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LIMIT LAWS FOR TRANSIENT RANDOM WALKS IN RANDOM
ENVIRONMENT ON Z

NATHANAEL ENRIQUEZ, CHRISTOPHE SABOT, AND OLIVIER ZINDY

Abstract. We consider transient random walks in random environment on Z with zero asymptotic
speed. A classical result of Kesten, Kozlov and Spitzer says that the hitting time of the level n
converges in law, after a proper normalization, towards a positive stable law, but they do not obtain
a description of its parameter. A different proof of this result is presented, that leads to a complete
characterization of this stable law. The case of Dirichlet environment turns out to be remarkably
explicit.

1. INTRODUCTION

One-dimensional random walks in random environment to the nearest neighbors
have been introduced in the sixties in order to give a model of DNA replication.
Recently, this model has known a strong revival in view of applications to the detection
of genetics anomalies (see for instance [f] or [[9]). In 1975, Solomon gives, in a seminal
work [24], a criterion of transience-recurrence for these walks, and shows that three
different regimes can be distinguished: the random walk may be recurrent, or transient
with a positive asymptotic speed, but it may also be transient with zero asymptotic
speed. This last regime, which does not exist among usual random walks, is probably
the one which is the less well understood and its study is the purpose of the present
paper.

Let us first remind the main existing results concerning the other regimes. In his
paper, Solomon computes the asymptotic speed of transient regimes. In 1982, Sinai
states, in [BJ], a limit theorem in the recurrent case. It turns out that the motion
in this case is unusually slow since the position of the walk at time n has to be
normalized by (logn)? in order to present a non trivial limit. In 1986, the limiting
law is characterized independently by Kesten [[7] and Golosov [[J]. Let us notice
here that, beyond the interest of his result, Sinai introduces a very powerful and
intuitive tool in the study of one-dimensional random walks in random environment.
This tool is the potential, which is a function on Z canonically associated to the
random environment. It turns out to be an usual random walk when the transition
probabilities at each site are independent and identically distributed (i.i.d.).

Let us now focus on the works about the transient walk with zero asymptotic speed.
The main result was obtained by Kesten, Kozlov and Spitzer in [[§] who proved that,
when normalized by a suitable power of n, the hitting time of the level n converges
towards a positive stable law whose index corresponds to the power of n lying in the
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normalization. Recently, Mayer-Wolf, Roitershtein and Zeitouni [B(] generalized this
result to the case when the environment is defined by an irreducible Markov chain.

Our purpose is to characterize the positive stable law in the case of i.i.d. transition
probabilities. Let us mention here that the stable limiting law has been characterized
in the case of diffusions in random potential when the potential is either a Brownian
motion with drift [[5], [[3] or a Lévy process [BJ], but we remind here that despite the
similarities of both models one cannot transport results from the continuous model
to the discrete one.

The proof chooses a radically different approach than previous ones dealing with the
transient case. While the proofs in [[§ and [R{] are mainly based on the representation
of the trajectory of the walk in terms of branching processes in random environment
(with immigration), our approach relies heavily on Sinai’s interpretation of a particle
living in a random potential. However, in the recurrent case, the potential one has
to deal with is a recurrent random walk and Sinai introduces a notion of valleys
which does not make sense anymore in our setting where the potential is a (let’s say
negatively) drifted random walk. Therefore, we introduce a different notion of valley
which is closely related to the excursions of this random walk above its past minimum.
It turns out that a result of Iglehart [[[4] gives an equivalent of the tail of the height
of these excursions. Now, as soon as one can prove that the hitting time of the level
n can be reduced to the time spent by the random walk to cross the high excursions
of the potential above its past minimum, between 0 and n, which are well separated
in space, an i.i.d. property comes out, and the problem is reduced to the study of the
tail of the time spent by the walker to cross a single excursion.

It turns out that this tail involves the expectation of the functional of some meander
associated with the random walk defining the potential. Now, this functional is itself
related to the constant that appears in Kesten’s renewal theorem [[If]. These last
two facts are contained in [§]. Now, in the case when the transition probabilities
follow some Beta distribution a result of Chamayou and Letac [[] gives an explicit
formula for this constant which yields finally an explicit formula for the parameter of
the positive stable law which is obtained at the limit.

The same technics also allow to derive the convergence of the normalized process
to the inverse of a standard stable subordinator. This result can be compared with
the scaling limits obtained for the trap model of Bouchaud, see [[] for a review.

Soon after finishing this article, we learnt of an independent work, by Peterson and
Zeitouni [BT], which, by the study of the fluctuations of the potential, showed that a
quenched stable limit law is not possible in the zero asymptotic speed regime.

The paper is organized as follows: the results are stated in Section P, a detailed
sketch of the proof is presented in Section [, and the rest of the paper is devoted to
proofs.

2. NOTATIONS AND MAIN RESULTS

Let w := (w;, i € Z) be a family of i.i.d. random variables taking values in (0, 1)
defined on 2, which stands for the random environment. Denote by P the distribution
of w and by E the corresponding expectation. Conditioning on w (i.e. choosing
an environment), we define the random walk in random environment (X,, n > 0)
as a nearest-neighbor random walk on Z with transition probabilities given by w:
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(Xn, n > 0) is the Markov chain satisfying Xy = 0 and for n > 0,
P,(Xpp=z+4+1|X,=2)=w,=1-P,(Xpnn=2-1|X,=2).

We denote by P, the law of (X,,, n > 0) and E, the corresponding expectation. We
denote by P the joint law of (w, (X,)n>0). We refer to Zeitouni 9] for an overview
of results on random walks in random environment.

In the study of one-dimensional random walks in random environment, an impor-
tant role is played by a process called the potential, denoted by V = (V(x), = € Z).
Let us introduce

I —w .
pi = , 1 € 2.
Wi

Then, the potential is a function of the environment w, and is defined as follows:
> log p; if x> 1,
V(z):=<¢ 0 if v =0,
—E?:Hl logp; if © < —1.
Furthermore, we consider the weak descending ladder epochs for the potential defined
by ep := 0 and
e :=1inf{k >e;1: V(k) <V(ei—1)}, 1>1,
which play a crucial role in our proof. Observe that (e; — e;_1);>1 is a family of i.i.d.

random variables. Moreover, classical results of fluctuation theory (see [{, p. 396),
tell us that, under assumptions (a)-(b) of Theorem I,

(2.1) Ele] < 0.
Now, observe that the ((e;, e;41])i>0 stand for the set of excursions of the potential
above its past minimum. Let us introduce H;, the height of the excursion (e;, €;11]

defined by H; := max,<p<c,., (V (k) —V(e;)), for i > 0. Note that the (H;);>¢’s are
i.i.d. random variables.

We now introduce the hitting time 7(z) of level « for the random walk (X,,, n > 0),

(2.2) T(x) :=inf{n >1: X, =z}, z€Z.

For a € (0,1), let S be a completely asymmetric stable random variable of index «
with Laplace transform, for A > 0,

Ele 58] = e,

Moreover, let us introduce the constant C'x describing the tail of Kesten’s renewal
series, see [, defined by R:= 3", ,e"®):

(2.3) P{R >z} ~ %, r — 00.

« law 5

Then the main result of the paper can be stated as follows. The symbols “—
denotes the convergence in distribution.

Theorem 1. Let w := (w;, i € Z) be a family of independent and identically dis-
tributed random variables such that

(a) there exists 0 < k < 1 for which E[pf§] =1 and E [p§log™ po] < oo,
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(b) the distribution of log py is non-lattice.

Then, we have, when n goes to infinity,

2 CrElpyl S
nl/s - (Sil’l(ﬂ'/ﬁ) K [pO ngO]) K

Xy law sin(mk) < 1 )“

—
w2t CR B log po] \ S

Remark 1. We think that the method used in this paper could also treat the case
k =1 (see Section [IQ for conjecture and comments).

The result of Theorem [] is interesting when C is explicitly known. In the case
of Dirichlet environment, i.e. when the law of the environment satisfies w;(dz) =

m:pa*l(l — )1y (z) dz, with o, 8 > 0 and B(a, ) := fol Y1 — z)P~tdz,

things can be made much more explicit. The assumption of Theorem [[] correspond to
the case where 0 < o — 3 < 1 and an easy computation leads to k = a — f3.

Corollary 1. In the case where wy has a distribution Beta(«, 3), with 0 < a— 3 < 1,
Theorem [ applies with Kk = o — 3. Then, we have, when n goes to infinity,

(1) 1o T @) (@)
ni/s QQmww—5DMmm2) o

o o, sl 0) Do (LY’
n" 2070w ple) —P(B) \ S )
where 1 denotes the classical Digamma function, ¥(z) := (log')'(z) =

I'(2)
NON

In the case where C is unknown, it is possible to give a probabilistic representation
of the parameter. Actually, we obtain first Theorem [, from which we deduce Theorem
M. In this aim, let us introduce the classical distribution P associated with the random
walk (V(z),z € Z) under P (denoted by “P in [{], p. 406). If 1 denotes the law of
log po, thanks to assumption (a) of Theorem [[] we can define the law i = pfu, and
the law P = ji®Z which is the law of a sequence of i.i.d. random variables with law ji.
The definition of x implies that [ log p ii(dp) > 0.

