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Abstract

In this paper, we address the issue of learning nonlinearly separable concepts
with a kernel classifier in the situation where the data at hand are altered by a uni-
form classification noise. Our proposed approach relies on the combination of the
technique of random or deterministic projections with a classification noise toler-
ant perceptron learning algorithm that assumes distributions defined over finite-
dimensional spaces. Provided a sufficient separation margin characterizes the
problem, this strategy makes it possible to envision the learning from a noisy dis-
tribution in any separable Hilbert space, regardless of itsdimension; learning with
any appropriate Mercer kernel is therefore possible. We prove that the required
sample complexity and running time of our algorithm is polynomial in the classi-
cal PAC learning parameters. Numerical simulations on toy datasets and on data
from the UCI repository support the validity of our approach.
Keywords: Kernel Classifier, Random Projections, Classification Noise, Percep-
tron

1 Introduction
For a couple of years, it has been known that kernel methods (Schölkopf & Smola,
2002) provide a set of efficient techniques and associated models for, among others,
classification. In addition, strong theoretical results (see, e.g. (Vapnik, 1995; Cristian-
ini & Shawe-Taylor, 2000)), mainly based onmargincriteria and the fact they consti-
tute a generalization of the well-studied class of linear separators, support the relevance
of their use.

Astonishingly enough however, there is, to our knowledge, very little work on the
issue of learning noisy distributions with kernel classifiers, a problem which is of great
interest if one aims at using kernel methods on real-world data. Assuming auniform
classification noiseprocess (Angluin & Laird, 1988), the problem of learning from
noisy distributions is a key challenge in the situation where thefeature spaceassociated
with the chosen kernel is ofinfinite dimension, knowing that approaches to learn noisy
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linear classifiers in finite dimension do exist (Bylander, 1994; Blumet al., 1996; Cohen,
1997; Bylander, 1998).

In this work, we propose an algorithm to learn noisy distributions defined on gen-
eral Hilbert spaces, not necessarily finite dimensional) from a reasonable number of
data (where reasonable will be specified later on); this algorithm combines the tech-
nique of random projections with a known finite-dimensionalnoise-tolerant linear clas-
sifier.

The paper is organized as follows. In Section 2, the problem setting is depicted
together with the classification noise model assumed. Our strategy to learn kernel
classifiers from noisy distributions is described in Section 3. Section 4 reports some
contributions related to the questions of learning noisy perceptrons and learning kernel
classifiers using projections methods. Numerical simulations carried out on synthetical
datasets and on benchmark datasets from the UCI repository proving the effectiveness
of our approach are presented in Section 5.

2 Problem Setting and Main Result
Remark 1 (Binary classification in Hilbert spaces, Zero-bias perceptron). From now
on,X denotes the input space, assumed to be aHilbert spaceequipped with an inner
product denoted by·. In addition, we will restrict our study to the binary classification
problem and the target spaceY will henceforth always be{−1, +1}.

We additionally make the simplifying assumption of the existence of zero-bias sep-
arating hyperplanes (i.e. hyperplanes defined asw · x = 0).

2.1 Noisy Perceptrons in Finite Dimension

The Perceptron algorithm (Rosen-
Input: S = {(x1, y1) . . . (xm, ym)}
Output: a linear classifierw

t← 0
w0 ← 0

while there isi s.t.yiwt · xi ≤ 0 do
wt+1 ← wt + yixi/‖xi‖
t← t + 1

end while
return w

Figure 1: Perceptron algorithm.

blatt, 1958) (cf. Fig. 1) is a well-
studied greedy strategy to derive a
linear classifier from a sampleS =
{(x1, y1) . . . (xm, ym)} of m labeled
pairs(xi, yi) fromX×Y. which are
assumed to be drawn independently
from anunknownand fixed distribu-
tion D overX × Y. If there exists
a separating hyperplanew∗ · x = 0
according to which the labely of x

is set, i.e.y is set to+1 if w
∗ ·x ≥ 0

and−1 otherwise1, then the Perceptron algorithm, when given access toS, converges
towards an hyperplanew that correctly separatesS and might with high probability
exhibit good generalization properties (Graepelet al., 2001).

We are interested in the possibility of learning linearly separable distributions on
which a randomuniform classification noiseprocess, denoted as CN (Angluin & Laird,
1988), has been applied, that is, distributions where correct labels are flipped with some
given probabilityη. In order to solve this problem, Bylander (1994) has proposed

1we assume a deterministic labelling of the data according tothe target hyperplanew∗, i.e. Pr(y =
1|x) = 1 or Pr(y = 1|x) = 0, but a nondeterministic setting can be handled as well.
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Algorithm 1 RP-classifier

Input: • S = {(x1, y1) . . . (xm, ym)} in X × {−1, +1}
• n, projection dimension

Output: • a random projectionπ = π(S, n) : X → X ′, X ′ = span〈xi1 , . . . ,xin
〉

• projection classifierf(x) = w · π(x), w ∈ X ′

learn an orthonormal random projectionπ : X → X ′

learn a linear classifierw from S = {(π(x1), y1) . . . (π(xm), ym)}
return π, w

a simple algorithmic strategy later exploited by Blumet al. (1996): it consists in an
iterative learning process built upon the Perceptron algorithm where update vectors
are computed as sample averages of training vectors fulfilling certain properties. The
expectations of those update vectors guarantee the convergence of the learning process
and, thanks in part to Theorem 1 stated just below, it is guaranteed with probability
1 − δ (for δ ∈ (0, 1)) that whenever the dimensionn of X is finite and there exists
a separating hyperplane of marginγ > 0, a polynomial number of training data is
sufficient for the sample averages to be close enough to theirexpectations; this, in turn
implies a polynomial running time complexity of the algorithm together with a1 − δ
guarantees for a generalization error ofε. Here,polynomialityis defined with respect
to n, 1/δ, 1/ε, 1/γ and1/(1− 2η).

Theorem 1(Vapnik (1998)). If F = {fϕ(x)|ϕ ∈ Φ} has a pseudo-dimension ofh and
a rangeR (i.e. |fϕ(x)| ≤ R for anyϕ andx), andif a random sample of

M ≥ m0(h, R, δ, ε) =
8R2

(

2h ln 4R
ε

+ ln 9
δ

)

ε2

i.i.d examples are drawn from a fixed distribution,then with probability 1 − δ, the
sample average of every indicator functionfϕ(x) > α is within ε

R
of its expected

value, and the sample average of everyfϕ is within ε of its expected value. (The
pseudo-dimension ofF is the VC dimension of{fϕ(x) > α|ϕ ∈ Φ ∧ α ∈ R}.)

