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Abstract

Let (Mn, g) be a compact Riemannian manifold without boundary. In this paper,
we consider the first nonzero eigenvalue of the p-Laplacian λ1,p(M) and we prove
that the limit of p

√

λ1,p(M) when p → ∞ is 2/d(M) where d(M) is the diameter
of M . Moreover if (Mn, g) is an oriented compact hypersurface of the Euclidean
space R

n+1 or S
n+1, we prove an upper bound of λ1,p(M) in term of the largest

principal curvature κ over M . As applications of these results we obtain optimal
lower bounds of d(M) in term of the curvature. In particular we prove that if M is
a hypersurface of R

n+1 then : d(M) ≥ π/κ.

Mathematics Subject Classification (2000): 53A07, 53C21.
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1 Introduction and main results

Let (Mn, g) be a connected compact Riemannian manifold of dimension n without
boundary and let p > 1. The first nonzero eigenvalue of the p-Laplace operator is defined
by the following variational characterization

λ1,p(M) = inf

{

∫

M
|du|pdv

∫

M
|u|pdv

; u ∈ W 1,p(M) , u 6= 0 and

∫

M

|u|p−2udv = 0

}

This infimum is achieved by a C1,α eigenfunction fp (see regularity results in [8] and [9])
which satisfies the Euler-Lagrange equation

∆pfp = λ1,p(M)|fp|
p−2fp

where ∆p is the p-Laplace operator defined by ∆pu = −div (|gradu|p−2gradu) and gradu
is the gradient of u with respect to the metric g of M .

On the other hand if (Ωn, g) is a bounded domain of M with boundary ∂Ω, we consider
the first Dirichlet eigenvalue defined by

λD
1,p(Ω) = inf

{

∫

Ω
|du|pdv

∫

Ω
|u|pdv

; u ∈ W 1,p
0 (Ω) , u 6= 0

}

As previously, this infimum is achieved by a C1,α eigenfunction fp which satisfies the same
Euler-Lagrange equation with zero boundary values. Moreover, Lindqvist ([5]) proves
that fp is the unique positive eigenfunction associated to λD

1,p(Ω) up to multiplication by
constants.

In [4] the authors proved that p

√

λD
1,p(Ω) −→ 1

r(Ω)
when p −→ ∞, where r(Ω) =

max
x∈Ω

(dist (x, ∂Ω)) and dist (x, ∂Ω) denotes the geodesic distance between x and ∂Ω. The

main result of this paper is a similar result for the first nonzero eigenvalue of the p-Laplace
operator defined on the compact manifolds. Indeed we will prove the following theorem.

Theorem 1.1 Let (Mn, g) be a compact Riemannian manifold. Then we have

p

√

λ1,p(M) −→
2

d(M)
when p −→ ∞

where d(M) is the diameter of M .

In a second part, considering the case of compact hypersurfaces isometrically immersed
in the Euclidean space and the sphere, we will give an upper bound of λ1,p(M) (see
theorems 3.1 and 3.2) in term of the largest principal curvature. Combining these results
with the above theorem 1.1 we get optimal lower bounds of the diameter of hypersurfaces
of the Euclidean space and the sphere (see corollaries 3.1 and 3.2).
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2 Proof of the main result

In this section we give a proof of the theorem 1.1

Proof: There exist two points x1 and x2 of M so that d(M) = dist (x1, x2), where dist

denotes the geodesic distance on M . Since the open balls B(x1,
d(M)

2
) and B(x2,

d(M)
2

) of

center respectively x1 and x2 and of radius d(M)
2

are disjoint, we have by the min-max
principle

λ1,p(M) ≤ max
i

(

λD
1,p

(

B

(

xi,
d(M)

2

)))

Let δ be the function defined on B(xi,
d(M)

2
) by δ(x) = d(M)

2
− dist (xi, x). Then δ is

in the space W 1,p(M) for p > 1 and is zero on the boundary. Consequently by the
characterization of the first Dirichlet eigenvalue, we get

λD
1,p

(

B

(

xi,
d(M)

2

))

≤
‖dδ‖p

p

‖δ‖p
p

≤
V
(

B
(

xi,
d(M)

2

))

‖δ‖p
p

Then

lim sup p

√

λD
1,p

(

B

(

xi,
d(M)

2

))

≤ lim sup

p

√

V
(

B
(

xi,
d(M)

2

))

‖δ‖p

=
2

d(M)

and

lim sup p

√

λ1,p(M) ≤
2

d(M)

Now, we will prove that lim inf p
√

λ1,p(M) ≥ 2
d(M)

. So, let fp be a first eigenfunction for

λ1,p(M), p > 1 and let Ωp
+ = fp

−1(R+) and Ωp
− = fp

−1(R−). Ωp
+ and Ωp

− are nonempty
connected open subsets and Matei ([6]) has proved that

λ1,p(M) = λD
1,p(Ωp

+) = λD
1,p(Ωp

−)