Theorem 2. Let w := (w;, i € Z) be a family of independent and identically dis-
tributed random variables satisfying assumptions (a)—(b) of Theorem [ Then, we
have, when n goes to infinity,

ca
K )

) HMWO—ﬂwmwv%
nl/x sin(mk) FElei]?  Elp§log po]

X, 1aw sin(mk) Ele]*  E[p§log po) 1\"
law, :
nk 26w E[M%)? (1 — EenV(e)])2 \ Sea

where M has the law of the exponential of a meander, i.e.

law _V/ v
M:Ee k+Eer,

k<0 k>0



LIMIT LAWS FOR TRANSIENT RWRE 5

with (V) <o under P{-|V] >0, Vk < 0} and independent of (V' )i=o under P{-|V}’ >
0, Vk > 0}.

Remark 2. When Ck is not explicit it is better to use the expression of the parameter
in terms of E[M"] which is easy to evaluate numerically.

Our technics also allow to derive the convergence of the normalized process.

Theorem 3. Under the assumption (a)-(b) of Theorem 1, the law of the process
(S, 6> 0) = (n" Xy, t > 0),

defined on the space of cadlag functions equipped with the Skorokhod M;-topology,
converges to the law of

sin(mk)
252 CR E [pf log po]

where Z; 1s the inverse of the standard k-stable subordinator.

Zt,tZO),

In the following, the constant C' stands for a positive constant large enough, whose
value can change from line to line.

3. SKETCH OF THE PROOF

Let us start now with the outlines of our proof.

Since assumption (a) of Theorem [[] implies E[log po] < 0, the random walk describ-
ing the potential is negatively drifted, so that the random walker will converge almost
surely to the region of lowest potential, i.e. to infinity. Along its way, it will have
to overcome some obstacles which are represented by the excursions of the random
potential above its past minimum.

Now, a result of Iglehart [[4] says that, under assumptions (a)-(b) of Theorem I,
the tail of the height H of an excursion above its past minimum is given by

(3.1) P{H >h}~Cre"™  h— oo,

where
B (1 _ E[enV(el)])2
' KE[pflog pol Eles]’

(3.2)

with e; denoting the endpoint of the first excursion, so that V(e;) < 0. Iglehart’s
result is actually deduced from a former well-known result of Cramer, whose proof
was later simplified by Feller [[J, concerning the tail of the maximum S of a N-time
indexed random walk which claims that

(3.3) P{S>h}~Cpe™™  h— oo

Since S is stochastically bigger than H, C; must be smaller than Cg, and a rather
straight argument of Iglehart shows that the ratio between both constants is equal to
| — BV

Recalling (B.]), the law of large numbers implies that the number of excursions
between 0 and n is almost surely equivalent to n/E[e;]. We will be therefore interested
in the asymptotic of the hitting time of the n-th excursion, we will denote by 7(e,,).
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3.1. The general case. In a first step, we show (see Lemma [[0)) that 7(e,) reduces
to the time spent by the walker to climb high excursions, namely, higher than A, :=

(=c) logn. Let us notice here, that, statistically, by Iglehart’s result, no excursion of

height larger than (1—:5) logn can be found among the first n excursions.

It turns out that these excursions are spatially well separated (see Lemma [J), and
that there are asymptotically nP{H > h,} of these, i.e. Cin® (see Lemma [). One
can therefore define boxes around, we shall denote by ([ag, dk])o<k<cns, such that the
random walker will have a small probability to go back to a box which was already
visited. More precisely, let b, and ¢ denote respectively the starting point of the
k-th high excursion and the first time this excursion reaches its maximum, so that the
following ranking a; < by < ¢ < di holds. With an overwhelming probability, for all
k € [0, Cnf], the walker, once arrived at by, will never visit a; again (see Lemma [).

In addition, one can prove that the portions of potential between a, and dj, we
call “deep valleys” are almost i.i.d. The proof of this fact requires the introduction
of what we call “x-valleys” which are i.i.d., and coincide with the sequence of “deep
valleys” with a high probability (see Lemma ).

Now, gathering these two previous facts, we get that 7(e,) can be roughly written:
T(en) = T(bl, dl) 4+ ...+ T(b01n57 dC]nE)7

where the 7(by, dy)’s are i.i.d. random variables representing the time spent by the
walker to cross the k-th excursion, i.e. to go from b to dy.

Consequently, considering the Laplace transform of n=/*7(e,), we are led to the

T(blvdl)]C]ns (

A
study of the asymptotic when A goes to 0 of Ele »/* see Proposition [I]).

Now, the passage from b; to d; can be decomposed into the sum of a random
geometrically distributed number of unsuccessful attempts to cross the excursion, fol-
lowed by a successful attempt. The accurate estimation of the time spent by each
(successful and unsuccessful) attempt leads us to consider two h—processes where the
random walker evolves in two modified potentials, one corresponding to the condi-
tioning on a failure (potential 17, see Lemma [[1)), and the other to the conditioning
on a success (potential V, see Lemma [[J).

It turns out that the contribution of the last successful attempt to the quantity

-2 7 e . .
7(by,dy) is negligible so that E[e »'/% (bl’dl)]C’" is approximately equal to

E[Z(l - p(w))Ew[eAF]’fp(w)k] - El 1 —p(w) cm

k>0 1 —p(w) E, [eiﬁp]

)

where F' denotes the time of an unsuccessful attempt (failure), and 1 — p(w) denotes
the (small) probability of success which is known, by classical arguments, to be equal

to wbﬁtz,m (a first step of probability wj, to go to b+ 1 and then, starting at b+ 1,
a probability % to hit d before b).
z=b©

Now, a key step consists in the fact that the linearization Ew[e_ﬁF] ~ 11—
—2=E,[F] can be justified. The error is expressed in terms of E,[F?] which is ex-
plicitly computed (see Lemma [[1]) and dominated by a function of the maximal fall of
the potential during its rise from V'(b) to V'(¢), and the maximal rise of the potential
during its fall from V' (c) to V(d) which can be uniformly controlled on all the Crn®
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boxes (see Lemma [[J). We are therefore led to the study of

1 Crnt
(lmmml)
+nl/m1Tp w[]

Now, E,[F] is known to be equal to 2wy ZZ:& e~ (V@=V®) Therefore we are back to
the study of

1 Crn®
(el o))
1+ 2\ eHM1M2

nl/k

where H = "=V denotes the height of an high excursion and where ]/\/[\1 =

ZZ;% e~ (V@=VO) and M, = S e~ (V@)=V) are two functionals of the potential
that depends very locally on the potential respectively around the local minimum b
and the local maximum c.

Since V(b) and V' (c¢) are locally extremal, these functionals can be assimilated to
two functionals of meanders associated to the random walk defining the potential.
Furthermore, a reversal time argument and the proximity of V' and V around b show
that these two quantities are asymptotically the same functionals of the same meander.
It is defined as follows M =} _, e Y where Y,, is the random walk of step log p,
conditioned to be positive on all Z. This conditioning has to be understood as follows:
on Z_ it is the natural one (we condition on an event having a strictly positive
probability), whereas on Z, it represents the limit in law of random walks of step
log p that are conditioned to overshoot a high level before visiting R_ (see for instance
the paper of Bertoin and Doney [f] and the references therein for detailed discussions
on the subject) .

Furthermore, it turns out that the three quantities e, ]/\/[\1 and M, are asymptoti-
cally independent. This delicate step based on coupling arguments, which are adapted
from the proof of the renewal theorem for the sum of i.i.d. variables, is treated in the
paper [§], see Proposition 7.1. As a consequence, the tail of e ]/\/[\1M2 can be derived,
see Theorem 2.2 in [{], as well as a Tauberian result about see Corollary

9.1 in [§. This Tauberian result yields to

(E{1 — iHﬂlMJ)CmE — exp{ - (2“Sin7EiH)E[M“]ZCI))\“} +o(1).

nl/k

1
1+)\eHﬁ1M2 ’

where C7 is given in (B-2). Now, one can be tempted to express the functional E[M"]
in terms of the more usual constant C, see (£:3). This is the content of Theorem 1.1

in [§], which yields
(1 — )
<E[p% log po]Eled]

Cx = E[M*Cp = E[M"]

Therefore, the Laplace transform of n='/%7(e,) writes

Ele nl/ﬁT(e")] = exp{ — (2“ m CIz{CI))\“} +o(1)

sin(rr) C%

= exp{ — (2”” Gl C%E[pt long]E[el]))\“} +o(1).

sin(mk)
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Finally, since, by the law of large numbers, e, /n converges a.s. to E|e;], we conclude

that
2

2 _(n 5 K K
Ele "] —exp { - (2 o CEleb log po] ) A" } + o(1).

Hence we obtain that the limit is the positive stable law with index x and parameter
2° = O B log pol.