2.2 Main Result: RP Classifiers and Infinite-Dimensional Spaces

In light of what we have just seen, the question that naturally arises is whether it is
possible to learn linear classifiers from noisy distributions defined overinfinite dimen-
sional spaceswith similar theoretical guarantees with respect to the polynomiality of
sample and running time complexities. We answer to this question positively by ex-
hibiting a family of learning algorithm calledrandom projection classifierscapable of
doing so. Classifiers of this family learn from a training sampleS according to Algo-
rithm 1: given a finite projection dimensionn, they first learn a projectionπ fromX to
a spaceX ′ spanned byn (randomly chosen) vectors ofS dimensional space and then,
learn a finite dimensional noisy perceptron from the labeleddata projected according to
π. An instanciation of RP-classifiers simply consists in a choice of a random projection
learning algorithm and of a (noise-tolerant) linear classifier.

Let us more formally introduce some definitions and state ourmain result.
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Remark 2 (Labeled Examples Normalization). In order to simplify the definitions and
the writing of the proofs we will use the handy transformation that consists in convert-
ing every labeled example(x, y) to yx/‖x‖. From know on we will therefore consider
distributions and samples defined onX (instead ofX × Y).

Note that the transformation does not change the difficulty of the problem and that
the seek for a separating hyperplane between +1 and -1 classes boils down to the
search for a hyperplanew verifyingw · x > 0.

Definition 1 ((γ, ε)-separable distributionsDγ,ε). For γ > 0, ε ∈ [0, 1), Dγ,ε is the
set of distributions onX such that for anyD in Dγ,ε, there exists a vectorw in X such
thatPrx∼D[w · x < γ] ≤ ε.

Definition 2 (CN distributionsUγ,η (Angluin & Laird, 1988)). For η ∈ [0, 0.5), let
the random transformationUη which maps an examplex to−x with probabilityη and
leaves it unchanged with probability1− η.

The set of distributionsUγ,η is defined asUγ,η := Uη(Dγ,0).

We can now state our main result:

Theorem 2(Dimension-Independent Learnability of Noisy Perceptrons). There exists
an algorithmA and polynomialsp(·, ·, ·, ·) andq(·, ·, ·, ·) such that the following holds
true.
∀ε ∈ (0, 1), ∀δ ∈ (0, 1), ∀γ > 0, ∀η ∈ [0, 0.5), ∀D ∈ Dγ,0, if a random sample

S = {x1, . . . ,xm} with m ≥ p(1
ε
, 1

δ
, 1

1−2η
, 1

γ
) is drawn fromUη(D), thenwith prob-

ability at least1 − δ, A runs in timeq(1
ε
, 1

δ
, 1

1−2η
, 1

γ
) and the classifierf := A(S)

output byA has a generalization errorPrx∼D(f(x) ≤ 0) bounded byε.

3 Combining Random Projections and a Noise-Tolerant
Learning Algorithm

This section gives a proof of Theorem 2 by showing that an instance ofRP-classifier
using a linear learning algorithm based on a specific perceptron update rule,Cnoise-
update, proposed by Bylander (1998) and on properties of simple random projections
proved by Balcanet al. (2004) is capable of efficiently learning CN distributions (Dee
definition 2) independently of the dimension of the input space.

The proof works in two steps. First, in section 3.1, we show that Cnoise-update
(see Algorithm 2) in finite dimension can tolerate a small amount of malicious noise
and still return relevant update vectors. Then, in section 3.2, thanks to properties of
random projections (see (Balcanet al., 2004)) we show that random projections can be
efficiently used to transform a CN noisy problem into one thatmeets the requirements
of Cnoise-update (and Theorem 4 below).

3.1 Perceptron Learning with Mixed Noise

As said earlier, we suppose in this subsection thatX if of finite dimensionn. We will
make use of the following definitions.
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Algorithm 2 Cnoise-Update (Bylander, 1998)
Input: • S: training data

•w: current weight vector
• ν a nonnegative real value

Output: an update vectorz

µ←
1

|S|

∑

x∈S

x, µ
′ ←

1

|S|

∑

x∈S∧w·x≤0

x

if w · µ ≤ ν ‖w‖ then
z← µ

else

a←
w · µ− ν ‖w‖

w · µ−w · µ′
, b←

−w · µ′ + ν ‖w‖

w · µ−w · µ′

z← aµ
′ + bµ

end if
/* projection step */
if w · z > 0 then

z← z−w
w · z

w ·w
end if
return z

Definition 3 (Sample and population accuracies). Letw a unit vector,D a distribution
onX andS a sample drawn fromD. We say thatw hassample accuracy1 − ε onS
and(population) accuracy1− ε′ if :

Prx∈S [w · x < 0] = ε, and Prx∼D [w · x < 0] = ε′

Definition 4 (CN-consistency). A unit weight vectorw∗ is CN-consistent onD ∈ Uγ,η

if Prx∼D [w∗ · x < γ] = η. This means thatw makesno erroron the noise free version
of D.

We recall that according to the following theorem (Bylander, 1998),Cnoise-updaate,
depicted in Algorithm 2, when used in a perceptron-like iterative procedure, renders the
learning of CN-distribution possible in finite dimension.

Theorem 3 (Bylander (1998)). Let γ ∈ [0, 1], η ∈ [0, 0.5), ε ∈ (0, 1 − 2η]. LetD ∈
Uγ,η. If w

∗ is CN-consistent onD, if a random sampleS ofm ≥ m0

(

10(n + 1), 2, δ, εγ
4

)

examples are drawn fromD and if the perceptron algorithm uses update vectors from
Cnoise-Update(S,wt,

εγ
4 ) for more than 16

(εγ)2 updates on these points, then thewt

with the highest sample accuracy has accuracy at least1−η−ε with probability1−δ2.

The question that is of interest to us deals with a little bit more general situation
that simple CN noise. We would like to show thatCnoise-update is still applicable
when, in addition to being CN, the distribution on which it iscalled is also corrupted by
malicious noise(Kearns & Li, 1993), i.e. a noise process whose statistical properties

2Here, and for the remaining of the paper,ε is not the usual error parameterε′ used in PAC, butε′(1−2η).
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cannot be exploited in learning (this is an ‘uncompressible’ noise). Envisioning this
situation is motivated by the projection step, which may introduce some amount of
projection noise(cf. Theorem 5), that we treat as malicious noise.