Let f+
p ∈ W 1,p

0 (Ωp
+) and f−

p ∈ W 1,p
0 (Ωp

−) be positive eigenfunctions associated respec-
tively to λD

1,p(Ωp
+) and λD

1,p(Ωp
−). We can assume that ‖f+

p ‖∞ = ‖f−
p ‖∞ = 1. We extend

f+
p and f−

p by 0 respectively outside Ωp
+ and Ωp

−. Then f+
p and f−

p ∈ W 1,p(M). Fix an
exponent q > n. For p > q by Hölder’s inequality we have

(∫

M

|df+
p |qdv

)1/q

≤

(∫

M

|df+
p |pdv

)1/p

V (M)
p−q

pq
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= p

√

λ1,p(M)

(∫

M

|f+
p |pdv

)1/p

V (M)
p−q

pq

≤ p

√

λ1,p(M)V (M)1/q

where in this last inequality, we have used the fact that ‖f+
p ‖∞ = 1. Since

lim sup p
√

λ1,p(M) ≤ 2
d(M)

, we conclude that (f+
p )p≥q is uniformly bounded in W 1,q(M).

Then we can select a subsequence (f+
pk

) that converges to a function f+
∞ weakly in W 1,q(M)

and by the Sobolev embedding theorems uniformly in C0(M) (in fact in C0,α(M) for a
certain α, 0 < α < 1).

Now using the weak lower semicontinuity of the norm of W 1,q(M) and the fact that
(f+

pk
) converges uniformly, we have

‖f+
∞‖q + ‖df+

∞‖q ≤ lim inf
pk→∞

(

‖f+
pk
‖q + ‖df+

pk
‖q

)

= ‖f+
∞‖q + lim inf

pk→∞
‖df+

pk
‖q

Then

‖df+
∞‖q ≤ lim inf

pk→∞
‖df+

pk
‖q ≤ V (M)1/q lim inf

pk→∞

pk

√

λ1,pk
(M)

From this we deduce that

‖df+
∞‖∞ ≤ lim inf

pk→∞

pk

√

λ1,pk
(M)

Now let Ω+ = (f+
∞)

−1
(R+). Since for any p, ‖f+

p ‖∞ = 1 and f+
∞ is continuous, it

follows that Ω+ is a nonempty subset of M . Let x ∈ Ω+ and choose y ∈ ∂Ω+ so that
dist (x, y) = dist (x, ∂Ω+) where dist (x, ∂Ω+) denotes the geodesic distance between x
and ∂Ω+. Then, necessarily f+

∞(y) = 0 and

|f+
∞(x)| = |f+

∞(x) − f+
∞(y)| ≤ ‖df+

∞‖∞dist (x, y) ≤ ‖df+
∞‖∞r(Ω+)

where for any domain Ω, r(Ω) = max
x∈Ω

(dist (x, ∂Ω)). Then

1

r(Ω+)
≤ ‖df+

∞‖∞ ≤ lim inf
pk→∞

pk

√

λ1,pk
(M)

By similar arguments, we can select a subsequence (f−
pl

) of (f−
pk

), so that

max

(

1

r(Ω+)
,

1

r(Ω−)

)

≤ lim inf
pl→∞

pl

√

λ1,pl
(M)

Now, for any domain Ω, r(Ω) is nothing but the radius of the largest ball inscribed in Ω.

Moreover it is easy to see that Ω+ and Ω− are disjoint. Therefore max
(

1
r(Ω+)

, 1
r(Ω−)

)

≥
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2
d(M)

. This completes the proof, since we can apply this process to any subsequence of f+
p

and f−
p .

3 Applications

Before giving an application of the asymptotic property of the main theorem 1.1, we
will give a kind of generalization of the Reilly’s inequality for the λ1,p(M) of hypersurfaces
of the Euclidean space R

n+1 and the sphere S
n+1. We recall that the Reilly’s inequality

gives an optimal upper bound for the first nonzero eigenvalue of the Laplacian in terms of
the second fundamental form and the volume of M (see for instance [1], [2], [3] and [7]).

Let (Mn, g) be an oriented compact n-dimensional hypersurface isometrically im-
mersed by φ in R

n+1 or S
n+1 and let B be the second fundamental form of the immersion φ.

In the following theorems, we will give an upper bound of λ1,p(M) in terms of the function
|B|∞ defined for any x by |B|∞(x) = max

X∈TxM,|X|=1
|Bx(X, X)| and the Riemannian volume

V (M) of M .