3.2. The case of a Dirichlet environment. In the case of a Dirichlet environment,
namely when w; (dz) = B(;,ﬁ) 211 —2)" 19 qy(2)dz, (a, 8 > 0) things can be made
much more explicit. The assumptions of Theorem [[] correspond to the case when
0 < a— [ < 1 and an easy computation shows that kK = a — 3. Now, a classical

argument of derivation under the sign integral shows that

Elpg log po] = ¥ () — ¥(B),

where 1 denotes the classical Digamma function ¢(z) := (logI')'(z) = 1;((;)).

Furthermore, a work of Chamayou and Letac [[J] shows that Cx can be made
explicit. Indeed, with the notations of [{], po follows the law 82 (dz) == mx”_l(ﬁr
x) P, (z)dx with p = § and ¢ = a. Then, Example 9 of [f] says that >~ ., eV (k)
" B ﬁ)xﬁ (1 + 2) “1g, (z). But we have
Bin— [t +00]) ~ mw 3, t = o0o. Hence, Cx = ogpragy:

The expression of the parameter can be simplified into

7200 Y(a) —¥(f)
2% 3 1 = :
o ORI om0 = T M

4. TWO NOTIONS OF VALLEYS

follows the law of ﬁg having density

Sinai introduced in [P3] the notion of valley in a context where the random walk
defining the potential was recurrent. We have to do a similar job in our framework
where the random walk defining the potential is negatively drifted. The deep valleys
we introduce here are closely related to the excursions of the random walk above its
past minimum which are higher than a critical height. They consist actually in some
portion of potential including these excursions. When the critical height is taken
sufficiently large, the excursions are quite seldom and the valleys are likely to be
disjoint. In order to deal with almost sure disjoint valleys, we also introduce x-valleys
which coincide with deep valleys with high probability.

4.1. The deep valleys. Let us define the maximal variations of the potential before
site x by:

VIi(z) = max (V(j)—V(i)), r €N,

0<i<j<z

Vix):= min (V(j) - V(i)), reN.

0<i<j<z

By extension, we introduce

Vi(z,y) = max (V(j) -V(i), =<y,

r<i<j<y

Vl(x,y) = min (V(j) -V (7)), T <y.

z<i<j<y
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In order to define deep valleys, we extract from the first n excursions of the potential
above its minimum, these whose heights are greater than a critical height h,,, defined
by

(4.1) hy, = (1=¢) logn,
K

for some 0 < ¢ < 1/3. Let (0(7));>1 be the successive indexes of excursions, whose
heights are greater than h,. More precisely,

o(l) = inf{i >0: H; > hy, },
o(j) = inf{i>o(j—1): H; > hy,}, J=2,
K, = max{j >0:0(j) <n}.

We consider now some random variables depending only on the environment, which
define the deep valleys.

Definition 1. For 1 < j < K, + 1, let us introduce

bj = ey,

a; = sup{k <b;: V(k)—V(b;) > D,},

T! = inf{k>0b;: V(k) = V(b) > hn},

di = esGym,

¢; = inf{k >b;: V(k)= max V(x)},
bj<x<d;

where D, := (1+ L)logn. We call (a;,b;,c;,d;) a deep valley and denote by H'9) the
height of the j-th deep valley.

Remark 3. It may happen that two different deep valleys are not disjoint, even if this
event is highly improbable as it will be shown in Lemma [} and Lemma [ in Subsection

P

4.2. The x-valleys. Let us introduce now a subsequence of the deep valleys defined
above. It will turn out that both sequences coincide with probability tending to 1 as
n goes to infinity. This will be specified in Lemma [J. Let us first introduce

v = inf{k>0: V(k) < -D,},

T = inf{k =0 VIGLE) = b,

b= (k< T7 V() = min Vis)),

@ = suplk < b V(K) = V() > Do},

d, = inf{k>T;: V(k) <V},

¢ = inf{k>b]: V(k) = max V(x)},
beSdl

df = inf{k>d,: V(k)=V(d,) < -D,}.

Let us define the following sextuplets of points by iteration
(fy],a beTE kL d d?) == (vy,al, b}, 17, ’{,d d*)oﬁd

R R I R R -1’
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where 6; denotes the i-shift operator.

Definition 2. We call a *-valley any quadruplet (a}*, b;,c;,dj) for j > 1. Moreover,
we shall denote by K the number of such x-valleys before e, i.e. K* :=sup{j >0:

T < en}.

It will be made of independent and identically distributed portions of potential (up
to some translation).

5. REDUCTION TO A SINGLE VALLEY

This section is devoted to the proof of Proposition [[] which tells that the study of
7(e,) can be reduced to the analysis of the time spent by the random walk to cross

the first deep valley. To ease notations, we introduce \, := nl/\/n'

Proposition 1. For all n large enough, we have

[eAnT(dl)HKn to(1), E [Ezl,ml [eAnT(dl)HKn N 0(1)} '

E[e7en)] e {E 24

w,|a1
where K, := |ng,(1 —n~/%)|, K, .= [ng,(1+n"%/*)], q, := P{Hy > h,} and where
Eily denotes the quenched law of the random walk in the environment w, starting at
x and reflected at site y.

5.1. Introducing “good” environments. Let us define the four following events,
that concern exclusively the potential V. The purpose of this subsection is to show
that they are realized with an asymptotically overwhelming probability when n goes
to infinity. These results will then make it possible to restrict the study of 7(e,) to
these events.

Ai(n) = {e,<C'n},

Ay(n) = {[ng,(1 =n~")] < K, < [ng,(1+n"},
Ay(n) = N {o(j +1) —alj) = n' Y,

Ay(n) = ﬂf:"frl {d; —a; < C"logn},

where ¢(0) := 0 (for convenience of notation) and C’, C” stand for positive constants
which will be specified below.

In words, A;(n) allows us to bound the total length of the first n excursions. The
event As(n) gives a control on the number of deep valleys. The event Az(n) ensures
that the deep valleys are well separated, while A4(n) bounds finely the length of each
of them.

Let us introduce the following hitting times (for the potential)
Ty :=min{x > 0: V(x) > h}, h >0,
Ty :=min{x >0: V(x) € A}, ACR.

Then, we obtain the following results.

Lemma 1. The probability P{Ai(n)} converges to 1 when n goes to infinity.
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Proof. Tt is a direct consequence of the law of large numbers as soon as C’ is taken
bigger than Elfe;]. O

Lemma 2. The probability P{As(n)} converges to 1 when n goes to infinity.

In words, Lemma B means that K, “behaves” like C;n®, when n tends to infinity. In
particular, (B.1]), which yields ¢, ~ %, and Lemma [} imply

(5.1) P{K,+1>2Cm"} — 0, n — oo.

Proof. At first, observe that
K, Var(K,

ng, n2(-e/9 g2

the inequality being a consequence of Markov inequality and the fact that K,, follows
a binomial distribution of parameter (n, g,). Moreover, Var(K,) = ng,(1 — ¢,) < ng,
implies
K, 1
n s —€/4Y <
P{nqn >14+n "} < g

Now, Iglehart’s result (see (B))) implies ¢, ~ -2, n — oco. Therefore we get that

ni—e»
P{fT" < 1+ n~¢/*} converges to 1 when n goes to infinity. Using similar arguments,
we get the convergence to 1 of P{fT" >1—n~¢/}. O

Lemma 3. The probability P{As(n)} converges to 1 when n goes to infinity.

Proof. We make first the trivial observation that
P{As(n)} > Plo(j+1)—o(j) 2n'"%, 0<j < [20m°]; K, < 20m7}
> Plo(j+1)—o(j) 2n' "%, 0<j < [2Cm7]} = P{K, > 2Cm7},
the second inequality being a consequence of P{A;B} > P{A} — P{B°}, for any

couple of events A and B. Therefore, recalling (5.]]) and using the fact that (o(j +
1) — o(J))o<j<|2¢;ne] are ii.d. random variables, it remains to prove that

P{o(1) > pt3e}20m n — oo.

Since o (1) is a geometrical random variable with parameter ¢,, P{c(1) > n'=%} is
equal to (1 — qn)("k?’s], which implies

P{o(1) > n' 320 = (1 — ¢, ) RO 7T > exp {—Cn'"%q,) .

Then, the conclusion follows from (B-])), which implies that ¢, ~ C;/n'~¢,n — co. O

Lemma 4. For C” large enough, The probability P{A4(n)} converges to 1 when n
goes to infinity.
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Proof. Looking at the proof of Lemma B, we have to prove that P{d; —a; > C"logn}
is equal to a o(n™%), n — oo. Moreover, observing that d; — a; = (d; — d;) + (d; —
TjT) + (T]T —bj) + (bj — a;), the proof of Lemma [ boils down to showing that, for C”

large enough,

i

(5.2) P{d; —d; > % logn} = o(n™°), n — oo,
"

(5.3) P{d; - TjT > % logn} = o(n™°), n — 0o,
"

(5.4) P{TjT —b; > % logn} = o(n™°), n — 0o,
i

(5.5) P{b; —a; > % logn} = o(n™°), n — oo.

