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Abstract

In this paper, we address the issue of learning nonlineaamble concepts
with a kernel classifier in the situation where the data atreme altered by a uni-
form classification noise. Our proposed approach reliehiercombination of the
technique of random or deterministic projections with asification noise toler-
ant perceptron learning algorithm that assumes distobstidefined over finite-
dimensional spaces. Provided a sufficient separation magaracterizes the
problem, this strategy makes it possible to envision theleg from a noisy dis-
tribution in any separable Hilbert space, regardless dfiiteension; learning with
any appropriate Mercer kernel is therefore possible. Wegtbat the required
sample complexity and running time of our algorithm is pagmal in the classi-
cal PAC learning parameters. Numerical simulations on taskets and on data
from the UCI repository support the validity of our approach
Keywords: Kernel Classifier, Random Projections, Classification BoRercep-
tron

1 Introduction

For a couple of years, it has been known that kernel methoctsd{Bopf & Smola,
2002) provide a set of efficient techniques and associatetklmdor, among others,
classification. In addition, strong theoretical resulee(se.g. (Vapnik, 1995; Cristian-
ini & Shawe-Taylor, 2000)), mainly based omargincriteria and the fact they consti-
tute a generalization of the well-studied class of linepesators, support the relevance
of their use.

Astonishingly enough however, there is, to our knowledgey Vittle work on the
issue of learning noisy distributions with kernel classgje problem which is of great
interest if one aims at using kernel methods on real-wortd.dAssuming ainiform
classification noiserocess (Angluin & Laird, 1988), the problem of learningrfro
noisy distributions is a key challenge in the situation vehtiefeature spacassociated
with the chosen kernel is dffinite dimensionknowing that approaches to learn noisy



linear classifiers in finite dimension do exist (BylandeQ4®Blumet al, 1996; Cohen,
1997, Bylander, 1998).

In this work, we propose an algorithm to learn noisy disttibos defined on gen-
eral Hilbert spaces, not necessarily finite dimensionalnfia reasonable number of
data (where reasonable will be specified later on); thisriélyn combines the tech-
nigue of random projections with a known finite-dimensiamaike-tolerant linear clas-
sifier.

The paper is organized as follows. In Section 2, the probletting is depicted
together with the classification noise model assumed. Qategly to learn kernel
classifiers from noisy distributions is described in SattB Section 4 reports some
contributions related to the questions of learning noisgeptrons and learning kernel
classifiers using projections methods. Numerical simaiteticarried out on synthetical
datasets and on benchmark datasets from the UCI repositaving the effectiveness
of our approach are presented in Section 5.

2 Problem Setting and Main Result

Remark 1 (Binary classification in Hilbert spaces, Zero-bias petaap. From now
on, X denotes the input space, assumed to Ibéilbert spacesquipped with an inner
product denoted by In addition, we will restrict our study to the binary claisation
problem and the target spagewill henceforth always b¢—1, +1}.

We additionally make the simplifying assumption of theterie of zero-bias sep-
arating hyperplanes (i.e. hyperplanes definedwasx = 0).

2.1 Noisy Perceptrons in Finite Dimension

The Perceptron algorithm (Rosen- -
blatt, 1958) (cf. Fig. 1) is awell- | 0PIt & =|_{(x1,y|1) ' :];.(Xm’ym)}
studied greedy strategy to derive a utput: a linear classifiew
linear classifier from a samplg = t—0
{(x1,y1) - - (Xm, ym) } Of m labeled wo <0
pairs(x;, y;) from X x Y. which are while there isi s.t.y;w; - x; < 0 do
assumed to be drawn independently Wip1 — Wi + X, /||%]]
from anunknowrand fixed distribu- t—t+1
tion D overX x Y. If there exists end while
a separating hyperplane* - x = 0 return w
according to which the label of x
is set, i.eyis setto+1if w*-x > 0 Figure 1: Perceptron algorithm.

and—1 otherwisé, then the Perceptron algorithm, when given accesS twonverges
towards an hyperplane that correctly separateS and might with high probability
exhibit good generalization properties (Graegiehl,, 2001).

We are interested in the possibility of learning linearlpa®able distributions on
which a randonuniform classification noisprocess, denoted as CN (Angluin & Laird,
1988), has been applied, that is, distributions where colabels are flipped with some
given probabilityn. In order to solve this problem, Bylander (1994) has propgose

lwe assume a deterministic labelling of the data accordintpactarget hyperplanev*, i.e. Pr(y =
1jx) = 1 or Pr(y = 1|x) = 0, but a nondeterministic setting can be handled as well.
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Algorithm 1 RP-classifier
Input: ¢S ={(x1,y1) .- X, ym)} INX x {—1,+1}
e n, projection dimension
Output: e arandom projectionr = 7(S,n) : X — X/, X' = spanx;,,...,x;,)
e projection classifieff (x) = w - 7(x), w € X’

learn an orthonormal random projectian X — X"’
learn a linear classifiew fromS = {(7(x1),v1) - - . (7(Xm.), Ym )}
return m, w

a simple algorithmic strategy later exploited by Blwhal. (1996): it consists in an
iterative learning process built upon the Perceptron dtigor where update vectors
are computed as sample averages of training vectors fodfittertain properties. The
expectations of those update vectors guarantee the caneg@f the learning process
and, thanks in part to Theorem 1 stated just below, it is gutesd with probability
1 —4 (for 6 € (0,1)) that whenever the dimensionof X is finite and there exists
a separating hyperplane of margin> 0, a polynomial number of training data is
sufficient for the sample averages to be close enough togkp@ctations; this, in turn
implies a polynomial running time complexity of the algbrit together with & — §
guarantees for a generalization errorzofHere,polynomialityis defined with respect
ton,1/6,1/e,1/yandl/(1 — 2n).