Theorem 3.1 Let (Mn, g) be an oriented compact n-dimensional Riemannian manifold
isometrically immersed by φ in R

n+1. Then for any p > 1, there exists a constant K(p, M)
depending only on p and M , so that

1. K(p, M) −→ 1 when p −→ ∞.

2.
λ1,p(M)V (M) ≤ K(p, M)pλ1,p(S

n)‖|B|∞‖p
p

Similarly, we have for hypersurfaces of S
n+1, the following theorem

Theorem 3.2 Let (Mn, g) be an oriented compact n-dimensional Riemannian manifold
isometrically immersed by φ in S

n+1 and let R(M) be the smallest radius of the ball
containing M . Then for any p > 1, there exists a constant K(p, M) depending only on p
and M , so that

1. K(p, M) −→ 1 when p −→ ∞.

2.

λ1,p(M)V (M) ≤ K(p, M)pλ1,p(S
n)

∥

∥

∥

∥

|B|∞ +

(

1 − cos R(M)

sin R(M)

)∥

∥

∥

∥

p

p
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We will see in the proofs, that the constant K(p, M) satisfies K(p, M) ≥ 1, but if M
is a geodesic sphere, K(p, M) = 1 and the two inequalities are equalities.

Now, from these above theorems and from the main theorem 1.1 we obtain the follo-
wing corollaries which give an optimal lower bounds of d(M) in term of the largest prin-

cipal curvature κ = max
x∈M

(

max
X∈TxM,|X|=1

|Bx(X, X)|

)

Corollary 3.1 Let (Mn, g) be an oriented compact n-dimensional Riemannian manifold
isometrically immersed by φ in R

n+1. Then

d(M) ≥
π

κ

Moreover, if (Mn, g) is a geodesic sphere, then equality holds.

We have also an optimal result for hypersurfaces of S
n+1

Corollary 3.2 Let (Mn, g) be an oriented compact n-dimensional Riemannian manifold
isometrically immersed by φ in S

n+1 and let R(M) be the smallest radius of the ball
containing M . Then

d(M) ≥
π

κ +

(

1 − cos R(M)

sin R(M)

)

Moreover, if (Mn, g) is a geodesic sphere, then equality holds.
In particular, if (Mn, g) is immersed in the hemisphere S

n+1
+ , then

d(M) ≥
π

κ + 1

and if (Mn, g) is a greatest sphere, equality holds.

Remark In [6] Matei proved that if the Ricci curvature Ric of an n-dimensional com-

pact Riemannian manifold satisfies Ric ≥ kg, then λ1,p(M) ≥ λ1,p

(

S
n
(√

n−1
k

))

, where

S
n
(√

n−1
k

)

denotes the sphere of radius
√

n−1
k

. Now if we apply the theorem 1.1, we find

again the well known Myers inequality

d(M) ≤ π

√

n − 1

k
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4 Proof of theorems 3.1 and 3.2

Let (Mn, g) be a compact n-dimensional Riemannian manifold isometrically immersed
in R

n+1 or S
n+1 and oriented by the unit normal vector field ν. Then the second fun-

damental form of the immersion will be defined by B(X, Y ) = 〈∇Xν, Y 〉, where ∇ and
〈 , 〉 are respectively the Riemannian connection and the inner product of the ambient
space R

n+1 or S
n+1.

On the other hand, we recall that the first Dirichlet eigenfunction fp of the p-Laplacian
on the hemisphere S

n
+ = {x ∈ S

n/dist (x, x0) ≤ π/2} is necessarily radial ([5]). Actually,
it means that there exists a function Φp so that fp(x) = Φp(dist (x0, x)).

Assume now that (Mn, g) is immersed in R
n+1. For any ξ ∈ S

n, let

ϕ+
p,ξ(x) = Φp(arccos 〈νx, ξ〉)χ{〈νx,ξ〉>0}

and

ϕ−
p,ξ(x) = −Φp(arccos(−〈νx, ξ〉))χ{〈νx,ξ〉<0}

where Φp is the function defined in the preliminaries and for any subset A of M , χA is
the characteristic function of A. For more convenience we put ρ(νx, ξ) = arccos 〈νx, ξ〉 if
〈νx, ξ〉 ≥ 0 and ρ(νx, ξ) = arccos(−〈νx, ξ〉) if 〈νx, ξ〉 < 0. Moreover we recall that |B|∞ is
the function defined by |B|∞(x) = max

X∈TxM,|X|=1
|Bx(X, X)|.

First, we will estimate the gradient of ϕ+
p,ξ and ϕ−

p,ξ.