To prove (p.9), we apply the strong Markov property at time Ej such that we get
P{d; —d; > %” logn} < P{T(_co,—pD,] = %/ logn}. Therefore, we have
_ o c”
P{dj—d; > —~logn} < P{ inf V() >-Dy} < P{V(-logn) > —Dy}.

ogmg%” logn

Recalling that D,, := (1 + %) logn and observing that large deviations do occur, we

obtain, from Cramer’s theory, that P{V(%/logn) > —D,} < e*%ﬁlognl(*%a*%)),
with I(-) the convex rate function associated to V. This inequality implies (5.2) by
choosing C” large enough such that CT” I (—%(1 + %)) > ¢, which is possible since
1(0) > 0.

To prove (F.3), observe first that (B-1]) implies P{H) > @ logn} ~ n~E+e) =
o(n~%), n — oc. Therefore, we obtain that P{d; — TjT > %Nlog n} is less or equal
than P{T(foo,f%fllogn] > @ logn} + o(n~°) and conclude the proof with the same
arguments we used to treat (5.9).

To get (5.4), observe first that

C// C/I
P{T} —b; > —-logn} = P{T}, > —logn|Hy > h,}
I

< P{% logn < T}, <oo}/P{Hy> h,}.

Therefore, Cramer’s theory, see [[]], yields

2

P{%logngThn<oo} < Y PVmzhy< Y etIR)

kz%ﬂ logn k:z%// logn
Z C
i —_ C// I(O)’
o n 4
k>=-logn

the second inequality being a consequence of the fact that the convex rate function
I(+) is an increasing function on (m,400). Using (B.1]), we get, for all large n,

C

n%/l(o)f(lfs) ’

2
P{T} —b; > %logn} <
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which yields (5-4), by choosing C” large enough such that C” > ﬁ.

For (B.9), observe first that ((V(k—0b;) =V (b;))a;<k<s;, @;, b;) has the same distribu-
tion as ((V(k))a-<k<0,a~,0) under P{-|V (k) > 0,a~ <k < 0}, where a™ := sup{k <
0: V(k) > D,}. Then, since P{V (k) > 0,k <0} > 0 and since (V(—k), £ > 0) has
the same distribution as (—V(k), k > 0), we obtain

" i "

C C
P{b; —a; > T logn} < CP{T(_co,-p,] > % logn} < CP{V(Z logn) > —D,}.

Now, the arguments are the same as in the proof of (5.2). O

Defining A(n) := A;(n)NAz(n)NAs(n)NAs(n), a consequence of Lemma [, Lemma
B, Lemma B and Lemma [, is that

(5.6) P{A(n)} — 1.
The following lemma tells us that the x-valleys coincide with the sequence of deep
valleys with an overwhelming probability when n goes to infinity.

Lemma 5. If A*(n) .= {K,, = K} ; (a;,bj,c;,d;) = (a5,b%,¢;,dY), 1 <j<K,}, then

AR AR
we have that the probability P{A*(n)} converges to 1, when n goes to infinity.

Proof. Since, by definition, the x-valleys constitute a subsequence of the deep valleys,
Lemma [ is a consequence of Lemma [ together with Lemma . O

Remark 4. Another meaning of this result is that, with probability tending to 1, two
deep valleys are necessarily disjoint.

5.2. Preparatory lemmas. In this subsection, we develop some technical tools al-
lowing us to improve our understanding of the random walk’s behavior. In Lemma
B, we prove that, after exiting a deep valley, the random walk will not come back to
another deep valley it has already visited, with probability tending to one. Moreover,
Lemma [ specifies that the random walk typically exits from a *-valley on the right,
while Lemma [[(] shows that the time spent between two deep valleys is negligible.

5.2.1. Preliminary estimates for inter-arrival times. Let us first give a preliminary
result concerning large deviations, more precisely about the convex rate function
associated to the potential V(-), denoted by I(-).

Lemma 6. Under assumptions (a)—(b), we have

inf _[(:1:) =K
>0 I

Moreover, the minimum is reached at xy := N'(k), with A(t) := log E[p}].

Proof. Recalling that I(-) is defined by I(z) := sup,o{tx — A(t)}, for z > 0, we have
I(x) > kx — A(k) = Kz, since A(k) = 0. Moreover, under assumption (a)—(b), formula
(2.2.10) in ([, p. 28) implies I(A'(k)) = kA'(x), which concludes the proof of Lemma
B- O
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Let us introduce
T'(h) :==min{z >0: V'(z) >h},  h>0,
THh) := min{z > 0: Vi(z) < —h}, h > 0.

Lemma 7. Under assumptions (a)—(b), we have, for h large enough,
Ejo [7] < Ceh,

where Ko denotes the expectation under the law Py of the random walk in the random
environment w (under P) reflected at 0 and 7, :== 7(TT(h) — 1).

Proof. Using (Zeitouni [PJ], formula (2.1.14)), we obtain that Ejy [73,] is bounded from
above by E[Zogi§j<TT(h) eVW=V®]_ Therefore, since T7(h) < T'(h) o 6;, for any
1 > 0, we obtain

67 Boln) <Y B[l Y U7V < Bi(h) Bulh),

i>0 i<i<T(h)
where

Bi(h) = E[T'(h)],
Ba(h) = E[ Z eV(j)].
0<j<TT(h)
To bound S3;(h), let us introduce the number N of complete excursions before T'(h),
defined by N = N(h) := sup{i > 0 : ¢; < T'(h)}. Then, we can write 3;(h) =
B[N Ye; —ei_1) + (TT(h) — en)]. Observe that the definition of T'1(h) implies that

=0
N is a geometrical random variable with parameter ¢ = ¢(h) := P{H > h} and recall

that, by (B-1), we have ¢ ~ Cye " h — oo. Therefore, we get, for h large enough,
Bulh) < Y (1—q)*q(kEles|H < h] + E[T,|H > h))

k>0
< C) (1—q)q(kEler] + E[TW|H > ),

k>0
the second inequality being a consequence of the fact that Ele;] < oo (see (R.]))
together with P{H < h} — 1, h — oo, by (B.1). By obvious calculations, this yields
Bi(h) < C(1—q)q 'Ele;] + E[T,|H > h], which implies with (B.1) that
(5.8) Bi(h) < Ce* + E[Ty|H > h).
Now, let us bound E[T,|H > h|. To this aim, we observe first that E[T,|H > h| <
Ce" > ook + 1)P{T}, = k+ 1; H > h}. Then, applying the Markov property at
time k, we get

E[Th|H > h] < Khz k‘ + 1 1{0<V )<h}e_ﬁ(h_v(k))]
k>0
o
< O (k+1)> erUTIP{V(E) > j}.

k>0 §=0
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Since large deviations do occur, we obtain by Cramer’s theory, see [, that P{V (k) >

Jy <e M @), Now, recalling that I(-) is an increasing function on R* together with
Lemma [, we obtain
i

P{V(k) > j} < e F o4,
Since I(0) > 0, this yields that there exists C' > 0 such that, for all large h,

(5.9) E[Ty|H > h) < Ce2".
Assembling (5.§) and (f.9) implies, for i large enough,
(5.10) Bi(h) < Ce™.

In a second step, we bound fy(h). Let us first introduce & := {maxo<j<x_1 H; <
h; Hy > h} and write

Balh) = SB[t Y V)]

k>0 0<j<TT(h)
k—1
= Z (Z F [1gkev(ej)Ji] + F [1gkev(ek)7k:| ),
k>0 =0

where J; := Y 550 VUV for i > 0 and Jy, = Z]T:T(e};)_l eV)=V(er) which is well
defined on &. Observe that & = {N(h) = k} and recall that N(h) is a geometrical
random variable with parameter ¢ = q(h) = P{H > h}. Then, the Markov property
applied at times (e;)1<j<k yields that 5(h) is less or equal than

k—1
> (1= aVa( Bl Ho < b)Y BleV | Hy < K + ELJo|Ho > hE[e" ) |Hy < h]*),
k>0 =0
which implies that (k) is bounded by

1 q B
ElJo|Ho < h E[To|Ho > h).
1 — EleV()|Hy < h] [Jo|Ho < h] + 1= (1= q)BleV@|Hy < 7] [Jo|Hy > h]

Now, since V is transient to —oo, then Hy is almost surely finite and E[e" (V)| H, <
h] — E[eV()] < 1, when h — oco. Recalling that ¢ = q(h) — 0, h — oo, it follows
that

(5.11) Ba(h) < C(E[Jo|Hy < h] + qE[Jo|Hy > h]),

for h large enough.

Let us first bound E[Jo|Hy > h]. Recall that if x4 denotes the law of log pg, thanks
to assumption (a) of Theorem [l we can define the law i = pfu, and the law P = j®”
which is the law of a sequence of i.i.d. random variables with law fi. The definition of
r implies that [logp/i(dp) > 0. Then, using the Girsanov property between P and
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P, we can write

E[Jo|Ho > h] < Ce“hE[e_“V(Th)jol{Hozh}]

T,—1

- Z e 1{H0>h}}

IA
Q
Dj

T,—1

n k
CE oVl )1{min0<i<Th V(k)>0}]
k=0

IN

Lh)

D Z Z € 1{p<V(k; <p+1}i|
T k>0

p=0

IA
Q
Dj

Lh)

< C Z epHE[Z 1{PSV(k)<p+1}} :

p=0 k>0

Moreover, by Markov property, we have E[Zkzo 1{p§V(k)<pf1}] < E[Ekzo Lio<vr)<1y)s
which is finite since (V (k))r>o has a positive drift under P.