Theorem 1(Vapnik (1998)) If F = {f,(x)|¢ € ®} has a pseudo-dimensionfoand
arangeR (i.e. |f,(x)| < R for anyy andx), andif a random sample of

8R? (2hIn1E 4 In 9)
e2

M > mg(h, R, 68,¢) =

i.i.d examples are drawn from a fixed distributiacthen with probability 1 — 4, the
sample average of every indicator functigpn(x) > « is within % of its expected
value, and the sample average of evgryis within ¢ of its expected value. (The

pseudo-dimension ¢f is the VC dimension dff,,(x) > a|¢ € ® A a € R}.)

2.2 Main Result: RP Classifiers and Infinite-Dimensional Spees

In light of what we have just seen, the question that natyialises is whether it is
possible to learn linear classifiers from noisy distribnsaefined oveinfinite dimen-
sional spacesvith similar theoretical guarantees with respect to theypommiality of
sample and running time complexities. We answer to this tiprepositively by ex-
hibiting a family of learning algorithm callechndom projection classifiersapable of
doing so. Classifiers of this family learn from a training $denS according to Algo-
rithm 1: given a finite projection dimension they first learn a projection from X’ to
a spaceY’ spanned by: (randomly chosen) vectors ¢f dimensional space and then,
learn a finite dimensional noisy perceptron from the label@ projected according to
7. An instanciation of RP-classifiers simply consists in aichof a random projection
learning algorithm and of a (noise-tolerant) linear classi

Let us more formally introduce some definitions and statenoain result.



Remark 2 (Labeled Examples Normalizatianh order to simplify the definitions and
the writing of the proofs we will use the handy transformatilat consists in convert-
ing every labeled example, y) to yx/||x||. From know on we will therefore consider
distributions and samples defined @h(instead ofY" x ))).

Note that the transformation does not change the difficdlth® problem and that
the seek for a separating hyperplane between +1 and -1 dakeds down to the
search for a hyperplanes verifyingw - x > 0.

Definition 1 ((v, ¢)-separable distribution®¢). For v > 0,e € [0,1), D7 is the
set of distributions o’ such that for anyD in D¢, there exists a vectox in X such
that Prx.p[w -x <] <e.

Definition 2 (CN distributionsi/”>" (Angluin & Laird, 1988)) For n € [0,0.5), let
the random transformatioti” which maps an exampieto —x with probabilityn and
leaves it unchanged with probability— 7.

The set of distribution& " is defined ag(">" := U" (D).

We can now state our main result:

Theorem 2 (Dimension-Independent Learnability of Noisy PerceptioThere exists
an algorithmA and polynomialg(-, -, -, -) andq(-, -, -, -) such that the following holds
true.

Ve € (0,1),V6 € (0,1),¥y > 0,Vn € [0,0.5),VD € D70, if a random sample
S={x1,...,xm} Withm > p(2, 5, 125, ) is drawn fromU" (D), thenwith prob-
ability at leastl — 4, A runs in timeq(Z, 5, 1=, ;) and the classifierf := A(S)
output by A has a generalization erroPrx..p(f(x) < 0) bounded by.

3 Combining Random Projections and a Noise-Tolerant
Learning Algorithm

This section gives a proof of Theorem 2 by showing that araimst ofRP-classifier
using a linear learning algorithm based on a specific perceptpdate ruleCnoise-
update, proposed by Bylander (1998) and on properties of simpld@anprojections
proved by Balcaret al. (2004) is capable of efficiently learning CN distributioiee
definition 2) independently of the dimension of the inputcga

The proof works in two steps. First, in section 3.1, we shoat @noise-update
(see Algorithm 2) in finite dimension can tolerate a small antaf malicious noise
and still return relevant update vectors. Then, in secti@) thanks to properties of
random projections (see (Balcanal., 2004)) we show that random projections can be
efficiently used to transform a CN noisy problem into one thakts the requirements
of Cnoise-update (and Theorem 4 below).

3.1 Perceptron Learning with Mixed Noise

As said earlier, we suppose in this subsection fiat of finite dimensionn. We will
make use of the following definitions.



Algorithm 2 Cnoise-Update (Bylander, 1998)
Input: e S: training data

e w: current weight vector

e v a nonnegative real value
Output: an update vectar

1 1
peogle Mg 2

x€eS xeSAW-x<0
if w-pu <v|wlthen
Z— [
else
wop—v|w| po WK v
- = 7L PR R i
W —w-p W —w-
z «— ap' +bp
end if

[* projection step */
if w-z > 0then

W - Z
Z <—7Z—W
i W W
end if
return z

Definition 3 (Sample and population accuraciekptw a unit vector,D a distribution
on X andS a sample drawn fronD. We say thatv hassample accuracy — ¢ onS
and(population) accuracy — ¢’ if:

Prycs[w-x<0/=¢, and Pry.p[w-x<0]=¢

Definition 4 (CN-consistency)A unit weight vectow™ is CN-consistent ol € (/7"
if Prep [W* - x < ~] =n. This means thav makeso erroron the noise free version
of D.

We recall that according to the following theorem (Byland&98) ,Cnoise-updaate,
depicted in Algorithm 2, when used in a perceptron-likedtieme procedure, renders the
learning of CN-distribution possible in finite dimension.