Of course, a limit on the amount of malicious noise must be enforced if some
reasonable generalization error is to be achieved. Workingwith distributions from
Uγ,η we therefore setθmax(γ, η) = γ(1−2η)

8 as the maximal amount tolerated by the
algorithm. Forθ ≤ θmax, a minimal achievable error rateεmin(γ, η, θ) = 64θ

γ(1−η)( 1

8
−θ)

will be our limit3. Provided that the amount of malicious noise is lower thanθmax, we
show that learning can be achieved for any errorε ≥ εmin(γ, η, θ). The proof non
trivially extends that of Bylander (1998) and roughly follows its lines.

Definition 5 (Mixed-Noise distributions,Uγ,η θ). For θ ∈ [0, 1), let the random trans-
formationUθ which leaves an inputx unchanged with probability1 − θ and changes
it to any arbitraryx

′ with probabilityθ (nothing can be said aboutx′).
The set of distributionsUγ,η,θ is defined asUγ,η,θ := Uθ

(

Uη(Dγ,0)
)

.

Remark 3 (CN and MN decomposition). For γ > 0, η ∈ [0, 0.5), θ ∈ [0, 1), the image
distributionDγ,η,θ := Uθ

(

Uη(Dγ,0)
)

of Dγ,0 ∈ Dγ,0 is therefore a mixture of two
distributions: the first one, of weight1−θ, is a CN distribution with noiseη and margin
γ while nothing can be said about the second, of weightθ. This latter distribution will
be referred to as the malicious part (MN) ofDγ,η,θ.

In order to account for the malicious noise, we introduce therandom variableθ :
X → {0, 1} such thatθ(x) = 1 if x is altered by malicious noise andθ(x) = 0
otherwise.

From now on, we will useE [f(x)] for Ex∼D [f(x)] andÊ [f(x)] for Ex∈S [f(x)].

Lemma 1. Let γ > 0, η ∈ [0, 0.5) andδ ∈ (0, 1). Let θ ∈ [0, θmax(γ, η)) such that
εmin(γ, η, θ) < 1, ε ∈ (εmin(γ, η, θ), 1] andD ∈ Dγ,η,θ. Letm′ > 1. If a sampleS
of sizem ≥ m1(m

′, γ, θ, ε, δ) = m′ 642

2(1−θ− εγ

64 )(εγ)2
ln 2

δ
is drawn fromD then, with

probability1− δ:

1.

∣

∣

∣

∣

∣

1

m

∑

x∈S

θ(x)− E [θ(x)]

∣

∣

∣

∣

∣

≤
εγ

64
2. |{x ∈ S|θ(x) = 0}| > m′.

Proof. Simple Chernoff bounds arguments prove the inequalities. (It suffices to ob-
serve that1

m

∑

x∈S θ(x) = Ê [θ(x)] and
∑

x∈S θ(x) = m− |{x ∈ S|θ(x) = 0}|.)

Definition 6 (CN-consistency on Mixed-Noise distributions). Letγ > 0, η ∈ [0, 0.5), θ ∈
[0, θmax(γ, η)). LetD ∈ Uγ,η,θ. A hyperplanew∗ is CN-consistentif Prx∼D [w∗ · x ≤ γ|θ(x) = 0] =
η

The next lemma says how much the added malicious noise modifythe sample av-
erages on the CN part of a distribution.

3Slightly larger amount of noise and smaller error rate couldbe theoretically targeted. But the choices
we have made suffice to our purpose.
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Lemma 2. Let γ > 0, η ∈ [0, 0.5) and δ ∈ (0, 1]. Let θ ∈ [0, θmax(γ, η)) such
that εmin(γ, η, θ) < 1 − 2η, andε ∈ (εmin(γ, η, θ), 1 − 2η]. Let D ∈ Uγ,η,θ. Let
M (n, γ, η, θ, ε, δ) = m1

(

m0

(

10(n + 1), 2, 3δ
4 , εγ

16

)

, γ, θ, ε, δ
4

)

andw a unit vector.
If S is a sample of sizem > M (n, γ, η, θ, ε, δ) drawn fromD then, with probability
1− δ, ∀R ∈ [−1, 1]:

∣

∣

∣
Ê[(w · x)1l≤R(w · x)]− E[(w · x)1l≤R(w · x)]

∣

∣

∣
≤

εγ

8

where 1l≤R(α) = 1 if α ≤ R and0 otherwise.

Proof. By Lemma 1, we know that|{x ∈ S|θ(x) = 0}| > m0

(

10(n + 1), 2, 3δ
4 , εγ

16

)

with probability1− 3δ
4 . So, by Theorem 1, with probability1− 3δ

4 −
δ
4 , ∀R ∈ [−1, 1]

˛

˛

˛Ê
ˆ

(w · x)1l≤R(w · x)|θ(x) = 0
˜

− E
ˆ

(w · x)1l≤R(w · x)|θ(x) = 0
˜

˛

˛

˛ ≤
εγ

16
(1)

In addition, we have
˛

˛

˛Ê[(w · x)1l≤R(w · x)] − E[(w · x)1l≤R(w · x)]
˛

˛

˛

=
˛

˛

˛Ê[(w · x)1l≤R(w · x)|θ(x) = 0]Prx∈S [θ(x) = 0] − E[(w · x)1l≤R(w · x)|θ(x) = 0]Prx∼D[θ(x) = 0]

+ Ê[(w · x)1l≤R(w · x)|θ(x) = 1]Prx∈S [θ(x) = 1] − E[(w · x)1l≤R(w · x)|θ(x) = 1]Prx∼D[θ(x) = 1]
˛

˛

˛

=
˛

˛

˛
Ê[(w · x)1l≤R(w · x)|θ(x) = 0] (Prx∈S [θ(x) = 0] − Prx∼D [θ(x) = 0])

+
“

Ê[(w · x)1l≤R(w · x)|θ(x) = 0] − E[(w · x)1l≤R(w · x)|θ(x) = 0]
”

Prx∼D[θ(x) = 0]

+ Ê[(w · x)1l≤R(w · x)|θ(x) = 1] (Prx∈S [θ(x) = 1] − Prx∼D [θ(x) = 1])