Lemma 4.1 Let (Mn, g) be an oriented compact n-dimensional Riemannian manifold
isometrically immersed in R

n+1. The functions ϕ+
p,ξ and ϕ−

p,ξ are in the Sobolev space
W 1,p(M) and satisfy for any x ∈ M

|dϕ+
p,ξ(x)| ≤ |Φ′

p(ρ(νx, ξ))|||B|∞(x)|χ{〈νx,ξ〉>0}

and

|dϕ−
p,ξ(x)| ≤ |Φ′

p(ρ(νx, ξ))|||B|∞(x)|χ{〈νx,ξ〉<0}

Proof: Let (ei)1≤i≤n be an orthonormal basis at x ∈ M . At x we have

ei(ϕ
+
p,ξ) = −

Φ′
p(ρ(ν, ξ))

√

1 − 〈ν, ξ〉2
ei 〈ν, ξ〉χ{〈νx,ξ〉>0}

= −
Φ′

p(ρ(ν, ξ))

|ξT |
〈∇ei

ν, ξ〉χ{〈νx,ξ〉>0}

8



= −
Φ′

p(ρ(ν, ξ))

|ξT |
B(ei, ξ

T )χ{〈νx,ξ〉>0}

where ξT denotes the orthogonal projection of ξ on TxM . Then

|dϕ+
p,ξ|

2 =
Φ′

p(ρ(ν, ξ))2

|ξT |2
|BξT |2χ{〈νx,ξ〉>0} ≤ (Φ′

p(ρ(ν, ξ)))2||B|∞|2χ{〈νx,ξ〉>0}

which completes the proof for the first inequality. Obviously, the second is similar.

Now we will show a similar result for hypersurfaces of S
n+1. Let (Mn, g) be an orien-

ted compact n-dimensional Riemannian manifold isometrically immersed in S
n+1. Let

B(x0, R(M)) be the smallest ball of center x0 and radius R(M) containing M . Let ξ ∈ S
n

view as the unit sphere of the Euclidean space Tx0
S

n+1. Let ξ̃ be the unit vector field on
S

n+1 defined for any x ∈ S
n+1 by

ξ̃x = 〈ξ, u〉 grad r |x + ξ − 〈ξ, u〉u

where r(x) is the geodesic distance on S
n+1 between x0 and x, grad r is the gradient of r

and u is the unit vector of Tx0
S

n+1 so that x = expx0
(r(x)u). Note that ξ̃x is nothing but

the parallel transport of ξ along the geodesic joining x0 and x. Therefore ∇grad rξ̃ = 0.
Moreover if X is a vector of TxS

n+1 so that 〈X, grad r〉 = 0, then

∇X ξ̃ =

(

1 − cos r

sin r

)

(〈

ξ̃, X
〉

grad r −
〈

ξ̃, grad r
〉

X
)

(1)

As in the Euclidean case, we define two functions ϕ+
p,ξ and ϕ−

p,ξ by

ϕ+
p,ξ(x) = Φp

(

arccos
〈

νx, ξ̃x

〉)

χ{〈νx,ξ̃x〉>0}

and

ϕ−
p,ξ(x) = −Φp

(

arccos
(

−
〈

νx, ξ̃x

〉))

χ{〈νx,ξ̃x〉<0}

From now we will put ρ(νx, ξ) = arccos
〈

νx, ξ̃x

〉

if
〈

νx, ξ̃x

〉

≥ 0 and ρ(νx, ξ) =

arccos(−
〈

νx, ξ̃x

〉

) if
〈

νx, ξ̃x

〉

< 0.

Now, we state a lemma similar to the euclidean case.

Lemma 4.2 Let (Mn, g) be an oriented compact n-dimensional Riemannian manifold
isometrically immersed in S

n+1 and let B(x0, R(M)) be the smallest ball of center x0 and
radius R(M) containing M . The functions ϕ+

p,ξ and ϕ−
p,ξ are in the Sobolev space W 1,p(M)

and satisfy for any x ∈ M

9



|dϕ+
p,ξ(x)| ≤ |Φ′

p(ρ(νx, ξ))|

∣

∣

∣

∣

|B|∞(x) +

(

1 − cos R(M)

sin R(M)

)∣

∣

∣

∣

χ{〈νx,ξ̃x〉>0}

and

|dϕ−
p,ξ(x)| ≤ |Φ′

p(ρ(νx, ξ))|

∣

∣

∣

∣

|B|∞(x) +

(

1 − cos R(M)

sin R(M)

)∣

∣

∣

∣

χ{〈νx,ξ̃x〉<0}

Proof: First we have at x in M

|dϕ+
p,ξ|

2 =
Φ′

p(ρ(ν, ξ))2

|ξ̃T |2

∣

∣

∣d
〈

ν, ξ̃
〉∣

∣

∣

2

χ{〈νx,ξ̃x〉>0}

Let (ei)1≤i≤n be an orthonormal frame in a neighborhood of M around x. Assume that
en is colinear to the gradient of r on M with respect to the metric g. Let e⋆

n be a unit
vector of TxS

n+1 orthogonal to grad r and so that en = λgrad r + µe⋆
n. Then at x we have

∣

∣

∣
d
〈

ν, ξ̃
〉∣

∣

∣

2

=
∑

i≤n−1

(

ei

〈

ξ̃, ν
〉)2

+
(

en

〈

ξ̃, ν
〉)2

=
∑

i≤n−1

(〈

∇ei
ξ̃, ν
〉

+
〈

ξ̃,∇ei
ν
〉)2

+
(〈

∇λgrad r+µe⋆
n
ξ̃, ν
〉

+
〈

ξ̃,∇en
ν
〉)2

Applying the relation (1) and using the fact that ∇grad rξ̃ = 0, we get

∣

∣

∣d
〈

ν, ξ̃
〉∣

∣

∣

2

=
∑

i≤n−1

((

1 − cos r

sin r

)