Theorem 3(Bylander (1998)) Let~ € [0,1],n7 € [0,0.5),e € (0,1 — 27]. LetD €
U If w* is CN-consistent o, if arandom samplé& of m > my (10(n +1),2,4, %)
examples are drawn fro®» andif the perceptron algorithm uses update vectors from
Cnoise-Update(S, w;, <) for more than% updates on these points, then the

with the highest sample accuracy has accuracy at léasj— e with probability1 — §2.

The question that is of interest to us deals with a little bdrengeneral situation
that simple CN noise. We would like to show th@moise-update is still applicable
when, in addition to being CN, the distribution on which icalled is also corrupted by
malicious noisgKearns & Li, 1993), i.e. a noise process whose statistioap@rties

2Here, and for the remaining of the papeis not the usual error parameterused in PAC, but’ (1—2n).



cannot be exploited in learning (this is an ‘uncompressifdgse). Envisioning this
situation is motivated by the projection step, which mayddtice some amount of
projection noisgcf. Theorem 5), that we treat as malicious noise.

Of course, a limit on the amount of malicious noise must beorefd if some
reasonable generalization error is to be achieved. Workiit distributions from
U we therefore seflynax(v,n) = M as the maximal amount tolerated by the

algorithm. Forf < 6,,.., @ minimal achievable error ratg,;, (v, 1, 0) = #@79)
8

will be our limit®. Provided that the amount of malicious noise is lower thag,., we
show that learning can be achieved for any eeror e,,:,(v,7,60). The proof non
trivially extends that of Bylander (1998) and roughly fellsits lines.

Definition 5 (Mixed-Noise distributiong/7:"%). For 6 € [0, 1), let the random trans-
formationU? which leaves an input unchanged with probability — § and changes
it to any arbitraryx’ with probability§ (nothing can be said about).

The set of distribution&” "% is defined ag(*"? .= U? (U"(D?"?)).

Remark 3 (CN and MN decomposition)For v > 0,7 € [0,0.5),6 € [0, 1), the image
distribution D¢ .= U? (U"(D7?)) of D0 € D0 is therefore a mixture of two
distributions: the first one, of weight- 6, is a CN distribution with noisg and margin
~ while nothing can be said about the second, of wefigfthis latter distribution will
be referred to as the malicious part (MN) Bf-¢.

In order to account for the malicious noise, we introduce lwedom variable) :
X — {0,1} such thatd(x) = 1 if x is altered by malicious noise artix) = 0
otherwise.

From now on, we will usé? [f (x)] for Exp [f(x)] andE [f(x)] for Bxes [f(x)].

Lemma 1. Lety > 0,7 € [0,0.5) andd € (0,1). Letd € [0, Omax(7y,n)) such that
Emin(7,1,0) < 1,€ € (Emin(7,7,0),1] and D € D9, Letm’ > 1. If a sampleS

i > / — 64° 2 i
of sizem > mqi(m/,~,0,e,6) = m (= e In 5 is drawn fromD then with
probability 1 — §:

1. % > 0x) - E[0(x)]| < Z—Z 2. |{x € S|f(x) = 0} > m'.
zeS

Proof. Simple Chernoff bounds arguments prove the inequalitiéissuffices to ob-
serve thath 3 o 0(x) = Ef(x)] and}", .5 0(x) = m — [{x € S|0(x) = 0}.)
O

Definition 6 (CN-consistency on Mixed-Noise distributiong}ety > 0,7 € [0,0.5),0 €
[0, Omax (7, 7). LetD € U7"?. Ahyperplanav* is CN-consisterit Pry.p [w* - x < y|0(x) = 0] =

Ui

The next lemma says how much the added malicious noise mitdifgample av-
erages on the CN part of a distribution.

3Slightly larger amount of noise and smaller error rate cchedtheoretically targeted. But the choices
we have made suffice to our purpose.



Lemma 2. Lety > 0,7 € [0,0.5) andd € (0,1]. Letd € [0,Omax(y,7n)) Such
that e,,in(v,1,0) < 1 — 27, ande € (emin(y,1,0),1 — 27]. LetD € U0, Let
M (n,~v,n,0,e,0) = mq (mo (10(n +1),2, 373, %) 7,0, ¢, %) andw a unit vector.
If S is a sample of sizev > M (n,~,n,0,s,0) drawn fromD then with probability

1-6,VR e [-1,1]:
|El(w - x)1p(w - x)] ~ Bl(w - x)1er(w -x)]| <

where kr(c) = 1if @ < R and0 otherwise.

Proof. By Lemma 1, we know tha{x € S|0(x) = 0}| > mq (10(n +1),2, 22, =)
with probability1 — 32. So, by Theorem 1, with probability— 32 — 2 VR € [-1,1]

|B [(w )L n(w - x)[6(0) = 0] = B [(w - x)1cp(w - x)/6(0) = 0] | < T W
In addition, we have
| Bl(w - x)1<p(w - x)] = E[(w - x)1cp (w - x)]|
= | Blw - 3)1<r(w - 2)10(x) = 0]Prees(0(x) = 0] = El(w - x)1<r(w - X)|0(x) = 0]Prx~p[0(x) = 0]
+ El(w - x)L<p(w - %)|0(x) = 1]Prses[0(x) = 1] = E[(w - x)1< p(w - %)|0(x) = 1] Proc~ p[0(x) = 1]
= |El(w - x)1c p(w - )[0(x) = 0] (Prxes[0(x) = 0] = Proc~p[0(x) = 0])
+ (Blw - x)1<r(w - 0)]0(x) = 0] = El(w - x)1<g(w - x)|0(x) = 0] ) Proc~ p[0(x) = 0]
+ Bl(w - x)L<r(W - %)|0(0) = 1] (Prees[0(x) = 1] = Pra~p[6(x) = 1)
+ (Blw - x)1r(w - 2)]0(x) = 1] = El(w - x)1<r(w - 2)|0(x) = 1]) Pra~pl0(x) = 1]