+
“

Ê[(w · x)1l≤R(w · x)|θ(x) = 1] − E[(w · x)1l≤R(w · x)|θ(x) = 1]
”

Prx∼D[θ(x) = 1]
˛

˛

˛

=
˛

˛

˛Ê[(w · x)1l≤R(w · x)|θ(x) = 0]
˛

˛

˛ |Prx∈S[θ(x) = 0] − Prx∼D[θ(x) = 0]|

(≤ εγ
64

by lemma 1)

+
˛

˛

˛Ê[(w · x)1l≤R(w · x)|θ(x) = 0] − E[(w · x)1l≤R(w · x)|θ(x) = 0]
˛

˛

˛ Prx∼D[θ(x) = 0]

(≤ εγ
16

by equation 1)

+
˛

˛

˛Ê[(w · x)1l≤R(w · x)|θ(x) = 1]
˛

˛

˛ |Prx∈S [θ(x) = 1] − Prx∼D[θ(x) = 1]|

(≤ εγ
64

by lemma 1)

+
˛

˛

˛
Ê[(w · x)1l≤R(w · x)|θ(x) = 1] − E[(w · x)1l≤R(w · x)|θ(x) = 1]

˛

˛

˛
Prx∼D[θ(x) = 1]

≤ 1 ×
εγ

64
+

ε

16
(1 − θ) + 1 ×

εγ

64
+ 2θ (with probability1 − δ)

≤
6ε

64
+ 2θ

≤ 2ε (according to the values ofεmin andθmax)

The following lemma shows that a CN-consistent vectorw
∗ allows for a positive

expectation ofw∗ · x over a Mixed-Noise distribution.

Lemma 3. Let γ > 0, η ∈ [0, 0.5), θ ∈ [0, θmax(γ, η)). Suppose thatD ∈ Uγ,η,θ. If
w

∗ is CN-consistent on the CN-part ofD, thenE [w∗ · x] ≥ (1− 2η) (1− θ) γ− θ >
0.
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Proof.

E [w∗ · x] = E [w∗ · x|θ(x) = 0] Pr (θ(x) = 0) + E [w∗ · x|θ(x) = 1] Pr (θ(x) = 1)

= E [w∗ · x|θ(x) = 0] (1 − θ) + E [w∗ · x|θ(x) = 1] θ

≥ E [w∗ · x|θ(x) = 0] (1 − θ) − θ ≥ (1 − 2η) (1 − θ) γ − θ

It is easy to check that the lower bound is strictly positive.

We extend the 2 inequalities of Lemma 6 (cf. Appendix) to the case of a Mixed-
Noise distribution.

Lemma 4. Let γ > 0, η ∈ [0, 0.5) andδ ∈ (0, 1]. Let θ ∈ [0, θmax(γ, η)) such that
εmin(γ, η, θ) < 4(1−2η)

3 , andε ∈ (εmin(γ, η, θ), 4(1−2η)
3 ]. LetD ∈ Uγ,η,θ. Letw be

an arbitrary weight vector andD ∈ Uγ,η,θ. If w
∗ is CN-consistent on the CN part

of D, and if w has accuracy1 − η − 3ε
4 on the CN part ofD, then the following

inequalities hold:

(1 − 2η) E [(w∗ · x)1l≤0(w · x)] + ηE [w∗ · x]≥
5εγ

8
(2)

(1 − 2η) E [(w · x)1l≤0(w · x)] + ηE [w · x] ≤ηθ (3)

Proof. For the first inequality, we have:

(1 − 2η) E
ˆ

(w∗ · x)1l≤0(w · x)
˜

+ ηE [w∗ · x]

= (1 − 2η) E
ˆ

(w∗ · x)1l≤0(w · x)|θ(x) = 1
˜

Pr [θ(x) = 1]

+ ηE [w∗ · x|θ(x) = 1] Pr [θ(x) = 1]

+ (1 − 2η) E
ˆ

(w∗ · x)1l≤0(w · x)|θ(x) = 0
˜

Pr [θ(x) = 0]

+ ηE [w∗ · x|θ(x) = 0] Pr [θ(x) = 0]

≥ (1 − θ)
3

4
εγ (by lemma 6 eq. 4)

+ (1 − 2η) E
ˆ

(w∗ · x)1l≤0(w · x)|θ(x) = 1
˜

Pr [θ(x) = 1]

+ ηE [w∗ · x| θ(x) = 1]Pr [θ(x) = 1]

≥ (1 − θ)
3

4
εγ − (1 − 2η) θ − ηθ

≥ (1 − θ)
3

4
εγ − (1 − η) θ

≥
5εγ

8
(by definition ofε)
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Now, for the second inequality, we have:
(1 − 2η) E

ˆ

(w · x)1l≤0(w · x)
˜

+ ηE [w · x]

= (1 − 2η) E
ˆ

(w · x)1l≤0(w · x)|θ(x) = 1
˜

Pr [θ(x) = 1]

+ ηE [w · x|θ(x) = 1] Pr [θ(x) = 1]

+ (1 − 2η) E
ˆ

(w · x)1l≤0(w · x)|θ(x) = 0
˜

Pr [θ(x) = 0]

+ ηE [w · x|θ(x) = 0] Pr [θ(x) = 0]

≤ 0 (by lemma 6 eq.5)

+ (1 − 2η) E
ˆ

(w · x)1l≤0(w · x)|θ(x) = 1
˜

Pr [θ(x) = 1]

+ ηE [w · x| θ(x) = 1]Pr [θ(x) = 1]

≤ 0 + ηθ

Now, we will show the core lemma. It states that Algorithm 2 outputs with high
probability a vector that can be used as an update vector in the Perceptron algorithm
(cf. Figure 1), that is a vector that is erroneously classified by the current classifier
but that is correctly classified by the target hyperplane (i.e. the vector is noise free).
Calling Algorithm 2 iteratively makes it possible to learn aseparating hyperplane from
a mixed-noise distribution.

Lemma 5. Let γ > 0, η ∈ [0, 0.5) andδ ∈ (0, 1). Let θ ∈ [0, θmax(γ, η)) such that
εmin(γ, η, θ) < 4

3 (1−η). LetD ∈ Uγ,η,θ andw
∗ the target hyperplane (CN-consistent

on the CN-part ofD). ∀ε ∈
[

εmin(γ, η, θ), 4
3 (1− η)

)

, for all input samplesS of size
M(n, γ, η, θ, δ, ε), with probability at least1 − δ, ∀w ∈ X if w has accuracy at most
1−η− 3ε

4 on the CN-part ofD thenCnoise-update (Algorithm 2), when given inputs
S, w, εγ

4 , outputs a vectorz such thatw · z ≤ 0 andw
∗ · z ≥ εγ

4 .