Therefore, recalling (b.11]) and (B.1]), we get
(5.12) Ba(h) < C(E[Jo|Hy < B 4 e!'=")

and only have to bound E[Jy|Hy < h]. Recall that R = > k>0 eV and observe that
Jo < R. Moreover, let us denote by E?[-] the expectation under PZ{-} := P{.|Z},
with Z := {H = S}. Then, we first observe that EZ[R|H < h] > E[Rl{y_s<py] >
E[Jol{g=s<ny]. Furthermore, since J, depends only on (V(k); 0 < k < e;) and since
P{V(k) <0; k> 0} >0, we get, by applying the strong Markov property at time
e1, that E[Joliy<ny] < CE*[R|H < h], which implies

E[Jo|H < h] < CE*[R|H < h].
Therefore, we only have to prove that EZ[R|H < h] < Ce'=%" To this aim, we recall
first that Corollary 6.1 in [§] implies that, PZ-almost surely,
(5.13) E*[R||H]] < CelH.
Now, observe that EZ[R|H < h] < CE*[R1{g<py] and let us write

Lh)

E*[R1ggapny] < ZEI[l{Lszk}EI[RHHJ:k]}
k=0
LR]

< Y B mmnel™ |
k=0
1A

< CY fPH{|H| =k}
k=0
1A

(5.14) < C) elTh < el

k=0

the second inequality is a consequence of (5.13) and the fourth inequality due to the
fact that PZ{|H| = k} < ce™"? for some positive constant c. Now assembling (F.7),

(b-10), (b:13) and (b.I4) concludes the proof of Lemma [q. O
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5.2.2. Important preliminary results. Before establishing the announced lemmas, we
introduce, for any x,y € 7Z,

7(z,y) = inf{k > 0: X;(p)4r =y}

Then, we have the following results.

Lemma 8. Defining DT (n) := {7’ bj1) < 7(d;, d;)}, we have
P{DT( >} - 1, " oo

Proof. Recalling (5.6), we only have to prove that
K —

(5.15) E {1A(n) Z PY{7(bj11) > 7(d;)}| — 0.
j=1

By (Zeitouni 3], formula (2.1.4)), we get, for 1 < j < K,, and for all w in A(n) :

ZZJ-F; LoVik) ~
ij {T(bj+1) > T(Cj)} = W < (bj+1 — dj)ev(dj)_v(dj)+hn.
k=d,
Combining (B.I0) and Markov inequality, we easily get that br,+1 — dk, = o(n)
with probability tending to 1. Moreover, by definition, V(d;) — V(d;) < —D, for
1<j<K, and bjy1 —d;j <e, <C'n,for 1 <j<K,—1on Ai(n). Therefore, we
have

B [La S P (1) > @) < Cnl e
j=1
Recalling that D, = (1+ +)logn, h, = ==logn and since E[K,] < C'nf, we obtain
B L 3 P {r(by) > @y < et
j=1
which implies (p.17). O

Lemma 9. Defining DT*(n) ﬂj AT, d) < T(b3,97) ), we have

]’J

P{DT*( )} —1, n — oo.

Proof. Since, by definition, the %-valleys correspond to the K, deep valleys on A*(n),
we consider Af(n) := A*(n) N As(n) N Aj(n) to control the *-valleys, where Aj(n) is
defined by Aj(n) := ﬁﬁl {vi41 —a; < C"logn} N {y; < C"logn}. Using the same
arguments as in the proof of Lemma [, we can prove that P{Aj(n)} — 1, n — oo,
for C” large enough. Then, recalling that Lemma [J and Lemma [ imply P{A*( )N
As(n)} — 1, n — oo, it remains only to prove that

(5.16) {1/“ Zpb {r(dj) > (7))} — 0.
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Observe that by (Zeitouni [PF], formula (2.1.4)) we get, for 1 < j < K,
PoAT(d;) > 7))} < (d; = by)e! VDTV

Y

the second inequality being a consequence of w € A*(n) N Aj(n). Then, to bound
MV =VON=VE)) from above, observe that (B1) implies P{HY) > (IL:l)lOg”} ~
n~E*) = o(n°), n — oo, for any & > 0, which yields that P{ﬂf:”l{H(j) <
—(1::6 Jlogn}} tends to 1, when n tends to oo. Therefore, recalling (b.16), we only
have to prove that

(5.17) Clogn n o {1141( Ze V05— } — 0.

Since 57 —bj-1 < C"logn on Aj(n) and b; —bj-1 = n'™* on Ag(n), we get by — 7 =

Int=3% for 2 < j < K,, on Af(n), for all large n. Similarly, 7; < C”logn on Aj(n)
and by > n'7% on As(n) yield by — 7§ > $n'7% on A'(n). Therefore, by definition of
b; and since large deviations do occur, we obtain from Cramer’s theory, see [f,

3e

PLAYR); V(by) ~ Vi) > T} < PEV(Gn' ™) > —n

1-3¢
>}
1—3e —1-3¢

< ) o,

for any 1 < j < K,,. This result implies that the term on the left-hand side in (5.17) is

(+¢)

nl*BE
bounded from above by C'logn n = E[K,le” 2 . Then, since F[K,] < C'n®, this
concludes the proof of Lemma [ O

Lemma 10. For any 0 < n < (£ — 1), let us introduce the following event I A(n) :=
A(n)N {Z 2 T(dj, b)) < nl/"‘_”} . Then, we have
P{IA(n)} — 1, n — oo.

Proof. Recalling that P{K,, > 2Cn°} — 0, n — oo, and that Lemma J implies that
P{DT(n)} — 1, n — oo, it only remains to prove
[2CnE |

IP{DT(n) N { > r(dy b)) > n1/~—"}} —0, n— .

j=1

Using Markov inequality, we have to prove that
[2Cn®|

1
(518) E |:1DT(n) Z T(dj, bj+1):| =0 (W) s n — oQ.

J=1
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Furthermore, by definition of the event DT (see Lemma J), we get
[2CnE | [2Cn¢ |

E|:1DT(n) Z 7(dj, bj+1):| < E1 Z E 7(bjt1)]

j=1 -

- LQCInEJ _ -

< K1 Z E |d j+1)] :
Applying successively the strong Markov property at ELQCms [ dy, dy, this implies
12Cn® |
E {1DT(,1) > r(d;, bm)} < 20 Ep[r(T" (hy) — 1)].
j=1

Therefore, Lemma [] implies
|2C;n< |

E{lDT(") Z T<djabj+1)} < Cnfeln < Opn—=(a- 1)7
j=1
which yields (F-I§) and concludes the proof, since 0 < 7 < e(+ — 1). 0

5.3. Proof of Proposition [l Since the time spent on Z_ is almost surely finite,
we reduce our study to the random walk in random environment reflected at 0 and
observe that

E [e”\" T(e")} =Ej [e’)‘" T(e")] +o(1), n — oo,
where E|y denotes the expectation under the law Py of the random walk in the random
environment w (under P) reflected at 0.

Furthermore, by definition, 7(e,) satisfies
Kn—1

Z {7(bj, dj) +7(dj; bj1)} < 7(en) < 7(br) + Z{T dj) +7(d;j, bj41)},

7=1
such that we easily get that Ejg [e_)‘" T(e")} belongs to
[E\o [eqn (T(bl)+Z]K:n1{7'(bj,dj)JrT(dj,ijLl)})} By [efxn (T(b1)+zﬁ;1{r(bj,dj)+r(dj,bj+1>})]} _

Let us first recall that Lemma § and Lemma [[(J imply that P{DT(n) N IA(n)} — 1,
n — o0o. Then, we get that the lower bound in the previous interval is equal to

Ej _1DT(n>m1A(n)e—M(T(bl”zﬁl{“bj . HT(dj’bj“)})} +oll)
- Kn s
= Ep [1prm)nram) e_AnEjZIT(bJ’dJ)] oll)




20 N. ENRIQUEZ, C. SABOT, AND O. ZINDY

Then, applying the strong Markov property for the random walk successively at
(b, ), T(bx, 1), - -, T(b) and 7(b1) we get

- Kn,
Ejo e An Y T(bjydj)] - F HEL?)J;‘O [e—AnT(dj)]]
L
_ Ky
= F 1A*(n) HEZJ,|0 [e_A"T(d;)] :| + O(l)
L =1
-Ky
- E Ez{‘o [e—w<d§>H +0o(1),
L

the second equality being a consequence of Lemma . Then, since Lemma JJ implies
P{DT*(n)} — 1, we have
- K;

Ejo [eﬂ" Zﬁ”(bj’df)] = F HE:)E\O |:1DT*(n) efm(d;)} ] +o(1)

Lj=1
- Kx .