= |Bl(w - x)1cn(w - %)100x) = 0]] | Pres[0(x) = 0] ~ Prepl6(x) = 0]
(< &% by lemma 1)

+ [ Bl(w - %)L p(w - x)10(x) = 0] = E[(w - x)1<p (W - %)|6(x) = 0)| Pre~p[6(x) = 0]
(< 3% by equation 1)

+ |Blw - x)Ler(w - x)1060) = 11| |Precs[0(x) = 1] = Prap[0(x) = 1]

(< & by lemma 1)

+ | Blw - x)1cp(w - x)10(x) = 1) = Bl(w - %)L n(w - %)[6(x) = 1]| Praep[6(x) = 1]

g1x%+%(1-9)+1x%+2@ (with probability 1 — 6)

< 5 g

64

<2 (according to the values @f,,;;, andfmax)
O

The following lemma shows that a CN-consistent vestdrallows for a positive
expectation ov* - x over a Mixed-Noise distribution.

Lemma 3. Lety > 0,1 € [0,0.5),0 € [0, Omax(7,7)). Suppose thab € y7"0. If
w* is CN-consistent on the CN-part B, thenE [w* - x] > (1 —2n) (1 —0)y—60 >
0.



Proof.

Ew" -x]=FE[w" -x|0(x) =0 Pr(0(x) =0)+ E[w"-x|0(x) = 1] Pr (6(x) = 1)
=Ew -xl0(x)=0(1-0)+E[w" -x|0(x)=1]0
> Bw - xl0(x) = 0] (1 6) — 6> (1—20) (1 6) 7 — 6

It is easy to check that the lower bound is strictly positive. O

We extend the 2 inequalities of Lemma 6 (cf. Appendix) to thsecof a Mixed-
Noise distribution.

Lemma 4. Lety > 0,7 € [0,0.5) andd € (0,1]. Letd € [0, Omax(7,n)) such that
Emin(7,M, 0) < M, ande € (emin(v,1,0), M]. LetD € Y7, Letw be
an arbitrary weight vector and € U/""?. If w* is CN-consistent on the CN part
of D, and if w has accuracyl — n — % on the CN part ofD, then the following
inequalities hold:

(1=20) E[(w" - x)1<o(w - X)] + nE [w" »42%7 @)
(1=2n) E[(w-x)1co(w - x)] +nE[w-x] <nd (3)

Proof. For the first inequality, we have:

(1—20) E [(w* - x)Lco(w - )] + 7 [w" - x]

=(1-2n) E[(w"-x)lco(w-x)|6(x) = 1] Pr[f(x) = 1]
+nE[w*-x|0(x) = 1] Pr[0(x) = 1]
(1 - 20) B [(w* - x)Leo(w - %)]0(x) = 0] Pr[6(x) = 0]
+nE [w* - x|0(x) = 0] Pr[0(x) = 0]

>(1-90) %s'y (by lemma 6 eq. 4)
+ (1= 20) B [(w" - x)Leo(w - 2)|006) = 1] Pr[0(x) = 1]
+nE[w*-x|0(x) = 1]Pr[0(x) = 1]

> (1-0) 2oy — (1= 20)6 — 10
> (1-0)2ey—(1-m)0

bey
8

\Y

(by definition ofe)



Now, for the second inequality, we have:
(1= 20) B [(w - x)1co(w - %)] +1E [w -]

= (1-20) B [(w - )1eo(w - x)|0(x) = 1] Pr(0(x) = 1]
+nE|w-x|0(x) = 1] Pr[0(x) = 1]
+ (1 —=2n) E [(w - x)1<g(w - x)|6(x) = 0] Pr[(x) = 0]
+nE [w - x|0(x) = 0] Pr[0(x) = 0]

<0 (by lemma 6 eq.5)
+(1—20) E [(w - x)1eo(w - x)[0(x) = 1] Pr(6(x) = 1]
+nE[w-x|0(x) = 1]Pr[0(x) = 1]

<0+nd

|

Now, we will show the core lemma. It states that Algorithm Zpauis with high
probability a vector that can be used as an update vectoeifPdiceptron algorithm
(cf. Figure 1), that is a vector that is erroneously clasdifig the current classifier
but that is correctly classified by the target hyperplare (the vector is noise free).
Calling Algorithm 2 iteratively makes it possible to learseparating hyperplane from
a mixed-noise distribution.

Lemma 5. Lety > 0,7 € [0,0.5) andd € (0,1). Letd € [0, Omax(7y,n)) such that
emin(7,7,0) < 3(1—n). LetD € Y% andw* the target hyperplane (CN-consistent
on the CN-part o). Ve € [emin(7,7,6), 3(1 — 1)), for all input samplesS of size
M(n,v,n,0,4,¢), with probability at leastt — §, Vw € X if w has accuracy at most
1—n— Bf on the CN-part o) thenCnoise-update (Algorithm 2), when given inputs

S, w, &, outputs a vectog such thatw - z < 0 andw* -z > <.

Proof. The projection step guarantees thatz < 0. We therefore focus on the second
inequality.
Case 1.Suppose thaw - p < [|w|| <L: z is set tou by the algorithm, and, if needed,
is projected on thev hyperplane.