Proof. The projection step guarantees thatw ·z ≤ 0. We therefore focus on the second
inequality.
Case 1.Suppose thatw · µ < ‖w‖ εγ

4 : z is set toµ by the algorithm, and, if needed,
is projected on thew hyperplane.

Every linear threshold function has accuracy at leastη on the CN-part ofD, so an
overall accuracy at least(1 − θ)η. w has accuracy on the CN-part ofD of, at most,
1− η − 3ε

4 and so an overall accuracy at most of1− (1− θ)
(

η + 3ε
4

)

+ θ
It is easy to check that

1 − (1 − θ)

„

3ε

4
+ η

«

+ θ ≥ (1 − θ)η ⇔ (1 − 2η) (1 − θ) γ − θ ≥ (1 − θ)
3ε

4
γ − (2γ + 1) θ,

and thus, from Lemma 3,E [w∗ · x] ≥ (1− θ) 3ε
4 γ − (2γ + 1) θ. Becauseθ <

θmax(γ, η) andε > εmin(γ, η, θ), we haveE [w∗ · x] ≥ 5εγ
8 . Because of lemma 2 and

because|S| ≥M(n, γ, η, θ, δ, ε), we know thatw∗ ·z is, with probability1−δ, within
εγ
8 of its expected value on the entire sample; hence we can conclude thatw∗ ·µ ≥ εγ

2 .
If w · µ < 0, then the lemma follows directly.
If 0 < w · µ < ‖w‖ εγ

4 , thenz is set toµ and, if needed, projected tow. Let
z‖ = µ− z (z‖ is parallel tow). It follows that

w
∗ · µ ≥

εγ

2
⇔ w

∗ · z + w
∗ · z‖ ≥

εγ

2
⇒ w

∗ · z ≥
εγ

2
−

‚

‚

z‖

‚

‚ ⇒ w
∗ · z ≥

εγ

2
− ‖µ‖

⇒ w
∗ · z ≥

εγ

4
.
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And the lemma again follows.
Case 2.Suppose instead thatw · µ ≥ ‖w‖ εγ

4 . Let a ≥ 0 andb ≥ 0 be chosen so that
a w

‖w‖ ·µ
′ + b w

‖w‖ ·µ = εγ
4 anda + b = 1. w ·µ′ is negative andw

‖w‖ ·µ ≥
εγ
4 in this

case, so such ana andb can always be chosen. Note that in this case,Cnoise-update
setsz to aµ

′ + bµ and then projectsz to thew hyperplane. Becausew · z = ‖w‖ εγ
4

beforez is projected to thew hyperplane, then the projection will decreasew
∗ · z by

at mostεγ
4 (recall thatw∗ is a unit vector).

Note thata w

‖w‖ · µ
′ + b w

‖w‖ · µ = aÊ
[(

w

‖w‖ · x
)

1l≤0(w · x)
]

+ bÊ
[

w

‖w‖ · x
]

.

Because, by lemma 2, sample averages are, with probability1 − δ, within εγ
8 of their

expected values, it follows that

aE

[(

w

‖w‖
· x

)

1l≤0(w · x)

]

+ bE

[

w

‖w‖
· x

]

≥
εγ

8
.

Lemma 4 implies thata′ = η
1−η

andb′ = 1−2η
1−η

results ina′E
[(

w

‖w‖ · x
)

1l≤0(w · x)
]

+

b′E[ w

‖w‖ ·x] ≤ ηθ
1−η

and so less thanεγ
8 . So, it must be the case whena ≤ η

1−η
because

a largera would result in an expected value less thanεγ
8 and a sample average less than

εγ
4 .

Lemma 4 also implies that choosinga′ = η
1−η

andb′ = 1−2η
1−η

results ina′E[(w∗ ·

x)1l≤0(w · x)] + b′E[w∗ · x] ≥ 5εγ
8

Becausea′ ≥ a andb′ ≤ b, and because Lemma 3 impliesE [w∗ · x] ≥ 5εγ
8 , it

follows thataE[(w∗ ·x)1l≤0(w ·x)]+ bE[w∗ ·x] ≥ 5εγ
8 andaw∗ ·µ′ + bw∗ ·µ ≥ εγ

2 .
Thus, whenz is projected to thew hyperplane thew∗ · z ≥ εγ

4 andw · z = 0.
Consequently a total ofm examples, implies , with probability1− δ, thatw∗ · z ≥ εγ

4
andw · z ≤ 0 for the z computes by the CNoise update algorithm. This proves the
Lemma.

We finally have the following theorem for Mixed-Noise learnability usingCnoise-
update.

Theorem 4. Letγ > 0, η ∈ [0, 0.5) andδ ∈ (0, 1). Letθ ∈ [0, θmax(γ, η)) such that
εmin(γ, η, θ) < 1 − 2η. LetD ∈ Uγ,η,θ andw

∗ the target hyperplane (CN-consistent
on the CN-part ofD). ∀ε ∈ (εmin(γ, η, θ), 1 − 2η], ∀w ∈ X , when given inputs
S of size at leastM(n, γ, η, θ, δ, ε), if the Perceptron algorithm uses update vectors
from CNoise update for more than16

ε2γ2 updates, then thewi with the highest sample
accuracy on the CN-part has accuracy on the CN-part ofD at least1 − η − ε with
probability1− δ.

Proof.
By lemma 5, with probability1−δ, wheneverwi has accuracy at most1−η− 3ε

4 on
the CN-part ofS thenCnoise-update(X,wi,

εγ
16 ) will return an update vectorzi such

thatw∗ · zi ≥
εγ
4 andwi · zi ≤ 0. The length of a sequence(z1, . . . , zl) where eachzi

hasεγ
4 separation, is at most16(εγ)2 (Block, 1962; Novikoff, 1962). Thus, if more than

16
(εγ)2 update vectors are obtained, then at least one update vectormust have less than

10



εγ
4 separation, which implies at least onew has more than1 − η − 3εγ

4 accuracy on
CN-part.