〈

ξ̃, ei

〉

〈grad r, ν〉 +
〈

Bξ̃T , ei

〉

)2

+

(

µ

(

1 − cos r

sin r

)

〈

ξ̃, e⋆
n

〉

〈∇r, ν〉 − µ

(

1 − cos r

sin r

)

〈

ξ̃,∇r
〉

〈e⋆
n, ν〉 +

〈

Bξ̃T , en

〉

)2

A straightforward computation shows that

µ
〈

ξ̃, e⋆
n

〉

〈grad r, ν〉 − µ
〈

ξ̃, grad r
〉

〈e⋆
n, ν〉 =

〈

ξ̃T , en

〉

〈grad r, ν〉

Thus

∣

∣

∣
d
〈

ν, ξ̃
〉∣

∣

∣

2

=
∑

i≤n−1

((

1 − cos r

sin r

)

〈

ξ̃, ei

〉

〈∇r, ν〉 +
〈

Bξ̃T , ei

〉

)2

+

((

1 − cos r

sin r

)

〈

ξ̃, en

〉

〈∇r, ν〉 +
〈

Bξ̃T , en

〉

)2

10



= |Bξ̃T |2 + 2

(

1 − cos r

sin r

)

〈

Bξ̃T , ξ̃T
〉

〈grad r, ν〉 +

(

1 − cos r

sin r

)2

|ξ̃T |2 〈grad r, ν〉2

≤

(

|B|∞ +

(

1 − cos r

sin r

))2

|ξ̃T |2

Since the function r 7→ 1−cos r
sin r

is increasing on (0, π) it follows that

|dϕ+
p,ξ|

2 ≤ Φ′
p(ρ(ν, ξ))2

(

|B|∞ +

(

1 − cos R(M)

sin R(M)

))2

Before proving the theorems 3.1 and 3.2, note that if M is immersed in R
n+1, we

deduce from the compactness of M that the Gauss application is surjective and for any
unit vector ξ ∈ R

n+1 there exists a point x in M so that νx = ξ. For hypersurfaces of
S

n+1 there exists a similar result stated in the following lemma.

Lemma 4.3 Let (Mn, g) be a compact n-dimensional Riemannian manifold isometrically
immersed in S

n+1 and oriented by the unit normal vector field ν. Let B(x0, R(M)) be the
smallest ball of center x0 and radius R(M) containing M . Then, for any ξ ∈ Tx0

S
n+1

with |ξ| = 1, there exists a point x ∈ M so that ξ̃x = νx.

Proof: First note that we have always R(M) < π. Then M is contained in S
n+1\{−x0}.

Now consider the stereographic projection

F : S
n+1\{−x0} −→ R

n+1

(y0, y1, ..., yn+1) 7−→ 1
1−y0

(y1, ..., yn+1)

where the coordinates have been chosen in order to have x0 = (−1, 0, ..., 0). Let ξ =
(0, ξ1, ..., ξn+1) ∈ Tx0

S
n+1 so that |ξ| = 1. For any x ∈ S

n+1\{−x0}, by a simply calculation
the coordinates in the chart induced by F of the vector field ξ̃x (i.e. the coordinates in
R

n+1 of dFx(ξ̃x)) are 1
1+cos r

(ξ1, ..., ξn+1) where r = dist (x0, x). Now, F (M) is an oriented
compact hypersurface of R

n+1 with a normal vector field N with respect to the canonical
metric of R

n+1. Then there exists a point z = F (x) so that Nz = (ξ1, ..., ξn+1). Since F
is a conformal embedding, it follows that the coordinates of νx are 1

1+cos r
(ξ1, ..., ξn+1) and

ξ̃x = νx.

Proof of theorems 3.1 and 3.2: Throughout the proof we will denote by C the

function |B|∞ in the Euclidean case and |B|∞ +
(

1−cos R(M)
sin R(M)