Every linear threshold function has accuracy at leash the CN-part ofD, so an
overall accuracy at leagt — 6)n. w has accuracy on the CN-part &f of, at most,
1 —n — 3¢ and so an overall accuracy at mostlof (1 —6) (n+ %) + 0

It is easy to check that

1-(1-6) (%nwz)+92(1—9)n®(1—2n)(1—9)7—92(1—9)3757—(2v+1)9,

and thus, from Lemma 3E [w* - x] > (1—0)25y — (2y+1)6. Because) <
Omax(v,m) @ande > emin(v,n,0), we havel [w* - x| > 5%7 Because of lemma 2 and
becauséS| > M(n,v,n,0,9, ), we know thatw™* - z is, with probabilityl — §, within
= of its expected value on the entire sample; hence we canudathatw™ - 1 > =t

If w- p <0, then the lemma follows directly.

If 0 < w-p < |w| <L, thenz is set tou and, if needed, projected to. Let
z| = p — z (z) is parallel tow). It follows that

" gy * * gy * gy * gy
W'ME?@W ~Z+W'Z“27:>W ~Z27—HZ“H:>W ~22?—Hu||
Y

=>w .z >
— 4



And the lemma again follows.

Case 2. Suppose instead that - 1 > ||w|| <. Leta > 0 andb > 0 be chosen so that
OTw] s b = £ anda+b = 1. w - ¢’ is negative anem—“ -p > Sinthis

case, so such anandb can always be chosen. Note that in this c&®ise-update

setsz to ap” + by and then projects to thew hyperplane. Because - z = ||w|| <f

beforez is projected to thev hyperplane, then the projection will decreagé - z by

at most= (recall thatw™ is a unit vector).

Note thata ¥ - ' + b - pu :aE[(H - )1§0(w-x)]+bE[H : x}.

Because, by Iemma 2, sample averages are, with probability, within < of their
expected values, it follows that

7| (g ) 2ot )] +07 [ o o = -

Lemma 4 implies that’ = - andb’ = 121 results ina’ K” x ) 1o(w - x)} +

VE[my x| < % and so less thai. So, |tmust be the case when< . because

alargera would result in an expected value less tiigrand a sample average less than

&y
4"

Lemma 4 also implies that choosing= - andb’ =
x)1<o(w - x)] + V' E[w* - x] > 5‘?
Becauser’ > a andb’ < b, and because Lemma 3 impligs{w* - x| > 52, it

follows thata E[(w* - x)1<o(w - x)] +bE[w* - x] > SETV andaw™ - ' +bw* - 2 57.

Thus, whenz is projected to thew hyperplane thav* -z > < andw -z = 0.
Consequently a total ofi examples, implies , with probability — ¢, thatw* - z > =1
andw -z < 0 for thez computes by the CNoise update algorithm. This proves the
Lemma.

=2 results ina’ B[(w*

O

We finally have the following theorem for Mixed-Noise leabilday using Cnhoise-
update.

Theorem 4. Lety > 0,7 € [0,0.5) andd € (0,1). Letd € [0, Omax(7y,n)) such that
Emin(7,1m,0) < 1 —2n. LetD € U”"? andw* the target hyperplane (CN-consistent
on the CN-part ofD). Ve € (emin(7y,7n,0),1 — 29],Yw € X, when given inputs
S of size at leastM (n,v,n,0,9,¢), if the Perceptron algorithm uses update vectors
from CNoise update for more thasé% updates, then thev; with the highest sample
accuracy on the CN-part has accuracy on the CN-parDoét leastl — n — ¢ with
probability 1 — ¢

Proof.

By lemma 5, with probability — ¢, wheneves; has accuracy at most-7— 35 on
the CN-part ofS thenCnoise-update(X, w;, 3¢ ) will return an update vectar; such
thatw* -z, > 5 andw; -z; < 0. The length of a sequence:, . . ., z;) where each;
has” separatlon is at mogi (Block, 1962; Novikoff, 1962) Thus, if more than

(57)2 update vectors are obtained, then at least one update veagirhave less than
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=% separation, which implies at least onehas more than — 7 — 3% accuracy on
CN-part.

The sample accuracy &f; corresponds to the sample average of an indicator func-
tion. By Theorem 1, the indicator functions are covered wpitbbability 1 — §. So,
assuming that the situation is in the- ¢ region, the sample accuracy of eash on
the CN-part of the distribution will be withig of its expected value.

Since at least oner; will have 1 — n — 37f accuracy on the CN-part, this implies
that its sample accuracy on the CN-part is at lelast  — 11%5 The accuracy on
the distribution is more thaih — (1 —6) (n—%32) — 0 <1 — (1-6) (n— =) —
35- Any otherw; with a better sample accuracy will have accuracy of at least
(1-6) (n— 1) — 2 and so an accuracy on the CN-part of at léasty —e. O

Remark 4. An interpretation of the latter result is that distributisirom D=, for
¢ > 0 can also be learned if corrupted by classification noise. @&ktent to which the
learning can take place depends of course on the valadwhich would play the role
of # in the derivation made above).

In the next section, we show how random projections can hetpduce a problem
of learning from a possibly infinite dimensional CN distrilaun to a problem of finite
Mixed-Noise distribution where the parameters of the Mikéaise distribution can be
controlled. This will directly give a proof of Theorem 2.

3.2 Random Projections and Separable Distributions
Here, we do not make the assumption thaits finite-dimensionsal.

Theorem 5 (Balcanet al. (2004)) Let D € DY, For a random sample&S =
{X1,...,x,} from D, let «(S) : X — spanS) the orthonormal projection on the
space spanned by, . . ., x,,.

If a sampleS of sizen > %[712 +1n 1] is drawn according ta thenwith probability
at leastl — ¢, the mappingr = «(S) is such thatr(D) is av/2-separable with error
6 on spanS) C X.