The sample accuracy ofwi corresponds to the sample average of an indicator func-
tion. By Theorem 1, the indicator functions are covered withprobability1 − δ. So,
assuming that the situation is in the1 − δ region, the sample accuracy of eachwi on
the CN-part of the distribution will be withinεγ

16 of its expected value.

Since at least onewi will have 1 − η − 3ε
4 accuracy on the CN-part, this implies

that its sample accuracy on the CN-part is at least1 − η − 13ε
16 . The accuracy on

the distribution is more than1 − (1− θ)
(

η − 13ε
16

)

− θ < 1 − (1− θ)
(

η − 13ε
16

)

−
ε
32 . Any otherwi with a better sample accuracy will have accuracy of at least1 −
(1− θ)

(

η − 13ε
16

)

− 5ε
32 and so an accuracy on the CN-part of at least1− η − ε.

Remark 4. An interpretation of the latter result is that distributions fromDγ,ε, for
ε > 0 can also be learned if corrupted by classification noise. Theextent to which the
learning can take place depends of course on the value ofε (which would play the role
of θ in the derivation made above).

In the next section, we show how random projections can help us reduce a problem
of learning from a possibly infinite dimensional CN distribution to a problem of finite
Mixed-Noise distribution where the parameters of the Mixed-Noise distribution can be
controlled. This will directly give a proof of Theorem 2.

3.2 Random Projections and Separable Distributions

Here, we do not make the assumption thatX is finite-dimensionsal.

Theorem 5 (Balcan et al. (2004)). Let D ∈ Dγ,0. For a random sampleS =
{x1, . . . ,xn} from D, let π(S) : X → span〈S〉 the orthonormal projection on the
space spanned byx1, . . . ,xn.

If a sampleS of sizen ≥ 8
θ
[ 1
γ2 +ln 1

δ
] is drawn according toD thenwith probability

at least1 − δ, the mappingπ = π(S) is such thatπ(D) is a γ/2-separable with error
θ on span〈S〉 ⊆ X .

This theorem says that a random projection can transform a linearly separable dis-
tribution in an almost linearly separable one defined on a finite dimensional space. We
can therefore consider that such a transformation incurs aprojection noise; this noise
should possess some exploitable regularities for learning, but we leave the characteri-
zation of these regularities for a future work and apprehendin the sequel this projection
noise as malicious.

In RP-classifier, the vectors used to defineπ will be selected randomly within the
training set.

Corollary 1 (of Theorem 2). Let γ > 0, η ∈ [0, 0.5) andD ∈ Uγ,η. ∀ε ∈ (0, 1 −

2η], ∀δ ∈ (0, 1], if a sampleS of m > M( K
εγ(1−2η)

[

1
γ2 + ln 2

δ

]

, γ
2 , η, δ

2 , ε
2 ) examples

drawn fromD is input to RP-classifier, thenwith probability 1 − δ RP-classifier
outputs a classifier with accuracy at least1− η − ε.

Here,K > 0 is a universal constant.
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Proof. Fix γ, η, D ∈ Uγ,η andε. Fix θ = γε(1−2η)
2080 .

First, it is straightforward to check thatθ ≤ θmax(γ, η), εmin ≤ min( ε
2 , 1 − 2η)

and, sinceθ ≤ εmin(γ, η, θ), θ ≤ ε
2 . (We are in agreement with the assumptions of

Theorem 4.)
By Theorem 5, choosingn = 8

θ
[ 1
γ2 + ln 2

δ
] guarantees with probability1− δ

2 , that
the projectionD′ of D onto a random subspace of dimensionn is a distribtion having
a CN part of weight1 − θ and part of weightθ corrupted by projection noise.D′ can
therefore be considered as an element ofU

γ

2
,η,θ4.

By Theorem 4, we know that usingm examples (withm set as in the Theorem)
allows with probability1 − δ

2 the learning algorithm that iteratively callsCnoise-
update to return in polynomial time a classifier with accuracy at least ε

2 on the CN-part
of the distribution.

Therefore, the accuracy of the classifier on the examples drawn from D is, with
probability1− δ

2 −
δ
2 = 1− δ, at least1− (1− θ) ε

2 − θ ≥ 1− ε
2 −

δ
2 = 1− δ.

Remark 5. Note that we could also learn with an initial malicious noiseθinit less than
θmax. In this case, the maximum amount of noise added by random projections must
obviously be less thanθmax − θinit .

4 Related Work
Learning from a noisy sample of data implies that the linear problem at hand might
not necessarily be consistent, that is, some linear constraints might contradict others.
In that case, as stated before, the problem at hand boils downto that of finding an
approximate solution to a linear program such that a minimalnumber of constraints
are violated, which is know as a NP-hard problem (see, e.g., Amaldi & Kann (1996)).

In order to cope with this problem, and leverage the classical perceptron learning
rule to render it tolerant to noise classification, one line of approaches has mainly been
exploited. It relies on exploiting the statistical regularities in the studied distribution
by computing various sample averages as it is presented here; this makes it possible to
’erase’ the classification noise. As for Bylander’s algorithms Bylander (1994, 1998),
whose analysis we have just extended, the other notable contributions are those of
(Blum et al., 1996) and (Cohen, 1997). However, they tackle a different aspect of the
problem of learning noisy distributions and are more focused on showing that, in finite
dimensional spaces, the running time of their algorithms can be lowered to something
that depends onlog 1/γ instead of1/γ.

Regarding the use of kernel projections to tackle classification problems, theKernel
Projection Machineof (Zwaldet al., 2004) has to be mentioned. It is based on the use
of Kernel PCA as a feature extraction step. The main points ofthis very interesting
work are a proof on the regularizing properties of Kernel PCAand the fact that it
gives a practical model selection procedure. However, the question of learning noisy
distributions is not addressed.

Finally, the empirical study of (Fradkin & Madigan, 2003) provides some insights
on how random projections might be useful for classification. No sample and run-

4The choices ofθ andn give K = 2080 × 8.
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ning time complexity results are given and the question of learning with noise is not
addressed.

5 Numerical Simulations
5.1 UCI Datasets

We have carried out numerical simulations on benchmark datasets from the UCI repos-
itory preprocessed and made available by Gunnar Rätsch5. For each problem (Banana,
Breast Cancer, Diabetis, German, Heart), we have 100 training samples and 100 test
samples. All these probems only contain a few hundreds training examples, which is
far frow what the theoretical bounds showed above would require.