)

in the spherical case. On

the other hand, we assume that the functions Φp are normalized so that Φp(0) = 1. Let
us put α+

p,ξ = ‖ϕ−
p,ξ‖p−1 and α−

p,ξ = ‖ϕ+
p,ξ‖p−1. Then, observe that

11



∫

M

|α+
p,ξϕ

+
p,ξ + α−

p,ξϕ
−
p,ξ|

p−2(α+
p,ξϕ

+
p,ξ + α−

p,ξϕ
−
p,ξ)dv

=

∫

M

|α+
p,ξϕ

+
p,ξ|

p−2α+
p,ξϕ

+
p,ξdv +

∫

M

|α−
p,ξϕ

−
p,ξ|

p−2α−
p,ξϕ

−
p,ξdv

= ‖ϕ−
p,ξ‖

p−1
p−1

∫

M

|ϕ+
p,ξ|

p−2ϕ+
p,ξdv + ‖ϕ+

p,ξ‖
p−1
p−1

∫

M

|ϕ−
p,ξ|

p−2ϕ−
p,ξdv

Since ϕ+
p,ξ ≥ 0 and ϕ−

p,ξ ≤ 0, it follows that
∫

M
|ϕ+

p,ξ|
p−2ϕ+

p,ξdv = ‖ϕ+
p,ξ‖

p−1
p−1 and

∫

M
|ϕ−

p,ξ|
p−2ϕ−

p,ξdv = −‖ϕ−
p,ξ‖p−1. This yields that

∫

M

|α+
p,ξϕ

+
p,ξ + α−

p,ξϕ
−
p,ξ|

p−2(α+
p,ξϕ

+
p,ξ + α−

p,ξϕ
−
p,ξ)dv = 0

Now, we can apply the variational characterization of λ1,p(M) to the test function ϕp,ξ =
α+

p,ξϕ
+
p,ξ + α−

p,ξϕ
−
p,ξ and we get

λ1,p(M)

∫

M

|ϕp,ξ|
pdv ≤

∫

M

|dϕp,ξ|
pdv

=

∫

M

|α+
p,ξ|

p|dϕ+
p,ξ|

pdv +

∫

M

|α−
p,ξ|

p|dϕ−
p,ξ|

pdv

≤ |α+
p,ξ|

p

∫

M

|Φ′
p(ρ(ν, ξ))|p|C|pχ+

ξ dv + |α−
p,ξ|

p

∫

M

|Φ′
p(ρ(ν, ξ))|p|C|pχ−

ξ dv

where in this last inequality, we have used the lemma 4.1 and where we have put χ+
ξ (x) =

χ{〈νx,ξ〉>0}, χ−
ξ (x) = χ{〈νx,ξ〉<0} for hypersurfaces of R

n+1 and χ+
ξ (x) = χ{〈νx,ξ̃x〉>0}, χ−

ξ (x) =

χ{〈νx,ξ̃x〉<0} for hypersurfaces of S
n+1. Now by integrating over S

n and denoting by dσ the

volume element of the sphere, we have

λ1,p(M)

∫

ξ∈Sn

(∫

M

|ϕp,ξ|
pdv

)

dσ

≤

∫

ξ∈Sn

(

|α+
p,ξ|

p

∫

M

|Φ′
p(ρ(ν, ξ))|p|C|pχ+

ξ dv

)

dσ

+

∫

ξ∈Sn

(

|α−
p,ξ|

p

∫

M

|Φ′
p(ρ(ν, ξ))|p|C|pχ−

ξ dv

)

dσ

=

∫

M

|C|p
(∫

ξ∈Sn

|α+
p,ξ|

p|Φ′
p(ρ(ν, ξ))|pχ+

ξ dσ

)

dv

+

∫

M

|C|p
(∫

ξ∈Sn

|α−
p,ξ|

p|Φ′
p(ρ(ν, ξ))|pχ−

ξ dσ

)

dv

12



≤ max
ξ∈Sn

|α+
p,ξ|

p

∫

M

|C|p
(∫

ξ∈Sn

|Φ′
p(ρ(ν, ξ))|pχ+

ξ dσ

)

dv

+ max
ξ∈Sn

|α−
p,ξ|

p

∫

M

|C|p
(∫

ξ∈Sn

|Φ′
p(ρ(ν, ξ))|pχ−

ξ dσ

)

dv

Now, for a fixed point x ∈ M , we have

∫

ξ∈Sn

|Φ′
p(ρ(νx, ξ))|

pχ+
ξ (x)dσ =

∫

ξ∈Sn

|Φ′
p(ρ(νx, ξ))|

pχ−
ξ (x)dσ =

∫

Sn
+

|d(Φp ◦ r)|pdσ

where r(ξ) is nothing but the distance function on the sphere between νx and ξ. Now,
Φp ◦ r is a first eigenfunction associated to the first Dirichlet eigenvalue λD

1,p(S
n
+) of S

n
+.