This theorem says that a random projection can transformeatly separable dis-
tribution in an almost linearly separable one defined on #efidimensional space. We
can therefore consider that such a transformation incym®jction noisethis noise
should possess some exploitable regularities for leartingwe leave the characteri-
zation of these regularities for a future work and apprehetlde sequel this projection
noise as malicious.

In RP-classifier, the vectors used to defimewill be selected randomly within the
training set.

Corollary 1 (of Theorem 2) Lety > 0,1 € [0,0.5) and D € U?". Ve € (0,1 —

2n),V6 € (0,1], if a sampleS of m > M(Tfim {7—12 +1In %} , 2,1, %, £) examples
drawn from D is input to RP-classifier, thenwith probability 1 — ¢ RP-classifier
outputs a classifier with accuracy at ledst- 7 — e.

Here, K > 0 is a universal constant.
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. . e(1-2
Proof. Fix v, n, D € U7 ande. Fix ) = == (2080 n

First, it is straightforward to check that < 0,.x(7, 1), €min < min(5,1 — 2n)
and, since < enin(v,1,0), 0 < 5. (We are in agreement with the assumptions of
Theorem 4.)

By Theorem 5, choosing = 5[ + In §] guarantees with probability - 3 that
the projectionD’ of D onto a random subspace of dimensiois a distribtion having
a CN part of weightl — 6 and part of weight' corrupted by projection noisd)’ can
therefore be considered as an elemeriyof7./4,

By Theorem 4, we know that using examples (withn set as in the Theorem)
allows with probabilityl — % the learning algorithm that iteratively callSnoise-
update to return in polynomial time a classifier with accuracy asteaon the CN-part
of the distribution.

Therefore, the accuracy of the classifier on the examplesrdfeom D is, with
probabilityl —§ — 2 =1-4,atleastt — (1 -0)s —0>1-5—-2=1-6. O

Remark 5. Note that we could also learn with an initial malicious noisg less than
Omax- 1N this case, the maximum amount of noise added by randojegtians must
obviously be less thafy, . — Oinit-

4 Related Work

Learning from a noisy sample of data implies that the lineabfem at hand might
not necessarily be consistent, that is, some linear canstnamight contradict others.
In that case, as stated before, the problem at hand boils dovhmat of finding an
approximate solution to a linear program such that a minimahber of constraints
are violated, which is know as a NP-hard problem (see, emaldi & Kann (1996)).

In order to cope with this problem, and leverage the clatgieeceptron learning
rule to render it tolerant to noise classification, one lifiegproaches has mainly been
exploited. It relies on exploiting the statistical regitias in the studied distribution
by computing various sample averages as it is presentedthexrenakes it possible to
‘erase’ the classification noise. As for Bylander’s aldumiis Bylander (1994, 1998),
whose analysis we have just extended, the other notableilmatidns are those of
(Blum et al,, 1996) and (Cohen, 1997). However, they tackle a differepeat of the
problem of learning noisy distributions and are more focuse showing that, in finite
dimensional spaces, the running time of their algorithnmslma lowered to something
that depends olvg 1/+ instead ofl/,.

Regarding the use of kernel projections to tackle classifingroblems, th&ernel
Projection Machineof (Zwald et al,, 2004) has to be mentioned. It is based on the use
of Kernel PCA as a feature extraction step. The main pointhisfvery interesting
work are a proof on the regularizing properties of Kernel P&#d the fact that it
gives a practical model selection procedure. However, thestion of learning noisy
distributions is not addressed.

Finally, the empirical study of (Fradkin & Madigan, 2003pprdes some insights
on how random projections might be useful for classificatidtfo sample and run-

4The choices of andn give K = 2080 x 8.
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ning time complexity results are given and the question afrisng with noise is not
addressed.

5 Numerical Simulations
5.1 UCI Datasets

We have carried out numerical simulations on benchmarksgtédrom the UCI repos-
itory preprocessed and made available by Gunnar Rat§ar each problem (Banana,
Breast Cancer, Diabetis, German, Heart), we have 100 nigiisémples and 100 test
samples. All these probems only contain a few hundredsitigiexamples, which is
far frow what the theoretical bounds showed above wouldirequ

We have tested three projection procedures: random, KBx@Al (KPCA), Kernel
Gram-Schmidt (KGS) (Shawe-Taylor & Cristianini, 2004). ig tatter projection is
sometimes referred to as a 'sparse version of Kernel PCAk(titat KPCA and KGS
are deterministic projections and thR¥#®-classifier is not a random-projection learning
algorihtm anymore).

Note that, to perform random projections, we chose randauhyprojection vec-
tors amongthe learning set. Since the learning set is drawn from theilligion,
selecting examples among it returns to same than drawirgttlirprojection vectors
from distribution. Thus, our process meets the processritbestby (Balcaret al,
2004).

In order to cope with the non separability of the problemshaee used Gaussian
kernels, and thus infinite-dimensional spaces, whose widitave been set to the best
value for SVM classification as reported on Gunnar Ratselebsite.

In our protocol, we have corrupted the data with classificatnoises of rates
0.0, 0,05, 0.10, 0.15, 0.20, 0.25, 0.30. Instead of carrgimiga cumbersome cross-
validation procedure, we provide the algoritiRP-classifier with the actual value of
1.

In order to determine the right projection size, we resow twoss-validation pro-
cedure which works as follows. Considering only the first fiegning (noisy) samples
of each problem, we learn on one of the samples and measutiueacy on the
other four, and we try subspace sizes of 2, 5, 10,..., 100,1%% 200. The subspace
dimension giving the smallest error is the one that is pidkedhe estimation of the
generalization accuracy. For the KPCA method, we have chibselast dimension for
which the reconstruction error is rather widely larger cargal to the test with higher
dimension.