_ ; AnT(d?)

= b HEJ,W; [1DT*<n>e 7 H +0o(1)
_]:1
- Kx .

_ j —AnT(d¥)

- effish o] o
L

Then, applying the strong Markov property (for the potential V') successively at

. . b* _ * ..
times 7% , ..., 73 and observing that the (EWJJ [e A”T(df)} ) - are i.i.d. random

5
variables, we obtain that

* ?n
*e—m(dn} +o(1).

|'Yl

Eo [ 7] > B B

Since we can easily prove that P{(a1,bi,c1,d1) # (aj, b7, ¢, dy)} = o(n™%), and since
K, = O(nf), n — oo, the strong Markov property applied at ] yields

A b A7 (d Kn
E\O [e* nT(en)] > F [Ewl,\o [e* nT( 1)]] + 0(1)_
Using similar arguments for the upper bound in the aforementioned interval, we get

Kn K,
E\O [e—)\n T(en)} c |:E [Ebl [e—)\nT(dl)}] + 0(1)’ E [EZI,\O [e—)\n’r(ch)]] + 0(1):| )

w,|0

wv‘al

Furthermore, observe that E [EZI‘O [e*A"T(dl)}] =F [Ebl [e’)‘”(dl)}] +o(n=¢). This

is a consequence of Lemma [, definition of a and the fact that (B-1]) implies P{H®") >
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(1—;5/)- logn} ~ n—(€'+e) — o(n=), n — oo, for any ¢’ > 0, which gives

a+e’) lo;

E[P) {r(a1) < 7(d1)}] < Clogne = 8" Pr = o(n™%).
This concludes the proof of Proposition [l. O
6. ANNEALED LAPLACE TRANSFORM FOR THE EXIT TIME FROM A DEEP VALLEY

This section is devoted to the proof of the linearization. It involves h-processes
theory and “sculpture” of a typical deep valley. To ease notations, we shall use a, b, c,
and d instead of aq, b1, ¢; and dy. Moreover, let us introduce, for any random variable
Z >0,

(6.1) Ru(\,Z) = Elﬁ]

Then, the result can be expressed in the following way.

Proposition 2. For any & > 0, we have, for all large n,

R (X, 2e™ My M) +0(n ) < E[EY |, [e " @]] <R, (e ¢\, 2™ M, My) +0(n~°).

7‘a

where M, = Zi;;l e V@-VO) gnd M, := ST V@V Note that V is defined

in the following subsection.

6.1. Two h-processes. In order to estimate E&‘a [e*’\”(d)] , we decompose the pas-
sage from b to d into the sum of a random geometrically distributed number, denoted
by N, of unsuccessful attempts to cross the excursion, followed by a successful at-
tempt. More precisely, since N is a geometrically distributed random variable with
parameter 1 — p satisfying

eV ()
Zi; ; eV (2)

we can write 7(d) = SV, F; + G, where the F}’s are the successive i.i.d. failures and
G the first success. The accurate estimation of the time spent by each (successful and
unsuccessful) attempt leads us to consider two h-processes where the random walker
evolves in two modified potentials, one corresponding to the conditioning on a failure
(see the potential V' and Lemma [I]) and the other to the conditioning on a success
(see the potential V' and Lemma [[J).

(6.2) l—p = w

)

6.1.1. The failure case: the h-potential V. Let us fix a realization of w. To introduce

the h-potential V, we consider the valley a < b < ¢ < d and define h(z) .= P*{1(b) <
7(d)}. Therefore, for any b < x < d, we define &, := w, h(hx(:)l) and similarly (1-&,) =

(1-— wx)hgf(;)l). We obtain for any b < z <y < d,

03 V0= V) = (V) - Vi) +og (o )
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Using (Zeitouni B3], formula (2.1.4)), we get

h(z)h(z +1) S, eV® Y00 eV

M) Ay + 1) S lov) ST v =
Zj:y € Z] =y+1°¢

Thus we obtain for any b <z <y < ¢,

(6.5) Viy) = V() 2 V(y) - V().

(6.4)

Lemma 11. For any environment w, we have

(6.6) E, [F] _wa( Z o~ (V@O-V () _'_Zef(\/(z )

i=a+1
and
(6.7) E, [F}] =4w, RT +4(1 —wy) R,
where
d—1 -2
Rt = (1—1—22@‘/0)"(@'1))( ~(V(i-1)=V (b)) 49 Z .~ V(b))’
i=b+1 j= j—it1
b—1
R = (1_'_2 Z e )=V (i+1) )( —(V(i+1)— +2 Z e~ V(j+1) V(b))>.
i=a+1 J=i+2 j=a+1

Remark 5. Alili [l and Goldsheid [LT]] prove a similar result for a non-conditioned
hitting time. Here we give the proof in order to be self-contained.

Proof. Let us first introduce

Nt = ﬂ{k<T<b)Xk:’l—1,Xk+1:’l}, ’i>b,

N7 = t{k<7(): Xy =i+ 1, Xy =i}, i < b.

Observe that, under P, for ¢ > b and conditionally on N;" = z, N;}, is the sum

of x independent geometrical random variables with parameter ;. It means that
B[N |N;™ = 2] = £ and Varg[N|N;” = 2] = 55 Similarly, under F,, for
¢ < b and conditionally on N, = z, N,_, is the sum of x independent geometrical
random variables with parameter 1 — w;. It means that E,[N, ;|N,” = z] = xp; and

_ _ zp?

Since
d—1 b—1
B[R] = 2w, E5[Y N+ 2(1 - wy) E,[> N7,
b+1 a+1

an easy calculation yields ([.6).
To calculate E,[F{], observe first that

E,[F? = 4w, F; {( § Nj)Z] +4(1 — wy) B, {( bzl N[)Q} .

i=b+1 i=a+1
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Then, it remains to prove that Egl( Zl+11 N )?] = R" and E, [(ZZ+11N )] = R™.

We will only treat Eg[( Zﬂl N;")?], the case of Ew[(22+11 N; )% being similar. We
get first

(6.8) Es {(i N;F)z} Z E3[(NH)?] +2 zi i E5[N; N7,

b+1 i=b+1 i=b+1 j=i+1

Observe that By [N'N;] = Ba [N/ Bs [N/ I N/, Ni)] = Bo [N 32 for

(2 Pj—1
1 < 7, so that we get, by iterating,

1
Ba [NINJ] = Ba [(NF ] s

Recalling (B.8), this yields

] Sl

b+1 i=b+1 j= Z+1
d—1
(6.9) = Y E; [(N)] <1+2 Z e )=V ii- 1>>)
i=b+1 j=i+1
Now, observe that Ej [(N;r)ﬂ = B [Es [(N;")?|N;,]], which implies
R R G 4 (%)
E; [(Nf)?] = Es {ZE GV 4+ G ]1{N:1=k}]-
k>1

Since the G™’s are i.i.d., we get E@[Ggi) + -4 Gl(f)] = kVar@[Ggi)] + kQE@[Ggi)P.
Recalling that E5[G] = > and Varg EE lﬁg , this yields
i— 1Pi1

Wi

Eg [Nitl} + Es [(Ni—tl)ﬂ
&3@'_1@2,1 @271

1 E5 [(N;71)?]
Wi 1Pbr1 - - -//7\1'72/31271 /31271 .

Denoting W1 := 1 and W; := (Dps1 ... pi1)?Es [(N;)?] for b+ 1 < i < d, (610)
becomes

E; [(N)?] =

(6.10) =

~

Poi1 - - ~ . ~ .
Wi =Wy = T O = Pbt1---Pim1 T Pot1 - Pi-2,
i—1

the second equality being a consequence of 1/L; ; = pz 1 + 1. Therefore, we have
Wi =30 o (W = Wis1) + Wht = o1 - - Pict +2(1+ 32373 Posr - - §j), which implies

1—2 ~ ~
FEs [(N*)Q] — S +2 Pbt1-- - Pj
' Pot1 .-+ Pi-1 s (Db - - - Pie1)?
i—2
(6.11) = o WED-VO) 4 9§ VO -2VG-D470),
j=b

Assembling (6.9) and (B.11) yields (6.7). O
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6.1.2. The success case: the h-potential V. In a similar way, we introduce the h-
potential V' by considering the valley a < b < ¢ < d and defining g(x) := P*{7(d) <

7(b)}. Therefore, for any b < z < d, we define @, := w,2 (gm(:)l) and similarly (1—&,) :=
(1-— wx)g(gm(;)l). We obtain for any b < z < y < d,
. - g(x) g(x +1)
6.12 Vi) —Vi(x)=V(y) —V(zx +log<—.
(6.12) (y) =V(z) = (V(y) = V(z)) J@)e+ D)

Recalling (Zeitouni [R5, formula (2.1.4)), we have

z—1 V(i T V(i
(x‘i_ 1) B Zj:b e (4) Zj:be (9) <1

g(z) g
(6.13) gW) gy +1) S eV U V) T

Therefore, we obtain for any ¢ < x <y < d,

(6.14) Viy) = V(z) < V(y) = V(x).
Using the same arguments as in the failure case, we get the following result.