Therefore

∫

Sn
+

|d(Φp ◦ r)|pdσ = λD
1,p(S

n
+)

∫

Sn
+

|Φp ◦ r|pdσ

And since λD
1,p(S

n
+) = λ1,p(S

n), we deduce that

λ1,p(M)

∫

ξ∈Sn

(∫

M

|ϕp,ξ|
pdv

)

dσ

≤ λ1,p(S
n)(max

ξ∈Sn
|α+

p,ξ|
p + max

ξ∈Sn
|α−

p,ξ|
p)‖C‖p

p

∫

Sn
+

|Φp ◦ r|pdσ (2)

On the other hand

∫

ξ∈Sn

(∫

M

|ϕp,ξ|
pdv

)

dσ

=

∫

ξ∈Sn

|α+
p,ξ|

p

(∫

M

|ϕ+
p,ξ|

pdv

)

dσ +

∫

ξ∈Sn

|α−
p,ξ|

p

(∫

M

|ϕ−
p,ξ|

pdv

)

dσ

≥ min
ξ∈Sn

|α+
p,ξ|

p

∫

M

(∫

ξ∈Sn

|ϕ+
p,ξ|

pdσ

)

dv + min
ξ∈Sn

|α−
p,ξ|

p

∫

M

(∫

ξ∈Sn

|ϕ−
p,ξ|

pdσ

)

dv

As previously, we have

∫

ξ∈Sn

|ϕ+
p,ξ|

pdσ =

∫

ξ∈Sn

|ϕ−
p,ξ|

pdσ =

∫

Sn
+

|Φp ◦ r|pdσ

Thus

13



∫

ξ∈Sn

(∫

M

|ϕp,ξ|
pdv

)

dσ ≥ (min
ξ∈Sn

|α+
p,ξ|

p + min
ξ∈Sn

|α−
p,ξ|

p)V (M)

∫

Sn
+

|Φp ◦ r|pdσ (3)

Now note that the functions ξ 7→ α+
p,ξ and ξ 7→ α−

p,ξ are lower semicontinuous on S
n.

Indeed if ξk → ξ, we have by using the Fatou’s lemma,

lim inf(α+
p,ξk

)p−1 = lim inf

∫

M

Φp(ρ(ν, ξk))
p−1χ+

ξk
dv

≥

∫

M

lim inf
(

Φp(ρ(ν, ξk))
p−1χ+

ξk

)

dv

≥

∫

M

Φp(ρ(ν, ξ))p−1χ+
ξ dv = (α+

p,ξ)
p−1

Since M is compact there exists x ∈ M so that νx = ξ in the Euclidean case and νx = ξ̃x

in the spherical case (see the lemma 4.3). Therefore we have necessarily α+
p,ξ, α−

p,ξ > 0, for

any ξ ∈ S
n, and by the lower semicontinuity of ξ 7→ α+

p,ξ and ξ 7→ α−
p,ξ, we deduce that

min
ξ∈Sn

|α+
p,ξ|

p + min
ξ∈Sn

|α−
p,ξ|

p > 0. Consequently, combining (2) with (3), we obtain that

λ1,p(M)V (M) ≤





max
ξ∈Sn

|α+
p,ξ|

p + max
ξ∈Sn

|α−
p,ξ|

p

min
ξ∈Sn

|α+
p,ξ|

p + min
ξ∈Sn

|α−
p,ξ|

p



λ1,p(S
n)‖C‖p

p

Let us put K(p, M) =





max
ξ∈Sn

|α+
p,ξ|

p + max
ξ∈Sn

|α−
p,ξ|

p

min
ξ∈Sn

|α+
p,ξ|

p + min
ξ∈Sn

|α−
p,ξ|

p





1/p

. To complete the proof, we need

to show that lim
p→∞

K(p, M) = 1. For this we state the

Lemma 4.4 For any ξ ∈ S
n, we have

lim
p→∞

α+
p,ξ = 1 and lim

p→∞
α−

p,ξ = 1

Moreover the convergence is uniform with respect to ξ.

Proof: Since Φp is decreasing on (0, π
2
) (see [6]), we deduce from the fact that Φp(0) = 1,

that

∫

Sn
+

|Φp ◦ r|pdσ ≤ V (Sn
+)

Then fix an exponent q > n. For p > q, by Hölder’s inequality we have

(

∫

Sn
+

|d(Φp ◦ r)|qdσ

)1/q

≤

(

∫

Sn
+

|d(Φp ◦ r)|pdσ

)1/p

V (Sn
+)

p−q

pq
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= λD
1,p(S

n
+)1/p

(

∫

Sn
+

|Φp ◦ r|pdσ

)1/p

V (Sn
+)

p−q

pq

≤ λ1,p(S
n)1/pV (Sn

+)1/q

Then Φp ◦r is uniformly bounded in W 1,q
0 (Sn

+). Then we can select a subsequence (pk)k≥1)
so that by the Sobolev embedding theorems (Φpk

◦ r)k converges uniformly to a radial
continuous function Φ∞ ◦ r. Note that Φ∞(0) = 1. Now, let us consider