We have tested three projection procedures: random, KernelPCA (KPCA), Kernel
Gram-Schmidt (KGS) (Shawe-Taylor & Cristianini, 2004). This latter projection is
sometimes referred to as a ’sparse version of Kernel PCA’ (note that KPCA and KGS
are deterministic projections and thatRP-classifier is not a random-projection learning
algorihtm anymore).

Note that, to perform random projections, we chose randomlyour projection vec-
tors amongthe learning set. Since the learning set is drawn from the distribution,
selecting examples among it returns to same than drawing directly projection vectors
from distribution. Thus, our process meets the process described by (Balcanet al.,
2004).

In order to cope with the non separability of the problems, wehave used Gaussian
kernels, and thus infinite-dimensional spaces, whose widths, have been set to the best
value for SVM classification as reported on Gunnar Rätsch’swebsite.

In our protocol, we have corrupted the data with classification noises of rates
0.0, 0,05, 0.10, 0.15, 0.20, 0.25, 0.30. Instead of carryingout a cumbersome cross-
validation procedure, we provide the algorithmRP-classifier with the actual value of
η.

In order to determine the right projection size, we resort toa cross-validation pro-
cedure which works as follows. Considering only the first fivetraining (noisy) samples
of each problem, we learn on one of the samples and measure theaccuracy on the
other four, and we try subspace sizes of 2, 5, 10,. . . , 100, 125, 150, 200. The subspace
dimension giving the smallest error is the one that is pickedfor the estimation of the
generalization accuracy. For the KPCA method, we have chosen the last dimension for
which the reconstruction error is rather widely larger compared to the test with higher
dimension.

The results obtained are summarized on Figure 2 and on Tables1 and 2. We ob-
serve that classifiers produced on a dataset with no extra noise have an accuracy a little
lower than that of the classifiers tested by Rätsch, with a very reasonable variance.
We additionally note that, when the classification noise amount artificially grows, the
achieved accuracy decreases very weakly and the variance grows rather slowly. It is
particularly striking since again, the sample complexities used are far from meeting the

5http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

13



 0

 0.1

 0.2

 0.3

 0.4

 0.5

banana breast diabetis german heart

er
ro

r

Noise level
0
0.05
0.10
0.15
0.20
0.25
0.30

 0

 0.1

 0.2

 0.3

 0.4

 0.5

banana breast diabetis german heart

er
ro

r

Noise level
0
0.05
0.10
0.15
0.20
0.25
0.30

 0

 0.1

 0.2

 0.3

 0.4

 0.5

banana breast diabetis german heart

er
ro

r

Noise level
0
0.05
0.10
0.15
0.20
0.25
0.30

Figure 2: Error rates on UCI datasets with random projections, KPCA and KGS projection with
different amount of classification noise; 1-standard deviation error bars are shown.

theoretical requirements. We can also note that when the actual values of the accura-
cies are compared, KGS and KPCA roughly achieve the same accuracies than random
projection. This supports and, because KGS is the faster projection to compute, our
objective to study its properties more thoroughly in a near future.

The main point of the set of numerical simulations conductedhere is thatRP-
classifier has a very satisfactory behavior on real data, with really convicing classifi-
cation noise tolerance.

Another parameter (Table 1) that we point out is the selectedprojection dimension
for each projection process. KPCA (almost) always requiresa smaller dimension of
projection than KGS and random projection. That is not really surprising, due to the
totally deterministic aspect of this process, and so to the fact that it is optimal, from
the point of view of the reconstruction error. The behaviours of random and KGS pro-
jection dimension selections seem to be harder to analyze. The two processes seem to
be extremely unstable from the point of view of selected dimension (sometimes near
from KPCA dimension, sometimes 10 times larger), probably because of theirran-
dom aspects(selection of first vector for KGS, totally random for randomprojections).
However, they are a lot faster than KPCA, and the accuracy results are comparable, so
this instability does not constitute a real drawback.

5.2 Toy Problems

We have carried out additional simulations on five toy 2-dimensional toy problems (cf.
Figure 3). Here, we have used the KGS projection since due to the uniform distribution
of points on the rectangle[−10; 10] × [−10; 10], random projections provide exactly
the same results.

For each problem, we have produced 50 train sets and 50 test sets of 2000 examples
each. Note that we do not impose any separation margin.

We have altered the data with 5 different amounts of noise (0.0, 0.10, 0.20, 0.30,
0.40), 12 Gaussian kernel width (from 10.0 to 0.25) and 12 projection dimensions (from
5 to 200) have been tested and for each problem and for each noise rate, we have se-
lected the couple which minimizes the error rate of the produced classifier (proceeding
as above). Figure 3 depicts the learning results obtained with a noise rate of 0.20 and
0.30.

Additional results concerning the accuracy of the producedclassifiers, the dimen-
sion and kernel width selection are provided in Tables 3 and 4.
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These experiments confirm the conclusions made on UCI datasets, about accuracy
results and dimension selection. Note that the results remain good, even if the number
of examples is a lot less than theoritically needed, even if the classification noise (0.30
or 0.40) is important and even if no margin has been defined .

Last remark, note that, not surprisingly, the selected gaussian kernel width seems
to be not affected by the increase of noise level.

The essential point showed by these simulations is that, again, RP-classifier is
very effective in learning from noisy nonlinear distributions. In the numerical results,
we have observed that our algorithm can tolerate noise levels as high as 0.3 and still
provide reasonnable error rates (typically around 10%).
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Figure 3: Toy problems: first column show the clean concepts with black disks being of class
+1 and white ones of class -1. Second and third columns show the concepts learned byRP-
classifier with KGS projection and respectively a uniform classificaton noise rate of 0.20 and of
0.30.
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Noise Projection Banana Breast Cancer Diabetis German Heart
KPCA 11.13± 0.65 27.29± 4.25 23.86± 1.74 24.08± 2.34 16.63± 3.62

0.00 KGS 10.95± 0.64 27.25± 4.19 23.9± 1.68 24.0± 2.49 16.51± 3.78
Random 11.01± 0.59 27.14± 4.39 23.9± 1.83 24.21± 2.38 16.49± 3.73
KPCA 11.92± 0.92 26.62± 4.77 23.92± 1.81 24.33± 2.29 17.15± 3.92

0.05 KGS 11.81± 0.82 27.73± 4.56 24.16± 1.98 24.44± 2.22 16.86± 4.12
Random 11.84± 0.91 27.25± 4.42 24.09± 1.82 24.27± 2.51 16.79± 3.8
KPCA 12.55± 1.39 27.57± 4.9 24.49± 1.87 24.73± 2.66 17.45± 4.15