Lemma 12. For any environment w, we have

(6.15) EJGI <14 ) ) eV,

6.2. Preparatory lemmas. The study of a typical deep valley involves the following
event

As(n) = {max{V'(a,b); —Vib,e); Ve, d)} < dlogn},

where § > ¢/k. In words, As(n) ensures that the potential does not have excessive
fluctuations in a typical box. Moreover, we have the following result.

Lemma 13. For any 6 > ¢/k,
P{As(n)} =1—o0(n"%), n — oo.

Proof. We easily observe that the proof of Lemma [[J boils down to showing that

(6.16) P{V1(a,b) > §logn} = o(n*), n — 0o,
(6.17) P{-Vt(b,c) >dlogn} = o(n™®), n — 0o,
(6.18) P{V'(c,d) > §logn} = o(n~°), n — oo.

In order to prove (p-13), let us first observe the following trivial inequality
P{V(c,d) > dlogn} < P{V(T],d) > 6logn}.
Looking at the proof of (53), we observe that P{d —T] > C'logn} = o(n~'), for any

g’ > 0, by choosing C' large enough, depending on &’. Therefore, we only have to prove
that P{VI(T], T} + Clogn) > dlogn} = o(n~°). Then, applying the strong Markov
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property at time 7T}, we have to prove that P{V1(0,Clogn) > dlogn} = o(n ¢).
Now, by Cramer’s theory, see [[]], and Lemma [g, we get

P{V1(0,Clogn) > §logn} < (Clogn)* max P{V(k)>dlogn}

0<k<Clogn

7k1(61c])€gn)

IA

(Clogn)?> max e
0<k<C'logn

< (Clogn)*exp{—rdlogn}.

Since § > ¢/k, this yields (B.1§).
To get (6.17), observe first that
P{=V!(b,c) > 6logn} < P{=V'(b,T]) > 6logn} + P{=V!(T}],c) > logn}.

The first term on the right-hand side is equal to P{V1(0,T"(h,)) > 6logn|Hy > h,}.
Recalling that (B-1]) implies P{Hy > h, } < Cn~(1=%) for all large n and observing the
trivial inclusion {V(0,T7(h,)) > dlogn; Hy > h,} C {T*(6logn)< Ty, < T(—e} ,
it follows that P{—V(b,T]) > dlogn} is less or equal than
Cn' ¢ P{T*(6logn) < Th, < T(—0o0}

Lhn]
Cn'c Y P{M; € [pp+1); T (5logn) < Th, < T(—oe}

p=I3logn]

IA

where Ms := max{V(k); 0 < k < T4 (5logn)}. Applying the strong Markov property
at time T*(dlogn) and recalling (B-3) we bound the term of the previous sum, for
|0logn| <p < |h,] and all large n, by

P{S >p}P{S > h, — (p—dlogn)} < Ce P rhn=ptilogn))

where S := sup{V (k); k > 0}. Thus, we get P{=V(b,T]) > dlogn} < C|hn|n ",
for all large n, which yields P{—V (b, T)) > dlogn} = o(n™¢), n — oo, since
0 > ¢/k. Furthermore, applying the strong Markov property at 7] IT , we obtain that
P{—VYT/] ¢) > dlogn} < P{=VH0,V,ee) > dlogn}. In a similar way we used
before (but easier), we get, by applying the strong Markov property at T%(§logn),
that P{—VH(T],¢) > dlogn} < n=" for all large n. Since § > ¢/x this yields (B-17).

For (B.16), observe first that ((V (k—b) —V(b))a<k<p, @, b) has the same distribution
as (V(k))a-<k<0,a,0) under P{-|V(k) >0, a” <k <0}, where a~ :=sup{k < 0:
V(k) > D,}. Then, since P{V (k) > 0, k < 0} > 0 and since (V(—k), k£ > 0) has
the same distribution as (—V(k), k > 0), we obtain

P{V'(a,b) > dlogn} < CP{V'(0,T(—w,p,]) > 6logn}.

Now, the arguments are the same as in the proof of (p.1§). O

6.3. Proof of Proposition . Recall that we can write 7(d) = Zf\il F;, + G, where
the F;’s are the successive i.i.d. failures and G the first success. Then, denoting F}
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by F, we have

ELle™™ D] = EL e EL e (1 - p)pt

k>0

(6.19) = B e AnG]l_p;a]{ ot

In order to replace E37|a[6_A Flby 1 - )\nEb JF1, we observe that 1 — A, Eb Wl F] <

B Ia[ e WP <1 — )\nEZ,\a[F] nEb [F?], wh1ch implies that E[ﬁ] be-
longs to

Ja

[EL —p(1 :fEZJa[F])} | EL —p(1 - )\nEZja_[FZ’] + 28 |a[F2])]

Now, we have to bound )\nEf)7‘a[F 2] from above. Then, recalling (6.7), which implies

E® |a[F2] < 4(R* + R7), we only have to bound Rt and R™. By definition of RT, we
obtam
(6.20) R* < (d—b) (1 +2(d — b)e V' bd)) (B(d ~ b) max eW)V(bﬂ) .

)=

Recalling that the proof of Lemma [ contains the fact that P{d —a > C"logn} =
o(n~¢) and that Lemma [I3 tells that P{As(n)} = 1 — o(n™ ), we can consider the
event A*(n) := {d—a < C"logn}NAs(n), whose probability is greater than 1—o(n~*)
for n large enough. It allows us to sculpt the deep valley (a, b, ¢, d), such that we can
bound R*. We are going to show that the fluctuations of v are, in a sense, related to

the fluctuations of V' controlled by As(n). Indeed, (6.5) yields Vl(b c) > Vl(b c) >
—&logn on At(n). Moreover, (F-3) together with (6.4) imply that V(y) — V(z) is
greater than

Viy) - max V(j)] = [V(z) - max V(j)] —O(logyn),
for any ¢ < z <y < d, on A¥(n). Since V(z) — max,<j<q_1V(j) < 0 and V(y) —
max,<;j<q—1V (j) > —dlogn on A¥(n), this yields V(c,d) > —dlogn — O(log,n).
Furthermore, since (B.3) and (B.4) imply that V(c) is larger than maxy<;j<.V (j) —
O(logy n), assembling VY (b,c) > —dlogn with Vi(e,d) > —dlogn — O(log, n) yield

(6.21) Vb, d) > —§logn — O(log, n),

on A*(n). Therefore, we have, on A*(n) and for all large n,
o 5 ~(V (- )

(6.22) R* < C(logn)*n Jhax e .

Since \7(b) = V(b) and (f.4) implies 17(:16) > V(x), for all b < 2 < ¢ (in particular
V(e) > V(c)), it follows from (B21) that V(j) — V(b) = (V(j) — V() + (V(c) —
A( b)) > h, — dlogn — O(log, n), which is greater than 0 for n large enough whenever

1 —¢)/k (it is possible since 6 > ¢/k and 0 < € < 1/3). Therefore, recalling

< (
@), we obtain, on A¥(n),
6.23)

~~

R" < C(logn)®n’

—~
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In a similar way, we prove that R~ < C(logn)®n®, on A¥(n), which implies that
)\nEZJa[FQ] < C(logn)®n’~~. Now, observe that, for any & > 0, {)‘nEZ,|a[F2] <2(1—
™)} is included in A*(n), such that A, E7, | [F?] < 2(1—e ) E] | ,[F] with probability
larger than 1 — o(n~°). Then, introducing

1

1+ nﬁ/KﬁEC’j}"a[F]]’

R.()) = E[

we get, for n large enough,
1—p
1—pE®  [e7F]

(6.24) R, (A) +o(n~%) < E{ } < R/ (7)) + o(n™°).