Tξ,ε =
{

x ∈ M/1 −
ε

3
< Φ∞(ρ(νx, ξ)) ≤ 1

}

∩ {x ∈ M/ 〈νx, ξ〉 > 0}

for hypersurfaces of R
n+1 and

Tξ,ε =
{

x ∈ M/1 −
ε

3
< Φ∞(ρ(νx, ξ)) ≤ 1

}

∩
{

x ∈ M/
〈

νx, ξ̃x

〉

> 0
}

for hypersurfaces of S
n+1. Since M is compact, for any ξ ∈ S

n, there exists x ∈ M
so that ξ = νx in the Euclidean case and ξ̃x = νx for the spherical case. This implies
that V (Tξ,ε) > 0. Clearly, the function ξ 7→ V (Tξ,ε) is lower semicontinuous. From the
compactness of S

n, it follows that ξ 7→ V (Tξ,ε) achieves its minimum at a point ξ0 of S
n

and min
ξ∈Sn

V (Tξ,ε) = V (Tξ0,ε) = Vε > 0. On the other hand, since Φpk
→ Φ∞ uniformly,

there exists k1 so that ∀k ≥ k1 and ∀t ∈ [0, π
2
], Φ∞(t) − ε

3
≤ Φpk

(t). Then

α+
pk,ξ = ‖ϕ+

pk,ξ‖pk−1 =

(∫

M

|Φpk
(ρ(ν, ξ))|pk−1dv

) 1

pk−1

≥

(

∫

Tξ,ε

|Φpk
(ρ(ν, ξ))|pk−1dv

) 1

pk−1

≥

(

1 −
2ε

3

)

V
1

pk−1

ε

Now, there exists k2, so that ∀k ≥ k2,
(

1 − 2ε
3

)

V
1

pk−1

ε ≥ 1 − ε. Moreover, from the

normalization of Φp, we have ‖ϕ+
pk,ξ‖pk−1 ≤ V (M)

1

pk−1 and there exists k3 so that ∀k ≥ k3,

V (M)
1

pk−1 ≤ 1 + ε. Therefore, for any ξ ∈ S
n, we have for any k ≥ max(k1, k2, k3)

|‖ϕ+
pk,ξ‖pk−1 − 1| ≤ ε

Finally, we have shown

sup
ξ∈Sn

|α+
pk,ξ − 1| → 0

and this is true for any other subsequence (pk)k. This completes the proof.
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Now, we can compute the limit of K(p, M). We have

1 ≤ K(p, M) ≤
21/pV (M)

1

p−1

min
ξ∈Sn

α+
p,ξ

And from the above lemma, it follows that lim
p→∞

min
ξ∈Sn

α+
p,ξ = 1.

Remark We can establish for hypersurfaces of the hyperbolic space H
n+1 a lower bound

of d(M) similar to the spherical case. Indeed, we can prove that if (Mn, g) is an oriented
compact n-dimensional Riemannian manifold isometrically immersed in H

n+1 and if R(M)
is the smallest radius of the ball containing M . Then

d(M) ≥
π

κ +

(

cosh R(M) − 1

sinh R(M)

)

But this inequality is clearly non optimal for geodesic spheres. To prove the above inequa-
lity, let B(x0, R(M)) be the smallest ball of center x0 and radius R(M) containing M and

consider the Minkowsky model for H
n+1. Namely H

n+1 = {−y2
0 +

∑

1≤i≤n+1

y2
i = −1, y0 > 0}

and its metric is induced by the quadratic form q(y, z) = −y0z0 +
∑

1≤i≤n+1

yizi. Assuming

that x0 = (1, 0, ..., 0), let ξ ∈ Tx0
H

n+1, |ξ| = 1 and ξ̃ be the unit vector field defined for
any x ∈ H

n+1 by

ξ̃x = 〈ξ, u〉 grad r |x + ξ − 〈ξ, u〉u

where r(x) is the geodesic distance on H
n+1 between x0 and x, grad r is the gradient of

r and u is the unit vector of Tx0
H

n+1 so that x = expx0
(r(x)u). As in the spherical case

ξ̃x is the parallel transport of ξ along the geodesic joining x0 and x. If X is a vector of
TxH

n+1 so that 〈X, grad r〉 = 0, then

∇X ξ̃ =

(

cosh r − 1

sinh r

)

(

−
〈

ξ̃, X
〉

grad r −
〈

ξ̃, grad r
〉

X
)

where ∇ denotes the Riemannian connection of H
n+1. Now by similar computations, we

obtain

∣

∣

∣
d
〈

ν, ξ̃
〉∣

∣

∣

2

= |Bξ̃T |2+2

(

cosh r − 1

sinh r

)

〈

Bξ̃T , ξ̃T
〉

〈grad r, ν〉+

(

cosh r − 1

sinh r

)2

|ξ̃T |2 〈grad r, ν〉2

But contrary to the spherical case we can only show a non optimal estimate
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∣

∣

∣d
〈

ν, ξ̃
〉∣

∣

∣

2

≤

(

|B|∞ +

(

cosh r − 1

sinh r

))2

|ξ̃T |2.
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