0.10 KGS 12.69± 1.2 28.06± 4.87 24.48± 2.17 24.67± 2.16 17.03± 3.78
Random 12.73± 1.36 28.34± 4.38 24.25± 1.89 24.53± 2.54 16.93± 4.17
KPCA 13.54± 1.41 28.01± 4.92 24.75± 2.19 24.89± 2.67 17.33± 3.98

0.15 KGS 13.63± 1.63 27.96± 4.81 24.4± 2.14 25.37± 2.3 17.5± 4.09
Random 13.65± 1.63 27.88± 4.74 24.7± 2.36 25.23± 2.56 17.62± 3.73
KPCA 15.06± 2.05 27.34± 4.59 25.22± 2.42 25.46± 2.47 18.71± 5.16

0.20 KGS 15.09± 1.97 28.84± 5.07 25.23± 2.53 25.59± 2.56 18.08± 3.71
Random Projection 14.85± 2.22 29.23± 5.35 25.01± 2.32 25.74± 2.58 17.6± 4.37

KPCA 16.45± 2.53 27.6± 4.67 25.93± 2.49 30.62± 2.21 19.16± 4.79
0.25 KGS 16.87± 3.0 30.08± 5.56 26.36± 2.77 26.42± 2.81 20.24± 4.75

Random 17.4± 3.16 29.81± 7.3 26.07± 2.95 26.53± 2.56 19.18± 4.4
KPCA 19.69± 3.72 31.08± 6.85 26.77± 2.89 30.53± 2.52 21.78± 5.62

0.30 KGS 20.31± 3.37 31.27± 7.61 26.78± 3.46 27.84± 2.75 20.64± 5.62
Random 19.61± 3.57 31.13± 6.46 26.69± 2.88 27.73± 3.21 20.97± 5.04

Table 1: Mean and standard deviation for each UCI problem, each classification noise rate and each projection strategy
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Noise Projection Banana Breast Cancer Diabetis German Heart
KPCA 20 10 15 20 15

0.00 KGS 125 45 15 125 50
Random 30 15 125 20 40
KPCA 20 2 10 20 15

0.05 KGS 150 150 50 15 45
Random 40 50 125 100 40
KPCA 15 10 10 15 10

0.10 KGS 15 50 125 100 50
Random 30 40 30 125 75
KPCA 15 10 15 20 15

0.15 KGS 25 35 15 40 100
Random 75 30 25 20 50
KPCA 25 2 20 20 10

0.20 KGS 75 45 35 75 150
Random 150 125 45 100 50
KPCA 20 2 10 2 10

0.25 KGS 30 5 100 75 45
Random 125 10 20 30 15
KPCA 15 5 10 2 2

0.30 KGS 75 50 15 25 30
Random 20 150 15 25 125

Table 2: Projection dimension chosen for each UCI problem, each noise rate and each projection strategy

1
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Noise Double Ellipse Ring Chess Board Dart Board Hyper
0.00 0.49± 0.16 0.59± 0.2 0.74± 0.21 1.74± 0.42 2.99± 0.44
0.10 2.1± 0.51 2.85± 0.65 3.61± 0.71 4.72± 0.88 6.26± 0.78
0.20 3.38± 0.9 4.67± 0.87 5.88± 1.52 7.88± 1.12 8.12± 1.16
0.30 6.3± 2.03 7.75± 1.74 10.87± 2.6 13.42± 2.24 11.77± 1.72
0.40 13.51± 4.86 18.48± 4.42 16.19± 4.54 28.47± 4.85 18.14± 5.39

Table 3: Mean and standard deviation for each toy problem andeach classification noise rate

Noise Parameter Double Ellipse Ring Chess Board Dart Board Hyper
0.00 Projection Dimension 50 30 50 200 200

Kernel Width 3.0 4.0 2.5 2.5 1.5
0.10 Projection Dimension 100 150 150 200 200

Kernel Width 1.5 4.0 2.0 1.5 1.5
0.20 Projection Dimension 75 50 100 150 200

Kernel Width 2.0 2.5 1.5 1.5 2.5
0.30 Projection Dimension 75 40 75 150 25

Kernel Width 3.0 3.0 2.0 2.0 2.5
0.40 Projection Dimension 25 15 5 100 5

Kernel Width 2.5 4.0 4.0 1.5 4.0

Table 4: Projection dimension (with KGS strategy) and gaussian kernel width chosen for each toy problem and each noise rate

1
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6 Conclusion and Outlook
In this paper, we have given theoretical results on the learnability of kernel perceptrons
when faced to classification noise. The keypoint is that thisresult is independent of the
dimension of the kernel feature space. In fact, it is the use of finite-dimensional having
good generalization that allows us to transform a possibly infinite dimensional prob-
lem into a finite dimension one that, in turn, we tackle with Bylander’s noise tolerant
perceptron algorihtm. This algorithm is shown to be robust to some additional ’pro-
jection noise’ provided the sample complexity are adjustedin a suitable way. Several
simulation results support the soundness of our approach. Note that it exists another
projection, based on the Jonsson-Lindenstrauss lemma and described in (Balcanet al.,
2004), that allows us to reduce the time and the sample complexity of the learning step.

Several questions are raised by the present work. Among them, there is the ques-
tion about the generalization properties of the Kernel Gram-Schmidt projector. We
think that tight generalization bounds can be exhibited rather easily in the framework
of PAC Bayesian bound, by exploiting, in particular, the sparseness of this projector.
Resorting again to the PAC Bayesian framework it might be interesting to work on
generalization bound on noisy projection classifiers, which would potentially provide
a way to automatically estimate a reasonable projection dimensionandnoise level. Fi-
nally, we wonder whether there is a way to learn optimal separating hyperplane from
noisy distributions.

Appendix
Lemma 6 (Bylander (1998)). Let γ > 0, η ∈ [0, 0.5), ε ∈ (0, 1 − 2η]. Let D ∈
Uγ,η. Letw be an arbitrary weight vector. Ifw∗ is CN-consistent onD, and ifw has
accuracy1− η − ε, then the following inequalities hold:

(1 − 2η) E [(w∗ · x)1l≤0(w · x)] + ηE [w∗ · x]≥εγ (4)

(1 − 2η) E [(w · x)1l≤0(w · x)] + ηE [w · x] ≤0 (5)
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