The results obtained are summarized on Figure 2 and on Taldesl 2. We ob-
serve that classifiers produced on a dataset with no extsa ma@ive an accuracy a little
lower than that of the classifiers tested by Ratsch, with rg veasonable variance.
We additionally note that, when the classification noise amartificially grows, the
achieved accuracy decreases very weakly and the varianees gather slowly. It is
particularly striking since again, the sample complesitised are far from meeting the

Shttp://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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Figure 2: Error rates on UCI datasets with random projestistPCA and KGS projection with
different amount of classification noise; 1-standard désieerror bars are shown.

theoretical requirements. We can also note that when thmkbealues of the accura-
cies are compared, KGS and KPCA roughly achieve the samezamies than random
projection. This supports and, because KGS is the fastgegiron to compute, our
objective to study its properties more thoroughly in a neduife.

The main point of the set of numerical simulations condudteck is thatRP-
classifier has a very satisfactory behavior on real data, with reallyvaing classifi-
cation noise tolerance.

Another parameter (Table 1) that we point out is the selegtefiction dimension
for each projection process. KPCA (almost) always requaresnaller dimension of
projection than KGS and random projection. That is not yeslirprising, due to the
totally deterministic aspect of this process, and so to #ut that it is optimal, from
the point of view of the reconstruction error. The behavioofrrandom and KGS pro-
jection dimension selections seem to be harder to analyze two processes seem to
be extremely unstable from the point of view of selected disi@n (sometimes near
from KPCA dimension, sometimes 10 times larger), probaldgause of theiran-
dom aspectéselection of first vector for KGS, totally random for randpnojections).
However, they are a lot faster than KPCA, and the accuraajtsegre comparable, so
this instability does not constitute a real drawback.

5.2 Toy Problems

We have carried out additional simulations on five toy 2-disienal toy problems (cf.
Figure 3). Here, we have used the KGS projection since duestartiform distribution
of points on the rectangle-10;10] x [—10; 10], random projections provide exactly
the same results.

For each problem, we have produced 50 train sets and 50 testf000 examples
each. Note that we do not impose any separation margin.

We have altered the data with 5 different amounts of noise, @10, 0.20, 0.30,
0.40), 12 Gaussian kernel width (from 10.0 to 0.25) and 1#etn dimensions (from
5 to 200) have been tested and for each problem and for eask raie, we have se-
lected the couple which minimizes the error rate of the poediclassifier (proceeding
as above). Figure 3 depicts the learning results obtainddavnoise rate of 0.20 and
0.30.

Additional results concerning the accuracy of the produdedsifiers, the dimen-
sion and kernel width selection are provided in Tables 3 and 4
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These experiments confirm the conclusions made on UCI dajad®ut accuracy
results and dimension selection. Note that the resultsiregwod, even if the number
of examples is a lot less than theoritically needed, evereifdassification noise (0.30
or 0.40) is important and even if no margin has been defined .

Last remark, note that, not surprisingly, the selected gjanskernel width seems
to be not affected by the increase of noise level.

The essential point showed by these simulations is thainag#-classifier is
very effective in learning from noisy nonlinear distribotis. In the numerical results,
we have observed that our algorithm can tolerate noisedeaghigh as 0.3 and still
provide reasonnable error rates (typically around 10%).
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Figure 3: Toy problems: first column show the clean conceptls black disks being of class
+1 and white ones of class -1. Second and third columns shewdhcepts learned bByP-
classifier with KGS projection and respectively a uniform classificatmise rate of 0.20 and of

0.30.
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Noise Projection Banana Breast Cancer  Diabetis German Heart
KPCA 1113+ 0.65 | 27.294+4.25 | 23.864+ 1.74 | 24.08+ 2.34 | 16.63+ 3.62
0.00 KGS 10.954+ 0.64 | 27.25+4.19 | 23.9+1.68 | 24.0+2.49 | 16.51+ 3.78
Random 11.014+0.59 | 27.144+-4.39 | 23.9+1.83 | 24.21+ 2.38 | 16.49+ 3.73
KPCA 11.924+0.92 | 26.62+4.77 | 23.924+ 1.81 | 24.33+ 2.29 | 17.15+ 3.92
0.05 KGS 11.814+0.82 | 27.73+4.56 | 24.164+ 1.98 | 24.44+ 2.22 | 16.86+ 4.12
Random 11.844-0.91| 27.25+4.42 | 24.09+ 1.82 | 24.27+2.51 | 16.79+ 3.8
KPCA 12554+ 1.39| 27.57+4.9 | 24.49+1.87| 24.73+2.66 | 17.45+ 4.15
0.10 KGS 12.69+ 1.2 | 28.06+4.87 | 24.48+2.17 | 24.67+2.16 | 17.03+ 3.78
Random 12734+ 1.36 | 28.344+4.38 | 24.25+1.89 | 24.53+ 2.54 | 16.93+ 4.17
KPCA 13.544 1.41 | 28.014+4.92 | 24.754+2.19 | 24.89+ 2.67 | 17.33+ 3.98
0.15 KGS 13.63+ 1.63 | 27.96+4.81 | 24.4+2.14 | 2537+ 2.3 | 17.54+4.09
Random 13.654+ 1.63 | 27.88+4.74 | 24.7+2.36 | 25.23+2.56 | 17.62+ 3.73
KPCA 15.064 2.05 | 27.344+4.59 | 25.224+2.42 | 25.46+ 2.47 | 18.71+ 5.16
0.20 KGS 15.094+ 1.97 | 28.844+5.07 | 25.234+ 2.53 | 25.59+ 2.56 | 18.08+ 3.71
Random Projection] 14.85+ 2.22 | 29.23+5.35 | 25.014+ 2.32 | 25.744+2.58 | 17.6+ 4.37
KPCA 16.454+2.53 | 27.6+4.67 | 25.93+2.49 | 30.62+ 2.21 | 19.16+ 4.79
0.25 KGS 16.87+ 3.0 | 30.08+5.56 | 26.36+ 2.77 | 26.42+ 2.81 | 20.24+ 4.75
Random 174+ 3.16 | 29.81+7.3 | 26.07+2.95| 26.53+2.56 | 19.18+ 4.4
KPCA 19.694+ 3.72 | 31.084+6.85 | 26.774+ 2.89 | 30.53+ 2.52 | 21.78+ 5.62
0.30 KGS 20.31+3.37 | 31.27+7.61 | 26.78+ 3.46 | 27.84+ 2.75 | 20.64+ 5.62
Random 19.614+ 3.57 | 31.13+6.46 | 26.69+ 2.88 | 27.73+ 3.21 | 20.97+ 5.04

