , this is bounded by

Dividing by 2ũ(x) and using κ -N ≤ 1/1000, we obtain the desired bound Dũ(x) ≤ C 0 |ℓ|ũ(x) if |ℓ| is large enough. We have proved that (e MN α(ε) ũ,

Taking the infimum over the quantities u L 4 for (u, v) ∈ E 2 M ℓ (C 0 ), we obtain the lemma.

From this point on, we concentrate on the proof of (2.5). For v ∈ C 1 (Y ) and ψ ∈ C A,4ε MN , we will estimate L MN k (ψv) by starting from ψv and applying M times the operator L N k , which has good contraction properties thanks to the phase compensation phenomenon given by Lemma A.8. A technical issue in this argument is the fact that the functions ψv, L N k (ψv), . . . , L (M-1)N k (ψv) are not C 1 on Y , since the function ψ is quite wild at the beginning (it is only bounded by e 4εr (M N ) (x) , so smoothness is only regained after application of L MN k ). To deal with this issue, we will introduce intermediate degrees of smoothness, keeping track of the smoothness that has not yet been regained, as follows.

If Z is a subset of Y , n ∈ N and ε ≥ 0, we will say that (u, v) ∈ E k (C 0 , Z, n, ε) if the functions u and v are C 1 on Z and |v| ≤ e εr (n) u, Du ≤ C 0 |k|u and Dv ≤ C 0 |k|e εr (n) u on Z. In particular, E k = E k (C 0 , Y, 0, ε) for any ε ≥ 0. We will also write v D k (Z,n,ε) for the infimum of u L 4 over the functions u such that (u, v) ∈ E k (C 0 , Z, n, ε).

Lemma A.10. There exists a function α : (0, ε 0 ) → R + which tends to 0 when ε → 0 such that, for any A > 0, n > 0, ε < ε 0 , and for any Z ⊂ Y , there exists K > 0 such that, for any |ℓ| ≥ |k| ≥ K, for any pair of functions

Proof of Lemma A.10. The proof is similar to the proof of Lemma A.9. One should only check that the additional terms coming from the function χ are harmless in the estimates. This is ensured by the choice of N and C 0 .

By Lemma A.8, we can fix two inverse branches h 1 and h 2 of T N Y as well as a vector field y 0 (x) satisfying the conclusion of the Lemma. Smoothing it, we obtain a C 1 vector field y such that 1 ≤ y ≤ 2 and, for any x ∈ Y ,

). Informally, this equation ensures that the difference between the arguments of e -ikS Y N φY (h1x) and e -ikS Y N φY (h2x) varies quickly when x moves slightly in the direction of y(x). Using this, it is possible to prove the following lemma (see [START_REF] Avila | Exponential mixing for the Teichmüller flow[END_REF]Lemma 7.13] for a detailed proof): Lemma A.11. There exist δ > 0 and ζ > 0 satisfying the following property. Let |k| ≥ 10 and x 0 ∈ Y be such that the ball B

If H is a set of inverse branches of T n Y , we will write H(Y ) = h∈H h(Y ). Lemma A.12. There exist θ 1 < 1 and a function α : (0, ε 0 ) → R + tending to 0 when ε → 0 satisfying the following property. Let n > 0, let H be a finite subset of H nN . Denote by H (n-1)N ⊂ H (n-1)N the set of inverse branches T N Y • h for h ∈ H. Then, for any H, there exists K(H) such that, for any |k| ≥ K(H), for any function v, for any ε < ε 0 ,

Proof. We will give the proof for odd M (the proof for even M is analogous and even simpler).

We will decompose H MN as the union of a finite set H 1 (to which we will apply Lemma A.12) and a set H 2 which will yield a small enough contribution. Let H ⊂ H have finite complement. We will take for H 1 the set of inverse branches in H MN which are the composition of branches not belonging to H, and for H 2 its complement.

Let w = 1 H1(Y ) ψv and w ′ = 1 H2(Y ) ψv. We will first estimate L MN h∈H2 J (MN ) (hx)u(hx) 2 1/2 , the computation made in the proof of Lemma A.9 shows that (e MN α(ε) ũ, L MN k w ′ ) ∈ E k (C 0 ). We have

where L 0,H is similar to the operator L, but the sum is only done over branches belonging to H (this operator has already been defined before Lemma A.2). This lemma shows that, if H is chosen small enough, then L 0,H L 2 →L 2 can be made arbitrarily small. Hence, if H is small enough (in terms of M and ε), we have

Let us fix such an H. Since M is odd, it can be written as M = 2m + 1. The set H 1 is finite and fixed. In particular, there exists a constant B such that, for any We then apply inductively Lemma A.12. If |k| is large enough, we obtain for i > m Adding up the inequalities (A.35) and (A.39), we get the conclusion of the lemma.

Proof of Theorem 2.1. We choose θ ∈ (2 -1/(1010N ) , 1) such that θ 100 is larger than the constants θ 0 given by Lemmas A.3 and A.5, and than θ 2 given by Lemma A.13. If ε > 0 is small enough, Lemma A.5 (applied to M N ) shows (2.4). Moreover, (2.3) is implied by Lemma A.3. Finally, (2.6) is a consequence of Lemma A.9, and (2.5) follows from Lemma A.13.