7‘01

In order to bound Ez,m [e_)‘"G} by below, we observe that e > 1 — z, for any
x > 0, such that Ef)"a[e*)‘"c] > 11— )\nEf)"a[G]. Therefore, we only have to bound
EP | [G] from above. Recalling (B13), we get E° [G] < (d — )%V ). Now, let

w,|a 7 sla -
us bound V'(b,d). We observe first that (B.I4) implies V'(c,d) < V'(c,d), which
yields V(e,d) < dlogn on A*(n). Moreover, (B-12) together with (E13) imply that
V(y) — V(z) is less or equal than

V(y) — max V(5)] — [V(2) — max V(j)] + O(log, n),
for any b < x <y < ¢, on A¥(n). Since V(y) — maxy<j<, V(j) < 0 and V(z) —
maxy<j<g V(j) = —6logn on A¥(n), this yields V1(b, ¢) < dlog n+O(log, n). Further-
more, (6.14) and the fact that V' (y) < V(c), for ¢ <y < d, imply that V(y) < V(c)
for ¢ <y < d. Therefore, we have

V1(b,d) < §logn + O(logyn),

on AH(n). Tt means that £, [e

§ < +—e, which is possible since § > ¢/ and 0 < £ < 1/3. Therefore, recalling (5:29),
we obtain

(6.25) R/ (A) 4+ o(n™®) < E[Ei‘a[e_)‘”(d)ﬂ < Rl (e7*A) +o(n~®).
Recalling (6.4) and (.9), we get
R\ 20, (7Y My + wy)) < RL(A) < R(, 2e7 7 M M),

MG is greater than 1 — o(n™°) on A*(n) whenever

where M, := S e V@-VO) £, .= 52971 V@)=V and R, (), Z) is defined in

(b-1]). Furthermore, since eHY > n%, My > 1 and w, < 1 we obtain that, for any
> 0 and n large enough, wy, < (e — 1 e M. Therefore, we have for all large n,
g g g

(6.26) R (X, 267 My My) < R (M) < Ru(A, 27" MyMy).
Now, assembling (6.279) and (f.26) concludes the proof of Proposition . O
7. BACK TO CANONICAL MEANDERS
Let us set S := max{V(k); k > 0}, H := max{V(k); 0 < Tr_} = Hy,

k <
and Ts := inf{k > 0 : V(k) = S}. Moreover, we define Z,, := {H = S > h,} N
{V(k) > 0,Vk < 0}, and introduce the random variable Z := M M, where
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M = Zzh"m V() and My = ZZ;O eV®) =9 with a= = sup{k < 0: V(k) > D,}
and dt :=inf{k > e; : V(k) — V(e1) < —D,}. Then, denoting

1
Ru(A) = E [—llfn]7
14+n"=2\2

we get the following result.

Proposition 3. For any & > 0, we have, for n large enough,

Ro(eEX) + 0(n %) < Ryu(X, 267 M M,) < Ry €A) + o(n ™).

Proof. Step 1: we replace ]\/4\1 by ]\/4\1T
Recall that A*(n) = {d—a < C"logn}NAs(n) and that P{A¥(n)} > 1—o0(n"¢), for
all large n. Now, let us introduce T'(%) := inf{k > b: V(k)=V (b) > h,/2} and M :=
hn oo o —~
Zia2+)1 e~(V=V®) Recalling (B:21)), we observe that M; < MT +C" log ne~ 3 +dlogn

on A¥(n). This implies that for any £ > 0, we have M; — MT < (ef — 1)MT for all
large n, whenever § < 1= Wh1ch is possible since 6 > ¢/k and 0 < ¢ < 1/3. Therefore,
we obtaln for n large enough

R (X, 2™ MTMy) + o(n™°) < Ru(\, 267 M M) < R,(X, 27 MT Ms,).

Step 2: we replace MT by MT.

hn
ALet us denote M := Zgi;+)1 e~ V=V Since T(
MT < MT. Observe that (63) with (54) imply that V(y
less or equal than
. 1
log (Z eVt Z b+1 eVt ) Z? b eVt }y b1 eV
d—1 = il d—1
E eV (i E] i1 eV () Ej eV () ZJ il V)’
for any b < y < d. Therefore, on A*(n), we obtain V(y) — V(b) < (V(y) — V(b)) +
Clogne_hT" for any b <y < 7:(\%”), which yields M > eXp{Clogne_hT"}MlT. Then,
for any £ > 0, we obtain that M > e M on A*(n) and for all large n. This implies

Ro(\, 267 MTM,) < Ry (A, 267V MTM,) < Ry (e X, 267 MT M) + o(n9).

< ¢, (6.9) implies that
~ V() ~ (V(y) - V(b)) is

Now, assembling Step 1 and Step 2, we get that, for any £ > 0 and n large enough,
R, (A, ZeH(l)MlMg) belongs to

(7.1) | Ra(eX, 267 MT M) + o(n ) : Ru(e 4, 267 MT M) + o(n )| .

Step 3: the “good 7 conditioning.

Let us first observe that ((V(k — b) — V(b))a<k<d, a,b, ¢, d) has the same law a
(V(k))a-<i<da+,a™,0, Ty, d") under P{-|Z}}, where Z|, := {H > h,; V!(a",0)
hn; V(k) > 0,a” <k < 0}. Moreover, we easily obtain that P{{V (k) > 0, a~
E<O0}\{V(k) >0,k <0}} = O(n %) = o(n=¢), that P{{H > h }\{H
S}t =0O(n=21-9) = 0( ¢) and that P{V'(a=,0) > h,} < P{V!(a=,0) > dlogn} =

o(n¢), with the same arguments as in the proof of Lemma [[J. Therefore, we have

n

[ IAIA
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P{Z, ANT,} = o(n¢). Since 0 < R, (A, Y) < 1, for any A > 0 and any positive random
variable Y, this yields

(7.2) Ro(A, 26" MT M) = Ry (A) + o(n ™).
Now, assembling ([7.1) and ([.3) concludes the proof of Proposition B. O

8. PROOF OF THEOREM [J

Observe first that R, (\) can be written
1

Then, we can use Corollary 9.1 and Remark 9.1 in [§], which implies
TR E[MK]QC[ AR
n — oQ.
sin(mk) nP{H > h,} =’

1
Ell— ———|7,| ~2¢
1+2)\nZ‘ ”}

Therefore, assembling Proposition I, Proposition fl, Proposition [] and recalling that
qn == P{H > h,}, we get that, for any £ > 0,

liminfE[ef)\nT(en)] > exp{—(2”" TR E[Mn]2cl>(e§>\)n}’

n—00 - sin(mk)
limsup B[ ")) < exp { — (28 TS BIMYPC ) ()"
n—o0 sin(7k)

Since this result holds for any £ > 0, we get,
lim E[e 7] = exp{ - <2"i w E[M“]ZCI> )\“}.

n— o0 Siﬂ(ﬂ'/‘i)

Now, for the conclusion of the proof of Theorem B and for the proofs of Theorem [
and Corollary [, we refer to the detailed sketch of the proof, see Section [J. U

9. PROOF OF THEOREM [J

The proof of Theorem 3 relies heavily on the estimates developed previously, so
we will not develop in full detail all the arguments. We first extend the convergence
result of Theorem [l to finite dimensional marginals. Consider (z1,2s,...,x;) such
that 0 < 27 < ... < 7. By the same type of arguments as in the proof of Theorem [
we can prove that

1
nl/“ (T\_nxlj ; T\_nzgj - T\_nxlju cee 7T|_7w:kj - T\_nxk_lj)

converges in distribution to

<d*1/“:1:}/“51, dil/"{(l’g — .Tl)l/RSQ, ey dil/li<l’k — l’kfl)l/RSk> y

where d = ——snlrr) and Si,...,S; are independent random variables with
2¢1K2CF E[pf log po]

the same normalized completely asymmetric stable law with index . By a classical

inversion argument (as in [[§] for the one-dimensional marginal) we can deduce that

if X} :=max{X;, 0<k<n}and0 <t <...<t, the random vector

1 * * * * *
ﬁ ( [tin]> “Xtan] = tin]o 0 ten] T |_tk_1nj>
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converges in distribution to

(dty Sy d(ta — £1)7S5", .. d(ty — te—1)"S; ") -
This implies the convergence of the finite dimensional marginals of X fm | /n" to the
marginals of the inverse of the stable subordinator of Theorem [.

Moreover, since (X [‘m | /n, t > 0) is increasing, the same type of arguments as in

[B] implies that it converges in distribution in the Skorokhod M;-topology (we refer
to Section 5 of [[] for a detailed discussion).

The last step is to show that with large probability X, /n" and X nt] /n* are
uniformly close. Let us now consider

n' :=n"logn.
Let T be a positive real number. Since X ’fnT | /n converges in distribution, the prob-
ability P{X*, < n'} tends to 1, when n tends to infinity.
On the event DT'(n') N {X}, < n'}, we have

X, — X7 < il
b=0rnn| X Kl = P |aj — b

Indeed, on DT'(n'), we know that if X}, reaches b; then it does not backtrack before
aj. Hence (X} > b;) implies that (X, > a;). This implies the previous estimate.
Moreover, using the same arguments as in Subsection p.1], it is easy to check that

nli
lim P¢ max |bj —aj] < =1.
n—oo j=1,...,K,, logn

This implies that, for all 7' > 0 and all £ > 0,

X X
lim P{max B L Il ) >€} =0,
n—00 te[o,7]| n~F nr
which concludes the proof of Theorem J. U

10. TOWARD THE CASE k =1

We intend to treat the critical case kK = 1 between the transient ballistic and sub-
ballistic cases. This case turns out to be more delicate. Indeed, Lemma, [ is replaced
by a weaker statement, which says that 7(e,,) reduces to the time spent by the walker
to climb excursions which are higher than alogn for « arbitrarily small. Due to
this reduced height, the new “high” excursions are much more numerous and are
not anymore well separated. The definition of the valleys should then be adapted as
well as the “linearization” argument, which is more difficult to carry out. Moreover,
a result of Goldie [[0 gives an explicit formula for the Kesten’s renewal constant,
namely Cx = m. As a result, we should obtain, in this case, the following
result, which takes a remarkably simple form: X,/ (@) converges in probability to

Elpolog po)/2.
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