Table 1: Mean and standard deviation for each UCI probleh ekssification noise rate and each projection strategy
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Noise | Projection| Banana| Breast Cancer Diabetis| German| Heart
KPCA 20 10 15 20 15
0.00 KGS 125 45 15 125 50
Random 30 15 125 20 40
KPCA 20 2 10 20 15
0.05 KGS 150 150 50 15 45
Random 40 50 125 100 40
KPCA 15 10 10 15 10
0.10 KGS 15 50 125 100 50
Random 30 40 30 125 75
KPCA 15 10 15 20 15
0.15 KGS 25 35 15 40 100
Random 75 30 25 20 50
KPCA 25 2 20 20 10
0.20 KGS 75 45 35 75 150
Random 150 125 45 100 50
KPCA 20 2 10 2 10
0.25 KGS 30 5 100 75 45
Random 125 10 20 30 15
KPCA 15 5 10 2 2
0.30 KGS 75 50 15 25 30
Random 20 150 15 25 125

Table 2: Projection dimension chosen for each UCI probleanhenoise rate and each projection strategy
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Noise | Double Ellipse Ring Chess Board| Dart Board Hyper

0.00 0.4940.16 0.594+0.2 | 0.74+0.21 | 1.744+0.42 | 2.994+0.44
0.10 2.1+ 051 2.85+0.65 | 3.61+0.71 | 4.72+0.88 | 6.26+ 0.78
0.20 3.384+ 0.9 4.67+0.87 | 5.88+1.52 | 7.88+1.12 | 8.12+ 1.16
0.30 6.3+ 2.03 7.75+1.74 | 10.87+2.6 | 13.42+2.24 | 11.77+ 1.72
0.40 | 13.51+4.86 | 18.48+4.42 | 16.19+4.54 | 28.47+ 4.85| 18.14+5.39

Table 3: Mean and standard deviation for each toy problemeant classification noise rate

Noise Parameter Double Ellipse| Ring | Chess Board Dart Board | Hyper
0.00 Projection Dimensiomn 50 30 50 200 200
Kernel Width 3.0 4.0 25 25 15
0.10 Projection Dimension 100 150 150 200 200
Kernel Width 15 4.0 2.0 15 15
0.20  Projection Dimension 75 50 100 150 200
Kernel Width 2.0 25 15 15 25
0.30 Projection Dimensiomn 75 40 75 150 25
Kernel Width 3.0 3.0 2.0 2.0 25
0.40 Projection Dimension 25 15 5 100 5
Kernel Width 25 4.0 4.0 15 4.0

Table 4: Projection dimension (with KGS strategy) and gaumskernel width chosen for each toy problem and each notse ra




6 Conclusion and Outlook

In this paper, we have given theoretical results on the bdaility of kernel perceptrons
when faced to classification noise. The keypoint is thatréssilt is independent of the
dimension of the kernel feature space. In fact, it is the di$mite-dimensional having
good generalization that allows us to transform a possififiypite dimensional prob-
lem into a finite dimension one that, in turn, we tackle withd@der’s noise tolerant
perceptron algorihtm. This algorithm is shown to be robossame additional 'pro-
jection noise’ provided the sample complexity are adjusteal suitable way. Several
simulation results support the soundness of our approacte that it exists another
projection, based on the Jonsson-Lindenstrauss lemmaesmttiloed in (Balcaet al.,,
2004), that allows us to reduce the time and the sample coxitytd the learning step.

Several questions are raised by the present work. Among,ttiare is the ques-
tion about the generalization properties of the Kernel G&shmidt projector. We
think that tight generalization bounds can be exhibitedeaeasily in the framework
of PAC Bayesian bound, by exploiting, in particular, therspaess of this projector.
Resorting again to the PAC Bayesian framework it might bergdting to work on
generalization bound on noisy projection classifiers, Whiould potentially provide
a way to automatically estimate a reasonable projectioredsionandnoise level. Fi-
nally, we wonder whether there is a way to learn optimal sa&jrag hyperplane from
noisy distributions.

Appendix

Lemma 6 (Bylander (1998)) Lety > 0,7 € [0,0.5), ¢ € (0,1 — 2n]. LetD €
Uu"". Letw be an arbitrary weight vector. Kv* is CN-consistent o, and if w has
accuracyl — n — ¢, then the following inequalities hold:

(1-2n) E[(W" - x)l<o(w-x)]|+nE[W" - x|>ey (4)
(1—-2n)E[(w-x)l<o(w x)]+nE[w-x] <0 (5)
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